CN1039920A - 光记录介质及信息记录与重放装置 - Google Patents

光记录介质及信息记录与重放装置 Download PDF

Info

Publication number
CN1039920A
CN1039920A CN89106296A CN89106296A CN1039920A CN 1039920 A CN1039920 A CN 1039920A CN 89106296 A CN89106296 A CN 89106296A CN 89106296 A CN89106296 A CN 89106296A CN 1039920 A CN1039920 A CN 1039920A
Authority
CN
China
Prior art keywords
film
dielectric film
recording
reflective coating
metallic reflective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN89106296A
Other languages
English (en)
Other versions
CN1018303B (zh
Inventor
前田佳均
生田勳
安藤寿
永井正一
加藤义美
佐藤美雄
坪井信义
峰邑浩行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of CN1039920A publication Critical patent/CN1039920A/zh
Publication of CN1018303B publication Critical patent/CN1018303B/zh
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0055Erasing
    • G11B7/00557Erasing involving phase-change media
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24304Metals or metalloids group 2 or 12 elements (e.g. Be, Ca, Mg, Zn, Cd)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24308Metals or metalloids transition metal elements of group 11 (Cu, Ag, Au)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/2431Metals or metalloids group 13 elements (B, Al, Ga, In)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24312Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24314Metals or metalloids group 15 elements (e.g. Sb, Bi)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00454Recording involving phase-change effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/005Reproducing
    • G11B7/0052Reproducing involving reflectivity, absorption or colour changes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2531Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising glass
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
    • G11B7/2585Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers based on aluminium
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
    • G11B7/2595Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers based on gold
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/146Laser beam

Abstract

本发明提供了一种采用非晶态-晶态相变进行记录和擦除的光记录介质,其中记录膜结构的光学记录介质处于非晶态时的反射率大于记录膜结构的光学记录介质处于晶态时的反射率,或者记录膜结构的光学记录介质处于非晶态时的吸收率小于记录膜结构的光学记录介质处于晶态时的吸收率。

