CN105097446A - 使用氯化钨前体制备钨和氮化钨薄膜的方法 - Google Patents

使用氯化钨前体制备钨和氮化钨薄膜的方法 Download PDF

Info

Publication number
CN105097446A
CN105097446A CN201510236179.5A CN201510236179A CN105097446A CN 105097446 A CN105097446 A CN 105097446A CN 201510236179 A CN201510236179 A CN 201510236179A CN 105097446 A CN105097446 A CN 105097446A
Authority
CN
China
Prior art keywords
tungsten
reducing agent
wcl
substrate
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510236179.5A
Other languages
English (en)
Inventor
汉娜·班诺乐克
拉什纳·胡马雍
高举文
迈克尔·达内克
约瑟亚·科林斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lam Research Corp
Original Assignee
Lam Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lam Research Corp filed Critical Lam Research Corp
Publication of CN105097446A publication Critical patent/CN105097446A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02697Forming conducting materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/14Deposition of only one other metal element
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45557Pulsed pressure or control pressure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • H01L21/28562Selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28568Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising transition metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L21/76876Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for deposition from the gas phase, e.g. CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明涉及使用氯化钨前体制备钨和氮化钨薄膜的方法,提供了用于使用诸如氯化钨之类的无氟钨前体形成钨膜的方法。方法涉及通过将衬底暴露于诸如乙硼烷(B2H6)之类的还原剂以及将该衬底暴露于氯化钨来沉积钨成核层,接着通过将该衬底暴露于氯化钨和还原剂来沉积体钨。方法还涉及稀释该还原剂以及将该衬底暴露于脉冲形式的无氟前体以沉积钨成核层。所沉积的膜表现出良好的阶梯覆盖和塞填。

Description

使用氯化钨前体制备钨和氮化钨薄膜的方法
技术领域
本发明总体上涉及半导体制造工艺,具体涉及使用氯化钨前体制备钨和氮化钨薄膜。
背景技术
使用化学气相沉积(CVD)技术的钨膜沉积是半导体制造工艺的组成部分。例如,钨膜可以相邻金属层之间的水平互连、通孔,以及第一金属层和硅衬底上的器件之间的触头的形式被用作为低电阻率的电气连接。在一钨沉积工艺的示例中,阻挡层被沉积在介电衬底上,然后跟着钨膜的薄成核层的沉积。之后,剩余的钨膜被沉积在该成核层上作为体层(bulklayer)。通常,钨体层通过在化学气相沉积工艺中用氢(H2)还原六氟化钨(WF6)来形成。
发明内容
本文提供了沉积钨的方法。一种方法涉及将衬底暴露于还原剂和氢,以及将衬底暴露于氯化钨以沉积钨,其中氢的流率与还原剂的流率之比在约10:1和约100:1之间。氯化钨可选自WCl2、WCl4、WCl5、WCl6、以及它们的混合物。在一些实施方式中,钨在介于约450℃和约650℃之间的温度被沉积。
还原剂可选自硼烷类、硅烷类、以及锗烷类。在多种实施方式中,还原剂的流率在约100标准毫升每分钟(sccm)和约500sccm之间。衬底可被暴露于还原剂达到介于约0.25和约10秒之间的持续时间。
另一方面涉及一种方法,该方法包括在沉积体钨层之前,通过将特征暴露于稀释的还原剂和五氯化钨的交替脉冲来形成钨成核层。
每个交替脉冲周期所沉积的钨的数量可以是至少约还原剂可选自硼烷类、硅烷类、以及锗烷类。在一些实施方式中,还原剂被流动的氢稀释,且氢的流率与还原剂的流率之比在约10:1和约100:1之间。
该方法还可包括利用含钨前体通过化学气相沉积在钨成核层上沉积体钨层。含钨前体可选自WF6、WCl2、WCl4、WCl5、WCl6、以及它们的混合物。
另一方法包括:通过脉冲式提供五氯化钨和还原剂以及减少还原剂的分解来沉积钨成核层,以及利用五氯化钨通过化学气相沉积来沉积钨体层。
在多种实施方式中,还原剂选自硅烷类、硼烷类、以及锗烷类。还原剂的分解可通过稀释还原剂流来减少。
在一些实施方式中,还原剂的分解通过以比还原剂的流率大至少约10倍的流率引入氢气来减少。在一些实施方式中,还原剂的分解通过以比脉冲式提供五氯化钨时的温度低的温度脉冲式提供还原剂来减少。
另一方面涉及一种方法,该方法包括:(a)将衬底暴露于在第一温度的还原剂,以及(b)将衬底暴露于在第二温度的无氟钨前体,其中所述第一温度低于所述第二温度。
另一方面涉及一种用于处理衬底的装置,该装置包括(a)至少一个处理室,其包括被构造为保持衬底的基架;(b)用于耦合到真空的至少一个出口;(c)耦合到一或多个工艺气体源的一或多个工艺气体入口;以及(d)用于控制所述装置中的操作的控制器,其包括用于下述操作的机器可读指令:(i)将还原剂和氢引入到处理室;(ii)将无氟钨前体引入到处理室;以及(iii)在第一阶段中重复(i)-(ii)以沉积钨成核层,其中氢的流率与还原剂的流率之比在(i)过程中在约10:1和约100:1之间。无氟钨前体可选自WCl2、WCl4、WCl5、WCl6、以及它们的混合物。
下面参考附图进一步描述这些方面以及其他方面。
附图说明
图1是根据所公开的实施方式执行的操作的工艺流程图。
图2是适于执行所公开的实施方式的装置或工具的示意图。
图3是用于执行所公开的实施方式的处理室的示意图。
图4是沉积速率的实验数据的图示。
图5是根据通过执行所公开的实施方式而进行的实验用钨填充的通孔的示意图。
具体实施方式
在接下来的描述中,许多具体细节被阐述以提供对所呈现的实施方式的透彻理解。所公开的实施方式可在没有这些具体细节中的一些或全部的情况下被实施。另一方面,公知的工艺操作没有被详细描述以免不必要地模糊所公开的实施方式。虽然所公开的实施方式将结合具体实施方式进行描述,但应当理解,这并非意图限制所公开的实施方式。
半导体器件制造往往涉及钨膜的沉积,尤其是在沟槽或通孔中,以形成互连。在沉积钨膜的常规方法中,成核钨层首先被沉积到通孔或触头中。通常,成核层是薄共形层,用于促进体材料在其上面的后续形成。钨成核层可被沉积为共形地涂覆特征的侧壁和底部。与底下特征的底部和侧壁共形对支撑高品质的沉积而言可以是关键的。成核层往往利用原子层沉积(ALD)方法或脉冲成核层(PNL)方法进行沉积。
在PNL技术中,反应剂的脉冲按顺序注入并典型地通过反应剂之间的吹扫气体(purgegas)的脉冲而从反应室清除。第一反应剂可被吸附到衬底上,可用于与下一反应剂反应。该工艺以循环方式重复,直到达到希望的厚度。PNL类似于ALD技术。PNL通常与ALD的区别在于它的较高的操作压强范围(大于1托(Torr))和它的较高的每周期生长速率(大于每周期1单层膜生长)。PNL沉积过程中的室压可在从约1托至约400托的范围。在本文所提供的描述的上下文中,PNL广泛地体现了顺序添加用于半导体衬底上的反应的反应剂的任何循环工艺。因此,该构思具体体现通常称为ALD的技术。在所公开的实施方式的上下文中,CVD体现了反应剂被一起引入到反应器以用于气相反应的工艺。PNL和ALD工艺不同于CVD工艺,反之亦然。
在钨成核层被沉积之后,通常通过化学气相沉积(CVD)工艺、通过使用诸如氢(H2)之类的还原剂还原六氟化钨(WF6)来沉积体钨。
钨的常规沉积涉及了含氟前体WF6的使用。但是,WF6的使用导致一些氟掺进所沉积的钨膜中。氟的存在可引起电迁移和/或氟扩散到相邻部件中以及损害触头,从而降低器件的性能。随着器件缩小,特征变得越来越小且电迁移和离子扩散的有害影响变得越来越突出,从而引起器件故障。含微量氟的钨膜可由此产生集成和可靠性问题,以及与底下的膜或器件结构(比如通孔和栅)相关的器件性能问题。
无氟钨(FFW)前体对防止这种可靠性和集成问题或器件性能问题是有用的。目前的FFW前体包括金属有机前体,但来自金属有机前体的不希望的微量元素也会被掺入钨膜中,比如碳、氢、氮和氧。一些金属有机无氟前体还不易在钨沉积工艺中实施或集成。
此处提供了使用诸如五氯化钨(WCl5)或六氟化钨(WCl6)等氯化钨(WClx)作为前体沉积无氟钨膜的方法。此处的实施例涉及WCl5和WCl6,但应当理解,其他氯化钨,包括WCl2、WCl4、以及它们的混合物,也可被用于所公开的实施方式。由于WF6化合物的更大反应性以及氯化钨的可能蚀刻特征,通过WCl5和WCl6的沉积出现了使用WF6所没有出现的挑战。蒸发的WCl6具有足够高的蒸气压强以实现将其携带进入钨沉积室。但是,WCl6可比WCl5更容易蚀刻衬底。在WCl5较不容易蚀刻衬底的同时,WCl5还具有比WCl6高的蒸气压强。虽然较低的蒸气压强在沉积具有低电阻率的钨膜时有用,但是一些沉积可具有劣质的阶梯覆盖。氯化钨反应性较低,因此,相比于使用WF6的沉积,要在较高的温度进行沉积。但是,用于还原氯化钨的一些还原剂,比如在钨成核层沉积过程中,可在较高的温度分解。所公开的实施方式减少了这些还原剂的分解以沉积共形的、平滑的、无孔的、具有低电阻率、良好附着力以及小特征中的良好阶梯覆盖和间隙填充的膜。一些示例方法涉及少至两个周期的B2H6和WCl5的交替循环以及使用WCl5通过CVD沉积体钨。掺入钨膜的氯水平也低且在一些情况下,没有氯掺入钨膜中。
图1是描绘根据所记载的实施方式执行的操作的工艺流程图。参考图1所描述的方法可在任意室压被执行。在一些实施方式中,室压在约5托和约100托之间,或为40托,但也可使用更高的压强(例如,高至大气压)。
在操作101中,衬底被提供。作为示例,衬底可以是具有待用钨填充的一或多个特征的衬底。根据不同实施方式,衬底特征具有至少约10:1、至少约15:1、至少约20:1、至少约25:1或至少约30:1的深宽比。此外,根据不同实施方式,特征尺寸除了通过深宽比表征之外还通过特征开口尺寸表征或者替代深宽比由特征开口尺寸表征。该开口可从约10纳米至约100纳米或从约10纳米至约50纳米宽,或者为约20纳米。例如,在一定的实施方式中,所述方法可有利地用于具有窄开口的特征,而不管深宽比如何。在一定的实施方式中,凹陷特征被形成在衬底上的介电层中,其中特征的底部提供与底下金属层的接触。此外,在一定的实施方式中,特征在其侧壁和/或底部包括衬垫/阻挡层。衬垫层的示例包括钛/氮化钛(Ti/TiN)、TiN、以及氮化钨(WN)。在一些实施方式中,衬底可包括使用物理气相沉积(PVD)或另一合适技术沉积的TiN沉积层使得TiN膜的厚度在约和约之间。在一些实施方式中,衬底可包括使用ALD沉积至介于约和约之间的厚度的TiN沉积层。在一些实施方式中,TiN层被沉积在裸硅衬底上的的氧化层上。在包括扩散阻挡层之外或者替代扩散阻挡层,特征可包括诸如附着层、成核层之类的层、或者它们的组合,或者用作特征侧壁和底部的衬垫的任何其他合适材料。
在操作103中,衬底被暴露于还原剂,同时减少分解。这可表征为还原剂浸泡。在多种实施方式中,还原剂为乙硼烷(B2H6)。可在操作103中替代B2H6使用的还原剂的其他示例包括其他硼烷类、硅烷类(比如硅烷(SiH4))和锗烷类(比如锗烷(GeH4))。此处为了描述的目的,B2H6会被用作示例,但应当理解,诸如这些其他还原剂也可根据所公开的实施方式被使用。要注意,不在将衬底暴露于氯化钨之前用还原剂浸泡衬底是很不希望的且可导致几乎没有或者没有钨沉积。在一些实施方式中,使用氢以外的还原剂可在后续操作中更好地促进钨的生长。在不受任何特定理论束缚的情况下,可以相信,操作103中的还原剂浸泡有助于在后续操作中在希望的温度范围促进均匀的、无孔的钨生长。作为示例,在使用WCl5或WCl6的钨成核过程中所使用的乙硼烷浸泡可帮助在低于约500℃的温度促进钨沉积,同时获得良好的阶梯覆盖。在一些实施方式中,还原气体暴露包括载气,比如氮(N2)、氩(Ar)、氦(He)、氢(H2)或其他惰性气体。作为示例,35sccm的还原剂可在250sccm的Ar中流入。
衬底被暴露于还原剂并且通过在诸如介于约250℃和约450°之间的低温执行操作103或者通过稀释还原剂使还原剂的分解在该操作过程中被减少。虽然可如下所述在操作103在低温执行的同时,操作105在较高的温度(例如,在约450℃和约650℃之间)执行,但在一些装置或工艺中,调整这两个操作之间的温度未必可行。例如,此处所记载的温度可以是基架温度,这需要时间来调整到用于在单一站或室工具中执行的方法的新的设定温度。一些所公开的实施方式还可在多站工具中执行,但在钨成核层沉积过程中的站间转移会降低吞吐率。
因此,可在诸如高于约450℃的高温执行操作103的同时通过稀释还原剂来减少分解。还原剂流可以若干方式被稀释,包括降低还原剂的流率、流动减少操作113的持续时间、以及以高流率引入氢。在多种实施方式中,还原剂的流率可在约100sccm和约500sccm之间,例如为约300sccm。在多种实施方式中,还原剂的暴露可持续少于约15秒,例如,该暴露可持续在约0.25秒和约10秒之间。
氢也可以高流率流动。氢和还原剂的流率之比可在约5:1和约300:1之间,例如为约100:1。例如,比还原剂的流率大至少约100倍。例如,如果还原剂以约300sccm的流率流动,那么氢可以约30标准升每分钟(slm)的流率一同流到室。
在不受任何特定理论束缚的情况下,可以相信,在操作103期间,在一些实施方式中,元素硼、硅或锗的薄层可通过还原剂的热分解被吸附到衬底的表面上。为了接下来的实施例,B2H6会被用作示例,但应当理解,诸如这些其他还原剂也可根据所公开的实施方式被使用。例如,B2H6的分解的反应可以是:
B2H6(g)→2B(s)+3H2(g)
在该实施例中,大量的氢可与B2H6在该操作过程中一起流动以使反应转向左边从而防止B2H6分解以形成元素硼。例如,氢可以大于至少约100倍的B2H6流率的流率流动到容纳衬底的室以减少B2H6分解成硼。
在图1的操作105中,衬底被暴露于诸如氯化钨WClx之类的FFW前体,从而沉积钨成核层。氯化钨可以是WCl2、WCl4、WCl5、WCl6、或者它们的混合物。在一些实施方式中,操作105可在介于约450℃和约650℃之间的温度被执行。在一些实施方式中,操作105期间的温度可高于操作103期间的温度。在还原剂在操作103中没有被稀释的情况下,操作103可在比操作105低的温度被执行以减少还原剂的分解。根据不同实施方式,H2在操作105期间可以流动或不流动。在一些实施方式中,操作105的操作时间(dosetime)可以比操作103长。例如,在一些实施方式中,操作时间可以是操作103中的操作时间的约2-5倍长。在一些实施方式中,操作105的操作时间可在约1秒和约20秒之间。
如前所述,在一些实施方式中,在操作105期间,衬底在操作105期间被暴露于氯化钨和H2。在一些实施方式中,额外的载气也流动。示例载气包括氮(N2)、氩(Ar)、氦(He)、氢(H2)或其他惰性气体。
在操作107中,操作103和105可被重复至少一个额外周期。在图1中,“周期”可被限定为执行操作103、接着执行操作105。在许多实施方式中,总计两个周期可被执行以沉积成核层。利用此处所描述的实施方式,每个周期的钨生长率可在每个周期约和约之间。
如前所述,还原剂的热分解在所公开的实施方式中被减少或降低。在一些实施方式中,操作103和105在不同温度执行使得在成核工艺期间,周期的第一阶段在一个温度执行而该周期的第二阶段在另一温度执行,该另一温度高于第一温度。在较低温度执行操作103减少了还原剂的热分解,同时在较高温度执行操作105允许FFW前体的反应性足以形成钨层。换言之,前面联系操作103所述的第一温度可高于联系操作105所述的第二温度。例如,操作103可在约300℃的温度执行而操作105可在约450℃的温度执行。在一些实施方式中,执行操作103和105的周期,或者执行操作107的第二周期,涉及针对暴露于还原剂和FFW前体在单一站中切换温度。在一些实施方式中,执行周期涉及将衬底从处于适于暴露于还原剂的温度的一个站传送到处于适于暴露于FFW前体的温度的第二个站。
在一些实施方式中,操作103和105在相同的温度执行。例如,操作103和105可都在约450℃执行。在多种实施方式中,当氢在操作103期间作为载气流动时,操作103和105在相同的温度执行。在许多实施方式中,热预算被观测使得操作应当在尽可能低的温度执行。
在一些实施方式中,操作103和105可在相同的温度执行。在这些实施方式中,可能有利的是,在操作103中用H2稀释B2H6以防止硼或含硼层的过量形成。
在一实施例中,B2H6的流以约35sccm的流率使用在约250sccm的流率的氩作为载气被引入。用以通过使WCl5或WCl6与B2H6反应而沉积成核层的后续的WCl5或WCl6的流可包括利用以约50sccm流动的诸如氩之类的载气使WCl5或WCl6流动,同时使氢以约2000sccm流动。衬底暴露于B2H6然后WCl5或WCl6可被执行两个周期。
在不受任何特定理论束缚的情况下,可以相信,在操作103期间,在一些实施方式中,元素硼的薄层可通过如上所述的热分解被吸附到衬底的表面上。然后,后续引入的WCl5或WCl6可与存在于该衬底的该表面上的硼反应。在不受任何特定理论束缚的情况下,用于利用WCl5沉积钨的一种可行机制可如下所示:
3WCl5(g)+5B(s)→3w(s)+5BCl3(g)
在不受任何特定理论束缚的情况下,用于利用WCl6沉积钨的一种可行机制可如下所示:
WCl6(g)+2B(s)→W(s)+2BCl3(g)
据观察,在操作103期间的过长的暴露时间可导致剩余元素硼在衬底上的多余层,甚至在后续暴露于WCl5或WCl6之后也如此。操作103和105的条件可变化以达到硼被WCl5或WCl6完全消耗。由于如此处所述使用B2H6和WCl5或WCl6的PNL技术的提高的钨的沉积速率,少至两个成核周期可被用于在通过CVD沉积体钨之前沉积足够的钨成核层。
回到图1,在操作109中,通过将衬底暴露于FFW前体和还原剂利用CVD沉积钨体填充。在该CVD反应期间,示例衬底温度低至450℃且可高至650℃。在一定的实施方式中,FFW前体是含卤素化合物,比如WCl5或WCl6。在一定的实施方式中,还原剂是氢气,但也可使用其他还原剂,包括硅烷类、硼烷类和锗烷类。在一些实施方式中,CVD可在不同阶段中执行,比如在低温阶段和高温阶段执行。在一定的实施方式中,CVD操作可在多个阶段中进行,其中连续且同时的反应剂流的多个周期被转向的一或多个反应剂流的周期分开。
惰性载气可被用于传递反应剂流中的一或多个,反应剂流可以是预混的或没有预混的。在多种实施方式中,前体使用氩作为载气被引入。其他载气也可被恰当地使用。惰性气体,比如氩或另一气体(比如氮)或者它们的组合,可作为背景气体与还原气体或者WCl5或WCl6气体同时被提供。在一些实施方式中,背景气体流是连续的,即,它贯穿操作103至109不被打开和关闭。
不像PNL或ALD工艺,操作109通常可包括连续引入反应剂直至所希望的量被沉积。在一定的实施方式中,CVD操作可在多个阶段中进行,其中连续且同时的反应剂流的多个周期被一或多个转向的反应剂流的周期分开。流也可被脉冲式提供,持续介于约1秒和约2秒之间的脉冲时间。在一些实施方式中,反应剂连续流动持续介于约400秒和约600秒之间的时间。在CVD沉积期间的室压的示例范围可在从约10托至约500托的范围,或为约40托。
在一定的实施方式中,从操作103过渡到操作105涉及将衬底从多站室中的一个沉积站移动到另一个。进一步地,操作103、操作105和操作109中的每一个可在同一多站室的不同站中执行。
在使用单一站来执行操作103和105的替代实施方式中,从操作103过渡到操作105可涉及调整还原剂和氢气的流,或者可涉及在升高衬底温度的同时关闭还原剂的流(可选地允许氢或其他载气通行)。一旦衬底温度被稳定,FFW前体和其他气体(如果需要)流入用于钨沉积的反应室中。
在一些实施方式中,诸如氮化钨(WN)层之类的阻挡层可利用WCl5或WCl6作为前体被沉积在氧化表面上。例如,氮化钨层可通过使氨(NH3)流动、接着使WCl5或WCl6流动从而形成WN层而被沉积。在一些实施方式中,通过使WCl5或WCl6流动而沉积的钨层被暴露于氨(NH3)以形成氮化钨(WN)阻挡层。
装置
任何合适的室可被用于执行所公开的实施方式。示例沉积装置包括各种系统,例如,可从加利福尼亚州费里蒙特市的朗姆研究公司获得的Max、或者各种其他市售处理系统中的任何一种。工艺可在多个沉积站上平行执行。
在一些实施方式中,钨成核工艺在位于单一沉积室内的二、五甚或更多个沉积站中的第一站执行。在一些实施方式中,用于成核工艺的两个步骤在沉积室的两个不同站执行。例如,衬底可在使用在衬底表面创建本地化气氛(atmosphere)的单个气体供应系统的第一站中暴露于乙硼烷(B2H6),然后衬底可被传送到第二站以暴露于诸如氯化钨之类的无氟钨(FFW)前体,例如五氯化钨(WCl5)或六氟化钨(WCl6),以沉积成核层。在一些实施方式中,衬底可接着被传送回到第一站以第二次暴露于还原剂。然后,衬底可被传送到第二站以暴露于WCl5或WCl6从而完成钨成核并在相同或不同的站中继续进行体钨沉积。在一些实施方式中,成核工艺在沉积室的单一站中执行。例如,还原剂可与高流率的氢一起流到站中,而FFW前体可接着被引入相同站以在任选的吹扫之后与还原剂反应。然后,一或多个站可被用于执行所述化学气相沉积(CVD)。两或更多个站可被用于在平行处理时执行CVD。替代地,晶片可被换位(index)以使CVD操作相继在超过两或更多个站执行。
图2是适于根据所公开的实施方式进行钨薄膜沉积工艺的处理系统的框图。系统200包括传送模块203。传送模块203提供清洁、加压的环境以最小化处理中的衬底在它们在各反应器模块之间移动时的污染风险。安装在传送模块203上的是能够根据所公开的实施方式执行PNL沉积和CVD的多站反应器209。室209可包括可顺序执行这些操作的多个站211、213、215和217。例如,室209可被配置使得站211和213执行PNL沉积,而站215和217执行CVD。每个沉积站包括加热的晶片基架以及喷头、分散板或其他气体入口。在一些实施方式中,站211可被用于在还原剂以高流率脉冲式提供期间使氢流动的同时利用还原剂和FFW前体的交替脉冲沉积钨成核层,而站213被用于利用氢和FFW前体执行CVD。沉积站300的示例在图3中被描绘,包括晶片支撑件302和喷头303。加热器可被提供在基架部301中。
在传送模块203上还可安装能够执行等离子体或化学(非等离子体)预清洁的一或多个单一或多站模块207。该模块也可被用于各种其他处理,例如还原剂浸泡。系统200还包括在处理之前和之后储存晶片的一或多个(在该实例中为两个)晶片源模块201。大气传送室219中的大气机械手(未图示)首先将晶片从源模块201转移到装载锁221。传送模块203中的晶片传送设备(通常为机械臂单元)将晶片从装载锁221移动到安装在传送模块203上的模块。
在一定的实施方式中,系统控制器229被采用来控制沉积过程中的工艺条件。控制器229通常包括一或多个存储器设备和一或多个处理器。处理器可包括CPU或计算器、模拟和/或数字输入/输出连接部、步进马达控制器板,等等。
控制器229可控制沉积装置的活动中的全部。系统控制器229执行系统控制软件,系统控制软件包括用于控制定时、气体的混合物、气体的流率、室压、室温、晶片温度、射频(RF)功率电平(如果使用)、晶片卡盘或基架位置以及特殊工艺的其他参数的成组的指令。存储在与控制器相关联的存储器设备的其他计算机程序可在一些实施方式中被采用。
通常会有与控制器229相关联的用户界面。用户界面可包括显示屏、该装置和/或工艺条件的图形软件显示器以及诸如指点设备、键盘、触摸屏、话筒等用户输入设备。
系统控制逻辑可以用任何合适的方式来配置。一般而言,该逻辑可被设计或配置在硬件和/或软件中。用于控制驱动电路的指令可被硬编码或被提供为软件。指令可通过“编程”提供。这种编程被理解为包括任何形式的逻辑,包括数字信号处理器、专用集成电路以及具有实现为硬件的具体算法的其他器件中的硬编码逻辑。编程还被理解为包括可在通用处理器上执行的软件或固件指令。系统控制软件可以任何合适的计算机可读编程语言进行编码。替代地,控制逻辑可被硬编码在控制器229中。为了这些目的,专用集成电路、可编程逻辑器件(例如,现场可编程门阵列或FPGA)等可被使用。在接下来的讨论中,只要“软件”或“代码”被使用的地方,在该位置可使用功能类似的硬编码逻辑。
用于控制沉积和工艺序列中的其他工艺的计算机程序代码可以任何常用计算机可读编程语言编写:例如,汇编语言、C、C++、Pascal、Fortran或其他。编译的目标代码或脚本由处理器执行以完成程序中所识别的任务。
控制器参数与工艺条件有关,比如,例如工艺气体组分和流率、温度、压强、等离子体条件(比如RF功率电平和低频RF频率)、冷却气压、以及室壁温度。这些参数以配方的形式被提供给用户,且可利用用户界面输入。
用于监控工艺的信号可通过系统控制器229的模拟和/或数字输入连接部被提供。用于控制工艺的信号在沉积装置的模拟和数字输出连接部上被输出。
在一些实施方式中,控制器229是系统的组成部分,该系统可以是上述实施例的组成部分。这种系统可包括半导体处理设备,半导体处理设备包括一或多个处理工具、一或多个室、用于处理的一或多个平台、和/或具体处理部件(晶片基架、气体流系统等)。这些系统可与用于在半导体晶片或衬底的处理之前、之中以及之后控制它们的操作的电子器件集成。电子器件可指“控制器”,控制器可控制一或多个系统的各种部件或子部。根据处理要求和/或系统类型,控制器229可被编程以控制此处所公开的任何工艺,包括工艺气体的输送、温度设置(例如,加热和/或冷却)、压强设置、真空设置、功率设置、射频(RF)发生器设置、RF匹配电路设置、频率设置、流率设置、流体输送设置、定位和操作设置、进出工具和其他传送工具和/或连接到或与具体系统交接的装载锁的晶片传送。
广义地说,控制器229可被定义为接收指令、发布指令、控制操作、实现清洁操作、实现端点测量等的具有各种集成电路、逻辑、存储器和/或软件的电子器件。集成电路可包括存储程序指令的固件形式的芯片、数字信号处理器(DSP)、限定为专用集成电路(ASIC)的芯片、和/或一或多个微处理器、或执行程序指令(例如,软件)的微控制器。程序指令可以是以种种个体设置(或程序文件)的形式与控制器229通信、定义用于在半导体晶片上或为半导体晶片或者对系统执行特定工艺的操作参数的指令。在一些实施方式中,操作参数可以是配方的组成部分,配方由工艺工程师定义以在晶片的一或多个层、材料、金属、氧化物、硅、二氧化硅、表面、电路和/或裸片的制造过程中完成一或多个处理步骤。
在一些实施方式中,控制器229可以是计算机的组成部分或耦合到计算机,计算机与该系统集成或耦合到该系统、否则网络连接到该系统、或者它们的组合。例如,控制器229可在“云”中或者是工厂主机计算机系统的整体或组成部分,可允许晶片处理的远程访问。计算机可实现对该系统的远程访问以监控制造操作的当前进程、检查过去的制造操作的历史、检查来自多个制造操作的趋势或性能指标,以改变当前工艺的参数,以设置处理步骤从而跟随当前工艺,或者以开始新的工艺。在一些实施例中,远程计算机(例如,服务器)可通过网络提供工艺配方给系统,网络可包括局域网或互联网。远程计算机可包括实现参数和/或设置的输入或编程的用户界面,参数和/或设置接着从远程计算机被传送给该系统。在一些实施例中,控制器229接收数据形式的指令,所述数据指明要在一或多个操作期间执行的处理步骤中的每一个步骤的参数。应当理解,所述参数针对待执行的工艺的类型和工具的类型可以是特定的,控制器229被配置为与所述工具交接或控制所述工具。因此,如前所述,控制器229可以是分布式的,比如通过包括被网络连接在一起且为共同目的(比如本文所述的工艺和控制)工作的一或多个分立控制器。为这种目的的分布式控制器的示例可以是在与位于远程的(比如在平台层面或者作为远程计算机的组成部分)一或多个集成电路通信的室上的一或多个集成电路,其结合来控制该室上的工艺。
在不具限制的情况下,示例系统可包括等离子体蚀刻室或模块、沉积室或模块、旋转漂洗室或模块、金属电镀室或模块、清洁室或模块、倒角蚀刻室或模块、物理气相沉积(PVD)室或模块、化学气相沉(CVD)积室或模块、原子层沉积(ALD)室或模块、原子层蚀刻(ALE)室或模块、离子注入室或模块、跟踪室或模块、以及可与半导体晶片的制造和/或生产相关联或者在半导体晶片的制造和/或生产中使用的任何其他半导体处理系统。
如前所述,根据待由工具执行的一或多个工艺步骤,控制器229可与其他工具电路或模块、其他工具部件、簇工具、其他工具接口、相邻工具、邻近工具、纵贯工厂、主机、另一控制器分布的工具、或者在带着晶片容器往来于半导体制造工厂中的工具位置和/或装载端口的材料运输中使用的工具中的一或多个通信。
系统软件可以许多不同方式被设计或配置。例如,种种室部件子例程或控制对象可被编写来控制执行创造性的沉积工艺所需要的室部件的操作。用于此目的的程序或程序段的示例包括衬底放置代码、工艺气体控制代码、压强控制代码、加热器控制代码和等离子体控制代码。
衬底放置程序可包括用于控制用来将衬底装载到基架或卡盘上以及用来控制衬底和其他室部件(比如气体入口)和/或标靶之间的间隔的室部件的程序代码。工艺气体控制程序可包括用于控制气体组分和流率以及可选地用于在沉积之前使气体流入室中以便稳定室中的压强的代码。压强控制程序可包括用于通过调整例如室的排放系统中的节流阀来控制室中的压强的代码。加热器控制程序可包括用于控制到用于加热衬底的加热单元的电流的代码。替代地,加热器控制程序可控制传热气体(比如氦)到晶片卡盘的输送。
在沉积过程中可被监控的室传感器的示例包括位于基架或卡盘中的质量流量控制器、压力传感器(比如压力计)和热电耦。经恰当编程的反馈和控制算法可与来自这些传感器的数据一起用来维持希望的工艺条件。前述内容描述了所公开的实施方式在单或多室半导体处理工具中的实施。
前述内容描述了所公开的实施方式在单或多室半导体处理工具中的实施。本文所述的装置和工艺可结合光刻图案化工具或工艺被用于例如半导体器件、显示器、LED、光伏板等的制造或生产。通常但不是必须,这种工具/工艺会在通用制造设施中被一起使用或执行。膜的光刻图案化通常包括下列步骤中的一些或全部,每个步骤具有若干可用工具:(1)使用旋涂或喷涂工具将光致抗蚀剂施加到工件(即衬底)上;(2)使用热板或炉子或UV固化工具固化光致抗蚀剂;(3)使用诸如步进式晶片曝光器之类的工具将光致抗蚀剂暴露于可见光或UV光或x射线;(4)使用诸如湿式工作台之类的工具将抗蚀剂显影以便选择性地去除抗蚀剂从而使其图案化;(5)通过使用干法或等离子体辅助蚀刻工具将抗蚀剂图案转印到下层膜或工件中;以及(6)使用诸如RF或微波等离子体抗蚀剂剥离器之类的工具去除抗蚀剂。
实验
实验1
一个测量根据所公开的实施方式沉积的钨膜的沉积速率的实验被开展。包括厚的成核层的一衬底在450℃和60托被暴露于WCl5和H2以通过化学气相沉积(CVD)沉积钨。包括厚的成核层的另一衬底在450℃和60托被暴露于WCl6和B2H6。沉积速率被均化并被描绘在图4中。
图4中的实线代表WCl5沉积的钨的平均沉积速率。图4中的虚线代表WCl6沉积的钨的平均沉积速率。沉积速率相对于前体浓度进行描绘。注意,就WCl6而言,随着前体的浓度的增高,CVD沉积速率最终在约0.3-0.4%的浓度降低,表明在这些浓度,在衬底上,WCl6蚀刻猛于沉积膜。WCl6的这个阈值特征会限制其以高沉积速率沉积钨的应用。相较之下,WCl5显示了随着前体浓度的持续增高不断变高的在约0.8%的浓度高达的沉积速率。虽然WCl5沉积速率也会达到最大阈值(WCl5在此开始蚀刻衬底而不是沉积膜),但这些结果表明就沉积钨膜而言,WCl5可能是比WCl6更实际可行的选择。
实验2
一种工艺被执行来评估使用六氯化钨(WCl6)作为前体所沉积的钨特征填充的阶梯覆盖。有具有25纳米临界尺寸的特征的衬底被提供。根据所公开的实施方式,利用钨成核和化学气相沉积(CVD)来沉积钨。下列工艺条件被使用:
每个成核周期包括乙硼烷(B2H6)暴露,接着是在与B2H6暴露的温度不同的温度的WCl6暴露。使用两个周期(B2H6/WCl6/B2H6/WCl6)执行钨成核工艺。然后,使用WCl6作为前体通过CVD沉积钨体填充。可以相信,在上面的实施例中,第二周期的WF6/H2部分包括通过基于WF6与所吸附的硼或含硼化合物的反应的表面的成核以及接着的通过H2的WF6的CVD还原。所得沉积的钨显示出优秀的阶梯覆盖和完整的塞填,如图5中的通孔的示意图所示。如所示,图5示出了钨成核或可能的硼化钨层(未图示)的顶部上的钨体层501。在钨下面是元素硼的薄层503,可能来自乙硼烷的初始暴露。在硼层下面是的TiN阻挡层505。注意,在一些实施方式中,硼层可没被形成。虽然存在硼的薄层,但结果显示出了WCl6作为前体用于利用B2H6浸泡的钨沉积的有效用途。
结论
虽然出于清楚理解的目的对前述实施方式进行了一定程度的详细描述,但应当理解,某些改变和修改可在所附权利要求的范围内进行。应当注意,实现所呈现的实施方式的工艺、系统、以及装置有许多替代方式。据此,所呈现的实施方式应当被视为说明性的而非限制性的,且这些实施方式并不受限于此处给出的细节。

Claims (20)

1.一种在衬底上沉积钨的方法,所述方法包括:
将所述衬底暴露于还原剂和氢,以及
将所述衬底暴露于氯化钨以沉积所述钨,
其中氢的流率与还原剂的流率之比在约10:1和约100:1之间。
2.如权利要求1所述的方法,其中所述氯化钨选自WCl2、WCl4、WCl5、WCl6、以及它们的混合物。
3.如权利要求1所述的方法,其中所述还原剂选自硼烷类、硅烷类、以及锗烷类。
4.如权利要求1-3中任一项所述的方法,其中所述钨在介于约450℃和约650℃之间的温度被沉积。
5.如权利要求1-3中任一项所述的方法,其中所述还原剂的流率在约100sccm和约500sccm之间。
6.如权利要求1-3中任一项所述的方法,其中所述衬底被暴露于所述还原剂达到介于约0.25和约10秒之间的持续时间。
7.一种在衬底上的特征中沉积钨的方法,所述方法包括:在沉积体钨层之前,通过将所述特征暴露于稀释的还原剂和五氯化钨的交替脉冲来形成钨成核层。
8.如权利要求7所述的方法,其中每个所述交替脉冲的周期所沉积的钨的数量是至少约
9.如权利要求7所述的方法,其中所述还原剂选自硼烷类、硅烷类、以及锗烷类。
10.如权利要求7-9中任一项所述的方法,其中所述还原剂被流动的氢稀释,且氢的流率与还原剂的流率之比在约10:1和约100:1之间。
11.如权利要求7-9中任一项所述的方法,其还包括利用含钨前体通过化学气相沉积在所述钨成核层上沉积体钨层。
12.如权利要求11所述的方法,其中所述含钨前体选自WF6、WCl2、WCl4、WCl5、WCl6、以及它们的混合物。
13.一种在半导体衬底上沉积钨的方法,所述方法包括:
通过脉冲式提供五氯化钨和还原剂以及减少所述还原剂的分解来沉积钨成核层,以及
利用五氯化钨通过化学气相沉积来沉积钨体层。
14.如权利要求13所述的方法,其中所述还原剂的分解通过稀释所述还原剂的流来减少。
15.如权利要求13所述的方法,其中所述还原剂的分解通过以比所述还原剂的流率大至少约10倍的流率引入氢气来减少。
16.如权利要求13所述的方法,其中所述还原剂的分解通过以比脉冲式提供所述五氯化钨时的温度低的温度脉冲式提供所述还原剂来减少。
17.如权利要求13-16中任一项所述的方法,其中所述还原剂选自硅烷类、硼烷类、以及锗烷类。
18.一种在衬底上沉积钨的方法,所述方法包括:
(a)将所述衬底暴露于在第一温度的还原剂,以及
(b)将所述衬底暴露于在第二温度的无氟钨前体,
其中所述第一温度低于所述第二温度。
19.一种用于处理衬底的装置,所述装置包括:
(a)至少一个处理室,其包括被构造为保持衬底的基架;
(b)用于耦合到真空的至少一个出口;
(c)耦合到一或多个工艺气体源的一或多个工艺气体入口;以及
(d)用于控制所述装置中的操作的控制器,其包括用于下述操作的机器
可读指令:
(i)将还原剂和氢引入到所述处理室;
(ii)将无氟钨前体引入到所述处理室;以及
(iii)在第一阶段中重复(i)-(ii)以沉积钨成核层,
其中氢的流率与还原剂的流率之比在(i)过程中在约10:1和约100:1之间。
20.如权利要求19所述的方法,其中所述无氟钨前体选自WCl2、WCl4、WCl5、WCl6、以及它们的混合物。
CN201510236179.5A 2014-05-09 2015-05-11 使用氯化钨前体制备钨和氮化钨薄膜的方法 Pending CN105097446A (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201461991356P 2014-05-09 2014-05-09
US61/991,356 2014-05-09
US201462075092P 2014-11-04 2014-11-04
US62/075,092 2014-11-04
US14/703,732 US9595470B2 (en) 2014-05-09 2015-05-04 Methods of preparing tungsten and tungsten nitride thin films using tungsten chloride precursor
US14/703,732 2015-05-04

Publications (1)

Publication Number Publication Date
CN105097446A true CN105097446A (zh) 2015-11-25

Family

ID=54368489

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510236179.5A Pending CN105097446A (zh) 2014-05-09 2015-05-11 使用氯化钨前体制备钨和氮化钨薄膜的方法

Country Status (5)

Country Link
US (1) US9595470B2 (zh)
JP (1) JP6799903B2 (zh)
KR (2) KR20150128615A (zh)
CN (1) CN105097446A (zh)
TW (1) TWI730942B (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106328500A (zh) * 2015-07-02 2017-01-11 无锡华润上华科技有限公司 钨膜的沉积方法
CN107460449A (zh) * 2016-06-02 2017-12-12 朗姆研究公司 用于增强填充物和减少衬底撞击的原子层沉积
CN107887438A (zh) * 2016-09-30 2018-04-06 台湾积体电路制造股份有限公司 半导体器件及其制造方法
CN109216205A (zh) * 2017-06-30 2019-01-15 朗姆研究公司 氮化钨阻挡层沉积
CN109661481A (zh) * 2016-07-14 2019-04-19 恩特格里斯公司 使用MoOC14的CVD Mo沉积
CN111095488A (zh) * 2017-08-14 2020-05-01 朗姆研究公司 三维竖直nand字线的金属填充过程
CN111357083A (zh) * 2017-11-20 2020-06-30 朗姆研究公司 自限制生长
CN112262457A (zh) * 2018-05-03 2021-01-22 朗姆研究公司 在3d nand结构中沉积钨和其他金属的方法
CN113195783A (zh) * 2018-12-19 2021-07-30 恩特格里斯公司 在还原共反应剂存在下沉积钨或钼层的方法
CN113366144A (zh) * 2019-01-28 2021-09-07 朗姆研究公司 金属膜的沉积
CN113710830A (zh) * 2019-04-11 2021-11-26 朗姆研究公司 高台阶覆盖率钨沉积
CN114269963A (zh) * 2019-08-12 2022-04-01 朗姆研究公司 钨沉积
US11407650B2 (en) 2017-01-25 2022-08-09 Umicore Ag & Co. Kg Method for the reduction of metal halides
US11821071B2 (en) 2019-03-11 2023-11-21 Lam Research Corporation Precursors for deposition of molybdenum-containing films
US11972952B2 (en) 2018-12-14 2024-04-30 Lam Research Corporation Atomic layer deposition on 3D NAND structures
US12074029B2 (en) 2018-11-19 2024-08-27 Lam Research Corporation Molybdenum deposition

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9953984B2 (en) 2015-02-11 2018-04-24 Lam Research Corporation Tungsten for wordline applications
JP6416679B2 (ja) * 2015-03-27 2018-10-31 東京エレクトロン株式会社 タングステン膜の成膜方法
US9978605B2 (en) 2015-05-27 2018-05-22 Lam Research Corporation Method of forming low resistivity fluorine free tungsten film without nucleation
US9595473B2 (en) 2015-06-01 2017-03-14 International Business Machines Corporation Critical dimension shrink through selective metal growth on metal hardmask sidewalls
US9768177B2 (en) * 2015-08-04 2017-09-19 Micron Technology, Inc. Method of forming conductive material of a buried transistor gate line and method of forming a buried transistor gate line
JP6710089B2 (ja) * 2016-04-04 2020-06-17 東京エレクトロン株式会社 タングステン膜の成膜方法
US10573522B2 (en) 2016-08-16 2020-02-25 Lam Research Corporation Method for preventing line bending during metal fill process
JP6517375B2 (ja) 2016-12-05 2019-05-22 Jx金属株式会社 高純度五塩化タングステン及びその製造方法
JP7224335B2 (ja) 2017-04-10 2023-02-17 ラム リサーチ コーポレーション モリブデンを含有する低抵抗膜
US10460987B2 (en) * 2017-05-09 2019-10-29 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor package device with integrated antenna and manufacturing method thereof
KR102474876B1 (ko) 2017-06-15 2022-12-07 삼성전자주식회사 텅스텐 전구체 및 이를 이용한 텅스텐 함유막의 형성 방법
US11807652B2 (en) 2017-08-21 2023-11-07 Adeka Corporation Tungsten compound, raw material for thin film formation and method for producing thin film
JP7018748B2 (ja) * 2017-11-28 2022-02-14 東京エレクトロン株式会社 成膜方法及び成膜条件の算出方法
JP7072399B2 (ja) 2018-02-21 2022-05-20 東京エレクトロン株式会社 タングステン膜の成膜方法、成膜システム及び記憶媒体
US10710896B2 (en) 2018-04-30 2020-07-14 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Tungsten pentachloride conditioning and crystalline phase manipulation
US10899630B2 (en) 2018-04-30 2021-01-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procédés Georges Claude Tungsten pentachloride conditioning and crystalline phase manipulation
JP7362258B2 (ja) * 2019-02-08 2023-10-17 東京エレクトロン株式会社 基板処理方法及び成膜システム
JP7553458B2 (ja) 2019-02-25 2024-09-18 ボード オブ リージェンツ,ザ ユニバーシティ オブ テキサス システム 異方性化学エッチングのための大面積測定及び処理制御
JP2022533834A (ja) * 2019-05-22 2022-07-26 ラム リサーチ コーポレーション 核生成のないタングステン堆積
US20210384035A1 (en) * 2020-06-04 2021-12-09 Applied Materials, Inc. Fluorine-Free Tungsten ALD And Tungsten Selective CVD For Dielectrics
KR20240004913A (ko) * 2021-05-07 2024-01-11 엔테그리스, 아이엔씨. 몰리브데넘 또는 텅스텐 재료를 침착시키는 방법
TWI817445B (zh) * 2022-01-19 2023-10-01 南亞科技股份有限公司 導電特徵及半導體元件的製備方法
US11842925B2 (en) 2022-01-19 2023-12-12 Nanya Technology Corporation Method for fabricating conductive feature and semiconductor device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6162715A (en) * 1997-06-30 2000-12-19 Applied Materials, Inc. Method of forming gate electrode connection structure by in situ chemical vapor deposition of tungsten and tungsten nitride
WO2002079537A2 (en) * 2001-03-28 2002-10-10 Applied Materials, Inc. W-cvd with fluorine-free tungsten nucleation
CN1115723C (zh) * 1996-11-15 2003-07-23 三星电子株式会社 氮化钨层制造方法及使用同样原理的金属连线制造方法
CN101308794A (zh) * 2007-05-15 2008-11-19 应用材料股份有限公司 钨材料的原子层沉积
US20120003833A1 (en) * 2010-07-01 2012-01-05 Applied Materials, Inc. Methods for forming tungsten-containing layers
CN103681285A (zh) * 2012-08-31 2014-03-26 爱思开海力士有限公司 包括无氟钨阻挡层的半导体器件及其制造方法
WO2014052642A1 (en) * 2012-09-28 2014-04-03 Advanced Technology Materials, Inc. Fluorine free tungsten ald/cvd process
US20140120723A1 (en) * 2012-10-26 2014-05-01 Xinyu Fu Methods for depositing fluorine/carbon-free conformal tungsten

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61224313A (ja) * 1985-03-29 1986-10-06 Hitachi Ltd 気相薄膜成長方法
JP2829143B2 (ja) * 1991-03-25 1998-11-25 シャープ株式会社 半導体装置の製造方法
US7405158B2 (en) * 2000-06-28 2008-07-29 Applied Materials, Inc. Methods for depositing tungsten layers employing atomic layer deposition techniques
US20030190424A1 (en) 2000-10-20 2003-10-09 Ofer Sneh Process for tungsten silicide atomic layer deposition
US9076843B2 (en) * 2001-05-22 2015-07-07 Novellus Systems, Inc. Method for producing ultra-thin tungsten layers with improved step coverage
US7211144B2 (en) * 2001-07-13 2007-05-01 Applied Materials, Inc. Pulsed nucleation deposition of tungsten layers
KR101559425B1 (ko) 2009-01-16 2015-10-13 삼성전자주식회사 반도체 소자의 제조 방법
US8119527B1 (en) * 2009-08-04 2012-02-21 Novellus Systems, Inc. Depositing tungsten into high aspect ratio features
US9034768B2 (en) * 2010-07-09 2015-05-19 Novellus Systems, Inc. Depositing tungsten into high aspect ratio features
US8853080B2 (en) * 2012-09-09 2014-10-07 Novellus Systems, Inc. Method for depositing tungsten film with low roughness and low resistivity
US20150348840A1 (en) 2014-05-31 2015-12-03 Lam Research Corporation Methods of filling high aspect ratio features with fluorine free tungsten

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1115723C (zh) * 1996-11-15 2003-07-23 三星电子株式会社 氮化钨层制造方法及使用同样原理的金属连线制造方法
US6162715A (en) * 1997-06-30 2000-12-19 Applied Materials, Inc. Method of forming gate electrode connection structure by in situ chemical vapor deposition of tungsten and tungsten nitride
WO2002079537A2 (en) * 2001-03-28 2002-10-10 Applied Materials, Inc. W-cvd with fluorine-free tungsten nucleation
CN101308794A (zh) * 2007-05-15 2008-11-19 应用材料股份有限公司 钨材料的原子层沉积
US20120003833A1 (en) * 2010-07-01 2012-01-05 Applied Materials, Inc. Methods for forming tungsten-containing layers
CN103681285A (zh) * 2012-08-31 2014-03-26 爱思开海力士有限公司 包括无氟钨阻挡层的半导体器件及其制造方法
WO2014052642A1 (en) * 2012-09-28 2014-04-03 Advanced Technology Materials, Inc. Fluorine free tungsten ald/cvd process
US20140120723A1 (en) * 2012-10-26 2014-05-01 Xinyu Fu Methods for depositing fluorine/carbon-free conformal tungsten

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106328500B (zh) * 2015-07-02 2019-11-05 无锡华润上华科技有限公司 钨膜的沉积方法
CN106328500A (zh) * 2015-07-02 2017-01-11 无锡华润上华科技有限公司 钨膜的沉积方法
CN107460449A (zh) * 2016-06-02 2017-12-12 朗姆研究公司 用于增强填充物和减少衬底撞击的原子层沉积
CN107460449B (zh) * 2016-06-02 2021-03-12 朗姆研究公司 用于增强填充物和减少衬底撞击的原子层沉积
CN109661481B (zh) * 2016-07-14 2021-11-30 恩特格里斯公司 使用MoOC14的CVD Mo沉积
CN109661481A (zh) * 2016-07-14 2019-04-19 恩特格里斯公司 使用MoOC14的CVD Mo沉积
US11107675B2 (en) 2016-07-14 2021-08-31 Entegris, Inc. CVD Mo deposition by using MoOCl4
CN107887438A (zh) * 2016-09-30 2018-04-06 台湾积体电路制造股份有限公司 半导体器件及其制造方法
TWI779005B (zh) * 2017-01-25 2022-10-01 德商烏明克股份有限兩合公司 用於還原金屬鹵化物之方法
US11407650B2 (en) 2017-01-25 2022-08-09 Umicore Ag & Co. Kg Method for the reduction of metal halides
CN109216205A (zh) * 2017-06-30 2019-01-15 朗姆研究公司 氮化钨阻挡层沉积
CN109216205B (zh) * 2017-06-30 2023-11-07 朗姆研究公司 氮化钨阻挡层沉积
CN111095488A (zh) * 2017-08-14 2020-05-01 朗姆研究公司 三维竖直nand字线的金属填充过程
CN111357083A (zh) * 2017-11-20 2020-06-30 朗姆研究公司 自限制生长
CN112262457A (zh) * 2018-05-03 2021-01-22 朗姆研究公司 在3d nand结构中沉积钨和其他金属的方法
US12074029B2 (en) 2018-11-19 2024-08-27 Lam Research Corporation Molybdenum deposition
US11972952B2 (en) 2018-12-14 2024-04-30 Lam Research Corporation Atomic layer deposition on 3D NAND structures
CN113195783A (zh) * 2018-12-19 2021-07-30 恩特格里斯公司 在还原共反应剂存在下沉积钨或钼层的方法
CN113366144A (zh) * 2019-01-28 2021-09-07 朗姆研究公司 金属膜的沉积
US11970776B2 (en) 2019-01-28 2024-04-30 Lam Research Corporation Atomic layer deposition of metal films
US11821071B2 (en) 2019-03-11 2023-11-21 Lam Research Corporation Precursors for deposition of molybdenum-containing films
CN113710830A (zh) * 2019-04-11 2021-11-26 朗姆研究公司 高台阶覆盖率钨沉积
US12002679B2 (en) 2019-04-11 2024-06-04 Lam Research Corporation High step coverage tungsten deposition
CN114269963A (zh) * 2019-08-12 2022-04-01 朗姆研究公司 钨沉积
US12077858B2 (en) 2019-08-12 2024-09-03 Lam Research Corporation Tungsten deposition

Also Published As

Publication number Publication date
KR102641077B1 (ko) 2024-02-27
US9595470B2 (en) 2017-03-14
JP2015221940A (ja) 2015-12-10
TW201606121A (zh) 2016-02-16
TWI730942B (zh) 2021-06-21
JP6799903B2 (ja) 2020-12-16
KR20230050290A (ko) 2023-04-14
US20150325475A1 (en) 2015-11-12
KR20150128615A (ko) 2015-11-18

Similar Documents

Publication Publication Date Title
CN105097446A (zh) 使用氯化钨前体制备钨和氮化钨薄膜的方法
TWI831756B (zh) 形成金屬薄膜的方法及儀器
US20220389579A1 (en) Deposition of pure metal films
US10546751B2 (en) Forming low resistivity fluorine free tungsten film without nucleation
US9159571B2 (en) Tungsten deposition process using germanium-containing reducing agent
CN113166929A (zh) 无空隙低应力填充
CN105280549A (zh) 用无氟钨填充高深宽比的特征的方法
JP2017008412A5 (zh)
CN105470194A (zh) 用核化抑制的特征填充
JP2017008412A (ja) 順次cvdプロセスによる低フッ素タングステンの堆積
KR20210092840A (ko) 3d nand 구조체 상의 원자 층 증착
CN109216205B (zh) 氮化钨阻挡层沉积
US12002679B2 (en) High step coverage tungsten deposition
KR20220047333A (ko) 텅스텐 증착
JP2024514605A (ja) モリブデンの堆積
JP2024534326A (ja) 半導体処理の間のプロセスガスランプ
TW202407778A (zh) 金屬矽化物接觸窗形成

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20151125