CN102639147B - Rsv f 蛋白组合物和其制作方法 - Google Patents

Rsv f 蛋白组合物和其制作方法 Download PDF

Info

Publication number
CN102639147B
CN102639147B CN201080040594.9A CN201080040594A CN102639147B CN 102639147 B CN102639147 B CN 102639147B CN 201080040594 A CN201080040594 A CN 201080040594A CN 102639147 B CN102639147 B CN 102639147B
Authority
CN
China
Prior art keywords
polypeptide
rsvf
seqidno
cell
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201080040594.9A
Other languages
English (en)
Other versions
CN102639147A (zh
Inventor
K·斯旺森
P·R·道米策
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
Original Assignee
Novartis AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42834367&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102639147(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Novartis AG filed Critical Novartis AG
Priority to CN201510703646.0A priority Critical patent/CN105214080A/zh
Publication of CN102639147A publication Critical patent/CN102639147A/zh
Application granted granted Critical
Publication of CN102639147B publication Critical patent/CN102639147B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1027Paramyxoviridae, e.g. respiratory syncytial virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/155Paramyxoviridae, e.g. parainfluenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5252Virus inactivated (killed)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5256Virus expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5258Virus-like particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55505Inorganic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55555Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55561CpG containing adjuvants; Oligonucleotide containing adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55566Emulsions, e.g. Freund's adjuvant, MF59
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55572Lipopolysaccharides; Lipid A; Monophosphoryl lipid A
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/21Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/50Fusion polypeptide containing protease site
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • C07K2319/73Fusion polypeptide containing domain for protein-protein interaction containing coiled-coiled motif (leucine zippers)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18511Pneumovirus, e.g. human respiratory syncytial virus
    • C12N2760/18522New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18511Pneumovirus, e.g. human respiratory syncytial virus
    • C12N2760/18534Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/36011Togaviridae
    • C12N2770/36111Alphavirus, e.g. Sindbis virus, VEE, EEE, WEE, Semliki
    • C12N2770/36141Use of virus, viral particle or viral elements as a vector
    • C12N2770/36143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Pulmonology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明涉及含RSV?F蛋白的免疫原性组合物、制备含RSV?F蛋白胞外域多肽的组合物的方法,和某些遗传改造的RSV?F蛋白和编码该遗传改造的RSV?F蛋白的核酸。用所述方法制备的组合物可在主要或单一所需形式和构型中包含RSV?F蛋白胞外域多肽。本发明还涉及诱导对RSV?F的免疫应答的方法。

Description

RSV F 蛋白组合物和其制作方法
相关申请
本申请要求2009年7月15日提交的美国专利申请第61/225,805号以及2010年1月12日提交的美国专利申请第61/294,426号的权益。上述申请的全部说明通过参考纳入本文。
发明背景
呼吸道合胞病毒(RSV)是副粘病毒科(Paramyxoviridae)肺炎病毒属(Pneumovirus)中的包膜不分节负链RNA病毒。其为儿童出生后第一年中细支气管炎和肺炎的主要原因。RSV还引起重复感染包括严重下呼吸道疾病,其可在任何年龄发作,特别是在老年人或心脏、肺或免疫系统受损的人中。
为了感染宿主细胞,与其他包膜病毒如流感病毒和HIV一样,副粘病毒如RSV需要病毒膜与宿主细胞膜融合。对于RSV,保守融合蛋白(RSVF)通过偶联不可逆的蛋白重折叠和膜并置来融合病毒和细胞膜。在基于副粘病毒研究的现有模型中,所述RSVF蛋白最初折叠为亚稳态“融合前”构型。进入细胞时,所述融合前构型经历重折叠且构型变化为其稳定的“融合后”构型。
RSVF蛋白由mRNA翻译为约574个氨基酸的蛋白,称为F0。F0的翻译后加工包括通过内质网中的信号肽酶移除N端信号肽。转运高尔基体内的细胞蛋白酶(特别是弗林蛋白酶(furin))还在两个位置(约109/110和约136/137)切割F0。该切割导致短干扰序列移除并产生两种仍彼此相关的亚基,称为F1(约50kDa;C端;约为残基137-574)和F2(约20kDa;N端;约为残基1-109)。F1在N端含疏水性融合肽以及2个两性七肽重复区(HRA和HRB)。HRA靠近所述融合肽,HRB靠近所述跨膜结构域。3个F1-F2异源二聚体在病毒粒子中组装为F1-F2同源三聚体。
还未获得但需要针对RSV感染的疫苗。生产疫苗的一种可能方法为基于纯化的RSVF蛋白的亚基疫苗。然而,此方法需要纯化的RSVF蛋白为长期稳定的单一形式和构型,在疫苗批次之间保持一致且方便纯化。
RSVF蛋白可被截短,例如通过缺失跨膜结构域和胞质尾,以使其表达为可能可溶的胞外域。此外,尽管RSVF蛋白最初翻译为单体,但该单体切割并组装为三聚体。RSVF蛋白为切割的三聚体形式时会暴露所述疏水性融合肽。不同三聚体如可溶性胞外域三聚体上的所述暴露疏水性融合肽可彼此结合,形成玫瑰花结型。所述疏水性融合肽也可与来自例如用于表达重组可溶RSVF蛋白的细胞的脂质和脂蛋白结合。由于RSVF蛋白加工、构造和重折叠的复杂性,难以获得纯化的、均质的免疫原性制备物。
因此,需要改善RSVF蛋白组合物和制作RSVF蛋白组合物的方法。
发明概述
本发明涉及含一种或多种RSVF多肽的免疫原性组合物,和某些遗传改造的RSVF蛋白和编码该遗传改造的RSVF蛋白的核酸。
一方面所述RSVF蛋白可溶。例如,该RSVF蛋白可缺失跨膜区域和胞质尾。在一些方面,所述可溶RSVF含一种或多种的1)一或两个弗林蛋白酶切割位置的一种或多种突变,2)融合肽的一种或多种突变,3)p27接头的一种或多种突变,4)含添加的寡聚化序列,和5)含提供蛋白酶切割位置的添加的氨基酸序列。在其他或替代的方面,所述RSVF蛋白为单体、三聚体或单体和三聚体的组合。所述三聚体可为单分散性或为玫瑰花结形式。在额外或替代方面,所述RSVF蛋白可为融合前构型、中间构型或融合后构型。
