CN103687977B - 溅射用MgO靶材 - Google Patents

溅射用MgO靶材 Download PDF

Info

Publication number
CN103687977B
CN103687977B CN201280032640.XA CN201280032640A CN103687977B CN 103687977 B CN103687977 B CN 103687977B CN 201280032640 A CN201280032640 A CN 201280032640A CN 103687977 B CN103687977 B CN 103687977B
Authority
CN
China
Prior art keywords
mgo
sputtering
powder
target
replaced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201280032640.XA
Other languages
English (en)
Other versions
CN103687977A (zh
Inventor
佐野聪
西村芳宽
渡边高行
加藤裕三
植木明
味富晋三
高巢正信
原勇介
田中敬章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Chemical Industries Co Ltd
Nippon Tungsten Co Ltd
Original Assignee
Ube Chemical Industries Co Ltd
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Chemical Industries Co Ltd, Nippon Tungsten Co Ltd filed Critical Ube Chemical Industries Co Ltd
Publication of CN103687977A publication Critical patent/CN103687977A/zh
Application granted granted Critical
Publication of CN103687977B publication Critical patent/CN103687977B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • H01J37/3429Plural materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/053Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5626Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/761Unit-cell parameters, e.g. lattice constants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering

Abstract

本发明提供一种溅射用MgO靶材,即使在使用MgO作为溅射用靶材的情况下,也能够在形成MgO膜时使成膜速度高速化。本发明的溅射用MgO靶材以MgO和导电性物质作为主要成分,其特征在于,所述导电性物质在通过DC溅射法与MgO一起成膜时,能够为所形成的MgO膜赋予取向性。

Description

溅射用MgO靶材
技术领域
本发明涉及可以利用DC溅射法形成MgO膜的溅射用MgO靶材。
背景技术
以往以来,作为电子/电气部件用材料的成膜方法之一,多使用可以容易地控制埃单位~微米级的膜厚和成分的溅射法。该溅射法使用了如下原理:由正电极和负电极构成,使基板与靶材对向,在惰性气体气氛下向这些基板和靶材之间施加高电压从而产生电场,此时电离后的电子与惰性气体碰撞而形成等离子体,该等离子体中的阳离子与靶材(负电极)表面碰撞而使靶材构成原子飞出,该飞出的原子附着于对向的基板表面,从而形成膜。
并且,溅射用MgO靶材适合在制造磁记录介质等具有层结构的器件的基底层时使用(专利文献1)。
现有技术文献
专利文献
专利文献1:日本特开2001-101645号公报
发明内容
发明要解决的问题
然而,以往为了形成MgO膜,因MgO为绝缘体而需要使用RF溅射法,具有成膜速度慢、生产性差的问题。
因此,本发明的目的在于提供一种溅射用MgO靶材,即使在使用MgO作为溅射用靶材的情况下,也能够在形成MgO膜时使成膜速度高速化。
用于解决问题的手段
本发明人为了实现以上目的而进行了深入研究,其结果发现,将MgO和特定的导电性物质(例如导电性化合物)作为主要成分制成溅射用靶材,由此能够利用DC溅射法进行MgO膜的成膜,从而完成了本发明。即,本发明涉及一种溅射用MgO靶材,该溅射用MgO靶材以MgO和导电性物质作为主要成分,其特征在于,所述导电性物质在通过DC溅射法与MgO一起成膜时能够向所形成的MgO膜赋予取向性。
发明效果
如上所述,根据本发明,可以提供一种溅射用MgO靶材,该溅射用MgO靶材即使在形成MgO膜时使用MgO作为溅射用靶材的情况下,也能够使成膜速度高速化。
具体实施方式
本发明涉及的溅射用MgO靶材的特征在于,其以MgO和导电性物质为主要成分,该导电性物质在通过DC溅射法与MgO一起成膜时能够为所形成的MgO膜赋予取向性。在本发明中,“能够为所形成的MgO膜赋予取向性”是指例如形成具有(001)取向或(111)取向等所期望的取向性的MgO层。
导电性物质只要是在通过DC溅射法与MgO一起进行成膜时能够为所形成的MgO膜赋予取向性的物质即可,特别优选为在利用DC溅射法与MgO一起进行成膜时能够向该MgO膜的(001)面赋予单一取向性的物质。
作为能够向MgO膜的(001)面赋予单一取向性的导电性物质,优选其晶系为立方晶(cubic)系或六方晶系的物质,其中,特别优选为TiC、VC、TiN、WC之中的1种以上的导电性化合物。另外,导电性物质不限于导电性化合物,也可以为单质。
在本发明涉及的溅射用MgO靶材中,溅射用MgO靶材中含有的导电性物质的特征在于,在上述MgO靶材内,颗粒彼此相互接触而形成了电子通路。通过形成电子通路而使溅射用MgO靶材具有导电性,因而是优选的。进一步优选的是,该导电性物质的特征在于,其存在于MgO颗粒的晶界。另外,进一步优选的是,该导电性物质的特征在于,其以包裹粒径大致均匀的MgO颗粒的方式存在。
以上述的构成在溅射用MgO靶材内含有导电性物质,由此在通过DC溅射法进行成膜时,与溅射用MgO靶材碰撞的离子流向负电极,因而离子堆积在溅射用MgO靶材的表面,从而能够防止放电的停止。
并且,导电性物质的含有形态只要为上述那样的构成即可,并不限于具有以下所说明的那样的浓度的形态;使用上述导电性化合物作为导电性物质时,MgO相对于MgO和导电性化合物的合计的比率优选为40mol%~90mol%,更优选为50mol%~90mol%,特别优选为65mol%~90mol%。MgO的比例大于90mol%时,电阻值大,从而难以进行DC溅射;MgO的比例小于40mol%时,难以进行烧结,从而难以制造MgO靶材。
本发明涉及的溅射用MgO靶材可以如下得到:以上述规定比例将MgO、和通过DC溅射法与MgO一起进行成膜时能够为该MgO膜赋予取向性的导电性物质混合,通过使用例如常压烧结法、热压烧结法、热等静压(HIP)烧结法、放电等离子体(SPS)烧结法等已知的MgO等的烧结方法对该混合物进行烧结,从而得到溅射用MgO靶材。烧结温度根据原料中的MgO的比例适当调整,但优选为1800K~1950K、更优选为1890K~1950K。若烧结温度过高,则靶材的导电性变差;若烧结温度过低,则无法进行烧结,在成膜后内包有气体,得不到均质的膜,因而是不优选的。如此,如上述那样适当地对材料、组成、混合、烧结条件进行组合,可以制造导电性物质颗粒配置于MgO颗粒的晶界且随着导电性物质颗粒的添加量的増加而具有接触/连接的截面组织的DC溅射用靶材。但是,例如存在如下等问题:烧结温度过高时,MgO颗粒发生颗粒生长而使导电性物质颗粒进入MgO颗粒内,从而使其并未配置在MgO颗粒的晶界,因此导致导电性变差。
通过如上所述进行制造,本发明涉及的溅射用MgO靶材因烧结体中的导电性物质彼此相连而具有导电性,因此可以通过DC溅射法形成MgO膜。即,通过如上所述进行制造,使导电性物质颗粒配置于MgO颗粒的晶界时,即使是无法相互接触的程度,导电性物质颗粒也会因所谓的电子隧穿效应而具有导电性;另外,如果形成导电性物质颗粒可以相互接触的程度的接触/连接的结构,则可以形成上述导电性更好的DC溅射用靶材材料,并且可以通过DC溅射法形成MgO膜。另外,该导电性物质在通过DC溅射法与MgO一起进行成膜时,可以成膜出具有取向性的MgO膜,因此与其它层的匹配性好,可以适合地用作具有层结构的器件的基底层。
本发明涉及的溅射用MgO靶材的电阻率优选为1×10-4~1×109mΩ·cm。电阻率过高则无法进行溅射,电阻率过低则在膜上会产生颗粒物(パーティクル);另外,MgO和导电性物质的溅射率不同,因而导电性物质的溅射变慢,会形成不均匀的膜,因而是不优选的。电阻率处于上述范围内时,可以得到良好的成膜速度,并且可以通过DC溅射法高效率地制造MgO膜。
另外,本发明涉及的溅射用MgO靶材的导电性物质通过DC溅射法与MgO一起进行成膜时,可以形成在(001)面具有单一取向性的MgO膜。因此,这样的膜可以适合地用作磁记录介质的磁性层的基底层。以往,磁记录介质具有多层的层结构,因此必须根据层的不同而分别使用DC溅射法和RF溅射法,但使用本发明涉及的溅射用MgO靶材时,每层都可以使用DC溅射法进行制作。因此,也能够使磁记录介质的制造速度高速化。
实施例
下面,基于实施例具体说明本发明,但这些实施例不限定本发明的目的。首先,以下示出所形成的膜的解析方法。
(扫描型电子显微镜(SEM))
对所形成的基板进行切割,利用SEM对切割后的截面进行观察,确认到在基板上形成有厚度约为200nm的膜。
(X射线衍射(XRD)测定)
使用株式会社Rigaku制造的ATX-G型表面结构评价用多功能X射线衍射装置实施了XRD测定。通过In-plane测定确认了膜的结晶性,所述In-plane测定是使X射线以全反射临界角以下的条件照射试样表面附近来进行测定的。以X射线入射角度为0.10degree、测定间隔(2θ)为0.02degree、测定速度为5degree/min.的条件实施了In-plane测定。
(透射型电子显微镜(TEM)观察)
将使用各种靶材制作出的基板的试样加工成薄片,进行了TEM和电子衍射像的观察。由该结果确认到:膜以在基板上进行取向的方式生长。
(溅射用靶材的制造方法)
(实施例1)
将平均粒径为0.2μm、纯度为5N的MgO粉末90.0mol%与平均粒径为1.0μm、纯度为3N的TiC粉末10.0mol%混配后,在加入有尼龙球的尼龙罐(ナイロンポット)中的甲醇溶剂中分散混合24小时,从而得到了MgO-TiC浆料。将所得到的MgO-TiC浆料从尼龙罐中取出,进行干燥,然后利用#50目筛进行了筛分分级。
通过利用模具模压对所得到的造粒粉进行成型,得到溅射用MgO靶材的成型体,利用热压装置在Ar气气氛中以1898K的温度进行烧结时,在施加25MPa的压力的同时进行90分钟的热压烧结,由此得到了相对密度为99%以上的致密的烧结体(实施例1涉及的溅射用MgO靶材)。需要说明的是,所制造的实施例1涉及的溅射用MgO靶材的电阻率为1×106mΩ·cm。
(实施例2)
将MgO粉末量替换为89.0mol%、TiC粉末量替换为11.0mol%,除此以外,与实施例1同样地制造了实施例2涉及的溅射用MgO靶材(电阻率:1×106mΩ·cm)。
(实施例3)
将MgO粉末量替换为88.0mol%、TiC粉末量替换为12.0mol%,除此以外,与实施例1同样地制造了实施例3涉及的溅射用MgO靶材(电阻率:5×105mΩ·cm)。
(实施例4)
将MgO粉末量替换为85.6mol%、TiC粉末量替换为14.4mol%,除此以外,与实施例1同样地制造了实施例4涉及的溅射用MgO靶材(电阻率:47.39mΩ·cm)。
(实施例5)
将MgO粉末量替换为77.6mol%、TiC粉末量替换为22.4mol%,除此以外,与实施例1同样地制造了实施例5涉及的溅射用MgO靶材(电阻率:2.04mΩ·cm)。通过后述的成膜方法成膜出的膜的晶格常数根据由TEM得到的电子衍射像进行计算,结果为
(实施例6)
将MgO粉末量替换为60.0mol%、TiC粉末量替换为40.0mol%,并且将烧结温度替换为1923K,除此以外,与实施例1同样地制造了实施例6涉及的溅射用MgO靶材(电阻率:0.08mΩ·cm)。
(实施例7)
将MgO粉末量替换为55.0mol%、TiC粉末量替换为45.0mol%,并且将烧结温度替换为1948K,除此以外,与实施例1同样地制造了实施例7涉及的溅射用MgO靶材(电阻率:0.03mΩ·cm)。
(实施例8)
将MgO粉末量替换为50.0mol%、TiC粉末量替换为50.0mol%,并且将烧结温度替换为1948K,除此以外,与实施例1同样地制造了实施例8涉及的溅射用MgO靶材(电阻率:0.01mΩ·cm)。
(实施例9)
将MgO粉末量替换为90.0mol%、TiC粉末替换为10mol%的平均粒径为1.0μm、纯度为2N的VC粉末,除此以外,与实施例1同样地制造了实施例9涉及的溅射用MgO靶材(电阻率:3.4×105mΩ·cm)。
(实施例10)
将MgO粉末量替换为89.0mol%、TiC粉末替换为11mol%的平均粒径为1.0μm、纯度为2N的VC粉末,除此以外,与实施例1同样地制造了实施例10涉及的溅射用MgO靶材(电阻率:2.3×105mΩ·cm)。
(实施例11)
将MgO粉末量替换为88.0mol%、TiC粉末替换为12.0mol%的平均粒径为1.0μm、纯度为2N的VC粉末,除此以外,与实施例1同样地制造了实施例11涉及的溅射用MgO靶材(电阻率:1.1×105mΩ·cm)。
(实施例12)
将MgO粉末量替换为85.0mol%、TiC粉末替换为15.0mol%的平均粒径为1.0μm、纯度为2N的VC粉末,除此以外,与实施例1同样地制造了实施例12涉及的溅射用MgO靶材(电阻率:11.85mΩ·cm)。
(实施例13)
将MgO粉末量替换为69.3mol%、TiC粉末替换为30.7mol%的平均粒径为1.0μm、纯度为2N的VC粉末,并且将烧结温度替换为1923K,除此以外,与实施例1同样地制造了实施例13涉及的溅射用MgO靶材(电阻率:0.65mΩ·cm)。
(实施例14)
将MgO粉末量替换为60.0mol%、TiC粉末替换为40mol%的平均粒径为1.0μm、纯度为2N的VC粉末,并且将烧结温度替换为1923K,除此以外,与实施例1同样地制造了实施例14涉及的溅射用MgO靶材(电阻率:0.02mΩ·cm)。
(实施例15)
将MgO粉末量替换为55.0mol%、TiC粉末替换为45mol%的平均粒径为1.0μm、纯度为2N的VC粉末,并且将烧结温度替换为1948K,除此以外,与实施例1同样地制造了实施例15涉及的溅射用MgO靶材(电阻率:0.008mΩ·cm)。
(实施例16)
将MgO粉末量替换为50.0mol%、TiC粉末替换为50.0mol%的平均粒径为1.0μm、纯度为2N的VC粉末,并且将烧结温度替换为1948K,除此以外,与实施例1同样地制造实施例16涉及的溅射用MgO靶材(电阻率:0.002mΩ·cm)。
(实施例17)
将MgO粉末量替换为90.0mol%、TiC粉末替换为10mol%的平均粒径为1.0μm、纯度为2N的WC粉末,除此以外,与实施例1同样地制造了实施例17涉及的溅射用MgO靶材(电阻率:2.9×105mΩ·cm)。
(实施例18)
将MgO粉末量替换为89.0mol%、TiC粉末替换为11mol%的平均粒径为1.0μm、纯度为2N的WC粉末,除此以外,与实施例1同样地制造了实施例18涉及的溅射用MgO靶材(电阻率:2.1×105mΩ·cm)。
(实施例19)
将MgO粉末量替换为88.0mol%、TiC粉末替换为12.0mol%的平均粒径为1.0μm、纯度为2N的WC粉末,除此以外,与实施例1同样地制造了实施例19涉及的溅射用MgO靶材(电阻率:1.1×105mΩ·cm)。
(实施例20)
将MgO粉末量替换为85.0mol%、TiC粉末替换为15.0mol%的平均粒径为1.0μm、纯度为2N的WC粉末,除此以外,与实施例1同样地制造了实施例20涉及的溅射用MgO靶材(电阻率:10.2mΩ·cm)。
(实施例21)
将MgO粉末量替换为72.1mol%、TiC粉末替换为27.9mol%的平均粒径为1.0μm、纯度为2N的WC粉末,并且将烧结温度替换为1923K,除此以外,与实施例1同样地制造了实施例21涉及的溅射用MgO靶材(电阻率:0.58mΩ·cm)。
(实施例22)
将MgO粉末量替换为60.0mol%、TiC粉末替换为40.0mol%的平均粒径为1.0μm、纯度为2N的WC粉末,并且将烧结温度替换为1923K,除此以外,与实施例1同样地制造实施例22涉及的溅射用MgO靶材(电阻率:0.01mΩ·cm)。
(实施例23)
将MgO粉末量替换为55.0mol%、TiC粉末替换为45.0mol%的平均粒径为1.0μm、纯度为2N的WC粉末,并且将烧结温度替换为1948K,除此以外,与实施例1同样地制造了实施例23涉及的溅射用MgO靶材(电阻率:0.005mΩ·cm)。
(实施例24)
将MgO粉末量替换为50.0mol%、TiC粉末替换为50.0mol%的平均粒径为1.0μm、纯度为2N的WC粉末,并且将烧结温度替换为1948K,除此以外,与实施例1同样地制造了实施例24涉及的溅射用MgO靶材(电阻率:0.001mΩ·cm)。
(实施例25)
将MgO粉末量替换为90.0mol%、TiC粉末替换为10.0mol%的平均粒径为1.0μm、纯度为2N的TiN粉末,除此以外,与实施例1同样地制造了实施例25涉及的溅射用MgO靶材(电阻率:1×106mΩ·cm)。
(实施例26)
将MgO粉末量替换为89.0mol%、TiC粉末替换为11.0mol%的平均粒径为1.0μm、纯度为2N的TiN粉末,除此以外,与实施例1同样地制造了实施例26涉及的溅射用MgO靶材(电阻率:1×106mΩ·cm)。
(实施例27)
将MgO粉末量替换为88.0mol%、TiC粉末替换为12.0mol%的平均粒径为1.0μm、纯度为2N的TiN粉末,除此以外,与实施例1同样地制造了实施例27涉及的溅射用MgO靶材(电阻率:1×106mΩ·cm)。
(实施例28)
将MgO粉末量替换为85.0mol%、TiC粉末替换为15.0mol%的平均粒径为1.0μm、纯度为2N的TiN粉末,除此以外,与实施例1同样地制造了实施例28涉及的溅射用MgO靶材(电阻率:80mΩ·cm)。
(实施例29)
将MgO粉末量替换为75.2mol%、TiC粉末替换为24.8mol%的平均粒径为1.0μm、纯度为2N的TiN粉末,除此以外,与实施例1同样地制造了实施例29涉及的溅射用MgO靶材(电阻率:4mΩ·cm)。
(实施例30)
将MgO粉末量替换为60.0mol%、TiC粉末替换为40.0mol%的平均粒径为1.0μm、纯度为2N的TiN粉末,并且将烧结温度替换为1923K,除此以外,与实施例1同样地制造了实施例30涉及的溅射用MgO靶材(电阻率:0.01mΩ·cm)。
(实施例31)
将MgO粉末量替换为55mol%、TiC粉末替换为45mol%的平均粒径为1.0μm、纯度为2N的TiN粉末,并且将烧结温度替换为1948K,除此以外,与实施例1同样地制造实施例31涉及的溅射用MgO靶材(电阻率:0.005mΩ·cm)。
(实施例32)
将MgO粉末量替换为50.0mol%、TiC粉末替换为50.0mol%的平均粒径为1.0μm、纯度为2N的TiN粉末,并且将烧结温度替换为1948K,除此以外,与实施例1同样地制造了实施例32涉及的溅射用MgO靶材(电阻率:0.001mΩ·cm)。
(比较例1)
将MgO粉末量替换为100.0mol%、TiC粉末量替换为0mol%,并且将烧结温度替换为1873K,除此以外,与实施例1同样地制造了比较例1涉及的溅射用MgO靶材(电阻率:1×1015mΩ·cm以上)。
(比较例2)
将MgO粉末量替换为95.0mol%、TiC粉末量替换为5.0mol%,并且将烧结温度替换为1873K,除此以外,与实施例1同样地制造了比较例2涉及的溅射用MgO靶材(电阻率:1×1013mΩ·cm)。
(比较例3)
将MgO粉末量替换为92.9mol%、TiC粉末量替换为7.1mol%,并且将烧结温度替换为1873K,除此以外,与实施例1同样地制造了比较例3涉及的溅射用MgO靶材(电阻率:1×1010mΩ·cm)。
(比较例4)
将MgO粉末量替换为91.0mol%、TiC粉末量替换为9.0mol%,并且将烧结温度替换为1873K,除此以外,与实施例1同样地制造了比较例4涉及的溅射用MgO靶材(电阻率:1.6×108mΩ·cm)。
(实施例33)
将MgO粉末量替换为49.0mol%、TiC粉末量替换为51.0mol%,并且将烧结温度替换为1948K,除此以外,与实施例1同样地制造了实施例33涉及的溅射用MgO靶材(电阻率:1.6×10-3mΩ·cm)。
(实施例34)
将MgO粉末量替换为45.0mol%、TiC粉末量替换为55.0mol%,并且将烧结温度替换为1948K,除此以外,与实施例1同样地制造了实施例34涉及的溅射用MgO靶材(电阻率:4×10-4mΩ·cm)。
(实施例35)
将MgO粉末量替换为40.0mol%、TiC粉末量替换为60.0mol%,并且将烧结温度替换为1948K,除此以外,与实施例1同样地制造了实施例35涉及的溅射用MgO靶材(电阻率:5×10-5mΩ·cm)。
(比较例5)
将MgO粉末量替换为95mol%、TiC粉末替换为5mol%的平均粒径为1.0μm、纯度为2N的VC粉末,并且将烧结温度替换为1898K,除此以外,与实施例1同样地制造了比较例5涉及的溅射用MgO靶材(电阻率:1×1013mΩ·cm)。
(比较例6)
将MgO粉末量替换为91.0mol%、TiC粉末替换为9.0mol%的平均粒径为1.0μm、纯度为2N的VC粉末,并且将烧结温度替换为1873K,除此以外,与实施例1同样地制造比较例6涉及的溅射用MgO靶材(电阻率:1×108mΩ·cm)。
(实施例36)
将MgO粉末量替换为49.0mol%、TiC粉末替换为51.0mol%的平均粒径为1.0μm、纯度为2N的VC粉末,并且将烧结温度替换为1948K,除此以外,与实施例1同样地制造了实施例36涉及的溅射用MgO靶材(电阻率:1×10-3mΩ·cm)。
(实施例37)
将MgO粉末量替换为45.0mol%、TiC粉末替换为55.0mol%的平均粒径为1.0μm、纯度为2N的VC粉末,并且将烧结温度替换为1948K,除此以外,与实施例1同样地制造实施例37涉及的溅射用MgO靶材(电阻率:1×10-4mΩ·cm)。
(实施例38)
将MgO粉末量替换为40.0mol%、TiC粉末替换为60.0mol%的平均粒径为1.0μm、纯度为2N的VC粉末,并且将烧结温度替换为1948K,除此以外,与实施例1同样地制造了实施例38涉及的溅射用MgO靶材(电阻率:1×10-5mΩ·cm)。
(比较例7)
将MgO粉末量替换为95mol%、TiC粉末替换为5mol%的平均粒径为1.0μm、纯度为2N的WC粉末,并且将烧结温度替换为1873K,除此以外,与实施例1同样地制造了比较例7涉及的溅射用MgO靶材(电阻率:1×1013mΩ·cm)。
(比较例8)
将MgO粉末量替换为91.0mol%、TiC粉末替换为9.0mol%的平均粒径为1.0μm、纯度为2N的WC粉末,并且将烧结温度替换为1873K,除此以外,与实施例1同样地制造了比较例8涉及的溅射用MgO靶材(电阻率:1×108mΩ·cm)。
(实施例39)
将MgO粉末量替换为49.0mol%、TiC粉末替换为51.0mol%的平均粒径为1.0μm、纯度为2N的WC粉末,并且将烧结温度替换为1948K,除此以外,与实施例1同样地制造了实施例39涉及的溅射用MgO靶材(电阻率:1×10-3mΩ·cm)。
(实施例40)
将MgO粉末量替换为45.0mol%、TiC粉末替换为55.0mol%的平均粒径为1.0μm、纯度为2N的WC粉末,并且将烧结温度替换为1948K,除此以外,与实施例1同样地制造了实施例40涉及的溅射用MgO靶材(电阻率:1×10-4mΩ·cm)。
(实施例41)
将MgO粉末量替换为40.0mol%、TiC粉末替换为60.0mol%的平均粒径为1.0μm、纯度为2N的WC粉末,并且将烧结温度替换为1948K,除此以外,与实施例1同样地制造了实施例41涉及的溅射用MgO靶材(电阻率:1×10-5mΩ·cm)。
(比较例9)
将MgO粉末量替换为95mol%、TiC粉末替换为5.0mol%的平均粒径为1.0μm、纯度为2N的TiN粉末,并且将烧结温度替换为1873K,除此以外,与实施例1同样地制造了比较例9涉及的溅射用MgO靶材(电阻率:8×1013mΩ·cm)。
(比较例10)
将MgO粉末量替换为91.0mol%、TiC粉末替换为9.0mol%的平均粒径为1.0μm、纯度为2N的TiN粉末,并且将烧结温度替换为1873K,除此以外,与实施例1同样地制造了比较例10涉及的溅射用MgO靶材(电阻率:8×108mΩ·cm)。
(实施例42)
将MgO粉末量替换为49.0mol%、TiC粉末替换为51.0mol%的平均粒径为1.0μm、纯度为2N的TiN粉末,并且将烧结温度替换为1948K,除此以外,与实施例1同样地制造了实施例42涉及的溅射用MgO靶材(电阻率:7.0×10-3mΩ·cm)。
(实施例43)
将MgO粉末量替换为45.0mol%、TiC粉末替换为55.0mol%的平均粒径为1.0μm、纯度为2N的TiN粉末,并且将烧结温度替换为1948K,除此以外,与实施例1同样地制造了实施例43涉及的溅射用MgO靶材(电阻率:8×10-4mΩ·cm)。
(实施例44)
将MgO粉末量替换为40.0mol%、将TiC粉末替换为60.0mol%的平均粒径为1.0μm、纯度为2N的TiN粉末,并且将烧结温度替换为1948K,除此以外,与实施例1同样地制造了实施例44涉及的溅射用MgO靶材(电阻率:7.5×10-5mΩ·cm)。
(比较例11)
将MgO粉末量替换为39.0mol%、TiC粉末量替换为61.0mol%,并且将烧结温度替换为1948K,除此以外,试图与实施例1同样地制造比较例11涉及的溅射用MgO靶材,但是无法致密地进行烧结。尝试提高了烧结温度,结果MgO晶粒发生晶粒生长而形成了非均质的烧结体。TiC粉末量超过61.0mol%的实验也得到了同样的结果。
(比较例12)
将MgO粉末量替换为39.0mol%、TiC粉末替换为61.0mol%的平均粒径为1.0μm、纯度为2N的VC粉末,并且将烧结温度替换为1948K,除此以外,试图与实施例1同样地制造比较例12涉及的溅射用MgO靶材,但是无法致密地进行烧结。尝试提高了烧结温度,结果MgO晶粒发生晶粒生长而形成了非均质的烧结体。VC粉末量超过61.0mol%的实验也得到了同样的结果。
(比较例13)
将MgO粉末量替换为39.0mol%、TiC粉末替换为61.0mol%的平均粒径为1.0μm、纯度为2N的WC粉末,并且将烧结温度替换为1948K,除此以外,试图与实施例1同样地制造比较例13涉及的溅射用MgO靶材,但是无法致密地进行烧结。尝试提高了烧结温度,结果MgO晶粒发生晶粒生长而形成了非均质的烧结体。WC粉末量超过61.0mol%的实验也得到了同样的结果。
(比较例14)
将MgO粉末量替换为39.0mol%、TiC粉末替换为61.0mol%的平均粒径为1.0μm、纯度为2N的TiN粉末,并且将烧结温度替换为1948K,除此以外,试图与实施例1同样地制造比较例14涉及的溅射用MgO靶材,但是无法致密地进行烧结。尝试提高了烧结温度,结果MgO晶粒发生晶粒生长而形成了非均质的烧结体。TiN粉末量超过61.0mol%的实验也得到了同样的结果。
(成膜方法)
首先,准备MgO(001)基板作为基板,在该基板上进行溅射成膜得到Fe膜作为基板与MgO膜的中间层。对于Fe膜的溅射来说,将溅射腔室内排气至5×10-4Pa,然后在0.67Pa的Ar气氛中进行了溅射。对Fe靶材的输入功率设为50W,利用RF磁控溅射法进行了成膜。
在具有该中间层的MgO(001)基板上溅射成膜得到MgO-TiC膜(实施例1~8)、MgO-VC膜(实施例9~16)、MgO-WC膜(实施例17~24)和MgO-TiN膜(实施例25~32)。与上述同样地进行溅射成膜得到MgO-TiC膜(实施例33~35)、MgO-VC膜(实施例36~38)、MgO-WC膜(实施例39~41)和MgO-TiN膜(实施例42~44)。对于各种膜的溅射来说,将溅射腔室内排气至5×10-4Pa,然后在0.3Pa的Ar气氛中进行了溅射。对靶材的输入功率设为300W,利用DC磁控溅射法进行了成膜。
对于各个基板进行X射线衍射(XRD)测定,考察了成膜得到的膜的取向性。结果示于表1中。
表1
使用靶材 成膜基板 Fe膜厚度 成膜速率 取向性
实施例1 MgO90mol%—TiC10mol% MgO(001) 10nm 23nm/min Cubic(001)取向
实施例2 MgO89mol%—TiC11mol% MgO(001) 10nm 25nm/min Cubic(001)取向
实施例3 MgO88.0mol%—TiC12.0mol% MgO(001) 10nm 27nm/min Cubic(001)取向
实施例4 MgO85.6mol%—TiC14.4mol% MgO(001) 10nm 33nm/min Cubic(001)取向
实施例5 MgO77.6mol%—TiC22.4mol% MgO(001) 10nm 36nm/min Cubic(001)取向
实施例6 MgO60mol%—TiC40mol% MgO(001) 10nm 64nm/min Cubic(001)取向
实施例7 MgO55mol%—TiC45mol% MgO(001) 10nm 72nm/min Cubic(001)取向
实施例8 MgO50.0mol%—TiC50.0mol% MgO(001) 10nm 80nm/min Cubic(001)取向
实施例9 MgO90mol%—VC10mol% MgO(001) 10nm 13nm/min Cubic(001)取向
实施例10 MgO89mol%—VC1lmol% MgO(001) 10nm 14nm/min Cubic(001)取向
实施例11 MgO88.0mol%—VC12.0mol% MgO(001) 10nm 15nm/min Cubic(001)取向
实施例12 MgO85.0mol%—VC15.0mol% MgO(001) 10nm 19nm/min Cubic(001)取向
实施例13 MgO69.3mol%—VC30.7mol% MgO(001) 10nm 39nm/min Cubic(001)取向
实施例14 MgO60mol%—VC40mol% MgO(001) 10nm 51nm/min Cubic(001)取向
实施例15 MgO55mol%—VC45mol% MgO(001) 10nm 57nm/min Cubic(001)取向
实施例16 MgO50.0mol%—VC50.0mol% MgO(001) 10nm 64nm/min Cubic(001)取向
实施例17 MgO90mol%—WC10mol% MgO(001) 10nm 21nm/min Cubic(001)取向
实施例18 MgO89mol%—WC11mol% MgO(001) 10nm 23nm/min Cubic(001)取向
实施例19 MgO88.0mol%—WC12.0mol% MgO(001) 10nm 25nm/min Cubic(001)取向
实施例20 MgO85.0mol%—WC15.0mol% MgO(001) 10nm 31nm/min Cubic(001)取向
实施例21 MgO72.1mol%—WC27.9mol% MgO(001) 10nm 57nm/min Cubic(001)取向
实施例22 MgO60mol%—WC40mol% MgO(001) 10nm 81nm/min Cubic(001)取向
实施例23 MgO55mol%—WC45mol% MgO(001) 10nm 92nm/min Cubic(001)取向
实施例24 MgO50.0mol%—WC50.0mol% MgO(001) 10nm 102nm/min Cubic(001)取向
实施例25 MgO90mol%—TiN10mol% MgO(001) 10nm 21nm/min Cubic(001)取向
实施例26 MgO89mol%—TiN11mol% MgO(001) 10nm 23nm/min Cubic(001)取向
实施例27 MgO88.0mol%—TiN12.0mol% MgO(001) 10nm 25nm/min Cubic(001)取向
实施例28 MgO85.0mol%—TiN15.0mol% MgO(001) 10nm 31nm/min Cubic(001)取向
实施例29 MgO75.2mol%—TiN24.8mol% MgO(001) 10nm 35nm/min Cubic(001)取向
实施例30 MgO60mol%—TiN40mol% MgO(001) 10nm 56nm/min Cubic(001)取向
实施例31 MgO55mol%—TiN45mol% MgO(001) 10nm 63nm/min Cubic(001)取向
实施例32 MgO50.0mol%—TiN50.0mol% MgO(001) 10nm 70nm/min Cubic(001)取向
比较例1 MgO100mol%—TiC0mol% MgO(001) 10nm
比较例2 MgO95mol%—TiC5mol% MgO(001) 10nm
比较例3 MgO92.9mol%—TiC7.1mol% MgO(001) 10nm
比较例4 MgO91mol%—TiC9mol% MgO(001) 10nm
实施例33 MgO49mol%—TiC51mol% MgO(001) 10nm 82nm/min Cubic(001)取向
实施例34 MgO45mol%—TiC55mol% MgO(001) 10nm 88nm/min Cubic(001)取向
实施例35 MgO40mol%—TiC60mol% MgO(001) 10nm 96nm/min Cubic(001)取向
比较例5 MgO95mol%—VC5mol% MgO(001) 10nm
比较例6 MgO91mol%—VC9mol% MgO(001) 10nm
实施例36 MgO49mol%—VC51mol% MgO(001) 10nm 65nm/min Cubic(001)取向
实施例37 MgO45mol%—VC55mol% MgO(001) 10nm 70nm/min Cubic(001)取向
实施例38 MgO40mol%—VC60mol% MgO(001) 10nm 77nm/min Cubic(001)取向
比较例7 MgO95mol%—WC5mol% MgO(001) 10nm
比较例8 MgO91mol%—WC9mol% MgO(001) 10nm
实施例39 MgO49mol%—WC51mol% MgO(001) 10nm 104nm/min Cubic(001)取向
实施例40 MgO45mol%—WC55mol% MgO(001) 10nm 112nm/min Cubic(001)取向
实施例41 MgO40mol%—WC60mol% MgO(001) 10nm 122nm/min Cubic(001)取向
比较例9 MgO95mol%—TiN5mol% MgO(001) 10nm
比较例10 MgO91mol%—TiN9mol% MgO(001) 10nm
实施例42 MgO49mol%—TiN51mol% MgO(001) 10nm 71nm/min Cubic(001)取向
实施例43 MgO45mol%—TiN55mol% MgO(001) 10nm 77nm/min Cubic(001)取向
实施例44 MgO40mol%—TiN60mol% MgO(001) 10nm 84nm/min Cubic(001)取向
由表1可确认到,对于MgO-TiC膜(实施例1~8)、MgO-VC膜(实施例9~16)、MgO-WC膜(实施例17~24)和MgO-TiN膜(实施例25~32)来说,可以得到立方(cubic)结构且(001)面上为单一取向的致密、平滑且实质上没有所谓的颗粒物的膜。
如上所述可知,通过利用以MgO、和晶系为立方晶系的导电性化合物TiC、VC或TiN或者晶系为六方晶系的导电性化合物WC作为主要成分的溅射用MgO靶材,可以成膜出晶系为立方晶系且在(001)面上为单一取向的膜,并且该靶材可以最适合地用作用于形成磁记录介质的磁性层的基底层的靶材。另外,对实施例33~44的溅射用MgO靶材也与上述同样地进行了溅射成膜,结果成膜速率高,并且可以成膜出与上述同样的在(001)面为单一取向的膜,但有时会产生颗粒物,无法得到平滑且致密的膜。需要说明的是,对于比较例1~10的溅射用MgO靶材来说,试图与上述同样地进行溅射成膜,但由于电阻值大,因而无法利用DC溅射法进行成膜。另外,比较例11~14的原材料未能得到致密烧结体,因此无法供于溅射成膜评价。
需要说明的是,可知如果使用粒径小于实施例1~44中使用的TiC粉末等导电性粉末的粒径的粉末、且在MgO靶材内使导电性粉末的颗粒与MgO颗粒的晶界相邻接,则会形成电子的通路,例如在比较例3的情况下,即便使导电性粉末的浓度小于7.1mol%也能够进行成膜。
另外,尽管没有作为比较例记载在表1中,但是本发明人制造了向MgO颗粒中添加TaC(立方晶系)、NbC(体心立方晶系)、SiC(六方晶系)、Cr3C2(斜方晶系)、Fe3C2(斜方晶系)、C(六方晶系)等颗粒作为导电性物质而成的溅射用靶材,然而添加TaC(立方晶系)、NbC(体心立方晶系)、SiC(六方晶系)的溅射用靶材的烧结不充分而无法进行溅射成膜。对于添加Cr3C2(斜方晶系)、Fe3C2(斜方晶系)、C(六方晶系)的溅射用靶材来说,能够进行溅射成膜,但颗粒物的产生明显而无法得到致密且平滑的膜,不适合作为DC溅射用靶材。另外,对于Cr3C2(斜方晶系)、Fe3C2(斜方晶系)来说,无法对MgO膜的(001)面赋予单一取向性。此外,对于本发明的具有立方晶系或六方晶系的晶系的导电性物质以外的晶系的导电性物质来说,也同样未能对MgO膜的(001)面赋予单一取向性。最后可知,高熔点且适于作为本发明的目标的靶材的导电性物质为TiC(立方晶系)、VC(立方晶系)、TiN(立方晶系)、WC(六方晶系)。

Claims (4)

1.一种溅射用MgO靶材,该溅射用MgO靶材以MgO和导电性物质作为主要成分,其特征在于,所述导电性物质在通过DC溅射法与MgO一起成膜时,能够为所形成的MgO膜赋予取向性,所述导电性物质的晶系为立方晶系或六方晶系,所述导电性物质为TiC、VC、WC或TiN中的1种以上,所述溅射用MgO靶材中含有的MgO相对于MgO与导电性物质的合计的比率为40mol%~90mol%。
2.如权利要求1所述的溅射用MgO靶材,其特征在于,在所述MgO靶材内,所述导电性物质的颗粒彼此相互接触而形成了电子的通路。
3.如权利要求2所述的溅射用MgO靶材,其特征在于,所述导电性物质存在于MgO颗粒的晶界。
4.如权利要求3所述的溅射用MgO靶材,其特征在于,所述导电性物质以包裹MgO颗粒的方式存在。
CN201280032640.XA 2011-07-01 2012-06-29 溅射用MgO靶材 Expired - Fee Related CN103687977B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JPJP2011-147026 2011-07-01
JP2011-147026 2011-07-01
JP2011147026 2011-07-01
JPJP2012-011746 2012-01-24
JP2012-011746 2012-01-24
JP2012011746 2012-01-24
PCT/JP2012/066789 WO2013005690A1 (ja) 2011-07-01 2012-06-29 スパッタリング用MgOターゲット

Publications (2)

Publication Number Publication Date
CN103687977A CN103687977A (zh) 2014-03-26
CN103687977B true CN103687977B (zh) 2016-08-17

Family

ID=47437042

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280032640.XA Expired - Fee Related CN103687977B (zh) 2011-07-01 2012-06-29 溅射用MgO靶材

Country Status (5)

Country Link
US (1) US9773652B2 (zh)
JP (2) JP5413540B2 (zh)
KR (1) KR101731847B1 (zh)
CN (1) CN103687977B (zh)
WO (1) WO2013005690A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5925907B2 (ja) * 2013-03-29 2016-05-25 Jx金属株式会社 MgO−TiO焼結体ターゲット及びその製造方法
JP5935780B2 (ja) * 2013-09-30 2016-06-15 Tdk株式会社 スパッタリングターゲット
JP5949718B2 (ja) * 2013-09-30 2016-07-13 Tdk株式会社 スパッタリングターゲット
TW201527566A (zh) * 2014-01-06 2015-07-16 Kojundo Chemical Lab Co Ltd 濺鍍靶
JPWO2016088867A1 (ja) * 2014-12-05 2017-09-21 宇部マテリアルズ株式会社 スパッタリング用MgOターゲット材及び薄膜
JP6570175B2 (ja) * 2015-08-18 2019-09-04 株式会社高純度化学研究所 直流スパッタ用スパッタリングターゲットおよびその製造方法
JP6489694B2 (ja) * 2015-09-08 2019-03-27 株式会社高純度化学研究所 スパッタリングターゲット
WO2017170152A1 (ja) * 2016-03-29 2017-10-05 Jx金属株式会社 Mg-Ti-Oスパッタリングターゲット及びその製造方法
JP7057069B2 (ja) * 2017-03-30 2022-04-19 Jx金属株式会社 スパッタリングターゲット
JP7014541B2 (ja) * 2017-07-21 2022-02-01 Jx金属株式会社 スパッタリングターゲット、スパッタリングターゲットの製造方法及び磁気媒体の製造方法
DE102018112335A1 (de) * 2018-05-23 2019-11-28 Hartmetall-Werkzeugfabrik Paul Horn Gmbh Magnetronsputtervorrichtung
JP7122175B2 (ja) * 2018-06-25 2022-08-19 昭和電工株式会社 熱アシスト磁気記録媒体および磁気記憶装置
JP6935869B2 (ja) * 2018-06-27 2021-09-15 昭和電工株式会社 熱アシスト磁気記録媒体および磁気記憶装置
JP7246232B2 (ja) * 2019-03-29 2023-03-27 Jx金属株式会社 スパッタリングターゲット部材、スパッタリングターゲット、スパッタリングターゲット部材の製造方法、及びスパッタ膜の製造方法
TW202200816A (zh) * 2020-05-28 2022-01-01 日商三菱綜合材料股份有限公司 濺鍍靶材及光學功能膜

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0354769A2 (en) * 1988-08-09 1990-02-14 Tosoh Corporation Zinc oxide sintered body and preparation process thereof
CN101189358A (zh) * 2005-05-30 2008-05-28 日矿金属株式会社 溅射靶及其制造方法
CN101217084A (zh) * 2007-12-28 2008-07-09 南京华显高科有限公司 提高PDP统计放电延迟时间的MgO薄膜制备方法
CN101925555A (zh) * 2008-01-28 2010-12-22 日本钨合金株式会社 多晶MgO烧结体及其制造方法以及溅射用MgO靶材

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111969A (ja) * 1984-11-05 1986-05-30 住友電気工業株式会社 放電加工可能な導電性窒化珪素焼結体およびその製造方法
JP2585595B2 (ja) * 1987-05-18 1997-02-26 日新製鋼株式会社 セラミックス焼結体の製造方法
JPS6452489A (en) * 1987-08-24 1989-02-28 Mizuno Kk Golf club head
JPH07157837A (ja) * 1993-12-08 1995-06-20 Hitachi Tool Eng Ltd 超微粒硬質合金及び部品
JP3223822B2 (ja) * 1996-12-09 2001-10-29 三菱マテリアル株式会社 MgO複合セラミックス及びその製造方法
JP2991672B2 (ja) 1997-05-30 1999-12-20 株式会社日立製作所 磁気記録媒体
JP3494205B2 (ja) * 1998-05-28 2004-02-09 三菱マテリアル株式会社 MgOを主成分とするタ−ゲット材料およびその製造方法
JP3434476B2 (ja) 1999-09-29 2003-08-11 秋田県 高密度情報記録媒体及びその媒体の製造方法
JP3355371B2 (ja) * 2000-06-08 2002-12-09 独立行政法人通信総合研究所 超電導体多層構造体およびその製造方法ならびに超電導体装置
DE10140514A1 (de) * 2001-08-17 2003-02-27 Heraeus Gmbh W C Sputtertarget auf Basis von Titandioxid
FR2835534B1 (fr) * 2002-02-06 2004-12-24 Saint Gobain CIBLE CERAMIQUE NiOx NON STOECHIOMETRIQUE
JP2004197140A (ja) * 2002-12-17 2004-07-15 Mitsubishi Materials Corp 有機elディスプレイ吸湿膜用ターゲットおよびその製造方法
JP4211558B2 (ja) 2003-10-07 2009-01-21 住友金属鉱山株式会社 スパッタリングターゲット材料、その製造方法、及びそれを用いた透明導電膜の製造方法
JP4711619B2 (ja) * 2003-12-19 2011-06-29 京セラ株式会社 導電性酸化チタン焼結体、スパッタリングターゲット、透光性部材、および画像表示装置
JP2005268203A (ja) * 2004-02-17 2005-09-29 Tdk Corp 平面パネルディスプレイ用スペーサの製造方法
JP2009511742A (ja) * 2005-10-13 2009-03-19 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム スパッタリングによって被膜を堆積する方法
CN101229976A (zh) * 2007-12-21 2008-07-30 东华大学 一种高性能WC/MgO纳米复合材料的制备方法
CN201217084Y (zh) * 2008-07-09 2009-04-08 山东法因数控机械股份有限公司 一种型钢数控钻床
JP5396353B2 (ja) * 2009-09-17 2014-01-22 日本碍子株式会社 静電チャック及びその製法
JP5195868B2 (ja) * 2010-10-25 2013-05-15 富士電機株式会社 垂直磁気記録媒体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0354769A2 (en) * 1988-08-09 1990-02-14 Tosoh Corporation Zinc oxide sintered body and preparation process thereof
CN101189358A (zh) * 2005-05-30 2008-05-28 日矿金属株式会社 溅射靶及其制造方法
CN101217084A (zh) * 2007-12-28 2008-07-09 南京华显高科有限公司 提高PDP统计放电延迟时间的MgO薄膜制备方法
CN101925555A (zh) * 2008-01-28 2010-12-22 日本钨合金株式会社 多晶MgO烧结体及其制造方法以及溅射用MgO靶材

Also Published As

Publication number Publication date
KR20140054010A (ko) 2014-05-08
JP2013241684A (ja) 2013-12-05
WO2013005690A1 (ja) 2013-01-10
KR101731847B1 (ko) 2017-05-08
CN103687977A (zh) 2014-03-26
US20140144775A1 (en) 2014-05-29
US9773652B2 (en) 2017-09-26
JP5413540B2 (ja) 2014-02-12
JPWO2013005690A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
CN103687977B (zh) 溅射用MgO靶材
CN102089257B (zh) 复合氧化物烧结体、复合氧化物烧结体的制造方法、溅射靶及薄膜的制造方法
KR102030892B1 (ko) Ito 스퍼터링 타겟 및 그 제조 방법 그리고 ito 투명 도전막 및 ito 투명 도전막의 제조 방법
JP5887819B2 (ja) 酸化亜鉛焼結体、それから成るスパッタリングターゲットおよび酸化亜鉛薄膜
JP2012052227A (ja) スパッタリングターゲットの製造方法およびスパッタリングターゲット
CN108149046A (zh) 一种高强、高导石墨烯/铜纳米复合材料及其制备方法和应用
WO2015170534A1 (ja) スパッタリングターゲット材
CN105008579B (zh) ZnO‑Al2O3‑MgO溅射靶及其制备方法
KR20100113321A (ko) 고밀도 및 나노결정립 스피넬계 부온도계수 서미스터 후막 및 이의 제조방법
KR20140036176A (ko) 도전성 산화물 및 그 제조 방법과 산화물 반도체막
KR101331293B1 (ko) 산화물 소결체 및 산화물 반도체 박막
KR101279277B1 (ko) ZnO-Ga2O3계 스퍼터링 타겟용 소결체 및 그 제조 방법
TW201632482A (zh) 濺鍍用MgO靶材及薄膜
TWI554627B (zh) Sputtering target and high resistance transparent film manufacturing method
KR20130018321A (ko) 산화아연 소결체 타블렛 및 그의 제조 방법
JP2006200016A (ja) ZnO:Alターゲットおよび薄膜並びに薄膜の製造方法
JP2021050411A (ja) ニッケルドープ酸化インジウムスズターゲットおよびその製造方法
WO2007069415A1 (ja) 真空蒸着用焼結体
JP2010202896A (ja) スパッタリングターゲット及びその製造方法
JP2016507004A (ja) (Ga)ZnSn酸化物スパッタリングターゲット
JP7203088B2 (ja) 酸化物焼結体、スパッタリングターゲットおよび透明導電膜
KR20210129041A (ko) 산화물 소결체, 스퍼터링 타깃 및 스퍼터링 타깃의 제조 방법
TWI836009B (zh) 氧化物燒結體、濺鍍靶材及濺鍍靶材之製造方法
TWI697458B (zh) 濺鍍靶
KR20130063010A (ko) 산화물 소결체 및 산화물 반도체 박막

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160817

Termination date: 20200629

CF01 Termination of patent right due to non-payment of annual fee