CN104541454A - 用于高频谱效率通信的多模接收器 - Google Patents
用于高频谱效率通信的多模接收器 Download PDFInfo
- Publication number
- CN104541454A CN104541454A CN201380042435.6A CN201380042435A CN104541454A CN 104541454 A CN104541454 A CN 104541454A CN 201380042435 A CN201380042435 A CN 201380042435A CN 104541454 A CN104541454 A CN 104541454A
- Authority
- CN
- China
- Prior art keywords
- pattern
- receiver
- circuit
- signal
- configuration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0041—Arrangements at the transmitter end
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03828—Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
- H04L25/03834—Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using pulse shaping
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/08—Error detection or correction by redundancy in data representation, e.g. by using checking codes
- G06F11/10—Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
- H04B1/0475—Circuits with means for limiting noise, interference or distortion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/10—Means associated with receiver for limiting or suppressing noise or interference
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/16—Circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/709—Correlator structure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/0082—Monitoring; Testing using service channels; using auxiliary channels
- H04B17/0085—Monitoring; Testing using service channels; using auxiliary channels using test signal generators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/10—Monitoring; Testing of transmitters
- H04B17/15—Performance testing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/20—Monitoring; Testing of receivers
- H04B17/29—Performance testing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0036—Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0045—Arrangements at the receiver end
- H04L1/0047—Decoding adapted to other signal detection operation
- H04L1/0048—Decoding adapted to other signal detection operation in conjunction with detection of multiuser or interfering signals, e.g. iteration between CDMA or MIMO detector and FEC decoder
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0045—Arrangements at the receiver end
- H04L1/0047—Decoding adapted to other signal detection operation
- H04L1/005—Iterative decoding, including iteration between signal detection and decoding operation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0045—Arrangements at the receiver end
- H04L1/0054—Maximum-likelihood or sequential decoding, e.g. Viterbi, Fano, ZJ algorithms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/20—Arrangements for detecting or preventing errors in the information received using signal quality detector
- H04L1/203—Details of error rate determination, e.g. BER, FER or WER
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/20—Arrangements for detecting or preventing errors in the information received using signal quality detector
- H04L1/206—Arrangements for detecting or preventing errors in the information received using signal quality detector for modulated signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L23/00—Apparatus or local circuits for systems other than those covered by groups H04L15/00 - H04L21/00
- H04L23/02—Apparatus or local circuits for systems other than those covered by groups H04L15/00 - H04L21/00 adapted for orthogonal signalling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0224—Channel estimation using sounding signals
- H04L25/0228—Channel estimation using sounding signals with direct estimation from sounding signals
- H04L25/023—Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
- H04L25/0236—Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols using estimation of the other symbols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03012—Arrangements for removing intersymbol interference operating in the time domain
- H04L25/03019—Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
- H04L25/03038—Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a non-recursive structure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03012—Arrangements for removing intersymbol interference operating in the time domain
- H04L25/03019—Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
- H04L25/03057—Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a recursive structure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03178—Arrangements involving sequence estimation techniques
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03178—Arrangements involving sequence estimation techniques
- H04L25/03184—Details concerning the metric
- H04L25/03197—Details concerning the metric methods of calculation involving metrics
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03178—Arrangements involving sequence estimation techniques
- H04L25/03248—Arrangements for operating in conjunction with other apparatus
- H04L25/03254—Operation with other circuitry for removing intersymbol interference
- H04L25/03267—Operation with other circuitry for removing intersymbol interference with decision feedback equalisers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03178—Arrangements involving sequence estimation techniques
- H04L25/03248—Arrangements for operating in conjunction with other apparatus
- H04L25/0328—Arrangements for operating in conjunction with other apparatus with interference cancellation circuitry
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03178—Arrangements involving sequence estimation techniques
- H04L25/03305—Joint sequence estimation and interference removal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03178—Arrangements involving sequence estimation techniques
- H04L25/03312—Arrangements specific to the provision of output signals
- H04L25/03318—Provision of soft decisions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03178—Arrangements involving sequence estimation techniques
- H04L25/03337—Arrangements involving per-survivor processing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03343—Arrangements at the transmitter end
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03878—Line equalisers; line build-out devices
- H04L25/03885—Line equalisers; line build-out devices adaptive
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03891—Spatial equalizers
- H04L25/03949—Spatial equalizers equalizer selection or adaptation based on feedback
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/08—Modifications for reducing interference; Modifications for reducing effects due to line faults ; Receiver end arrangements for detecting or overcoming line faults
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/01—Equalisers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/02—Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/02—Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
- H04L27/04—Modulator circuits; Transmitter circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/18—Phase-modulated carrier systems, i.e. using phase-shift keying
- H04L27/22—Demodulator circuits; Receiver circuits
- H04L27/227—Demodulator circuits; Receiver circuits using coherent demodulation
- H04L27/2275—Demodulator circuits; Receiver circuits using coherent demodulation wherein the carrier recovery circuit uses the received modulated signals
- H04L27/2278—Demodulator circuits; Receiver circuits using coherent demodulation wherein the carrier recovery circuit uses the received modulated signals using correlation techniques, e.g. for spread spectrum signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
- H04L27/34—Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
- H04L27/36—Modulator circuits; Transmitter circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
- H04L27/34—Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
- H04L27/36—Modulator circuits; Transmitter circuits
- H04L27/366—Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
- H04L27/34—Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
- H04L27/36—Modulator circuits; Transmitter circuits
- H04L27/366—Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator
- H04L27/367—Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion
- H04L27/368—Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion adaptive predistortion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
- H04L27/34—Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
- H04L27/38—Demodulator circuits; Receiver circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/0054—Detection of the synchronisation error by features other than the received signal transition
- H04L7/0058—Detection of the synchronisation error by features other than the received signal transition detection of error based on equalizer tap values
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/0079—Receiver details
- H04L7/0087—Preprocessing of received signal for synchronisation, e.g. by code conversion, pulse generation or edge detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/02—Speed or phase control by the received code signals, the signals containing no special synchronisation information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/04—Speed or phase control by synchronisation signals
- H04L7/041—Speed or phase control by synchronisation signals using special codes as synchronising signal
- H04L7/042—Detectors therefor, e.g. correlators, state machines
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
- H04B2001/0408—Circuits with power amplifiers
- H04B2001/0416—Circuits with power amplifiers having gain or transmission power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L2025/0335—Arrangements for removing intersymbol interference characterised by the type of transmission
- H04L2025/03356—Baseband transmission
- H04L2025/03369—Partial response
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Quality & Reliability (AREA)
- Electromagnetism (AREA)
- Theoretical Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mathematical Physics (AREA)
- Optics & Photonics (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Error Detection And Correction (AREA)
- Circuits Of Receivers In General (AREA)
- Analogue/Digital Conversion (AREA)
- Amplifiers (AREA)
- Transmitters (AREA)
- Noise Elimination (AREA)
Abstract
可以在运行时期间将接收器动态地配置为多个操作模式。在第一操作模式中,接收器可以使用近零ISI滤波器和码元分割来解调具有相对低的码元间相关性的接收信号。在第二操作模式中,接收器可以使用配置为获得期望的总部分响应的输入滤波器和序列估计算法来解调具有相对高的码元间相关性的接收信号。
Description
优先权主张
本专利申请引用以下申请、主张以下申请的优先权和权益:
序号为61/662085、标题为“Apparatus and Method for Efficient Utilizationof Bandwidth”且于2012年6月20日提交的美国临时专利申请;
序号为61/726099、标题为“Modulation Scheme Based on Partial Response”且于2012年11月14日提交的美国临时专利申请;
序号为61/729774、标题为“Modulation Scheme Based on Partial Response”且于2012年11月26日提交的美国临时专利申请;以及
序号为61/747132、标题为“Modulation Scheme Based on Partial Response”且于2012年12月28日提交的美国临时专利申请。
在此,通过全文引用将上述申请中的每个合并到这里。
通过引用的合并
本专利申请还引用:
序号为13/754964(代理人案号为26150US02)、标题为“Low-Complexity,Highly-Spectrally-Efficient Communications”且于2013年1月31日提交的美国专利申请;以及
序号为13/754972(代理人案号为26165US02)、标题为“Multi-ModeTransmitter for Highly-Spectrally-Efficient Communications”且与本申请同日提交的美国专利申请。
在此,通过全文引用将上述申请中的每个合并到这里。
技术领域
本发明的各方面涉及电子通信。
背景技术
现有通信方法和系统过于耗电和/或频谱效率低下。对于本领域的技术人员而言,通过将常规和传统的方法与在本公开的其余部分中参考附图而给出的本方法和系统的一些方面相比较,常规和传统的方法的进一步限制和缺点将变得明显。
发明内容
提供了用于低复杂度、高频谱效率通信的方法和系统,其基本上如通过至少一个附图所例示和/或结合至少一个附图所描述的,并且如在权利要求中更完整地给出。
附图说明
图1A是描绘配置用于低复杂度、高频谱效率通信的示例系统的框图。
图1B是示出可操作来支持低复杂度、高频谱效率通信的多模发送器的框图。
图1C是示出可操作来支持低复杂度、高频谱效率通信的多模发送器的框图。
图2是描绘在配置用于低复杂度、高频谱效率通信的系统中使用的示例均衡和序列估计电路的框图。
图3是描绘在配置用于低复杂度、高频谱效率通信的系统中使用的示例序列估计电路的框图。
图4是描绘在配置用于低复杂度、高频谱效率通信的系统中使用的示例度量(metric)计算电路的框图。
图5A-5D描绘配置用于低复杂度、高频谱效率通信的系统所执行的示例序列估计处理的部分。
图6A和图6B描绘作为图5D中描绘的处理的替代的示例存活者(survivor)选择处理。
图7是示出序列估计处理的初始化的图。
图8A描绘图3中所示的相位缓冲器的示例实施方式。
图8B描绘图3中所示的码元缓冲器的示例实施方式。
图8C描绘序列估计处理的多个迭代上的示例码元缓冲器的内容。
图8D描绘对应于图8C中所示的码元缓冲器内容的生成信号。
图9是示出多模接收器的动态配置的流程图。
图10在配置到表2的模式1中和配置到表2的模式2中的接收器的码元错误率(SER)与SNR之间进行比较。
具体实施方式
如这里所使用的,术语“电路”是指物理电子部件(即硬件)和可以配置硬件、由硬件执行或与硬件关联的任何软件和/或固件(“代码”)。例如,如这里所使用的,特定处理器和存储器可以在执行第一一行或多行代码时包括第一“电路”,而在执行第二一行或多行代码时包括第二“电路”。如这里所使用的,“和/或”表示由“和/或”连接的列表中的任何一个或多个项。作为示例,“x和/或y”表示三元素集合{(x),(y),(x,y)}中的任一元素。作为另一示例,“x、y和/或z”表示七元素集合{(x),(y),(z),(x,y),(x,z),(y,z),(x,y,z)}中的任一元素。如这里所使用的,术语“示例性的”表示用作非限制性示例、实例或例示。如这里所使用的,术语“例如”给出(set off)一个或多个非限制性示例、实例或例示的列表。如这里所使用的,只要该电路包括必要的硬件和代码(如果需要)来执行功能,电路就“可操作”来执行该功能,而与该功能的执行是否通过某个用户可配置设置而被禁用、或未被开启无关。
图1A是描绘配置用于低复杂度、高频谱效率通信的示例系统的框图。系统100包括映射器电路102、脉冲整形滤波电路104、定时导频插入电路105、发送器前端电路106、信道107、接收器前端108、滤波电路109、定时导频去除电路110、均衡和序列估计电路112、以及解映射电路114。部件102、104、105和106可以是发送器(例如,基站或接入点、路由器、网关、移动设备、服务器、计算机、计算机外围设备、桌台(table)、调制解调器、机顶盒等等)的部分,部件108、109、110、112和114可以是接收器(例如,基站或接入点、路由器、网关、移动设备、服务器、计算机、计算机外围设备、桌台、调制解调器、机顶盒等等)的部分,并且发送器和接收器可以经由信道107通信。
映射器102可操作来根据选择的调制方案将要发送的Tx_比特流的比特映射到码元。可以经由信号103输出码元。例如,对于具有N的码元符号系统(alphabet)的正交幅度调制方案(N-QAM),映射器可以将Tx_比特流的每Log2(N)个比特映射到单个码元,该单个码元被表示为复数和/或表示为同相(I)和正交相(Q)分量。虽然N-QAM被用于本公开中的例示,但本公开的各方面适用于任何调制方案(例如,幅移键控(ASK)、相移键控(PSK)、频移键控(FSK)等)。此外,N-QAM星座图的点可以规则地间隔开(“在网格上(on-grid)”)或无规则地间隔开(“不在网格上(off-grid)”)。此外,可以针对最佳误码率性能优化映射器所使用的码元星座图,该最佳误码率性能与对数似然比(LLR)有关且优化每比特平均互信息(MMIB)。Tx_比特流可以例如是穿过前向纠错(FEC)编码器和/或交织器的数据的比特的结果。此外、或者替代地,从映射器102出来的码元可以穿过交织器。
脉冲整形器104可操作来调节信号103的波形,使得结果信号113的波形与其上发送信号113的信道的频谱要求相符。频谱要求可称为“频谱遮罩(spectral mask)”,并且可以由管理通信信道和/或使用中的标准的监管机构(例如,美国联邦通信委员会或欧洲电信标准协会)和/或标准机构(例如,第三代合作伙伴项目)建立。脉冲整形器104可以包括例如无限冲激响应(IIR)和/或有限冲激响应(FIR)滤波器。脉冲整形器104的抽头(tap)数或“长度”在这里表示为LTx,其是整数。脉冲整形器104的冲激响应这里表示为hTx。脉冲整形器104可被配置为使得其输出信号113有意地具有大量的码元间干扰(ISI)。因此,脉冲整形器104可称为部分响应脉冲整形滤波器,并且信号113可称为部分响应信号或处于部分响应域中,而信号103可称为处于码元域中。脉冲整形器104的抽头数和/或抽头系数的值可被设计为使得脉冲整形器104有意地对于加性白高斯噪声(AWGN)而非最优,以便提高信号路径中的非线性容限。在此方面,与例如传统的近零正ISI脉冲整形滤波器(例如,根升余弦(RRC)脉冲整形滤波器)相比,脉冲整形器104在存在非线性时可以提供更好的性能。脉冲整形器104可被设计为如以下中的一个或多个所描述的:标题为“Design and Optimization of Partial Response PulseShaper Filter”的美国专利申请;标题为“Constellation Map Optimization For HighlySpectrally Efficient Communications”的美国专利申请;和标题为“Dynamic FilterAdjustment For Highly-Spectral-Efficient Communications”的美国专利申请,通过引用将它们的每个合并到这里,如上文所述。
应该注意,部分响应信号(或在“部分响应域”中的信号)仅是信号的码元之间具有相关性的一类信号(这里称为“码元间相关(ISC)信号”)的一个示例。这样的ISC信号与例如通过升余弦(RC)或根升余弦(RRC)滤波生成的零(或近零)ISI信号形成对比。为了说明的简单,本公开关注通过部分响应滤波生成的部分响应信号。然而,本公开的各方面可应用于其它ISC信号,诸如,通过矩阵乘法(例如,点阵编码)生成的信号、以及通过低于奈奎斯特频率的十分之一采样(decimation)生成的信号。
定时导频插入电路105可以插入导频信号,其可以被接收器用于定时同步。定时导频插入电路105的输出信号115因此可以包括信号113加上插入的导频信号(例如,1/4×fbaud处的正弦波,fbaud是码元率)。标题为“TimingSynchronization for Reception of High-Spectrally-Efficient Communications”的美国专利申请中描述了导频插入电路105的示例实施方式,通过引用将该每个专利申请合并到这里,如上文所述。
发送器前端106可以操作来对信号115进行放大和/或上变频,以生成信号116。因此,发送器前端106可以包括例如功率放大器和/或混频器。前端可能向信号116引入非线性失真和/或相位噪声(和/或其它非理想性)。电路106的非线性可以表示为FnlTx,其可以是例如多项式或指数(例如Rapp模型)。该非线性可以包含记忆(memory)(例如,Volterra级数)。
信道107可以包括有线、无线和/或光通信介质。信号116可以通过信道107传播,并作为信号118到达接收前端108。信号118可能比信号116具有更多噪声(例如,由于信号中的热噪声),并且可能比信号116具有更高或不同的ISI(例如,由于多径)。
接收器前端108可以操作来对信号118进行放大和/或下变频,以生成信号119。因此,接收器前端可以包括例如低噪声放大器和/或混频器。接收器前端可能向信号119引入非线性失真和/或相位噪声。电路108的非线性可以表示为FnlRx,其可以例如是多项式或指数(例如Rapp模型)。该非线性可以包含记忆(例如,Volterra级数)。
定时导频恢复和移除电路110可以操作来锁定到导频插入电路105所插入的定时导频信号,以便恢复接收信号的码元定时。输出122因此可以包括信号120减去(即,没有)定时导频信号。标题为“Timing Synchronization forReception of Highly-Spectrally-Efficient Communications”的美国专利申请中描述了定时导频恢复和移除电路110的示例实施方式,通过引用将该每个专利申请合并到这里,如上文所述。
输入滤波器109可以操作来调节部分响应信号119的波形,以生成部分响应信号120。输入滤波器109可以包括例如无限冲激响应(IIR)和/或有限冲激响应(FIR)滤波器。输入滤波器109的抽头数或“长度”在这里表示为LRx,其为整数。输入滤波器109的冲激响应在这里表示为hRx。可以基于以下项配置输入滤波器109的抽头数和/或抽头系数:非线性模型信号120的信噪比(SNR)、Tx部分响应滤波器104的抽头数和/或抽头系数、和/或其它参数。输入滤波器109的抽头数和/或抽头系数的值可以配置为使得有意地折衷(compromise)(相对于完美匹配滤波器)噪声抑制性,以便提高存在非线性时的性能。因此,与例如传统近零正ISI匹配滤波器(例如,根升余弦(RRC)匹配滤波器)相比,输入滤波器109可以在存在非线性时提供更优的性能。输入滤波器109可被设计为如以下一个或多个中所描述的:标题为“Design and Optimization of Partial Response Pulse Shape Filter”的美国专利申请、标题为“Constellation Map Optimization For Highly Spectrally EfficientCommunications”的美国专利申请、以及标题为“Dynamic Filter Adjustment ForHighly-Spectrally-Efficient Communications”的美国专利申请,通过引用将它们各自合并到这里,如上文所述。
如这里所使用的,“总部分响应(h)”可以等于hTx和hRx的卷积,因此,“总部分响应长度(L)”可以等于LTx+LRx-1。然而,L可以被选为小于LTx+LRx-1,其中,例如,Tx脉冲整形器104和/或Rx输入滤波器109的一个或多个抽头低于所确定的水平。减小L可以降低序列估计的解码复杂度。可以在系统100的设计期间优化该权衡(tradeoff)。
均衡和序列估计器112可以操作来执行均衡处理和序列估计处理。下面参照图2说明均衡和序列估计器112的示例实施方式的细节。均衡和序列估计器112的输出信号132可以在码元域中,并且可以携带信号103的对应发送码元的估计值(和/或Tx_比特流的对应发送信息比特的估计值)。虽然未描绘,但信号132可以在途中穿过交织器到达解映射器114。估计值可以包括软判决估计、硬判决估计、或两者。
解映射器114可以操作来根据选择的调制方案将码元映射到比特序列。例如,对于N-QAM调制方案,映射器可以将每个码元映射到Rx_比特流的Log2(N)个比特。例如,Rx_比特流可以输出到解交织器和/或FEC解码器。替代地、或附加地,解映射器114可以生成每个比特的软输出,称为LLR(对数似然比)。软输出比特可由软解码前向纠错器(例如,低密度奇偶校验(LDPC)解码器)使用。例如,可以使用软输出Viterbi算法(SOVA)等生成软输出比特。这样的算法可以使用序列解码处理的附加信息,包括丢弃的(dropped)路径的度量水平、和/或用于生成LLR的估计比特概率,其中其中Pb是比特b=1的概率。
在示例实施方式中,可以在传统N-QAM系统中找到发送器中脉冲整形器104上游以及接收器中均衡和序列估计器112下游的系统部件。因此,通过修改发送侧物理层和接收侧物理层,本发明的各方面可以实施在其它传统N-QAM系统中,以便例如与使用RRC滤波器和N-QAM限幅器(slicer)相比提高了在存在非线性的情况下的系统的性能。
图1B是示出多模发送器的框图,多模发送器可操作来支持低复杂度、高频谱效率通信。图1B中所示的是前向纠错(FEC)编码器156、映射器102、码元间相关性(ISC)生成电路158、定时导频插入电路105、发送器前端电路106、时钟信号生成电路152、以及控制电路154。
时钟信号生成电路152可以包括例如一个或多个振荡器(例如晶体振荡器)以及一个或多个锁相环(PLL)用于生成时钟信号156,该时钟信号156的频率确定发送器生成和发送码元的速率(“码元率”和“波特率”)。时钟信号156的频率可以基于发送器的操作模式(例如,由控制信号158所指示的)。
控制电路154可以例如包括专用集成电路(ASIC)、可编程中断控制器(PIC)、基于ARM的处理器、基于x86的处理器、和/或可操作来基于一个或多个参数控制发送器的配置的任何其它合适的电路。发送器的配置可以基于的参数可以包括例如来自该发送器所处于的设备(例如,移动电话、膝上型计算机、基站等)的用户的输入、和/或运行在该设备上的软件应用。发送器的配置可以基于的参数可以包括由发送器的电路测量的性能指示,例如,测量的噪声水平、温度、电池充电水平等。发送器的配置可以基于的参数可以包括例如要发送的数据的特性。这样的特性可以包括例如服务质量参数(例如延迟和/或吞吐量要求)、和/或数据在去往接收器的路途中将经历的非线性失真的模型。发送器的配置可以基于的参数可以包括由接收器测量的或从接收器反馈的性能指示。这样的性能指示可以包括例如码元错误率(SER)、误码率(BER)、信噪比(SNR)、序列估计电路所计算的度量、接收器所测量的相位误差、指示信道中存在的多径的测量值、和/或任何其它相关的性能指示。控制电路154可以通过控制信号158指示发送器的操作模式和/或发送器的各个部件的控制配置。
控制电路154还可以操作来生成指示发送器的配置的控制消息。这样的控制消息可以例如插入到发送数据流中和/或在信标信号的控制信道上传送,以向接收器通知接收器的配置。这种控制消息可以由多模接收器用于其电路的配置。
FEC编码器156可以根据诸如Reed-Solomon或低密度奇偶校验(LDPC)算法的一个或多个算法执行FEC编码。可以基于发送器的操作模式(例如,如控制信号158所指示的)确定所使用的FEC码率和/或编码算法。例如,可以切换FEC类型(例如LDPC、RS等)以匹配调制类型,并且可以基于发送器的操作模式优化FEC率以增加容量。在迭代FEC码(例如,LDPC、turbo)的一些情况中,码结构可以变化,以利用部分响应信号误差的统计特性。可以通过适当的误差模型的动态选择来提高FEC解码性能。
例如,映射器102可为如上参照图1A所描述的。可以基于发送器的操作模式(例如,如由控制信号158所指示的)确定映射器102使用的码元星座图。可以基于时钟信号156确定比特映射到码元的速率。在本公开的示例实施例中,映射器102可操作来将一个或多个导频码元(例如,导频码元的特定模式(pattern))插入到生成的码元序列中。在示例实施例中,可以确定性的方式(例如,周期性地和/或基于事件驱动)插入导频码元,使得信号的接收器可以知道或者能够自主地确定这些码元是导频码元而不是信息码元(信息码元是从输入到映射器102的数据比特生成的码元)。在示例实施方式中,可以对导频码元和信息码元二者使用共同的码元星座图。在另一示例实施方式中,第一码元星座图(例如,基于32QAM的PR10星座图)可以用于信息码元,而第二码元星座图(例如,BPSK或QPSK星座图)可以用于导频码元。
可以根据信道108的一个或多个性能指示(例如,SNR、SER、模块204所计算的度量水平、多径的量等)动态地(例如,基于最近的测量值和/或反馈和/或用户输入,实时或近似实时地)适配导频码元的导频开销(POH)(即,作为导频码元的所有发送码元的百分比)和模式。当发送器被配置用于近零正ISI时,可以在时间上分散导频码元,使得每N个信息码元插入单个导频。以此方式,导频码元可以在存在相位噪声的情况中支持载波恢复环,并且可以通过提供关于在发送导频码元时存在的相位误差的附带(side)信息防止周跳(cycle slip)。然而,当在生成其值在任何给定时间都基于多个码元的ISC信号的模式中配置发送器时,使用若干相邻(例如紧密分布的)导频码元以便提供用于相位的足够附带信息可以是有利的。因此,当发送器在ISC模式中时,码元导频可以使用为每N个信息码元插入M个导频码元的组的模式,其中该M个码元可以完美地级联(cascade)(即导频之间没有信息码元),或者可以在构成该M个码元的组的某些导频码元之间插入信息码元。例如,发送器可以当配置在第一操作模式中时在每N个信息码元之间插入1个导频码元,并且当配置在第二操作模式中时在每N个信息码元之间插入2个或更多个连续导频码元。
可以基于发送器的操作模式确定ISC生成电路158的配置(例如,如控制信号158所指示的)。在第一配置中,ISC生成电路158可配置为生成ISC信号。例如,在第一配置中,ISC生成电路158可以对应于以及操作为这里参照图1A和2-8D所描述的脉冲整形器104。在第二配置中,ISC生成电路158可被配置为近零正ISI脉冲整形滤波器(例如,可以基于根升余弦(RRC)脉冲整形滤波器配置,或者配置为近似根升余弦(RRC)脉冲整形滤波器)。第一配置可以对应于第一数目的滤波器抽头和/或第一组抽头系数。第二配置可以对应于第二数目的滤波器抽头和/或第二组抽头系数。作为另一示例,ISC生成电路158的第一配置可以是这样的电路:其执行低于奈奎斯特频率的十分之一采样,使得混淆产生ISC信号。作为另一示例,ISC生成电路158的第一配置可以是其执行产生ISC信号的点阵编码的电路。
例如,定时导频插入电路105可以是如上参照图1A所描述的。在示例实施方式中,可以基于发送器的操作模式(例如,如控制信号158所指示的)确定插入导频的码元频率的次谐波。即,如果以Fbaud/D插入定时导频,则可以基于发送器的操作模式(例如,如控制信号158所指示的)控制D的值。此外,可以基于发送器的操作模式(例如,如控制信号158所指示的)控制插入的导频信号的功率。与此相关地,可以基于发送器的操作模式(例如,如控制信号158所指示的)启用或禁用定时导频插入电路105。
Tx前端106可以是如上文参照图1A所描述的。前端106的不同配置可以例如对应于前端106的放大器的不同功率回退设置。更大的功率回退可以对应于比对应于更小功率回退的操作点更远离参考点(例如,1dB压缩点)的操作点。因此,更大功率回退设置可以对应于提高的线性,代价是降低的发送功能和能量效率。
在操作中,发送器可以支持多个模式,并且每个模式对应于映射器102、ISC生成电路158、定时导频插入电路105、Tx前端电路106和时钟152中的每个的特定配置。可以动态地(例如,基于最近的测量值和/或反馈和/或用户输入,实时或接近实时地)配置发送器。在示例实施方式中,发送器可以支持表1中所示的参数所表征的两个模式。
表1
其中N和M是整数;D是实数;Fb1是模式1中的波特率;Fb2是模式2中的波特率;PBO1是模式1中前端106的放大器的功率回退设置;PBO2是模式2中前端106的放大器的功率回退设置;以及P1、P2和P3是三个回退界限,其中P1>P2>P3,使得P1对应于比对应于P2的操作点更远离参考点的操作点,P2对应于比对应于P3的操作点更远离参考点的操作点(即,P3比P2导致更高发送功率和更多非线性失真,并且P2比P1导致更高发送功率和更多非线性失真)。在这种实施方式中,映射器102、ISC生成电路158、时钟152、导频插入电路105和前端106可以配置以使得表1中的两个模式在相同的带宽中获得相同的吞吐量(即,相同的频谱效率),但具有不同的码元星座图。即,模式1可以使用N-QAM星座图、具有BW1的有效带宽的RRC脉冲整形滤波、第一波特率Fb1以及具有较低非线性失真的放大器设置获得特定吞吐量,而模式2可以使用M-QAM码元星座图(N>M)、具有BW2=BW1的有效带宽的部分响应(PR)脉冲整形滤波、第二波特率Fb2=log2(N)/log2(M)×Fb1以及具有较高非线性失真的放大器设置获得该吞吐量。
在示例实施方式中,M=N(即,两个模式使用相同的星座图),BW2=BW1/X,Fb1=Fb2(即两个模式使用相同的波特率)以及PBO1=PBO2(即两个模式使用放大器的相同功率回退设置),并且模式2获得与模式1相同的吞吐量,但使用了因子为X的更少带宽,这是由于模式2的提高的频率效率。
图1C是示出可操作来支持低复杂度、高频谱效率通信的多模接收器的框图。图1C中所示的是Rx前端108、Rx滤波器109、定时导频去除电路110、码元检测电路178、控制电路174和FEC解码器电路176。
控制电路174可以例如包括专用集成电路(ASIC)、可编程中断控制器(PIC)、基于ARM的处理器、基于x86的处理器、和/或可操作来基于一个或多个参数控制接收器的配置的任何其它合适的电路。接收器的配置可以基于的参数可以包括例如来自该接收器所处于的设备(例如,移动电话、膝上型计算机、基站等)的用户的输入、和/或运行在该设备上的软件应用。接收器的配置可以基于的参数可以包括接收器的电路所测量的性能指示,例如,测量的噪声水平、温度、电池充电水平、码元错误率(SER)、误码率(BER)、信噪比(SNR)、序列估计电路所计算的度量、接收器所使用的非线性模型、接收器所测量的相位误差、指示信道中的多径的量的测量值、和/或任何其它相关的性能指示。接收器的配置可以基于的参数可以包括要接收的数据的特性。这样的特性包括例如服务质量参数(例如,延迟和/或吞吐量要求)、和/或数据在发送期间、在信道上的传播期间和/或在接收器的接收期间所经历的非线性失真的模型。接收器的配置可以基于的参数可以是该接收器期望从其接收通信的发送器所传递的参数(例如在信标信号中)。这样的参数可以包括例如使用中的功率回退(和/或其它非线性指示)码元星座图、使用中的脉冲整形滤波的类型、波特率等。接收器的配置可以基于的参数可以包括接收器期望从其接收通信的发送器的操作模式。这样的操作模式可以例如在控制消息中(例如在信标信号中)传递到接收器,并且中继到控制电路174。
控制电路174还可以操作来生成指示接收器的配置的控制消息。这样的控制消息可以例如插入到发送数据流中、和/或在信标信号的控制信道上传送,以向发送器提供反馈。这样的控制消息可以由多模发送器用于其电路的配置。
定时导频去除电路110可如以上描述,并且例如可包括一个或多个锁相环(PLL)用于恢复接收信号的码元定时并输出由恢复的码元定时确定的时钟信号。
例如,Rx前端108可以如上文参照图1A所描述的。前端108的不同配置可以例如对应于前端108的一个或多个增益电路(例如放大器和/或衰减器)的功率回退设置的不同组合。更大的功率回退可以对应于比对应于更小的功率回退的操作点更远离参考点(例如1dB压缩点)的操作点。结果,更大的功率回退设置可以对应于提高的线性,代价是降低的能量效率和/或提高的噪声指数。
可以基于接收器的操作模式(例如,如控制信号178所指示的)确定Rx滤波器109的配置。在第一配置中,Rx滤波器109可以如这里参照图1A和2-8D所描述地操作。即,在第一配置中,Rx滤波器109可以配置为获得期望的总部分响应。然而,在第二配置中,Rx滤波器109可以配置为近零正ISI脉冲整形滤波器(例如,根升余弦(RRC)脉冲整形滤波器)。第一配置可以对应于第一数目的滤波器抽头和/或第一组抽头系数。第二配置可以对应于第二数目的滤波器抽头和/或第二组抽头系数。
可以基于接收器的操作模式(例如,如控制信号178所指示的)确定码元检测电路178的配置。例如,在第一配置中,码元检测电路178可以操作作为这里参照图1A和2-8D所描述的均衡和序列估计电路112。即,在第一配置中,码元检测电路178可以检测/估计ISC码元的序列。然而,在第二配置中,码元检测电路178可以根据特定星座图(例如QAM星座图)执行码元分割(slicing),以检测/估计各个码元(即,在长度上仅一个码元的序列)。因此,在第二配置中,均衡和码元检测电路178可以执行分割,并且每个(硬或软)估计/判决可以仅依赖于当前码元。因此,均衡和码元检测电路178的配置可以基于例如接收信号中的码元间相关性的指示。在造成接收码元之间的相关性的严重信道多径和/或相位噪声的情况中,码元检测电路178可以配置用于通过序列估计方法解码码元,以相比于逐码元分割/判决而提高解码性能。
FEC解码器176可以根据诸如Reed-Solomon或低密度奇偶校验(LDPC)算法的一个或多个算法执行FEC解码。可以基于发送器的操作模式(例如,如控制信号178所指示的)确定所使用的FEC码率和/或解码算法。例如,可以切换FEC类型(例如,LDPC、RS等)以匹配调制类型,并且可以基于发送器的操作模式优化FEC率以提高容量。在迭代FEC码(例如LDPC、turbo)的一些情况中,码结构可以变化,以利用部分响应信号误差的统计特性。可以通过适当的误差模型的动态选择提高FEC解码性能。例如,定义码结构的因子图可以包含码约束条件以及部分响应行为。此外,可以根据需要整形作为对FEC的输入的比特LLR。
在操作中,接收器可以支持多个模式,并且每个模式对应于Rx前端108、Rx滤波器109、定时导频去除电路110、均衡和码元检测电路178和控制电路174中的每个的特定配置。可以动态地(例如,基于最近的测量值和/或反馈,实时或接近实时地)配置接收器。在示例实施方式中,接收器可以支持表2中所示的参数所表征的两个模式。
表2
其中Fb1是模式1的波特率;PBO3是模式1中前端108的放大器的功率回退设置;PBO4是模式2中前端108的放大器的功率回退设置;以及P4、P5和P6是三个回退界限,其中P4>P5>P6,使得P4对应于比对应于P6的操作点更远离参考点的操作点,P5对应于比对应于P6的操作点更远离参考点的操作点(即,P6比P5导致更多的非线性失真,并且P5比P4导致更多的非线性失真)。在接收器中,在线性和噪声指数性能之间存在权衡。允许高非线性失真可以使得能够提高总体噪声指数,其继而可以提高解调器灵敏度。因此,能够容忍严重非线性失真的接收器可以准许针对最优的噪声指数配置该接收器。
在这样的实施方式中,Rx前端108、Rx滤波器109、以及均衡和码元检测电路178可以配置为使得:对于相同的吞吐量和相同的频谱效率,模式2在操作SNR(例如,30dB SNR)周围提供比模式1更好的接收(例如,更低的SER)。对于给定接收信号电平(RSL),模式2中的系统相比于模式1可以提高SNR,这是因为其能够容忍源自接收器前端的更大的非线性失真并因此降低噪声指数,这提高观测的SNR。图10描绘了示例约束条件下模式1和2的SER与SNR。
图2是描绘在配置用于低复杂度、高频谱效率通信的系统中使用的示例均衡和序列估计电路的框图。所示的是均衡电路202、信号合成电路204、相位调节电路206、序列估计电路210和非线性建模电路236a和236b。
均衡器202可以操作来处理信号122以降低由信道107导致的ISI。均衡器202的输出222是部分响应域信号。信号222的ISI主要是脉冲整形器104和输入滤波器109的结果(例如,由于均衡器202中最小均方(LMS)方法的使用,可能存在一些来自多径的残余ISI)。反馈到均衡器202的误差信号201也在部分响应域中。信号201是由合成器204计算的在222与由非线性建模电路236a输出的部分响应信号203之间的差。在标题为“Feed ForwardEqualization for Highly-Spectrally-Efficient Communications”的美国专利申请中描述了均衡器的示例实施方式,通过引用将该美国专利申请合并到这里,如上文所述。
载波恢复电路208可以操作来基于信号222与非线性建模电路236b所输出的部分响应信号207之间的相位差而生成信号228。载波恢复电路208可以如标题为“Coarse Phase Estimation for Highly-Spectrally-EfficientCommunications”的美国专利申请中所述,通过引用将其合并到这里,如上文所述。
相位调节电路206可以操作来调节信号222的相位,以生成信号226。相位调节的量和方向可以由载波恢复电路208所输出的信号228所确定。信号226是近似于(由于均衡器202的有限长度所导致的均衡误差、相位调节电路206未校正的残余相位误差、非线性、和/或其它非理想性)由于信号103的对应码元穿过脉冲整形器104和输入滤波器109所导致的总部分响应信号的部分响应信号。
缓冲器212缓冲信号226的样本,并通过信号232输出信号226的多个样本。信号232表示为PR1,其中下划线表示其是矢量(在此情况中,矢量的每个元素对应于部分响应信号的样本)。在示例实施方式中,矢量PR1的长度可以是Q个样本。
向序列估计电路210的输入是信号232、信号228以及响应响应基于h(以上说明的总部分响应)。例如,响应可以表示h(上述)与补偿诸如多径的信道非理想性的滤波器响应之间的折衷。可以以从脉冲整形器104的LTx个抽头系数与输入滤波器109的LRx个抽头系数的卷积得到的LTx+LRx-1个抽头系数的形式传送和/或存储响应替代地,可以以少于LTx+LRx-1个抽头系数的形式传送和/或存储响应例如,其中LTx和LRx的一个或多个抽头由于低于确定的阈值而被忽略。序列估计电路210可以输出部分响应反馈信号205和209、对应于信号120的精细确定的相位误差的信号234、和信号132(其携带发送码元和/或发送比特的硬和/或软估计)。下面参照图3描述序列估计电路210的示例实施方式。
非线性建模电路236a可以向信号205应用非线性函数(接收信号在去往电路210的途中看到的非线性的模型),从而产生信号203。类似地,非线性建模电路236b可以向信号209应用非线性函数从而产生信号207。可以是例如三阶或五阶多项式。由于对使用更高阶多项式而导致的提高的精度可以与实施更高阶多项式的增加的复杂度相权衡。在FnlTx是通信系统100的主要非线性的情况下,仅对FnlTx建模的可以是足够的。在接收器性能的降低由于系统中的其它非线性(例如,接收器前端108的非线性)而高于阈值的情况下,模型可以考虑这样的其它非线性。
图3是描绘在配置用于低复杂度、高频谱效率通信的系统中使用的示例序列估计电路的框图。所示的是候选生成电路302、度量计算电路304、候选选择电路306、合成电路308、缓冲电路310、缓冲电路312、相位调节电路314和卷积电路316a和316b。参照图3所描述的序列估计处理仅是示例。序列估计处理的许多变型也是可能的。例如,虽然这里描述的实施方式每个码元存活者使用一个相位存活者,但另一实施方式可以具有将对每个码元存活者共同使用的Psu(例如,PSu<Su)个相位存活者。
对于在第n次(time)的每个码元候选,度量计算电路304可以操作来基于部分响应信号PR1、传送相位候选矢量的信号303a以及传送码元候选矢量的信号303b,生成度量矢量其中下划线表示矢量,下标n表示其是针对第n次的候选矢量,M是等于码元符号系统的尺寸的整数(例如,对于N-QAM,M等于N),Su是等于为序列估计处理的每次迭代保留的码元存活者矢量的数目的整数,以及P是等于相位符号系统的尺寸的整数。在示例实施方式中,相位符号系统的尺寸是3,并且这三个码元的每一个对应于以下中的一个:正相移、负相移或零相移,如下面参照图5A-5D所进一步描述的,并且如标题为“Fine Phase Estimation forHighly Spectrally Efficient Communications”的美国专利申请中,通过引用将其合并到这里,如上文所述。在示例实施方式中,每个相位候选矢量可以包括Q个相位值,并且每个码元候选矢量可以包括Q个码元。下面参照图4描述度量计算块的示例实施方式。
候选选择电路306可以操作来基于度量选择码元候选的Su个以及相位候选的Su个。所选择的相位候选称为相位存活者每个相位存活者的每个元素可以对应于信号232中的残留相位误差的估计,即,在通过相位调节电路206的粗相位误差校正之后信号中剩余的相位误差。通过信号307a传送最佳相位存活者为序列估计处理的下一次迭代保留该Su个相位存活者(此时,通过信号301b传送它们)。所选择的码元候选称为码元存活者每个码元存活者的每个元素可以包括信号232的码元的软判决估计和/或硬判决估计。经由信号307b将最佳码元存活者传送到码元缓冲器310。为序列估计处理的下一次迭代保留Su个码元存活者(此时,经由信号301a传送它们)。虽然所述的示例实施方式选择相同数目的(Su个)相位存活者和码元存活者,但这不是必须的。下面参照图5D和6A-6B描述示例候选选择电路306的操作。
候选生成电路302可以操作来从相位存活者和码元存活者生成相位候选和码元候选其中指标n-1表示它们是来自第n-1次的存活者,用于生成第n次的候选。在示例实施方式中,例如,相位和/或码元候选的生成可以如以下参照图5A和5B所描述的、和/或如在标题为“Joint Sequence Estimation of Symbol and Phase with HighTolerance of Nonlinearity”的美国专利申请中,通过引用将其合并在这里,如上所述。
码元缓冲电路310可以包括可操作来存储一个或多个码元存活者矢量的一个或多个码元存活者元素的多个存储元件。相位缓冲电路312可以包括可操作来存储一个或多个相位存活者矢量的多个存储元件。下面分别参照图8A和8B描述缓冲器310和312的示例实施方式。
合成电路308可以操作来将通过信号307a传送的最佳相位存活者与载波恢复电路208(图2)所生成的信号228进行合成,以生成由信号309传送的精细相位误差矢量其对应于信号222的精细估计的相位误差(图2)。在每个第n次,可以由覆写存储在相位缓冲器312中的精细相位误差矢量
相位调节电路314可以操作来将信号315a的相位调节由相位缓冲器312输出的信号234所确定的量,以生成信号205。
例如,执行卷积的电路316a可以包括FIR滤波器或IIR滤波器。电路316a可以操作来将信号132与响应进行卷积,从而产生部分响应信号315a。类似地,卷积电路316b可以操作来将信号317与响应进行卷积,从而产生部分响应信号209。如上所述,可将响应以一个或多个抽头系数的形式由序列估计电路210存储和/或传送到序列估计电路210,可以基于脉冲整形器104和/或输入滤波器109的抽头系数、以及/或者基于判决反馈均衡器(DFE)的适配算法,确定所述一个或多个抽头系数。响应因此可以表示在一方面尝试完美重建总部分响应信号(103,如脉冲整形器104和输入滤波器109所修改的)与另一方面补偿信号107的多径和/或其它非理想性之间的折衷。在此方面,系统100可以包括如以下一个或多个中描述的一个或多个DEF:标题为“Decision Feedback Equalizer for Highly-Spectrally-EfficientCommunications”的美国专利申请、标题为“Decision Feedback Equalizer withMultiple Cores for Highly-Spectrally-Efficient Communications”的美国专利申请、和标题为“Decision Feedback Equalizer Utilizing Symbol Error Rate BiasedAdaptation Function for Highly-Spectrally-Efficient Communications”的美国专利申请,通过引用将其各自合并到这里,如上所述。
因此,通过获取发送码元的第一估计(码元存活者的元素)、经由电路316a将发送码元的第一估计转换为部分响应域、并接着经由电路236a(图2)补偿通信系统100中的非线性,来生成信号203。类似地,通过将发送码元的第二估计(码元存活者的元素)经由电路316b转换为部分响应域以生成信号209、并接着向信号209b应用非线性模型以补偿信号路径中的非线性,来生成信号207。
图4是描绘在配置用于低复杂度、高频谱效率通信的系统中使用的示例度量计算电路的框图。所示的是相位调节电路402、卷积电路404和成本函数计算电路406。相位调节电路402可以将矢量PR1(通过信号232传送的)的一个或多个元素相移相位候选矢量的对应的一个或多个值。因此,相位调节电路402输出的信号403传送多个部分响应矢量其中每个矢量包括PR1的多个经相位调节的版本。
例如,执行卷积的电路404可以包括FIR滤波器或IIR滤波器。电路404可以操作来将码元候选矢量与进行卷积。电路404所输出的信号405因此传送矢量其中每个矢量是候选部分响应矢量。
成本函数电路406可以操作来生成指示在部分响应矢量的一个或多个与矢量的一个或多个之间的相似性的度量,以生成误差度量在示例实施方式中,误差度量可以是如以下等式1中所示而计算的欧几里得距离。
其中1≤i≤M×Su×P。
图5A-5D描绘了由配置用于低复杂度、高频谱效率通信的系统执行的示例序列估计处理的部分。在图5A-5D中,为了说明的目的,假设M=4(α,β,χ,δ的码元符号系统),Su=3(每次迭代选择三个码元存活者),Psu=Su(每次迭代选择两个相位存活者),P=3(加、减和零的相位符号系统)以及Q(矢量长度)是4。
参考图5A,该图的左侧示出了来自第n-1次的相位和码元存活者。从存活者生成码元候选和相位候选的第一步骤是复制存活者并位移内容,以释放在图5A的右侧称为502的结果矢量的每个中的元素。在所描述的示例实施方式中,存活者被复制M*P-1次,并被位移一个元素。
参考图5B,生成候选的下一步骤是在码元矢量的空元素中插入码元以及在相位矢量的空元素中插入相位值,从而产生用于第n次的码元候选和相位候选(在图5B中称为504)。在所描述的示例实施方式中,将M个可能的码元值中的每个插入到Su*P个码元候选中,并可以将P个相位值中的每个插入到M*Su个候选中。在所描绘的示例实施方式中,θ5是基于相位存活者计算的参考相位值。例如,θ5可以是相位存活者的最后两个或更多个元素的平均值(或加权平均值)(在所示示例中,最后两个元素的平均值将是(θ5+0)/2)。在所描绘的示例实施方式中,θ4=θ5-Δθ并且θ6=θ5+Δθ,其中Δθ基于:信号226中的相位噪声量、信号226中的相位噪声的斜率(导数)、信号226的信噪比(SNR)、和/或信道107的容量。类似地,在所示示例实施方式中,θ8是基于相位存活者计算的参考相位值,θ7=θ8-Δθ,θ9=θ8+Δθ,θ11是基于相位存活者计算的参考相位值,θ10=θ11-Δθ以及θ12=θ11+Δθ。
参考图5C,如上文参照图4所述的,通过卷积将码元候选变换为部分响应域,参考信号PR1是经相位调节的,并继而基于部分响应信号和计算度量
参照图5D,图5C中计算的度量被用于选择图5B中生成的候选中的哪些被选择为用于序列估计处理的下一次迭代的存活者。图5D描绘了在单个步骤中通过简单地选择对应于Su个最佳度量的Su个候选来选择存活者的示例实施方式。在所描绘的示例实施方式中,假设度量是最佳度量,是次佳度量,以及是第三佳度量。因此,码元候选被选择为最佳码元存活者,被选择为最佳相位存活者,码元候选被选择为次佳码元存活者,被选择为次佳相位存活者,码元候选被选择为第三佳码元存活者,被选择为第三佳相位存活者。图5D的存活者选择处理可能导致选择相同码元候选,这可能是不期望的。下面参照图6A和6B描述防止冗余码元存活者的存活者选择处理。
图6A和6B描绘了作为图5D中描绘的处理的替代的示例存活者选择处理。在图6A中,图5B中生成的候选和图5C中计算的度量被用于为每个码元候选选择最佳相位候选(选择的候选由参考标号602表示)。在图6B中,图6A中选择的候选中的最佳Su个被选择为用于序列估计处理的下一次迭代的存活者。在所描绘的示例实施方式中,假设度量是最佳度量,是次佳度量,以及是第三佳度量。因此,码元候选被选择为最佳码元存活者,被选择为最佳相位存活者,码元候选被选择为次佳码元存活者,被选择为次佳相位存活者,码元候选被选择为第三佳码元存活者,以及被选择为第三佳相位存活者。
虽然参照图5A-6B描述的实施方式每个码元存活者使用一个相位存活者,但其它示例实施方式可以使用共同用于每个码元存活者的PSu(例如,Psu<Su)个相位存活者。在这样的实施方式中,可以将相位存活者中的每个复制P次以生成相位后继者(successor),并且接着复制M*Su次以与对应的码元后继者关联。在这种实施方式中,码元候选的数目将是M*Su*PSu*P。
图7是示出序列估计处理的初始化的图。在图7中,为了例示,再次假设M=4(α,β,χ,δ的码元符号系统),Su=3(每次迭代选择三个码元存活者),Psu=Su(每次迭代选择三个相位存活者),P=3(加、减和零的相位符号系统),并且Q(矢量长度)为4。图7的最左侧示出了在接收了前导序列后的码元存活者702。因为前导是确定的序列,所以所有码元存活者被强制为相同的值。从存活者702生成候选者704,并基于候选者704计算度量706。在所示的示例实施方式中,因为存活者全部相同,所以仅存在四个唯一码元候选。用于该四个候选的度量分别是D1、D2、D3和D4。因此,如果选择对应于最佳的三个度量的三个候选,则对应于D1的三个候选将全部被选择,并且用于下一次迭代的存活者将再次全部相同。因此,三个最佳的、非冗余的码元候选被选择(如粗线所表示的)。因此,选择具有度量值D1的候选中的一个,选择具有度量值D2的候选中的一个,并且选择具有度量值D3的候选中的一个,使得三个非冗余存活者被用于下一次迭代。
图8A描绘了图3中所示的相位缓冲器的示例实施方式。在所描绘的示例实施方式中,相位缓冲器312的深度是Q,并且存储在元素q的相位值被表示为Zq,q从1至Q。在所描绘的示例实施方式中,存储在元素q3的值被输出为信号234。对于序列估计处理的每次迭代,存储的Q个值的相位缓冲器312的Q个元素可以被的Q个值覆写。
图8B描绘了图3中所示的码元缓冲器的示例实施方式。在所描绘的示例实施方式中,存储在以指标q1开始的一个或多个元素中的值(例如,存储在元素q1至q1+L中的值)被输出为信号317,并且存储在以指标q2开始的一个或多个元素中的值(例如,存储在元素q2至q2+L中的值)被输出为信号132。因为作为信号317输出的值从码元缓冲器的更低指标的元素开始,所以在接收信号样本与输出信号317的对应值之间的延时比在接收信号样本与输出信号132的对应值之间的延时更短。然而,因为作为信号132输出的值从更高指标的元素开始,所以它(们)很可能更不容易出错。参照图8C和8D进一步说明这些构思。在示例实施方式中,q2等于q3。
图8C描绘了序列估计处理的多次迭代上的示例码元缓冲器的内容。在图8C中所示的示例实施方式中,码元缓冲器310包括4个元素,其中信号317对应于第一个元素的内容(为了说明的简化,在图8C和8D中,假设每次迭代上仅一个元素被输出为信号317),并且信号132对应于第四个元素(为了说明的简化,在图8C和8D中,假设每次迭代上仅一个元素被输出为信号132)。在所描绘的示例实施方式中,在序列估计处理的每次迭代期间,通过复制来自前次迭代的存活者,将这些值位移一个元素、以及将新值附加到清空的元素中,来生成候选。因此,理想地,每个存活者与之前的存活者的区别将仅在于最低指标的元素(对应于最近的码元)。在最近存活者的其它元素与之前的存活者的对应元素不同的情况下,这样的区别表示这些元素中(在最近的存活者中或在之前的存活者中)存在误差。由于部分响应信号的卷积性质,缓冲器中更高指标的码元更可靠。因此,码元值在移向图8中的右侧时将倾向于收敛。
所示的是在第n-3、n-2、n-1和n次的示例码元缓冲器310的内容。在第n-3次,具有值α,β,χ,δ的码元存活者存储在码元缓冲器310中。因此,如图8D中所示,在第n-3次,信号317的值是‘α’,并且信号132的值是‘δ’。在第n-2次,具有值δ,β,β,χ的新码元存活者存储在码元缓冲器310中。因此,如图8D中所示,在第n-2次,信号317的值是‘δ’,并且信号132的值是‘χ’。在第n-1次,具有值χ,δ,β,β的新码元存活者存储在码元缓冲器310中。因此,如图8D中所示,在第n-1次,信号317的值是‘χ’,并且信号132的值是‘β’。在第n次,具有值β,χ,δ,β的新码元存活者存储在码元缓冲器310中。因此,如图8D中所示,在第n次,信号317的值是‘β’,并且信号132的值是‘β’。因此,在图8C中所描绘的示例场景中,在第n-3次,码元缓冲器310的第一元素中的值是错误的,并且码元在其到达缓冲器310的第二元素(q=2)之前都不收敛。即,在第n-2次,该码元从α向β变化,然后在第n-1次和第n次保持β。这示出了从码元缓冲器310的第一元素获取信号317以及从码元缓冲器312的第四元素获取信号312的结果。即,信号317比信号132具有更小的延时,但比信号132更容易出错。
在图8D中,针对第n-3次至第n+3次示出了信号的值。虚线示出了信号317与信号132之间的延时。
图9是示出多模接收器的动态配置的流程图。在块902中,接收器上电。在块904中,接收器确定进入第一操作模式。可以例如基于用户和/或该接收器所处于的设备的应用层指示需要根据第一操作模式进行通信而进行该确定。可以附加地或替代地基于例如第一模式是接收器可以用于侦听其它在范围内(in-range)的设备的发送器的第二操作模式的可用性/支持性(例如通过广播信标)的缺省模式来进行该确定。可以附加地或替代地基于例如接收器进行的测量(例如,特定频带上的信号强度)和/或来自其它传感器或接收器(例如,Wi-Fi、蓝牙和/或GPS接收器)的输入来进行该确定。
在块906中,接收器可以配置为第一模式,并开始侦听通信。在示例实施方式中,接收器所处于的设备的发送器可以发送(例如广播)所确定的该接收器的配置。在块908中,可以由操作在第一模式中的接收器接收和处理信号,以恢复包含在所接收的信号中的信息。处理可以包括例如经由近零ISI(例如基于RRC的)滤波器的脉冲整形滤波、均衡、根据码元星座图(例如,QAM星座图)的码元分割、和FEC解码。
在块910中,接收器确定进入第二操作模式。该确定可以基于例如参考块904所描述的考虑的一个或多个。附加地或替代地,该确定可以基于块910中恢复的信息(例如,指示向第二模式的转变的控制消息)。在块912中,接收器可以配置为第二模式,并开始侦听通信。在示例实施方式中,接收器所处于的设备的发送器可以发送(例如广播)所确定的该接收器的配置。在块914中,可以由操作在第二模式中的接收器接收和处理信号,以恢复包含在所接收的信号中的信息。处理可以包括例如经由滤波器(该滤波器与从其接收通信的发送器的脉冲整形滤波器结合地获得期望的总部分响应)的脉冲整形滤波、均衡、序列估计和FEC解码。在块916中,接收器关电。
图10在配置为表2的模式1和配置为表2的模式2的接收器的码元错误率(SER)与SNR之间进行比较。为了图10的目的,总频谱效率已被设定为10比特/秒/Hz。线1002表示模式1(在Fb1的QAM1024)的理想性能,并且线1004表示模式2(PR10,其使用在2×Fb1的QAM32星座图)的理想性能,其没有相位噪声和非线性失真。线1006表示模式1的性能,并且线1008表示模式2的性能,其在100KHz的频率偏移具有-90dBc/Hz的SSB相位噪声。相位噪声模型具有-20dB/dec的固定斜率。在组合的相位噪声和非线性失真下,线1010表示模式1的性能,并且线1012表示模式2的性能。非线性失真模型是无记忆的饱和3阶,其中被选择为30°,以创建多项式鞍点,其是削波(饱和)点:
并且,根据期望的失真水平(回退)设定r。
在理想条件中,所示的模式2在3x10-2的SER周围的性能比所示的模式1好3.5dB,其是具有约0.95的FEC率的10-6的BER的实际参考。所示的模式2和模式1都使用5%的码元导频开销(POH)。所示的模式2使用HPSE估计相位噪声,而所示的模式1使用针对载波恢复环的完美判决(为了所有其它解调目的,其使用码元导频和尝试性(tentative)判决)。相位噪声使模式1恶化1dB,而使模式2仅恶化0.4dB。所示的模式2的发送功率比所示的模式1高4.5dB。然而,组合的相位噪声和非线性失真使所示的模式1恶化2.2dB,而其对所示的模式2仅影响0.6dB。所示的模式2的总体SER改进为约5.3dB,但所示的模式2由于部分响应(记忆)的性质而具有误差相关性,因此,所示的模式2的FEC增益比所示的模式1的FEC增益低1dB。因此,实际的灵敏度优势(benefit)限于4.3dB。所示的模式2相对于所示的模式1的Tx功率优势为4.5dB,因此,通过使用所示的模式2代替所示的模式1对系统增益的总贡献是8.8dB。然而,由于频谱遮罩限制,Tx功率必须低于P1dB-4.5dB,从而频谱再增长(re-growth)将不超过可应用的频谱遮罩,因此所示的模式2相对于所示的模式1的Tx功率的实际优势为3dB,并且使用模式2代替所示的模式1的总体系统增益优势为7.3dB。通过利用波峰因子减小(CFR)和预失真方法,所示的模式2的Tx功率可以增大,而不违反可应用的频谱遮罩,并且由于使用所示的模式2代替所示的模式1而得到的系统增益优势可以接近8.8dB。
在示例实施方式中,接收器(例如,图1C的接收器)可以配置为在至少两个模式中操作。当在第一模式中时,接收器的输入滤波器(例如109)可以配置为近零正ISI滤波器(例如RRC滤波器)。当在第二模式中时,输入滤波器可以配置用于接收码元间相关的(ISC)信号。当接收器被配置在第二模式中时,可以基于由输入滤波器和接收器要从其接收通信的发送器(例如图1B的发送器)的脉冲整形滤波器(例如ISC生成电路158中实施的滤波器)的组合产生的期望的总部分响应,配置输入滤波器。对于给定的吞吐量和频谱效率,接收器的第二模式可以获得比第一模式更低的码元错误率。可以基于来自接收器的反馈或请求和/或基于测量的性能指示,控制将接收器配置为哪个模式。
接收器可以包括增益电路(例如,实施在前端108中)。当接收器被配置为第一模式时,增益电路可以被配置为具有第一功率回退量。当接收器配置为第二模式时,增益电路可以被配置为具有第二功率回退量。当接收器被配置为第二模式时,可以基于接收器的噪声指数动态地配置增益电路。增益电路的动态配置可以动态地改变接收器的线性,以优化接收器中的噪声指数。
接收器可以包括码元检测电路(例如178),其中,当接收器配置为第一模式时,码元检测电路可以执行码元分割,以确定各个不相关的(或假定为不相关的)码元的值。当接收器配置为第二模式时,码元检测电路可以执行序列估计,以确定相关的(或假定为相关的)码元的序列的值。
接收器可以包括前向纠错(FEC)解码电路(例如176)。当接收器配置为第一模式时,FEC解码电路可以配置用于第一码率和/或第一FEC解码算法。当接收器配置为第二模式时,FEC解码电路可以配置用于第二码率和/或第二FEC解码算法。当接收器配置为第二模式时,FEC解码电路可以配置用于具有码结构的迭代FEC解码算法,该码结构基于接收器所生成的检测信号中的误差的统计特性动态地变化。
在示例实施方式中,接收器可以包括码元检测电路(例如178),其可配置为在至少两个配置中操作,其中,码元检测电路的第一配置使用码元分割用于码元检测,并且码元检测电路的第二配置使用序列估计算法用于码元检测。码元检测电路的第一配置和码元检测电路的第二配置可以各自使用N-QAM(例如,32-QAM)码元星座图,用于检测接收信号的码元。可以例如基于接收器的运行时期间的性能指示,动态地配置码元检测电路和输入滤波电路的每个。码元检测电路和输入滤波电路可以联合地配置,以使得当输入滤波电路在第一配置中时码元检测电路在第一配置中,以及当输入滤波电路在第二配置中时码元检测电路在第二配置中。
在示例实施方式中,接收器可以包括输入滤波电路(例如109),其可配置为在至少两个配置中操作,其中输入滤波电路的第一配置使用第一组滤波器抽头(即,第一数目的抽头和/或第一组抽头系数),并且输入滤波电路的第二配置使用第二组滤波器抽头(即,第二数目的抽头和/或第二组抽头系数)。第一组滤波器抽头可以基于根升余弦(RRC)响应。第二组滤波器抽头可以基于部分响应。
在示例实施方式中,接收器可以包括增益电路(例如,前端108的部分),其可配置为在至少两个配置中操作,其中,增益电路的第一配置对应于用于增益电路的第一功率回退设置,并且增益电路的第二配置对应于用于增益电路的第二功率回退设置。可以基于信噪比动态地改变增益电路的非线性。可以动态地改变增益电路的非线性,以优化接收器中的噪声指数。
在示例实施方式中,接收器可以包括非线性建模电路。可以响应于增益电路的非线性的动态变化动态地配置非线性建模电路。
可以以硬件、软件、或硬件和软件的组合实现本方法和/或系统。本方法和/或系统可以以集中的方式实现在至少一个计算系统中,或者以分布方式实现,在分布方式中,跨若干互连的计算系统而散布不同的元件。适配用于执行这里描述的方法的任何种类的计算系统或其它装置都是合适的。硬件和软件的典型组合可以是具有程序或其它代码的通用计算系统,当被加载和执行时,该程序或代码控制计算系统,使得计算系统执行这里描述的方法。另一典型实施方式可以包括专用集成电路或芯片。
本方法和/或系统还可以嵌入在计算机程序产品中,该计算机程序产品包括使得能够实施这里描述的方法的所有特征,并且当被加载在计算机系统中时能够执行这些方法。本上下文中的计算机程序指一组指令的以任何语言、代码或表示的任何表达,该组指令意在使得具有信息处理能力的系统直接或在以下之一或两者之后执行特定功能:a)转换为另一语言、代码或表示;b)以不同的材料形式再现。
虽然已经参照特定实施方式描述了本方法和/或系统,但本领域的技术人员将理解,在不偏离本方法和/或系统的范围的情况下可以进行各种改变以及用等同物替换。此外,可以进行许多修改,以将特定情况或材料适配于本公开的教导,而不偏离其范围。因此,意在本方法和/或系统不限于所公开的特定实施方式,而是本方法和/或系统将包括落于所附权利要求的范围内的所有实施方式。
Claims (20)
1.一种系统,包括:
接收器,能够配置为在至少两个模式中操作,其中:
当所述接收器配置为在所述模式中的第一模式中时,所述接收器的输入滤波器配置为近零正ISI滤波器;以及
当所述接收器配置为在所述模式中的第二模式中时,所述接收器的输入滤波器配置用于码元间相关的(ISC)信号的接收。
2.如权利要求1所述的系统,其中:
当所述接收器配置为在所述模式中的第二模式中时,基于期望的总部分响应配置所述输入滤波器,所述期望的总部分响应由所述输入滤波器和所述接收器要从其接收通信的发送器的脉冲整形滤波器的组合所产生。
3.如权利要求1所述的系统,包括增益电路,其中:
当所述接收器配置为在所述模式中的第一模式中时,所述增益电路配置为具有第一功率回退量;并且
当所述接收器配置为在所述模式中的第二模式中时,所述增益电路配置为具有第二功率回退量。
4.如权利要求1所述的系统,包括增益电路,其中:
当所述接收器配置为在所述模式中的第二模式中时,基于所述接收器的噪声指数动态地配置所述增益电路。
5.如权利要求4所述的系统,其中:
所述增益电路的动态配置动态地改变所述接收器的线性,以优化所述接收器中的噪声指数。
6.如权利要求1所述的系统,包括码元检测电路,其中:
在所述接收器配置为在所述模式中的第一模式中时,所述码元检测电路执行码元分割,以确定各个不相关的码元的值;以及
在所述接收器配置为在所述模式中的第二模式中时,所述码元检测电路执行序列估计,以确定相关的码元的序列的值。
7.如权利要求1所述的系统,包括前向纠错(FEC)解码电路,其中:
当所述接收器配置为在所述模式中的第一模式中时,所述FEC解码电路配置用于第一码率和/或第一FEC解码算法;以及
当所述接收器配置为在所述模式中的第二模式中时,所述FEC解码电路配置用于第二码率和/或第二FEC解码算法。
8.如权利要求7所述的系统,其中:
当所述接收器配置为在所述模式中的第二模式中时,所述FEC解码电路配置用于具有码结构的迭代FEC解码算法,所述码结构基于所述接收器所生成的检测信号中的误差的统计特性动态地变化。
9.如权利要求1所述的系统,其中:
对于给定的吞吐量和频谱效率,所述模式中的第二模式获得比所述模式中的第一模式更低的码元错误率。
10.如权利要求1所述的系统,其中基于来自接收器的反馈或请求,控制所述接收器配置为在所述模式中的哪个模式中。
11.如权利要求1所述的系统,其中基于测量的性能指示,控制所述接收器配置为在所述模式中的哪个模式中。
12.一种接收器,包括:
码元检测电路,其能够配置为在至少两个配置中操作,其中所述码元检测电路的第一配置使用码元分割用于码元检测,并且所述码元检测电路的第二配置使用序列估计算法用于码元检测;以及
输入滤波电路,其能够配置为在至少两个配置中操作,其中所述输入滤波电路的第一配置使用第一组滤波器抽头,并且所述输入滤波电路的第二配置使用第二组滤波器抽头。
13.如权利要求12所述的系统,其中:
所述第一组滤波器抽头基于根升余弦(RRC)滤波器;并且
所述第二组滤波器抽头基于部分响应滤波器。
14.如权利要求13所述的系统,其中:
所述码元检测电路的第一配置和所述码元检测电路的第二配置各自使用N-QAM码元星座图,用于检测接收信号的码元。
15.如权利要求12所述的系统,包括增益电路,所述增益电路能够配置为在至少两个配置中操作,其中所述增益电路的第一配置对应于用于所述增益电路的第一功率回退设置,并且所述增益电路的第二配置对应于用于所述增益电路的第二功率回退设置。
16.如权利要求12所述的系统,包括增益电路,所述增益电路的非线性基于信噪比动态地变化。
17.如权利要求16所述的系统,其中:
动态地改变所述增益电路的非线性,以优化所述接收器中的噪声指数。
18.如权利要求16所述的系统,包括非线性建模电路,其中:
当所述序列检测电路在所述第二配置中时,响应于所述增益电路的非线性的动态变化动态地配置所述非线性建模电路。
19.如权利要求12所述的接收器,其中在所述接收器的运行时期间,基于性能指示,在第一配置和第二配置之间动态地配置所述码元检测电路和所述输入滤波电路中的每个。
20.如权利要求1所述的系统,其中所述码元检测电路和所述输入滤波电路联合地配置,以使得当所述输入滤波电路在所述第一配置中时所述码元检测电路在所述第一配置中,并且当所述输入滤波电路在所述第二配置中时所述码元检测电路在所述第二配置中。
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261662085P | 2012-06-20 | 2012-06-20 | |
US61/662,085 | 2012-06-20 | ||
US201261726099P | 2012-11-14 | 2012-11-14 | |
US61/726,099 | 2012-11-14 | ||
US201261729774P | 2012-11-26 | 2012-11-26 | |
US61/729,774 | 2012-11-26 | ||
US201261747132P | 2012-12-28 | 2012-12-28 | |
US61/747,132 | 2012-12-28 | ||
PCT/IB2013/001930 WO2013190390A2 (en) | 2012-06-20 | 2013-06-14 | Multi-mode receiver for highly-spectrally-efficient communications |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104541454A true CN104541454A (zh) | 2015-04-22 |
Family
ID=49034706
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201380043457.4A Expired - Fee Related CN104584500B (zh) | 2012-06-20 | 2013-06-14 | 用于高度频谱有效的通信的多模发射器 |
CN201380041271.5A Pending CN104521141A (zh) | 2012-06-20 | 2013-06-14 | 高频谱效率接收机 |
CN201380042435.6A Pending CN104541454A (zh) | 2012-06-20 | 2013-06-14 | 用于高频谱效率通信的多模接收器 |
CN201310364164.8A Pending CN103516647A (zh) | 2012-06-20 | 2013-06-20 | 低复杂度、高频谱效率的通信 |
CN201380041406.8A Expired - Fee Related CN104521203B (zh) | 2012-06-20 | 2013-06-20 | 用于高频谱效率的通信的自适应非线性模型 |
CN201380042032.1A Pending CN104521204A (zh) | 2012-06-20 | 2013-06-20 | 高度容忍非线性地联合顺序估计码元和相位 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201380043457.4A Expired - Fee Related CN104584500B (zh) | 2012-06-20 | 2013-06-14 | 用于高度频谱有效的通信的多模发射器 |
CN201380041271.5A Pending CN104521141A (zh) | 2012-06-20 | 2013-06-14 | 高频谱效率接收机 |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310364164.8A Pending CN103516647A (zh) | 2012-06-20 | 2013-06-20 | 低复杂度、高频谱效率的通信 |
CN201380041406.8A Expired - Fee Related CN104521203B (zh) | 2012-06-20 | 2013-06-20 | 用于高频谱效率的通信的自适应非线性模型 |
CN201380042032.1A Pending CN104521204A (zh) | 2012-06-20 | 2013-06-20 | 高度容忍非线性地联合顺序估计码元和相位 |
Country Status (5)
Country | Link |
---|---|
US (51) | US8665992B1 (zh) |
EP (6) | EP2873156A4 (zh) |
KR (1) | KR20150046003A (zh) |
CN (6) | CN104584500B (zh) |
WO (6) | WO2014016682A2 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017059784A1 (en) * | 2015-10-06 | 2017-04-13 | Huawei Technologies Co., Ltd. | Apparatus and Method for Unified Mitigation of Correlative Additive and Multiplicative Noise |
CN108551431A (zh) * | 2018-04-20 | 2018-09-18 | 天津光电丰泰科技有限公司 | 基于因子图和线性滤波器的级联均衡模型及均衡算法 |
Families Citing this family (123)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8913901B2 (en) * | 2012-02-20 | 2014-12-16 | Tyco Electronics Subsea Communications Llc | System and method for blind equalization and carrier phase recovery in a quadrature amplitude modulated system |
US8737458B2 (en) | 2012-06-20 | 2014-05-27 | MagnaCom Ltd. | Highly-spectrally-efficient reception using orthogonal frequency division multiplexing |
US8982984B2 (en) | 2012-06-20 | 2015-03-17 | MagnaCom Ltd. | Dynamic filter adjustment for highly-spectrally-efficient communications |
US8665992B1 (en) | 2012-06-20 | 2014-03-04 | MagnaCom Ltd. | Pilot symbol generation for highly-spectrally-efficient communications |
US8781008B2 (en) | 2012-06-20 | 2014-07-15 | MagnaCom Ltd. | Highly-spectrally-efficient transmission using orthogonal frequency division multiplexing |
US9647799B2 (en) * | 2012-10-16 | 2017-05-09 | Inphi Corporation | FEC coding identification |
US20140122977A1 (en) * | 2012-11-01 | 2014-05-01 | Peter Alexander CARIDES | Variable control for a forward error correction capability |
US9088400B2 (en) | 2012-11-14 | 2015-07-21 | MagnaCom Ltd. | Hypotheses generation based on multidimensional slicing |
US8811548B2 (en) | 2012-11-14 | 2014-08-19 | MagnaCom, Ltd. | Hypotheses generation based on multidimensional slicing |
US9077316B2 (en) * | 2012-12-17 | 2015-07-07 | Oracle International Corporation | Transmitter finite impulse response characterization |
JP6028572B2 (ja) * | 2013-01-09 | 2016-11-16 | 富士通株式会社 | 受信装置 |
GB2503073B (en) * | 2013-03-27 | 2014-04-23 | Imagination Tech Ltd | Efficient tracking of decision-feedback equaliser coefficients |
EP2804334A1 (en) * | 2013-05-13 | 2014-11-19 | Xieon Networks S.à.r.l. | Method, device and communication system for reducing optical transmission impairments |
GB2514174B (en) * | 2013-05-17 | 2015-12-02 | Cambium Networks Ltd | Improvements to adaptive modulation |
US9344219B2 (en) * | 2013-06-25 | 2016-05-17 | Intel Corporation | Increasing communication safety by preventing false packet acceptance in high-speed links |
US9716602B2 (en) | 2013-07-08 | 2017-07-25 | Hughes Network Systems, Llc | System and method for iterative compensation for linear and nonlinear interference in system employing FTN symbol transmission rates |
US9510218B2 (en) * | 2013-10-02 | 2016-11-29 | Qualcomm Incorporated | Devices and methods for facilitating closed-loop transmission diversity in wireless communications systems |
US9203450B2 (en) | 2013-10-08 | 2015-12-01 | Hughes Network Systems, Llc | System and method for pre distortion and iterative compensation for nonlinear distortion in system employing FTN symbol transmission rates |
JP2015080089A (ja) * | 2013-10-17 | 2015-04-23 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | 送信装置、通信システム、回路装置、通信方法およびプログラム(直流インバランスを補償するための強調された信号点配置操作) |
US9189333B2 (en) * | 2013-10-17 | 2015-11-17 | Seagate Technology Llc | Generating soft decoding information for flash memory error correction using hard decision patterns |
US9118519B2 (en) | 2013-11-01 | 2015-08-25 | MagnaCom Ltd. | Reception of inter-symbol-correlated signals using symbol-by-symbol soft-output demodulator |
US8804879B1 (en) | 2013-11-13 | 2014-08-12 | MagnaCom Ltd. | Hypotheses generation based on multidimensional slicing |
FR3014621B1 (fr) * | 2013-12-11 | 2016-01-01 | Thales Sa | Methode iterative de synthese de filtres numeriques de mise en forme d'un signal |
US9130637B2 (en) | 2014-01-21 | 2015-09-08 | MagnaCom Ltd. | Communication methods and systems for nonlinear multi-user environments |
GB2524944A (en) * | 2014-02-24 | 2015-10-14 | Neul Ltd | Low complexity GMSK receiver for fast varying channels and narrow bandwidth channels |
US9100339B1 (en) * | 2014-03-27 | 2015-08-04 | Cable Television Laboratories, Inc. | Network failure detection and prediction using signal measurements |
CN104980379B (zh) * | 2014-04-11 | 2018-06-08 | 富士通株式会社 | 非线性失真的估计装置、方法以及接收机 |
US10606676B2 (en) | 2014-04-23 | 2020-03-31 | Comcast Cable Communications. LLC | Data interpretation with modulation error ratio analysis |
US9496900B2 (en) | 2014-05-06 | 2016-11-15 | MagnaCom Ltd. | Signal acquisition in a multimode environment |
KR20150127480A (ko) * | 2014-05-07 | 2015-11-17 | 한국전자통신연구원 | 부분 ml을 근거로 한 신호 검출 시스템 및 그 방법 |
US9325450B2 (en) * | 2014-05-21 | 2016-04-26 | Stmicroelectronics S.R.L. | Method and system for processing digital data, corresponding apparatus and computer program product |
US8891701B1 (en) | 2014-06-06 | 2014-11-18 | MagnaCom Ltd. | Nonlinearity compensation for reception of OFDM signals |
US9246717B2 (en) * | 2014-06-30 | 2016-01-26 | Hughes Network Systems, Llc | Optimized receivers for faster than nyquist (FTN) transmission rates in high spectral efficiency satellite systems |
US9324364B2 (en) | 2014-07-17 | 2016-04-26 | International Business Machines Corporation | Constraining FIR filter taps in an adaptive architecture |
US9236084B1 (en) | 2014-07-17 | 2016-01-12 | International Business Machines Corporation | Dynamic gain control for use with adaptive equalizers |
US9467315B2 (en) * | 2014-07-22 | 2016-10-11 | Inphi Corporation | Circuit and method for performing adaptation on all receiver branches |
EP2978146A1 (en) * | 2014-07-25 | 2016-01-27 | Xieon Networks S.à r.l. | Modulation codée résistante aux glissements de cycle pour des communications par fibres optiques |
US9178740B1 (en) * | 2014-08-26 | 2015-11-03 | Ibiquity Digital Corporation | Peak-to-average power ratio reduction for QAM modulation with HD radio signals |
US9246523B1 (en) | 2014-08-27 | 2016-01-26 | MagnaCom Ltd. | Transmitter signal shaping |
EP3021511B1 (en) * | 2014-11-17 | 2020-08-19 | Alcatel Lucent | Method and device for controlling a vector processor |
US9900196B2 (en) | 2014-11-26 | 2018-02-20 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Switching diversity in scalable radio frequency communication system |
US9860760B2 (en) * | 2014-11-26 | 2018-01-02 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Scalable radio frequency communication system |
US9276619B1 (en) | 2014-12-08 | 2016-03-01 | MagnaCom Ltd. | Dynamic configuration of modulation and demodulation |
US9191247B1 (en) | 2014-12-09 | 2015-11-17 | MagnaCom Ltd. | High-performance sequence estimation system and method of operation |
WO2016101255A1 (zh) * | 2014-12-26 | 2016-06-30 | 华为技术有限公司 | 一种信号补偿方法和设备 |
US10333561B2 (en) * | 2015-01-26 | 2019-06-25 | Northrop Grumman Systems Corporation | Iterative equalization using non-linear models in a soft-input soft-output trellis |
US9445237B1 (en) | 2015-03-11 | 2016-09-13 | Qualcomm Incorporated | First arrival path based multipath mitigation for angle of arrival estimation |
US9628189B2 (en) | 2015-03-20 | 2017-04-18 | Ciena Corporation | System optimization of pulse shaping filters in fiber optic networks |
JP6668454B2 (ja) * | 2015-04-29 | 2020-03-18 | インディアン インスティテュート オブ テクノロジー ハイデラバードIndian Institute Of Technology Hyderabad | データ通信のための波形を設計する方法及びシステム |
JP2018522443A (ja) * | 2015-05-11 | 2018-08-09 | テレフオンアクチーボラゲット エルエム エリクソン(パブル) | 省エネルギー送信機の電力制御 |
US9667458B1 (en) | 2015-06-03 | 2017-05-30 | Qualcomm Incorporated | Feed-forward phase tracking |
US10367605B2 (en) * | 2015-07-02 | 2019-07-30 | Intel Corporation | High speed interconnect symbol stream forward error-correction |
WO2017029788A1 (ja) * | 2015-08-18 | 2017-02-23 | 日本電気株式会社 | 監視装置、無線装置、通信システム、その方法及び非一時的なコンピュータ可読媒体 |
US9571314B1 (en) * | 2015-09-23 | 2017-02-14 | Qualcomm Incorporated | Systems and methods for joint demodulation and demapping |
US9843464B2 (en) * | 2015-10-14 | 2017-12-12 | Maxlinear Asia Singapore Private Limited | Wireless backhaul |
US9559877B1 (en) | 2015-10-23 | 2017-01-31 | Inphi Corporation | System and method for adjusting clock phases in a time-interleaved receiver |
KR102435821B1 (ko) * | 2015-10-29 | 2022-08-25 | 삼성전자주식회사 | 통신 시스템에서 데이터를 송수신하는 장치 및 방법 |
US10044547B2 (en) * | 2015-10-30 | 2018-08-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | Digital code recovery with preamble |
CN105610565B (zh) * | 2015-12-21 | 2019-06-21 | 武汉邮电科学研究院 | 基于模式复用光通信系统的自相关零差探测装置及方法 |
TWI593257B (zh) * | 2016-01-28 | 2017-07-21 | 晨星半導體股份有限公司 | 處理序列估測的裝置及方法 |
WO2017143509A1 (en) * | 2016-02-23 | 2017-08-31 | Huawei Technologies Co., Ltd. | Ffe-aided cdr to calibrate phase offset and enhance gain in a baud rate sampling phase detector |
US9768913B1 (en) * | 2016-03-09 | 2017-09-19 | Samsung Electronics Co., Ltd | System and method for multiple input multiple output (MIMO) detection with soft slicer |
EP3223446A1 (en) * | 2016-03-22 | 2017-09-27 | Xieon Networks S.à r.l. | A method for protecting a link in an optical network |
TWI612787B (zh) * | 2016-05-02 | 2018-01-21 | 瑞昱半導體股份有限公司 | 最大可能性偵測器 |
US10075192B2 (en) | 2016-05-09 | 2018-09-11 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Systems and methods for data processing with folded parity sector |
US10716084B2 (en) * | 2016-05-18 | 2020-07-14 | Qualcomm Incorporated | Narrowband positioning signal design and procedures |
KR101785210B1 (ko) * | 2016-06-10 | 2017-10-13 | 한국과학기술원 | Qam-fbmc 시스템에서 간섭을 제어하는 방법 및 장치 |
WO2018031938A1 (en) * | 2016-08-12 | 2018-02-15 | Cohere Technologies | Multi-user multiplexing of orthogonal time frequency space signals |
EP3496327B1 (en) | 2016-08-23 | 2020-10-07 | Huawei Technologies Co., Ltd. | Method for acquiring phase discrimination signal in clock recovery circuit and phase discriminator |
CN106656880B (zh) * | 2016-09-23 | 2019-09-06 | 北京大学(天津滨海)新一代信息技术研究院 | 一种可线性调整均衡强度的rc负反馈均衡器电路 |
RU2713652C1 (ru) | 2016-09-30 | 2020-02-06 | ЭлДжи ЭЛЕКТРОНИКС ИНК. | Способ приема управляющей информации для опорного сигнала, связанного с оценкой фазового шума, и пользовательское оборудование для этого |
US11038604B2 (en) * | 2016-10-19 | 2021-06-15 | Nec Corporation | Communication device, communication system, and communication method |
KR102211831B1 (ko) * | 2017-01-13 | 2021-02-02 | 후아웨이 테크놀러지 컴퍼니 리미티드 | 신호 디코더를 위한 최적화된 아키텍처 |
US10382138B2 (en) * | 2017-03-06 | 2019-08-13 | Nec Corporation | Constellation optimization based on generalized mutual information over a nonlinear optical channel |
CN109150444B (zh) | 2017-06-16 | 2022-01-11 | 华为技术有限公司 | 资源单元的设置、传输方法及装置 |
US10341161B2 (en) | 2017-07-10 | 2019-07-02 | Tm Ip Holdings, Llc | Multi-dimensional signal encoding |
CN107896138B (zh) * | 2017-11-03 | 2020-12-18 | 锐捷网络股份有限公司 | 一种译码方法、装置及设备 |
US10511357B2 (en) | 2017-12-12 | 2019-12-17 | At&T Intellectual Property I, L.P. | Detection scheme utilizing transmitter-supplied non-linearity data in the presence of transmitter non-linearity |
US10707907B2 (en) * | 2017-12-18 | 2020-07-07 | Qualcomm Incorporated | System and method for nonlinearity estimation with reference signals |
US11205131B2 (en) | 2018-03-16 | 2021-12-21 | International Business Machines Corporation | Sequence detection |
EP3776366A4 (en) | 2018-04-13 | 2021-11-17 | Telefonaktiebolaget LM Ericsson (publ) | ADAPTIVE SIGNAL PROCESSING METHOD AND APPARATUS |
US10243762B1 (en) | 2018-04-16 | 2019-03-26 | Macom Connectivity Solutions, Llc | Analog delay based fractionally spaced n-tap feed-forward equalizer for wireline and optical transmitters |
US10715276B2 (en) * | 2018-05-26 | 2020-07-14 | Ntwine, Llc | Bandwidth constrained communication systems with optimized low-density parity-check codes |
US10594539B2 (en) | 2018-06-05 | 2020-03-17 | Tm Ip Holdings, Llc | Transpositional modulation and demodulation |
CN108762700B (zh) * | 2018-06-07 | 2020-12-08 | 华南理工大学 | 一种输出设备的光谱特征化校正方法及装置 |
KR102497232B1 (ko) | 2018-06-18 | 2023-02-07 | 삼성전자주식회사 | 신호 수신 회로 및 그것의 동작 방법 |
CN112567652B (zh) * | 2018-08-22 | 2023-10-24 | 三菱电机株式会社 | 光接收机、光信号接收方法以及数据再现装置 |
US10404496B1 (en) * | 2018-09-07 | 2019-09-03 | MACOM Technology Solutions Holding, Inc. | Mitigating interaction between adaptive equalization and timing recovery in multi-rate receiver |
CN110891039B (zh) * | 2018-09-07 | 2021-12-03 | 煤炭科学技术研究院有限公司 | 一种基于lm神经网络的煤矿监控系统安全预警方法 |
US10560289B1 (en) | 2018-09-13 | 2020-02-11 | Viasat, Inc. | Adaptive equalizer system |
US11165443B2 (en) * | 2018-10-01 | 2021-11-02 | Microchip Technology Incorporated | Burst error tolerant decoder and related systems, methods, and devices |
KR102562314B1 (ko) * | 2018-11-02 | 2023-08-01 | 삼성전자주식회사 | 후보 벡터 셋을 선택하는 mimo 수신기 및 이의 동작방법 |
KR20200086166A (ko) * | 2019-01-08 | 2020-07-16 | 한국전자통신연구원 | 케이블 방송망의 상향링크 신호 처리 방법 및 장치 |
US10778482B2 (en) * | 2019-02-12 | 2020-09-15 | Texas Instruments Incorporated | Bit slicer circuit for S-FSK receiver, integrated circuit, and method associated therewith |
CN109818890B (zh) * | 2019-03-12 | 2020-04-10 | 北京科技大学 | 一种原型滤波器确定方法及确定装置 |
US10886991B2 (en) * | 2019-05-22 | 2021-01-05 | At&T Intellectual Property I, L.P. | Facilitating sparsity adaptive feedback in the delay doppler domain in advanced networks |
US10979151B2 (en) * | 2019-05-22 | 2021-04-13 | At&T Intellectual Property I, L.P. | Multidimensional grid sampling for radio frequency power feedback |
US11824637B2 (en) | 2019-05-22 | 2023-11-21 | At&T Intellectual Property I, L.P. | Generating wireless reference signals in a different domain for transmission |
US11050530B2 (en) | 2019-06-27 | 2021-06-29 | At&T Intellectual Property I, L.P. | Generating wireless reference signals in a different domain for transmission with a collapsed time-frequency grid |
CN110572220B (zh) * | 2019-06-30 | 2021-11-23 | 哈尔滨工业大学(威海) | 面向无速率水声通信的联合盲频域均衡与无速率译码算法 |
US11923927B2 (en) * | 2019-10-24 | 2024-03-05 | The University Of Sydney | M-MIMO receiver |
WO2021133396A1 (en) | 2019-12-26 | 2021-07-01 | Shilpa Talwar | Equalization and estimation processing in wireless devices |
WO2021181278A1 (en) | 2020-03-10 | 2021-09-16 | Ntwine, Llc | Bandwidth constrained communication systems with frequency domain information processing |
DE102020114547B4 (de) * | 2020-05-29 | 2023-12-28 | Infineon Technologies Ag | Vorrichtung und verfahren zum abwickeln eines eingehenden kommunikations-datenrahmens |
WO2021243607A1 (en) * | 2020-06-03 | 2021-12-09 | Huawei Technologies Co., Ltd. | Equalisation method and apparatus |
CN111854954B (zh) * | 2020-07-10 | 2021-08-20 | 上海交通大学 | 在弱测量中对抗振幅型噪声的光谱数据处理方法及系统 |
US11196592B1 (en) * | 2020-07-24 | 2021-12-07 | Credo Technology Group Limited | Equalizer with perturbation effect based adaptation |
US11990922B2 (en) | 2021-01-11 | 2024-05-21 | Ntwine, Llc | Bandwidth constrained communication systems with neural network based detection |
KR102436575B1 (ko) | 2021-02-04 | 2022-08-26 | 한국전자통신연구원 | 사이클릭 슬립에 강인한 위상 오차 보상 방법 및 장치 |
KR20220112968A (ko) | 2021-02-05 | 2022-08-12 | 삼성전자주식회사 | 출력 드라이버 및 이를 포함하는 반도체 메모리 장치 |
US11223447B1 (en) | 2021-03-31 | 2022-01-11 | Seagate Technology Llc | Multiple detector data channel and data detection utilizing different cost functions |
US11677609B2 (en) * | 2021-04-29 | 2023-06-13 | Qualcomm Incorporated | Signaling of a non-linearity model |
US11646777B2 (en) * | 2021-04-30 | 2023-05-09 | Qualcomm Incorporated | Detecting static channels |
WO2022240308A1 (en) * | 2021-05-14 | 2022-11-17 | Limited Liability Company "Topcon Positioning Systems" | Method and apparatus for receiving fsk signals |
US11973623B2 (en) | 2021-06-11 | 2024-04-30 | Samsung Electronics Co., Ltd. | Latch circuit and equalizer including the same |
WO2023274495A1 (en) * | 2021-06-28 | 2023-01-05 | Nokia Technologies Oy | Transmitter, receiver and method for transmit and receive filtering in a communication system |
US11916608B2 (en) * | 2021-06-29 | 2024-02-27 | Qualcomm Incorporated | Waveform parameters adaptation |
US20230028791A1 (en) * | 2021-07-22 | 2023-01-26 | Qualcomm Incorporated | Dynamic shaping filter indications |
US20240348487A1 (en) * | 2021-07-26 | 2024-10-17 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods and apparatuses for adaptation of communication parameter |
US11513807B1 (en) * | 2021-07-28 | 2022-11-29 | Dell Products L.P. | Temperature based decision feedback equalization retraining |
CN114089065B (zh) * | 2021-11-17 | 2022-05-03 | 北京航空航天大学 | 一种基于收发电磁频谱的电磁兼容性预测方法 |
IL293537A (en) * | 2022-06-01 | 2023-12-01 | Qualcomm Inc | Non-linear modeling for channel estimation |
WO2024108355A1 (zh) * | 2022-11-21 | 2024-05-30 | 华为技术有限公司 | 通信方法及通信装置 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4135057A (en) * | 1976-09-07 | 1979-01-16 | Arthur A. Collins, Inc. | High density digital transmission system |
US5291516A (en) * | 1991-05-13 | 1994-03-01 | Omnipoint Data Company, Inc. | Dual mode transmitter and receiver |
US20020172297A1 (en) * | 2001-04-09 | 2002-11-21 | Mikihiro Ouchi | Front end processor for data receiver and nonlinear distortion equalization method |
US20040037374A1 (en) * | 1999-02-13 | 2004-02-26 | Broadcom Corporation | Efficient partial response equalization |
US7215716B1 (en) * | 2002-06-25 | 2007-05-08 | Francis J. Smith | Non-linear adaptive AM/AM and AM/PM pre-distortion compensation with time and temperature compensation for low power applications |
CN101198160A (zh) * | 2007-05-25 | 2008-06-11 | 北京大学 | 采用单通路射频前端实现gnss多模并行接收的方法及装置 |
US20080207143A1 (en) * | 2007-02-28 | 2008-08-28 | Telefonaktiebolaget Lm Ericsson (Publ) | Radio communications using scheduled power amplifier backoff |
US20090086808A1 (en) * | 1998-11-03 | 2009-04-02 | Broadcom Corporation | Equalization And Decision-Directed Loops With Trellis Demodulation In High Definition TV |
CN101790256A (zh) * | 2009-01-22 | 2010-07-28 | 中兴通讯股份有限公司 | 一种收信机、发信机及其信号处理方法 |
Family Cites Families (386)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3962637A (en) * | 1974-11-11 | 1976-06-08 | Hycom Incorporated | Ultrafast adaptive digital modem |
JPS51144167A (en) | 1975-06-04 | 1976-12-10 | Nec Corp | Digital phase modulation method |
US4466108A (en) * | 1981-10-06 | 1984-08-14 | Communications Satellite Corporation | TDMA/PSK Carrier synchronization without preamble |
US4797925A (en) | 1986-09-26 | 1989-01-10 | Bell Communications Research, Inc. | Method for coding speech at low bit rates |
NL8701331A (nl) * | 1987-06-09 | 1989-01-02 | Philips Nv | Datatransmissiesysteem bevattende een beslissingsteruggekoppelde egalisator en gebruik makende van partieleresponsie technieken. |
JP2960436B2 (ja) | 1989-06-26 | 1999-10-06 | 株式会社日立製作所 | 非線形データ伝送システム用受信器 |
EP0449327B1 (en) | 1990-03-30 | 1998-07-15 | Nec Corporation | Noise-immune space diversity receiver |
US5240200A (en) | 1990-03-30 | 1993-08-31 | Matsushita Electric Industrial Co., Ltd. | Tape cassette |
IL97345A0 (en) | 1991-02-24 | 1992-05-25 | Univ Ramot | Method and apparatus for blind deconvolution |
US5111484A (en) | 1991-04-16 | 1992-05-05 | Raytheon Company | Adaptive distortion canceller |
US5249200A (en) | 1991-07-30 | 1993-09-28 | Codex Corporation | Device and method for combining precoding with symbol-rate spectral shaping |
US5394439A (en) | 1991-11-12 | 1995-02-28 | Comsat Corporation | Bisdn compatible modem codec for digital information communication system |
KR0165277B1 (ko) | 1993-02-27 | 1999-03-20 | 김광호 | 디지탈신호 자기 기록 재생장치 |
US5432822A (en) | 1993-03-12 | 1995-07-11 | Hughes Aircraft Company | Error correcting decoder and decoding method employing reliability based erasure decision-making in cellular communication system |
US5995539A (en) | 1993-03-17 | 1999-11-30 | Miller; William J. | Method and apparatus for signal transmission and reception |
US5784415A (en) | 1993-06-14 | 1998-07-21 | International Business Machines Corporation | Adaptive noise-predictive partial-response equalization for channels with spectral nulls |
DE69432100T2 (de) | 1993-11-05 | 2003-09-25 | Ntt Mobile Communications Network Inc., Tokio/Tokyo | Replikherstellendes adaptives demodulationsverfahren und dieses verwendender demodulator |
JP2846959B2 (ja) | 1993-12-15 | 1999-01-13 | エヌ・ティ・ティ移動通信網株式会社 | 適応等化器 |
US5640423A (en) * | 1993-12-16 | 1997-06-17 | Signal Science, Inc. | Method for signal transmission using spectrally efficient orthogonal modulation |
US5563664A (en) * | 1994-01-05 | 1996-10-08 | Samsung Electronics Co., Ltd. | Pre-frame-comb as well as pre-line-comb partial-response filtering of BPSK buried in a TV signal |
US5459762A (en) | 1994-09-16 | 1995-10-17 | Rockwell International Corporation | Variable multi-threshold detection for 0.3-GMSK |
US5590121A (en) | 1995-03-30 | 1996-12-31 | Lucent Technologies Inc. | Method and apparatus for adaptive filtering |
JP3708232B2 (ja) * | 1995-10-30 | 2005-10-19 | 富士通株式会社 | 歪補償回路を有する送信装置 |
US5757855A (en) * | 1995-11-29 | 1998-05-26 | David Sarnoff Research Center, Inc. | Data detection for partial response channels |
US5889823A (en) | 1995-12-13 | 1999-03-30 | Lucent Technologies Inc. | Method and apparatus for compensation of linear or nonlinear intersymbol interference and noise correlation in magnetic recording channels |
FI956358A (fi) | 1995-12-29 | 1997-06-30 | Nokia Telecommunications Oy | Menetelmä tiedonsiirtonopeuden tunnistamiseksi ja vastaanotin |
KR0165507B1 (ko) * | 1996-01-09 | 1999-03-20 | 김광호 | 기준신호를 이용한 등화방법과 등화기 |
JPH09270827A (ja) | 1996-04-01 | 1997-10-14 | Advantest Corp | デジタル直交変調信号のパラメータ測定装置 |
US5974087A (en) * | 1996-04-12 | 1999-10-26 | Advantest Corporation | Waveform quality measuring method and apparatus |
AU2744097A (en) * | 1996-04-26 | 1997-11-19 | At & T Corporation | Method and apparatus for data transmission using multiple transmit antennas |
US5799038A (en) * | 1996-04-30 | 1998-08-25 | Advantest Corporation | Method for measuring modulation parameters of digital quadrature-modulated signal |
US8311673B2 (en) * | 1996-05-06 | 2012-11-13 | Rockwell Automation Technologies, Inc. | Method and apparatus for minimizing error in dynamic and steady-state processes for prediction, control, and optimization |
US5930309A (en) | 1997-02-27 | 1999-07-27 | Thomson Consumer Electronics, Inc. | Receiver signal processing system for cap signals |
US6335954B1 (en) | 1996-12-27 | 2002-01-01 | Ericsson Inc. | Method and apparatus for joint synchronization of multiple receive channels |
KR100244767B1 (ko) * | 1997-06-25 | 2000-02-15 | 전주범 | 디지탈 자기 기록/재생 시스템의 선택적 동기/비동기 부분 응답 채널 데이터 검출 장치 |
US6009120A (en) | 1997-06-26 | 1999-12-28 | Rockwell Science Center, Inc. | Multi-dimensional combined equalizer and decoder |
US6654432B1 (en) * | 1998-06-08 | 2003-11-25 | Wireless Facilities, Inc. | Joint maximum likelihood frame and timing estimation for a digital receiver |
EP0974200A1 (en) * | 1998-02-12 | 2000-01-26 | Koninklijke Philips Electronics N.V. | A method and device for nonlinear likelihood sequence estimation |
EP0939525B1 (en) | 1998-02-26 | 2009-10-07 | Italtel s.p.a. | Sequence estimation for CPM signals |
US6529303B1 (en) | 1998-03-05 | 2003-03-04 | Kestrel Solutions, Inc. | Optical communications networks utilizing frequency division multiplexing |
US6067646A (en) | 1998-04-17 | 2000-05-23 | Ameritech Corporation | Method and system for adaptive interleaving |
GB9811381D0 (en) | 1998-05-27 | 1998-07-22 | Nokia Mobile Phones Ltd | Predistortion control for power reduction |
JP3185874B2 (ja) * | 1998-07-21 | 2001-07-11 | 日本電気株式会社 | 無線通信システム |
US6381291B1 (en) * | 1998-09-28 | 2002-04-30 | Harris Corporation | Phase detector and method |
JP3391373B2 (ja) * | 1998-10-13 | 2003-03-31 | 日本電気株式会社 | 適応等化器 |
KR100442818B1 (ko) * | 1998-10-14 | 2004-09-18 | 삼성전자주식회사 | 순차적 갱신 적응형 등화기 및 그 방법 |
US6563862B1 (en) * | 1998-10-21 | 2003-05-13 | Thomson Licensing Sa | Digital variable symbol rate modulation |
ATE311049T1 (de) | 1998-11-02 | 2005-12-15 | Broadcom Corp | Messung der nichtlinearen verzerrung in sendern |
DE69925628T2 (de) | 1998-11-09 | 2006-04-27 | Broadcom Corp., Irvine | Fir-filterstruktur mit geringer latenzzeit, zur andwendung bei gigabit-ethernet |
US6233709B1 (en) | 1998-12-07 | 2001-05-15 | Nokia Mobile Phones Ltd. | Dynamic iterative decoding for balancing quality of service parameters |
JP4130264B2 (ja) * | 1998-12-08 | 2008-08-06 | 松下電器産業株式会社 | 電力線搬送通信システム |
JP3611472B2 (ja) * | 1999-02-02 | 2005-01-19 | 松下電器産業株式会社 | 適応等化回路 |
JP2000269865A (ja) * | 1999-03-17 | 2000-09-29 | Pioneer Electronic Corp | ディジタル信号受信システムにおける信号処理回路 |
DE60035679T2 (de) | 1999-04-22 | 2008-06-05 | Broadcom Corp., Irvine | Gigabit-ethernt mit zeitverschiebungen zwischen verdrillten leitungspaaren |
US6392500B1 (en) * | 1999-04-27 | 2002-05-21 | Sicom, Inc. | Rotationally invariant digital communications |
JP2000315967A (ja) * | 1999-04-28 | 2000-11-14 | Nec Corp | 最尤系列推定装置 |
US6516025B1 (en) | 1999-04-29 | 2003-02-04 | Texas Instruments Incorporated | High-speed upstream modem communication |
JP2000315968A (ja) | 1999-04-30 | 2000-11-14 | Nec Corp | 適応型信号推定器 |
US6690754B1 (en) | 1999-06-04 | 2004-02-10 | Agere Systems Inc. | Method and apparatus for reducing the computational complexity and relaxing the critical path of reduced state sequence estimation (RSSE) techniques |
US6707850B1 (en) * | 1999-08-31 | 2004-03-16 | Agere Systems Inc. | Decision-feedback equalizer with maximum-likelihood sequence estimation and associated methods |
US6356586B1 (en) | 1999-09-03 | 2002-03-12 | Lucent Technologies, Inc. | Methods and apparatus for parallel decision-feedback decoding in a communication system |
US6507628B1 (en) * | 1999-09-07 | 2003-01-14 | Sicom, Inc. | Distortion-compensated digital communications receiver and method therefor |
US6535549B1 (en) | 1999-09-14 | 2003-03-18 | Harris Canada, Inc. | Method and apparatus for carrier phase tracking |
US6529070B1 (en) | 1999-10-25 | 2003-03-04 | Texas Instruments Incorporated | Low-voltage, broadband operational amplifier |
US6853695B1 (en) * | 1999-10-27 | 2005-02-08 | Paradyne Corporation | System and method for deriving symbol timing |
KR100713395B1 (ko) * | 1999-10-27 | 2007-05-03 | 삼성전자주식회사 | 자동 이득제어 시스템의 비선형 왜곡 제거 장치 및 방법 |
JP2001127810A (ja) * | 1999-10-28 | 2001-05-11 | Sony Corp | 変調方式認識装置およびその方法 |
US6871208B1 (en) | 1999-12-01 | 2005-03-22 | Macronix International Co., Ltd. | Parallel adder-based DCT/IDCT design using cyclic convolution |
US6621857B1 (en) * | 1999-12-31 | 2003-09-16 | Thomson Licensing S.A. | Carrier tracking loop for direct sequence spread spectrum systems |
US6690739B1 (en) * | 2000-01-14 | 2004-02-10 | Shou Yee Mui | Method for intersymbol interference compensation |
EP1117184A1 (en) | 2000-01-17 | 2001-07-18 | Matsushita Electric Industrial Co., Ltd. | Method and apparatus for a CDMA cellular radio transmission system |
US6516437B1 (en) | 2000-03-07 | 2003-02-04 | General Electric Company | Turbo decoder control for use with a programmable interleaver, variable block length, and multiple code rates |
DE60137559D1 (de) * | 2000-03-27 | 2009-03-19 | Ntt Docomo Inc | Räumliche und Zeitliche Entzerrer und Entzerrungsverfahren |
US6928084B2 (en) | 2000-03-28 | 2005-08-09 | At & T Corp. | OFDM communication system and method having a reduced peak-to-average power ratio |
US6721366B1 (en) * | 2000-04-19 | 2004-04-13 | Lockheed Martin Corporation | Phase tracking apparatus and method for continuous phase modulated signals |
US6697441B1 (en) | 2000-06-06 | 2004-02-24 | Ericsson Inc. | Baseband processors and methods and systems for decoding a received signal having a transmitter or channel induced coupling between bits |
KR100548763B1 (ko) * | 2000-07-20 | 2006-02-06 | 엘지전자 주식회사 | 피드포워드 방식의 선형화기를 갖는 기지국 송신장치 |
US6983047B1 (en) * | 2000-08-29 | 2006-01-03 | Lucent Technologies Inc. | Echo canceling system for a bit pump and method of operating the same |
US7173961B2 (en) | 2000-08-31 | 2007-02-06 | Nokia Corporation | Frequency domain partial response signaling with high spectral efficiency and low peak to average power ratio |
GB0026206D0 (en) | 2000-10-26 | 2000-12-13 | Koninkl Philips Electronics Nv | A method of receiving a signal and a receiver |
US6785342B1 (en) | 2000-11-06 | 2004-08-31 | Wideband Semiconductors, Inc. | Nonlinear pre-distortion modulator and long loop control |
US7251297B2 (en) | 2000-11-22 | 2007-07-31 | Broadcom Corporation | Method and system to identify and characterize nonlinearities in optical communications channels |
US7106709B2 (en) * | 2000-11-29 | 2006-09-12 | Telefonaktiebologet Lm Ericsson (Publ) | Timing drift compensation in wireless packet-based systems |
US20020122507A1 (en) * | 2000-12-15 | 2002-09-05 | Eidson Donald Brian | System for carrier phase tracking of multi-dimensional coded symbols |
US8031791B2 (en) * | 2001-01-09 | 2011-10-04 | Urbain A. von der Embse | QLM decoding |
EP1223717B1 (en) * | 2001-01-15 | 2006-08-02 | Lucent Technologies Inc. | Maximum likelihood detection method using a sequence estimation receiver |
US6980602B1 (en) * | 2001-01-31 | 2005-12-27 | Comsys Communication & Signal Processing Ltd. | Normalization of equalizer soft output for channels with varying noise power |
GB2398975B (en) | 2001-02-01 | 2005-02-23 | Fujitsu Ltd | Communications systems |
US7012957B2 (en) | 2001-02-01 | 2006-03-14 | Broadcom Corporation | High performance equalizer having reduced complexity |
US7151796B2 (en) | 2001-02-01 | 2006-12-19 | Broadcom Corporation | High performance equalizer with enhanced DFE having reduced complexity |
US6920191B2 (en) | 2001-02-02 | 2005-07-19 | Telefonaktiebolaget Lm Ericsson (Publ) | Estimation and compensation of the pulse-shape response in wireless terminals |
US20020150155A1 (en) * | 2001-02-26 | 2002-10-17 | Itzhak Florentin | Convergence speed, lowering the excess noise and power consumption of equalizers |
US7263144B2 (en) | 2001-03-20 | 2007-08-28 | Texas Instruments Incorporated | Method and system for digital equalization of non-linear distortion |
US20060203927A1 (en) * | 2001-03-27 | 2006-09-14 | Aware, Inc. | Systems and methods for implementing receiver transparent Q-mode |
EP1384361A4 (en) * | 2001-03-28 | 2009-12-16 | Broadcom Corp | SYSTEM AND METHOD FOR HIGH DEFINITION TERRESTRIAL TV RECEPTION |
US7184473B2 (en) * | 2001-04-27 | 2007-02-27 | The Directv Group, Inc. | Equalizers for layered modulated and other signals |
US7106792B2 (en) * | 2001-06-04 | 2006-09-12 | Qualcomm, Inc. | Method and apparatus for estimating the signal to interference-plus-noise ratio of a wireless channel |
US7570576B2 (en) * | 2001-06-08 | 2009-08-04 | Broadcom Corporation | Detection and mitigation of temporary (bursts) impairments in channels using SCDMA |
US6985709B2 (en) * | 2001-06-22 | 2006-01-10 | Intel Corporation | Noise dependent filter |
JP3607643B2 (ja) | 2001-07-13 | 2005-01-05 | 松下電器産業株式会社 | マルチキャリア送信装置、マルチキャリア受信装置、およびマルチキャリア無線通信方法 |
US7000167B2 (en) * | 2001-08-01 | 2006-02-14 | International Business Machines Corporation | Decoding low density parity check codes |
US7023928B2 (en) * | 2001-08-06 | 2006-04-04 | Lucent Technologies Inc. | Synchronization of a pilot assisted channel estimation orthogonal frequency division multiplexing system |
US7318185B2 (en) | 2001-08-23 | 2008-01-08 | Nortel Networks Limited | Method and apparatus for scrambling based peak-to-average power ratio reduction without side information |
US7263123B2 (en) * | 2001-09-18 | 2007-08-28 | Broadcom Corporation | Fast computation of coefficients for a variable delay decision feedback equalizer |
US6968021B1 (en) * | 2001-09-24 | 2005-11-22 | Rockwell Collins | Synchronization method and apparatus for modems based on jointly iterative turbo demodulation and decoding |
KR100398884B1 (ko) * | 2001-11-01 | 2003-09-19 | 삼성전자주식회사 | 다중 전송 경로를 통해 전송된 방송신호의 복원시발생하는 위상에러를 보상할 수 있는 디지털방송 수신기의에러복원장치 |
US7502418B2 (en) * | 2001-12-18 | 2009-03-10 | Agere Systems Inc. | Method and apparatus for joint equalization and decoding of multilevel codes |
US20030119460A1 (en) * | 2001-12-26 | 2003-06-26 | Eliav Zipper | Transmitted power level indicator |
US7173990B2 (en) * | 2001-12-27 | 2007-02-06 | Dsp Group Inc. | Joint equalization, soft-demapping and phase error correction in wireless system with receive diversity |
KR100444571B1 (ko) * | 2002-01-11 | 2004-08-16 | 삼성전자주식회사 | 터보디코더와 알에스디코더가 연접된 디코딩장치 및 그의디코딩방법 |
US6737933B2 (en) | 2002-01-15 | 2004-05-18 | Nokia Corporation | Circuit topology for attenuator and switch circuits |
US6650691B2 (en) * | 2002-02-12 | 2003-11-18 | Motorola, Inc. | Power control in spread spectrum communications systems |
US7020226B1 (en) | 2002-04-04 | 2006-03-28 | Nortel Networks Limited | I/Q distortion compensation for the reception of OFDM signals |
US8295249B2 (en) * | 2002-04-22 | 2012-10-23 | Alcatel Lucent | Block size detection for MPSK signaling |
US6985704B2 (en) | 2002-05-01 | 2006-01-10 | Dali Yang | System and method for digital memorized predistortion for wireless communication |
JP3823315B2 (ja) * | 2002-05-07 | 2006-09-20 | ソニー株式会社 | 符号化装置及び符号化方法、並びに復号装置及び復号方法 |
US20030210352A1 (en) | 2002-05-09 | 2003-11-13 | Fitzsimmons John E. | Remote monitoring system |
US7027503B2 (en) * | 2002-06-04 | 2006-04-11 | Qualcomm Incorporated | Receiver with a decision feedback equalizer and a linear equalizer |
US7139327B2 (en) | 2002-06-10 | 2006-11-21 | Andrew Corporation | Digital pre-distortion of input signals for reducing spurious emissions in communication networks |
US7333561B2 (en) | 2002-06-28 | 2008-02-19 | Motorola, Inc. | Postdistortion amplifier with predistorted postdistortion |
US7190721B2 (en) | 2002-06-28 | 2007-03-13 | Lucent Technologies Inc. | Error convergence measurement circuit for providing convergence of a filter |
KR20040005175A (ko) | 2002-07-08 | 2004-01-16 | 삼성전자주식회사 | 직교주파수분할다중화 통신시스템에서 선택적매핑의부가정보 송수신 장치 및 방법 |
WO2004008671A1 (ja) | 2002-07-16 | 2004-01-22 | Matsushita Electric Industrial Co., Ltd. | 通信方法およびそれを用いた送信装置と受信装置 |
US7194674B2 (en) * | 2002-07-29 | 2007-03-20 | Sharp Kabushiki Kaisha | Adaptive waveform equalization for viterbi-decodable signal and signal quality evaluation of viterbi-decodable signal |
US7697591B2 (en) * | 2002-08-26 | 2010-04-13 | Texas Instruments Incorporated | Crest factor reduction processor for wireless communications |
US7191136B2 (en) * | 2002-10-01 | 2007-03-13 | Ibiquity Digital Corporation | Efficient coding of high frequency signal information in a signal using a linear/non-linear prediction model based on a low pass baseband |
US7043208B2 (en) | 2002-10-15 | 2006-05-09 | Motorola, Inc. | Method and apparatus to reduce interference in a communication device |
US7340013B2 (en) | 2002-10-24 | 2008-03-04 | Agere Systems Inc. | Soft sample scaling in a turbo decoder |
US7080295B2 (en) * | 2002-11-01 | 2006-07-18 | Broadcom Corporation | Methods and systems for detecting symbol erasures |
US7546042B2 (en) | 2002-11-05 | 2009-06-09 | Finisar Corporation | System and method for reducing interference in an optical data stream using multiple, selectable equalizers |
TWI222794B (en) * | 2002-11-07 | 2004-10-21 | Realtek Semiconductor Corp | Initialization method for network system |
BR0215922A (pt) | 2002-11-07 | 2005-08-09 | Ericsson Telefon Ab L M | Método para comunicar quadros de dados digitais por sinais modulados em ofdm, transmissor, e, receptor |
TWI231673B (en) * | 2002-11-07 | 2005-04-21 | Realtek Semiconductor Corp | A modulator used for network transceiver and method thereof |
JP4050603B2 (ja) * | 2002-11-29 | 2008-02-20 | 松下電器産業株式会社 | ウォブル信号処理装置 |
JP4350491B2 (ja) | 2002-12-05 | 2009-10-21 | パナソニック株式会社 | 無線通信システム、無線通信方法、及び無線通信装置 |
US7421029B2 (en) | 2002-12-20 | 2008-09-02 | Unique Broadband Systems, Inc. | Impulse response shortening and symbol synchronization in OFDM communication systems |
KR100518551B1 (ko) * | 2003-01-21 | 2005-10-04 | 삼성전자주식회사 | 채널 등화기의 계수 갱신방법 및 계수 갱신 회로 |
US7206365B2 (en) * | 2003-01-24 | 2007-04-17 | Via Technologies Inc | Decision sequence generating method and associated receiver with a decision feedback equalizer |
US7580482B2 (en) * | 2003-02-19 | 2009-08-25 | Endres Thomas J | Joint, adaptive control of equalization, synchronization, and gain in a digital communications receiver |
US7218948B2 (en) | 2003-02-24 | 2007-05-15 | Qualcomm Incorporated | Method of transmitting pilot tones in a multi-sector cell, including null pilot tones, for generating channel quality indicators |
US9544860B2 (en) * | 2003-02-24 | 2017-01-10 | Qualcomm Incorporated | Pilot signals for use in multi-sector cells |
US7616701B2 (en) | 2003-03-08 | 2009-11-10 | Broadcom Corporation | Zero excess bandwidth modulation |
WO2004112303A2 (en) | 2003-03-10 | 2004-12-23 | Macphy Modems, Inc. | Method and apparatus for single burst equalization of single carrier signals in broadband wireless access systems |
US7203261B2 (en) * | 2003-04-07 | 2007-04-10 | Qualcomm Incorporated | Phase locked loop for an OFDM system |
JP2004327013A (ja) | 2003-04-11 | 2004-11-18 | Nec Corp | 光ディスク媒体および光ディスク装置 |
GB2401516A (en) * | 2003-04-17 | 2004-11-10 | Univ Southampton | Peak-to-average power ratio reduction by subtracting shaped pulses from a baseband signal |
US7177354B2 (en) * | 2003-04-22 | 2007-02-13 | Zenith Electronics Corporation | Method and apparatus for the control of a decision feedback equalizer |
US6972622B2 (en) | 2003-05-12 | 2005-12-06 | Andrew Corporation | Optimization of error loops in distributed power amplifiers |
US7054391B2 (en) | 2003-05-30 | 2006-05-30 | Efficient Channel Coding, Inc. | Receiver based saturation estimator |
EP1484842A1 (en) | 2003-06-06 | 2004-12-08 | Deutsche Thomson-Brandt Gmbh | Bits recovery method and apparatus for an asymmetric data channel |
US7206363B2 (en) | 2003-06-24 | 2007-04-17 | Intersymbol Communications, Inc. | Method and apparatus for delayed recursion decoder |
US7580476B2 (en) | 2003-06-26 | 2009-08-25 | Northrop Grumman Corporation | Communication system and method for improving efficiency and linearity |
US7190288B2 (en) | 2003-06-27 | 2007-03-13 | Northrop Grumman Corp. | Look-up table delta-sigma conversion |
US20050032472A1 (en) | 2003-08-08 | 2005-02-10 | Yimin Jiang | Method and apparatus of estimating non-linear amplifier response in an overlaid communication system |
TWI226045B (en) * | 2003-08-08 | 2005-01-01 | Ind Tech Res Inst | Signal reconstructing apparatus of optical recording medium |
US20050047517A1 (en) * | 2003-09-03 | 2005-03-03 | Georgios Giannakis B. | Adaptive modulation for multi-antenna transmissions with partial channel knowledge |
US7283590B2 (en) * | 2003-09-10 | 2007-10-16 | Texas Instruments Incorporated | Signal processing approach for channel coding based on inter-symbol-interference insertion |
US7269205B2 (en) | 2003-09-26 | 2007-09-11 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for signal demodulation |
US7394869B2 (en) * | 2004-04-02 | 2008-07-01 | Broadcom Corporation | RF transmitter architecture for continuous switching between modulation modes |
KR100555520B1 (ko) | 2003-10-28 | 2006-03-03 | 삼성전자주식회사 | 다중 캐리어 신호의 비선형적 왜곡을 보상하는 다중캐리어 신호 왜곡 보상 장치, 이를 구비한 다중 캐리어신호 수신기, 및 그 방법 |
JP4151600B2 (ja) * | 2003-10-30 | 2008-09-17 | 日本電気株式会社 | 情報再生方法および情報再生装置 |
JP2005135532A (ja) * | 2003-10-30 | 2005-05-26 | Sony Corp | 適応等化装置、復号装置、及び誤差検出装置 |
KR100587336B1 (ko) * | 2003-12-01 | 2006-06-08 | 엘지전자 주식회사 | 위상보정 결정궤환 채널등화기 |
KR100556401B1 (ko) | 2003-12-04 | 2006-03-03 | 엘지전자 주식회사 | Vsb 수신 시스템의 등화 장치 |
US7469491B2 (en) | 2004-01-27 | 2008-12-30 | Crestcom, Inc. | Transmitter predistortion circuit and method therefor |
US7433395B2 (en) * | 2004-02-04 | 2008-10-07 | 2Wire, Inc. | Reliable multicarrier communication in the presence of timing phase error |
US7444134B2 (en) * | 2004-02-13 | 2008-10-28 | Broadcom Corporation | Device and method for transmitting long training sequence for wireless communications |
US7545862B2 (en) * | 2004-02-16 | 2009-06-09 | Sony Corporation | Adaptive equalizer, decoding device, and error detecting device |
US8045638B2 (en) * | 2004-03-05 | 2011-10-25 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for impairment correlation estimation in a wireless communication receiver |
WO2005096580A1 (en) | 2004-03-12 | 2005-10-13 | Ntt Docomo, Inc. | Peak reduction in ofdm using clipping and modified constellations |
US7734194B2 (en) * | 2004-03-17 | 2010-06-08 | Nippon Telegraph And Telephone Corporation | Optical transmission system, optical transmitter for optical transmission system, and optical receiver for optical transmission system |
CN1985442B (zh) | 2004-03-25 | 2010-06-16 | 奥普蒂科伦公司 | 数字线性化系统 |
US7633994B2 (en) | 2004-07-30 | 2009-12-15 | Rearden, LLC. | System and method for distributed input-distributed output wireless communications |
US7912156B1 (en) * | 2004-04-07 | 2011-03-22 | L-3 Communications Corporation | Digital communications method and system for communicating over channels with block fading and burst jamming |
CA2560729A1 (en) * | 2004-04-09 | 2005-10-27 | Micronas Semiconductors, Inc. | Apparatus for and method of developing equalized values from samples of a signal received from a channel |
US20060029126A1 (en) * | 2004-04-15 | 2006-02-09 | Mediatek Inc. | Apparatus and method for noise enhancement reduction in an adaptive equalizer |
US7205798B1 (en) | 2004-05-28 | 2007-04-17 | Intersil Americas Inc. | Phase error correction circuit for a high speed frequency synthesizer |
CN1969473B (zh) | 2004-06-14 | 2011-02-09 | 三星电子株式会社 | 多输入多输出移动通信系统中控制传输模式的装置和方法 |
US7336716B2 (en) | 2004-06-30 | 2008-02-26 | Intel Corporation | Power amplifier linearization methods and apparatus using predistortion in the frequency domain |
US7562280B2 (en) * | 2004-09-10 | 2009-07-14 | The Directv Group, Inc. | Code design and implementation improvements for low density parity check codes for wireless routers using 802.11N protocol |
US7158324B2 (en) | 2004-09-20 | 2007-01-02 | Guzik Technical Enterprises | Self-adjusting PRML receiver |
US7738546B2 (en) | 2004-09-27 | 2010-06-15 | Intel Corporation | Feed forward equalizer for a communication system |
US7463697B2 (en) | 2004-09-28 | 2008-12-09 | Intel Corporation | Multicarrier transmitter and methods for generating multicarrier communication signals with power amplifier predistortion and linearization |
DE102004052899B4 (de) | 2004-11-02 | 2011-08-18 | Lantiq Deutschland GmbH, 85579 | Sowohl auf sporadische als auch auf kontinuierliche Datenkommunikation ausgerichtetes OFDM-Übertragungsverfahren für ein WLAN |
WO2006048061A1 (en) * | 2004-11-03 | 2006-05-11 | Matsushita Electric Industrial Co., Ltd. | Method and transmitter structure removing phase ambiguity by repetition rearrangement |
US8498215B2 (en) * | 2004-11-16 | 2013-07-30 | Qualcomm Incorporated | Open-loop rate control for a TDD communication system |
EP1659697B1 (en) | 2004-11-19 | 2010-06-30 | Alcatel Lucent | Receiver system and method for soft-decision decoding of punctured convolutional codes |
JP4680264B2 (ja) | 2004-12-02 | 2011-05-11 | ニュー ジャージー インスティチュート オブ テクノロジー | Paprの低減のための方法、及び/またはシステム |
JP4179272B2 (ja) * | 2004-12-07 | 2008-11-12 | セイコーエプソン株式会社 | 電子装置、信号伝送装置および無線通信端末 |
EP2375661B1 (en) | 2005-01-20 | 2018-09-26 | Rambus Inc. | High-speed signaling systems with adaptable pre-emphasis and equalization |
US7450668B2 (en) | 2005-02-02 | 2008-11-11 | At&T Intellectual Property I, L.P. | Soft bit viterbi equalizer using partially collapsed metrics |
KR100692601B1 (ko) * | 2005-02-04 | 2007-03-13 | 삼성전자주식회사 | 디지털 수신장치를 위한 판정 궤환 채널 등화기 및 그 방법 |
US7567635B2 (en) | 2005-03-10 | 2009-07-28 | Comsys Communication & Signal Processing Ltd. | Single antenna interference suppression in a wireless receiver |
EP1862000A2 (en) | 2005-03-24 | 2007-12-05 | Thomson Licensing | Non-linear signal distortion detection using multiple signal to noise ratio measurement sources |
WO2006102745A1 (en) | 2005-03-30 | 2006-10-05 | Nortel Networks Limited | Method and system for combining ofdm and transformed ofdm |
US7924956B2 (en) | 2005-03-31 | 2011-04-12 | Intel Corporation | System and method for compensation of non-linear transmitter distortion |
US7711075B2 (en) | 2005-11-15 | 2010-05-04 | Tensorcomm Incorporated | Iterative interference cancellation using mixed feedback weights and stabilizing step sizes |
WO2006112831A1 (en) | 2005-04-15 | 2006-10-26 | Mitsubishi Electric Research Laboratories | Method and system for estimating time of arrival of signals using multiple different time scales |
US7688888B2 (en) * | 2005-04-22 | 2010-03-30 | Zenith Electronics Llc | CIR estimating decision feedback equalizer with phase tracker |
US7382828B2 (en) * | 2005-04-26 | 2008-06-03 | Zenith Electronics Llc | Channel impulse response (CIR) estimating decision feedback equalizer with phase tracker |
US7302192B2 (en) | 2005-04-28 | 2007-11-27 | Menara Networks | Methods of spread-pulse modulation and nonlinear time domain equalization for fiber optic communication channels |
US7564931B2 (en) * | 2005-05-10 | 2009-07-21 | Seagate Technology Llc | Robust maximum-likelihood based timing recovery |
US7453926B2 (en) * | 2005-06-01 | 2008-11-18 | Mediatek Incorporation | Bit synchronization detection methods and systems |
US20060280113A1 (en) * | 2005-06-10 | 2006-12-14 | Huo David D | Method and apparatus for dynamic allocation of pilot symbols |
KR20080021658A (ko) * | 2005-06-16 | 2008-03-07 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | Csi기반 llr 메트릭스를 구비한 ofdm 수신기 |
FI20055355A0 (fi) | 2005-06-29 | 2005-06-29 | Nokia Corp | Datankäsittelymenetelmä, esivääristysjärjestely, lähetin, verkkoelementti ja tukiasema |
CN1710894A (zh) * | 2005-07-07 | 2005-12-21 | 上海交通大学 | 高速移动正交频分复用系统的信道估计方法 |
US7362536B1 (en) * | 2005-07-08 | 2008-04-22 | Maxtor Corporation | Disk drive that compensates for phase incoherence between radially adjacent servo tracks and methods thereof |
US7769093B2 (en) * | 2005-07-18 | 2010-08-03 | Georgia Tech Research Corporation | Blind selected mapping for peak-to-average power ratio reduction in OFDM with PSK input |
US7773690B2 (en) * | 2005-07-20 | 2010-08-10 | Broadcom Corporation | Angle estimation for space-time block code (STBC) modulated signal |
US7583755B2 (en) | 2005-08-12 | 2009-09-01 | Ati Technologies, Inc. | Systems, methods, and apparatus for mitigation of nonlinear distortion |
US7394608B2 (en) | 2005-08-26 | 2008-07-01 | International Business Machines Corporation | Read channel apparatus for asynchronous sampling and synchronous equalization |
CN101292486B (zh) | 2005-09-06 | 2012-10-10 | 日本电信电话株式会社 | 无线发送装置和无线接收装置、无线发送方法和无线接收方法、以及无线通信系统和无线通信方法 |
US10979981B2 (en) * | 2005-10-07 | 2021-04-13 | Nokia Technologies Oy | Apparatus, method and computer program product providing common pilot channel for soft frequency reuse |
US7532676B2 (en) * | 2005-10-20 | 2009-05-12 | Trellis Phase Communications, Lp | Single sideband and quadrature multiplexed continuous phase modulation |
KR100708480B1 (ko) * | 2005-10-20 | 2007-04-18 | 삼성전자주식회사 | 고압전원장치 및 그 고압전원 제어방법 |
GB0521641D0 (en) * | 2005-10-24 | 2005-11-30 | Nokia Corp | A receiver and a receiving method |
JP4921378B2 (ja) | 2005-10-24 | 2012-04-25 | パナソニック株式会社 | 干渉信号特徴量保存方法及び装置、干渉信号特徴量取得方法及び装置、並びに、干渉信号抑圧方法及び装置 |
US7715472B2 (en) * | 2005-10-25 | 2010-05-11 | Broadcom Corporation | Equalizer architecture for data communication |
DE602005009214D1 (de) | 2005-10-25 | 2008-10-02 | Fujitsu Ltd | Kommunikationssysteme und -verfahren mit Selected Mapping (SLM)-Technik für OFDM Signale |
US8265217B2 (en) * | 2005-10-27 | 2012-09-11 | Broadcom Corporation | Phase tracking in communications systems |
US7894554B2 (en) | 2005-10-31 | 2011-02-22 | Lg Electronics Inc. | Apparatus for performing initial synchronization and frame synchronization in mobile communications system and method thereof |
US7519112B2 (en) | 2005-10-31 | 2009-04-14 | Agilent Technologies, Inc. | Testing device and method for providing receiver overload protection during transceiver testing |
US8199804B1 (en) | 2005-11-04 | 2012-06-12 | Marvell International Ltd. | Efficient tapped delay line equalizer methods and apparatus |
US20070104263A1 (en) * | 2005-11-09 | 2007-05-10 | Chiao-Chih Chang | Method for adaptively tuning an equalizer |
US7860194B2 (en) | 2005-11-11 | 2010-12-28 | Samsung Electronics Co., Ltd. | Method and apparatus for normalizing input metric to a channel decoder in a wireless communication system |
US20070110177A1 (en) | 2005-11-14 | 2007-05-17 | Telefonaktiebolaget Lm Ericsson | RF power distribution in the frequency domain |
US20070127608A1 (en) * | 2005-12-06 | 2007-06-07 | Jacob Scheim | Blind interference mitigation in a digital receiver |
US8385398B2 (en) * | 2005-12-19 | 2013-02-26 | St-Ericsson Sa | Receiver with chip-level equalisation |
US8457219B2 (en) * | 2005-12-30 | 2013-06-04 | Ikanos Communications, Inc. | Self-protection against non-stationary disturbances |
TW200746735A (en) * | 2006-02-08 | 2007-12-16 | Qualcomm Inc | Spectral shaping to reduce peak-to-average ratio in wireless communication |
JP4791199B2 (ja) * | 2006-02-09 | 2011-10-12 | 富士通セミコンダクター株式会社 | 同期装置及び同期方法 |
US7848438B2 (en) | 2006-02-14 | 2010-12-07 | Motorola Mobility, Inc. | Method and apparatus for pilot signal transmission |
WO2007100330A1 (en) | 2006-03-01 | 2007-09-07 | The Regents Of The University Of California | Systems and methods for blind source signal separation |
US7596183B2 (en) | 2006-03-29 | 2009-09-29 | Provigent Ltd. | Joint optimization of transmitter and receiver pulse-shaping filters |
US7734984B2 (en) * | 2006-04-13 | 2010-06-08 | Trident Microsystems (Far East) Ltd. | Erasures assisted block code decoder and related method |
US7764732B2 (en) * | 2006-05-08 | 2010-07-27 | Applied Micro Circuits Corporation | Adaptive error slicer and residual intersymbol interference estimator |
US7822069B2 (en) * | 2006-05-22 | 2010-10-26 | Qualcomm Incorporated | Phase correction for OFDM and MIMO transmissions |
JP2007329539A (ja) | 2006-06-06 | 2007-12-20 | Fujitsu Ltd | 無線送信装置及び無線送信方法 |
US7570713B2 (en) | 2006-06-14 | 2009-08-04 | Harris Stratex Networks, Inc. | System and method for anticipatory receiver switching based on signal quality estimation |
CN101473564B (zh) | 2006-06-20 | 2013-03-27 | 英特尔公司 | 用于附加资源请求的随机接入请求扩展 |
US7586983B1 (en) * | 2006-06-22 | 2009-09-08 | Altera Corporation | Systems and methods for offset cancellation in integrated transceivers |
US7646806B2 (en) | 2006-07-05 | 2010-01-12 | Zoran Corporation | Double equalizer for multi-path rejection |
WO2008020360A1 (en) | 2006-08-18 | 2008-02-21 | Nxp B.V. | Time error estimation for data symbols |
US8363536B2 (en) * | 2006-08-28 | 2013-01-29 | Qualcomm Incorporated | OFDM channel estimation |
EP1895680B1 (en) | 2006-08-31 | 2019-08-14 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting/receiving data in a multi-antenna system, and system using the same |
US20080063041A1 (en) * | 2006-09-08 | 2008-03-13 | Noam Galperin | Fast training equalization of a signal |
US7869550B2 (en) | 2006-09-29 | 2011-01-11 | Optichron, Inc. | Nonlinear digital signal processor |
KR100922961B1 (ko) | 2006-10-12 | 2009-10-22 | 삼성전자주식회사 | 다중 안테나를 사용하는 통신 시스템에서 신호 검출 장치 및 방법 |
JP2008112516A (ja) * | 2006-10-31 | 2008-05-15 | Fujitsu Ltd | 誤り訂正回路及び情報再生装置 |
KR100849493B1 (ko) * | 2006-11-09 | 2008-07-31 | 한국전자통신연구원 | 무선통신 시스템에서의 선형 또는 비선형 평균을 이용한채널 추정 장치 및 그 방법 |
US7889818B2 (en) * | 2006-11-14 | 2011-02-15 | Samsung Electronics Co., Ltd. | Method and apparatus for controlling sampling of signals produced in relation to stored data |
US20080123787A1 (en) * | 2006-11-29 | 2008-05-29 | Supat Wongwirawat | Method and apparatus for detecting and correcting modulated signal impairments |
JP4653724B2 (ja) | 2006-11-30 | 2011-03-16 | 富士通株式会社 | 信号の帯域外電力を抑圧する送信機 |
US8046199B2 (en) | 2006-12-01 | 2011-10-25 | Texas Instruments Incorporated | System and method for computing parameters for a digital predistorter |
KR100856390B1 (ko) | 2006-12-01 | 2008-09-04 | 한국전자통신연구원 | 하위 ovsf 코드 쌍을 이용한 확산/역확산 장치 및 그방법 |
KR100839579B1 (ko) * | 2006-12-05 | 2008-06-19 | 한국전자통신연구원 | 분산 중계 장치 및 그 방법 |
US7724840B2 (en) * | 2006-12-19 | 2010-05-25 | Crestcom, Inc. | RF transmitter with predistortion and method therefor |
EP2259533A3 (en) | 2007-02-02 | 2011-03-02 | Research In Motion Limited | PAPR reduction using scrambling sequences |
US7885323B2 (en) * | 2007-02-02 | 2011-02-08 | Broadcom Corporation | Asymmetric multi-channel adaptive equalizer |
US20080205504A1 (en) * | 2007-02-26 | 2008-08-28 | Yih-Ming Tsuie | Decision feedback equalizers and equalizing methods thereof |
EP1971063B1 (en) | 2007-03-14 | 2018-10-10 | STMicroelectronics S.r.l. | Method and apparatus for multiple antenna communications, and related systems and computer program |
US7756200B2 (en) * | 2007-03-22 | 2010-07-13 | Zoran Corporation | Combining least squares and least mean squares algorithms to determine equalizer tap values |
US8131218B2 (en) * | 2007-04-13 | 2012-03-06 | General Dynamics C4 Systems, Inc. | Methods and apparatus for wirelessly communicating signals that include embedded synchronization/pilot sequences |
JP2008269716A (ja) | 2007-04-23 | 2008-11-06 | Hitachi Maxell Ltd | 情報記録媒体 |
US7990472B2 (en) * | 2007-04-25 | 2011-08-02 | Broadcom Corporation | Generalized VBI waveform generator |
US8582694B2 (en) * | 2007-04-30 | 2013-11-12 | Scott R. Velazquez | Adaptive digital receiver |
US7940198B1 (en) | 2008-04-30 | 2011-05-10 | V Corp Technologies, Inc. | Amplifier linearizer |
EP4432588A2 (en) | 2007-06-05 | 2024-09-18 | Constellation Designs, LLC | Method and apparatus for signaling with capacity optimized constellations |
CN101335733B (zh) | 2007-06-29 | 2013-02-20 | 安捷伦科技有限公司 | 正交频分复用系统中的载波间干扰测量 |
US7978749B2 (en) * | 2007-07-13 | 2011-07-12 | Crestcom, Inc. | Bandjamming multi-channel DSSS transmitter and method therefor |
US8711916B2 (en) | 2007-07-27 | 2014-04-29 | Intel Corporation | Tap initialization of equalizer based on estimated channel impulse response |
WO2009022856A2 (en) | 2007-08-14 | 2009-02-19 | Lg Electronics Inc. | Peak to average power ratio reduction |
US8185811B2 (en) * | 2007-08-17 | 2012-05-22 | Kan Ling Capital, L.L.C. | Robust joint erasure marking viterbi algorithm decoder |
WO2009028011A1 (ja) | 2007-08-29 | 2009-03-05 | Fujitsu Limited | 通信装置 |
US20090058521A1 (en) | 2007-08-31 | 2009-03-05 | Fernandez Andrew D | System and method of digital linearization in electronic devices |
KR20090024623A (ko) | 2007-09-04 | 2009-03-09 | 한국전자통신연구원 | 고속 무선 통신을 위한 프레임 구성 방법 및 이를 이용한 고속 무선 통신 장치 |
US7974230B1 (en) * | 2007-09-12 | 2011-07-05 | Sprint Spectrum L.P. | Mitigating interference by low-cost internet-base-station (LCIB) pilot beacons with macro-network communications |
JP2009111958A (ja) | 2007-11-01 | 2009-05-21 | Hitachi Kokusai Electric Inc | プリディストータ |
US20090122854A1 (en) | 2007-11-14 | 2009-05-14 | The Hong Kong University Of Science And Technology | Frequency domain equalization with transmit precoding for high speed data transmission |
US8180637B2 (en) | 2007-12-03 | 2012-05-15 | Microsoft Corporation | High performance HMM adaptation with joint compensation of additive and convolutive distortions |
GB2455530B (en) * | 2007-12-12 | 2010-04-28 | Nortel Networks Ltd | Channel estimation method and system for inter carrier interference-limited wireless communication networks |
KR100901984B1 (ko) * | 2007-12-13 | 2009-06-08 | 한국전자통신연구원 | 위상 천이 보상 기법을 이용한 잔류 주파수 옵셋 보상 장치 |
JP5178844B2 (ja) * | 2007-12-21 | 2013-04-10 | エルエスアイ コーポレーション | 記録チャネルにおける適応等化のためのシステムおよび方法 |
US7961818B2 (en) * | 2008-02-01 | 2011-06-14 | Quantum Corporation | Method and system for adaptive timing recovery |
US8559561B2 (en) | 2008-02-22 | 2013-10-15 | Telefonaktiebolaget L M Ericsson (Publ) | Method and apparatus for symbol detection via reduced complexity sequence estimation processing |
US8126043B2 (en) | 2008-02-22 | 2012-02-28 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for block-based signal demodulation |
US20090220034A1 (en) | 2008-03-03 | 2009-09-03 | Ramprashad Sean A | Layered receiver structure |
JP5029439B2 (ja) | 2008-03-14 | 2012-09-19 | 富士通株式会社 | 無線通信装置及び干渉除去方法 |
WO2009117874A1 (en) | 2008-03-28 | 2009-10-01 | Huawei Technologies Co., Ltd. | Reduction of out-of-band emitted power |
US8867662B2 (en) | 2008-03-31 | 2014-10-21 | Qualcomm Incorporated | Multidimensional constellations for coded transmission |
CN101562589B (zh) * | 2008-04-16 | 2013-01-09 | 鸿富锦精密工业(深圳)有限公司 | 载波频率偏移估测装置及系统 |
KR101429713B1 (ko) | 2008-05-14 | 2014-09-25 | 삼성전자주식회사 | 다중 사용자 다중 안테나 통신 시스템에서 백터퍼터베이션에 기반한 저 복잡도 프리코딩 장치 및 방법 |
CN101582748B (zh) * | 2008-05-16 | 2012-08-22 | 富士通株式会社 | 低复杂度的mimo系统信号检测方法和检测装置 |
KR101411688B1 (ko) | 2008-05-22 | 2014-07-01 | 엘지전자 주식회사 | 무선 통신 시스템에서 데이터 전송 방법 |
US8532203B1 (en) * | 2008-06-02 | 2013-09-10 | Marvell International Ltd. | Communication systems and methods using blind channel estimation based on cumulants |
US8237494B2 (en) * | 2008-06-03 | 2012-08-07 | Thomson Licensing | Apparatus and method for determination of signal format |
US8503519B2 (en) * | 2008-06-20 | 2013-08-06 | Fujitsu Limited | Detecting residual ISI components using two data patterns |
US8594232B2 (en) | 2008-06-21 | 2013-11-26 | Vyycore Corporation | System for predistortion and post-distortion correction of both a receiver and transmitter during calibration |
US8059737B2 (en) | 2008-06-23 | 2011-11-15 | Mediatek Inc. | OFDM receiver having memory capable of acting in a single-chip mode and a diversity mode |
KR100912226B1 (ko) | 2008-06-27 | 2009-08-14 | 삼성전자주식회사 | 다중 입출력 시스템을 위한 코드북 설계 방법 및 상기 코드북의 사용 방법 |
US8238410B2 (en) * | 2008-06-27 | 2012-08-07 | Csr Technology Inc. | Method and apparatus for mitigating the effects of narrowband interfering signals in a GPS receiver |
US8468426B2 (en) | 2008-07-02 | 2013-06-18 | Apple Inc. | Multimedia-aware quality-of-service and error correction provisioning |
CN101656512B (zh) | 2008-08-18 | 2012-06-27 | 富士通株式会社 | 功率放大器非线性程度度量装置、方法和预失真补偿装置 |
US9119164B2 (en) * | 2008-08-20 | 2015-08-25 | Qualcomm Incorporated | Generating access point beacons at different power levels |
US8355666B2 (en) * | 2008-09-10 | 2013-01-15 | Qualcomm Incorporated | Apparatus and method for interference-adaptive communications |
US8351536B2 (en) | 2008-09-11 | 2013-01-08 | Motorola Mobility Llc | Wireless communication of data symbols |
DE602008005454D1 (de) | 2008-09-25 | 2011-04-21 | Ericsson Telefon Ab L M | OFDM-Signalverarbeitung |
US8548041B2 (en) * | 2008-09-25 | 2013-10-01 | Mediatek Inc. | Adaptive filter |
US7830854B1 (en) | 2008-10-01 | 2010-11-09 | Sprint Spectrum L.P. | Variable auxiliary pilot trigger and performance |
CN102165705B (zh) * | 2008-10-27 | 2014-08-06 | 诺沃尔赛特有限公司 | 基于高性能超奈奎斯特信令机制的方法、装置和系统 |
WO2010056736A2 (en) * | 2008-11-11 | 2010-05-20 | Axis Network Technology Ltd. | Resource efficient adaptive digital pre-distortion system |
US20100119012A1 (en) * | 2008-11-11 | 2010-05-13 | Debajyoti Pal | Programmable wide band digital receiver/transmitter |
US8175186B1 (en) | 2008-11-20 | 2012-05-08 | L-3 Services, Inc. | Preserving the content of a communication signal corrupted by interference during transmission |
US8229040B2 (en) | 2008-12-23 | 2012-07-24 | Telefonaktiebolaget L M Ericsson (Publ) | Feedforward receiver and method for reducing inter-symbol interference by using joint soft values |
US8817769B2 (en) * | 2009-01-26 | 2014-08-26 | Qualcomm Incorporated | Power decision pilot for wireless communication |
US8571133B2 (en) * | 2009-02-10 | 2013-10-29 | Qualcomm Incorporated | Method and apparatus for transmitting a signal within a predetermined spectral mask |
US8804859B2 (en) | 2009-02-23 | 2014-08-12 | Mediatek, Inc. | Methods and apparatuses for dealing with spectrum inversion |
US9571326B2 (en) * | 2009-03-05 | 2017-02-14 | SeeScan, Inc. | Method and apparatus for high-speed data transfer employing self-synchronizing quadrature amplitude modulation |
US8170508B2 (en) | 2009-05-07 | 2012-05-01 | Rockstar Bidco Lp | Pre-distortion for a radio frequency power amplifier |
US8331500B2 (en) | 2009-05-13 | 2012-12-11 | Lg Electronics Inc. | Transmitting/receiving system and method of processing broadcast signal in transmitting/receiving system |
US8345784B2 (en) | 2009-06-05 | 2013-01-01 | Telefonaktiebolaget L M Ericsson (Publ) | Reduced-complexity equalization with sphere decoding |
CN101924723B (zh) * | 2009-06-09 | 2013-05-08 | 中兴通讯股份有限公司 | Ofdm信号解调方法和装置 |
US8243782B2 (en) * | 2009-06-29 | 2012-08-14 | Lsi Corporation | Statistically-adapted receiver and transmitter equalization |
US8498591B1 (en) | 2009-08-21 | 2013-07-30 | Marvell International Ltd. | Digital Predistortion for nonlinear RF power amplifiers |
US8619928B2 (en) | 2009-09-03 | 2013-12-31 | Qualcomm Incorporated | Multi-stage interference suppression |
CA2714786A1 (en) * | 2009-09-14 | 2011-03-14 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry Through The Communications Research Centre Canada | Multi-carrier amplifier linearization system and method |
US8638886B2 (en) | 2009-09-24 | 2014-01-28 | Credo Semiconductor (Hong Kong) Limited | Parallel viterbi decoder with end-state information passing |
US8355466B2 (en) | 2009-09-25 | 2013-01-15 | General Dynamics C4 Systems, Inc. | Cancelling non-linear power amplifier induced distortion from a received signal by moving incorrectly estimated constellation points |
US8744009B2 (en) | 2009-09-25 | 2014-06-03 | General Dynamics C4 Systems, Inc. | Reducing transmitter-to-receiver non-linear distortion at a transmitter prior to estimating and cancelling known non-linear distortion at a receiver |
US8705642B2 (en) * | 2009-10-20 | 2014-04-22 | King Fahd University Of Petroleum And Minerals | Method for mitigating interference in OFDM communications systems |
US8229709B2 (en) | 2009-10-30 | 2012-07-24 | Mitsubishi Electric Research Laboratories, Inc. | Method for reconstructing sparse signals from distorted measurements |
AU2010312304B2 (en) | 2009-10-30 | 2016-07-14 | Commonwealth Scientific And Industrial Research Organisation | Out-of-band emission cancellation |
US20110142181A1 (en) * | 2009-11-09 | 2011-06-16 | Amir Leshem | Communication system |
US9288096B2 (en) | 2009-12-07 | 2016-03-15 | Qualcomm Incorporated | Enabling phase tracking for a communication device |
US8422599B2 (en) | 2009-12-17 | 2013-04-16 | Electronics And Telecommunications Research Institute | Device and method of estimating symbol using second order differential phase vector |
US8331484B2 (en) | 2010-01-13 | 2012-12-11 | Cisco Technology, Inc. | Digital Predistortion training system |
US8660167B2 (en) | 2010-01-25 | 2014-02-25 | Intel Mobile Communications GmbH | Device and method for distortion-robust decoding |
US8300758B2 (en) * | 2010-01-28 | 2012-10-30 | Quantum Corporation | Adaptive filter using shifted reverse interpolation |
US8938018B2 (en) | 2010-04-05 | 2015-01-20 | Lg Electronics Inc. | Method and system for reducing inter carrier interference for OFDM |
US20110249709A1 (en) | 2010-04-08 | 2011-10-13 | Muh-Tian Shiue | DHT-Based OFDM Transmitter and Receiver |
US8170502B2 (en) | 2010-05-04 | 2012-05-01 | Hughes Network Systems, Llc | Phase pulse system and method for bandwidth and energy efficient continuous phase modulation |
US20140098841A2 (en) | 2010-06-07 | 2014-04-10 | University Of Delaware | Underwater acoustic multiple-input/multiple-output (mimo) communication systems and methods |
US8634398B2 (en) | 2010-06-18 | 2014-01-21 | Samsung Electronics Co., Ltd. | Method and system for mapping HARQ-ACK bits |
US8824543B2 (en) | 2010-06-18 | 2014-09-02 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry, Through The Communications Research Centre Canada | Multilayer decoding using persistent bits |
KR101440121B1 (ko) | 2010-07-28 | 2014-09-12 | 한국전자통신연구원 | 왜곡 보상 장치, 신호 송신 장치 및 그 방법 |
US8625722B2 (en) | 2010-07-30 | 2014-01-07 | Sensus Usa Inc. | GFSK receiver architecture and methodology |
US8477860B2 (en) | 2010-08-27 | 2013-07-02 | Telefonaktiebolaget L M Ericsson (Publ) | OFDM signal reception in the presence of interference |
US9001948B2 (en) | 2010-12-23 | 2015-04-07 | Texas Instruments Incorporated | Pulse shaping in a communication system |
WO2012092647A1 (en) | 2011-01-04 | 2012-07-12 | James Cook University | A method and system for linearising a radio frequency transmitter |
US8442161B2 (en) | 2011-02-15 | 2013-05-14 | National Instruments Corporation | Estimation of sample clock frequency offset using error vector magnitude |
US8817865B2 (en) * | 2011-03-09 | 2014-08-26 | Broadcom Corporation | Linear distortion and interference estimation using decision feedback equalizer coefficients |
US8675869B2 (en) | 2011-03-23 | 2014-03-18 | Blackberry Limited | Incorporating data into an ECDSA signature component |
US8774738B2 (en) | 2011-04-22 | 2014-07-08 | Broadcom Corporation | Closed loop power control for a wireless transmitter |
US20130028299A1 (en) | 2011-07-26 | 2013-01-31 | Himax Media Solutions, Inc. | Adaptive ethernet transceiver with joint decision feedback equalizer and trellis decoder |
US8519789B2 (en) | 2011-08-03 | 2013-08-27 | Scintera Networks, Inc. | Pre-distortion for fast power transient waveforms |
US9083590B2 (en) | 2011-08-15 | 2015-07-14 | Marvell World Trade Ltd | Long range WLAN data unit format |
WO2013030815A1 (en) | 2011-08-30 | 2013-03-07 | Dsp Group Ltd. | Amplifier linearization using predistortion |
CN102315914B (zh) * | 2011-09-01 | 2014-04-30 | 上海交通大学 | 多输入多输出空间相关信道下的鲁棒非线性收发装置 |
DE102011053501B4 (de) | 2011-09-12 | 2014-10-23 | Rwth Aachen | Vorrichtung zur Modifizierung von Trajektorien |
US9008094B2 (en) | 2011-09-27 | 2015-04-14 | Electronics And Telecommunications Research Institute | Data transmission and reception method and apparatus robust against phase noise for high efficiency satellite transmission |
US9130711B2 (en) | 2011-11-10 | 2015-09-08 | Microsoft Technology Licensing, Llc | Mapping signals from a virtual frequency band to physical frequency bands |
WO2013097875A1 (en) | 2011-12-28 | 2013-07-04 | Telefonaktiebolaget L M Ericsson (Publ) | Symbol detection technique |
US8731413B1 (en) * | 2012-01-23 | 2014-05-20 | Viasat, Inc. | DAC-based optical modulator and demodulator |
US9071207B2 (en) | 2012-02-03 | 2015-06-30 | Telefonaktiebolaget L M Ericsson (Publ) | Predistortion of concurrent multi-band signal to compensate for PA non-linearity |
US8811532B2 (en) * | 2012-03-16 | 2014-08-19 | Telefonaktiebolaget L M Ericsson (Publ) | Architecture and the training method of a PA DPD system with space mapping applied in the predistorter |
US20130266098A1 (en) * | 2012-04-04 | 2013-10-10 | Advanced Receiver Technologies, Llc | Multiple signal timing control for joint detection interference cancellation |
US8781008B2 (en) | 2012-06-20 | 2014-07-15 | MagnaCom Ltd. | Highly-spectrally-efficient transmission using orthogonal frequency division multiplexing |
US20150222456A1 (en) | 2012-06-20 | 2015-08-06 | MagnaCom Ltd. | Throughput scaling in a receiver |
US8737458B2 (en) | 2012-06-20 | 2014-05-27 | MagnaCom Ltd. | Highly-spectrally-efficient reception using orthogonal frequency division multiplexing |
US8665992B1 (en) | 2012-06-20 | 2014-03-04 | MagnaCom Ltd. | Pilot symbol generation for highly-spectrally-efficient communications |
US8982984B2 (en) | 2012-06-20 | 2015-03-17 | MagnaCom Ltd. | Dynamic filter adjustment for highly-spectrally-efficient communications |
US8855175B2 (en) * | 2012-08-02 | 2014-10-07 | Telefonaktiebolaget L M Ericsson (Publ) | Low complexity all-digital PIM compensator |
JP2014042141A (ja) | 2012-08-22 | 2014-03-06 | Mitsubishi Electric Corp | 受信装置及び受信方法 |
US8811548B2 (en) | 2012-11-14 | 2014-08-19 | MagnaCom, Ltd. | Hypotheses generation based on multidimensional slicing |
US9088400B2 (en) | 2012-11-14 | 2015-07-21 | MagnaCom Ltd. | Hypotheses generation based on multidimensional slicing |
JP5811106B2 (ja) | 2013-01-11 | 2015-11-11 | セイコーエプソン株式会社 | 映像処理装置、表示装置および映像処理方法 |
US9094269B2 (en) | 2013-03-25 | 2015-07-28 | Maxlinear, Inc. | Peak to average power ratio suppression |
EP2959602A1 (en) | 2013-06-13 | 2015-12-30 | Comtech EF Data Corp. | System and method for distortion-power adapted adaptive pre-distortion |
WO2015022581A2 (en) | 2013-08-15 | 2015-02-19 | MagnaCom Ltd. | Combined transmission precompensation and receiver nonlinearity mitigation |
WO2015033232A2 (en) | 2013-09-09 | 2015-03-12 | MagnaCom Ltd. | Adaptive nonlinear model learning |
US9118519B2 (en) | 2013-11-01 | 2015-08-25 | MagnaCom Ltd. | Reception of inter-symbol-correlated signals using symbol-by-symbol soft-output demodulator |
US8804879B1 (en) | 2013-11-13 | 2014-08-12 | MagnaCom Ltd. | Hypotheses generation based on multidimensional slicing |
US9130637B2 (en) | 2014-01-21 | 2015-09-08 | MagnaCom Ltd. | Communication methods and systems for nonlinear multi-user environments |
US20150311926A1 (en) | 2014-04-29 | 2015-10-29 | MagnaCom Ltd. | Acquisition of Nonlinearity in Electronic Communication Devices |
US8891701B1 (en) | 2014-06-06 | 2014-11-18 | MagnaCom Ltd. | Nonlinearity compensation for reception of OFDM signals |
-
2013
- 2013-01-31 US US13/756,079 patent/US8665992B1/en active Active
- 2013-01-31 US US13/755,043 patent/US8605832B1/en active Active
- 2013-01-31 US US13/755,026 patent/US8559498B1/en active Active
- 2013-01-31 US US13/755,972 patent/US8744003B2/en active Active
- 2013-01-31 US US13/755,068 patent/US8572458B1/en active Active
- 2013-01-31 US US13/756,010 patent/US8842778B2/en active Active
- 2013-01-31 US US13/755,021 patent/US8665941B1/en active Active
- 2013-01-31 US US13/755,018 patent/US8599914B1/en active Active
- 2013-01-31 US US13/755,028 patent/US8548097B1/en active Active
- 2013-01-31 US US13/755,001 patent/US8675769B1/en not_active Expired - Fee Related
- 2013-01-31 US US13/755,052 patent/US8824599B1/en active Active
- 2013-01-31 US US13/755,060 patent/US8566687B1/en active Active
- 2013-01-31 US US13/754,998 patent/US8897387B1/en active Active
- 2013-01-31 US US13/755,065 patent/US8548072B1/en active Active
- 2013-01-31 US US13/754,964 patent/US8582637B1/en active Active
- 2013-01-31 US US13/755,050 patent/US8553821B1/en active Active
- 2013-01-31 US US13/756,469 patent/US8526523B1/en not_active Expired - Fee Related
- 2013-01-31 US US13/755,039 patent/US8565363B1/en active Active
- 2013-01-31 US US13/755,011 patent/US8559494B1/en active Active
- 2013-01-31 US US13/755,008 patent/US8571131B1/en active Active
- 2013-01-31 US US13/755,025 patent/US8873612B1/en active Active
- 2013-01-31 US US13/755,054 patent/US8571146B1/en active Active
- 2013-01-31 US US13/755,014 patent/US8559496B1/en active Active
- 2013-06-14 WO PCT/IB2013/001970 patent/WO2014016682A2/en active Application Filing
- 2013-06-14 WO PCT/IB2013/002081 patent/WO2013190395A2/en active Search and Examination
- 2013-06-14 CN CN201380043457.4A patent/CN104584500B/zh not_active Expired - Fee Related
- 2013-06-14 EP EP13806280.7A patent/EP2873156A4/en not_active Withdrawn
- 2013-06-14 WO PCT/IB2013/001860 patent/WO2013190386A2/en active Application Filing
- 2013-06-14 EP EP13807399.4A patent/EP2865150B1/en active Active
- 2013-06-14 EP EP13822356.5A patent/EP2865097A4/en not_active Withdrawn
- 2013-06-14 CN CN201380041271.5A patent/CN104521141A/zh active Pending
- 2013-06-14 EP EP13806419.1A patent/EP2873157B1/en active Active
- 2013-06-14 CN CN201380042435.6A patent/CN104541454A/zh active Pending
- 2013-06-14 WO PCT/IB2013/001930 patent/WO2013190390A2/en active Application Filing
- 2013-06-20 CN CN201310364164.8A patent/CN103516647A/zh active Pending
- 2013-06-20 EP EP13822179.1A patent/EP2865151A4/en not_active Withdrawn
- 2013-06-20 WO PCT/IB2013/001923 patent/WO2014016681A2/en active Application Filing
- 2013-06-20 EP EP13823700.3A patent/EP2865152A4/en not_active Withdrawn
- 2013-06-20 KR KR1020157001543A patent/KR20150046003A/ko not_active Application Discontinuation
- 2013-06-20 CN CN201380041406.8A patent/CN104521203B/zh not_active Expired - Fee Related
- 2013-06-20 WO PCT/IB2013/001878 patent/WO2014016678A2/en active Application Filing
- 2013-06-20 CN CN201380042032.1A patent/CN104521204A/zh active Pending
- 2013-09-03 US US14/016,732 patent/US8675782B2/en not_active Expired - Fee Related
- 2013-09-30 US US14/040,983 patent/US8824572B2/en active Active
- 2013-09-30 US US14/041,064 patent/US9106292B2/en not_active Expired - Fee Related
- 2013-10-07 US US14/047,328 patent/US8824611B2/en active Active
- 2013-10-14 US US14/052,862 patent/US9071305B2/en active Active
- 2013-10-14 US US14/052,848 patent/US8885698B2/en active Active
- 2013-10-14 US US14/052,859 patent/US8976853B2/en active Active
- 2013-10-18 US US14/057,098 patent/US8972836B2/en active Active
- 2013-10-18 US US14/057,080 patent/US8885786B2/en active Active
- 2013-10-28 US US14/064,351 patent/US9003258B2/en active Active
- 2013-11-08 US US14/074,878 patent/US9231628B2/en active Active
- 2013-12-02 US US14/093,588 patent/US9166833B2/en not_active Expired - Fee Related
- 2013-12-09 US US14/100,060 patent/US8976911B2/en active Active
-
2014
- 2014-02-24 US US14/187,532 patent/US9577786B2/en not_active Expired - Fee Related
- 2014-02-24 US US14/187,478 patent/US8897405B2/en active Active
- 2014-05-30 US US14/291,065 patent/US9270416B2/en not_active Expired - Fee Related
- 2014-08-29 US US14/472,538 patent/US9100071B2/en not_active Expired - Fee Related
- 2014-08-29 US US14/472,559 patent/US9252822B2/en not_active Expired - Fee Related
- 2014-09-22 US US14/492,133 patent/US9130627B2/en not_active Expired - Fee Related
- 2014-10-27 US US14/524,078 patent/US20150156041A1/en not_active Abandoned
- 2014-11-10 US US14/537,193 patent/US20150131710A1/en not_active Abandoned
- 2014-11-10 US US14/537,149 patent/US9209843B2/en not_active Expired - Fee Related
- 2014-11-24 US US14/551,466 patent/US20150172079A1/en not_active Abandoned
- 2014-11-24 US US14/551,393 patent/US9264179B2/en not_active Expired - Fee Related
-
2015
- 2015-03-02 US US14/635,736 patent/US9467251B2/en active Active
- 2015-03-09 US US14/641,895 patent/US20150312065A1/en not_active Abandoned
- 2015-03-09 US US14/641,778 patent/US20150312000A1/en not_active Abandoned
-
2016
- 2016-03-11 US US15/067,924 patent/US20160254933A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4135057A (en) * | 1976-09-07 | 1979-01-16 | Arthur A. Collins, Inc. | High density digital transmission system |
US5291516A (en) * | 1991-05-13 | 1994-03-01 | Omnipoint Data Company, Inc. | Dual mode transmitter and receiver |
US20090086808A1 (en) * | 1998-11-03 | 2009-04-02 | Broadcom Corporation | Equalization And Decision-Directed Loops With Trellis Demodulation In High Definition TV |
US20040037374A1 (en) * | 1999-02-13 | 2004-02-26 | Broadcom Corporation | Efficient partial response equalization |
US20020172297A1 (en) * | 2001-04-09 | 2002-11-21 | Mikihiro Ouchi | Front end processor for data receiver and nonlinear distortion equalization method |
US7215716B1 (en) * | 2002-06-25 | 2007-05-08 | Francis J. Smith | Non-linear adaptive AM/AM and AM/PM pre-distortion compensation with time and temperature compensation for low power applications |
US20080207143A1 (en) * | 2007-02-28 | 2008-08-28 | Telefonaktiebolaget Lm Ericsson (Publ) | Radio communications using scheduled power amplifier backoff |
CN101198160A (zh) * | 2007-05-25 | 2008-06-11 | 北京大学 | 采用单通路射频前端实现gnss多模并行接收的方法及装置 |
CN101790256A (zh) * | 2009-01-22 | 2010-07-28 | 中兴通讯股份有限公司 | 一种收信机、发信机及其信号处理方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017059784A1 (en) * | 2015-10-06 | 2017-04-13 | Huawei Technologies Co., Ltd. | Apparatus and Method for Unified Mitigation of Correlative Additive and Multiplicative Noise |
CN108551431A (zh) * | 2018-04-20 | 2018-09-18 | 天津光电丰泰科技有限公司 | 基于因子图和线性滤波器的级联均衡模型及均衡算法 |
CN108551431B (zh) * | 2018-04-20 | 2021-01-26 | 天津光电丰泰科技有限公司 | 基于因子图和线性滤波器的级联均衡计算方法 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104541454A (zh) | 用于高频谱效率通信的多模接收器 | |
US8982984B2 (en) | Dynamic filter adjustment for highly-spectrally-efficient communications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150422 |