Description

本发明涉及一种可重写的光记录介质,其中,利用光和热的方法,可以记录,重放和擦除信息;本发明还涉及上述光记录介质的记录、重放和擦除信息的方法以及实现该方法的装置。
在一些光信息记录和重放装置中,信息的记录和擦除是根据用于照射的激光功率的变化引起的非晶态与晶态之间的相变,而导致的光记录介质的光学特性的变化(即能量反射率,下文中将称之为“反射率”)来实现的。迄今,人们已经提出了多种光信息记录和重放的方法,正如下面的一些公知的例子所说明的那样,一般的光盘其对应于记录状态的非晶态的反射率是小于对应于擦除状态的晶态的反射率的。这些公知的例子是:《化学与工业》(Chemistry and Industry),Vol.39,No.3,1986,P.174;“一种采用Te87Ge8Sn5记录材料的光盘”,载于Applied Physics Letters Vol.46(8),1985,P.735;“一种采用TeOx·Ge或TeOx·Sn记录材料的光盘”,载于National Technical Report Vol.29,No.5,P.731;“采用Sb2Se记录材料的光盘”,载于Applied Physics Letters Vol.48(19),1986,P.1256;“采用GeSbTe记录材料的光盘”,载于Proc.International Symposium On Optical Memory 1987,Japanese Journal of Applied Physical,Vol.26,1987,Supple26-4,P.64;“采用Te44Ge16Se10Sh28记录材料的光盘”,载于TechnicalReport    of    Eletronic    Information    Communication    Society    Shingaku    Giho    Vol.87,No.310    CPM87-88,1987,P.26;电子信息通信协会技术报告,Vol.87,No.310,CPM87-90,1987,P.40的图5和图7;“采用SeTe-Se记录材料的光盘”,载于Proc.SPIE529,1985,P.46;“一种采用InSeTl为记录材料的光盘”,载于Appl    Phys    Letter    Vol.50,1987,P.668;“采用TeGeSn记录材料的光盘”,载于J.Appl    Phys    60(12)1986,P.4320。
作为一个特殊的例子,即在文献FUJTSU,38,2,1987,P.144中描述了一种采用SeInSb记录材料的光盘,该光盘的记录材料在记录状态的反射率高于在擦除状态的反射率。但是这种光盘是利用了具有不同晶体结构的晶体Ⅰ与晶体Ⅱ两种晶体。
下面是一些用于光盘的擦除方法的公知例子,如上文所述,这些光盘在非晶态下的反射率小于晶态下的反射率。对于Sb-Te-Ge记录材料的情况而言,在日本应用物理协会和相关协会所提供的文摘(The    Japan    Society    of    Applied    Physics    and    Related    Society,The    35th    Spring    Mecting,1988,Page839)的第839页已有描述,其擦除是利用一种擦除光束对记录位进行辐射来实现的,该方法是要使与非晶态区域相邻的一种粗晶在该记录位中生长,从而使该非晶态区域重新结晶。也就是说,这种擦除是通过对记录位加热到一个温度,该温度下记录位尚不熔化,从而使该记录位重新结晶的方法来实现的(对此下文中将称之为“固态相变”),但必须指出的是,这种方法尚残留有许多未完全擦除的部分。记载于日本应用物理协会和相关协会所提供的文摘中(28P-ZQ-12,1988,P.842)(The 35th Spring Meeting 1985)的SbSeTeGe记录材料的情况是利用单束光束进行重写的方法,这种重写(Overwrite)方法也归类到擦除方法中。这种擦除方法的擦除是通过在固态下使非晶态区域晶化来实现的,另外,在这种擦除方法中,其擦除率为-25dB,仍然残留一部分未完全擦除的部分(固态相变);在一种通过熔化记录位并通过在固化过程(将被称之为液相转变)中使该记录位形成结晶来实现的方法中,擦除率如图2所示为-15dB,这种方法的不完全擦除部分大于前一种固态相变的方法。记载在Technical Report of Electronic Information Communication Society,Shiugaku Giho,Vol.87,No.310,CPM87-90,1987,P.41中的Sb2(Te-Se)3-GeTe材料的情况其擦除方法是利用了固态相变,然而利用10mw激光功率的擦除率如图3所示为30dB。当激光功率为15mw或更高时,发生液相转变,其擦除率会变高,但应该指出的是,这一高的擦除率是由于未记录区域(晶态区域)被熔化,即通过15mw或更高的激光功率的辐射而熔化使之变为非晶态,而不是由于记录位被擦除。
在记载于Technical    Report    of    Eletronic    Information    Communication    Society    Shingaku    Giho,Vol.87,No.310,CPM87-88,1987,P.27中的TeGeSeSb材料情况下,得到高的擦除率,其高擦除率的取得是由于这种方法采用了双光束,即先用两个光束之一的圆形光束使记录膜熔化,然后用另一个光束进行擦除操作,如图4所示,该擦除方法包括增加激光功率(到不小于Tm(熔点))以熔化记录点,而后在冷却过程中,再用功率不小于Tx(晶化温度)不大于Tm的椭圆形光点的激光束进行辐射。这种方法的擦除率为-40dB。
如上所述,当对在非晶态时的反射率小于晶态时的反射率的光盘进行擦抹时,出现的问题是在相转变和液相转变两种情况下都残留有未擦除的部分,并且不能实现高的擦除率。此外,虽然双光束可以实现高的擦除率,但这种方法要求复杂的设备,而这种复杂的设备也是个问题。已知的记录薄膜的光学特性(折射系数n和消光系数k)列于下表(见表1)。
记载在J.Applied Physics 59(6),1986,P.1819中的Te80Se10Sb16薄膜,它的namo=4.0,kamo=1.3,ncry=4.6,kcry=2.3(其中在非晶态的n和k分
表1
别简写为namo和kamo,而在晶态时的n和k分别简写为ncry和kcry),记载于Proc Int Symp on Optical Memory,1987,P.60中的GeSb2Te4薄膜的namo=4.7,kamo=1.3,ncry=6.9,kcry=2.6;记载在Proc Int Symp on Optical Memory,1987,J.JAP,Vol.26,1987,Supple.26-4,Page57的TeOx薄膜的namo=3.8,kamo=0.8,ncry=5.6,
kcry=1.2以及记载在上文中的GeTe薄膜的namo=4.4,kamo=1.1,ncry=5.4,kcry=1.7;记载在No.5Applied Physics Associated Joint Lectures论文集中的(1988,28P-ZQ-5,Page840)Sb2Te3薄膜的namo=5.0,kamo=2.7,ncry=5.3,kcry=5.8。
从上文的描述中清楚地看出,已知的各个例子的折射系数和消光系数都存在namo<ncry,和kamo<kcry的关系,特别是,从特性上看非晶态的折射系数小于晶态的折射系数。
从上面所阐述的那样,在现有的可重写的光记录介质中,信息的记录和擦除是利用了非晶态和晶态之间的相变原理来实现的,但是未完全擦除的信号在很大程度上仍保留着,使这种未完全擦除减小到一个可以实际应用的水平是现在光盘发展中的最大问题。另外,如果一束激光束在进行擦除已记录的信号的同时可以用来重写新的信号,则数据传送的速率可以比一般的介质快2~3倍,因此,与利用多束激光束相比,光学头要简单的多,那么这种光记录介质的实际应用会收到显著效果。
本发明的目的是提供一种光记录介质,这种介质在擦除时,可以使非晶态-晶态相变型记录介质的不完全擦除率减小到一种可以实际使用的水平,并提供一种信息记录与重放的方法及其装置。
上述目的是通过以下方式实现减小不完全擦除的,即通过在光记录介质的记录状态或构成该光记录介质的记录膜的非晶态得到大于该光记录介质的擦除状态或构成该光记录介质的记录膜的晶态的反射率,或者通过在光记录介质的记录状态或在构成该光记录介质的记录膜的非晶态得到小于该光记录介质的擦除状态或构成该光记录介质的记录膜的晶态的能量吸收率(下文将称之为吸收率);或者通过将记录薄膜的非晶记录区域和必然共存的非记录区域(结晶区域)二者都予以熔化。本发明的记录介质在权利要求1至20中予以限定。另外,用于本发明的术语“记录状态”是指完全的非晶状态,但是也可表示结晶状态与非晶状态共存的一种状态(此时在记录膜中非晶态的比例为体积比的50%或更多)。非晶状态可以定义为具有Te和其它元素的无序的网状化学键结构,还可以定义为利用X射线衍射学检测无衍射峰。本发明的“擦除状态”是指完全的结晶状态,而且还可以代表一种包含在结晶态中的非晶态(此时记录膜中晶态的比例为体积比的50%或更多)。如果满足在权利要求1、7、13、19对于记录状态和擦除状态所限定的各种条件,上述定义是足够的了。
另外,在本发明所提供的光记录介质中,记录和擦除的方法在权利要求1至40中予以限定。再之,本发明的信息记录和重放装置在权利要求42至49中予以限定。
图1是记录和擦除状态反射率变化的特征曲线。
图2是一种一般的重写例子的特征曲线,
图3是一种固相和液相擦除的特征曲线,
图4是一种一般的双光束例子的示意图。
图5是一条冷却曲线和一条晶体形成曲线的图。
图6是说明记录和擦除原理的曲线图。
图7和图8是一种直流擦除原理的解释图;
图9(a)和图9(b)是单光束重写原理图。
图10到图14是一次重写擦除原理图。
图15到图77是光记录介质的构造,取决于薄膜厚度的反射率和吸收率变化的解释图。
图78(a)和图78(b)是所记录的信号的频谱曲线图。
图79(a)和图79(b)是在重写期间频谱的特征图。
图80(a)和图80(b)是重复重写的结果的特征图。
图81(a)和图81(b)是重写信号波形的曲线图。
图82(a)和图82(b)是In22Sb37Te41的频谱曲线图。
图83是一种光信息记录和重放装置的结构示意图。
当在空气中对薄膜进行测量时,对于垂直能量反射率R,能量透射率T,n和k存在有下列关系:
R = ((n - 1)2+ K2)/((n + 1)2+ K2) ×100
T=e-ax×100
其中:a= (4π)/(λ) k
λ为光波波长,x为薄膜厚度。
能量的吸收率A(%)是基于R、T和能量守恒定律通过下面的方程计算出来的:
A=100-R-T
A、R和T具有其数值可以通过具体介质的构成予以控制的特性。折射系数和消光系数具有对于具体介质而言是固定数值的性质,而无法通过该具体介质的构成进行控制。
下面的解释是关于通过擦除存在于光记录介质上的记录信息的过程,以说明如何改善擦除性能的上述解决办法的机理。在一些现有技术中,擦除已经通过熔化的办法予以实现。迄今,利用多光束,即用一个椭圆形激光点的光束去使已熔化了的记录膜缓冷,用一个圆形激光点的激光束去记录信息的记录和擦除方法已经实现了很高的擦除性能。但是,用于这种多激光束的控制系统十分复杂,并且成为其实际应用的一种障碍。本发明的特点在于高的擦除性能是在记录和擦除时利用单束激光束通过熔化-擦除的办法实现的。
众所周知,光记录薄膜被熔化时,处于不高于其熔点温度的记录膜的冷却速率随机地决定其最终状态是非晶态还是结晶态(这两种状态对应于记录和擦除)。因为记录是通过熔化记录膜的局部区域使之变为非晶态,所以在记录时必须通过在不高于熔点的温度下增加冷却速率来防止结晶态的形成。另一方面,擦除是通过熔化已记录的局部区域的非晶态变回到晶态,所以在擦除时必须在一次加热以后,在不高于熔点温度下,通过降低冷却速率来加速晶态的形成,于是可以认为,在记录和擦除过程中,记录膜的冷却速率是控制非晶态或结晶态的形成的一个因素。因此,如果一个单光束激光能够有效地控制冷却的速率,则这种单光束方法就有可能通过非晶态的形成实现高的记录灵敏度和通过结晶态的形成实现高的擦除率。根据非晶态形成的动力学,形成非晶态所需的最低冷却速率,即所谓的临界冷却速率取决于各种物质的晶化速率。非晶态的晶化过程是一种晶核的形成和生长的过程。因此,根据晶化速率取决于用提高温度加快生长速率与用提高温度降低形核速率之间的矛盾,则表示在每一温度下晶体形成时间的曲线是一个象字母C的形状一样的曲线,称之为C曲线。那么存在有一个温度Tn,在这一温度下,晶化的时间是最短的,或者说晶化速率是最高的。
图5是表示当用激光照射记录薄膜时,该记录薄膜的温度的瞬时变化曲线(冷却曲线)以及C曲线。这里可以这样假设,在温度Tn晶化时间是tn。就以激光辐射记录薄膜最高可达到的温度是高的温度和上述最高可达到的温度是低的温度两种情况而言,并且在这里再假设,与冷却曲线①和②相关的记录薄膜温度达到Tn的时间为t1和t2(即在一激光束辐射的输入之后的时间),则t2大于tn(t2>tn)。因此,可以理解为晶化过程是在不高于熔点的温度冷却的过程中进行的。另外,在t1<tn的情况下,因为冷却的速度较高,则在晶化过程充分开始之前该薄膜就冷却了,于是可获得非晶态。基于上面的说明临界冷却速率可以定义为这样一种冷却的速率,在该速率下记录膜的温度达到Tn的时间是tn。在实际的应用于记录和擦除的激光辐射情况下,记录膜的冷却速率是不能直接进行控制的,但是冷却速率取决于堆垛结构、导热系数、组元的光学特性以及输入的能量密度。在这样一种介质构成情况下,即记录膜放置在具有良好导热系数的介电质薄膜之间或记录膜的厚度有500 之薄或更薄,则在膜中产生的热的传导沿薄膜表面方向是小的,而沿薄膜厚度方向的热传导占主导地位,这是因为沿薄膜厚度方向的热阻小。在这些情况下,记录膜的温度越高,每单位时间热的流出量的温度梯度越大,从而记录膜的冷却速率变大,基于这种原因,随着记录膜可达到的温度(由记录膜的热学、物理学特性、光吸收率和消光系数、介质的结构、激光功率的输入、时间等决定的)增加到沿薄膜厚度方向的热传导的能力,则冷却速率由于所谓的牛顿冷却效应而变大。在下文的有益的讨论中,引入了一个特征温度Tcool,即一个高于熔点的温度。当记录膜被激光辐射以后的可达到的温度是Tcool时,即获的了用于形成非晶态(99%的非晶态和1%的结晶态)的临界冷却速率。尔后,如图6所示,当记录膜在熔化以后达到一个不低于Tcool的温度,则获得非晶态或记录态。如果正处在冷却过程中的薄膜的温度低于Tcool,则获的结晶态或擦除态。在图6中Tw表示在记录期间的可达到的温度,Te表示在擦除期间的可达到的温度。上面的描述就是本发明的记录和擦抹原理。曲线的斜率表示温度的高低和冷却速率。记录膜的可达到的温度根据激光功率输入的尺寸及激光脉冲辐值加以控制。因此,根据上述的记录膜的熔化过程,记录和擦除是完全能够控制和切换的。
一般的光记录介质具有轨迹,在这轨迹上记录信息信号。处于未记录状态的轨迹是结晶态的,通过对该轨迹的局部区域加热到一个不低于Tcool温度,而后速冷可形成非晶态区域的方法将信号沿着该轨迹进行记录。本发明的光记录介质的特征是:当一些记录信号已经存在于轨迹上时,则记录部分的反射率大于轨迹上未记录或擦除状态的反射率;或者记录部分的吸收率小于轨迹上未记录或擦除态的吸收率。当这些区域被熔化以后其可达到的温度取决于这些区域的反射率和吸收率的差别,下面将解释在光学性质上的这些差别是如何对记录区域的擦除起作用的。在一种无透射性的光学介质的情况下,一束输入的激光能量除反射部分外全部被该介质吸收,因此能量系数是最大的,并可获得良好的光记录灵敏度。这种情况是一种最适合于实际使用的光学条件。在下面的解释中将以这种情况作为一种参照。
图7表示当非晶态的记录区域已经存在于本发明的光记录介质的轨迹上时的光吸收率,以及当用一种具有恒定功率P1的直流擦除激光束照射该轨迹时的温度分布。图7中,标号1表示热量流入,2表示热量流出,3表示记录位。擦除功率P1是这样一种功率,即在所有区域中可达到不低于Tm和不高于Tcool的一个可达到的温度。图8表示当非晶态的记录区域已存在于具有一般光学特性的光记录介质的轨迹上时的吸收率,以及当用一种具有恒定功率P1的直流擦除激光束辐射该轨迹时的温度分布。这里的擦除功率P1是这样一种能量,即在所有区域中,可达到不低于Tm和不高于Tcool的可达到的温度。在本发明的光记录介质的温度分布中,因为存在一些具有较小的吸收率的将要擦除的记录部分,这样获得了一个不低于熔点的温度分布,其中,记录部分的可达到的温度比未记录部分的可达到的温度低。与此相反,在一般的光学介质中,因为所存在的记录部分的吸收率是较高的,从而获得了一个温度分布,其中记录区域的可达到温度高于轨迹上未记录区域的可达到的温度。
因此,在本发明中由于热传导作用形成在轨迹上的热流集中到将要被擦除的记录部分。也就是说存在一种通过来自未记录区域的热流进行加热的效应,在该未记录区域中可达到的温度高于记录区域。因为记录区域是逐渐冷却的,甚至于在不高于熔点温度时也是如此,这是由于较高的可达到的温度区域再生热量所致,所以晶核形成在现存的记录区域中,其数目是相当大的。固化以后晶核生长成为具有细小粒子尺寸的晶体,从而现存的记录区域被晶化,也就是被抹除。同时在一般的光记录介质中,在进行抹除的介质中的热流是从要进行擦除的记录区域向未记录区域弥散的,因此,不存在上述的逐渐冷却的效应。更为确切地说,存在一个迅速冷却的趋势并且在熔点附近的温度很难发生形核。即使形核发生,该晶核是产生在具有较低温度的未记录区域中,因此产生在现存的记录区域的晶核的数量也是非常小的,而且在晶核生长之前记录介质已经冷却到室温了。这个冷却过程是发生在出现大量晶核之前。因此可以认为现存的记录区域中晶化的部分太小以致于不能实现完全的擦除,仍然残留很大程度的不完全擦除部分。本发明的功能上的特征是存在一种介质的光学特性,该介质本身形成在记录轨迹上的温度分布,这种温度分布产生再生热量效应的较高的可达到的温度区域。
下面的解释是关于本发明的在单束光重写方法方面的功能和擦除率改进,其中擦除操作在当前来说是最困难的。单光束重写意味着这样一种记录和擦抹的方法,其中包括通过利用一个园形光点的激光束擦除已记录在轨迹上的信号和再将新的信号记录在同一轨迹上。这种方法与上文所述的利用直流激光擦除的方法之主要区别仅仅在于在这种方法中新的信号被重写在已存在的记录区域上或其附近,而擦除过程本身来说单光束重写方法和直流激光擦除方法基本上是相同的。
图9(a)和图9(b)表示利用激光功率调制重写的典型的图示,图中记录功率P2将记录膜加热到不低于Tcool的一个温度,并且在重写时重叠上一个直流偏置功率P1。该偏置功率具有足以熔化未记录区域的功率,如图9(a)和图9(b)所示,信号是通过改变脉冲宽度tw和te来进行重写的。关于在重写轨迹上现存的记录区域和轨迹上进行重写的将要记录的区域之间的相对位置关系,存在着四种记录和擦除的模式。本发明在重写时实现了高的擦除率。标号5表示一个记录位,4表示结晶态的轨迹,6表示重写后的记录位,7表示被擦除的位。对于四种模式来说,本发明的功能在下文中将予以解释。图10表示重写时在轨迹上的可达到的温度分布,在该轨迹上的将被擦除的现存的记录区域(下面将称之为“旧记录”)和新的记录区域(下面将称之为“新记录区”)彼此是相毗邻的。图11表示上述的旧记录与新记录区彼此完全分开的一种分布。图12和图13表示上述旧记录与新记录区彼此部分重叠的分布。图14表示上述旧记录与新记录区彼此完全重叠的情况。如图10至图14中的箭头所示,可以看出在上述所有的情况下热流都是从未记录的轨迹区域和具有较高的可达到的温度的新记录区流向旧记录中,从而可以看出存在一个再生热量效应的较高的可达到的温度区域。如图12所示的情况,重叠部分具有较小的吸收率并且如果激光功率P2较小时,部分地残留非非晶态。但是因为如图13所示,P2在选择上具有一定程度的自由度,所以有可能选择一个合适的功率,并实现无写入缺陷的重写操作。如上所述,在单光束重写方案中,本发明由于有再生热量效应的较高的可达到的温度区域,从而使实现高的擦除率成为可能。实际上,正如在本发明的一些例子中将予以说明的那样,本发明已经能够不仅在直流激光照射时而且在单光束重写时都表现出一般所不知道的高擦除性能。此外,本发明甚至当光记录介质的透射率不为0时也具有类似这样一些效果。
下面将详细地解释本发明的光记录介质的光学性质,该介质在记录状态的反射率大于擦除状态的反射率,或者记录状态的吸收率小于擦除状态的吸收率。上述光学特性可以根据记录膜、介电质膜、金属反射膜等以及每种膜的厚度,诸如此类的光学特性来设计出。各种介质的构成将在各个例子中予以说明。这里将对需用来完成本发明的折射系数的条件予以说明。图1表示一种具有不同于一般记录材料的记录膜的光记录介质的以105次重复率的静态记录和擦除的反射率变化的情况(这种记录膜的详细材料成分见各个例子),这种光记录介质的透射率近于0%,非晶态的折射系数大于结晶态的折射系数。这一数据表示出一种列举在权利要求1和2中的在实际应用的记录状态和擦除状态中光记录介质的反射率变化的情况,并还表示出与迄今已发表的一种反射率变化的完全相反的关系。因此,任何至少具有在非晶态折射系数大于结晶态折射系数的记录膜都可以产生本发明的效果。在这里关于记录膜折射系数所规定的条件是考虑光记录介质在实际应用中的限制予以确定的。光记录介质在实际应用中的限制在于将要用于记录、重放和擦抹的激光源实际功率的限制。在本发明的情况下,记录和擦除状态的记录膜是被熔化的,因此,最为可取的是该记录膜利用实际应用的激光功率的功率就足以熔化,也就是说在该薄膜的表面不大于15mw。这一目标可以采用以下方法实现,即或者通过具有低熔点的记录膜,或者通过减小膜的厚度以便降低该膜的热容量来实现。前一种方法会使记录膜热力学不稳定,非晶态记录区域的晶化温度随熔点降低而降低,所以会出现人们所不希望出现的记录信息保留的寿命明显缩短的危险。后一种方法适用于淀积薄膜厚度的任何薄膜,所以该方法是可取的。在本发明中所提供的权利要求3、9、15、21、25和38限定了记录膜折射系数和消光系数之间的关系,予以输入的激光功率和记录膜的各种性质(基于吸收率和熔点可确定的恒定值)以及在记录膜的厚度范围内本发明的折射系数和吸收率之间的关系条件得以满足的激光波长,其中记录膜在上述实际应用的限制范围内能够高速度地熔化。
当予以使用的激光波长为λ,记录膜的折射系数和消光系数为n和k,记录膜的厚度为d时,一束垂直入射的激光束的干涉可由下式表示:
2πNd/λ=m
其中N=(n2+k2),m是1、2、3,……这样的整数。当N为4,λ约为800nm,则在第一级干涉m=1时,d应该约为80nm或更小。所以在本发明中,记录膜的折射系数和消光系数是这样来加以限定的,即在第一级干涉中,在膜厚不大于80nm实际应用的激光功率足以使膜熔化时,记录状态的反射率大于擦除状态的反射率。然而,即使本发明所限定的记录膜的那些折射系数和消光系数的诸条件不能得到满足,某些情况在第二级干涉中也可满足本发明的光盘的各个反射率和吸收率的关系。但是,因为在一般物质的折射系数(n<5)下,对应于第二级干涉的记录膜的厚度大于160nm,所以任何现有的实际使用的激光功率都不能全部充分熔化具有这样厚度的记录膜。如果将来有更大的激光功率可以付诸使用,甚至于在更厚的薄膜厚度情况下,也可能得到基于本发明机理的效果。
本发明的例子将一一叙述如下:
以如下方式对反射率、透射率、吸收率、折射系数和消光系数进行测量。
1.反射率、透射率和吸收率
反射率R(%)和透射率T(%)是利用分光光度计测量的。测量样品是通过形成测量用材料来加以制备的,该测量用材料在基片上,或在具有支撑特性的(例如玻璃)的基底材料上,或在具有与样品材料结构不同的媒介上形成一个预定的厚度。能量反射率是通过如下方法进行测量的,该方法利用导入一束具有830nm波长的光,通过分光镜以5°入射角进入一块样品,反射光利用一汇集球进行聚集,然后导入一个光检测器。能量透射率是通过如下方法进行测量的,该方法利用从样品的表面垂直地导入一束光,通过该样品的光利用一个汇集球聚集起来,然后导入到一个光检测器。能量吸收率A(%)可以利用上面的R和T值以及能量守恒定律根据以下方程进行计算:
A=100-R-T
2.折射系数和消光系数
折射系数和消光系数是在测量能量反射率和透射率的基础上通过计算机模拟计算出来的,该计算机模拟是根据在界面上多次反射的多层系统的矩阵计算进行的(详见A.Bell.etal,IEEE,J.Quntum    Electron    Page487,1987)
为了确定本发明的记录介质的功能,利用溅射方法已经制备了一片5.25吋的光盘。作为基片的是1.2mm厚的石英玻璃,玻璃、聚碳酸酯(PC)树脂和聚甲基丙烯酸甲酯(PMMA)树脂;作为记录介电质膜的是SiN、AlN、SiO2、ZrO2、ZnS、Ta2O5、TiN、Cr2O3、GeN、TiO2、SiC等(在本例子中,介电质膜通过具有化学当量成分的化学式表示的,但在实际的应用中成分发生变化,因此,该介电质膜很难得到一个精确的成分);作为金属反射膜的是铬、20%Ni-Cr合金、铝。上述膜均是采用射频溅射方法形成的,溅射条件是:对于介电质膜来说,初始真空度为8.5×10-5Pa,射频输出功率为400W,氩气(Ar)的部分压力为1mToor;对于记录膜来说,射频输出功率为200W,氩气分压为1mToor;对于金属反射膜来说,直流输出功率为200w,氩气分压为20mToor。以In22Te37Sb41(%)作为记录材料符合权利要求1、7、13、19和25所进行的限定。利用这种记录材料制备出了具有由权利要求5予以限定的光记录介质膜的构成,并且对这种膜的光学性质进行了考查。此外,这种膜在非晶态的折射系数n=4.952,消光系数为k=0.857;它在结晶态的折射系数n=4.678,消光系数k=1.743。也就是说,本发明的特征是非晶态的折射系数大于结晶态的折射系数。表1综合了本发明书现有技术部分中所讨论过的一些材料的折射系数n和消光系数k。在这些材料中的任何一种材料在非晶态的折射系数均小于结晶态的折射系数,而本发明中上述关系正好与之相反。
图15表示出一种片基-记录膜-介电质膜结构的记录介质,其中记录膜9淀积在1.2mm厚的玻璃片基上,其厚度可达200nm,作为介电质膜10的是SiO2,淀积在记录膜上,其厚度为70nm,单束激光11是从片基一侧射入的。
图16(a)表示上述光记录介质的光学特征,其中表示出了其记录状态(非晶态)和擦除状态(结晶态)的反射率。
图16(b)表示吸收特性。具有可检测到的反射率差别的记录膜的厚度最大约为40nm及90nm~130nm之间。其反射率在非晶态高于结晶态,这样也与权利要求1的限定相一致。吸收率在200nm厚度以下的全部范围内结晶态均高于非晶态,这样与权利要求13的限定也一致,从而,记录膜的厚度可从上述所规定的范围中选择。但是,如果膜厚增加,热容量也增加,则以激光照射的记录和擦除的灵敏度变差,并因此需要更高的激光输入功率。
图17示出一种玻璃基片/记录膜/金属反射膜的薄膜结构,其中金属反射膜12的厚度是恒定的或者为100nm,记录膜9的厚度是可变的,最大值达到200nm。图18(a)示出用金作为金属反射膜9的情况,最后得到的介质符合现在的权利要求1关于晶态和非晶态的反射率变化的限制。记录膜厚度处在30nm~90nm之间和130nm~170nm之间时,其反射率之差可以实际地被检测。如图18(b)所示,当记录膜厚度约为30nm~80nm之间和130nm~160nm之间时,吸收率之差可以实际地被检测,并且上述吸收率符合权利要求13。图19(a)和图19(b)表示用铬作为金属反射膜12的情况,关于反射率,它符合现在的权利要求1,当膜厚约在40nm~80nm之间和140nm~155nm之间时,反射率之差可以实际地被检测。关于吸收率,如图19(b)所示,当记录膜厚度9处于40nm~80nm之间和约150nm时,吸收率之差可以实际地被检测,并且上述吸收率符合权利要求13。图20(a)和图20(b)表示用铝作为金属反射膜12的情况,其反射率符合现在的权利要求1,当记录膜9的厚度在40nm~90nm之间和130nm至160nm之间时,反射率之差可以实际地被检测。如图20(b)所示,当记录膜厚度约在40nm~80nm之间和约在154nm时,吸收率之差可以实际地被检测,且上述吸收率符合权利要求13。图21(a)和图21(b)表示用Ni-20Cr(Wl%)作金属反射膜12的情况,当记录膜9的厚度在50nm~80nm之间时,反射率符合权利要求1,反射率之差可以实际地被检测,如图21(b)所示,记录膜厚度在50nm~80nm之间时,吸收率之差可以实际地检测,且上述吸收率符合权利要求13。
图22表示一种PC基片/记录膜/金属反射膜/介电质膜的薄膜结构,其中,用金作为金属反射膜12厚度为100nm,用SiN作为介电质膜10其厚度为80nm,记录膜9厚度是可变的,最大可达200nm,
图23(a)表示在非晶态和晶态情况下反射率的变化。符合权利要求1的记录膜9的厚度约在30nm~90nm和130nm~160nm之间时,反射之差可以实际地被检测,如图23(b)所示,当记录膜厚度在30nm~80nm和130nm~160nm之间时,吸收率之差可以实际地被检测,且上述吸收率符合权利要求13。
图24(a)和图24(b)表示一种PMMA基片/记录膜/金属反射膜/介电质膜的薄膜结构,其中用铬作金属反射膜12,其厚度为100nm,用SiN作介电质膜,其厚度为80nm,记录膜9的厚度是可变的,最大可达200nm。
图24(a)表示在非晶态和晶态情况下反射率的变化。记录膜9的厚度符合权利要求1,在40nm~80nm和130nm~170nm之间。在这些厚度中,反射之差别可以实际地被检测,关于吸收率,如图24(b)所示,当记录膜9的厚度在40nm~80nm之间和在150nm左右时,吸收率之差可以实际地被检测,且上述吸收率符合权利要求13。
图25(a)和图25(b)表示一种PMMA基片/记录膜/金属反射膜/介电质膜的薄膜结构,其中,用铝作金属反射膜12,其厚度为100nm,用SiN作介电质膜10,其厚度为80nm,记录膜厚度是可变的,最大达200nm。
图25(a)表示在非晶态和晶态情况下反射率的变化情况,记录膜厚度符合权利要求1,在40nm~90nm和150nm左右,在这些厚度时,反射之差别可以实际地被检测;关于吸收率,如图25(b)所示,当记录膜9的厚度在40nm~90nm之间和150nm左右时,吸收率之差可以实际地被检测,且上述吸收率符合权利要求13。
图26表示一种玻璃基片/记录膜/介电质膜/金属反射膜的薄膜结构,其中,用金作金属反射膜12,其厚度为60nm;用AlN作介电质膜10,其厚度为70nm,记录膜9的厚度是变化的,最大可达200nm。
图27(a)表示在非晶态和晶态下反射率变化的情况。记录膜9的厚度符合权利要求1,在10nm~65nm之间和105nm~140nm之间,在这些厚度中,反射之差别可以实际地被检测。关于吸收率,如图27(b)所示,当记录膜9的厚度在10nm~60nm之间和100nm~140nm之间时,吸收率之差可以实际地被检测,且上述吸收率符合权利要求13。
图28表示一种玻璃基片/记录膜/介电质膜/金属反射膜/介电质膜的薄膜结构,其中,厚度为60nm的金用作金属反射膜12,厚度为70nm的AlN用作介电质膜10,记录膜厚度是变化的,最高可达200nm。
图29(a)表示在非晶态和晶态下反射率变化的情况,记录膜9的厚度符合权利要求1,在10nm~60nm和100nm~140nm之间,在这些厚度中,反射之差可以实际地被检测。关于吸收率,如图29(b)所示,当记录膜9的厚度在10nm~70nm和100nm~140nm之间时,吸收率之差可以实际地被检测,且上述吸收率符合权利要求13。
图30表示一种PC基片/介电质膜/记录膜/介电质膜的薄膜结构,其中,AlN用作介电质10,其厚度为70nm,记录膜9的厚度是可变的,最高可达200nm。
图31(a)表示在非晶态和晶态下反射率变化的情况,记录膜9的厚度符合权利要求1,约在10nm~30nm和100nm~120nm之间,在这些厚度中,反射之差别可以实际地被检测;关于吸收率,如图31(b)所示,在记录膜9的整个厚度范围内,吸收率之差可以实际地被检测,且上述吸收率满足权利要求13。
图32表示一种PMMA基片/介电质膜/记录膜/金属反射膜的薄膜结构,其中,用铝作金属反射膜12,厚度为100nm;用AlN作介电质膜10,厚度为70nm,记录膜9的厚度是变化的,最高可达200nm。
图33(a)表示在非晶态和晶态下反射率变化的情况,记录膜9的厚度符合权利要求1,在20nm~80nm和130nm~160nm之间,在这些厚度中,反射之差可以实际地被检测;关于吸收率,如图33(b)所示,当记录膜9的厚度在20nm~80nm和130nm~160nm之间时,吸收率之差可以实际地被检测,且上述吸收率符合权利要求13。
图34(a)和图34(b)表示一种PC基片/介电质膜/记录膜/金属反射膜的薄膜结构,其中,用金作金属反射膜12,厚度为100nm,用AlN作介电质膜10,厚度为70nm,记录膜9的厚度是可变的,最高可达200nm。
图34(a)表示在非晶态和晶态下反射率的变化情况,记录膜9的厚度符合权利要求1,在10nm~80nm之间和120nm~160nm之间,在这些厚度中,反射之差别可以实际地被检测;关于吸收率,如图34(b)所示,当记录膜9的厚度在10nm~80nm之间和120nm~160nm之间时,吸收率之差可以实际地被检测,且上述吸收率符合权利要求13。
图35表示一种玻璃基片/介电质膜/记录膜/金属反射膜/介电质膜的薄膜结构,其中,用金作金属反射膜12,厚度为100nm,用AlN作介电质膜,厚度为70cm,记录膜9的厚度是可变的,最大可达200nm。
图36(a)表示在非晶态和晶态下反射率的变化情况。记录膜9的厚度符合权利要求1,在10nm~80nm之间和120nm~160nm之间,在这些厚度中,反射之差别可以实际地被检测。关于吸收率,如图36(b)所示,当记录膜9的厚度在10nm~80nm之间和120nm~160nm之间时,吸收率之差可以实际地被检测,且上述吸收率符合权利要求13。
图37(a)和图37(b)表示一种PC基片/介电质膜/记录膜/金属反射膜/介电质膜结构,其中,用铝作金属反射膜12,其厚度为100nm,用AlN作介电质膜,其厚度为70nm,记录膜9的厚度是可变的,最大达200nm。
图37(a)表示在非晶态和晶态情况下反射率的变化,记录膜9的厚度符合权利要求1,在20~80nm之间和在130nm~160nm之间,在这些厚度中,反射之差别可以实际地被检测;关于吸收率,如图37(b)所示,当记录膜9的厚度在20nm~85nm之间和在130nm~160nm之间时,吸收率之差可以实际地被检测,而上述吸收率符合权利要求13。
图38表示一种PC基片/介电质膜/记录膜/介电质膜/金属反射膜的薄膜结构,其中,用金作为金属反射膜,其厚度为100nm,用AlM作介电质膜,其厚度为70nm,且记录膜9的厚度是可变的,最大可达200nm,
图39(a)表示非晶态和晶态下反射率变化的情况,符合权利要求1的记录膜9的厚度在10nm~70nm之间和90nm~150nm之间,在这些厚度中,反射之差别可以实际地被检测,关于吸收率,如图39(b)所示,当记录膜9的厚度约为10nm~70nm之间和在90nm~150nm之间时,吸收率之差可以实际地被检测,且上述吸收率符合权利要求13。
图40(a)和图40(b)表示一种玻璃基片/介电质膜/记录膜/介电质膜/金属反射膜的薄膜结构,其中,用铝作金属反射膜,其厚度为100nm,用AlN作介电质膜,其厚度为70nm,记录膜9的厚度是可变的,最大达到200nm。
图40(a)表示在非晶态和晶态下反射率变化的情况,符合权利要求1的记录膜的厚度在10nm~70nm之间和90nm~150nm之间,在这个厚度范围内,反射之差别可以实际地被检测;关于吸收率,如图40(b)所示,当记录膜9的厚度在10nm~70nm之间和70nm~150nm之间时,吸收率之差可以实际地被检测,且上述吸收率符合权利要求13。
图41表示一种PC基片/介电质膜/记录膜/介电质膜/金属反射膜/介电质膜的薄膜结构,其中,用金作金属反射膜12,厚度为100nm,用AlN作介电质膜10,厚度为70nm,记录膜9的厚度是可变的,最大可达200nm。
图42(a)表示在非晶态和晶态下反射率变化的情况,符合权利要求1的记录膜9的厚度在10nm~70nm之间和在90nm~150nm之间,在这个厚度范围内,反射之差别可以实际地被检测,关于吸收率,如图42(b)所示,当记录膜9的厚度在10nm~70nm之间和90nm~150nm之间时,吸收率之差可以实际地被检测,且上述吸收率符合权利要求13。
图43(a)和图43(b)表示一种PC基片/介电质膜/记录膜/介电质膜/金属反射膜/介电质膜的薄膜结构,其中,用铝作金属反射膜12,厚度为70nm,用AlN作介电质膜10,厚度为70nm,记录膜9的厚度是可变的,最大可达200nm。
图43(a)表示在非晶态和晶态下反射率变化的情况,符合权利要求1的记录膜9的厚度在10nm~70nm之间和90nm~150nm之间,在这个厚度范围内,反射之差别可以实际地被检测,关于吸收率,如图43(b)所示,当记录膜9的厚度约在10nm~70nm之间和在70nm~150nm之间时,吸收率之差可以实际地被检测,且上述吸收率符合权利要求13。
图44表示一种玻璃基片/记录膜/玻璃基片的薄膜结构,其中记录膜9的厚度是可变的,最大可达200nm。
图45(a)表示在非晶态和晶态下反射率的变化,符合权利要求1的记录膜9的厚度在10nm~60nm之间和100nm~150nm之间,在这个厚度范围内,反射之差可以实际地被检测;关于吸收率,如图45(b)所示,当记录膜9的厚度在10nm~170nm之间和180nm~200nm之间时,吸收率之差可以实际地被检测,且上述吸收率符合权利要求13。
图46表示一种玻璃基片/记录膜/金属反射膜/玻璃基片的薄膜结构,其中,用金作金属反射膜12,厚度为100nm,记录膜9的厚度是可变的,最大可达200nm。
图47(a)表示在非晶态和晶态下反射率变化的情况,符合权利要求1的记录膜9的厚度为30nm~90nm之间和140nm~170nm之间,在这个厚度范围内,反射之差别可以实际地被检测;关于吸收率,如图47(b)所示,当记录膜9的厚度在30nm~90nm之间和130nm~160nm之间时,吸收率之差可以实际地被检测,且上述吸收率符合权利要求13。
图48表示一种PC基片/SiN/记录膜/Au/PC基片的薄膜结构,其中,用作金属反射膜12的金的厚度为100nm,用SiN作介电质膜10,厚度为70nm,记录膜9的厚度是可变的,最大可达200nm。
图49(a)表示在非晶态和晶态下的反射率变化的情况,符合权利要求1的记录膜9的厚度在10nm~80nm之间和在120nm~160nm之间,在这个厚度范围内,反射之差别可以实际地被检测;关于吸收率,如图49(b)所示,当记录膜9的厚度在10nm~80nm之间和在120nm~160nm之间时,吸收率之差别可以实际地被检测,且符合权利要求13。
图50表示一种PC基片/SiN/记录膜/Au/SiN/PC基片的薄膜结构,其中,用金作金属反射膜12,厚度为100nm,用SiN作介电质膜10,厚度为70nm,记录膜的厚度是可变的,最大达200nm。
图51(a)表示在非晶态和晶态下反射率的变化情况,符合权利要求1的记录膜9的厚度在10nm~80nm之间和在120nm~160nm之间,在这个厚度范围内,反射之差别可以实际地被检测;关于吸收率,如图51(b)所示,当记录膜9的厚度在10nm~80nm和120nm~160nm之间时,吸收率之差可以实际地被检测,且吸收率符合权利要求13。
图52表示一种玻璃基片/SiN/记录膜/玻璃基片的薄膜结构,其中,用SiN作介电质膜10,厚度为70nm,记录膜9的厚度是可变的,最大达到200nm。
图53(a)表示在非晶态和晶态下反射率变化的情况,符合权利要求1的记录膜9的厚度为10nm~60nm之间和100nm~140nm之间,在这些厚度范围内,反射之差别可以实际地被吸测;关于吸收率,如图53(b)所示,当记录膜9的厚度在10nm~200nm之间时,吸收率之差可以实际地被检测,且上述吸收率符合权利要求13。
图54表示一种PC基片/SiN/记录膜/SiN/PC基片的薄膜结构,其中,用作介电质膜10的SiN之厚度为70nm,记录膜9的厚度是可变的,最大可达200nm。
图55(a)表示在非晶态和晶态下反射率变化的情况,符合本权利要求1的记录膜9的厚度在10nm~50nm之间和在80nm~140nm之间,在这些厚度范围内,反射之差别可以实际地被检测;关于吸收率,如图55(b)所示,当记录膜9的厚度在10nm~200nm之间时,吸收率之差可以实际地被检测,且吸收率符合权利要求13。
图56表示一种玻璃基片/SiN/记录膜/Au/玻璃基片的薄膜结构,其中用Au(金)作金属反射膜12的厚度为100nm,用SiN作介电质膜,厚度为70nm,记录膜9的厚度是可变的,最大可达200nm。
图57(a)表示非晶态和晶态下反射率变化的情况,符合权利要求1的记录膜9的厚度在10nm~80nm之间和在120nm~160nm之间,在这个厚度范围内,反射之差别可以实际地被检测;关于吸收率,如图57(b)所示,当记录膜9的厚度在10nm~80nm之间和在120nm~160nm之间时,吸收率之差可以实际地被检测,且上述吸收率符合权利要求13。
图58表示一种PMMA基片/SiN/记录膜/Au/SiN/PMMA基片的薄膜结构,其中用金作金属反射膜12,其厚度为100nm,用SiN作介电质膜,厚度为70nm,记录膜9的厚度是可变的,最大达200nm。
图59(a)表示在非晶态和晶态下反射率变化的情况。符合权利要求1的记录膜9的厚度在10nm~90nm之间和120nm~160nm之间,在这个厚度范围内,反射之差别可以实际地被检测;关于吸收率,如图59(b)所示,当记录膜9的厚度在10nm~80nm之间和在120nm~160nm之间时,吸收率之差可以实际地被检测,且上述吸收率符合权利要求13。
图60表示一种PC基片/AlN/记录膜/AlN/Au/PC基片的薄膜结构,其中,用金作金属反射膜12,厚度为100nm;用AlN作介电质膜10,厚度为70nm,记录膜9的厚度是可变的,最大可达200nm。
图61(a)表示在非晶态和晶态下反射率变化的情况,符合权利要求1的记录膜的厚度为10nm~70nm之间和90nm~140nm之间,在这个厚度范围内,反射之差别可以实际地被检测;如图61(b)所示,当记录膜9的厚度在10nm~70nm之间和90nm~150nm之间时,吸收率之差可以实际地被检测,且上述吸收率符合权利要求13。
图62(a)和图62(b)表示一种玻璃基片/AlN/记录膜/AlN/Ni-20    Cr/玻璃基片的薄膜结构,其中,用金作金属反射膜12,厚度为100nm;用AlN作介电质膜10,厚度为70nm,记录膜9的厚度是可变的,最大可达200nm。
图62(a)表示在非晶态和晶态下反射率变化的情况,符合权利要求1的记录膜9的厚度在10nm~70nm之间和90nm~150nm之间,在这个厚度范围内,反射之差别可以实际地被检测;关于吸收率,如图62(b)所示,当记录膜9的厚度在10nm~70nm之间和90nm~150nm之间时,吸收率之差可以实际地被检测,且上述吸收率符合权利要求13。
图63(a)和图63(b)表示一种玻璃基片/AlN/记录膜/Al/玻璃基片的薄膜结构,其中,用铝作金属反射膜12,厚度为100nm;用AlN作介电质膜10,厚度为70nm,记录膜9的厚度是可变的,最大达到200nm。
图63(a)表示在非晶态和晶态下反射率变化的情况,符合权利要求1的记录膜9的厚度约为10nm~70nm之间和90nm~140nm之间,在这个厚度范围内,反射之差别可以实际地被检测;关于吸收率,如图63(b)所示,当记录膜9的厚度在10nm~70nm之间和90nm~150nm之间时,吸收率之差可以实际地被检测,且上述吸收率符合权利要求13。
图64表示一种PC基片/AlN/记录膜/AlN/Au/AlN/PC基片的薄膜结构,其中,用金作金属反射膜12,厚度为100nm;用AlN作介电质膜10,厚度为70nm;记录膜9的厚度是可变的,最大可达200nm。
图65(a)表示在非晶态和晶态下反射率变化的情况,符合权利要求1的记录膜9的厚度在10nm至60nm之间和90nm~140nm之间,在这个厚度范围内,反射之差别可以实际地被检测;关于吸收率,如图65(b)所示,当记录膜9的厚度在10nm~70nm之间和100nm~140nm之间时,吸收率之差可以实际地被检测,且上述吸收率符合权利要求13。
图66(a)和图66(b)表示一种玻璃基片/AlN/记录膜/AlN/Cr/AlN/玻璃基片的薄膜结构,其中用铬作金属反射膜12,厚度为100nm;用AlN作介电质膜10,厚度为70nm;记录膜9的厚度是可变的,最大值为200nm。
图66(a)表示在非晶态和晶态下反射率变化的情况,符合权利要求1的记录膜9的厚度在10nm~70nm之间和90nm~150nm之间,在这个厚度范围内,反射之差别可以实际地被检测;关于吸收率,如图66(b)所示,当记录膜9的厚度在10nm~70nm之间和在90nm~140nm之间时,吸收率之差可以实际地被检测,且吸收率符合权利要求13。
图67(a)和图67(b)表示一种玻璃基片/AlN/记录膜/AlN/Al/AlN/玻璃基片的薄膜结构,其中,用铝作金属反射膜,厚度为100nm;用AlN作介电质膜,厚度为70nm;记录膜厚度是可变的,最大值为200nm。
图67(a)表示非晶态和晶态下反射率的变化情况,符合权利要求1的记录膜9的厚度在10nm~70nm之间和100nm~140nm之间,在这个厚度范围内,反射之差别可以实际地被检测;关于吸收率,如图67(b)所示,当记录膜9的厚度在10nm~70nm之间和100nm~140nm之间时,吸收率之差可以实际地被检测,且吸收率符合权利要求13。
图68(a)和图68(b)表示一种PC基片/AlN/记录膜/AlN/Ni-20    Cr/AlN/PC基片的薄膜结构,其中,用Ni-20    Cr作金属反射膜12的厚度为100nm,用AlN作介电质膜10,厚度为70nm,记录膜的厚度是可变的,最大值为200nm。
图68(a)表示非晶态-晶态下反射率变化的变化。符合权利要求1的记录膜9的厚度在10nm~60nm之间和100nm~140nm之间,在这个厚度范围内,反射之差别可以实际地被检测;关于吸收率,如图68(b)所示,当记录膜9的厚度在10nm~70nm之间和100nm~140nm之间时,吸收率之差可以实际地被检测,且上述吸收率符合本权利要求13。
图69表示一种玻璃基片/记录膜/Au/玻璃基片的薄膜结构, 其中用金作金属反射膜12,厚度为10nm;记录膜9的厚度是可变的,最大值为200nm。
图70(a)表示在非晶态和晶态下反射率变化的情况,符合权利要求1的记录膜9的厚度在20nm~70nm之间和在120nm~150nm之间时,在这个厚度范围内,反射之差别可以实际地被检测;关于吸收率,如图70(b)所示,当记录膜9的厚度在10nm~160nm之间时,吸收率之差可以实际上被检测,且吸收率符合权利要求13。
图71(a)和图71(b)表示一种使用本发明的In22Sb37Te41(原子百分比)和具有一种玻璃基片/介电质膜/记录膜/介电质膜/金属反射膜/介电质膜的薄膜结构的反射率和吸收率,其安置在离玻璃基片第四层的介电质膜厚度是可变的,最大值为200nm;用金作金属反射膜,厚度为100nm;用SiO2作另外的介电质膜,厚度为70nm。
图71(a)表示在非晶态和晶态下反射率变化的情况,符合权利要求1的介电质膜10的所有厚度范围内,反射之差别可以实际地被检测;关于吸收率,如图71(b)所示,在介电质膜10的所有厚度范围内,吸收率之差可以实际地被检测,上述吸收率符合权利要求13。
图72(a)和图72(b)表示一个使用本发明的In22Sb37Te41(原子百分比)和具有一个玻璃基片/介电质膜/记录膜/介电质膜/金属反射膜/介电质膜的薄膜结构的反射率和吸收率,其安置在离玻璃基片第二层的介电质膜10的厚度是可变的,最大值为200nm;用金作金属反射膜12,厚度为100nm;用AlN作另外的介电质膜,厚度为70nm。
图72(a)表示在非晶态和晶态下反射率变化的情况,符合权利要求1的介电质膜10的所有厚度范围内,反射之差别可以实际地被检测;关于吸收率,如图72(b)所示,在介电质膜10的所有厚度范围内,吸收率之差可以实际地被检测,上述吸收率符合权利要求13。
图73(a)和图73(b)表示Se52Ge27Sn21(原子百分比)用作符合权利要求1,7,13和19的记录材料的情况,这是PMMA基片/介电质膜/记录膜/介电质膜/金属反射膜/介电质膜的薄膜结构,用金作金属反射膜12,厚度为100nm;用ZrO2作介电质膜10,厚度为70nm;记录膜厚度是可变的,最大值为200nm。
图73(a)表示在非晶态和晶态下反射率变化的情况,当符合权利要求1的记录膜9的厚度在10nm~80nm之间和在100nm~180nm之间时,反射之差别可以实际地被检测;关于吸收率率,如图73(b)所示,当记录膜9的厚度在10nm~80nm之间和100nm~180nm之间时,吸收率之差可以实际地被检测,上述吸收率符合本权利要求13。
图74(a)和图74(b)表示Sb56Se40Zn4(原子百分比)用作符合权利要求1、7、13和19的记录材料的情况,这是PC基片/介电质膜/记录膜/介电质膜/金属反射膜/介电质膜的薄膜结构,用金作金属反射膜12,厚度为100nm;用ZrO2作介电质膜10,厚度为70nm;记录膜9的厚度是可变的,最大值为200nm。
图74(a)表示在非晶态和晶态下反射率变化的情况,当符合权利要求1的记录膜9的厚度在10nm~80nm之间和在110nm~120nm之间时,反射之差别可以实际地被检测;关于吸收率,如图74(b)所示,当记录膜9的厚度在10nm~80nm之间和在100nm~180nm之间时,吸收率之差可以实际地被检测,上述吸收率符合权利要求13。
图75(a)和75(b)表示Sb34St58Sn8(原子百分比)用作符合权利要求1,7,13和19的记录材料的情况,这是PC基片/介电质膜/记录膜/介电质膜/金属反射膜/介电质膜的薄膜结构,用金作金属反射膜12,厚度为100nm;用AlN作介电质膜10,厚度为70nm;记录膜9的厚度是可变的,最大值为200nm。
图75(a)表示在非晶态和晶态下反射率变化的情况,在符合权利要求1的记录膜9的所有厚度范围内,反射之差别可以实际地被检测;关于吸收率,如图75(b)所示,在记录膜9的所有厚度范围内,吸收率之差可以实际地被检测,上述吸收率符合权利要求13。
图76(a)和图76(b)表示Sb64Se29Zn27(原子百分比)用作符合权利要求1,7,13和19的记录材料的情况,这是PMMA基片/介电质膜/记录膜/介电质膜/金属反射膜/介电质膜的薄膜结构,用金作金属反射膜12,厚度为100nm;用SiN作介电质膜10,厚度为70nm;记录膜9的厚度是可变的,最大值达200nm。
图76(a)表示在非晶态和晶态下反射率变化的情况,在符合权利要求1的记录膜9的所有厚度范围内,反射之差别可以实际地被检测;关于吸收率,如图76(b)所示,在记录膜9的所有厚度范围内,吸收率之差可以实际地被检测,且上述吸收率符合权利要求13。
图77(a)和图77(b)表示Te64Sb6Sn30(原子百分比)用作符合权利要求1,7,13和19的记录材料,的情况,这是PMMA基片/介电质膜/记录膜/介电质膜/金属反射膜/介电质膜的薄膜结构,用金作金属反射膜12,厚度为100nm;用AlN作介电质膜10,厚度为70nm;记录膜9的厚度是可变的,最大值为200nm。
图77(a)表示非晶态和晶态下反射率变化的情况在符合权利要求1的记录膜的所有厚度范围内,反射之差别可以实际地被检测;关于吸收率,如图77(b)所示,在记录膜9的所有厚度范围内,吸收率之差可以实际地被检测,且上述吸收率符合权利要求13。
图78(a)和图78(b)表示使用在现在的权利要求7,13,19和35中列举的光记录介质的可重写光盘的记录和擦除实施例。这些光盘是根据高频溅射的方法制备的,该方法包括在一个5.25吋的玻璃基片上淀积70nm~80nm厚的AlN膜用作光学干涉膜,该玻璃基片具有激光导槽,用于连续伺服跟踪技术的激光束跟踪,其上沉积30nm~50nm厚的In22Sb37Te41作记录膜;然后再淀积70nm~80nm厚的AlN在记录膜上;又淀积100nm厚的金在AlN上作光学反射膜;再淀积100nm厚的AlN在Au膜上作保护膜。这些光盘以1800~2400周/分的转速转动,用15mw功率的直流激光器照射膜表面,使反射率从50%下降到20%,因此,形成了记录轨迹。首先,当在图78(a)的频谱分析仪中显示的2MHz载波信号强度与噪声强度之比(C/N)为50dB时,记录是由2MHz频率脉冲调制的13mw激光器照射在上述轨迹上实现的。然后,在上述记录轨迹上用具有与记录时相同的13mw功率的直流光束照射,以使在图78(b)显示的频谱分析仪上显示记录信号被擦除后降到5dB。在这种擦除方法中,擦除率为-45dB,虽然辐射功率是相同的,但这-擦除率却在实际应用的水平之上。如上所述已经证明,甚至在用一般光学记录介质是不可思议的记录和擦除方法中,本发明都能给出高性能,而且,甚至当使用PMMA、PC等树脂基片时,其结果也是与上述实施例相同;而且,甚至当采用采样伺服系统,即另一种跟踪系统的基片时,所得到的结果也与上述实施例完全相同。
图79(a)和图79(b)表示使用本发明的光记录介质的可重写光盘的一个单束光重写的实施例。该光盘结构与上述实施例的一样。图79(a)表示一个用作重写的一个圆型激光点光束(光点直径为1.5μm)的功率调制模式。如记录功率P1能把记录膜加热到不低于Tcool的温度,偏置功率P2能把记录膜加热到不低于熔点和不高于Tcool的温度,选择功率P1/P2=12.5mv/9.5mv和16/13。光盘以1800~2400周/分的转速转动,用15mw直流光束连续辐射,使光盘反射从50%下降到20%,由此形成了记录轨迹。然后,具有2MHz频率调制的正弦信号用上述功率的激光照射以记录,然后在上述2MHz信号上重写上3MHz的正弦波信号,如图79(a)和图79(b)所示,频谱分析仪显示了以C/N为50dB记录的2MHz信号通过3MHz重写-记录信号擦除到2dB,同时显示3MHz信号是以C/N=50dB重写记录上的。在反向过程中,也能得到类似的结果。可以证明。在单束光的重写中,本发明所给出的擦除性能是现有技术中所没有的,其擦除率为-45dB或更高,而且,考查上述方法的重写重复次数,如图80(a)和图80(b)所示,用两个激光功率,2MHz和3MHz正弦波信号的重写重复次数大于105次,擦除率为-35dB或更高。
图81(a)和图81(b)表示在示波器屏上的2MHz正弦波信号。在上述信号中的任一信号中,任何由不完全擦除引起的波形失真和频率变化都可以被识别出来,并且在这两种情形下信号可以被完全擦除。已经证明,本发明的光记录介质使的无不完全擦除的单光束重写成为可能,即使采用一个实际上使用的15mw或更低功率的激光器也是如此。当用如PMMA,PC树酯作基片时也得到如上述实施例一样的结果。而且,即使根据另一种跟踪系统-采样伺服跟踪技术-未使用光盘,本发明的光记录介质也能得到如同上述实施例的结果。
在表2中所述的记录膜构成的光记录介质,它们的反射率、n在非晶态中比在晶态中的大,满足权利要求1、7、13和19,其中的变化也与表1中所述的一般的材料中的变化不同。正如权利要求26和27所限定的那样,记录膜包括元素例如锑、锌、锡、锗等与硒、碲等的混合物,如同元素铟、铅、银、铜、金等一样,都能有效地控制记录膜的折射系数。
表2
表3给出了具有表2所述记录膜的光盘的记录率和擦除率。这些盘是高频溅射方法制备的,其中,在一个5.25吋的玻璃基片上,该玻璃基片有用于连续伺服技术的激光束跟踪的激光导槽,淀积70nm~80nm厚的AlN作为光干涉膜,然后在其上再淀积30nm~50nm厚的列于表2的记录材料膜,再淀积100nm厚的金作为光反射膜,再淀积100nm厚的AlN作为保护膜。记录功率和擦除功率在15mw或更低。所有这样制得的光盘给出了C/N约为50dB,且具有高的灵敏度,而且,这些光盘,无论是直流法还是重写擦除法,都能得到-35dB或更高一些的高擦除率。
当激光二极管用于所说的介质进行记录、重放和擦除时,上面的讨论已经完全证明了本发明的光记录介质的效应。所使用的激光波长的限制(在权利要求38中限定),仅与作为光源的激光二极管的使用有关。如图82(a)和图82(b)所示,在具有In22Sb37Te41记录膜的光记录介质的情况下,当波长为300nm~1500nm时,其反射率,在非晶态时大于结晶态;吸收率,在非晶态时小于结晶态。这样,这些介质满足现在的权利要求1、7、13和19。事实上,当波长为500nm的氩离子激光被用在上述光记录介质中进行记录和擦除时,记录介质给出高的记录灵敏度和高的擦除率,并且对所使用的波长没有什么特别的限制。
本发明的效果已经由上文说明。另外,随后的实施例将说明仅使用本发明的光记录介质才能得到的串音减小效应。在满足于沉积状态的反射率和吸收率的光记录介质中和在满足于记录和擦除状态的反射率和吸收率的光记录介质中,如本权利要求7和13所限定的,一个具有低于在沉积状态的反射率(一般等于在擦除状态的反射率)的轨迹首先形成,并且信号记录在轨迹上。于是,在介质上,存在两个分离的部分,两个部分的反射率和吸收率均不相同,一个部分是具有较低反射率(或较高吸收率)的轨迹区域,另一个部分(在轨迹外对应于用于连续伺服技术的光盘的导槽)是具有较高反射率(或较低吸收率)且保留于沉积状态的部分。同时,当采用光学方法将信号记录时,尽可能地减小轨迹间距离以利于高密度记录才是可取的。然而,如果轨迹间的距离减得太小,则串音现象会发生,即邻近轨迹的记录信号相互重迭,串音将引起噪声。因此,实际上,在缩小轨迹间距的同时串音增加决定了在光记录介质上记录的密度。在本发明的光记录介质中,具有较小反射率和处于沉积状态的轨迹外部分置于与轨迹部分相接触的位置。轨迹外部分较少受到用于在轨迹部分上进行记录和擦除的激光束的热影响,这是因为它可达到的温度是低的。对相邻轨迹的串音,由这个热障特别地减小。在本发明的光记录介质中,已经发现,当轨迹间距为0.5nm时,串音小到-40dB或更小,这个值较一般光盘的同一值小的多。在一般的光记录介质中,其反射率或吸收率的关系与本发明中记录介质的同样的关系是相反的,所以轨迹外部分很可能受到热的影响。上面的效应只能由本发明的记录介质产生,且可能实现异常高的记录密度。
图83是一个装置的方框图,显示本发明一个实施例的光信息记录和重放过程。
该装置包括一个光头13,一个光头位置控制电路14,一个接收信号处理电路15,一个激光二极管激励电路16,一个光盘施转电机17,一个转台18,一个具有跟踪导引的光盘19,一个用于光盘记录膜熔点鉴别处理部分20,一个系统控制电路21和一组外部输入一输出端22。
光盘的构成包括:在一个玻璃基片上溅射形成70nm厚的AlN膜,其上以溅射形成50nm厚的In-Sb-Te膜作为记录膜,其上再以溅射形成70nm厚的AlN膜,其上再以溅射形成100nm厚的Au膜,其上再以溅射形成100nm厚的AlN膜作为保护膜,最后再在其上旋压一层10μm厚的UV硬树脂层作为保护膜。
上述光盘19放置在转台18上,电机17驱动转台18以旋转光盘19,通过外设输入一输出端22,经过系统控制电路,接通或断开转动。
从光头13来的激光束23辐射光盘19,激光束23的反射部分返回到光头13,通过接收信号处理电路15以提取一个光拾取高度信号和在轨迹上的偏转信号,利用这些信号,光拾取器的位置控制电路14可以控制在光盘19上的光拾取器13的聚焦和跟踪。通过外部输入-输出端,经过系统控制电路21,接通或断开聚焦和跟踪。
而且,光头13具有与系统控制电路相同的构成,即设置一个激光辐射功率,以便通过激光二极管激励电路16保持时间通道,该激光二极管激励电路16可能进行单光束重写。
需用来加热光盘19到它的熔点或更高一些温度的激光辐射功率被写入到一个控制轨迹,这个轨迹处在光盘19的内周边或外周边上。在重写时,熔点鉴别处理部分20在需用来加热到熔点或更高一些温度的功率的基础上,设置记录点辐射功率和擦除点辐射功率。
熔点鉴别处理部分20能在熔点或更高温度时读出上述写入的数据以重写;或者在利用如下所述的一个假轨迹作用于激光辐射来得到反射率变化的基础上确定用于加热到熔点的功率Pm。
根据本发明的功能,即较高可达到温度区域-再生热效应,关于促进晶核生长的效应,串音降低效应等,在擦除光记录介质的记录膜的记录部分的过程中,该记录介质具有记录状态的反射率大于擦除状态的反射率或记录状态的吸收率小于擦除状态的吸收率的特点,本发明提供了一般光盘不具备的高擦除性能和高记录密度以及信息记录和重放装置。
另外,前面讨论的都是关于一种以非晶态记录和结晶态擦除的记录介质的类型,与上述类型同样的原理可应用于以晶态记录和非晶态擦除的类型,这样,本发明可应用到这两种类型。

Claims (49)

1、一种采用非晶态-结晶态相变进行记录和擦除的光记录介质,其中非晶态记录膜结构的光记录介质的反射率大于结晶态记录膜结构的光记录介质的反射率。
2、根据权利要求1的光记录介质,其中记录膜结构的光记录介质具有一个由激光对淀积状态记录膜的局部辐射形成的较低反射率的部分,所说的部分与一个具有较高反射率的部分相毗邻。
3、根据权利要求1的光记录介质,在PA/100=α的关系中,它满足α=7~8,其中A(%)是淀积状态的吸收率,P(mw)是用于辐射的激光功率,α是特征系数,可根据膜结构的光学记录介质的熔点,比热和热传导率决定。
4、根据权利要求1的光记录介质,其中记录膜直接或间接地形成在具有支撑性质和透光性质的基底或塑性片或带上,它还具有一种结构,可通过使用介电质膜和金属反射膜中的一个来显示光干涉效果或保护效果。
5、根据权利要求1的光记录介质,它具有下面结构中的一种结构,其中光透性基片,薄片或带缩写成S,
S/记录膜/介电质膜
S/记录膜/金属反射膜
S/记录膜/金属反射膜/介电质膜
S/记录膜/介电质膜/金属反射膜
S/记录膜/介电质膜/金属反射膜/介电质膜
S/介电质膜/记录膜/介电质膜
S/介电质膜/记录膜/金属反射膜
S/介电质膜/记录膜/金属反射膜/介电质膜
S/介电质膜/记录膜/介电质膜/金属反射膜
S/介电质膜/记录膜/介电质膜/金属反射膜/介电质膜
S/记录膜/S
S/记录膜/金属反射膜/S
S/记录膜/介电质膜/金属反射膜/S
S/记录膜/介电质膜/金属反射膜/介电质膜/S
S/介电质膜/记录膜/S
S/介电质膜/记录膜/介电质膜/S
S/介电质膜/记录膜/金属反射膜/S
S/介电质膜/记录膜/金属反射膜介电质膜/S
S/介电质膜/记录膜/介电质膜/金属反射膜/S
S/介电质膜/记录膜/介电质膜/金属反射膜/介电质膜/S
6、根据权利要求1的光记录介质,其中膜结构的光记录介质包括从锑、锌、锡、铅、铜、银、金、铟、锗中至少选择一种,从硫族元素中至少选择出一种构成的二元化合物。
7、一种使用非晶态-结晶态相变进行记录和擦除的光记录介质,满足Ras-depc.>Ra>Rx关系,其中,Ras-depo.表示淀积状态下构成上述记录介质的记录膜的反射率,Ra表示非晶态下构成上述记录介质的记录膜的反射率;Rx表示结晶态下构成上述记录介质的记录膜的反射率。
8、根据权利要求7的光记录介质,其中记录膜结构的光记录介质具有一个由激光对淀积状态下的记录膜局部辐射形成的较低反射率的部分,所述部分与一个具有较高反射率的部分相毗邻。
9、根据权利要求7的光记录介质,在PA/100=α的关系式中,满足α=7~8,其中A(%)是淀积状态下的吸收率,P(mw)是用于辐射的激光功率,α是特征系数,可根据膜结构的光学记录介质的熔点,比热和热传导率来确定。
10、根据权利要求7的光记录介质,其中记录膜直接或间接地形成在具有支撑性质和透光性质的基底或塑性片或带上,它还具有一种结构,可通过采用介电质膜和金属反射膜中的一个来显示光干涉效果或保护效果。
11、根据权利要求7的光记录介质,它具有下列结构中的一种结构,其中光透性基底、片或带缩写为S
S/记录膜/介电质膜
S/记录膜/金属反射膜
S/记录膜/金属反射膜/介电质膜
S/记录膜/介电质膜/金属反射膜
S/记录膜/介电质膜/金属反射膜/介电质膜
S/介电质膜/记录膜/介电质膜
S/介电质膜/记录膜/金属反射膜
S/介电质膜/记录膜/金属反射膜/介电质膜
S/介电质膜/记录膜/介电质膜/金属反射膜
S/介电质膜/记录膜/介电质膜/金属反射膜/介电质膜
S/记录膜/S
S/记录膜/金属反射膜/S
S/记录膜/介电质膜/金属反射膜/S
S/记录膜/介电质膜/金属反射膜/介电质膜/S
S/介电质膜/记录膜/S
S/介电质膜/记录膜/介电质膜/S
S/介电质膜/记录膜/金属反射膜/S
S/介电质膜/记录膜/金属反射膜/介电质膜/S
S/介电质膜/记录膜/介电质膜/金属反射膜/S
S/介电质膜/记录膜/介电质膜/金属反射膜/介电质膜/S
12、根据权利要求7的光记录介质,其中膜结构的光记录介质包括从锑、锌、锡、铅、铜、银、金、铟和锗中至少选出一种,从硫族元素中至少选出一种构成的二元化合物。
13、一种采用非晶态一晶态相变进行记录和擦除的光记录介质,其中非晶态记录膜结构的光记录介质的吸收率小于结晶态记录膜结构的光记录介质的吸收率。
14、根据权利要求13的光记录介质,其中记录膜结构的光记录介质具有一个由激光对淀积状态记录膜的局部辐射形成的较低反射率的部分,所述部分与一个具有较高反射率的部分相毗邻。
15、根据权利要求13的光记录介质,在PA/100=α关系中满足α=7~8,其中A(%)表示淀积状态下的吸收率,P(mw)表示用于辐射的激光功率,α是特征系数,可根据膜结构的光记录介质的熔点,比热和热传导率确定。
16、根据权利要求13的光记录介质,其中记录膜直接或间接地形成在具有支撑性质和透光性质的基底或塑性片或带上,它还具有一种结构,可通过使用介电质膜和金属反射膜中至少一种来显示光干涉效果或防护效果。
17、根据权利要求13的光记录介质,它具有下列结构中的一种,其中光透性基底、片或带缩写为S
S/记录膜/介电质膜
S/记录膜/金属反射膜
S/记录膜/金属反射膜/介电质膜
S/记录膜/介电质膜/金属反射膜
S/记录膜/介电质膜/金属反射膜/介电质膜
S/介电质膜/记录膜/介电质膜
S/介电质膜/记录膜/金属反射膜
S/介电质膜/记录膜/金属反射膜/介电质膜
S/介电质膜/记录膜/介电质膜/金属反射膜
S/介电质膜/记录膜/介电质膜/金属反射膜/介电质膜
S/记录膜/S
S/记录膜/金属反射膜/S
S/记录膜/介电质膜/金属反射膜/S
S/记录膜/介电质膜/金属反射膜/介电质膜/S
S/介电质膜/记录膜/S
S/介电质膜/记录膜/介电质膜/S
S/介电质膜/记录膜/金属反射膜/S
S/介电质膜/记录膜/金属反射膜/介电质膜/S
S/介电质膜/记录膜/介电质膜/金属反射膜/S
S/介电质膜/记录膜/介电质膜/金属反射膜/介电质膜/S
18、根据权利要求13的光记录介质,其中膜结构的光学记录介质包括从锑、锌、锡、铅、铜、银、金、铟和锗中至少选出一种,从硫族元素中至少选出一种构成的二元化合物。
19、一种使用非晶态-结晶态相变进行记录和擦除的光记录介质,满足Aas-depo.<Aa<Ax关系,其中Aas-depo.表示淀积状态下构成上述记录介质的记录膜的吸收率,Aa表示非晶态下构成上述记录介质的记录膜的吸收率;Ax表示晶态下构成上述记录介质的记录膜的吸收率。
20、根据权利要求19的光记录介质,其中记录膜结构的光记录介质具有一个由激光对淀积状态记录膜的局部辐射形成的较低反射率的部分,所述部分与一个具有较高反射率的部分相毗邻。
21、根据权利要求19的光记录介质,在PA/100=α关系中,满足α=7~8,其中A(%)是淀积状态下的吸收率,P(mw)是用于辐射的激光功率,α是特征常数,可根据膜结构的光记录介质的熔点、比热和热传导率来确定。
22、根据权利要求19的光记录介质,其中记录膜直接或间接地形成在具有支撑性质和透光性的基底或塑性片或带上,它还具有一种结构,可通过使用介电质膜和金属反射膜中的一个来显示光干涉效果或保护效果。
23、根据权利要求19的光记录介质,它具有下列结构中的一种,其中透光性基底、片或带缩写为S
S/记录膜/介电质膜
S/记录膜/金属反射膜
S/记录膜/金属反射膜/介电质膜
S/记录膜/介电质膜/金属反射膜
S/记录膜/介电质膜/金属反射膜/介电质膜
S/介电质膜/记录膜/介电质膜
S/介电质膜/记录膜/金属反射膜
S/介电质膜/记录膜/金属反射膜/介电质膜
S/介电质膜/记录膜/介电质膜/金属反射膜
S/介电质膜/记录膜/介电质膜/金属反射膜/介电质膜
S/记录膜/S
S/记录膜/金属反射膜/S
S/记录膜/介电质膜/金属反射膜/S
S/记录膜/介电质膜/金属反射膜/介电质膜/S
S/介电质膜/记录膜/S
S/介电质膜/记录膜/介电质膜/S
S/介电质膜/记录膜/金属反射膜/S
S/介电质膜/记录膜/金属反射膜/介电质膜/S
S/介电质膜/记录膜/介电质膜/金属反射膜/S
S/介电质膜/记录膜/介电质膜/金属反射膜/介电质膜/S
24、根据权利要求19的光记录介质,其中膜结构的光记录介质包括从锑、锌、锡、铅、铜、银、金、铟和锗中至少选出一种,从硫族元素中至少选出一种构成的二元化合物。
25、一种采用非晶态-晶态相变进行记录和擦除的光记录介质,其中构成记录介质的记录膜在非晶态的折射系数大于结晶态的折射系数,而非晶态的消光系数小于结晶态的消光系数,
26、根据权利要求25的光记录介质,其中,构成记录介质的记录膜包括至少一个单质元素和至少一种硫族化物。
27、根据权利要求25的光记录介质,其中构成光记录介质的记录膜包括至少由锑、锌、锡、铅、铜、银、金、铟和锗中选出一种,和至少从硫族化物中选出一种构成。
28、根据权利要求25的光记录介质,其中,构成光记录介质的记录膜包括一个由铟和碲组成的化合物,由锑和碲组成的化合物和单质锑。
29、根据权利要求25的光记录介质,其中,构成光记录介质的记录膜包括15%(原子)~35%(原子)的铟,25%(原子)~50%(原子)的碲和25%(原子)~50%(原子)的锑。
30、一种用于权利要求1所述的光记录介质的记录和擦除方法,其中,记录和擦除是由一个激光束辐照构成光记录介质的记录膜以提高其温度到高于熔点,使其熔融来完成。
31、一种用于权利要求1所述的光记录介质的记录和擦除方法,其中记录和擦除是由一个激光束辐照构成光记录介质的记录膜以提高其温度到高于熔点,使其熔融来完成,而且,由激光辐照导致的记录区域的可达到的温度高于擦除区域的可达到的温度。
32、一种用于权利要求1所述的光学记录介质的记录和擦除方法,其中,记录和擦除是由一个激光束辐照构成光记录介质的记录膜,以使其温度提高到高于熔点,使其熔融来完成,并且,在以激光辐照欲以擦除的现存记录区域可达到的温度低于未记录区域的可达到的温度。
33、一种用于权利要求1所述的光记录介质的记录和擦除方法,其中,记录和擦除是由一个激光束辐照构成光记录介质的记录膜,以使其温度提高到熔点之上,使其熔融来完成,并且用于记录的辐射的激光功率大于用于擦除的辐射的激光功率。
34、一种用于权利要求1所述光记录介质的记录和擦除方法,其中记录和擦除是由一个激光束辐照构成光记录介质的记录膜,以使其温度提高到熔点之上,使其熔融来完成,并且用于记录的辐射的激光脉冲宽度小于用于擦除的激光脉冲宽度。
35、一种用于权利要求1所述光记录介质的记录和擦除方法,其中记录和擦除是由一个激光束辐照构成光记录介质的记录膜,以使其温度提高到熔点之上,使其熔融来完成,并且用于记录和擦除的辐射的激光功率相同,记录时辐射的激光脉冲宽度等于记录频率,擦除时辐射的激光是直流激光束。
36、一种用于权利要求1所述光记录介质的记录和擦除方法,其中记录膜结构的光记录介质的处于淀积状态中的区域由激光辐射来改变其反射率,信息信号记录在反射率被改变的那部分。
37、一种用于权利要求1所述光记录介质的记录和擦除方法,其中记录膜结构的光记录介质的处于淀积状态中的区域由激光辐射来减小反射率,信息信号记录在反射率被减小的那部分。
38、一种用于权利要求1所述光记录介质的记录和擦除方法,其中记录和擦除是用具有振荡波长600nm~860nm的激光二极管来完成的。
39、一种用于权利要求7所述光记录介质的记录和擦除方法,其中记录和擦除是由一个激光束辐射构成光记录介质的记录膜,以使其温度提高到熔点之上,使其熔融来完成。
40、一种用于权利要求13所述光记录介质的记录和擦除方法,其中记录和擦除是由一个激光束辐射构成光记录介质的记录膜,以使其温度提高到熔点之上,使其熔融来完成。
41、一种用于权利要求19所述光记录介质的记录和擦除方法,其中记录和擦除是由一个激光束辐射构成光记录介质的记录膜,以使其温度提高到熔点之上,使其熔融来完成。
42、一种信息记录和重放装置包括一个激光束光源;一种激光激励电路用来激励激光束光源;一个光学系统用来将激光束聚焦于光学记录介质上;一个检测电路用来检测光学记录介质上的光学变化;以及列于权利要求1的光学记录介质。
43、根据权利要求42的信息记录和重放装置,其中,激光束光源具有600nm~860nm的振荡波长。
44、信息记录和重放装置包括一个激光束光源;一个激光激励电路用来激励激光束光源;一个光学系统用来将激光束聚焦在光记录介质上;一个检测电路用来检测光记录介质上的光学变化;以及列于权利要求7的光记录介质。
45、根据权利要求44的信息记录和重放装置,其中,激光束光源具有600nm~860nm的振荡波长。
46、信息记录和重放装置包括一个激光束光源;一个激光激励电路用来激励激光束光源;一个光学系统用来将激光束聚焦在光记录介质上;一个检测电路用来检测光记录介质上的光学变化;以及列于权利要求13的光记录介质。
47、根据权利要求46的信息记录和重放装置,其中,激光束光源具有600nm~860nm的振荡波长。
48、信息记录和重放装置包括一个激光束光源;一个激光激励电路用来激励激光束光源;一个光学系统用来将激光束聚焦在光记录介质上;一个检测电路用来检测光记录介质上的光学变化;以及列于权利要求19的光记录介质。
49、根据权利要求48的信息记录和重放装置,其中,激光束光源具有600nm~860nm的振荡波长。
CN89106296A 1988-06-24 1989-06-24 光记录介质及信息记录与重放装置 Expired CN1018303B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP154743/88 1988-06-24
JP63154743A JP2512087B2 (ja) 1988-06-24 1988-06-24 光記録媒体および光記録方法

Publications (2)

Publication Number Publication Date
CN1039920A true CN1039920A (zh) 1990-02-21
CN1018303B CN1018303B (zh) 1992-09-16

Family

ID=15590945

Family Applications (1)

Application Number Title Priority Date Filing Date
CN89106296A Expired CN1018303B (zh) 1988-06-24 1989-06-24 光记录介质及信息记录与重放装置

Country Status (7)

Country Link
US (2) US5484686A (zh)
EP (2) EP0347801B1 (zh)
JP (1) JP2512087B2 (zh)
KR (1) KR0144001B1 (zh)
CN (1) CN1018303B (zh)
CA (1) CA1332467C (zh)
DE (2) DE68928337T2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1054227C (zh) * 1994-10-31 2000-07-05 北京航空航天大学 记录媒体及其记录和擦除方法
US7239601B2 (en) 2000-11-06 2007-07-03 Matsushita Electric Industrial Co., Ltd. Optical recording medium, method of manufacturing optical recording medium, apparatus for manufacturing optical recording medium, program, and medium
CN102456371A (zh) * 2010-10-29 2012-05-16 周丽新 多阶记录方法及其系统
CN105779953A (zh) * 2015-01-08 2016-07-20 三星电子株式会社 多层薄膜、制造其的方法和包括其的电子产品

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5291470A (en) * 1988-03-28 1994-03-01 Matsushita Electric Industrial Co., Ltd. Optical information recording method
JP2538647B2 (ja) * 1988-07-22 1996-09-25 富士通株式会社 光ディスク媒体
JPH02249136A (ja) * 1989-03-23 1990-10-04 Asahi Chem Ind Co Ltd 光学的記録再生装置
DE4019301A1 (de) * 1990-06-16 1991-12-19 Basf Ag Reversibler optischer aufzeichnungstraeger vom phasenwechsel-typ
JP2750018B2 (ja) * 1990-07-13 1998-05-13 インターナショナル・ビジネス・マシーンズ・コーポレイション 光学記録媒体及び光学データ記録ディスクドライブシステム
US5242784A (en) * 1990-07-13 1993-09-07 International Business Machines Corporation System and method for optical phase change recording
JP2556183B2 (ja) * 1990-09-11 1996-11-20 富士ゼロックス株式会社 光学的記録方法とこの方法を用いる光記録媒体
JP2987223B2 (ja) * 1991-02-20 1999-12-06 ティーディーケイ株式会社 光記録媒体
JP3076412B2 (ja) * 1991-07-24 2000-08-14 松下電器産業株式会社 光学的情報記録媒体および光学的情報記録再生方法
DE69317459T2 (de) * 1992-04-17 1998-08-27 Matsushita Electric Ind Co Ltd Optisches Informationsaufzeichnungsmedium und Verfahren zum Entwurf seiner Struktur
JPH0778354A (ja) * 1993-09-07 1995-03-20 Toshiba Corp 情報記録媒体およびそれを用いた記録方法
JP2806274B2 (ja) * 1994-10-19 1998-09-30 日本電気株式会社 光学情報記録媒体
US6821707B2 (en) * 1996-03-11 2004-11-23 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, producing method thereof and method of recording/erasing/reproducing information
US5889756A (en) * 1996-07-25 1999-03-30 Kabushiki Kaisha Toshiba Phase change optical recording medium
US6503690B1 (en) 1997-08-12 2003-01-07 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, method for producing the same, and method for recording and reproducing optical information
JPH11134720A (ja) 1997-08-28 1999-05-21 Matsushita Electric Ind Co Ltd 光学的情報記録媒体及びその記録再生方法
US6343062B1 (en) 1997-09-26 2002-01-29 Matsushita Electric Industrial Co., Ltd Optical disk device and optical disk for recording and reproducing high-density signals
TW448443B (en) 1998-08-05 2001-08-01 Matsushita Electric Ind Co Ltd Optical information storage media and production method as well as the storage reproducing method and device
US6846611B2 (en) * 2001-02-28 2005-01-25 Ricoh Company, Ltd. Phase-change optical recording medium
JP2003162821A (ja) * 2001-11-27 2003-06-06 Tdk Corp 光記録媒体および光記録方法
US6798711B2 (en) * 2002-03-19 2004-09-28 Micron Technology, Inc. Memory with address management
JP2005174528A (ja) 2003-11-18 2005-06-30 Hitachi Maxell Ltd 光ディスク及びその製造方法並びに記録再生装置
USRE47382E1 (en) * 2005-07-18 2019-05-07 Xenogenic Development Limited Liability Company Back-to-back metal/semiconductor/metal (MSM) Schottky diode
JP4576316B2 (ja) 2005-10-20 2010-11-04 株式会社日立製作所 サーボ制御信号生成装置、光ディスク装置及びサーボ制御信号生成方法
KR100856326B1 (ko) * 2006-07-19 2008-09-03 삼성전기주식회사 레이저 리프트 오프를 이용한 유전체 박막을 갖는 박막 커패시터 내장된 인쇄회로기판 제조방법, 및 이로부터 제조된 박막 커패시터 내장된 인쇄회로기판

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3716844A (en) * 1970-07-29 1973-02-13 Ibm Image recording on tetrahedrally coordinated amorphous films
US3971874A (en) * 1973-08-29 1976-07-27 Matsushita Electric Industrial Co., Ltd. Optical information storage material and method of making it
US4330833A (en) * 1978-05-26 1982-05-18 Vicom Systems, Inc. Method and apparatus for improved digital image processing
US4264986A (en) * 1979-03-12 1981-04-28 Willis Craig I Information-recording process & apparatus
DE3118058A1 (de) * 1980-05-14 1982-03-11 RCA Corp., 10020 New York, N.Y. Aufzeichnungstraeger und verfahren zum schreiben einer informationsspur sowie zum loeschen einer in dem traeger gespeicherten information
US4460636A (en) * 1981-03-27 1984-07-17 Sony Corporation Optical information record member
JPS59185048A (ja) * 1983-04-01 1984-10-20 Matsushita Electric Ind Co Ltd 光学情報記録部材及び記録方法
KR860002121B1 (ko) * 1984-03-28 1986-11-26 마쓰시다덴기산교 가부시기가이샤 광학정보 기록부재
JPS60231928A (ja) * 1984-04-27 1985-11-18 Matsushita Electric Ind Co Ltd 光学情報記録消去方法
KR890004230B1 (ko) * 1984-08-24 1989-10-27 가부시끼가이샤 도오시바 광(光) 디스크 메모리
JPS6196541A (ja) * 1984-10-18 1986-05-15 Nec Corp 光磁気記録媒体
JPH0619856B2 (ja) * 1984-11-09 1994-03-16 株式会社日立製作所 情報記録媒体
US4651172A (en) * 1984-11-29 1987-03-17 Hitachi, Ltd. Information recording medium
JPS61156545A (ja) * 1984-12-28 1986-07-16 Tdk Corp 情報記録媒体および記録方法
CA1236693A (en) * 1985-02-22 1988-05-17 Isao Morimoto Information recording medium
JPS61210538A (ja) * 1985-03-14 1986-09-18 Victor Co Of Japan Ltd 記録媒体用インジウム−ニオビウム合金
JPH0734267B2 (ja) * 1985-05-24 1995-04-12 松下電器産業株式会社 可逆的光学情報記録媒体および記録再生方法
US4710899A (en) * 1985-06-10 1987-12-01 Energy Conversion Devices, Inc. Data storage medium incorporating a transition metal for increased switching speed
US4787077A (en) * 1985-08-15 1988-11-22 International Business Machines Corporation Process for optically storing information using materials having a single phase in both the crystalline state and the amorphous state
JPS6286553A (ja) * 1985-10-11 1987-04-21 Matsushita Electric Ind Co Ltd 光学情報記録部材
US4818666A (en) * 1986-03-28 1989-04-04 U.S. Philips Corporation Erasable optical recording element and method of optically recording and erasing information
EP0243976B1 (en) * 1986-05-02 1996-09-04 Hitachi, Ltd. Method for recording, reproducing and erasing information and thin film for recording information
JPS63188836A (ja) * 1987-01-30 1988-08-04 Sanyo Electric Co Ltd 光学記録媒体
JPS63187430A (ja) * 1987-01-30 1988-08-03 Toshiba Corp 情報記録媒体
DE3705389A1 (de) * 1987-02-20 1988-09-01 Basf Ag Substituierte crotonsaeureester und diese enthaltende fungizide
JPS63251290A (ja) * 1987-04-08 1988-10-18 Hitachi Ltd 光記録媒体と記録・再生方法及びその応用
JPH081707B2 (ja) * 1987-12-04 1996-01-10 松下電器産業株式会社 光学的情報記録媒体
JPH01165043A (ja) * 1987-12-21 1989-06-29 Fuji Electric Co Ltd 光記録媒体

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1054227C (zh) * 1994-10-31 2000-07-05 北京航空航天大学 记录媒体及其记录和擦除方法
US7239601B2 (en) 2000-11-06 2007-07-03 Matsushita Electric Industrial Co., Ltd. Optical recording medium, method of manufacturing optical recording medium, apparatus for manufacturing optical recording medium, program, and medium
CN100437773C (zh) * 2000-11-06 2008-11-26 松下电器产业株式会社 光记录媒体制造方法和光记录媒体制造装置
CN102456371A (zh) * 2010-10-29 2012-05-16 周丽新 多阶记录方法及其系统
CN102456371B (zh) * 2010-10-29 2014-04-09 周丽新 多阶记录方法及其系统
CN105779953A (zh) * 2015-01-08 2016-07-20 三星电子株式会社 多层薄膜、制造其的方法和包括其的电子产品

Also Published As

Publication number Publication date
CA1332467C (en) 1994-10-11
USRE36624E (en) 2000-03-21
EP0784316A3 (en) 1998-09-23
EP0784316A2 (en) 1997-07-16
DE68928337D1 (de) 1997-10-30
JPH025238A (ja) 1990-01-10
DE68928337T2 (de) 1998-04-09
EP0347801A2 (en) 1989-12-27
EP0347801B1 (en) 1997-09-24
US5484686A (en) 1996-01-16
JP2512087B2 (ja) 1996-07-03
KR0144001B1 (ko) 1998-07-15
DE68929438D1 (de) 2003-01-09
EP0347801A3 (en) 1991-12-11
EP0784316B1 (en) 2002-11-27
DE68929438T2 (de) 2003-06-12
CN1018303B (zh) 1992-09-16
KR910001677A (ko) 1991-01-31

Similar Documents

Publication Publication Date Title
CN1039920A (zh) 光记录介质及信息记录与重放装置
CN1143289C (zh) 光学信息记录媒体及其制造方法、其记录再生方法和装置
CN1230815C (zh) 信息记录介质和信息记录装置
CN1121031C (zh) 信息记录媒体和应用该信息记录媒体的信息记录再生装置
CN1153199C (zh) 光信息记录介质、其制造方法以及利用该介质的信息记录再现方法
JP2909913B2 (ja) 光学的情報記録媒体およびその製造方法および光学的情報記録方法
CN1320541C (zh) 光学信息记录媒质及其制造方法
CN1474392A (zh) 信息记录介质、信息记录方法、信息重放方法
CN1347107A (zh) 光记录媒体及信息的光记录方法
CN1479287A (zh) 光学信息记录媒体及其制造方法、记录及重放方法和装置
CN1188847C (zh) 相变型光记录介质及其制造方法和记录方法
CN1224969C (zh) 光学信息记录介质和使用了它的记录方法
CN1573992A (zh) 光学信息记录介质及其制造方法
JPH0528538A (ja) 光学的情報記録媒体および光学的情報記録再生方法
JPH0734267B2 (ja) 可逆的光学情報記録媒体および記録再生方法
CN1294580C (zh) 可重写的光信息媒体和使用这样的媒体的光记录方法
CN1235200C (zh) 光学信息介质
CN1248211C (zh) 光信息记录媒体及使用该信息记录媒体的记录方法
JP2778237B2 (ja) 光学的情報記録媒体及び光学的記録・消去方法
CN1647178A (zh) 光记录介质
JP4248327B2 (ja) 相変化型光情報記録媒体
JP2867701B2 (ja) 光学情報記録媒体の製造方法
JP2000026960A (ja) 光記録媒体の製造方法
KR100763364B1 (ko) 상변화형 광디스크
JPH0478031A (ja) 情報記録媒体

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C13 Decision
GR02 Examined patent application
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee