CN106029960B - SiC籽晶的加工变质层的除去方法、SiC籽晶和SiC基板的制造方法 - Google Patents

SiC籽晶的加工变质层的除去方法、SiC籽晶和SiC基板的制造方法 Download PDF

Info

Publication number
CN106029960B
CN106029960B CN201580009773.9A CN201580009773A CN106029960B CN 106029960 B CN106029960 B CN 106029960B CN 201580009773 A CN201580009773 A CN 201580009773A CN 106029960 B CN106029960 B CN 106029960B
Authority
CN
China
Prior art keywords
seed crystal
sic
sic seed
affected layer
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201580009773.9A
Other languages
English (en)
Other versions
CN106029960A (zh
Inventor
矢吹纪人
鸟见聪
野上晓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Publication of CN106029960A publication Critical patent/CN106029960A/zh
Application granted granted Critical
Publication of CN106029960B publication Critical patent/CN106029960B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/12Etching in gas atmosphere or plasma
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/12Liquid-phase epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • C30B19/04Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux the solvent being a component of the crystal composition
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02019Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • H01L21/3247Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering for altering the shape, e.g. smoothing the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明的课题是提供一种即使在使用切断加工过的SiC籽晶进行MSE法的情况下也不会降低生长速度的方法。将作为亚稳定溶剂外延法(Metastable solvent epitaxy:MSE法)的籽晶使用的SiC籽晶通过在Si气氛下进行加热而对表面进行蚀刻,除去因切断加工产生的加工变质层。由于已经知道SiC籽晶产生的加工变质层会阻碍MSE法的生长,所以通过除去该加工变质层能够防止生长速度的降低。

Description

SiC籽晶的加工变质层的除去方法、SiC籽晶和SiC基板的制造 方法
技术领域
本发明主要涉及一种除去通过切断加工制作的SiC籽晶的加工变质层的方法。
背景技术
由于SiC与Si等比较,在耐热性和电特性等方面优异,因此作为新的半导体材料而备受瞩目。在制造半导体元件之际,首先使用由SiC单晶构成的籽晶制作SiC基板(SiC块体基板),接着,在该SiC基板上生长外延层而制作外延晶圆。半导体元件由该外延晶圆制造。另外,作为使用籽晶生长SiC单晶的方法,已知有MSE法。
在专利文献1中,公开了一种使用MSE法生长SiC单晶的方法。MSE法使用由SiC单晶构成的SiC籽晶、比SiC籽晶自由能高的供给基板和Si熔液。将SiC籽晶与供给基板相对配置,使Si熔液位于其之间,通过在真空下进行加热,能够在SiC籽晶的表面生长SiC单晶。
另外,在非专利文献1中公开了基于MSE法的SiC单晶的生长因结晶缺陷而受到阻碍。根据非专利文献1,螺旋位错(TSD)对生长阻碍程度最大,基底面位错(BPD)对生长阻碍程度小,刃型位错(TED)基本上不阻碍生长。
专利文献2公开了一种除去SiC基板上产生的表面变质层的处理方法。表面变质层被记载为在制作SiC基板的工序(机械研磨等的机械加工)中产生的结晶构造的损伤层。在专利文献2中,作为该表面变质层的除去方法,记载有氢蚀刻。
[现有技术文献]
[专利文献]
专利文献1:日本特开2008-230946号公报
专利文献2:国际公开第2011/024931号公报
[非专利文献]
非专利文献1:滨田信吉、其他5名、《MSE中的位错转换机制》、应用物理学会春季学术演讲会演讲预稿集、公益社团法人应用物理学会、2013年3月11日、第60卷
发明内容
发明所要解决的课题
但是,本申请的申请人发现了当使用由金刚石锯等切断加工过的SiC单晶作为SiC籽晶进行MSE法时,生长速度变得极其缓慢。MSE法由于能够制作比升华再结晶化法品质更高的SiC基板而备受期待,要求能够消除这一问题点。
而且,在专利文献2中,停留在公开了在由SiC籽晶生长的SiC基板上存在加工变质层以及将其除去这一点上,并未言及SiC籽晶的加工变质层。
本发明鉴于以上情况而完成,其主要目的在于提供一种即使在使用切断加工过的SiC籽晶进行MSE法的情况下生长速度也不会降低的方法。
用于解决课题的方法和效果
本发明所要解决的课题如以上所述,接着对用于解决该课题的手段及其效果进行说明。
根据本发明的第一观点,提供一种SiC籽晶的加工变质层的除去方法,其为用于对作为亚稳定溶剂外延法的籽晶使用的SiC单晶,除去因切断加工产生的加工变质层的方法,其特征在于:包括通过将SiC籽晶的表面在Si气氛下进行加热而进行蚀刻的蚀刻工序。
由此,能够除去成为MSE法的生长的阻碍的加工变质层,所以能够防止生长速度降低。
在上述的SiC籽晶的加工变质层的除去方法中,优选上述SiC籽晶为板状,在上述蚀刻工序中,至少蚀刻上述SiC籽晶的与厚度方向平行的面。
由此,能够可靠地除去被认为产生了加工变质层的部分,所以能够更可靠地防止MSE法的生长速度降低。
在上述的SiC籽晶的加工变质层的除去方法中,优选上述蚀刻工序的蚀刻量为10μm以上。
由此,能够改善MSE法的生长速度。
根据本发明的第二观点,提供一种利用上述的SiC籽晶的加工变质层的除去工序除去了加工变质层的SiC籽晶。
由此,能够实现能够使用MSE法以稳定的速度生长SiC单晶的SiC籽晶。
根据本发明的第三观点,提供一种包括上述的SiC籽晶的加工变质层的除去工序和生长工序的SiC基板的制造方法。在上述生长工序中,使用由上述除去工序除去了上述加工变质层的上述SiC籽晶,通过亚稳定溶剂外延法生长SiC单晶。
由此,因为MSE法的生长速度不会降低,所以能够有效地制作SiC基板。
附图说明
图1为说明用于本发明的SiC籽晶的蚀刻的高温真空炉的概要的图。
图2为表示利用MSE法使SiC单晶生长时的结构示例的示意图。
图3为表示对SiC籽晶进行蚀刻时的样子的立体图和截面图。
图4为表示SiC籽晶的蚀刻时间与蚀刻量的图表。
图5为说明与蚀刻时间相对应的SiC籽晶的表面的形状变化的图。
图6为表示SiC籽晶的蚀刻量与MSE法的生长速度的关系的图表。
具体实施方式
以下,参照附图对本发明的实施方式进行说明。
首先,参照图1对在本实施方式的加热处理(蚀刻)中使用的高温真空炉10进行说明。图1为说明在本发明的表面处理方法中使用的高温真空炉的概要的图。
如图1所示,高温真空炉10具备主加热室21和预备加热室22。主加热室21能够将至少表面由SiC单晶构成的被处理物加热为1000℃以上2300℃以下的温度。预备加热室22为用于在主加热室21对被处理物进行加热之前进行预备加热的空间。
主加热室21与真空形成用阀23和真空计25连接。利用真空形成用阀23能够调整主加热室21的真空度。利用真空计25能够测定主加热室21内的真空度。
在主加热室21的内部具备加热器26。另外,在主加热室21的侧壁、顶棚固定有省略图示的热反射金属板,利用该热反射金属板构成为使加热器26的热向主加热室21的中央部反射。由此,能够强力并且均匀地对被处理物进行加热,使其升温至1000℃以上2300℃以下的温度。其中,作为加热器26,能够使用例如电阻加热式的加热器或高频感应加热式的加热器。
另外,被处理物在被收容于坩埚(收容容器)30中的状态下被加热。坩埚30被载置于适宜的支撑台等,构成为通过该支撑台运动而至少能够从预备加热室移动到主加热室。
坩埚30具备能够相互嵌合的上容器31和下容器32。另外,坩埚30包括钽金属构成,并且构成为使碳化钽层向内部空间露出。在坩埚30的内部以适宜的形态配置有作为Si的供给源的Si。
在对被处理物进行加热处理之际,首先如图1的点划线所示,将坩埚30配置在高温真空炉10的预备加热室22中,以适宜的温度(例如大约800℃)进行预备加热。接着,使坩埚30向已被升温至预设温度(例如,大约1800℃)的主加热室21移动,对被处理物进行加热。而且,也可以省略预备加热。
接着,对使用MSE法从SiC籽晶生长SiC单晶来制作SiC基板的方法进行说明。图2为表示利用MSE法使SiC单晶生长时的结构示例的示意图。
如图2所示,在坩埚30的内部配置有SiC籽晶40、2块Si板41和2块碳料基板42。它们由支撑台33支撑。
SiC籽晶40作为液相外延生长的基板(种子(seed)侧)使用。SiC籽晶40例如通过对规定大小的4H-SiC单晶进行切割加工(切断加工)而制作。本实施方式的SiC籽晶40如图3所示为六边形的板状部件,但其形状可以任意。另外,还可以使用6H-SiC代替4H-SiC。在SiC籽晶40的上下配置有Si板41。
Si板41为Si制的板状部件。因为Si的熔点为大约1400℃,所以通过在上述的高温真空炉10中进行加热,Si板41熔融。在Si板41的上下配置有碳料基板42。
碳料基板42作为供给碳的原料即供给(feed)侧使用。碳料基板42为多晶3C-SiC制成,为比SiC籽晶40自由能高的基板。
将SiC籽晶40、Si板41和碳料基板42如上所述配置,以例如1800℃进行加热,则配置在SiC籽晶40与碳料基板42之间的Si板41熔融,硅熔液作为用于使碳移动的溶剂工作。
通过以上方式能够在SiC籽晶40的表面利用MSE法生长SiC单晶。由此,能够制作微孔、结晶缺陷少的原子级平坦的SiC基板。对该SiC基板利用CVD法(化学气相生长法)或者LPE法(液相外延法)等进行使外延层生长的工序、注入离子的工序、对离子赋活的退火工序(加热工序)等,由此制造半导体元件。
本申请的申请人发现即使使用SiC籽晶40进行MSE法也存在SiC单晶的生长速度极其缓慢的情况。进一步,本申请的申请人还发现该现象在使用通过切割加工等切断加工制作的SiC籽晶40的情况下也会发生。根据这些发现,本申请的申请人认为在切断加工时对SiC籽晶40施加应力而产生了加工变质层,是该加工变质层阻碍生长,并且提出了除去该加工变质层的方法。
详细而言,是在进行MSE法之前在Si气氛下对SiC籽晶40的表面进行加热并蚀刻,以除去加工变质层的方法。以下,对该方法参照图3进行说明。图3为表示对SiC籽晶40进行蚀刻时的样子的立体图和截面图。
SiC籽晶40的蚀刻通过将SiC籽晶40收容在坩埚30内,并将该坩埚30用高温真空炉10加热而进行。如图3所示,SiC籽晶40被配置在上述说明的坩埚30的内部。而且,在本实施方式中,SiC籽晶40由支撑台34支撑,但也可以省略支撑台34。但是,因为SiC籽晶40的加工变质层被认为是在侧面(与厚度方向平行的面)及其附近产生,所以优选使该部分露出。
如以上所述,为了在加热时使坩埚30内为Si气氛,在坩埚30内配置有Si供给源。作为Si供给源,能够例举固体的Si颗粒(pellet)、固定在坩埚30的内壁的Si、或者硅化钽制的内壁。该蚀刻通过以下方式进行:将坩埚30(SiC籽晶40)在1500℃以上2200℃以下、优选1800℃以上2000℃以下的环境下进行加热。通过进行加热,利用Si供给源使坩埚30内成为Si气氛。
由于在Si蒸气压下SiC籽晶40被加热,SiC籽晶40的SiC变成Si2C或者SiC2而升华,并且Si气氛中的Si在SiC籽晶40的表面与C结合,引起自组织化。由此,能够除去被认为是在SiC籽晶40的侧面及其附近产生的加工变质层。由此,即使是利用切割加工等切断加工制作的SiC籽晶40,也能够防止在MSE法的实施时生长速度降低。
接着,参照图4至图6,对本申请的申请人为了明确上述方法的效果而进行的实验进行说明。
图4和图5为表示对SiC籽晶40进行蚀刻时的结果的图。在本实验中,准备4个同等结构的SiC籽晶40,对其中3个SiC籽晶40在1800℃、10-5Pa下分别进行3分钟、7分钟、11分钟的加热处理。
如图4所示,该加热处理的结果为:加热时间为3分钟的SiC籽晶40的蚀刻量为11μm,加热时间为7分钟的SiC籽晶40的蚀刻量为25μm,加热时间为11分钟的SiC籽晶40的蚀刻量为32μm。而且,随着蚀刻时间变长,蚀刻量增加,蚀刻时间与蚀刻量存在比例关系。由此,通过计测蚀刻时间能够对SiC籽晶40蚀刻期望的量。
图5为表示从上方(从厚度方向的一侧)观察进行了蚀刻的SiC籽晶40时的显微镜照片的图。如图5(a)所示,测定点1为六边形的边部分,测定点2为六边形的顶点部分。另外,图5(b)的上部的数字为蚀刻量。如该显微镜照片特别是测定点2的显微镜照片所示,在SiC籽晶40的端部,一部分缺失产生凹凸。另外,可知越是蚀刻量多的SiC籽晶40,端部的缺失越被除去,蚀刻量为10μm可看到很大的改善,蚀刻量为25μm和32μm,则端部的缺失被大致完全除去,端面变得平坦。
接着,参照图6,说明针对蚀刻量与生长速度的关系所进行的实验。在该实验中,如图2所说明的那样配置Si板41和碳料基板42,在1800℃、惰性气体压力为10torr进行了规定时间加热。其后,取出SiC籽晶40,对a轴方向(外延生长方向)的长度进行了计测。
根据图6可知,蚀刻量越多,SiC籽晶40的a轴方向的长度越长(换言之生长速度越快)。详细而言,蚀刻量为10μm的SiC籽晶40明显比未进行蚀刻的SiC籽晶40生长速度快。另外,蚀刻量为25μm的SiC籽晶40生长速度更快。而且,蚀刻量为25μm和32μm的SiC籽晶40的生长速度基本上相同。
根据该实验,优选蚀刻量为10μm以上,进一步优选蚀刻量为25μm或者其以上。根据以上所述,通过对SiC籽晶40进行蚀刻,能够避免MSE法的生长速度变慢的事态。
而且,以往并不进行籽晶的加工变质层的除去,但作为除去SiC基板(SiC块体基板)的加工变质层的方法,一般进行化学机械研磨或者氢蚀刻等。但是,化学机械研磨容易对SiC籽晶40的上面或者下面进行研磨,却难以对SiC籽晶40的侧面进行研磨。进一步,化学机械研磨的研磨速度为1μm/h以下。另外,氢蚀刻的蚀刻速度为数十nm~数百nm/h。因此,利用一般的的加工变质层的除去方法,会花大量时间。
这一点,因为基于Si蒸气压下(Si气氛下)的加热的蚀刻根据如图4所示的结果可知蚀刻速度为3μm/min~4μm/min,所以能够在短时间内除去SiC籽晶40的加工变质层。
如以上所说明的这样,在本实施方式中,将通过切割加工制作并作为MSE法的籽晶使用的SiC籽晶40通过在Si气氛下进行加热而对表面进行蚀刻,除去在SiC籽晶40上生长的加工变质层。
由此,能够除去成为MSE法的生长的阻碍的加工变质层,所以能够防止生长速度降低。
另外,在本实施方式中,SiC籽晶40为板状,至少蚀刻SiC籽晶40的与厚度方向平行的面。
由此,能够可靠地除去被认为产生了加工变质层的部分,所以能够更可靠地防止生长速度降低。
以上对本发明的优选实施方式进行了说明,但上述的结构能够例如以下所示进行变更。
对于蚀刻量的控制,除了蚀刻时间,还可以利用温度、惰性气体压力、Si的压力等。
上述说明的温度条件和压力条件等只是一个例子,能够适当变更。另外,还可以使用上述高温真空炉10以外的加热装置,或者使用与坩埚30不同形状或者素材的容器。
作为切断加工,也可以是切割加工等的机械加工或激光加工等基于能量波的加工等采用适宜的方法的切断加工。
附图标号说明
10 高温真空炉
30 坩埚
40 SiC籽晶
41 Si板
42 碳料基板(carbon feed substrate)

Claims (2)

1.一种SiC籽晶的加工变质层的除去方法,其为用于除去作为亚稳定溶剂外延法的籽晶使用的SiC单晶的因切断加工产生的加工变质层的方法,其特征在于:
包括通过将SiC籽晶的表面在Si气氛下进行加热而进行蚀刻的蚀刻工序,
所述SiC籽晶为板状,
在所述蚀刻工序中,所述SiC籽晶的与厚度方向平行的面被蚀刻10μm以上。
2.一种SiC基板的制造方法,其特征在于,包括:
通过权利要求1所述的SiC籽晶的加工变质层的除去方法除去所述SiC籽晶的加工变质层的除去工序;和
使用通过所述除去工序除去了所述加工变质层的所述SiC籽晶,利用亚稳定溶剂外延法生长SiC单晶的生长工序。
CN201580009773.9A 2014-03-31 2015-03-10 SiC籽晶的加工变质层的除去方法、SiC籽晶和SiC基板的制造方法 Expired - Fee Related CN106029960B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014-074742 2014-03-31
JP2014074742A JP6232329B2 (ja) 2014-03-31 2014-03-31 SiC種結晶の加工変質層の除去方法、SiC種結晶及びSiC基板の製造方法
PCT/JP2015/001302 WO2015151412A1 (ja) 2014-03-31 2015-03-10 SiC種結晶の加工変質層の除去方法、SiC種結晶及びSiC基板の製造方法

Publications (2)

Publication Number Publication Date
CN106029960A CN106029960A (zh) 2016-10-12
CN106029960B true CN106029960B (zh) 2019-07-09

Family

ID=54239765

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580009773.9A Expired - Fee Related CN106029960B (zh) 2014-03-31 2015-03-10 SiC籽晶的加工变质层的除去方法、SiC籽晶和SiC基板的制造方法

Country Status (7)

Country Link
US (1) US20170114475A1 (zh)
EP (1) EP3128047B1 (zh)
JP (1) JP6232329B2 (zh)
KR (1) KR101893278B1 (zh)
CN (1) CN106029960B (zh)
TW (1) TWI671438B (zh)
WO (1) WO2015151412A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10388536B2 (en) * 2014-11-18 2019-08-20 Toyo Tanso Co., Ltd. Etching method for SiC substrate and holding container
JP6621304B2 (ja) * 2015-11-10 2019-12-18 学校法人関西学院 半導体ウエハの製造方法
CN110431654B (zh) * 2017-03-22 2023-07-21 丰田通商株式会社 改性SiC晶片的制造方法、附有外延层的SiC晶片、其制造方法、及表面处理方法
JP2018199591A (ja) * 2017-05-25 2018-12-20 東洋炭素株式会社 SiCウエハの製造方法、エピタキシャルウエハの製造方法、及びエピタキシャルウエハ
JP6949358B2 (ja) * 2017-07-28 2021-10-13 学校法人関西学院 単結晶SiCの製造方法、SiCインゴットの製造方法、及びSiCウエハの製造方法
WO2020022391A1 (ja) * 2018-07-25 2020-01-30 株式会社デンソー SiCウェハ及びSiCウェハの製造方法
JP7300248B2 (ja) * 2018-07-25 2023-06-29 株式会社デンソー SiCウェハ及びSiCウェハの製造方法
EP3854916A4 (en) * 2018-09-21 2022-06-22 Toyo Tanso Co., Ltd. PROCESS FOR MANUFACTURING A WAFER FOR FABRICATION OF DEVICES
WO2020179794A1 (ja) * 2019-03-05 2020-09-10 学校法人関西学院 SiC基板の製造方法及びその製造装置及びSiC基板の加工変質層を低減する方法
WO2020241541A1 (ja) * 2019-05-27 2020-12-03 昭和電工株式会社 SiC単結晶インゴットの製造方法及びSiC改質シードの製造方法
EP4036283A4 (en) * 2019-09-27 2023-10-25 Kwansei Gakuin Educational Foundation METHOD FOR PRODUCING A SIC SUBSTRATE
US11932967B2 (en) 2019-09-27 2024-03-19 Kwansei Gakuin Educational Foundation SiC single crystal manufacturing method, SiC single crystal manufacturing device, and SiC single crystal wafer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234313A (ja) * 2002-02-07 2003-08-22 Kansai Tlo Kk SiC基板表面の平坦化方法
JP2008016691A (ja) * 2006-07-07 2008-01-24 Kwansei Gakuin 単結晶炭化ケイ素基板の表面改質方法、単結晶炭化ケイ素薄膜の形成方法、イオン注入アニール方法及び単結晶炭化ケイ素基板、単結晶炭化ケイ素半導体基板
JP2009218575A (ja) * 2008-02-12 2009-09-24 Toyota Motor Corp 半導体基板の製造方法
JP2010265126A (ja) * 2009-05-12 2010-11-25 Kwansei Gakuin 単結晶SiC基板、エピタキシャル成長層付き単結晶SiC基板、SiC基板、炭素供給フィード基板及び炭素ナノ材料付きSiC基板
CN102414348A (zh) * 2009-04-30 2012-04-11 株式会社爱科通 SiC基板的制作方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007176718A (ja) * 2005-12-27 2007-07-12 Matsushita Electric Ind Co Ltd 炭化珪素単結晶の製造方法及び製造装置
JP5213096B2 (ja) 2007-03-23 2013-06-19 学校法人関西学院 単結晶炭化ケイ素の液相エピタキシャル成長方法、単結晶炭化ケイ素基板の製造方法、及び単結晶炭化ケイ素基板
CN102597337A (zh) 2009-08-27 2012-07-18 住友金属工业株式会社 SiC 单晶晶片及其制造方法
JP5875143B2 (ja) * 2011-08-26 2016-03-02 学校法人関西学院 半導体ウエハの製造方法
US10012675B2 (en) * 2011-11-11 2018-07-03 Kwansei Gakuin Educational Foundation Nanometer standard prototype and method for manufacturing nanometer standard prototype
JP5982971B2 (ja) * 2012-04-10 2016-08-31 住友電気工業株式会社 炭化珪素単結晶基板
JP6080075B2 (ja) * 2013-06-13 2017-02-15 学校法人関西学院 SiC基板の表面処理方法
JP2017105697A (ja) * 2015-11-26 2017-06-15 東洋炭素株式会社 薄型のSiCウエハの製造方法及び薄型のSiCウエハ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234313A (ja) * 2002-02-07 2003-08-22 Kansai Tlo Kk SiC基板表面の平坦化方法
JP2008016691A (ja) * 2006-07-07 2008-01-24 Kwansei Gakuin 単結晶炭化ケイ素基板の表面改質方法、単結晶炭化ケイ素薄膜の形成方法、イオン注入アニール方法及び単結晶炭化ケイ素基板、単結晶炭化ケイ素半導体基板
JP2009218575A (ja) * 2008-02-12 2009-09-24 Toyota Motor Corp 半導体基板の製造方法
CN102414348A (zh) * 2009-04-30 2012-04-11 株式会社爱科通 SiC基板的制作方法
JP2010265126A (ja) * 2009-05-12 2010-11-25 Kwansei Gakuin 単結晶SiC基板、エピタキシャル成長層付き単結晶SiC基板、SiC基板、炭素供給フィード基板及び炭素ナノ材料付きSiC基板

Also Published As

Publication number Publication date
EP3128047A4 (en) 2017-04-26
TW201606145A (zh) 2016-02-16
EP3128047A1 (en) 2017-02-08
TWI671438B (zh) 2019-09-11
US20170114475A1 (en) 2017-04-27
JP6232329B2 (ja) 2017-11-15
KR20160111437A (ko) 2016-09-26
KR101893278B1 (ko) 2018-08-29
JP2015196616A (ja) 2015-11-09
WO2015151412A1 (ja) 2015-10-08
CN106029960A (zh) 2016-10-12
EP3128047B1 (en) 2018-09-26

Similar Documents

Publication Publication Date Title
CN106029960B (zh) SiC籽晶的加工变质层的除去方法、SiC籽晶和SiC基板的制造方法
CN105531407B (zh) SiC单晶及其制造方法
JP2012214379A5 (zh)
CN106062929B (zh) SiC基板的表面处理方法、SiC基板和半导体的制造方法
US10428440B2 (en) SiC single crystal and production method thereof
CN104350186B (zh) SiC单晶锭、SiC单晶以及制造方法
TW201426863A (zh) 單晶碳化矽基板之表面處理方法及單晶碳化矽基板
CN109137076A (zh) 一种生长碳化硅单晶的籽晶片固定装置及其使用方法
US20130157448A1 (en) Method for manufacturing a silicon carbide wafer and respective equipment
TWI627671B (zh) 容納容器、容納容器之製造方法、半導體之製造方法、及半導體製造裝置
WO2009107188A1 (ja) 単結晶SiCの成長方法
JP5761264B2 (ja) SiC基板の製造方法
CN104246024A (zh) 生长晶锭的方法和晶锭
JP2012031004A (ja) 半絶縁性GaAs単結晶ウエハ
JP6424806B2 (ja) SiC単結晶の製造方法
WO2011135669A1 (ja) SiC基板の作製方法
CN106167916A (zh) SiC单晶的制造方法
JP4184622B2 (ja) 炭化珪素単結晶インゴットの製造方法
CN106337205B (zh) SiC单晶及其制造方法
WO2014073163A1 (ja) 単結晶製造装置
WO2017104133A1 (ja) 溶液成長法、台座、及び単結晶SiCの製造方法
JP6396167B2 (ja) 炭化珪素単結晶育成用の種結晶作製方法
JP2024510617A (ja) 不均質ならせん転位分布のSiCバルク単結晶の製造方法及びSiC基板
KR20140085746A (ko) 반절연 SiC 단결정, 성장방법 및 성장장치
WO2014073147A1 (ja) サファイア単結晶の製造方法及び種結晶

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190709

Termination date: 20200310