WO2016101255A1 - 一种信号补偿方法和设备 - Google Patents
一种信号补偿方法和设备 Download PDFInfo
- Publication number
- WO2016101255A1 WO2016101255A1 PCT/CN2014/095111 CN2014095111W WO2016101255A1 WO 2016101255 A1 WO2016101255 A1 WO 2016101255A1 CN 2014095111 W CN2014095111 W CN 2014095111W WO 2016101255 A1 WO2016101255 A1 WO 2016101255A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compensation
- filter coefficient
- coefficient
- previous
- balanced
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
- H04B10/69—Electrical arrangements in the receiver
- H04B10/697—Arrangements for reducing noise and distortion
- H04B10/6971—Arrangements for reducing noise and distortion using equalisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03178—Arrangements involving sequence estimation techniques
- H04L25/03248—Arrangements for operating in conjunction with other apparatus
- H04L25/03254—Operation with other circuitry for removing intersymbol interference
- H04L25/03267—Operation with other circuitry for removing intersymbol interference with decision feedback equalisers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/30—Marginal testing, e.g. by varying supply voltage
- G01R31/3004—Current or voltage test
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/30—Marginal testing, e.g. by varying supply voltage
- G01R31/3016—Delay or race condition test, e.g. race hazard test
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/25—Error detection or forward error correction by signal space coding, i.e. adding redundancy in the signal constellation, e.g. Trellis Coded Modulation [TCM]
- H03M13/256—Error detection or forward error correction by signal space coding, i.e. adding redundancy in the signal constellation, e.g. Trellis Coded Modulation [TCM] with trellis coding, e.g. with convolutional codes and TCM
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/02—Details
- H04B3/20—Reducing echo effects or singing; Opening or closing transmitting path; Conditioning for transmission in one direction or the other
- H04B3/23—Reducing echo effects or singing; Opening or closing transmitting path; Conditioning for transmission in one direction or the other using a replica of transmitted signal in the time domain, e.g. echo cancellers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03012—Arrangements for removing intersymbol interference operating in the time domain
- H04L25/03019—Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
- H04L25/03038—Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a non-recursive structure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03012—Arrangements for removing intersymbol interference operating in the time domain
- H04L25/03019—Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
- H04L25/03057—Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a recursive structure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L2025/03592—Adaptation methods
- H04L2025/03598—Algorithms
- H04L2025/03611—Iterative algorithms
- H04L2025/03617—Time recursive algorithms
Definitions
- the present invention relates to the field of optical communication technologies, and in particular, to a signal compensation method and device.
- a channel in which an optical fiber is used for communication constitutes a fiber-optic communication system.
- Optical fiber communication system has the characteristics of transmission frequency bandwidth, large communication capacity, small transmission loss, long relay distance and strong anti-electromagnetic interference capability. Loss and dispersion are the most important transmission characteristics of optical fiber, and also the basic of optical fiber communication system. problem.
- the optical pulse Due to the existence of dispersion, the optical pulse will be broadened when it is transmitted in the fiber channel.
- the broadening of the pulse will cause inter-symbol interference between adjacent pulses (English: Inter Symbol Interference; ISI), thus shortening the transmission distance.
- ISI Inter Symbol Interference
- the compensation mechanism includes: Forward-Forward Equalization (FFE) and feedback equalization (English: Decision- Feedback Equalization; Abbreviation: DFE) and Maximum Likelihood Sequence Equalization (English: Maximum-Likelihood Sequence Equalization; Abbreviation: MLSE).
- FFE Forward-Forward Equalization
- DFE Decision- Feedback Equalization
- MLSE Maximum Likelihood Sequence Equalization
- the system damage is pre-compensated by the FFE, and the controllable ISI is manufactured by the DEF.
- the controllable ISI generated by the MLSE is compensated, thereby improving the system performance of the optical fiber communication.
- the embodiments of the present invention provide a signal compensation method and device, which are used to solve the problem that the existing compensation mechanism does not improve the performance of the optical fiber communication system.
- a signal compensation device including: a first compensation module, a balanced filtering module, and a second compensation module, wherein:
- the first compensation module is configured to receive an input signal sequence that is interfered by inter-code crosstalk ISI, and perform filtering compensation on the received signal sequence by using a first filter coefficient to obtain a first compensation signal sequence, and Sending a first compensation signal sequence to the balanced filtering module;
- the balanced filtering module is configured to perform filter compensation on the first compensation signal sequence sent by the first compensation module by using a balanced filter coefficient, obtain a balance compensation result, and send the balance compensation result to the second a compensation module, wherein the balanced filter coefficient is obtained by adjusting a first compensation error sent by the second compensation module to an adjacent balanced filter coefficient used last time;
- the second compensation module is configured to receive the balance compensation result sent by the balanced filtering module, and perform sequence estimation on the received balance compensation result, and output the compensation error according to the previous calculation The value is compared with the compensation error value obtained from the previous previous calculation, and the first compensation error is calculated, and the first compensation error is sent to the balanced filtering module.
- the second compensation module is specifically configured to use a compensation error value obtained by an adjacent previous calculation and a compensation error value obtained by a previous previous calculation. The difference is the first compensation error.
- the second compensation module is further configured to receive the When the compensation result is balanced, the compensation error value of the currently received balance compensation result is calculated; and the compensation error value of the previous calculation and the compensation error value of the currently received balance compensation result are used to calculate the And compensating the error, and transmitting the calculated second compensation error to the balanced filtering module.
- the balancing The filtering module is specifically configured to obtain the jth balanced filter coefficient by:
- b j (current) b j (adjacent last time) + ⁇ *sign (e last time last previous -e adjacent last time );
- b j (current) is the coefficient weight of the obtained j-th balanced filter coefficient currently used; j ranges from 0 to L b ; L b is the length of the balanced filter coefficient; b j (the last time adjacent ) is the base coefficient weight of the j-th balanced filter coefficient used in the adjacent last time; ⁇ is the coefficient change length of the balanced filter coefficient; e is the last previous- e adjacent last time is the first compensation error; e The previous previous time is the compensation error value obtained from the previous previous calculation of the previous time; e is the previous compensation error value calculated last time.
- the first compensation module is further configured to send the first filter coefficient to the balanced filter module in an initialization phase
- the balanced filtering module is further configured to receive the first filter coefficient sent by the first compensation module, and determine an initialization balance used by the balanced filter module according to coefficient weights in the first filter coefficient The base coefficient weight of the filter coefficient; and the initial value of the balanced filter coefficient is obtained according to the basis coefficient weight of the initialized balanced filter coefficient used by the balanced filter module.
- the balanced filtering module is specifically configured to: if the first filter coefficient sent by the first compensation module is received for And determining, according to the coefficient weight in the first filter coefficient, a base coefficient weight of the initialized balanced filter coefficient used by the balanced filtering module by:
- b j is the base coefficient weight of the initialized j-th balanced filter coefficient; j ranges from 0 to L b ; L b is the length of the balanced filter coefficient; f i is the coefficient of the first filter coefficient of the jth term Weight; i ranges from 0 to L f ; L f is the length of the first filter coefficient.
- the first compensation module is further used for Calculating an error result according to the first compensation signal sequence obtained last time and the decision value of the first compensation signal sequence obtained last time, and adjusting the first filter coefficient by using the calculated error result;
- the currently received signal sequence is subjected to filter compensation by using the adjusted first filter coefficient.
- a signal compensation method including:
- Performing filter compensation on the first compensation signal sequence by using a balanced filter coefficient to obtain a balance compensation result wherein the balanced filter coefficient is obtained by adjusting a balanced filter coefficient of a previous last used by a first compensation error, where A compensation error is calculated from the compensation error value obtained from the previous previous calculation and the compensation error value obtained from the previous previous calculation;
- the received balance compensation result is subjected to sequence estimation and output.
- the first compensation error is calculated by using a compensation error value obtained from an adjacent previous calculation and a compensation error value obtained from a previous previous calculation.
- the difference between the compensation error value obtained in the previous previous calculation and the compensation error value obtained from the previous previous calculation is the first compensation error.
- the method further includes:
- the currently used j-th balanced filter coefficient is obtained by:
- b j (current) b j (adjacent last time) + ⁇ *sign (e last time last previous -e adjacent last time );
- b j (current) is the coefficient weight of the obtained j-th balanced filter coefficient currently used; j ranges from 0 to L b ; L b is the length of the balanced filter coefficient; b j (the last time adjacent ) is the base coefficient weight of the j-th balanced filter coefficient used in the adjacent last time ; ⁇ is the coefficient change length of the balanced filter coefficient; e is the last previous- e adjacent last time is the first compensation error; e The previous previous time is the compensation error value obtained from the previous previous calculation of the previous time; e is the previous compensation error value calculated last time.
- the method further includes:
- the initial value of the balanced filter coefficient is obtained according to the basis coefficient weight of the initialized balanced filter coefficient.
- determining a base coefficient weight of the initialized balanced filter coefficient according to the coefficient weight in the first filter coefficient includes:
- the base coefficient weight of the initialized balanced filter coefficient is determined by:
- b j is the base coefficient weight of the initialized j-th balanced filter coefficient; j ranges from 0 to L b ; L b is the length of the balanced filter coefficient; f i is the coefficient of the first filter coefficient of the jth term Weight; i ranges from 0 to L f ; L f is the length of the first filter coefficient.
- the method further includes:
- the received signal sequence is filtered and compensated by using the first filter coefficient to obtain a first compensation signal sequence, including:
- the currently received signal sequence is subjected to filter compensation by using the adjusted first filter coefficient to obtain a first compensation signal sequence.
- a signal compensation device comprising:
- a signal receiver for receiving an input signal sequence interfered by inter-code crosstalk ISI;
- a processor configured to perform filter compensation on the received signal sequence by using a first filter coefficient to obtain a first compensation signal sequence; and perform filter compensation on the first compensation signal sequence by using a balanced filter coefficient to obtain a balance compensation result
- the balance filter coefficient is obtained by adjusting the balance filter coefficient of the last used last time by the first compensation error, and the first compensation error is obtained by the compensation error value obtained according to the previous previous calculation and the adjacent previous time.
- the calculated compensation error value obtained from the previous calculation is calculated;
- a signal transmitter configured to perform the sequence estimation on the received balance compensation result and output the result.
- the processor is calculated according to the compensation error value obtained by the previous previous calculation and the compensation error value obtained by the previous previous calculation, including:
- the difference between the compensation error value obtained in the previous previous calculation and the compensation error value obtained from the previous previous calculation is the first compensation error.
- the processor is further configured to receive the balance compensation sent by the balanced filtering module As a result, calculating a compensation error value of the currently received balance compensation result;
- the processor is Get the j-th balanced filter coefficient currently used:
- b j (current) b j (adjacent last time) + ⁇ *sign (e last time last previous -e adjacent last time );
- b j (current) is the coefficient weight of the obtained j-th balanced filter coefficient currently used; j ranges from 0 to L b ; L b is the length of the balanced filter coefficient; b j (the last time adjacent ) is the base coefficient weight of the j-th balanced filter coefficient used in the adjacent last time; ⁇ is the coefficient change length of the balanced filter coefficient; e is the last previous- e adjacent last time is the first compensation error; e The previous previous time is the compensation error value obtained from the previous previous calculation of the previous time; e is the previous compensation error value calculated last time.
- the processor is further configured to determine, according to a coefficient weight in the first filter coefficient, a base coefficient weight of the initialized balanced filter coefficient in an initialization phase; and based on the basic coefficient of the initialized balanced filter coefficient Weight, the initial value of the balanced filter coefficient is obtained.
- the determining, by the processor, the basis weight of the initialized balanced filter coefficient according to the coefficient weight in the first filter coefficient including:
- the base coefficient weight of the initialized balanced filter coefficient is determined by:
- b j is the base coefficient weight of the initialized j-th balanced filter coefficient; j ranges from 0 to L b ; L b is the length of the balanced filter coefficient; f i is the coefficient of the first filter coefficient of the jth term Weight; i ranges from 0 to L f ; L f is the length of the first filter coefficient.
- the processor is further configured to obtain the previous The first compensation signal sequence and the decision value of the first compensation signal sequence obtained last time are used to calculate an error result; and the first filter coefficient is adjusted by using the calculated error result;
- the currently received signal sequence is subjected to filter compensation by using the adjusted first filter coefficient to obtain a first compensation signal sequence.
- the embodiment of the present invention receives the input signal sequence subjected to ISI interference, performs filtering compensation on the received signal sequence by using the first filter coefficient, and obtains a first compensation signal sequence; and uses the balanced filter coefficient to the first compensation signal.
- the sequence is subjected to filter compensation to obtain a balance compensation result, and the balanced filter coefficient is obtained by adjusting the balance filter coefficient of the last used last time by the first compensation error, and the first compensation error is obtained by compensation according to the previous previous calculation.
- the error value is calculated by the compensation error value obtained from the previous previous calculation; the received balance compensation result is sequence-estimated and output; since the first compensation error is generated by the back-end compensation module, the first compensation is utilized.
- the error adjusts the balanced filter coefficient by iterative method, and uses the adjusted balanced filter coefficient to filter and compensate the first compensation signal sequence, balances the performance between the compensation modules at all levels, and effectively compensates the signal sequence interfered by ISI. Improve the system performance of fiber-optic communication.
- FIG. 1 is a schematic structural diagram of a signal compensation device according to the present invention.
- FIG. 2 is a schematic flow chart of a signal compensation method provided by the present invention.
- FIG. 3 is a schematic structural diagram of a signal compensation device according to the present invention.
- an embodiment of the present invention provides a signal compensation method and apparatus, which receives an input signal sequence interfered by ISI, and performs filtering compensation on the received signal sequence by using a first filter coefficient to obtain a first a compensation signal sequence; performing filtering compensation on the first compensation signal sequence by using a balanced filter coefficient to obtain a balance compensation result, wherein the balanced filter coefficient is adjusted by the first compensation error on the adjacent balanced filter coefficient used last time, The first compensation error is calculated by the compensation error value obtained according to the previous previous calculation and the compensation error value obtained by the previous previous calculation; and the received balance compensation result is sequence-estimated and output; Since the first compensation error is generated by the back-end compensation module, the balanced compensation coefficient is adjusted by an iterative method using the first compensation error, and the first compensation signal sequence is filtered and compensated by the adjusted balanced filter coefficient, and the compensation modules of each level are balanced. Between the performance, effectively the signal sequence interfered with by ISI Compensation to improve system performance of optical fiber communication.
- FIG. 1 is a schematic structural diagram of a signal compensation device according to an embodiment of the present invention.
- the signal compensation device includes: a first compensation module 11, a balanced filter module 12, and a second compensation module 13, wherein:
- the first compensation module 11 is configured to receive an input signal sequence interfered by ISI, and perform filtering compensation on the received signal sequence by using a first filter coefficient to obtain a first compensation signal sequence. Column, and the first compensation signal sequence is sent to the balanced filtering module 12;
- the balanced filtering module 12 is configured to perform filter compensation on the first compensation signal sequence sent by the first compensation module 11 by using a balanced filter coefficient, obtain a balance compensation result, and send the balance compensation result to the a second compensation module 13 , wherein the balanced filter coefficient is obtained by adjusting a first compensation error sent by the second compensation module 13 to an adjacent balanced filter coefficient used last time;
- the second compensation module 13 is configured to receive the balance compensation result sent by the balanced filtering module 12, and perform sequence estimation on the received balance compensation result, and output according to the previous calculation.
- the compensation error value is calculated from the compensation error value obtained from the previous previous calculation, and the first compensation error is sent to the balanced filter module 12.
- the first compensation module 11 is further configured to calculate an error result according to a previous first obtained compensation signal sequence and a previous determination result of the first obtained first compensation signal sequence, and use the calculation The obtained error result adjusts the first filter coefficient; and uses the adjusted first filter coefficient to perform filter compensation on the currently received signal sequence.
- the decision value of the first compensation signal sequence obtained last time is the value obtained by quantizing the sequence of the first compensation signal obtained last time.
- the first compensation module 11 may include a filter 111 and a coefficient configuration unit 112.
- the first compensation module 11 can also be an error calculation unit 113.
- the filter 111 is configured to receive the input signal sequence subjected to ISI interference, and perform the filter compensation on the received signal sequence by using the first filter coefficient configured by the coefficient configuration unit 112 to obtain a first compensation signal sequence, and The first compensation signal sequence is sent to the balanced filtering module 12.
- the received signal sequence of the ISI interference may be
- r k is the kth signal
- n k is the noise of the kth signal
- c a is the coefficient to be compensated
- a ranges from 0 to L c
- L c is the channel memory length
- x is the signal sequence .
- the coefficient configuration unit 112 is configured to configure the first filter coefficient.
- the first filter coefficient can be adaptively configured by an FFE or DFE structure by a least mean square algorithm (English: Least mean square; abbreviation LMS) or other algorithms.
- the first filter coefficient is Where f i is the i-th coefficient weight of the first filter coefficient; i ranges from 0 to L f ; L f is the length of the first filter coefficient.
- L f is generally required to be greater than or equal to L c .
- the coefficient configuration unit 112 can be configured to configure an initial first filter coefficient, and the first filter coefficient obtained thereafter is obtained by adjusting the error result sent by the error calculation unit 113.
- the error calculation unit 113 is configured to calculate an error result according to the first compensation signal sequence obtained last time and the decision value of the first compensation signal sequence obtained last time, and send the error result to the coefficient configuration unit 112. .
- the coefficient configuration unit 112 is specifically configured to adjust the first filter coefficient by using an error result sent by the error calculation unit 113; and send the adjusted first filter coefficient to the filter 111.
- the signal compensation device described in the embodiment of the present invention is a cyclically executed device, and after the second compensation module 13 sends the calculated second compensation error to the balanced filter module 12, the balance The filtering module 12 can adjust the balanced filter coefficients by using the second compensation error, so as to perform filtering compensation when receiving the first signal compensation sequence sent by the first compensation module 11.
- the second compensation module adjusts the balance filter coefficients used by the balanced filter module by the difference between the compensation error values calculated by the two adjacent calculations to achieve the purpose of balancing the performance of each compensation module.
- the second compensation module 13 is specifically configured to compare the compensation error value obtained in the previous previous calculation with the compensation error value obtained in the previous previous calculation, and the difference is the first compensation. error.
- the second compensation module 13 is further configured to receive, after receiving, the balanced filtering module Calculating the compensation error value of the currently received balance compensation result when calculating the balance compensation result; and calculating the compensation error value of the previous calculated compensation error value and the currently received compensation error value A second compensation error is obtained, and the calculated second compensation error is sent to the balanced filtering module 12.
- the balanced filtering module 12 is specifically configured to obtain the jth balanced filter coefficient by:
- b j (current) b j (adjacent last time) + ⁇ *sign (e last time last previous -e adjacent last time );
- b j (current) is the coefficient weight of the obtained j-th balanced filter coefficient currently used; j ranges from 0 to L b ; L b is the length of the balanced filter coefficient; b j (the last time adjacent ) is the base coefficient weight of the j-th balanced filter coefficient used in the adjacent last time; ⁇ is the coefficient change length of the balanced filter coefficient; e is the last previous- e adjacent last time is the first compensation error; e The previous previous time is the compensation error value obtained from the previous previous calculation of the previous time; e is the previous compensation error value calculated last time.
- the first compensation module 11 is further configured to send the first filter coefficient to the balanced filtering module 12 in an initialization phase
- the balanced filtering module 12 is further configured to receive the first filter coefficient sent by the first compensation module, and determine an initialization used by the balanced filter module according to a coefficient weight in the first filter coefficient. Balancing the base coefficient weight of the filter coefficient; and obtaining an initial value of the balanced filter coefficient according to the basis coefficient weight of the initialized balanced filter coefficient used by the balanced filter module.
- the balancing filter module 13 is specifically configured to: if the received first filtering coefficient sent by the first compensation module is And determining, according to the coefficient weight in the first filter coefficient, a base coefficient weight of the initialized balanced filter coefficient used by the balanced filtering module by:
- b j is the base coefficient weight of the initialized j-th balanced filter coefficient; j ranges from 0 to L b ; L b is the length of the balanced filter coefficient; f i is the coefficient of the first filter coefficient of the jth term Weight; i ranges from 0 to L f ; L f is the length of the first filter coefficient.
- the balanced filtering module 13 is specifically configured to obtain a balanced filter coefficient according to coefficient weights of the balanced filter coefficients obtained after the adjustment, for example, the obtained balanced filter coefficients are:
- b j is the coefficient weight of the adjusted j-th balanced filter coefficient; j ranges from 0 to L b ; L b is the length of the balanced filter coefficient.
- the signal compensation device described in the embodiment of the present invention may be implemented by hardware or by software, which is not limited herein. Since the first compensation error is generated by the back-end compensation module, the first compensation error is balanced by iterative method. The filter coefficient is adjusted, and the first compensation signal sequence is filtered and compensated by the adjusted balanced filter coefficient, which balances the performance between the compensation modules at all levels, effectively compensates the signal sequence interfered by ISI, and improves the optical fiber communication. System performance.
- FIG. 2 is a schematic flowchart diagram of a signal compensation method according to an embodiment of the present invention. The method can be as follows.
- Step 201 Receive an input signal sequence that is interfered by ISI.
- step 201 since the communication signal is prone to ISI on the optical fiber communication link, for example, bandwidth limitation from the optical transmitter or the electro-optical receiver, etc., the communication signal generates ISI.
- r k is the kth signal
- n k is the noise of the kth signal
- c a is the coefficient to be compensated
- a ranges from 0 to L c
- L c is the channel memory length
- x is the signal sequence .
- Step 202 Perform filtering compensation on the received signal sequence by using the first filter coefficient to obtain a first compensation signal sequence.
- the first filter coefficient may be an initial configuration of the filter coefficient, or may be obtained by adjusting the filter coefficient used last time by feedback.
- the FFE or DFE structure may be adopted, and the least mean square algorithm (English: Least mean square; abbreviation LMS) or other algorithms may be used for adaptation. Configure the first filter coefficient.
- the first filter coefficient is Where f i is the i-th coefficient weight of the first filter coefficient; i ranges from 0 to L f ; L f is the length of the first filter coefficient.
- L f is generally required to be greater than or equal to L c .
- the first filter coefficient is obtained by adjusting the filter coefficient of the last use by the error result of the feedback, specifically:
- the first filter coefficient (ie, the filter coefficient used last time) is adjusted by using the calculated error result to obtain the adjusted first filter coefficient.
- Step 203 Perform filtering compensation on the first compensation signal sequence by using a balanced filter coefficient to obtain a balance compensation result.
- the balanced filter coefficient is obtained by adjusting a first compensation error to an adjacent balanced filter coefficient used last time, and the first compensation error is obtained by a compensation error value obtained according to an adjacent previous calculation and an adjacent previous time The compensation error value obtained in the previous calculation is calculated.
- step 203 the j-th balanced filter coefficient currently used is obtained by:
- b j (current) b j (adjacent last time) + ⁇ *sign (e last time last previous -e adjacent last time );
- b j (current) is the coefficient weight of the obtained j-th balanced filter coefficient currently used; j ranges from 0 to L b ; L b is the length of the balanced filter coefficient; b j (the last time adjacent ) is the base coefficient weight of the j-th balanced filter coefficient used in the adjacent last time; ⁇ is the coefficient change length of the balanced filter coefficient; e is the last previous- e adjacent last time is the first compensation error; e The previous previous time is the compensation error value obtained from the previous previous calculation of the previous time; e is the previous compensation error value calculated last time.
- the balanced filter coefficients are obtained in an iterative manner.
- the initial value of the balanced filter coefficient is determined by:
- the initial balance filter is determined according to the coefficient weights in the first filter coefficient.
- the initial value of the balanced filter coefficient is obtained according to the basis coefficient weight of the initialized balanced filter coefficient.
- the base coefficient weight of the initialized balanced filter coefficient is determined by:
- b j is the base coefficient weight of the initialized j-th balanced filter coefficient; j ranges from 0 to L b ; L b is the length of the balanced filter coefficient; f i is the coefficient of the first filter coefficient of the jth term Weight; i ranges from 0 to L f ; L f is the length of the first filter coefficient.
- Step 204 Perform the sequence estimation on the received balance compensation result and output.
- Step 205 When receiving the balance compensation result sent by the balanced filtering module, calculate a compensation error of the currently received balance compensation result; and use the previously calculated compensation error value and the currently received compensation error value.
- the compensation error value of the balance compensation result is jumped to step 203.
- the second compensation error is used to adjust the currently used balanced filter coefficient.
- step 205 the compensation error value calculated last time is compared with the compensation error value of the currently received balance compensation result, and the obtained difference is the second compensation error.
- step 205 is a feedback operation, and the balance filter coefficients used by the balanced filter module are adjusted by the error between the two adjacent compensation results to achieve balance of the compensation modules.
- the input signal sequence subjected to ISI interference is received, and the received signal sequence is filtered and compensated by using the first filter coefficient to obtain a first compensation signal sequence;
- a compensation signal sequence is subjected to filter compensation to obtain a balance compensation result, wherein the balanced filter coefficient is obtained by adjusting a first compensation error to an adjacent balanced filter coefficient used last time, and the first compensation error is determined according to the adjacent
- the filter compensation is performed to balance the performance between the compensation modules at all levels, effectively compensating the signal sequence interfered by ISI, and improving the system performance of the optical fiber communication.
- FIG. 3 is a schematic structural diagram of a signal compensation device according to an embodiment of the present invention.
- the signal compensation device has the above-mentioned signal compensation function, and can adopt a general-purpose computer structure.
- the signal compensation device entity may include a signal receiver 31, a processor 32, and a signal transmitter 33, wherein:
- a signal receiver 31 configured to receive an input signal sequence interfered by inter-symbol interference ISI;
- the processor 32 is configured to perform filter compensation on the received signal sequence by using the first filter coefficient to obtain a first compensation signal sequence, and perform filter compensation on the first compensation signal sequence by using a balanced filter coefficient to obtain balance compensation. a result, wherein the balanced filter coefficient is obtained by adjusting a balanced filter coefficient of a previous last used by a first compensation error, and the first compensation error is obtained by a compensation error value obtained according to an adjacent previous calculation The compensation error value obtained in the previous calculation is calculated once;
- the signal transmitter 33 is configured to perform the sequence estimation on the received balance compensation result and output the result.
- the processor 32 is calculated according to the compensation error value obtained by the previous calculation and the compensation error value obtained by the previous previous calculation, including:
- the difference between the compensation error value obtained in the previous previous calculation and the compensation error value obtained from the previous previous calculation is the first compensation error.
- the processor 32 is further configured to: when receiving the balance compensation result sent by the balanced filtering module, calculate a compensation error value of the currently received balance compensation result;
- the processor 32 obtains the j-th balanced filtering system currently used by the following manner. number:
- b j (current) b j (adjacent last time) + ⁇ *sign (e last time last previous -e adjacent last time );
- b j (current) is the coefficient weight of the obtained j-th balanced filter coefficient currently used; j ranges from 0 to L b ; L b is the length of the balanced filter coefficient; b j (the last time adjacent ) is the base coefficient weight of the j-th balanced filter coefficient used in the adjacent last time; ⁇ is the coefficient change length of the balanced filter coefficient; e is the last previous- e adjacent last time is the first compensation error; e The previous previous time is the compensation error value obtained from the previous previous calculation of the previous time; e is the previous compensation error value calculated last time.
- the processor 32 is further configured to determine, according to coefficient weights in the first filter coefficient, a base coefficient weight of the initialized balanced filter coefficient in an initialization phase, and obtain a base coefficient weight according to the initialized balanced filter coefficient. The initial value of the balanced filter coefficient.
- the processor 32 determines, according to the coefficient weight in the first filter coefficient, a base coefficient weight of the initialized balanced filter coefficient, including:
- the base coefficient weight of the initialized balanced filter coefficient is determined by:
- b j is the base coefficient weight of the initialized j-th balanced filter coefficient; j ranges from 0 to L b ; L b is the length of the balanced filter coefficient; f i is the coefficient of the first filter coefficient of the jth term Weight; i ranges from 0 to L f ; L f is the length of the first filter coefficient.
- the processor 32 is further configured to calculate an error result according to the first compensation signal sequence obtained last time and the decision value of the first previously obtained first compensation signal sequence; and use the calculated error As a result, the first filter coefficient is adjusted;
- the currently received signal sequence is subjected to filter compensation by using the adjusted first filter coefficient to obtain a first compensation signal sequence.
- the processor 32 can be a general-purpose processor, including a central processing unit (English: central processing unit, abbreviated: CPU), a network processor (English: Network Processor; abbreviation: NP), etc.; or a combination of CPU and hardware chips.
- Processor 31 can also be a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable logic device, discrete gate or transistor logic device, discrete hardware component.
- DSP digital signal processor
- ASIC application specific integrated circuit
- FPGA field programmable gate array
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Probability & Statistics with Applications (AREA)
- Electromagnetism (AREA)
- Optical Communication System (AREA)
- Computer Hardware Design (AREA)
- Quality & Reliability (AREA)
Abstract
本发明公开了一种信号补偿方法和设备,包括:接收输入的受到ISI干扰的信号序列,利用第一滤波系数对接收到的信号序列进行滤波补偿,得到第一补偿信号序列;利用平衡滤波系数对第一补偿信号序列进行滤波补偿,得到平衡补偿结果,平衡滤波系数由第一补偿误差对相邻上一次使用的平衡滤波系数进行调整得到;将接收到的平衡补偿结果进行序列估计后输出;由于第一补偿误差由后端补偿模块产生,利用第一补偿误差通过迭代方式对平衡滤波系数进行调整,利用平衡滤波系数对第一补偿信号序列进行滤波补偿,有效地对受到ISI干扰的信号序列进行补偿,提升光纤通信的系统性能。
Description
本发明涉及光通信技术领域,尤其涉及一种信号补偿方法和设备。
在通信技术的发展过程中,围绕着增加信息传输的速率和距离,提高通信系统的有效性、可靠性和经济性方面进行了许多工作,取得了很多卓越的成就。而光通信技术则是当代通信技术发展的最新成就,已经成为了现代通信的基石,是未来信息社会中各种信息的主要传送工具。
将光纤用做通信的信道构成光纤通信系统。光纤通信系统在具备了传输频带宽,通信容量大、传输损耗小、中继距离长、抗电磁干扰能力强的特性之外,损耗和色散是光纤最重要的传输特性,也是光纤通信系统的基本问题。
由于色散的存在,光脉冲在光纤信道中传输时会发生展宽现象,这种脉冲的展宽会造成相邻脉冲间的码间串扰(英文:Inter Symbol Interference;缩写:ISI),从而缩短了传输距离、增加了系统的误码率,从而降低光纤通信系统的性能。
为了减少或者消除ISI对信道性能造成的影响,提出一种信号带宽的补偿机制,该补偿机制具体包括:前向均衡(英文:Feed-Forward Equalization;缩写:FFE)、反馈均衡(英文:Decision-Feedback Equalization;缩写:DFE)和最大似然均衡(英文:Maximum-Likelihood Sequence Equalization;缩写:MLSE)。通过FFE对系统损伤进行预补偿,同时用DEF来制造可控的ISI,最后通过MLSE对产生的可控的ISI进行补偿,进而提升了光纤通信的系统性能。
但是,在上述补偿机制中,存在以下缺陷:在进行系统补偿时只在FFE和DFE之间做滤波系数平衡,导致通过这种补偿机制来改善光纤通信的系统性能,无法满足人们对光纤通信的系统性能要求。
发明内容
有鉴于此,本发明实施例提供了一种信号补偿方法和设备,用于解决目前已有的补偿机制对光纤通信的系统性能的提升不高的问题。
第一方面,提供了一种信号补偿设备,包括:第一补偿模块、平衡滤波模块和第二补偿模块,其中:
所述第一补偿模块,用于接收输入的受到码间串扰ISI干扰的信号序列,利用第一滤波系数对接收到的所述信号序列进行滤波补偿,得到第一补偿信号序列,并将所述第一补偿信号序列发送给所述平衡滤波模块;
所述平衡滤波模块,用于利用平衡滤波系数对所述第一补偿模块发送的所述第一补偿信号序列进行滤波补偿,得到平衡补偿结果,并将所述平衡补偿结果发送给所述第二补偿模块,其中,所述平衡滤波系数由所述第二补偿模块发送的第一补偿误差对相邻上一次使用的平衡滤波系数进行调整得到;
所述第二补偿模块,用于接收所述平衡滤波模块发送的所述平衡补偿结果,并对接收到的所述平衡补偿结果进行序列估计后输出,以及根据相邻上一次计算得到的补偿误差值与相邻上一次的上一次计算得到的补偿误差值计算得到第一补偿误差,并将所述第一补偿误差发送给所述平衡滤波模块。
结合第一方面,在第一种可能的实施方式中,所述第二补偿模块,具体用于将相邻上一次计算得到的补偿误差值与相邻上一次的上一次计算得到的补偿误差值作差,得到的差值为第一补偿误差。
结合第一方面,或者结合第一方面的第一种可能的实施方式,在第二种可能的实施方式中,所述第二补偿模块,还用于在接收所述平衡滤波模块发送的所述平衡补偿结果时,计算当前接收到的所述平衡补偿结果的补偿误差值;并利用相邻上一次计算到的补偿误差值与当前接收到的所述平衡补偿结果的补偿误差值,计算得到第二补偿误差,并将计算得到的所述第二补偿误差发送给所述平衡滤波模块。
结合第一方面,或者结合第一方面的第一种可能的实施方式,或者结合第一方面的第二种可能的实施方式,在第三种可能的实施方式中,所述平衡
滤波模块,具体用于通过以下方式得到第j项平衡滤波系数:
bj(当前)=bj(相邻上一次)+μ*sign(e相邻上一次的上一次-e相邻上一次);
其中,bj(当前)为得到的当前使用的第j项平衡滤波系数的系数权重;j的取值范围为0至Lb;Lb为平衡滤波系数的长度;bj(相邻上一次)为相邻上一次使用的第j项平衡滤波系数的基础系数权重;μ为平衡滤波系数的系数变化长度;e相邻上一次的上一次-e相邻上一次为第一补偿误差;e相邻上一次的上一次为相邻上一次的上一次计算得到的补偿误差值;e相邻上一次为相邻上一次计算得到的补偿误差值。
结合第一方面,或者结合第一方面的第一种可能的实施方式,或者结合第一方面的第二种可能的实施方式,或者结合第一方面的第三种可能的实施方式,在第四种可能的实施方式中,所述第一补偿模块,还用于在初始化阶段,将第一滤波系数发送给所述平衡滤波模块;
所述平衡滤波模块,还用于接收所述第一补偿模块发送的所述第一滤波系数,并根据所述第一滤波系数中的系数权重,确定所述平衡滤波模块所使用的初始化的平衡滤波系数的基础系数权重;并根据所述平衡滤波模块所使用的初始化的平衡滤波系数的基础系数权重,得到平衡滤波系数的初始值。
结合第一方面的第四种可能的实施方式,在第五种可能的实施方式中,所述平衡滤波模块,具体用于若接收到的所述第一补偿模块发送的所述第一滤波系数为则通过以下方式根据所述第一滤波系数中的系数权重,确定所述平衡滤波模块所使用的初始化的平衡滤波系数的基础系数权重:
b0=f0;bj=-fi;
其中,bj为初始化的第j项平衡滤波系数的基础系数权重;j的取值范围为0至Lb;Lb为平衡滤波系数的长度;fi为第j项第一滤波系数的系数权重;i的取值范围为0至Lf;Lf为第一滤波系数的长度。
结合第一方面,或者结合第一方面的第一种可能的实施方式,或者结合第一方面的第二种可能的实施方式,或者结合第一方面的第三种可能的实施
方式,或者结合第一方面的第四种可能的实施方式,或者结合第一方面的第五种可能的实施方式,在第六种可能的实施方式中,所述第一补偿模块,还用于根据相邻上一次得到的第一补偿信号序列与相邻上一次得到的第一补偿信号序列的判决值,计算误差结果,并利用计算得到的误差结果对所述第一滤波系数进行调整;并利用调整后的第一滤波系数对当前接收到的所述信号序列进行滤波补偿。
第二方面,提供了一种信号补偿方法,包括:
接收输入的受到码间串扰ISI干扰的信号序列,利用第一滤波系数对接收到的所述信号序列进行滤波补偿,得到第一补偿信号序列;
利用平衡滤波系数对所述第一补偿信号序列进行滤波补偿,得到平衡补偿结果,其中,所述平衡滤波系数由第一补偿误差对相邻上一次使用的平衡滤波系数进行调整得到,所述第一补偿误差由根据相邻上一次计算得到的补偿误差值与相邻上一次的上一次计算得到的补偿误差值计算得到;
将接收到的所述平衡补偿结果进行序列估计后输出。
结合第二方面,在第一种可能的实施方式中,所述第一补偿误差由根据相邻上一次计算得到的补偿误差值与相邻上一次的上一次计算得到的补偿误差值计算得到,包括:
将相邻上一次计算得到的补偿误差值与相邻上一次的上一次计算得到的补偿误差值作差,得到的差值为第一补偿误差。
结合第二方面,或者结合第二方面的第一种可能的实施方式,在第二种可能的实施方式中,所述方法还包括:
在接收所述平衡滤波模块发送的所述平衡补偿结果时,计算当前接收到的所述平衡补偿结果的补偿误差;并
利用相邻上一次计算到的补偿误差值与当前接收到的所述平衡补偿结果的补偿误差值,计算得到第二补偿误差,其中,所述第二补偿误差用于调整当前使用的平衡滤波系数。
结合第二方面,或者结合第二方面的第一种可能的实施方式,或者结合
第二方面的第二种可能的实施方式,在第三种可能的实施方式中,通过以下方式得到当前使用的第j项平衡滤波系数:
bj(当前)=bj(相邻上一次)+μ*sign(e相邻上一次的上一次-e相邻上一次);
其中,bj(当前)为得到的当前使用的第j项平衡滤波系数的系数权重;j的取值范围为0至Lb;Lb为平衡滤波系数的长度;bj(相邻上一次)为相邻上一次使用的第j项平衡滤波系数的基础系数权重;μ为平衡滤波系数的系数变化长度;e相邻上一次的上一次-e相邻上一次为第一补偿误差;e相邻上一次的上一次为相邻上一次的上一次计算得到的补偿误差值;e相邻上一次为相邻上一次计算得到的补偿误差值。
结合第二方面,或者结合第二方面的第一种可能的实施方式,或者结合第二方面的第二种可能的实施方式,或者结合第二方面的第三种可能的实施方式,在第四种可能的实施方式中,所述方法还包括:
在初始化阶段,根据第一滤波系数中的系数权重,确定初始化的平衡滤波系数的基础系数权重;并
根据初始化的平衡滤波系数的基础系数权重,得到平衡滤波系数的初始值。
结合第二方面的第四种可能的实施方式,在第五种可能的实施方式中,根据第一滤波系数中的系数权重,确定初始化的平衡滤波系数的基础系数权重,包括:
b0=f0;bj=-fi;
其中,bj为初始化的第j项平衡滤波系数的基础系数权重;j的取值范围为0至Lb;Lb为平衡滤波系数的长度;fi为第j项第一滤波系数的系数权重;i的取值范围为0至Lf;Lf为第一滤波系数的长度。
结合第二方面,或者结合第二方面的第一种可能的实施方式,或者结合
第二方面的第二种可能的实施方式,或者结合第二方面的第三种可能的实施方式,或者结合第二方面的第四种可能的实施方式,或者结合第二方面的第五种可能的实施方式,在第六种可能的实施方式中,所述方法还包括:
根据相邻上一次得到的第一补偿信号序列与相邻上一次得到的第一补偿信号序列的判决值,计算误差结果;并
利用计算得到的误差结果对所述第一滤波系数进行调整;
利用第一滤波系数对接收到的所述信号序列进行滤波补偿,得到第一补偿信号序列,包括:
利用调整后的第一滤波系数对当前接收到的所述信号序列进行滤波补偿,得到第一补偿信号序列。
第三方面,提供了一种信号补偿设备,包括:
信号接收器,用于接收输入的受到码间串扰ISI干扰的信号序列;
处理器,用于利用第一滤波系数对接收到的所述信号序列进行滤波补偿,得到第一补偿信号序列;以及利用平衡滤波系数对所述第一补偿信号序列进行滤波补偿,得到平衡补偿结果,其中,所述平衡滤波系数由第一补偿误差对相邻上一次使用的平衡滤波系数进行调整得到,所述第一补偿误差由根据相邻上一次计算得到的补偿误差值与相邻上一次的上一次计算得到的补偿误差值计算得到;
信号发射器,用于将接收到的所述平衡补偿结果进行序列估计后输出。
结合第三方面,在第一种可能的实施方式中,所述处理器根据相邻上一次计算得到的补偿误差值与相邻上一次的上一次计算得到的补偿误差值计算得到,包括:
将相邻上一次计算得到的补偿误差值与相邻上一次的上一次计算得到的补偿误差值作差,得到的差值为第一补偿误差。
结合第三方面,或者结合第三方面的第一种可能的实施方式,在第二种可能的实施方式中,所述处理器,还用于在接收所述平衡滤波模块发送的所述平衡补偿结果时,计算当前接收到的所述平衡补偿结果的补偿误差值;并
利用相邻上一次计算到的补偿误差值与当前接收到的所述平衡补偿结果的补偿误差值,计算得到第二补偿误差,其中,所述第二补偿误差用于调整当前使用的平衡滤波系数。
结合第三方面,或者结合第三方面的第一种可能的实施方式,或者结合第三方面的第二种可能的实施方式,在第三种可能的实施方式中,所述处理器通过以下方式得到当前使用的第j项平衡滤波系数:
bj(当前)=bj(相邻上一次)+μ*sign(e相邻上一次的上一次-e相邻上一次);
其中,bj(当前)为得到的当前使用的第j项平衡滤波系数的系数权重;j的取值范围为0至Lb;Lb为平衡滤波系数的长度;bj(相邻上一次)为相邻上一次使用的第j项平衡滤波系数的基础系数权重;μ为平衡滤波系数的系数变化长度;e相邻上一次的上一次-e相邻上一次为第一补偿误差;e相邻上一次的上一次为相邻上一次的上一次计算得到的补偿误差值;e相邻上一次为相邻上一次计算得到的补偿误差值。
结合第三方面,或者结合第三方面的第一种可能的实施方式,或者结合第三方面的第二种可能的实施方式,或者结合第三方面的第三种可能的实施方式,在第四种可能的实施方式中,所述处理器,还用于在初始化阶段,根据第一滤波系数中的系数权重,确定初始化的平衡滤波系数的基础系数权重;并根据初始化的平衡滤波系数的基础系数权重,得到平衡滤波系数的初始值。
结合第三方面的第四种可能的实施方式,在第五种可能的实施方式中,所述处理器根据第一滤波系数中的系数权重,确定初始化的平衡滤波系数的基础系数权重,包括:
b0=f0;bj=-fi;
其中,bj为初始化的第j项平衡滤波系数的基础系数权重;j的取值范围为0至Lb;Lb为平衡滤波系数的长度;fi为第j项第一滤波系数的系数权重;
i的取值范围为0至Lf;Lf为第一滤波系数的长度。
结合第三方面,或者结合第三方面的第一种可能的实施方式,或者结合第三方面的第二种可能的实施方式,或者结合第三方面的第三种可能的实施方式,或者结合第三方面的第四种可能的实施方式,或者结合第三方面的第五种可能的实施方式,在第六种可能的实施方式中,所述处理器,还用于根据相邻上一次得到的第一补偿信号序列与相邻上一次得到的第一补偿信号序列的判决值,计算误差结果;并利用计算得到的误差结果对所述第一滤波系数进行调整;
利用调整后的第一滤波系数对当前接收到的所述信号序列进行滤波补偿,得到第一补偿信号序列。
本发明实施例的有益效果:
本发明实施例通过接收输入的受到ISI干扰的信号序列,利用第一滤波系数对接收到的所述信号序列进行滤波补偿,得到第一补偿信号序列;利用平衡滤波系数对所述第一补偿信号序列进行滤波补偿,得到平衡补偿结果,所述平衡滤波系数由第一补偿误差对相邻上一次使用的平衡滤波系数进行调整得到,所述第一补偿误差由根据相邻上一次计算得到的补偿误差值与相邻上一次的上一次计算得到的补偿误差值计算得到;将接收到的所述平衡补偿结果进行序列估计后输出;由于第一补偿误差由后端补偿模块产生,利用第一补偿误差通过迭代方式对平衡滤波系数进行调整,利用调整后的平衡滤波系数对第一补偿信号序列进行滤波补偿,平衡了各级补偿模块之间的性能,有效地对受到ISI干扰的信号序列进行补偿,提升了光纤通信的系统性能。
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性
的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的一种信号补偿设备的结构示意图;
图2为本发明提供的一种信号补偿方法的流程示意图;
图3为本发明提供的一种信号补偿设备的结构示意图。
为了实现本发明的目的,本发明实施例提供了一种信号补偿方法和设备,接收输入的受到ISI干扰的信号序列,利用第一滤波系数对接收到的所述信号序列进行滤波补偿,得到第一补偿信号序列;利用平衡滤波系数对所述第一补偿信号序列进行滤波补偿,得到平衡补偿结果,所述平衡滤波系数由第一补偿误差对相邻上一次使用的平衡滤波系数进行调整得到,所述第一补偿误差由根据相邻上一次计算得到的补偿误差值与相邻上一次的上一次计算得到的补偿误差值计算得到;将接收到的所述平衡补偿结果进行序列估计后输出;由于第一补偿误差由后端补偿模块产生,利用第一补偿误差通过迭代方式对平衡滤波系数进行调整,利用调整后的平衡滤波系数对第一补偿信号序列进行滤波补偿,平衡了各级补偿模块之间的性能,有效地对受到ISI干扰的信号序列进行补偿,提升了光纤通信的系统性能。
下面结合说明书附图对本发明各个实施例作进一步地详细描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
图1为本发明实施例提供的一种信号补偿设备的结构示意图。所述信号补偿设备包括:第一补偿模块11、平衡滤波模块12和第二补偿模块13,其中:
所述第一补偿模块11,用于接收输入的受到ISI干扰的信号序列,利用第一滤波系数对接收到的所述信号序列进行滤波补偿,得到第一补偿信号序
列,并将所述第一补偿信号序列发送给所述平衡滤波模块12;
所述平衡滤波模块12,用于利用平衡滤波系数对所述第一补偿模块11发送的所述第一补偿信号序列进行滤波补偿,得到平衡补偿结果,并将所述平衡补偿结果发送给所述第二补偿模块13,其中,所述平衡滤波系数由所述第二补偿模块13发送的第一补偿误差对相邻上一次使用的平衡滤波系数进行调整得到;
所述第二补偿模块13,用于接收所述平衡滤波模块12发送的所述平衡补偿结果,并对接收到的所述平衡补偿结果进行序列估计后输出,以及根据相邻上一次计算得到的补偿误差值与相邻上一次的上一次计算得到的补偿误差值计算得到第一补偿误差,并将所述第一补偿误差发送给所述平衡滤波模块12。
可选地,所述第一补偿模块11,还用于根据相邻上一次得到的第一补偿信号序列与相邻上一次得到的第一补偿信号序列的判决值,计算误差结果,并利用计算得到的误差结果对所述第一滤波系数进行调整;并利用调整后的第一滤波系数对当前接收到的所述信号序列进行滤波补偿。
需要说明的是,所述相邻上一次得到的第一补偿信号序列的判决值是指将相邻上一次得到的第一补偿信号序列量化后得到的数值。
具体地,所述第一补偿模块11可以包括滤波器111、系数配置单元112。可选地,所述第一补偿模块11还可以误差计算单元113。
其中,滤波器111,用于接收输入的受到ISI干扰的信号序列,利用系数配置单元112配置的第一滤波系数对接收到的所述信号序列进行滤波补偿,得到第一补偿信号序列,并将所述第一补偿信号序列发送给所述平衡滤波模块12。
系数配置单元112,用于配置第一滤波系数。可以采用FFE或者DFE结构,通过最小均方算法(英文:Least mean square;缩写LMS)或者其他算法进行自适应配置第一滤波系数。
需要说明的是,为了取得较好的补偿效果,一般要求Lf大于等于Lc。
这里的系数配置单元112,可以用于配置初始的第一滤波系数,之后得到的第一滤波系数,通过误差计算单元113发送的误差结果调整得到。
误差计算单元113,用于根据相邻上一次得到的第一补偿信号序列与相邻上一次得到的第一补偿信号序列的判决值,计算误差结果,并将该误差结果发送给系数配置单元112。
系数配置单元112,具体用于利用所述误差计算单元113发送的误差结果对所述第一滤波系数进行调整;并将调整后的第一滤波系数发送给滤波器111。
需要说明的是,本发明实施例中记载的信号补偿设备是一个循环执行的设备,所述第二补偿模块13将计算得到的第二补偿误差发送给所述平衡滤波模块12之后,所述平衡滤波模块12就可以利用第二补偿误差对平衡滤波系数进行调整,以便于在接收到第一补偿模块11发送的第一信号补偿序列时进行滤波补偿。
因此,第二补偿模块通过相邻两次计算得到的补偿误差值之间的差值,对平衡滤波模块所使用的平衡滤波系数进行调整,以达到平衡各个补偿模块的性能的目的。
具体地,所述第二补偿模块13,具体用于将相邻上一次计算得到的补偿误差值与相邻上一次的上一次计算得到的补偿误差值作差,得到的差值为第一补偿误差。
可选地,所述第二补偿模块13,还用于在接收所述平衡滤波模块发送的
所述平衡补偿结果时,计算当前接收到的所述平衡补偿结果的补偿误差值;并利用相邻上一次计算到的补偿误差值与当前接收到的所述平衡补偿结果的补偿误差值,计算得到第二补偿误差,并将计算得到的所述第二补偿误差发送给所述平衡滤波模块12。
具体地,所述平衡滤波模块12,具体用于通过以下方式得到第j项平衡滤波系数:
bj(当前)=bj(相邻上一次)+μ*sign(e相邻上一次的上一次-e相邻上一次);
其中,bj(当前)为得到的当前使用的第j项平衡滤波系数的系数权重;j的取值范围为0至Lb;Lb为平衡滤波系数的长度;bj(相邻上一次)为相邻上一次使用的第j项平衡滤波系数的基础系数权重;μ为平衡滤波系数的系数变化长度;e相邻上一次的上一次-e相邻上一次为第一补偿误差;e相邻上一次的上一次为相邻上一次的上一次计算得到的补偿误差值;e相邻上一次为相邻上一次计算得到的补偿误差值。
需要说明的是,所述第一补偿模块11,还用于在初始化阶段,将第一滤波系数发送给所述平衡滤波模块12;
所述平衡滤波模块12,还用于接收所述第一补偿模块发送的所述第一滤波系数,并根据所述第一滤波系数中的系数权重,确定所述平衡滤波模块所使用的初始化的平衡滤波系数的基础系数权重;并根据所述平衡滤波模块所使用的初始化的平衡滤波系数的基础系数权重,得到平衡滤波系数的初始值。
b0=f0;bj=-fi;
其中,bj为初始化的第j项平衡滤波系数的基础系数权重;j的取值范围为0至Lb;Lb为平衡滤波系数的长度;fi为第j项第一滤波系数的系数权重;
i的取值范围为0至Lf;Lf为第一滤波系数的长度。
其中,bj为调整后的第j项平衡滤波系数的系数权重;j的取值范围为0至Lb;Lb为平衡滤波系数的长度。
本发明实施例所描述的信号补偿设备可以通过硬件方式实现,也可以通过软件方式实现,这里不做限定,由于第一补偿误差由后端补偿模块产生,利用第一补偿误差通过迭代方式对平衡滤波系数进行调整,利用调整后的平衡滤波系数对第一补偿信号序列进行滤波补偿,平衡了各级补偿模块之间的性能,有效地对受到ISI干扰的信号序列进行补偿,提升了光纤通信的系统性能。
图2为本发明实施例提供的一种信号补偿方法的流程示意图。所述方法可以如下所述。
步骤201:接收输入的受到ISI干扰的信号序列。
在步骤201中,由于在光纤通信链路上,通信信号容易发生ISI,例如:来自光电发射机或者电光接收机的带宽限制等,使得通信信号发生ISI。
步骤202:利用第一滤波系数对接收到的所述信号序列进行滤波补偿,得到第一补偿信号序列。
在步骤202中,第一滤波系数可以是初始化配置的滤波系数,也可以是通过反馈对上一次使用的滤波系数进行调整后得到的。
若第一滤波系数通过配置得到,可以采用FFE或者DFE结构,通过最小均方算法(英文:Least mean square;缩写LMS)或者其他算法进行自适应
配置第一滤波系数。
需要说明的是,为了取得较好的补偿效果,一般要求Lf大于等于Lc。
若第一滤波系数通过反馈的误差结果对上一次使用的滤波系数进行调整后得到的,具体包括:
根据相邻上一次得到的第一补偿信号序列与相邻上一次得到的第一补偿信号序列的判决值,计算误差结果;
利用计算得到的误差结果对所述第一滤波系数(即上一次使用的滤波系数)进行调整,得到调整后的第一滤波系数。
步骤203:利用平衡滤波系数对所述第一补偿信号序列进行滤波补偿,得到平衡补偿结果。
其中,所述平衡滤波系数由第一补偿误差对相邻上一次使用的平衡滤波系数进行调整得到,所述第一补偿误差由根据相邻上一次计算得到的补偿误差值与相邻上一次的上一次计算得到的补偿误差值计算得到。
在步骤203中,通过以下方式得到当前使用的第j项平衡滤波系数:
bj(当前)=bj(相邻上一次)+μ*sign(e相邻上一次的上一次-e相邻上一次);
其中,bj(当前)为得到的当前使用的第j项平衡滤波系数的系数权重;j的取值范围为0至Lb;Lb为平衡滤波系数的长度;bj(相邻上一次)为相邻上一次使用的第j项平衡滤波系数的基础系数权重;μ为平衡滤波系数的系数变化长度;e相邻上一次的上一次-e相邻上一次为第一补偿误差;e相邻上一次的上一次为相邻上一次的上一次计算得到的补偿误差值;e相邻上一次为相邻上一次计算得到的补偿误差值。
也就是说,平衡滤波系数通过迭代的方式得到。
那么,平衡滤波系数的初始值通过以下方式确定:
在初始化阶段,根据第一滤波系数中的系数权重,确定初始化的平衡滤
波系数的基础系数权重;并
根据初始化的平衡滤波系数的基础系数权重,得到平衡滤波系数的初始值。
b0=f0;bj=-fi;
其中,bj为初始化的第j项平衡滤波系数的基础系数权重;j的取值范围为0至Lb;Lb为平衡滤波系数的长度;fi为第j项第一滤波系数的系数权重;i的取值范围为0至Lf;Lf为第一滤波系数的长度。
步骤204:将接收到的所述平衡补偿结果进行序列估计后输出。
步骤205:在接收所述平衡滤波模块发送的所述平衡补偿结果时,计算当前接收到的所述平衡补偿结果的补偿误差;并利用相邻上一次计算到的补偿误差值与当前接收到的所述平衡补偿结果的补偿误差值,跳转执行步骤203。
其中,所述第二补偿误差用于调整当前使用的平衡滤波系数。
在步骤205中,将相邻上一次计算到的补偿误差值与当前接收到的所述平衡补偿结果的补偿误差值作差,得到的差值为第二补偿误差。
需要说明的是,步骤205所执行的操作是一个反馈操作,通过相邻两次的平衡补偿结果之间的误差,对平衡滤波模块所使用的平衡滤波系数进行调整,以达到平衡各个补偿模块的性能的目的。
通过本发明实施例的描述,接收输入的受到ISI干扰的信号序列,利用第一滤波系数对接收到的所述信号序列进行滤波补偿,得到第一补偿信号序列;利用平衡滤波系数对所述第一补偿信号序列进行滤波补偿,得到平衡补偿结果,其中,所述平衡滤波系数由第一补偿误差对相邻上一次使用的平衡滤波系数进行调整得到,所述第一补偿误差由根据相邻上一次计算得到的补偿误差值与相邻上一次的上一次计算得到的补偿误差值计算得到;将接收到的所
述平衡补偿结果进行序列估计后输出;由于第一补偿误差由后端补偿模块产生,利用第一补偿误差通过迭代方式对平衡滤波系数进行调整,利用调整后的平衡滤波系数对第一补偿信号序列进行滤波补偿,平衡了各级补偿模块之间的性能,有效地对受到ISI干扰的信号序列进行补偿,提升了光纤通信的系统性能。
图3为本发明实施例提供的一种信号补偿设备的结构示意图。所述信号补偿设备具备上述信号补偿功能,可以采用通用计算机结构。所述信号补偿设备实体可以包括:信号接收器31、处理器32和信号发射器33,其中:
信号接收器31,用于接收输入的受到码间串扰ISI干扰的信号序列;
处理器32,用于利用第一滤波系数对接收到的所述信号序列进行滤波补偿,得到第一补偿信号序列;以及利用平衡滤波系数对所述第一补偿信号序列进行滤波补偿,得到平衡补偿结果,其中,所述平衡滤波系数由第一补偿误差对相邻上一次使用的平衡滤波系数进行调整得到,所述第一补偿误差由根据相邻上一次计算得到的补偿误差值与相邻上一次的上一次计算得到的补偿误差值计算得到;
信号发射器33,用于将接收到的所述平衡补偿结果进行序列估计后输出。
具体地,所述处理器32根据相邻上一次计算得到的补偿误差值与相邻上一次的上一次计算得到的补偿误差值计算得到,包括:
将相邻上一次计算得到的补偿误差值与相邻上一次的上一次计算得到的补偿误差值作差,得到的差值为第一补偿误差。
具体地,所述处理器32,还用于在接收所述平衡滤波模块发送的所述平衡补偿结果时,计算当前接收到的所述平衡补偿结果的补偿误差值;并
利用相邻上一次计算到的补偿误差值与当前接收到的所述平衡补偿结果的补偿误差值,计算得到第二补偿误差,其中,所述第二补偿误差用于调整当前使用的平衡滤波系数。
具体地,所述处理器32通过以下方式得到当前使用的第j项平衡滤波系
数:
bj(当前)=bj(相邻上一次)+μ*sign(e相邻上一次的上一次-e相邻上一次);
其中,bj(当前)为得到的当前使用的第j项平衡滤波系数的系数权重;j的取值范围为0至Lb;Lb为平衡滤波系数的长度;bj(相邻上一次)为相邻上一次使用的第j项平衡滤波系数的基础系数权重;μ为平衡滤波系数的系数变化长度;e相邻上一次的上一次-e相邻上一次为第一补偿误差;e相邻上一次的上一次为相邻上一次的上一次计算得到的补偿误差值;e相邻上一次为相邻上一次计算得到的补偿误差值。
具体地,所述处理器32,还用于在初始化阶段,根据第一滤波系数中的系数权重,确定初始化的平衡滤波系数的基础系数权重;并根据初始化的平衡滤波系数的基础系数权重,得到平衡滤波系数的初始值。
具体地,所述处理器32根据第一滤波系数中的系数权重,确定初始化的平衡滤波系数的基础系数权重,包括:
b0=f0;bj=-fi;
其中,bj为初始化的第j项平衡滤波系数的基础系数权重;j的取值范围为0至Lb;Lb为平衡滤波系数的长度;fi为第j项第一滤波系数的系数权重;i的取值范围为0至Lf;Lf为第一滤波系数的长度。
具体地,所述处理器32,还用于根据相邻上一次得到的第一补偿信号序列与相邻上一次得到的第一补偿信号序列的判决值,计算误差结果;并利用计算得到的误差结果对所述第一滤波系数进行调整;
利用调整后的第一滤波系数对当前接收到的所述信号序列进行滤波补偿,得到第一补偿信号序列。
其中,处理器32可以是通用处理器,包括中央处理器(英文:central processing unit,缩写:CPU),网络处理器(英文:Network Processor;缩写:
NP)等;或者是CPU和硬件芯片的组合。处理器31还可以是数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令处理器完成,所述的程序可以存储于计算机可读存储介质中,所述存储介质是非短暂性(英文:non-transitory)介质,例如随机存取存储器,只读存储器,快闪存储器,硬盘,固态硬盘,磁带(英文:magnetic tape),软盘(英文:floppy disk),光盘(英文:optical disc)及其任意组合。
本发明是参照根据本发明实施例的方法、设备和计算机程序产品的流程图、方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。
Claims (21)
- 一种信号补偿设备,其特征在于,包括:第一补偿模块、平衡滤波模块和第二补偿模块,其中:所述第一补偿模块,用于接收输入的受到码间串扰ISI干扰的信号序列,利用第一滤波系数对接收到的所述信号序列进行滤波补偿,得到第一补偿信号序列,并将所述第一补偿信号序列发送给所述平衡滤波模块;所述平衡滤波模块,用于利用平衡滤波系数对所述第一补偿模块发送的所述第一补偿信号序列进行滤波补偿,得到平衡补偿结果,并将所述平衡补偿结果发送给所述第二补偿模块,其中,所述平衡滤波系数由所述第二补偿模块发送的第一补偿误差对相邻上一次使用的平衡滤波系数进行调整得到;所述第二补偿模块,用于接收所述平衡滤波模块发送的所述平衡补偿结果,并对接收到的所述平衡补偿结果进行序列估计后输出,以及根据相邻上一次计算得到的补偿误差值与相邻上一次的上一次计算得到的补偿误差值计算得到第一补偿误差,并将所述第一补偿误差发送给所述平衡滤波模块。
- 如权利要求1所述的信号补偿设备,其特征在于,所述第二补偿模块,具体用于将相邻上一次计算得到的补偿误差值与相邻上一次的上一次计算得到的补偿误差值作差,得到的差值为第一补偿误差。
- 如权利要求1或2所述的信号补偿设备,其特征在于,所述第二补偿模块,还用于在接收所述平衡滤波模块发送的所述平衡补偿结果时,计算当前接收到的所述平衡补偿结果的补偿误差值;并利用相邻上一次计算到的补偿误差值与当前接收到的所述平衡补偿结果的补偿误差值,计算得到第二补偿误差,并将计算得到的所述第二补偿误差发送给所述平衡滤波模块。
- 如权利要求1至3任一所述的信号补偿设备,其特征在于,所述平衡滤波模块,具体用于通过以下方式得到第j项平衡滤波系数:bj(当前)=bj(相邻上一次)+μ*sign(e相邻上一次的上一次-e相邻上一次);其中,bj(当前)为得到的当前使用的第j项平衡滤波系数的系数权重;j的取值范围为0至Lb;Lb为平衡滤波系数的长度;bj(相邻上一次)为相邻上一次使用的第j项平衡滤波系数的基础系数权重;μ为平衡滤波系数的系数变化长度;e相邻上一次的上一次-e相邻上一次为第一补偿误差;e相邻上一次的上一次为相邻上一次的上一次计算得到的补偿误差值;e相邻上一次为相邻上一次计算得到的补偿误差值。
- 如权利要求1至4任一所述的信号补偿设备,其特征在于,所述第一补偿模块,还用于在初始化阶段,将第一滤波系数发送给所述平衡滤波模块;所述平衡滤波模块,还用于接收所述第一补偿模块发送的所述第一滤波系数,并根据所述第一滤波系数中的系数权重,确定所述平衡滤波模块所使用的初始化的平衡滤波系数的基础系数权重;并根据所述平衡滤波模块所使用的初始化的平衡滤波系数的基础系数权重,得到平衡滤波系数的初始值。
- 如权利要求1至6任一所述的信号补偿设备,其特征在于,所述第一补偿模块,还用于根据相邻上一次得到的第一补偿信号序列与相邻上一次得到的第一补偿信号序列的判决值,计算误差结果,并利用计算得到的误差结果对所述第一滤波系数进行调整;并利用调整后的第一滤波系 数对当前接收到的所述信号序列进行滤波补偿。
- 一种信号补偿方法,其特征在于,包括:接收输入的受到码间串扰ISI干扰的信号序列,利用第一滤波系数对接收到的所述信号序列进行滤波补偿,得到第一补偿信号序列;利用平衡滤波系数对所述第一补偿信号序列进行滤波补偿,得到平衡补偿结果,其中,所述平衡滤波系数由第一补偿误差对相邻上一次使用的平衡滤波系数进行调整得到,所述第一补偿误差由根据相邻上一次计算得到的补偿误差值与相邻上一次的上一次计算得到的补偿误差值计算得到;将接收到的所述平衡补偿结果进行序列估计后输出。
- 如权利要求8所述的信号补偿方法,其特征在于,所述第一补偿误差由根据相邻上一次计算得到的补偿误差值与相邻上一次的上一次计算得到的补偿误差值计算得到,包括:将相邻上一次计算得到的补偿误差值与相邻上一次的上一次计算得到的补偿误差值作差,得到的差值为第一补偿误差。
- 如权利要求8或9所述的信号补偿方法,其特征在于,所述方法还包括:在接收所述平衡滤波模块发送的所述平衡补偿结果时,计算当前接收到的所述平衡补偿结果的补偿误差;并利用相邻上一次计算到的补偿误差值与当前接收到的所述平衡补偿结果的补偿误差值,计算得到第二补偿误差,其中,所述第二补偿误差用于调整当前使用的平衡滤波系数。
- 如权利要求8至10任一所述的信号补偿方法,其特征在于,通过以下方式得到当前使用的第j项平衡滤波系数:bj(当前)=bj(相邻上一次)+μ*sign(e相邻上一次的上一次-e相邻上一次);其中,bj(当前)为得到的当前使用的第j项平衡滤波系数的系数权重;j的取值范围为0至Lb;Lb为平衡滤波系数的长度;bj(相邻上一次)为相邻上一次使用的第 j项平衡滤波系数的基础系数权重;μ为平衡滤波系数的系数变化长度;e相邻上一次的上一次-e相邻上一次为第一补偿误差;e相邻上一次的上一次为相邻上一次的上一次计算得到的补偿误差值;e相邻上一次为相邻上一次计算得到的补偿误差值。
- 如权利要求8至11任一所述的信号补偿方法,其特征在于,所述方法还包括:在初始化阶段,根据第一滤波系数中的系数权重,确定初始化的平衡滤波系数的基础系数权重;并根据初始化的平衡滤波系数的基础系数权重,得到平衡滤波系数的初始值。
- 如权利要求8至13任一所述的信号补偿方法,其特征在于,所述方法还包括:根据相邻上一次得到的第一补偿信号序列与相邻上一次得到的第一补偿信号序列的判决值,计算误差结果;并利用计算得到的误差结果对所述第一滤波系数进行调整;利用第一滤波系数对接收到的所述信号序列进行滤波补偿,得到第一补偿信号序列,包括:利用调整后的第一滤波系数对当前接收到的所述信号序列进行滤波补 偿,得到第一补偿信号序列。
- 一种信号补偿设备,其特征在于,包括:信号接收器,用于接收输入的受到码间串扰ISI干扰的信号序列;处理器,用于利用第一滤波系数对接收到的所述信号序列进行滤波补偿,得到第一补偿信号序列;以及利用平衡滤波系数对所述第一补偿信号序列进行滤波补偿,得到平衡补偿结果,其中,所述平衡滤波系数由第一补偿误差对相邻上一次使用的平衡滤波系数进行调整得到,所述第一补偿误差由根据相邻上一次计算得到的补偿误差值与相邻上一次的上一次计算得到的补偿误差值计算得到;信号发射器,用于将接收到的所述平衡补偿结果进行序列估计后输出。
- 如权利要求15所述的信号补偿设备,其特征在于,所述处理器根据相邻上一次计算得到的补偿误差值与相邻上一次的上一次计算得到的补偿误差值计算得到,包括:将相邻上一次计算得到的补偿误差值与相邻上一次的上一次计算得到的补偿误差值作差,得到的差值为第一补偿误差。
- 如权利要求15或16所述的信号补偿设备,其特征在于,所述处理器,还用于在接收所述平衡滤波模块发送的所述平衡补偿结果时,计算当前接收到的所述平衡补偿结果的补偿误差值;并利用相邻上一次计算到的补偿误差值与当前接收到的所述平衡补偿结果的补偿误差值,计算得到第二补偿误差,其中,所述第二补偿误差用于调整当前使用的平衡滤波系数。
- 如权利要求15至17任一所述的信号补偿设备,其特征在于,所述处理器通过以下方式得到当前使用的第j项平衡滤波系数:bj(当前)=bj(相邻上一次)+μ*sign(e相邻上一次的上一次-e相邻上一次);其中,bj(当前)为得到的当前使用的第j项平衡滤波系数的系数权重;j的取值范围为0至Lb;Lb为平衡滤波系数的长度;bj(相邻上一次)为相邻上一次使用的第 j项平衡滤波系数的基础系数权重;μ为平衡滤波系数的系数变化长度;e相邻上一次的上一次-e相邻上一次为第一补偿误差;e相邻上一次的上一次为相邻上一次的上一次计算得到的补偿误差值;e相邻上一次为相邻上一次计算得到的补偿误差值。
- 如权利要求15至18任一所述的信号补偿设备,其特征在于,所述处理器,还用于在初始化阶段,根据第一滤波系数中的系数权重,确定初始化的平衡滤波系数的基础系数权重;并根据初始化的平衡滤波系数的基础系数权重,得到平衡滤波系数的初始值。
- 如权利要求15至20任一所述的信号补偿设备,其特征在于,所述处理器,还用于根据相邻上一次得到的第一补偿信号序列与相邻上一次得到的第一补偿信号序列的判决值,计算误差结果;并利用计算得到的误差结果对所述第一滤波系数进行调整;利用调整后的第一滤波系数对当前接收到的所述信号序列进行滤波补偿,得到第一补偿信号序列。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2014/095111 WO2016101255A1 (zh) | 2014-12-26 | 2014-12-26 | 一种信号补偿方法和设备 |
EP14908823.9A EP3217618B1 (en) | 2014-12-26 | 2014-12-26 | Signal compensation method and device |
CN201480082740.2A CN107078978B (zh) | 2014-12-26 | 2014-12-26 | 一种信号补偿方法和设备 |
US15/631,869 US20170286250A1 (en) | 2014-12-26 | 2017-06-23 | Signal Compensation Method and Device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2014/095111 WO2016101255A1 (zh) | 2014-12-26 | 2014-12-26 | 一种信号补偿方法和设备 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/631,869 Continuation US20170286250A1 (en) | 2014-12-26 | 2017-06-23 | Signal Compensation Method and Device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016101255A1 true WO2016101255A1 (zh) | 2016-06-30 |
Family
ID=56148983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/095111 WO2016101255A1 (zh) | 2014-12-26 | 2014-12-26 | 一种信号补偿方法和设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20170286250A1 (zh) |
EP (1) | EP3217618B1 (zh) |
CN (1) | CN107078978B (zh) |
WO (1) | WO2016101255A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113517934B (zh) * | 2020-04-10 | 2022-10-11 | 华为技术有限公司 | 一种信号处理方法及相关设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1394421A (zh) * | 2000-10-26 | 2003-01-29 | 皇家菲利浦电子有限公司 | 接收信号的方法和接收机 |
CN101965719A (zh) * | 2008-03-10 | 2011-02-02 | 爱立信电话股份有限公司 | Ofdm信号中的对角线isi的补偿 |
JP2014023160A (ja) * | 2012-07-20 | 2014-02-03 | Fujitsu Ltd | クォーター・レート推論判定帰還型等化器 |
US20140056345A1 (en) * | 2012-08-22 | 2014-02-27 | International Business Machines Corporation | Decision feedback equalizers with high-order continuous time feedback |
US20140133544A1 (en) * | 2012-01-10 | 2014-05-15 | Pmc-Sierra Us, Inc. | Compensation factor reduction in an unrolled decision feedback equalizer |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5031195A (en) * | 1989-06-05 | 1991-07-09 | International Business Machines Corporation | Fully adaptive modem receiver using whitening matched filtering |
EP0987864A1 (en) * | 1998-09-15 | 2000-03-22 | Alcatel | Time error compensation arrangement and multi-carrier modem comprising the arrangement |
US6775322B1 (en) * | 2000-08-14 | 2004-08-10 | Ericsson Inc. | Equalizer with adaptive pre-filter |
US6870881B1 (en) * | 2000-08-24 | 2005-03-22 | Marvell International Ltd. | Feedforward equalizer for DFE based detector |
US7003228B2 (en) * | 2001-09-11 | 2006-02-21 | Vitesse Semiconductor Corporation | Method and apparatus for improved high-speed adaptive equalization |
US7471904B2 (en) * | 2003-07-25 | 2008-12-30 | Alcatel-Lucent Usa Inc. | Method and apparatus for electronic equalization in optical communication systems |
US7302192B2 (en) * | 2005-04-28 | 2007-11-27 | Menara Networks | Methods of spread-pulse modulation and nonlinear time domain equalization for fiber optic communication channels |
US7916779B1 (en) * | 2007-09-20 | 2011-03-29 | Integrated Device Technology, Inc. | Adaptive decision feedback equalizer for high data rate serial link receiver |
JP5061855B2 (ja) * | 2007-11-07 | 2012-10-31 | 富士通株式会社 | 電気分散補償装置、光受信装置および光受信方法 |
US8325793B2 (en) * | 2009-05-05 | 2012-12-04 | Lsi Corporation | Precursor ISI cancellation using adaptation of negative gain linear equalizer |
KR101363122B1 (ko) * | 2010-06-29 | 2014-02-13 | 한국전자통신연구원 | 데이터의 고속 전송을 위한 적응 알고리즘을 적용한 등화기 및 등화 방법 |
US8559494B1 (en) * | 2012-06-20 | 2013-10-15 | MagnaCom Ltd. | Timing synchronization for reception of highly-spectrally-efficient communications |
EP2975787B1 (en) * | 2014-07-16 | 2018-10-03 | ZTE Corporation | Adaptive post digital filter and inter-symbol interference equalizer for optical communication |
US9313054B1 (en) * | 2015-02-09 | 2016-04-12 | Xilinx, Inc. | Circuits for and methods of filtering inter-symbol interference for SerDes applications |
US9319057B1 (en) * | 2015-03-19 | 2016-04-19 | Nxp B.V. | Device and method for providing filtering for an analog-to-digital converter (ADC) |
JP6206545B1 (ja) * | 2016-06-17 | 2017-10-04 | Nttエレクトロニクス株式会社 | 伝送特性補償装置、伝送特性補償方法及び通信装置 |
-
2014
- 2014-12-26 WO PCT/CN2014/095111 patent/WO2016101255A1/zh active Application Filing
- 2014-12-26 EP EP14908823.9A patent/EP3217618B1/en active Active
- 2014-12-26 CN CN201480082740.2A patent/CN107078978B/zh active Active
-
2017
- 2017-06-23 US US15/631,869 patent/US20170286250A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1394421A (zh) * | 2000-10-26 | 2003-01-29 | 皇家菲利浦电子有限公司 | 接收信号的方法和接收机 |
CN101965719A (zh) * | 2008-03-10 | 2011-02-02 | 爱立信电话股份有限公司 | Ofdm信号中的对角线isi的补偿 |
US20140133544A1 (en) * | 2012-01-10 | 2014-05-15 | Pmc-Sierra Us, Inc. | Compensation factor reduction in an unrolled decision feedback equalizer |
JP2014023160A (ja) * | 2012-07-20 | 2014-02-03 | Fujitsu Ltd | クォーター・レート推論判定帰還型等化器 |
US20140056345A1 (en) * | 2012-08-22 | 2014-02-27 | International Business Machines Corporation | Decision feedback equalizers with high-order continuous time feedback |
Also Published As
Publication number | Publication date |
---|---|
EP3217618A4 (en) | 2017-10-18 |
CN107078978B (zh) | 2020-06-02 |
US20170286250A1 (en) | 2017-10-05 |
EP3217618A1 (en) | 2017-09-13 |
CN107078978A (zh) | 2017-08-18 |
EP3217618B1 (en) | 2019-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200373169A1 (en) | Methods and circuits for asymmetric distribution of channel equalization between devices | |
KR102164627B1 (ko) | 송신기와 수신기 사이에서 데이터 신호를 전달하는 채널을 포함하는 고속 링크를 최적화하는 시스템 및 그 방법, 그리고 송신기와 수신기 사이의 채널을 특성화하는 방법 | |
KR101649200B1 (ko) | 고속 시리얼 상호접속에 있어서 송신 유한 임펄스 응답 및 수신 선형 등화기 혹은 수신 결정 피드백 등화기 구조의 등화 노력 밸런싱 | |
EP2487850B1 (en) | Clock recovery circuit for a receiver using a decision-feedback equalizer | |
US8548108B2 (en) | Adaptive phase equalizer | |
US8611762B2 (en) | System and method for frequency-domain chromatic dispersion and polarization mode dispersion compensation with time-domain channel estimation | |
CN110858824B (zh) | 用于时钟恢复的基于预补偿器的量化 | |
US20120155530A1 (en) | Decoupling bang-bang cdr and dfe | |
US20140254655A1 (en) | Adaptation of equalizer settings using error signals sampled at several different phases | |
CN105262707B (zh) | 高速光传输系统自适应均衡的方法及装置 | |
US8588290B2 (en) | Adaptation of crossing latch threshold | |
US9509532B2 (en) | Duty-cycled equalizations | |
US20180191530A1 (en) | Backchannel transmission adaptation | |
WO2016101255A1 (zh) | 一种信号补偿方法和设备 | |
EP2487848B1 (en) | Analog continuous-time phase equalizer for data transmission | |
WO2016161643A1 (zh) | 判决反馈均衡装置、方法及光传输系统 | |
US20160277220A1 (en) | Pattern-based coefficient adaptation operation for decision feedback equalization | |
US10764095B1 (en) | Method and apparatus for tuning a continuous time linear equalizer | |
US7869540B2 (en) | Method and apparatus for increased communication channel pre-emphasis for clock-like data patterns | |
US20090086809A1 (en) | Method and System for On-Line Data-Pattern Compensated Adaptive Equalizer Control | |
KR100860503B1 (ko) | 계층적 궤환 필터 및 연판정 장치를 이용한 결정 궤환등화기 | |
Hong et al. | Novel digital signal processing unit using new digital baseline wander corrector for fast ethernet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14908823 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2014908823 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |