JP5400256B1 - NdFeB系焼結磁石 - Google Patents

NdFeB系焼結磁石 Download PDF

Info

Publication number
JP5400256B1
JP5400256B1 JP2013536352A JP2013536352A JP5400256B1 JP 5400256 B1 JP5400256 B1 JP 5400256B1 JP 2013536352 A JP2013536352 A JP 2013536352A JP 2013536352 A JP2013536352 A JP 2013536352A JP 5400256 B1 JP5400256 B1 JP 5400256B1
Authority
JP
Japan
Prior art keywords
ndfeb
grain boundary
sintered magnet
based sintered
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013536352A
Other languages
English (en)
Other versions
JPWO2013100009A1 (ja
Inventor
眞人 佐川
徹彦 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intermetallics Co Ltd
Original Assignee
Intermetallics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intermetallics Co Ltd filed Critical Intermetallics Co Ltd
Priority to JP2013536352A priority Critical patent/JP5400256B1/ja
Application granted granted Critical
Publication of JP5400256B1 publication Critical patent/JP5400256B1/ja
Publication of JPWO2013100009A1 publication Critical patent/JPWO2013100009A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/0536Alloys characterised by their composition containing rare earth metals sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

粒界拡散法によって製造されるNdFeB系焼結磁石であって、高い保磁力と角型比を有し、最大エネルギー積の低下の少ないNdFeB系焼結磁石を提供することである。本発明に係るNdFeB系焼結磁石は、NdFeB系合金の粉末を配向し、焼結することにより製造した基材の表面に付着させたDy及び/又はTb(以下、「Dy及び/又はTb」を「RH」とする)を、粒界拡散処理によって該基材内部の粒界に拡散させたNdFeB系焼結磁石であって、粒界三重点におけるRHの濃度Ct(wt%)と、該粒界三重点に繋がる二粒子粒界部におけるRHの濃度Cw(wt%)の差Ct-Cwが4wt%以下となる粒界三重点の数が、粒界三重点の総数の60%以上、であることを特徴とする。

Description

本発明は、粒界拡散処理によって製造されるNdFeB系焼結磁石に関する。
NdFeB系焼結磁石は、1982年に佐川(本発明者の一人)らによって見出されたものであるが、それまでの永久磁石をはるかに凌駕する特性を有し、Nd(希土類の一種)、鉄及び硼素という比較的豊富で廉価な原料から製造することができるという特長を有する。そのため、NdFeB系焼結磁石はハイブリッド自動車や電気自動車の駆動用モータ、電動補助型自転車用モータ、産業用モータ、ハードディスク等のボイスコイルモータ、高級スピーカー、ヘッドホン、永久磁石式磁気共鳴診断装置等、様々な製品に使用されている。これらの用途に使用されるNdFeB系焼結磁石は高い保磁力HcJ、高い最大エネルギー積(BH)max及び高い角型比SQを有することが要求される。ここで角型比SQは、横軸を磁界、縦軸を磁化とするグラフの第1象限から第2象限を横切る磁化曲線において磁界ゼロに対応する磁化の値が10%低下したときの磁界の絶対値Hkを保磁力HcJで除した値Hk/HcJで定義される。
NdFeB系焼結磁石の保磁力を高めるための方法として、出発合金を作製する段階でDy及び/又はTb (以下、「Dy及び/又はTb」を「RH」とする)を添加する方法(一合金法)がある。また、RHを含まない主相系合金とRHを添加した粒界相系合金の2種類の出発合金の粉末を作製し、これらを互いに混合して焼結させる方法(二合金法)がある。更に、NdFeB系焼結磁石を作製した後、それを基材として表面に塗布や蒸着等によりRHを付着させ、加熱することにより、基材表面から基材中の粒界を通じて該基材内部にRHを拡散させる方法(粒界拡散法)がある(特許文献1)。
上記の方法によりNdFeB系焼結磁石の保磁力を高めることができるが、その一方で、焼結磁石中の主相粒子内にRHが存在すると、最大エネルギー積が低下することが知られている。一合金法では、出発合金粉末の段階で主相粒子内にRHが含まれるため、それを基に作製した焼結磁石においても主相粒子内にRHを含んでしまう。そのため、一合金法によって作製された焼結磁石は、保磁力は向上するものの最大エネルギー積が低下してしまう。
これに対し、二合金法では、RHの多くを主相粒子間の粒界に存在させることができる。そのため、一合金法に比べて最大エネルギー積の低下を抑えることが可能となる。また、一合金法に比べてレアメタルであるRHの使用量を減らすことができる。
粒界拡散法では、加熱により液化した基材内の粒界を通じて、基材表面に付着させたRHをその内部に拡散させる。そのため、粒界中のRHの拡散速度は、粒界から主相粒子内部への拡散速度よりもずっと速く、RHは速やかに基材内の深くまで供給される。それに対し、主相粒子は固体のままであるため、粒界から主相粒子内への拡散速度は遅い。この拡散速度の差を利用して、熱処理温度と時間を調整することにより、基材中の主相粒子の表面(粒界)にごく近い領域においてのみRHの濃度が高く、主相粒子の内部ではRHの濃度が低いという理想的な状態を実現することができる。これにより、保磁力を高めつつ、二合金法よりも最大エネルギー積(BH)maxの低下を抑えることが可能となる。また、レアメタルであるRHの使用量を二合金法よりも抑えることができる。
一方、NdFeB系焼結磁石を製造するための方法として、プレス有り磁石製造方法とプレスなし磁石製造方法がある。プレス有り磁石製造方法は、出発合金の微粉末(以下、「合金粉末」とする)を金型に充填し、合金粉末にプレス機で圧力を加えつつ磁界を印加することにより、圧縮成形体の作製と該圧縮成形体の配向処理を同時に行い、金型から取り出した圧縮成形体を加熱して焼結させるというものである。プレスなし磁石製造方法は、所定の充填容器に充填した合金粉末を、圧縮成形することなく、該充填容器に充填したままの状態で、配向させ、焼結させるというものである。
プレス有り磁石製造方法では、圧縮成形体を作製するために大型のプレス機が必要となるため、密閉空間内で行うことが難しいのに対し、プレスなし磁石製造工程ではプレス機を用いないことから、密閉空間内で充填から焼結までの作業を行うことができるという特長がある。
国際公開WO2006/043348号公報 国際公開WO2011/004894号公報
粒界拡散法では、蒸着・塗布等により基材表面に付着させるRHの基材内への拡散のしやすさ、拡散させることのできる基材表面からの深さ等は、粒界の状態の影響を大きく受ける。本発明者は、粒界中に存在する希土類リッチ相(主相粒子より希土類元素の比率の高い相)が粒界拡散法によりRHを拡散させる際の主要な通路となること、基材表面から十分な深さにまでRHを拡散させるためには、基材の粒界において、希土類リッチ相が途中で途切れることなく繋がっていることが望ましいことを見出した(特許文献2)。
その後、本発明者が更に実験を行ったところ、次のことを見出した。NdFeB系焼結磁石の製造では、合金粉末の粒子間の摩擦を小さくし、配向を行う際に粒子を回転しやすくする等の理由から、合金粉末に有機系潤滑剤を添加するが、これには炭素が含まれている。この炭素のほとんどは焼結時に酸化してNdFeB系焼結磁石の外部に放出されるが、一部はNdFeB系焼結磁石中に残留する。そのうち粒界に残留した炭素は凝集し、希土類リッチ相の中に炭素リッチ相(NdFeB系焼結磁石全体の平均よりも炭素濃度が高い相)を形成する。粒界中の炭素は、主相粒子間の距離が狭く、不純物が入り込みにくい二粒子粒界部(2つの主相粒子にのみ挟まれた粒界部分)よりも、主相粒子間の距離が広く、不純物が入り込みやすい粒界三重点(3つ以上の主相粒子によって囲まれる粒界部分)に多く集まる。そのため、炭素リッチ相の多くは粒界三重点に形成される。
上記のように、粒界に存在する希土類リッチ相は、RHをNdFeB系焼結磁石の内部に拡散させる際の主要な通路となる。しかしながら、希土類リッチ相中の炭素リッチ相はRHの拡散通路を塞ぐ堰のような役割を果たし、RHの粒界経由の拡散を阻害する。RHの粒界経由の拡散が阻害されると、NdFeB系焼結磁石の表面近傍におけるRHの濃度が高くなると共に、表面近傍の領域の主相粒子内にRHがより多く侵入し、その部分における最大エネルギー積の低下をもたらす。このような最大エネルギー積の低下部分を除去するため、粒界拡散処理後にNdFeB系焼結磁石の表面近傍を削ることもあるが、その場合、貴重なRHが無駄になる。
また、磁石全体の粒界にRHを行き渡らせることができず、保磁力及び角型比を十分に高めることができなくなる。
本発明が解決しようとする課題は、粒界拡散法によって製造されるNdFeB系焼結磁石であって、高い保磁力と角型比を有し、最大エネルギー積の低下の少ないNdFeB系焼結磁石を提供することである。
上記課題を解決するために成された本発明に係るNdFeB系焼結磁石は、
NdFeB系合金の粉末を配向し、焼結することにより製造した基材の表面に付着させたDy及び/又はTb(RH)を、粒界拡散処理によって該基材内部の粒界に拡散させたNdFeB系焼結磁石であって、
粒界三重点におけるRHの濃度Ct(wt%)と、二粒子粒界部におけるRHの濃度Cw(wt%)の差Ct-Cwが4wt%以下となる粒界三重点の数が、粒界三重点の総数の60%以上、
であることを特徴とする。
なお、ここで言う二粒子粒界部とは、前記の通り、2つの主相粒子にのみ挟まれた粒界部分のことであり、粒界三重点とは、3つ以上の主相粒子によって囲まれる粒界部分のことである。
上記のように、粒界三重点に炭素リッチ相が形成されると、粒界拡散処理の際、該粒界三重点にRHが流入する量に比して該粒界三重点から流出する量が減少し、該粒界三重点中のRHの濃度が高くなる。また、RHが流出する量が減少することにより、該粒界三重点よりも付着面から遠い二粒子粒界部では、該粒界三重点よりも付着面に近い二粒子粒界部に比べてRHの濃度が低くなる。そのため、従来のNdFeB系焼結磁石では、粒界三重点近傍でRHの濃度差が大きくなると共に、RHが深くまで拡散しなくなる。
一方、本発明に係るNdFeB系焼結磁石では、二粒子粒界部とのRHの濃度差の少ない粒界三重点の数が多いことから、RHが粒界中をほぼ均等に、付着面から深くまで拡散していると言える。そのため、本発明に係るNdFeB系焼結磁石では、粒界拡散処理により従来のNdFeB系焼結磁石よりも高い保磁力と角型比が得られつつも、最大エネルギー積の低下を抑えることが可能となる。
なお、本発明に係るNdFeB系焼結磁石を製造するには、例えば、
前記基材中の粒界三重点における希土類リッチ相の体積の総計に対する、該希土類リッチ相中の炭素リッチ相の体積の総計の比率が50%以下、
であることが望ましい。このような基材を用いることにより、粒界拡散処理の際にRHが炭素リッチ相に堰き止められることなく、上記のようにRHが粒界中を均等に拡散した構造を得ることができる。
本発明に係るNdFeB系焼結磁石では、RHが表面近傍に局在することなく、磁石全体の粒界に均等に拡散している。そのため、本発明に係るNdFeB系焼結磁石では、粒界拡散処理により従来のNdFeB系焼結磁石よりも高い保磁力と角型比が得られつつも、最大エネルギー積の低下を抑えることが可能となる。
本発明に係るNdFeB系焼結磁石の製造方法の一実施例を示すフローチャート。 比較例のNdFeB系焼結磁石の製造方法を示すフローチャート。 本実施例のNdFeB系焼結磁石の製造方法における水素解砕工程の温度履歴を示すグラフ。 比較例のNdFeB系焼結磁石の製造方法における水素解砕工程の温度履歴を示すグラフ。 本実施例のNdFeB系焼結磁石の製造方法により製造された本発明に係るNdFeB系焼結磁石の一実施例の、磁石表面におけるオージェ電子分光法によるマッピング画像。 比較例のNdFeB系焼結磁石の製造方法により製造されたNdFeB系焼結磁石の表面におけるオージェ電子分光法によるマッピング画像。 本実施例のNdFeB系焼結磁石の表面におけるオージェ電子分光法によるマッピング画像。 比較例のNdFeB系焼結磁石の製造方法により製造されたNdFeB系焼結磁石の表面におけるオージェ電子分光法によるマッピング画像。 本実施例のNdFeB系焼結磁石の光学顕微鏡写真。 粒界拡散処理後の本実施例のNdFeB系焼結磁石の、Tbの塗布面から1mmの深さにおけるWDSマップ画像。 粒界拡散処理後の比較例のNdFeB系焼結磁石の、Tbの塗布面から1mmの深さにおけるWDSマップ画像。 粒界拡散処理後の本実施例と比較例のNdFeB系焼結磁石における、粒界三重点と該粒界三重点に繋がる二粒子粒界部の濃度差のヒストグラム。 粒界拡散処理後の本実施例のNdFeB系焼結磁石の、Tbの塗布面に垂直な切断面上の、該塗布面からの距離(深さ方向)に対してTbの濃度分布を測定した線分析の結果を示す図。 粒界拡散処理後の比較例のNdFeB系焼結磁石の、粒界拡散処理の際のTbの塗布面に垂直な切断面上の、該塗布面からの距離(深さ方向)に対してTbの濃度分布を測定した線分析の結果を示す図。
以下、本発明に係るNdFeB系焼結磁石及びその製造方法の実施例を説明する。
本実施例及び比較例のNdFeB系焼結磁石を製造する方法について図1及び図2のフローチャートを用いて説明する。
本実施例のNdFeB系焼結磁石の製造方法は、図1に示すように、ストリップキャスト法により予め作製されたNdFeB系合金に水素を吸蔵させることにより、粗解砕する水素解砕工程(ステップA1)と、水素解砕工程で水素解砕された後に脱水素加熱されなかったNdFeB系合金に0.05〜0.1wt%のカプリル酸メチル等の潤滑剤を混合させ、ジェットミル装置を用いて窒素ガス気流中で、レーザ回折法で測定した粒度分布の中央値(D50)で3.2μm以下になるように微粉砕する微粉砕工程(ステップA2)と、微粉砕された合金粉末に0.05〜0.15wt%のラウリン酸メチル等の潤滑剤を混合し、モールド(充填容器)内に3.0〜3.5g/cm3の密度で充填する充填工程(ステップA3)と、モールド内の合金粉末を室温で磁界中配向させる配向工程(ステップA4)と、配向されたモールド内の合金粉末を焼結させる焼結工程(ステップA5)と、を有する。
なお、ステップA3〜A5の工程はプレスなし工程により行われる。また、ステップA1〜A5の工程は、一貫して無酸素雰囲気下で行われる。
比較例のNdFeB系焼結磁石の製造方法は、図2に示すように、水素解砕工程(ステップB1)において、NdFeB系合金に水素を吸蔵させた後、該水素を脱離させるための脱水素加熱を行っている点と、配向工程(ステップB4)において、磁界中配向の前後又は途中で合金粉末を加熱する昇温配向を行っている点を除いては、図1のフローチャートと同じである。
なお、昇温配向とは、配向工程の際に合金粉末を加熱することにより、合金粉末の各粒子の保磁力を低下させ、配向後の粒子間の反発を抑える方法のことである。この方法により、製造後のNdFeB系焼結磁石の配向度を向上させることができる。
本実施例と比較例のNdFeB系焼結磁石の製造方法の違いを、まず、水素解砕工程の温度履歴を用いて説明する。図3は、本実施例のNdFeB系焼結磁石の製造方法における水素解砕工程(ステップA1)の温度履歴、図4は、比較例のNdFeB系焼結磁石の製造方法における水素解砕工程(ステップB1)の温度履歴である。
図4は、脱水素加熱を行う一般的な水素解砕工程の温度履歴である。水素解砕工程では、NdFeB系合金の薄片に水素を吸蔵させる。この水素吸蔵過程は発熱反応なのでNdFeB系合金は200〜300℃程度まで温度上昇する。その後、真空脱気しつつ室温まで自然に冷却させる。この間に、合金内に吸蔵された水素が膨張し、合金内部で多数のひび割れ(クラック)が生じて解砕される。この過程で、水素の一部は合金と反応する。この合金と反応した水素を脱離させるために500℃程度まで加熱し、それから室温まで自然に冷却させる。図4の例では、水素を脱離するのに要する時間を含め、水素解砕工程に約1400分の時間が必要となる。
一方、本実施例のNdFeB系焼結磁石の製造方法では脱水素加熱を行わない。そのため、図3に示すように、発熱に伴う温度上昇後、真空脱気しつつ室温まで冷却させる時間を多少長めに取っても、約400分で水素解砕工程を終了することができる。従って、図4の例と比べると、約1000分(16.7時間)ほど製造時間を短縮することができる。
このように、本実施例のNdFeB系焼結磁石の製造方法では、製造工程の簡略化と、製造時間の大幅な短縮を行うことが可能となる。
また、表1に示す組成番号1〜4の各組成の合金に対して、本実施例のNdFeB系焼結磁石の製造方法と比較例のNdFeB系焼結磁石の製造方法を適用した結果を表2に示す。
なお、表2の結果は、いずれも微粉砕後の合金粉末の粒径が、レーザ回折法のD50で2.82μmになるように調整した場合のものである。また、微粉砕工程に用いるジェットミル装置には、ホソカワミクロン製100AFG型ジェットミル装置を用いた。磁気特性の測定には、日本電磁測器株式会社製のパルス磁化測定装置(商品名:パルスBHカーブトレーサPBH-1000)を用いた。
また、表2の脱水素無し、昇温配向無しの結果が、本実施例のNdFeB系焼結磁石の製造方法を、脱水素有り、昇温配向有りの結果が、比較例のNdFeB系焼結磁石の製造方法を、それぞれ示している。
表2に示すように、脱水素加熱を行わなかった場合、いずれの組成の合金を用いた場合でも、微粉砕工程における合金の粉砕速度が脱水素加熱を行った場合よりも向上する。これは、脱水素加熱を行った場合では、水素吸蔵によって脆化した合金中の組織が、脱水素加熱によって靭性を多少回復するのに対し、脱水素加熱を行わなかった場合では、合金組織が脆化したままであるためと考えられる。このように脱水素加熱を行わない本実施例の製造方法では、脱水素加熱を行う従来の製造方法と比較して、製造時間が短縮されるという効果も得られる。
また、本実施例の製造方法では、昇温配向を行わなかったにもかかわらず、昇温配向を行った比較例の製造方法とほぼ同程度且つ95%以上の高い配向度Br/Jsが得られている。本発明者が詳細に検討したところ、脱水素加熱を行わなかった場合では合金粉末粒子の磁気異方性(すなわち粒子毎の保磁力)が低下していることが分かった。各粒子の保磁力が低い場合、合金粉末を配向させた後、印加磁界の減少と共に各粒子内に逆磁区が発生し、多磁区化する。これにより各粒子の磁化が減少するため、隣接粒子間の磁気的相互作用による配向度の劣化が緩和され、高い配向度が得られる。これは昇温配向によって、製造後のNdFeB系焼結磁石の配向度が高くなることと同じ原理である。
すなわち、本実施例のNdFeB系焼結磁石の製造方法では、昇温配向を行うことなく、昇温配向と同様に高い配向度が得られるため、製造工程の簡略化と製造時間の短縮を行うことができる。
表2に記載の焼結温度は、各組成及び各製造方法において、焼結体の密度がNdFeB系焼結磁石の理論密度に最も近くなるようにしたときの温度を示したものである。表2に示すように、焼結温度は、本実施例の方が、比較例よりも低くなる傾向になることが分かった。焼結温度が低くなるということは、NdFeB系焼結磁石を製造する際のエネルギー消費が低くなること、すなわちエネルギーの節約(省エネ)に繋がる。また、合金粉末と共に加熱するモールドの寿命が延びるという効果もある。
さらに、本実施例の製造方法で製造されたNdFeB系焼結磁石は、比較例の製造方法で製造されたNdFeB系焼結磁石より、保磁力HcJが高く得られることも表の結果より分かった。
続いて、本実施例の製造方法により製造したNdFeB系焼結磁石と、比較例の製造方法により製造したNdFeB系焼結磁石の微細組織を調べるために、オージェ電子分光法(Auger Electron Spectroscopy; AES)により測定を行った。測定装置は、日本電子株式会社製のオージェマイクロプローブ(商品名:JAMP-9500F)である。
オージェ電子分光法の原理について簡単に説明する。オージェ電子分光法は、被測定物の表面に電子線を照射し、電子が照射された原子と該電子の相互作用により生じるオージェ電子のエネルギー分布を測定する手法である。オージェ電子は、各元素に固有のエネルギー値を有しているため、オージェ電子のエネルギー分布を測定することで、被測定物の表面(より具体的には表面から数nmの深さ)に存在する元素の同定(定性分析)を行うことができる。また、ピーク強度比から元素を定量(定量分析)することができる。
さらに、被測定物の表面をイオンスパッタ(例えばArイオンによるスパッタ)していくことで、被測定物の深さ方向の元素分布を調べることができる。
実際の分析方法は以下のとおりである。サンプル表面の汚れを取り除くため、実際の測定前にArスパッタリング用の角度(水平面に対して30度)に傾け、2〜3分間サンプル表面をスパッタリングする。次に、C、Oが検出できる粒界三重点中のNdリッチ相を数点選んでオージェスペクトルを取得し、これを基に検出用の閾値を決定する(ROI設定)。その取得条件は、電圧20kV、電流2×10-8A、(水平面に対して)角度55度であった。続いて、上記と同一条件にて本測定を行いNd、Cについてのオージェ像を取得する。
今回の分析では、表1の組成番号2の合金に対して本実施例と比較例の製造方法により製造されたNdFeB系焼結磁石の表面10を走査し、NdとCのオージェ像をそれぞれ取得した(図5及び図6)。なお、NdはNdFeB系焼結磁石表面のほぼ全域にわたって存在するが(図5(a)及び図6(a))、画像処理によって濃度がNdFeB系焼結磁石全体の平均値よりも高い領域11をNdリッチな粒界三重点領域として抽出した(図5(b)及び図6(b))。また、Cリッチな領域12を、図5(c)及び図6(c)の画像より抽出した(図5(d)及び図6(d))。
以上のように抽出したNdリッチな粒界三重点領域11の面積及び該Ndリッチな粒界三重点領域11中のCリッチな領域12内の面積合計をそれぞれ求め、これらを両部分の体積と定義し、両者の比率C/Ndを算出した。以上を、複数の視野で行った。
図7及び図8に、組成番号2に対応する本実施例と比較例のNdFeB系焼結磁石の表面を24μm×24μmの小領域に区分し、各小領域のNdとCの分布及びC/Ndを分析した結果を、それぞれ示す(なお、図7及び図8には代表的な3つの小領域のみ示している)。
本実施例のNdFeB系焼結磁石では、殆どの小領域において、20%以下の低いC/Ndが得られた。一部の小領域で50%のC/Ndを示す分布が見られたが、50%を超えるC/Ndを示す小領域はなかった。また、領域全体(全ての小領域を合わせた領域)でのC/Ndは26.5%であった。
一方、比較例のNdFeB系焼結磁石では、ほぼ全ての小領域で90%以上という高いC/Ndが得られた。また、領域全体のC/Ndは93.1%であった。
以下、Ndリッチな粒界三重点領域の体積に対するCリッチな領域の体積比率が50%以下のNdFeB系焼結磁石を「本実施例のNdFeB系焼結磁石」と呼ことにする。また、この特徴を有さないNdFeB系焼結磁石を「比較例のNdFeB系焼結磁石」と呼ぶ。
NdFeB系焼結磁石中の炭素含有率は、製造方法毎にほぼ同じ値となる。表1の組成番号3に対応するNdFeB系焼結磁石に対して炭素含有率をLECO社製CS-230型炭素・硫黄分析装置により測定したところ、比較例の製造方法で約1100ppm、本実施例の製造方法で約800ppmであった。また、本実施例の製造方法により製造された上記各NdFeB系焼結磁石の顕微鏡写真を複数の視野から撮り(図9の光学顕微鏡写真はそのうちの一枚である)、画像解析装置(ニレコ社製LUZEX AP)にて粒度分布測定を行ったところ、主相粒子の平均粒径は2.6〜2.9μmの範囲内で得られていた。
次に、本実施例のNdFeB系焼結磁石と、比較例のNdFeB系焼結磁石の磁気特性及び、粒界拡散法の基材として適用した後の磁気特性を、表3及び表4に示す。
表3の実施例1〜4は、上記(i)〜(iii)の特徴を有する、それぞれ組成番号1〜4の合金に対して本実施例の製造方法により製造した、厚さ方向が磁化方向である縦7mm×横7mm×厚さ3mmのNdFeB系焼結磁石である。また、表3の比較例1〜4は、上記(ii)及び(iii)の特徴を有さない、それぞれ組成番号1〜4の合金から比較例の製造方法により製造した実施例1〜4と同じ大きさのNdFeB系焼結磁石である。これら実施例1〜4及び比較例1〜4のNdFeB系焼結磁石は、後述する粒界拡散法の基材として使用される。
なお、表中のBrは残留磁束密度(磁化曲線(J-H曲線)又は減磁曲線(B-H曲線)の磁場Hが0のときの磁化J又は磁束密度Bの大きさ)、Jsは飽和磁化(磁化Jの最大値)、HcBは減磁曲線によって定義される保磁力、HcJは磁化曲線によって定義される保磁力、(BH)maxは最大エネルギー積(減磁曲線における磁束密度Bと磁場Hの積の極大値)、Br/Jsは配向度、SQは角型比を示している。これらの数値が大きいほど、良い磁石特性が得られていることを意味する。
表3に示すように、同じ組成では、本実施例のNdFeB系焼結磁石の方が、比較例のNdFeB系焼結磁石よりも高い保磁力HcJが得られている。また、配向度Br/Jsはほぼ同じであるが、角型比SQについては、本実施例のNdFeB系焼結磁石は、比較例のNdFeB系焼結磁石に比べて極めて高い数値が得られている。
続いて、表3の各NdFeB系焼結磁石を基材とし、RHとしてTbを用いて粒界拡散処理を行った後の磁気特性を表4に示す。
なお、粒界拡散(Grain Boundary Diffusion: GBD)処理は以下のように行った。
まず、Tb:92wt%、Ni:4.3wt%、Al:3.7wt%のTbNiAl合金粉末とシリコーングリースを重量比で80:20の割合で混合した混合物10gにシリコーンオイルを0.07g添加したペーストを基材の両磁極面(7mm×7mmの面)にそれぞれ10mgずつ塗布した。
次に、上記ペーストを塗布した直方体基材を、複数の尖形状の支持部が設けられたモリブデン製のトレイに載せ、直方体基材を該支持部によって支持しつつ、10-4Paの真空中で加熱した。加熱温度と加熱時間はそれぞれ880℃、10時間とした。その後室温付近まで急冷して、次に500℃で2時間加熱して、再度室温まで急冷した。
表4に示すように、本実施例のNdFeB系焼結磁石を基材として粒界拡散処理を行った磁石は、比較例のNdFeB系焼結磁石を基材として粒界拡散処理を行った磁石よりも保磁力HcJが大きく向上している。また、比較例のNdFeB系焼結磁石を基材とした場合では、粒界拡散処理により角型比SQが大きく低下するのに対し、本実施例のNdFeB系焼結磁石を基材とした場合では、角型比SQは殆ど低下せず、むしろ高くなることもあった。
また、粒界拡散処理による最大エネルギー積(BH)maxの低下は、本実施例1〜4の基材に対して、それぞれ1.49MGOe, 1.83MGOe, 0.23MGOe, 0.77MGOeである一方、比較例1〜4の基材に対しては、それぞれ2.22MGOe, 1.44MGOe, 0.68MGOe, 1.54MGOeである。
これらの数値を比較すると、実施例2のNdFeB系焼結磁石では、同じ出発合金から製造される比較例2のNdFeB系焼結磁石よりも粒界拡散処理後の最大エネルギー積の低下が大きくなっている。しかしながら、それ以外では、本実施例のNdFeB系焼結磁石の方が、同じ組成の出発合金から製造される比較例のNdFeB系焼結磁石よりも最大エネルギー積の低下が抑えられていると共に、その低下量は、比較例の低下量の半分近くになっている。
このように、同じ組成の出発合金に対しては、多くの場合、本実施例のNdFeB系焼結磁石の方が、比較例のNdFeB系焼結磁石よりも、粒界拡散処理後の最大エネルギー積(BH)maxの低下が抑えられる。
本発明者はさらに、本実施例と比較例の、粒界拡散処理後のNdFeB系焼結磁石(以下、「GBD処理後磁石」と称す)の粒界中のTb濃度分布、特に、粒界三重点と二粒子粒界部におけるTb濃度分布を測定した。
図10及び図11は、それぞれ組成番号2に対応する本実施例と比較例のGBD処理後磁石を、磁極面(塗布面)から1mmの深さにおいて磁極面に平行に外周刃切断機で切り出し、切断面を研磨した後、EPMA(日本電子株式会社製、JXA-8500F)のWDS(波長分散)分析からTbの検出を行うことにより得られたWDSマップ画像である。測定は加速電圧15kV、WDS分析、分光結晶LIFH(TbLα)、プローブ径は装置分解能により実施し、EPMAのX線カウント生データをTb濃度に変換した。その際使用した検量線は、Tb濃度の最も高いTb塗布面近傍とTb濃度の低い反対側面とで定量分析を行うことにより作成した。これらの図では、Tbの濃度が白黒の濃淡(白い方が濃度が高い)で示されている。
図10に示す本実施例のGBD処理後磁石のWDSマップ画像と、図11に示す比較例のGBD処理後磁石のWDSマップ画像を比較すると、図11では、Tb濃度が高いことを示す白色の領域(この領域は粒界三重点に対応している)が比較的多数存在し、濃淡の差が大きく現れているのに対し、図10では白色の領域は殆ど存在せず、濃淡の差が小さい。
また、各粒界三重点のTb濃度が最も高い値と該粒界三重点に繋がる二粒子粒界部のTb濃度が最も低い値との差を算出し、この粒界三重点毎の濃度差についてヒストグラムを作成したところ、本実施例と比較例のGBD処理後磁石に対し、図12の結果が得られた。この図12のヒストグラムから、本実施例のGBD処理後磁石(図12中の脱水素工程なしの結果)では、粒界三重点と二粒子粒界部のTb濃度差が2〜3wt%となる粒界三重点の割合が50%を超えることが分かった。また、粒界三重点と二粒子粒界部のTb濃度差が3wt%以下となる粒界三重点の割合が60%を超えることが分かった。
一方、比較例のGBD処理後磁石(図12中の脱水素工程ありの結果)では、粒界三重点と二粒子粒界部のTb濃度差が4〜6wt%となる粒界三重点の割合が比較的多く、粒界中のTb濃度の均一性という観点で、本実施例のGBD処理後磁石より劣ることが分かった。
本発明者はまた、本実施例と比較例のGBD処理後磁石のTb塗布面からの深さ方向へのTbの拡散について測定を行った。
なお、この測定では、以下の処理を行った。まず、組成番号2に対応する基材(粒界拡散処理前の焼結体)を、1つの磁極面を除いて酸化させ、その後、酸化させていない磁極面にTbを塗布し、粒界拡散処理を行った。そして、磁極面に垂直に粒界拡散処理後のNdFeB系焼結磁石(GBD処理後磁石)を切断し、その切断面上の深さ方向に平行な直線上で、EPMAによるTb濃度の線分析を行った。上記と同様の測定条件でTbを塗布した面から反対側の端まで線分析を行い、一つの試料について装置分解能で識別できる間隔をおいて5本のデータを取得後、これら5本のデータを重ね合わせてTb濃度の深さ方向の濃度グラフを作成した。なお、Tb濃度の変換には、図10及び図11の画像を得る際に用いた方法と同様の方法を用いた。その結果を、図13及び図14に示す。
図13及び図14の各グラフにおいて、スパイク状に濃度が高い部分(以下、これを「ピーク」と称す)が粒界中のTb濃度を、それ以外の濃度の低い部分が主相粒子中のTb濃度を、それぞれ示している。図中のCgxは、各ピークの頂点に接する曲線を、指数関数型減衰曲線で近似したものであり、Tb塗布面からの距離(深さ)に対する粒界中のTbの濃度変化を表している。また、図中のCxは、ピーク間の各点に接する曲線を、指数関数型減衰曲線で近似したものであり、Tb塗布面からの距離に対する主相粒子中のTbの濃度変化を表している。
図13及び図14に示すように、Tbの濃度Cgx及びCxは基本的に塗布面からの距離が大きくなるにつれて減少する。この減少は本実施例のGBD処理後磁石の方が緩やかで、3mmの深さ(塗布面の反対側の面)でもCgxが5wt%以上という比較的高い濃度でTbが拡散していた。一方、比較例のGBD処理後磁石では、3mmの深さでの粒界中のTbの濃度Cgxは2wt%以下であった。
Tb塗布面(深さ0mm)とTb塗布面から3mmの深さでの粒界中のTb濃度Cgxの差Cs-Cd3は、比較例のNdFeB系焼結磁石で25wt%以上であったのに対し、本実施例のNdFeB系焼結磁石で20wt%以下であった。また、Tb塗布面とTb塗布面から1mmの深さでの粒界中のTb濃度Cgxの差Cs-Cd1は、比較例のNdFeB系焼結磁石で20wt%以上であったのに対し、本実施例のNdFeB系焼結磁石では15wt%以下であった。
また、主相粒子中と粒界中のTbの濃度差は、最も濃度差の少ない深さ3mmの地点で、比較例のNdFeB系焼結磁石が1wt%程度である一方、本実施例のNdFeB系焼結磁石では3wt%以上であった。
以上から、本実施例のGBD処理後磁石では、比較例のGBD処理後磁石に比べて、塗布面近傍で主相粒子中に侵入するTb(RH)の量が少なく、深さ方向に多く拡散していることが分かる。また、深さ方向へのTbの拡散も、その殆どが粒界を通じて行われたことが、図13のCgxとCxの各曲線の差の大きさより分かる。
実際、以上の特徴を有する本実施例のGBD処理後磁石では、Tb塗布面における主相粒子中のTbの濃度Cxが約7wt%であるのに対し、比較例のGBD処理後磁石では約12wt%である。このように、本実施例のGBD処理後磁石では、比較例のGBD処理後磁石に比べて、塗布面近傍の主相粒子に侵入するTbが少ない。
そのため、本実施例のGBD処理後磁石では、比較例のGBD処理後磁石よりも最大エネルギー積の低下が抑えられる。また、本実施例のGBD処理後磁石の保磁力及び角型比が比較例のGBD処理後磁石に比べて高くなるのも、Tbが粒界中に均等に拡散しているためと考えられる。
なお、1つの塗布面から深さ3mmの地点にまでTbを拡散することができるということは、対向する両面にTbを塗布した場合、厚みが6mmのGBD処理後磁石であっても、その中心部にまでTbを拡散できるということである。
本実施例のGBD処理後磁石では、基材として用いた焼結体の、Ndリッチ相中の炭素リッチ相の割合が低いため、粒界中のNdリッチ相を通したRHの拡散性が高い。本発明者が実験により確かめたところ、対向する両面にRHを塗布した場合では、厚さ10mmの焼結体基材に対しても中心部にまでRHを拡散させることができた。以下の表5は、3mm、6mm、10mmの厚みで製造される、組成番号1、3の合金に対応する本実施例のGBD処理後磁石と、組成番号2の合金に対応する比較例のGBD処理後磁石の、粒界拡散前の状態からの保磁力の増分を示したものである。
この表に示すように、3mmの厚みでは本実施例のGBD処理後磁石と比較例のGBD処理後磁石の間で大きな差異は見られないが、磁石が厚くなるに従って本実施例のGBD処理後磁石の保磁力の増分が勝ってくる。例えば6mmの厚みにおける保磁力の増分は、本実施例のGBD処理後磁石では3mmの厚みのときとほぼ同等であるが比較例のGBD処理後磁石では大きく低下している。保磁力の増分が大きいことは磁石の中心部にまでRHが拡散していることを示しており、このことから本実施例の製造方法が、厚みのある、高い磁気特性を有するGBD処理後磁石の製造に適していることが分かる。
10…NdFeB系焼結磁石の表面
11…Ndリッチ相の存在する領域
12…Cが分布する領域

Claims (4)

  1. NdFeB系合金の粉末を配向し、焼結することにより製造した基材の表面に付着させたDy及び/又はTb(以下、「Dy及び/又はTb」を「RH」とする)を、粒界拡散処理によって該基材内部の粒界に拡散させたNdFeB系焼結磁石であって、
    粒界三重点におけるRHの濃度Ct(wt%)と、二粒子粒界部におけるRHの濃度Cw(wt%)の差Ct-Cwが4wt%以下となる粒界三重点の数が、粒界三重点の総数の60%以上、
    であることを特徴とするNdFeB系焼結磁石。
  2. 前記基材中の粒界三重点における希土類リッチ相の体積の総計に対する、該希土類リッチ相中の炭素リッチ相の体積の総計の比率が50%以下、
    であることを特徴とする請求項1に記載のNdFeB系焼結磁石。
  3. 前記基材全体の炭素含有率が1000ppm以下であることを特徴とする請求項1又は2に記載のNdFeB系焼結磁石。
  4. 前記基材を構成する粒子である主相粒子の平均粒径が4.5μm以下であることを特徴とする請求項1〜3のいずれかに記載のNdFeB系焼結磁石。
JP2013536352A 2011-12-27 2012-12-27 NdFeB系焼結磁石 Active JP5400256B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013536352A JP5400256B1 (ja) 2011-12-27 2012-12-27 NdFeB系焼結磁石

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011286864 2011-12-27
JP2011286864 2011-12-27
JP2012026718 2012-02-09
JP2012026718 2012-02-09
PCT/JP2012/083787 WO2013100009A1 (ja) 2011-12-27 2012-12-27 NdFeB系焼結磁石
JP2013536352A JP5400256B1 (ja) 2011-12-27 2012-12-27 NdFeB系焼結磁石

Publications (2)

Publication Number Publication Date
JP5400256B1 true JP5400256B1 (ja) 2014-01-29
JPWO2013100009A1 JPWO2013100009A1 (ja) 2015-05-11

Family

ID=48697488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013536352A Active JP5400256B1 (ja) 2011-12-27 2012-12-27 NdFeB系焼結磁石

Country Status (6)

Country Link
US (1) US9396851B2 (ja)
EP (1) EP2693450B1 (ja)
JP (1) JP5400256B1 (ja)
KR (1) KR101369108B1 (ja)
CN (1) CN103503087B (ja)
WO (1) WO2013100009A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9837207B2 (en) 2012-07-24 2017-12-05 Intermetallics Co., Ltd. Method for producing NdFeB system sintered magnet
JP6784484B2 (ja) * 2015-09-11 2020-11-11 Tdk株式会社 R−t−b系焼結磁石およびモータ
US11328845B2 (en) 2017-06-27 2022-05-10 Daido Steel Co., Ltd. RFeB-based magnet and method for producing RFeB-based magnet
US11527340B2 (en) 2018-07-09 2022-12-13 Daido Steel Co., Ltd. RFeB-based sintered magnet
US20240048911A1 (en) * 2022-08-05 2024-02-08 Bose Corporation Grain boundary diffusion for high coercivity magnets for loudspeakers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270699A (ja) * 2007-03-29 2008-11-06 Hitachi Ltd 希土類磁石及びその製造方法
JP2008266767A (ja) * 2007-03-29 2008-11-06 Hitachi Chem Co Ltd フッ化物コート膜形成処理液およびフッ化物コート膜形成方法
WO2010109760A1 (ja) * 2009-03-27 2010-09-30 株式会社日立製作所 焼結磁石及びそれを用いた回転電機
WO2011004894A1 (ja) * 2009-07-10 2011-01-13 インターメタリックス株式会社 NdFeB焼結磁石及びその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4831074B1 (ja) 1968-08-23 1973-09-26
JP2003297622A (ja) 2002-03-28 2003-10-17 Tdk Corp 水素吸収方法、水素粉砕方法および希土類永久磁石の製造方法
JP4215240B2 (ja) 2003-02-26 2009-01-28 Tdk株式会社 水素粉砕方法、希土類永久磁石の製造方法
US7618497B2 (en) 2003-06-30 2009-11-17 Tdk Corporation R-T-B based rare earth permanent magnet and method for production thereof
CN1898757B (zh) * 2004-10-19 2010-05-05 信越化学工业株式会社 稀土永磁材料的制备方法
US7988795B2 (en) * 2005-12-02 2011-08-02 Shin-Etsu Chemical Co., Ltd. R-T-B—C rare earth sintered magnet and making method
US7806991B2 (en) 2005-12-22 2010-10-05 Hitachi, Ltd. Low loss magnet and magnetic circuit using the same
EP1981043B1 (en) 2006-01-31 2015-08-12 Hitachi Metals, Limited R-Fe-B RARE-EARTH SINTERED MAGNET AND PROCESS FOR PRODUCING THE SAME
EP2899726B1 (en) * 2006-03-03 2018-02-21 Hitachi Metals, Ltd. R-fe-b rare earth sintered magnet
JP4840606B2 (ja) 2006-11-17 2011-12-21 信越化学工業株式会社 希土類永久磁石の製造方法
US20080241513A1 (en) 2007-03-29 2008-10-02 Matahiro Komuro Rare earth magnet and manufacturing method thereof
US20080241368A1 (en) 2007-03-29 2008-10-02 Matahiro Komuro Treating solution for forming fluoride coating film and method for forming fluoride coating film
JP4998096B2 (ja) 2007-06-06 2012-08-15 日立金属株式会社 R−Fe−B系永久磁石の製造方法
WO2009004794A1 (ja) 2007-07-02 2009-01-08 Hitachi Metals, Ltd. R-Fe-B系希土類焼結磁石およびその製造方法
JP5328161B2 (ja) 2008-01-11 2013-10-30 インターメタリックス株式会社 NdFeB焼結磁石の製造方法及びNdFeB焼結磁石
JP4923152B2 (ja) 2010-03-31 2012-04-25 日東電工株式会社 永久磁石及び永久磁石の製造方法
JP5870522B2 (ja) * 2010-07-14 2016-03-01 トヨタ自動車株式会社 永久磁石の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270699A (ja) * 2007-03-29 2008-11-06 Hitachi Ltd 希土類磁石及びその製造方法
JP2008266767A (ja) * 2007-03-29 2008-11-06 Hitachi Chem Co Ltd フッ化物コート膜形成処理液およびフッ化物コート膜形成方法
WO2010109760A1 (ja) * 2009-03-27 2010-09-30 株式会社日立製作所 焼結磁石及びそれを用いた回転電機
WO2011004894A1 (ja) * 2009-07-10 2011-01-13 インターメタリックス株式会社 NdFeB焼結磁石及びその製造方法

Also Published As

Publication number Publication date
KR20130103642A (ko) 2013-09-23
CN103503087B (zh) 2016-01-20
US9396851B2 (en) 2016-07-19
EP2693450A4 (en) 2014-07-30
EP2693450A1 (en) 2014-02-05
WO2013100009A1 (ja) 2013-07-04
JPWO2013100009A1 (ja) 2015-05-11
US20140118098A1 (en) 2014-05-01
CN103503087A (zh) 2014-01-08
KR101369108B1 (ko) 2014-03-03
EP2693450B1 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
JP5553461B2 (ja) NdFeB系焼結磁石
JP5400255B1 (ja) NdFeB系焼結磁石及び該NdFeB系焼結磁石の製造方法
JP5503086B2 (ja) NdFeB系焼結磁石
TWI673730B (zh) R-Fe-B系燒結磁石及其製造方法
JP6305916B2 (ja) NdFeB系焼結磁石
JP5400256B1 (ja) NdFeB系焼結磁石

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131024

R150 Certificate of patent or registration of utility model

Ref document number: 5400256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350