在一个方面,所述免疫原性组合物含一种或多种呼吸道合胞病毒F(RSVF)多肽,其中氨基酸100-150用氨基酸序列SEQIDNO:9、SEQIDNO:12、SEQIDNO:3、SEQIDNO:4、SEQIDNO:5、SEQIDNO:6、SEQIDNO:7;SEQIDNO:8、SEQIDNO:10、SEQIDNO:11、SEQIDNO:13、SEQIDNO:91或SEQIDNO:92替代。在一些实施方式中,所述RSVF多肽可溶(如,胞外域)。
在另一方面,所述免疫原性组合物含RSVF多肽,其中RSVF的氨基酸100-150用氨基酸序列SEQIDNO:12替代。在一些实施方式中,所述RSVF多肽可溶(如,胞外域)。
在另一个方面,所述免疫原性组合物含RSVF多肽,其中RSVF的氨基酸100-150用氨基酸序列SEQIDNO:9、SEQIDNO:3、SEQIDNO:4、SEQIDNO:5、SEQIDNO:6、SEQIDNO:7;SEQIDNO:8、SEQIDNO:10、SEQIDNO:11、SEQIDNO:13或SEQIDNO:92替代。在一些实施方式中,所述RSVF多肽可溶(如,胞外域)。
在另一方面,所述免疫原性组合物含RSVF多肽,其中氨基酸100-150用氨基酸序列SEQIDNO:9替代。在一些实施方式中,所述RSVF多肽可溶(如,胞外域)。
在另一方面,所述免疫原性组合物含RSVF多肽,其中RSVF含SEQIDNO:1或SEQIDNO:2的氨基酸23-99和151-524。在一些实施方式中,所述RSVF多肽可溶(如,胞外域)。
在一个方面,所述免疫原性组合物含选自下组的多肽:SEQIDNO:49、SEQIDNO:68、SEQIDNO:71、SEQIDNO:25、SEQIDNO:27、SEQIDNO:28、SEQIDNO:29、SEQIDNO:31、SEQIDNO:33、SEQIDNO:35、SEQIDNO:37、SEQIDNO:41、SEQIDNO:42、SEQIDNO:43、SEQIDNO:44、SEQIDNO:45、SEQIDNO:46、SEQIDNO:47、SEQIDNO:48、SEQIDNO:50、SEQIDNO:51、SEQIDNO:52、SEQIDNO:53、SEQIDNO:54、SEQIDNO:55、SEQIDNO:57、SEQIDNO:58、SEQIDNO:59、SEQIDNO:60、SEQIDNO:61、SEQIDNO:62、SEQIDNO:63、SEQIDNO:64、SEQIDNO:65、SEQIDNO:66、SEQIDNO:67、SEQIDNO:69、SEQIDNO:70、SEQIDNO:85、SEQIDNO:86、SEQIDNO:87、SEQIDNO:88、SEQIDNO:89和SEQIDNO:93。在一些实施方式中,省略所述信号肽和/或HIS标记。在一些实施方式中,所述RSVF多肽可溶(如,胞外域)。
在一方面,所述免疫原性组合物含SEQIDNO:68或其中省略所述信号肽和任选所述HIS标记的SEQIDNO:68。
在另一方面,所述免疫原性组合物含选自下组的多肽:SEQIDNO:49、SEQIDNO:71和其中省略所述信号肽和任选所述HIS标记的任何上述序列。在一些实施方式中,所述RSVF多肽可溶(如,胞外域)。
在优选实施方式中,所述免疫原性组合物会包括佐剂。所述佐剂优选铝盐、水包角鲨烯乳液(如MF59)、苯并萘啶化合物、磷脂化合物(如E6020)、小分子免疫增强剂或任何上述的任何两种或更多的组合。
本发明的另一方面包括重组RSVF多肽。所述RSVF形式可为单体、三聚体、三聚体玫瑰花结或单体和三聚体的组合。所述重组多肽可包括异源寡聚化结构域、表位或信号肽。所述异源寡聚化结构域优选来自流感血凝素,来自SARS刺突,或来自HIVgp41、NadA、改良的GCN4、或天冬氨酸转氨甲酰酶(ATCase)的三聚结构域。
在一个方面,所述重组RSVF多肽的氨基酸100-150用氨基酸序列SEQIDNO:9、SEQIDNO:12、SEQIDNO:3、SEQIDNO:4、SEQIDNO:5、SEQIDNO:6、SEQIDNO:7、SEQIDNO:8、SEQIDNO:10、SEQIDNO:11、SEQIDNO:13、SEQIDNO:91或SEQIDNO:92替代。在一些实施方式中,所述RSVF多肽可溶(如,胞外域)。
在另一方面,所述重组RSVF多肽中RSVF的氨基酸100-150用氨基酸序列SEQIDNO:12替代。在一些实施方式中,所述RSVF多肽可溶(如,胞外域)。
在另一个方面,所述重组RSVF多肽中RSVF的氨基酸100-150用氨基酸序列SEQIDNO:9、SEQIDNO:3、SEQIDNO:4、SEQIDNO:5、SEQIDNO:6、SEQIDNO:7;SEQIDNO:8、SEQIDNO:10、SEQIDNO:11、SEQIDNO:13或SEQIDNO:92替代。在一些实施方式中,所述RSVF多肽可溶(如,胞外域)。
在另一方面,所述重组RSVF多肽中RSVF的氨基酸100-150用氨基酸序列SEQIDNO:9替代。在一些实施方式中,所述RSVF多肽可溶(如,胞外域)。
在一个方面,所述重组多肽选自下组:SEQIDNO:49、SEQIDNO:68、SEQIDNO:71、SEQIDNO:25、SEQIDNO:27、SEQIDNO:28、SEQIDNO:29、SEQIDNO:31、SEQIDNO:33、SEQIDNO:35、SEQIDNO:37、SEQIDNO:41、SEQIDNO:42、SEQIDNO:43、SEQIDNO:44、SEQIDNO:45、SEQIDNO:46、SEQIDNO:48、SEQIDNO:47、SEQIDNO:50、SEQIDNO:51、SEQIDNO:52、SEQIDNO:53、SEQIDNO:54、SEQIDNO:55、SEQIDNO:57、SEQIDNO:58、SEQIDNO:59、SEQIDNO:60、SEQIDNO:61、SEQIDNO:62、SEQIDNO:63、SEQIDNO:64、SEQIDNO:65、SEQIDNO:66、SEQIDNO:67、SEQIDNO:69、SEQIDNO:70、SEQIDNO:85、SEQIDNO:86、SEQIDNO:87、SEQIDNO:88、SEQIDNO:89、SEQIDNO:93及其任何组合。任选地,省略所述信号肽和/或HIS标记。在一些实施方式中,所述RSVF多肽可溶(如,胞外域)。
另一方面包括编码任何上述多肽的核酸。所述核酸可为自复制RNA分子。
本发明的另一方面为含编码RSVF多肽的自复制RNA的免疫原性组合物。所述免疫原性组合物可包括递送系统。
本发明的另一方面包括通过给予任何所述免疫原性组合物来诱导对RSVF免疫应答的方法。
本发明涉及制备组合物的方法以及含RSVF蛋白如可溶性RSVF胞外域多肽的组合物,包括免疫原性组合物。所述RSVF胞外域多肽可为单一形式,如未切割单体、未切割三聚体、切割三聚体或切割三聚体的玫瑰花结。所述RSVF胞外域多肽也可为两种或更多形式,例如处于平衡的两种或更多形式如未切割单体和未切割三聚体之间的平衡。本发明提供数种优点。例如,将所述组合物给予对象时,免疫原性组合物中存在的单一所需形式的RSVF提供了更易预测的免疫应答,且配制到疫苗中时提供更一致的稳定性和其他物理和化学特性。
在一个方面,本发明是生产含经切割RSVF蛋白胞外域多肽的组合物的方法。所述方法包括a)提供含一种或多种蛋白酶切割位置的未切割RSVF蛋白胞外域多肽,其切割时产生F1和F2片段,和b)用蛋白酶或识别所述蛋白酶切割位置或多个位置的蛋白酶切割所述未切割的RSVF蛋白胞外域多肽。通常,所述未切割的RSVF蛋白胞外域多肽的氨基酸序列含改变的弗林蛋白酶切割位置,且所述RSVF蛋白胞外域多肽分泌自宿主细胞,该宿主细胞生成氨基酸101-氨基酸161位没有被切割(如106-109和131-136位的弗林蛋白酶切割位置没有被切割)的所述多肽。在一些实施方式中,纯化a)中提供的未切割RSVF蛋白胞外域多肽。
a)中提供的所述未切割RSVF蛋白胞外域多肽可包括完整融合肽或改变的融合肽(如缺失的融合肽或突变的融合肽)。a)中提供的所述未切割RSVF蛋白胞外域多肽包括完整融合肽时,步骤b)中的切割导致形成三聚体的玫瑰花结。a)中提供的所述未切割RSVF蛋白胞外域多肽包括改变的融合肽时,步骤b)中的切割导致形成三聚体。
所述方法还可包括任选的步骤:纯化通过切割所述未切割的RSVF蛋白胞外域多肽生成的玫瑰花结或三聚体。在优选的实施方式中,按所述方法生成的经切割RSVF蛋白胞外域多肽基本不含脂质和脂蛋白。
在另一个方面,本发明是生产含未切割RSVF蛋白胞外域多肽单体、三聚体或单体和三聚体组合的组合物的方法。所述方法包括a)提供含未切割的RSVF蛋白胞外域多肽的生物材料;和b)从所述生物材料中纯化未切割的RSVF蛋白胞外域多肽单体或三聚体。通常,所述未切割RSVF蛋白胞外域多肽的氨基酸序列含改变的弗林蛋白酶切割位置,且所述RSVF蛋白胞外域多肽分泌自宿主细胞,该宿主细胞生成氨基酸101-氨基酸161位没有被切割(如106-109和131-136位的弗林蛋白酶切割位置没有被切割)的所述多肽。在一些实施方式中,所述未切割RSVF蛋白胞外域多肽的氨基酸序列还包括改变的胰蛋白酶切割位置,且胰蛋白酶没有在氨基酸101-氨基酸161之间的位置切割所述未切割的RSVF蛋白胞外域多肽。在另一个实施方式中,所述未切割RSVF蛋白胞外域多肽的氨基酸序列还包括改变的融合肽。
在一些实施方式中,纯化未切割的RSVF蛋白胞外域多肽三聚体。在其他实施方式中,纯化未切割的RSVF蛋白胞外域多肽单体。在其他实施方式中,纯化可能处于动态平衡的未切割RSVF蛋白胞外域单体和三聚体的混合物。在优选的实施方式中,按所述方法生成的经切割RSVF蛋白胞外域多肽基本不含脂质和脂蛋白。
在另一方面,本发明是生产含切割的RSVF蛋白胞外域多肽单体、三聚体或单体和三聚体组合的组合物的方法。所述方法包括a)提供含切割的RSVF蛋白胞外域多肽的生物材料,所述多肽含改变的融合肽;和b)从所述生物材料中纯化切割的RSVF蛋白胞外域多肽。
在一些实施方式中,纯化切割的RSVF蛋白胞外域多肽三聚体。在其他实施方式中,纯化切割的RSVF蛋白胞外域多肽单体。在其他实施方式中,纯化可能处于动态平衡的切割的RSVF蛋白胞外域单体和三聚体的混合物。在优选的实施方式中,按所述方法生成的经切割RSVF蛋白胞外域多肽优选基本不含脂质和脂蛋白。在另一个实施方式中,纯化含已改变融合肽的切割的RSVF蛋白胞外域三聚体。
在其他方面,本发明提供用本发明方法生产的组合物,包括免疫原性组合物。
附图简要说明
图1显示野生型RSVF(图1A)和移除跨膜结构域与胞质尾且在C末端任选地添加了HIS6标记的胞外域构建(图1B)的示意图。为了清楚起见,残基编号涉及野生型A2株系RSVF,从N端信号肽开始,且其在含氨基酸缺失的构建中没有改变。示意图中的标记为信号序列或信号肽(sp)。图1A是RSVF蛋白的示意图,显示信号序列或信号肽(SP)、p27接头区、融合肽(FP)、HRA结构域(HRA)、HRB结构域(HRB)、跨膜区(TM)和胞质尾(CT)。所述胞外域的C末端边界可变化。图1B为RSVF胞外域构建的总体示意图,描述与图1A的示意图共有的特征,并包括任选的HIS6标记(HISTAG)。弗林蛋白酶切割位置位于氨基酸109/110和136/137位。图1C还显示RSVF(野生型)的氨基酸100-150的氨基酸序列(SEQIDNO:108)和其中一个或两个弗林蛋白酶切割位置和/或融合肽区域突变或缺失的数种蛋白(Furmt-SEQIDNO:3;Furdel-SEQIDNO:4;Furx-SEQIDNO:6;FurxR113Q,K123N,K124N-SEQIDNO:5;FurxR113Q,K123Q,K124Q-SEQIDNO:92;Delp21furx-SEQIDNO:7;Delp23furx-SEQIDNO:8;Delp23furdel-SEQIDNO:9;N末端弗林蛋白酶(Furin)-SEQIDNO:10;C末端弗林蛋白酶-SEQIDNO:11;融合肽缺失1-SEQIDNO:12;和Xa因子-SEQIDNO:13)。在图1C中,符号“-”表示该位置的氨基酸缺失。
图2显示从氨基酸488到RSVF(野生型)的TM区起始的羧基末端的氨基酸序列(SEQIDNO:94)和数种含添加的蛋白酶切割位置的蛋白(SEQIDNOS:95-100)。在图2中,符号“-”表示该位置没有氨基酸。
图3为用尺寸排阻色谱法的电泳凝胶的色谱图和图像,显示RSVF单体(3)的纯化。
图4A-4F显示编码pT7-TC83R-FL.RSVF(A317)自复制RNA分子的质粒的核苷酸序列(SEQIDNO:101),所述分子编码呼吸道合胞病毒F糖蛋白(RSV-F)。编码RSV-F的核苷酸序列有下划线。
图5为数种RSV株系的F蛋白氨基酸序列比对。用Corpet,NucleicAcidsResearch,1998,16(22):10881-10890公开的算法获得所述比对,使用默认参数(Blossum62符号对照表,缺口开放罚分:12,缺口延伸罚分:A2,A2株系的F蛋白(登录号AF035006)(SEQIDNO:102);CP52,CP52株系的F蛋白(登录号AF013255)(SEQIDNO:103);B,B株系的F蛋白(登录号AF013254)(SEQIDNO:104);long,long株的F蛋白(登录号AY911262)株系(SEQIDNO:105),和18537株系,18537株系的F蛋白(登录号SwissProtP13843)(SEQIDNO:106)。还显示共有F蛋白序列(SEQIDNO:107)
图6显示来自选择RSVF抗原纯化的尺寸排阻(SEC)色谱图的相关区域。含指示抗原的主峰用星号表示,SuperdexP20016/60柱(GE医疗保健公司(GEHealthcare))的保留时间用毫升数表示。在校准柱上,约47mls、65mls和77mls的保留时间分别对应于柱空体积、RSVF三聚体保留和RSVF单体保留。在图6A中,未切割的Delp23Furdel(Δp23Furdel)构建纯化自约77mls的单体峰值。用胰蛋白酶处理未切割的Delp23FurdelRSVF抗原时,蛋白可形成玫瑰花结,其在约47mls的SEC空体积中迁移(图6B)。RSVF融合肽缺失的经切割三聚体种类纯化自约65mls保留时间的三聚体峰值(图6C)而未切割的Delp21Furx构建(Δp21Furx)纯化自约77mls的单体峰值(图6D)。
图7显示选择的RSVF抗原的典型EM图。图7A显示胰蛋白酶处理前RSVFΔp23(Delp23)的EM图。图7A中的拐杖形状与融合后的三聚体构型一致,其并未总是在未切割的Δp23(Delp23)Furdel构建中观察到。所述Δp23(Delp23)Furdel构建用胰蛋白酶处理并从SEC柱的空体积中纯化并通过EM观察时,发现所述蛋白采用玫瑰花结构型(图7B)。从SEC柱的所述三聚体峰中纯化RSVF融合肽缺失构建时观察到单分散的拐杖形状,与融合后三聚体一致(图7C)。图7D所示为三种制备物:Δp21(Delp21)furxRSVF(标记为单体)、融合肽缺失RSVF(标记为三聚体的泳道)和纯化的RSVF玫瑰花结(标记为玫瑰花结)。所述凝胶含数个GE全范围标准(分子量标准标注在该凝胶左侧)的泳道,而RSVF片段的近似保留时间表示在该凝胶的右侧。
图8A-8C表示棉鼠中RSVF胞外域多肽的单体(未切割的Δp21(Delp21)furx)、三聚体的玫瑰花结(切割的Δp23(Delp23)Furdel)和三聚体(融合肽缺失)为免疫原性。抗RSVFIgG和中和抗RSV抗体的血清效价在第一次疫苗接种后2周(2wp1)、第一次疫苗接种后3周(3wp1)和/或第二次疫苗接种后2周(2wp2)测量。
发明详述
本发明涉及呼吸道合胞病毒F(RSVF)多肽和/或蛋白、含RSVF多肽和/或蛋白的免疫原性组合物、生产RSVF多肽和/或蛋白和含RSVF多肽和/或蛋白的组合物的方法以及编码RSVF多肽和/或蛋白的核酸。
总体上,所述免疫原性组合物包括含突变(如氨基酸取代、缺失或插入)的RSVF多肽和/或蛋白,其能提供有益的特征,如一种或多种的1)稳定融合前或中间(非融合后)构型,2)减少或消除融合肽的暴露,3)改善稳定性(如减少聚集和/或降解),和4)更紧密地组装活性F1/F2病毒蛋白。这些特征为免疫原性组合物和免疫原性组合物的加工提供了优点。例如,如本文所述,RSVF蛋白的非融合后构型(即融合前构型、中间构型)可以是更好的免疫原并引发更好的中和抗体应答。例如通过引起弗林蛋白酶切割位置的突变或缺失来减少或消除所述融合肽的暴露,能降低所述多肽的疏水性并有助于纯化,还能减少或消除RSVF蛋白与给予所述蛋白的对象的细胞膜的结合。给予对象所述组合物时,改善的蛋白稳定性有助于生产免疫原性组合物,其中所述蛋白聚集或降解的倾向降低,这提供了更有预测性的免疫应答。最终,突变的RSVF多肽或蛋白通过例如缺失全部或部分所述p27接头区而与F1/F2病毒蛋白类似,其可引发更好的中和抗体应答。本发明的其他优点如本文所述。
本发明还涉及制备含RSVF蛋白,具体是含RSVF胞外域多肽的组合物的方法,并涉及含RSVF蛋白的组合物,包括免疫原性组合物。所述RSVF胞外域多肽优选为单一形式或为已知形式之间的动态平衡。
定义
本文所用“群体”表示组合物中存在多于一种RSVF多肽或蛋白。所述群体可为基本均质,其中几乎所有RSVF多肽或蛋白为基本相同(如相同氨基酸序列、相同构型)、异质或具有需要程度的均质性(如至少约50%、至少约55%、至少约60%、至少约65%、至少约70%、至少约75%、至少约80%、至少约85%、至少约90%、至少约95%、至少约99%的所述RSVF多肽或蛋白是融合前构型、融合后构型、单体、三聚体。)
所述RSVF蛋白的“融合后构型”为三聚体,特征为存在含3HRB和3HRA区域的六螺旋束。
所述RSVF蛋白的“融合前构型”的构型特征是含包括3HRB区域的三螺旋的三聚体。
如本文所用,“RSVF胞外域多肽”表示主要含成熟RSVF蛋白的胞外部分的RSVF蛋白多肽,其具有或不具有所述信号肽(如约氨基酸1到约氨基酸524,或约氨基酸22到约氨基酸524)但缺失天然产生的RSVF蛋白的跨膜结构域和胞质尾。
如本文所用,“切割的RSVF胞外域多肽”指在约101/102-约160/161的一个或多个位置上切割而产生两个亚基的RSVF胞外域多肽,其中一个所述亚基包括F1,另一个亚基包括F2
如本文所用,“C末端未切割的RSVF胞外域多肽”指在约101/102-约131/132的一个或多个位置上切割且在约132/133-约160/161的一个或多个位置上没有切割而产生两个亚基的RSVF胞外域多肽,其中一个所述亚基包括F1,另一个亚基包括F2
如本文所用,“未切割的RSVF胞外域多肽”指在约101/102-约160/161的一个或多个位置上没有切割的RSVF胞外域多肽。未切割的RSVF胞外域多肽可为例如单体或三聚体。
如本文所用,“融合肽”表示RSVF蛋白的氨基酸137-154。
如本文所用,“改变的融合肽”表示其中一种或多种氨基酸独立地被替换或缺失的融合肽,包括替换或缺失137-154位的所有氨基酸。含“改变的融合肽”的经切割RSVF胞外域多肽优选不形成玫瑰花结。
如本文所用,“纯化的”蛋白或多肽是重组或合成生产,或由其天然宿主产生的蛋白或多肽,其从所述重组或合成生产系统或天然宿主的其他组分中分离出,从而相对于组合物中存在的其他大分子组分,所述蛋白的含量明显高于粗品中存在的量。通常,纯化的蛋白质的均质性至少约50%,更优选至少约75%、至少约80%、至少约85%、至少约90%、至少约95%或基本均质。
如本文所用,“基本不含脂质和脂蛋白”表示在SDSPAGE凝胶上观察蛋白和/或多肽(如RSVF多肽)的纯度和用UV280吸收或BCA分析测量总蛋白含量,并用磷脂酶C试验(Wako,编号433-36201)测量脂质和脂蛋白含量时,质量上至少约95%不含脂质和脂蛋白的组合物、蛋白或多肽。
如本文所用,“改变的弗林蛋白酶切割位置”表示天然产生的RSVF蛋白中约106-109位和约133-136位上的氨基酸序列,所述序列被弗林蛋白酶或弗林蛋白酶样蛋白酶识别并切割,但在未切割的RSVF蛋白胞外域多肽中含一种或多种氨基酸替换、一种或多种氨基酸缺失、或一种或多种氨基酸替换和一种或多种氨基酸缺失的组合,从而含改变的弗林蛋白酶切割位置的RSVF胞外域多肽分泌自细胞,该细胞生成在所述改变的弗林蛋白酶切割位置未切割的所述多肽。
适用于本发明的RSVF蛋白胞外域特征在本文中参考具体氨基酸描述,所述氨基酸由来自所述A2株系的RSVF蛋白序列(SEQIDNO:1)中的氨基酸位置鉴别。RSVF蛋白胞外域可具有来自所述A2株系或任何其他所需株系的F蛋白的氨基酸序列。使用非A2株系的株系F蛋白胞外域时,所述F蛋白的氨基酸编号参考所述A2株系的F蛋白的编号,需要时插入缺口。这可通过对任何所需RSVF蛋白和所述株系A2的F蛋白序列进行比对实现,如本文所示的来自所述A2株系、CP52株系、B株系、long株、和所述18537株系的F蛋白。参见图5。优选用Corpet,NucleicAcidsResearch,1998,16(22):10881-10890公开的算法进行序列比对,使用默认参数(Blossum62符号对照表,缺口开放罚分:12,缺口延伸罚分:2)。
本发明提供可溶性RSVF多肽和蛋白、和含所述可溶性RSVF多肽和蛋白的免疫原性组合物、以及含编码所述可溶性RSVF多肽和蛋白的核酸(如自复制RNA分子)的组合物。
所述RSVF多肽(如胞外域多肽)可为任何需要的形式如单一形式,例如未切割单体、未切割三聚体、切割三聚体或切割三聚体的玫瑰花结。所述RSVF胞外域多肽也可为两种或更多形式,例如处于平衡中的两种或更多形式如未切割单体和未切割三聚体之间的平衡。本发明提供数种优点。例如,免疫原性组合物中存在RSV的单一需要形式,或已知形式之间的动态平衡提供了更易预测的配制、可溶性和稳定性,将所述组合物给予对象时还提供了更易预测的免疫应答。
所述RSVF胞外域多肽优选为单一形式,如未切割单体、未切割三聚体、切割三聚体、切割三聚体的玫瑰花结或为这些形式的子集之间的动态平衡(如未切割单体和未切割三聚体之间的平衡)。
在本发明的一个方面,所述RSVF多肽和蛋白为融合前构型。所述融合前构型的表位可更好地引发能识别并中和天然病毒粒子的抗体。
在本发明的一个实施方式中,免疫原性组合物包括融合前构型的呼吸道合胞病毒F糖蛋白群体。在本发明的另一方面,免疫原性组合物包括呼吸道合胞病毒F糖蛋白群体,所述糖蛋白与分离的RSVF糖蛋白相比不利于融合后构型。
本发明还提供含多肽的免疫原性组合物,所述多肽展示的表位存在于呼吸道合胞病毒F糖蛋白的融合前或中间融合构型,但在所述糖蛋白的融合后构型中缺失。
F糖蛋白
RSV的F糖蛋白通过病毒包膜和宿主细胞质膜之间的融合指导病毒穿入。其为I型单次跨膜整合蛋白,具有四个一般结构域:N末端ER-移位信号序列(SS)、胞外域(ED)、跨膜结构域(TM)和胞质尾(CT)。CT含单一棕榈酰化半胱氨酸残基。RSV分离物之间F蛋白的序列高度保守,但不断进化(7)。与大多数副粘病毒不同,RSV中的F蛋白可介导独立于其他病毒蛋白的进入和多核体形成(其他副粘病毒中除了F外通常需要HN)。
hRSVF的mRNA翻译为称作F0的574氨基酸前体蛋白,其在N末端包含信号肽序列,该序列在内质网中由信号肽酶移除。转运高尔基体中细胞蛋白酶(具体为弗林蛋白酶)在两个位置(氨基酸109/110和136/137)切割F0,移除短糖基化干扰序列并产生两个亚基,称为F1(约50kDa;C末端;残基137-574)和F2(约20kDa;N末端;残基1-109)(参见例如图1)。F1在N端含疏水性融合肽以及两个疏水性七肽重复区(HRA和HRB)。HRA靠近所述融合肽,HRB靠近所述跨膜结构域(参见例如图1)。所述F1-F2异源二聚体在病毒粒子中组装为同源三聚体。
RSV以单一血清型存在,但具有两个抗原亚组:A和B。所述两组的F糖蛋白约90%相同。所述A亚组、所述B亚组或两组的组合或混合可用于本发明。所述A亚组的示例序列为SEQIDNO:1(A2株系;GenBankGI:138251;SwissProtP03420),所述B亚组为SEQIDNO:2(18537株系;GI:138250;SwissProtP13843)。SEQIDNO:1和SEQIDNO:2均为574氨基酸序列。A2株系中的信号肽为氨基酸1-21,但18537株系中其为1-22。两个序列中,所述TM结构域来自约氨基酸530-550,但或者报道为525-548。
SEQIDNO:1
1MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIE60
61LSNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPPTNNRARRELPRFMNYTLN120
121NAKKTNVTLSKKRKRRFLGFLLGVGSAIASGVAVSKVLHLEGEVNKIKSALLSTNKAVVS180
181LSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLLEITREFSVN240
241AGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYV300
301VQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKV360
361QSNRVFCDTMNSLTLPSEINLCNVDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKT420
421KCTASNKNRGIIKTFSNGCDYVSNKGMDTVSVGNTLYYVNKQEGKSLYVKGEPIINFYDP480
481LVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNIMITTIIIVIIVILLS540
541LIAVGLLLYCKARSTPVTLSKDQLSGINNIAFSN574
SEQIDNO:2
1MELLIHRSSAIFLTLAVNALYLTSSQNITEEFYQSTCSAVSRGYFSALRTGWYTSVITIE60
61LSNIKETKCNGTDTKVKLIKQELDKYKNAVTELQLLMQNTPAANNRARREAPQYMNYTIN120
121TTKNLNVSISKKRKRRFLGFLLGVGSAIASGIAVSKVLHLEGEVNKIKNALLSTNKAVVS180
181LSNGVSVLTSKVLDLKNYINNRLLPIVNQQSCRISNIETVIEFQQMNSRLLEITREFSVN240
241AGVTTPLSTYMLTNSELLSLINDMPITNDQKKLMSSNVQIVRQQSYSIMSIIKEEVLAYV300
301VQLPIYGVIDTPCWKLHTSPLCTTNIKEGSNICLTRTDRGWYCDNAGSVSFFPQADTCKV360
361QSNRVFCDTMNSLTLPSEVSLCNTDIFNSKYDCKIMTSKTDISSSVITSLGAIVSCYGKT420
421KCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKLEGKNLYVKGEPIINYYDP480
481LVFPSDEFDASISQVNEKINQSLAFIRRSDELLHNVNTGKSTTNIMITTIIIVIIVVLLS540
541LIAIGLLLYCKAKNTPVTLSKDQLSGINNIAFSK574
本发明可使用任何所需的RSVF氨基酸序列,如氨基酸序列SEQIDNO:1或2,或与SEQIDNO:1或2有相同性的序列。通常其与SEQIDNO:1或2有至少75%相同性,如与SEQIDNO:1或2有至少80%、至少85%、至少90%、至少95%、至少97%、至少98%、至少99%相同性。所述序列可天然地存在于RSV中。
本发明使用全部或部分F蛋白胞外域时,其可包括:
(i)含SEQIDNO:1的约氨基酸22-525的多肽。
(ii)含SEQIDNO:2的约氨基酸23-525的多肽。
(iii)含与(i)或(ii)有至少75%相同性(如至少80%、至少85%、至少90%、至少95%、至少97%、至少98%、至少99%相同性)的氨基酸序列的多肽。
(iv)含(i)、(ii)或(iii)的片段的多肽,其中所述片段含至少一种F蛋白表位。所述片段通常至少约100个氨基酸长度,如至少约150、至少约200、至少约250、至少约300、至少约350、至少约400、至少约450个氨基酸长度。
所述胞外域可为具有或没有所述信号肽的F0形式,或可包括彼此结合的两种分离的肽链(如F1亚基和F2亚基),例如所述亚基可通过二硫桥连接。因此,约氨基酸101-约氨基酸161的全部或部分如氨基酸110-136可在所述胞外域中缺失。因此全部或部分所述胞外域可包括:
(v)与所述第一多肽链结合的第一肽链和第二肽链,其中所述第一肽链含与SEQIDNO:1的约氨基酸22-约氨基酸101或SEQIDNO:2的约氨基酸23-约氨基酸101有至少75%相同性(如至少80%、至少85%、至少90%、至少95%、至少97%、至少98%、至少99%或甚至100%相同性)的氨基酸序列,且所述第二肽链含与SEQIDNO:1的约氨基酸162-约525或SEQIDNO:2的约氨基酸162-525有至少75%相同性(如至少80%、至少85%、至少90%、至少95%、至少97%、至少98%、至少99%或甚至100%相同性)的氨基酸序列。
(vi)与所述第一多肽链结合的第一肽链和第二肽链,其中所述第一肽链含包括SEQIDNO:1的约氨基酸22-约氨基酸101或SEQIDNO:2的约氨基酸23-约氨基酸109的片段的氨基酸序列,且所述第二肽链含SEQIDNO:1的约氨基酸162-约氨基酸525或SEQIDNO:2的约氨基酸161-约氨基酸525的片段。一种或两种所述片段包括至少一种F蛋白表位。所述第一肽链中的片段通常为至少20个氨基酸长度,如至少30、至少40、至少50、至少60、至少70、至少80个氨基酸长度。所述第二肽链中的片段通常为至少100个氨基酸长度,如至少150、至少200、至少250、至少300、至少350、至少400、至少450个氨基酸长度。
(vii)通过弗林蛋白酶消化(i)、(ii)、(iii)或(iv)可获得的分子。
因此本发明所用的氨基酸序列可天然存在于RSVF蛋白中(如缺失TM和CT的可溶性RSVF蛋白,约为SEQIDNO:1或2的氨基酸522-574),和/或其相对天然RSV序列可具有一种或多种(如1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30种)单一氨基酸突变(插入、缺失或替换)。例如,已知突变F蛋白消除其弗林蛋白酶切割序列,从而阻止细胞内加工。在某些实施方式中,所述RSVF蛋白缺失TM和CT(约为SEQIDNO:1或2的氨基酸522-574)并含相对天然RSV序列的一种或多种(如1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30种)单一氨基酸突变(插入、缺失或替换)。
弗林蛋白酶切割、胰蛋白酶切割和融合肽突变
RSVF多肽或蛋白可含有防止一个或两个所述弗林蛋白酶切割位置(即SEQIDNO:1和2的氨基酸109和136)切割的一种或多种突变。这些突变可阻止所述可溶性多肽或蛋白的聚集并因此有助于纯化,如果所述RSVF蛋白在细胞表面表达如由病毒复制子表达(如α病毒复制子颗粒),或如果所述RSVF蛋白是病毒样颗粒的组分,所述突变可阻止细胞之间的融合。这些突变单独或与本文所述其他突变结合也可稳定所述融合前构型中的蛋白。
合适的弗林蛋白酶突变的示例包括SEQIDNO:1或2氨基酸残基106-109替换为RARK(SEQIDNO:77)、RARQ(SEQIDNO:78)、QAQN(SEQIDNO:79)或IEGR(SEQIDNO:80)。或者或此外,SEQIDNO:1或2的氨基酸残基133-136可替换为RKKK(SEQIDNO:81)、ΔΔΔR、QNQN(SEQIDNO:82)、QQQR(SEQIDNO:83)或IEGR(SEQIDNO:80)。(Δ表示所述氨基酸残基缺失。)如果需要,这些突变可与本文所述其他突变组合,如所述p27区域(SEQIDNO:1或2的氨基酸110-136)的突变,包括所述p27区域全部或部分的缺失。
如果需要,这些弗林蛋白酶切割突变可与本文所述其他突变组合,如胰蛋白酶切割突变和融合肽突变。合适的胰蛋白酶切割突变示例包括SEQIDNO:1或2的约101位-161位的任何赖氨酸或精氨酸残基的缺失,或任何所述赖氨酸或精氨酸残基被非赖氨酸或精氨酸的氨基酸替换。例如,所述p27区域(SEQIDNO:1或2的约氨基酸110-136)中的赖氨酸和/或精氨酸残基可被替代或缺失,包括所述p27区域全部或部分的缺失。
替代或除了所述弗林蛋白酶切割突变,RSVF多肽或蛋白在所述融合肽区域可包含一种或多种突变(SEQIDNO:1或2的氨基酸137和153)。例如,此区域可全部或部分缺失。
在具体实施方式中,所述RSVF多肽或蛋白如SEQIDNO:1、SEQIDNO:2的氨基酸残基100-150的序列,或其可溶性胞外域为
(Furmt)TPATNNRARKELPRFMNYTLNNAKKTNVTLSKKRKKKFLGFLLGVGSAIAS(SEQIDNO:3)
(Furdel)TPATNNRARQELPRFMNYTLNNAKKTNVTLSKK---RFLGFLLGVGSAIAS(SEQIDNO:4)
(Furx)TPATNNQAQNELPRFMNYTLNNAKKTNVTLSQNQNQNFLGFLLGVGSAIAS(SEQIDNO:6)
(FurxR113Q,K123N,K124N)TPATNNQAQNELPQFMNYTLNNANNTNVTLSQNQNQNFLGFLLGVGSAIAS(SEQIDNO:5)
(FurxR113Q,K123Q,K124Q))TPATNNQAQNELPQFMNYTLNNAQQTNVTLSQNQNQNFLGFLLGVGSAIAS(SEQIDNO:92)
(Delp21Furx)TPATNNQAQN---------------------QNQNQNFLGFLLGVGSAIAS(SEQIDNO:7)
(Delp23Furx)TPATNNQAQN-----------------------QNQNFLGFLLGVGSAIAS(SEQIDNO:8)
(Delp21furdel)TPATNNRARQ---------------------QNQQQRFLGFLLGVGSAIAS(SEQIDNO:109)
(Delp23furdel)TPATNNRARQ-----------------------QQQRFLGFLLGVGSAIAS(SEQIDNO:9)
(N末端弗林蛋白酶)TPATNNRARRELPQFMNYTLNNAQQTNVTLSQNQNQNFLGFLLGVGSAIAS(SEQIDNO:10)
(C末端弗林蛋白酶)TPATNNQAQNELPQFMNYTLNNAQQTNVTLSKKRKRRFLGFLLGVGSAIAS(SEQIDNO:11)
(融合肽缺失1)TPATNNRARRELPRFMNYTLNNAKKTNVTLSKKRKRR---------SAIAS(SEQIDNO:12),
(融合肽缺失2)TPATNNRARRELPRFMNYTLNNAKKTNVTLSKKRKRR------GVGSAIAS(SEQIDNO:91),或
(Xa因子)TPATNNIEGRELPRFMNYTLNNAKKTNVTLSKKIEGRFLGFLLGVGSAIAS(SEQIDNO:13);其中符号“-”表示该位置的氨基酸缺失。
除了弗林蛋白酶切割和融合肽突变以外或者,可溶性RSVF多肽或蛋白如缺失所述跨膜区和胞质尾的那些可含一种或多种寡聚序列。存在寡聚序列时,优选三聚序列。本领域已知合适的寡聚序列,包括例如酵母GCN4亮氨酸拉链蛋白的卷曲螺旋、T4噬菌体次要纤维蛋白(fibritin)的三聚化序列(“折叠子(foldon)”)和流感HA的三聚体结构域。这些和其他合适的寡聚序列在本文中更详细地描述。
在具体实施方式中,所述RSVF多肽或蛋白的羧基末端序列起始于480位,其为
(GCN)PLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNDKIEEILSKIYHIENEIARIKKLIGE(SEQIDNO:14)
(HA)PLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNEKFHQIEKEFSEVEGRIQDLEK(SEQIDNO:15)
(理想螺旋)PLVFPSDEFDASISQINEKINQILAFIRKIDELLHNIN(SEQIDNO:16)
(短foldon)PLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNGSGYIPEAPRDGQAYVRKDGEWVLLSTFL(SEQIDNO:17);或
(长foldon)
PLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNNKNDDKGSGYIPEAPRDGQAYVRKDGEWVLLSTFL(SEQIDNO:18)
除了弗林蛋白酶切割突变、融合肽突变和添加的寡聚序列的任何组合以外或者,含跨膜区域的RSVF多肽或蛋白可含有提供蛋白酶切割位置的添加的氨基酸序列。这种类型的RSVF多肽或蛋白可通过在细胞表面表达而生成,并在用合适的蛋白酶从细胞表面切割后以可溶形式回收。通常,提供蛋白酶切割位置的氨基酸序列位于所述跨膜结构域氨基末端(SEQIDNO:1或2的氨基酸525)的约60个氨基酸、约50个氨基酸、约40个氨基酸、约30个氨基酸、约20个氨基酸、约10个氨基酸内,或基本与之毗邻。本领域熟知许多可被市售蛋白酶切割的合适氨基酸序列。例如,凝血酶切割序列LVPR(SEQIDNO:75)、Xa因子切割序列IEGR和肠激酶切割序列DDDDK(SEQIDNO:76)。这些氨基酸序列可导入RSVF多肽。在具体实施方式中,起始于488位到所述TM区域的所述RSVF多肽或蛋白的序列示于图2。
按照本发明使用的免疫原性多肽通常经分离或纯化。因此,其不与通常天然存在(若可以)的分子结合。例如,本发明使用的F蛋白不采用RSV病毒粒的形式(尽管其可为人工病毒粒的形式,如病毒体或VLP)。
通常通过在重组宿主系统中表达来制备多肽。尽管可使用任何合适的方法,其(如RSV胞外域)生成通常是通过在合适的重组宿主细胞中表达编码所述胞外域的重组构建体。合适的重组宿主细胞包括例如,昆虫细胞(如埃及伊蚊(Aedesaegypti)、苜蓿银纹夜蛾(Autographacalifornica)、家蚕蛾(Bombyxmori)、果蝇(Drosophilamelanogaster)、草地贪夜蛾(Spodopterafugiperda)和粉纹夜蛾(Trichoplusiani))、哺乳动物细胞(如人、非人灵长类、马、牛、羊、狗、猫和啮齿类(如仓鼠))、禽类细胞(如鸡、鸭、鹅)、细菌(如大肠杆菌(E.coli)、枯草杆菌(Bacillussubtilis)和链球菌属(Streptococcusspp.))、酵母细胞(如酿酒酵母(Saccharomycescerevisiae)、白色念珠菌(Candidaalbicans)、麦芽糖假丝酵母(Candidamaltosa)、多形汉森酵母(Hansenualpolymorpha)、脆壁克鲁维酵母(Kluyveromycesfragilis)、乳酸克鲁维酵母(Kluyveromyceslactis)、季也蒙毕赤酵母(Pichiaguillerimondii)、巴斯德毕赤酵母(Pichiapastoris)、粟酒裂殖酵母(Schizosaccharomycespombe)和解脂耶氏酵母(Yarrowialipolytica))、四膜虫细胞(如嗜热四膜虫(Tetrahymenathermophila))或其组合。本领域已知许多合适的昆虫细胞和哺乳动物细胞。合适的昆虫细胞包括例如,Sf9细胞、Sf21细胞、Tn5细胞、SchneiderS2细胞和HighFive细胞(源自亲本粉纹夜蛾BTI-TN-5B1-4细胞系的克隆分离物(英杰公司(Invitrogen)))。合适的哺乳动物细胞包括例如,中华仓鼠卵巢(CHO)细胞、人胚胎肾细胞(HEK293细胞,通常由剪切的腺病毒5型DNA转化成)、NIH-3T3细胞、293-T细胞、Vero细胞、HeLa细胞、PERC.6细胞(ECACC保藏号96022940)、HepG2细胞、MRC-5(ATCCCCL-171)、WI-38(ATCCCCL-75)、胎猕猴肺细胞(ATCCCL-160)、Madin-Darby牛肾(“MDBK”)细胞、Madin-Darby狗肾(“MDCK”)细胞(如MDCK(NBL2)、ATCCCCL34;或MDCK33016、DSMACC2219)、幼仓鼠肾(BHK)细胞如BHK21-F、HKCC细胞等。合适的禽类细胞包括例如,鸡胚胎干细胞(如细胞)、鸡胚胎成纤维细胞、鸡胚胎生殖细胞、鸭细胞(如,例如在Vaccine27:4975-4982(2009)和WO2005/042728中描述的AGE1.CR和AGE1.CR.pIX细胞系(专业生物基因公司(ProBioGen)))、EB66细胞等。
合适的昆虫细胞表达系统如杆状病毒系统为本领域技术人员已知,描述于例如Summers和Smith,TexasAgriculturalExperimentStationBulletinNo.1555(1987)。杆状病毒/昆虫细胞表达系统的材料和方法以药盒形式购自加利福尼亚州圣迭戈的英杰公司等。禽类细胞表达系统也为本领域技术人员已知,描述于例如美国专利号5,340,740;5,656,479;5,830,510;6,114,168;和6,500,668;欧洲专利号EP0787180B;欧洲专利申请号EP03291813.8;WO03/043415;和WO03/076601。相似地,细菌和哺乳动物细胞表达系统也为本领域已知,描述于例如YeastGeneticEngineering(《酵母遗传工程》)(Barr等编著,1989)伦敦,巴特沃思公司(Butterworths)。
编码RSVF蛋白胞外域的重组构建体可用常规方法在合适的载体中制备。昆虫或哺乳动物细胞中用于重组蛋白表达的许多合适载体为本领域熟知且常用。合适的载体可含许多组分,包括但不限于一种或多种下述组分:复制起点;可选的标记基因;一种或多种表达控制元件如转录控制元件(如启动子、增强子、终止子),和/或一种或多种翻译信号;和选择的宿主细胞(如哺乳动物起源的或来自异源哺乳动物或非哺乳动物物种)中用于靶向分泌途径的信号序列或前导序列。例如,为了在昆虫细胞中表达,使用合适的杆状病毒表达载体如pFastBac(英杰公司)生产重组杆状病毒颗粒。所述杆状病毒颗粒经扩增,用于感染昆虫细胞以表达重组蛋白。为了在哺乳动物细胞中表达,使用会驱动所述构建体在所需哺乳动物宿主细胞(如中华仓鼠卵细胞)中表达的载体。
RSVF蛋白胞外域多肽可用任何合适的方法纯化。例如,本领域已知通过免疫亲和层析纯化RSVF胞外域多肽的方法。Ruiz-Arguello等,J.Gen.Virol.,85:3677-3687(2004)。本领域已知纯化所需蛋白的合适方法,包括沉淀和各种类型的色谱如疏水相互作用、离子交换、亲和、螯合和尺寸排阻。可用两种或更多这些或其他合适方法实现合适的纯化方案。如果需要,所述RSVF蛋白胞外域多肽可包括有助于纯化的“标记”,如表位标记或HIS标记。该标记的多肽可通过螯合层析或亲和层析方便地从例如条件培养基中纯化。
所述RSVF多肽也可通过在对象细胞中表达其编码核酸而原位生成。例如,通过表达本文所述的自复制RNA。
除了所述RSV序列,多肽可包括额外序列。例如,多肽可包括有助于纯化的序列(如聚His序列)。相似地,为了表达的目的,F蛋白的天然前导肽可替换为不同的肽。例如,参考文献6使用蜂毒素前导肽取代该天然肽。
多肽的形式和构型
本发明包括含本文公开的RSVF多肽和蛋白的任何形式和构型的免疫原性组合物,包括本文公开的RSVF多肽和蛋白的形式和构型的任何所需组合。所述RSVF多肽可为单体,或所述RSVF蛋白可为含3种单体多肽的三聚体。三聚体可为单分散或例如由于单独三聚体的融合肽之间的相互作用,其可为玫瑰花结的形式。免疫原性组合物可包括多肽,所述多肽为单体、三聚体、单体和三聚体的组合(如动态平衡中)、三聚体的玫瑰花结和上述任何组合。此外,如本文进一步描述,所述RSVF蛋白可为融合后构型、融合前构型或中间构型。
所述RSVF蛋白可为融合前构型、融合后构型或中间构型。所述RSVF蛋白的“融合后构型”被认为是天然RSVF的低能量构型,是特征为存在含3HRB和3HRA区域的6螺旋束的三聚体。电子显微镜下所述融合后构型具有特有的“拐杖”或“高尔夫球座”形状。所述RSVF蛋白的“融合前构型”的构型特征是含包括3HRB区域的卷曲螺旋的三聚体。融合前构型中没有暴露所述融合肽,因此融合前构型通常不形成玫瑰花结,且电子显微镜下具有“棒棒糖”或“球和茎”形状。
在一些方面,所述RSVF蛋白在所述融合后构型中。例如,所述融合后构型中所述RSVF蛋白可为单分散三聚体的形式,或为包含融合后三聚体的玫瑰花结形式。
在一些实施方式中,所述RSVF多肽为单体。在一些实施方式中,所述RSVF多肽为三聚体。
在其他方面,所述RSVF蛋白在所述融合前构型中。不希望受任何具体理论的限制,认为RSVF蛋白的融合前构型或中间形式可含与在天然RSV病毒粒上表达的RSV蛋白上相同的表位,并因此提供引发中和抗体的优点。
本发明的一些方面使用不利于所述F蛋白的融合后构型的多肽。在从所述融合前构型向所述融合后构型转变中,所述多肽(全部或部分)优选展示所述融合前F蛋白的表位或中间构型的表位。这些多肽在融合前状态可为天然或突变的F蛋白,在中间构型中可为天然或突变的F蛋白,或可为天然或突变的蛋白群体,其中不利于所述融合后构型或其被优先排除。在某些情况下,所述天然或突变的蛋白可与一种或多种额外分子结合,所述分子协助维持上述一种状态中的多肽如优选结合所述融合前构型或中间构型的单克隆抗体。此外,所述多肽可为天然F蛋白衍生物。该衍生物包括含天然F蛋白的一种或多种片段的多肽、含天然F蛋白(或其片段)和异源序列的融合多肽以及含具有一种或多种突变的天然F蛋白序列的多肽。这些(或其他)修饰可能不利于所述融合后构型。不利于所述融合后构型的示例性方法包括稳定所述融合前构型、稳定所述中间构型、使所述融合后构型去稳定或增加引起所述融合后构型的一种或多种步骤的激活屏障。
在另一实施方式中,本发明为展示至少一种表位的多肽,所述表位特异于所述融合前构型F蛋白或中间构型F蛋白。特异于所述融合前构型F蛋白或中间构型F蛋白的表位为融合后构型中不存在的表位。优选所述至少一种表位稳定存在,例如所述表位在溶液中稳定存在至少12小时、至少1天、至少2天、至少4天、至少6天、至少1周、至少2周、至少4周或至少6周。
所述多肽在融合前状态、中间状态或状态群体中可为天然或突变的F蛋白,所述状态群体中所述融合后状态含量不足或百分比低于分离的天然F蛋白,或其可为天然F蛋白的衍生物。该衍生物包括含天然F蛋白的一种或多种片段的多肽、含天然F蛋白(或其片段)和异源序列的融合多肽以及含具有一种或多种突变的天然F蛋白序列的多肽。这些(或其他)修饰可能将F蛋白氨基酸序列稳定为其融合前构型、将F蛋白氨基酸序列稳定为中间构型、使F蛋白氨基酸序列的融合后构型不稳定、增加引起F蛋白氨基酸序列的融合后构型转变的能量屏障,或上述两种或更多的组合。
所述F蛋白的TM和/或CT结构域对稳定所述融合前构型很重要(8)。因此这些结构域可在本发明的免疫原中有效保留。由于可溶性免疫原中可能不需要包括跨膜结构域,但TM的功能效应可通过其他方法实现。例如,副流感病毒5的F蛋白的融合前和后表现已被详细研究(6),该作者通过融合异源三聚结构域与ED的C末端来稳定ED的融合前结构。
寡聚化结构域
本发明的另一实施方式中,所述组合物可包括含第一结构域和第二结构域的多肽(如重组多肽),其中(i)所述第一结构域含所述RSVF蛋白(如全部或部分的RSV胞外域),和(ii)所述第二结构域含异源寡聚化结构域。所述第二结构域允许所述多肽的寡聚化,从而有助于所述第一结构域采用融合前状态或中间状态。所述多肽优选为寡聚体,具体为三聚体。
本领域技术人员可获得各种寡聚化结构域。这些氨基酸序列能形成与其他多肽(相同或不同)中的寡聚化结构域(相同或不同)相互作用的结构,从而所述多种多肽可结合(通常为非共价)以形成寡聚体如三聚体。例如,HIV的F蛋白的三聚化(即gp160)是通过将其融合到天然为稳定三聚体(9)的大肠杆菌天冬氨酸氨甲酰基转移酶(ATCase)的催化亚基上获得。因此ATCase的该亚基可用于本发明。相似地,HIV(10)和PIV5的F蛋白(6)的三聚化是通过将其胞外域融合到GCNt上获得。因此本发明所用的寡聚化结构域可包括酵母GCN4亮氨酸拉链蛋白的卷曲螺旋(11)。通过使用来自T4噬菌体次要纤维蛋白的三聚化序列(‘折叠子’)(GSGYIPEAPRDGQAYVRKDGEWVLLSTFL-SEQIDNO:19)获得来自A型流感病毒HA蛋白的胞外域三聚化(12)。因此本发明所用的寡聚化结构域可包括该折叠子。
天然产生的蛋白寡聚体(异源寡聚体和同源寡聚体)以各种不同方式结合,如通过结合不同单体中的β-片层、通过结合不同单体中的α-螺旋、通过结合疏水性表面区域等。蛋白寡聚化中涉及的一种常见结构基序为卷曲螺旋结构域。所述卷曲α-螺旋结构基序自身可形成螺旋,且2、3、4或5个α-螺旋可彼此围绕形成左手超螺旋,称为“卷曲螺旋”,尽管已设计人工右手超螺旋(13-19)。所述卷曲螺旋结构域的简单性使其成为设计具有确定寡聚化状态的嵌合蛋白的普遍选择(16)。
在卷曲螺旋结构中,所述α-螺旋通过沿着各螺旋一侧形成非极性条的疏水残基相互作用,且该条两边的侧链之间还可有稳定的静电相互作用。在α-螺旋的abcdefg七残基重复序列中,用残基a和d处的疏水侧链和主要位于残基e和g的任何静电相互作用定义所述非极性条。位置a最常见为Leu、Ile或Ala且位置d通常为Leu或Ala。残基e和g通常为Glu或Gln,位置g也主要为Arg和Lys。位置b、c和f常为带电残基,因为这些残基与溶剂接触。然而该常见七残基模式有例外,且所述七残基中有时存在Pro残基。所述例外常具有功能性意义包括例如,使所述寡聚化结构域不稳定以使其重折叠并重排,如发生在所述F蛋白中。
本领域已知数百种卷曲螺旋结构域序列,且任何合适的序列可用作本发明的寡聚化结构域,只要其保留与其他卷曲螺旋结构域寡聚化的能力且其没有破坏所述多肽中其他结构域的功能。优选使用的卷曲螺旋结构域存在于细胞外(20)且天然作为寡聚化结构域。作为使用天然卷曲螺旋结构域的替代,可使用人工卷曲螺旋结构域(21,22)。由于卷曲螺旋结构域的高重复结构,所述结构域特别适于计算机建模,因为各氨基酸残基的主链部分可参数化而不是将残基的各主链部分作为具有其自身变量的单独单元。结构域(b)可包括亮氨酸拉链序列或丙氨酸拉链序列(23)。
本发明的多肽中所用的卷曲结构域优选是形成三聚体的结构域,从而本发明的所述多肽也可组装为三聚体。优选的卷曲螺旋结构域取自细菌跨膜蛋白。跨膜蛋白的优选子集为粘附素(即介导与其他细胞或表面粘附的细胞表面蛋白)、具体为非菌毛粘附素(如寡聚卷曲螺旋粘附素,或‘Oca’家族)。本发明使用的具体序列包括参考文献24公开的序列,来自小肠结肠炎耶尔森菌(Yersiniaenterocolitica)粘附素YadA、脑膜炎奈瑟球菌(Neisseriameningitides)粘附素NadA、粘膜炎莫拉菌(Moraxellacatarrhalis)表面蛋白UspA2,和其他粘附素如来自流感嗜血杆菌埃及生物型(Haemophilusinfluenzaebiogroupaegyptius)的HadA粘附素等(参考文献24的SEQIDNO28-31和42-58)。此外,所述真核热休克转录因子具有可分别表达的卷曲螺旋三聚化结构域,因此将其用于本发明。
具有卷曲螺旋区域的多肽的氨基酸序列中,所述α-螺旋的七残基重复区的性质说明所述卷曲螺旋结构域的界线可以一定精确度确定,但其中卷曲螺旋排列可视为终止的精确残基不能绝对准确地获知。然而,缺乏绝对精确性不是实施本发明的问题,因为常规测试可揭示所述卷曲螺旋是否需要任何具体的可能有疑问的氨基酸残基。即便如此,本发明不需要绝对精确地获知所述界线,因为本发明的唯一基本要求是所述卷曲螺旋结构域以使所述多肽与其他卷曲螺旋结构域寡聚化而不破坏所述多肽中的其他结构域功能的方式行使功能。
在左手3螺旋中发现本发明可用的另一类寡聚化结构域,称为胶原螺旋(25)。这些3螺旋形成序列包括基本三肽重复序列1Gly-2Xaa-3Xaa,其中2Xaa常为Pro,且3Xaa常为4-羟基脯氨酸。尽管该基序称为“胶原”螺旋,但在胶原以外的许多蛋白内都有发现。因此,所述寡聚化结构域可为含序列基序1Gly-2Xaa-3Xaa的多重复的序列,所述基序折叠形成螺旋结构,其可与其他多肽链中的相应螺旋结构寡聚化。
胶原还提供另一类寡聚化结构域。参考文献26描述了X型胶原的非胶原结构域1(NC1)中发现的基序,且该基序可用于形成三聚体和更高级的多体而没有3螺旋。所述三聚结合具有高度热稳定性而没有分子间二硫键。因此,所述寡聚化结构域可含NC1序列。
其他寡聚化结构域可源自寡聚TM蛋白的跨膜结构域。由于这些通常为亲脂性的,所以位于其TM区域外侧的疏水残基可被带电残基替代以提供可溶的结构域。本领域已知通过蛋白工程改造使跨膜结构域增溶的方法,例如参考文献27。所述方法也用于GCN4,其中所述七残基重复位置“a”和“d”替换为异亮氨酸(11):KQIEDKIEEILSKIYHIENEIARIKKLIGEA(SEQIDNO:20)。用于所述寡聚化结构域的合适卷曲螺旋序列通常为20-35个氨基酸长度,如23-30个氨基酸残基长度。
本发明所用的寡聚化结构域通常可维持寡聚化结构而不需要形成单体间二硫桥,但含二硫键连接单体的寡聚体不排除在本发明以外。
或者或此外,为了使用寡聚化结构域以稳定F蛋白为其融合前构型,可使用突变。例如,参考文献28报道了猿病毒5或亨德拉病毒中F蛋白的F2亚基保守区域中的突变可影响所述融合前构型的稳定性。
在一些情况中,也可使用低pH以有利于所述融合前构型。
HRB结构域三聚体的稳定化
在本发明另一优选方面,所述HRB结构域三聚体稳定化可能不利于所述F蛋白的融合后构型。在所述融合前和可能的中间形式中所述HRB结构域形成3链卷曲螺旋。如以上部分所讨论,由于其简单性,卷曲螺旋已被作为蛋白之间分子间相互作用的模式系统和长程分子内相互作用(即三级折叠相互作用)的模式系统而广泛研究。这些研究有助于指导可用于稳定所述三聚卷曲螺旋形式中HRB结构域的方法。例如,所述七残基重复区的a和/或d位置的一种或多种残基可替换为有利于形成稳定三聚卷曲螺旋的残基如Ile残基。此外,虽然次优选,但可删除e和g位置的不利离子相互作用或可添加e和g位置的有利离子相互作用。
用于操作的所述HRB结构域的优选区域为P484-N517之间的七残基重复区。用于靶向以突变的a和d残基的优选示例为F488、I492、V495、I499、S502、I506、S509、L512和V516。特别优选丝氨酸残基,因为将所述亲水残基替换为疏水残基会稳定所述卷曲螺旋的疏水核心。另一优选的靶标为具有较小疏水残基的苯丙氨酸,其能更好地包装入所述核心如异亮氨酸。
HRA结构域三聚体的去稳定化
在本发明另一优选方面,去所述HRA结构域三聚体去稳定化可能不利于所述F蛋白的融合后构型。在所述融合后和可能的一种或多种中间形式中所述HRA结构域形成3链卷曲螺旋。例如,所述七残基重复区的a和/或d位置的一种或多种残基可替换为不利于形成稳定三聚卷曲螺旋的残基。此外,虽然次优选,但可删除e和g位置的有利离子相互作用或可添加e和g位置的不利离子相互作用。所选的突变优选对所述融合前构型的HRA结构域的稳定性影响最小,其可基于融合前和融合后形式的PIV5F蛋白的可用晶体结构建模。
其他修饰
除了上述修饰,还可设计基于所述hRSVF蛋白的分子建模的修饰,所述建模基于融合前和融合后形式的PIV5F蛋白的可用晶体结构。可进行突变以去稳定化所述融合后构型如所述HRA和HRB结构域的6HB折叠或稳定化所述融合前构型如所述融合前构型中的HRA折叠。此外,可提高引起所述融合后构型的转变的能量屏障。虽然本领域技术人员会理解稳定所述起始构型或去稳定所述最终构型可具有提高能量屏障的影响,但可引入自身影响所述转变状态的其他修饰。
作为另一个例子,HRB结构域N末端氨基酸(约氨基酸449-482,优选V459-F483)用作使所述HRB结构域从所述F蛋白三聚体的一侧移动到另一侧的“系绳”,从而该HRB结构域可参与所述融合后构型的6HB中。一种或多种这些氨基酸的缺失会影响或完全阻止所述HRB结构域参与所述F蛋白的融合后构型的6HB折叠中(参见图3)。此外,可稳定所述融合前构型中所述系绳和所述F蛋白之间的相互作用以阻止所述系绳离开从而使所述HRB结构域参与所述6HB折叠。可进行的稳定化突变的例子为所述融合前构型中所述系绳和该系绳接触的所述F蛋白部分之间的半胱氨酸桥。
另一例子是所述融合前构型中HRA的稳定化(残基T50-Y306)。同样,基于同源F蛋白的晶体结构,可通过用大小相似的疏水残基替换包埋的亲水或离子残基来稳定所述疏水核心。也可在表面或核心内引入半胱氨酸桥。此外,如用溶菌酶突变体的大量晶体结构分析所证明的,所述疏水核心或蛋白相对刚硬,因此引入孔可预见地去稳定化所述溶菌酶突变体。相似地,重包装所述融合前构型中F蛋白的核心以消除任何天然孔可稳定融合前或中间形式的F蛋白,因此不利于所述融合后构型。
制备组合物的方法
本发明涉及制备组合物的方法,以及含RSVF蛋白具体为可溶性RSVF胞外域多肽的组合物,包括免疫原性组合物。所述RSVF胞外域多肽优选为单一形式,如未切割单体、未切割三聚体、切割三聚体、切割三聚体的玫瑰花结或为这些形式的子集之间的动态平衡(如未切割单体和未切割三聚体之间的平衡)。本发明提供数种优点。例如,如本文所述,本发明提供生产组合物的方法,所述组合物含主要需要形式的RSVF蛋白,或单一需要形式的RSVF蛋白如未切割单体、未切割三聚体、切割三聚体、切割三聚体的玫瑰花结、这些形式的子集之间的动态平衡(如未切割单体和未切割三聚体之间的平衡)或需要形式的RSVF蛋白混合物。这些组合物类型可用于各种用途,如生产可用于生产疫苗的免疫原性组合物。免疫原性组合物中存在RSVF的单一需要形式,或已知形式之间的动态平衡提供了更易预测的配制、可溶性和稳定性,将所述组合物给予对象时还提供了更易预测的免疫应答。
在宿主细胞中通过常规重组表达生产RSVF蛋白胞外域多肽时,该宿主细胞生产期间所述多肽在分泌到培养基之前在约109/110位和约136/137位的弗林蛋白酶切割位置被切割。所述宿主细胞对所述多肽的切割允许RSVF蛋白胞外域多肽重折叠,这导致所述疏水融合肽的暴露。因此,由于存在暴露的融合肽,所述切割的RSVF蛋白胞外域多肽形成玫瑰花结并与源自所述宿主细胞和培养基的脂质和脂蛋白结合。实际上,在昆虫细胞中生成并根据HIS6标记纯化的经切割RSVF胞外域的电子显微镜检查显示所述多肽具有与融合后形式一致的拐杖形状并结合似乎是残留的细胞碎片。因此,玫瑰花结和其他形式以及RSVF蛋白胞外域多肽构型的高纯度制品不易通过宿主细胞中常规重组表达获得。
生产切割的RSVF蛋白胞外域多肽的方法
在一个方面,本发明是制备含切割的RSVF蛋白胞外域多肽的组合物的方法。总体上,所述方法涉及提供未切割的RSVF蛋白胞外域多肽且随后切割其以产生F1亚基和F2亚基。如本文所述,未切割的RSVF蛋白胞外域多肽可容易地纯化并用合适的方法如尺寸排阻色谱法从污染脂质和脂蛋白中分离。不希望受任何具体理论的限制,认为疏水融合肽不在所述未切割的RSVF蛋白胞外域多肽中暴露,因此所述未切割多肽不与脂质和脂蛋白污染物结合。如本文进一步所述,未切割的RSVF蛋白胞外域可进行切割以产生F1和F2亚基,其可被纯化为三聚体、三聚体的玫瑰花结、或三聚体与三聚体的玫瑰花结的混合物。
未切割的RSVF蛋白胞外域多肽可用任何合适的方法生产。例如,通过在生产所述RSVF蛋白胞外域多肽时在不含活性弗林蛋白酶或弗林蛋白酶样蛋白酶的宿主细胞中重组生成。可用各种方法实现该生产方法,如在进行突变以防止弗林蛋白酶或弗林蛋白酶样蛋白酶表达(有条件或完全地“敲除”)的重组宿主细胞中生产,和降低或防止弗林蛋白酶或弗林蛋白酶样蛋白酶在所述宿主细胞中表达的各种方法,例如用RNA干扰或其他相似方法,或用所述蛋白酶的抑制剂在宿主细胞中抑制弗林蛋白酶或弗林蛋白酶样蛋白酶活性。
未切割的RSVF蛋白胞外域多肽优选用编码RSVF蛋白胞外域的构建体的重组表达生产,其中所述弗林蛋白酶切割位置的氨基酸序列被改变,从而所述RSVF蛋白胞外域多肽由生成所述未切割多肽的宿主细胞分泌。所述未切割的RSVF蛋白胞外域多肽可用任何合适的宿主细胞生产,例如昆虫细胞(如埃及伊蚊、苜蓿银纹夜蛾、家蚕蛾、果蝇、草地贪夜蛾和粉纹夜蛾)、哺乳动物细胞(如人、非人灵长类、马、牛、羊、狗、猫和啮齿类(如仓鼠))、禽类细胞(如鸡、鸭、鹅)、细菌(如大肠杆菌、枯草杆菌和链球菌属)、酵母细胞(如酿酒酵母、白色念珠菌、麦芽糖假丝酵母、多形汉森酵母、脆壁克鲁维酵母、乳酸克鲁维酵母、季也蒙毕赤酵母、巴斯德毕赤酵母、粟酒裂殖酵母和解脂耶氏酵母)、四膜虫细胞(如嗜热四膜虫)或其组合。本领域熟知许多合适的昆虫细胞和哺乳动物细胞。合适的昆虫细胞包括例如,Sf9细胞、Sf21细胞、Tn5细胞、SchneiderS2细胞和HighFive细胞(源自亲本粉纹夜蛾BTI-TN-5B1-4细胞系的克隆分离物(英杰公司(Invitrogen)))。合适的哺乳动物细胞包括例如,中华仓鼠卵巢(CHO)细胞、人胚胎肾细胞(HEK293细胞,通常由剪切的腺病毒5型DNA转化成)、NIH-3T3细胞、293-T细胞、Vero细胞、HeLa细胞、PERC.6细胞(ECACC保藏号96022940)、HepG2细胞、MRC-5(ATCCCCL-171)、WI-38(ATCCCCL-75)、胎猕猴肺细胞细胞(ATCCCL-160)、Madin-Darby牛肾(“MDBK”)细胞、Madin-Darby狗肾(“MDCK”)细胞(如MDCK(NBL2)、ATCCCCL34;或MDCK33016、DSMACC2219)、幼仓鼠肾(BHK)细胞如BHK21-F、HKCC细胞等。合适的禽类细胞包括例如,鸡胚胎干细胞(如细胞)、鸡胚胎成纤维细胞、鸡胚胎生殖细胞、鸭细胞(如,例如在Vaccine27:4975-4982(2009)和WO2005/042728中描述的AGE1.CR和AGE1.CR.pIX细胞系(专业生物基因公司(ProBioGen)))、EB66细胞等。
合适的昆虫细胞表达系统如杆状病毒系统为本领域技术人员已知,描述于例如Summers和Smith,TexasAgriculturalExperimentStationBulletinNo.1555(1987)。杆状病毒/昆虫细胞表达系统的材料和方法以药盒形式购自加利福尼亚州圣迭戈的英杰公司等。禽类细胞表达系统也为本领域技术人员已知,描述于例如美国专利号5,340,740;5,656,479;5,830,510;6,114,168;和6,500,668;欧洲专利号EP0787180B;欧洲专利申请号EP03291813.8;WO03/043415;和WO03/076601。相似地,细菌和哺乳动物细胞表达系统也为本领域已知,描述于例如YeastGeneticEngineering(《酵母遗传工程》)(Barr等编著,1989)伦敦,巴特沃思公司(Butterworths)。
通常,改变未切割的RSVF蛋白胞外域的氨基酸序列以防止在约109/110位和约136/137位的弗林蛋白酶切割位置切割,但其含天然产生或引入的蛋白酶切割位置,切割时产生F1亚基和F2亚基。例如,所述未切割的RSVF蛋白胞外域多肽可具有改变的氨基酸序列以防止在约109/110位和约136/137位的弗林蛋白酶切割位置的切割,但其从约101位到约161位含天然产生或引入的蛋白酶切割位置。
本领域普通技术人员可容易地设计并构想会使宿主细胞生产并表达未切割的RSVF蛋白胞外域多肽的各种具体的氨基酸序列,包括没有在约109/110位和约136/137位的弗林蛋白酶切割位置切割的氨基酸序列。通常,独立替换或缺失约109/110位和约136/137位的弗林蛋白酶切割位置部分或邻近其的一种或多种氨基酸。已知适于阻止RSVF蛋白胞外域多肽切割的一些氨基酸替代和缺失。例如,抑制109/110切割的R108N、R109N、R108N/R109N的替换,抑制136/137切割的K131Q替换或131-134位氨基酸的缺失已在Gonzalez-Reyes等,Proc.Natl.Acad.Sci.USA,98:9859-9864(2001)中描述。已描述含氨基酸替换R108N/R109N/K131Q/R133Q/R135Q/R136Q的未切割的RSVF胞外域多肽。Ruiz-Arguello等,J.Gen.Virol.,85:3677687(2004)。如本文详细描述,导致所述RSVF胞外域多肽从未切割的宿主细胞中分泌的额外RSVF蛋白氨基酸序列含改变的弗林蛋白酶切割位置,如改变约106-109位和约133-136位的氨基酸序列。所述改变的弗林蛋白酶切割位置在约106-109位含至少一种氨基酸替换或缺失,和在约133-136位含至少一种氨基酸替换或缺失。
相似地,含蛋白酶切割位置(如天然产生或引入的)的未切割RSVF蛋白胞外域多肽的各种具体氨基酸序列可能存在并可被容易地设计和构想,所述序列切割时产生含F1的第一亚基和含F2的第二亚基。例如,从约101位到约161位的RSVF蛋白的氨基酸序列含胰蛋白酶切割位置,且一种或多种所述胰蛋白酶切割位置可被胰蛋白酶切割以生成F1和F2亚基。如果需要,一种或多种合适的蛋白酶识别位置可被引入所述未切割的RSVF蛋白胞外域多肽,例如约101位到约161位之间。所引入的蛋白酶识别位置可用所述合适的蛋白酶切割以产生F1和F2亚基。将蛋白酶识别位置引入未切割的RSVF蛋白胞外域多肽的氨基酸序列时,优选所述位置被不切割天然产生的RSVF蛋白胞外域的蛋白酶识别。
本发明这方面的方法包括:a)提供含蛋白酶切割位置的未切割的RSVF蛋白胞外域多肽,其切割时产生F1和F2亚基,和b)用识别所述蛋白酶切割位置的蛋白酶切割所述未切割的RSVF蛋白胞外域多肽。通常,所述未切割的RSVF蛋白胞外域多肽的氨基酸序列含改变的弗林蛋白酶切割位置,且所述RSVF蛋白胞外域多肽分泌自宿主细胞,该细胞生成在约106-109位和约131-136位的弗林蛋白酶切割位置没有被切割的多肽。
所提供的未切割的RSVF蛋白胞外域多肽可纯化到需要的程度。例如,所提供的未切割的RSVF蛋白胞外域多肽可作为基本未加工(如未加工或仅澄清)或者部分或基本纯化的形式的细胞裂解物、细胞匀浆或细胞条件培养基提供。在具体例子中,所提供的未切割的RSVF蛋白胞外域多肽在选自下组的细胞条件培养基中提供:昆虫细胞条件培养基、哺乳动物细胞条件培养基、禽类细胞条件培养基、酵母细胞条件培养基、四膜虫细胞条件培养基、和其组合。
通常优选纯化所提供的未切割的RSVF蛋白胞外域多肽,例如纯化为至少约80%、至少约85%、至少约90%、至少约95%或基本均质。如本文所述,未切割的RSVF蛋白胞外域多肽可容易地从脂质和脂蛋白中纯化,而常规生产的RSVF蛋白的切割形式与脂质和脂蛋白污染物共纯化。因此,提供纯化的未切割的RSVF蛋白胞外域多肽时,本方法可用于容易地生产含切割的RSVF蛋白胞外域而基本不含脂质或脂蛋白的组合物。
本领域熟知并常用蛋白酶切割多肽的合适方法。通常,待切割的多肽与足量的蛋白酶在适于切割所述多肽的条件(如pH、多肽和蛋白酶浓度、温度)下结合。许多合适的蛋白酶可市售获得,且已知许多蛋白酶进行多肽切割的合适条件。如果需要,切割的RSVF蛋白胞外域多肽可在蛋白酶切割后纯化。
本方法的一个实施例中,提供含完整融合肽的未切割的RSVF蛋白胞外域多肽,如137-154位氨基酸都未替换或缺失的未切割RSVF蛋白胞外域多肽。在一些实施方式中,纯化所提供的未切割的RSVF蛋白胞外域多肽。切割所提供含完整融合肽的未切割的RSVF蛋白胞外域多肽,且切割导致已切割RSVF蛋白胞外域多肽三聚体形成玫瑰花结。如果需要,所述玫瑰花结可用任何合适的方法如尺寸排阻色谱进一步纯化。
本方法的另一实施例中,提供含已改变融合肽的未切割RSVF蛋白胞外域多肽,如约137-152氨基酸、约137-153氨基酸、约137-145氨基酸或约137-142氨基酸缺失的未切割RSVF蛋白胞外域多肽。还描述了其他合适的融合肽缺失,如137-146位氨基酸的缺失。Ruiz-Arguello等,J.Gen.Virol.,85:3677-3687(2004)。
在一些实施方式中,纯化所提供的未切割的RSVF蛋白胞外域多肽。切割所提供的未切割的RSVF蛋白胞外域多肽,且切割导致已切割RSVF蛋白胞外域多肽形成三聚体。如果需要,所述三聚体可用任何合适的方法如尺寸排阻色谱进一步纯化。
在本方法的具体实施例中,所提供的未切割的RSVF蛋白胞外域多肽含至少一种选自furdel和delp23furdel的多肽(如均质胰蛋白酶可切割的furdel、均质胰蛋白酶可切割的delp23furdel或胰蛋白酶可切割的furdel和胰蛋白酶可切割的delp23furdel的混合物)。例如用胰蛋白酶切割所提供的未切割的RSVF蛋白胞外域多肽,且切割导致形成RSVF蛋白胞外域多肽的切割三聚体、切割三聚体的玫瑰花结或切割三聚体和切割三聚体的玫瑰花结的组合。如果需要,所述切割三聚体和/或切割三聚体的玫瑰花结可用任何合适的方法如尺寸排阻色谱进一步纯化。
生产未切割的RSVF蛋白胞外域多肽的方法
在另一方面,本发明是生产含未切割的RSVF蛋白胞外域多肽的组合物的方法。总体上,本方法涉及提供含未切割的RSVF蛋白胞外域多肽的生物材料,如细胞裂解物、细胞匀浆或细胞条件培养基,然后纯化所述未切割的RSVF蛋白胞外域多肽。如本文所述,已发现纯化的未切割RSVF蛋白胞外域多肽单体能自我结合以形成未切割单体,以及存在未切割单体和未切割三聚体的混合物或未切割单体和未切割三聚体之间的平衡。不希望受任何具体理论的限制,认为所述平衡有利于所述单体,但浓缩溶液中所述平衡会移向所述三聚体。
本发明这方面的方法包括:a)提供含未切割的RSVF蛋白胞外域多肽的生物材料,如细胞裂解物、细胞匀浆或细胞条件培养基;和b)从所述生物材料中纯化未切割的RSVF蛋白胞外域多肽单体、三聚体或单体和三聚体的组合。在一些实施方式中,纯化未切割的RSVF蛋白胞外域多肽单体、或纯化未切割的RSVF蛋白胞外域多肽三聚体、或纯化单体和三聚体。
通常,所述未切割的RSVF蛋白胞外域多肽的氨基酸序列含改变的弗林蛋白酶切割位置,且所述RSVF蛋白胞外域多肽分泌自宿主细胞,该细胞生成约101位-约161位没有被切割(包括106-109位和131-136位的弗林蛋白酶切割位置)的多肽。在更具体的实施方式中,含未切割的RSVF蛋白胞外域多肽的生物材料包括至少一种选自下组的多肽:furmt、furdel、delp21furx、delp23furx、delp21furdel、delp23furdel和可用Xa因子切割的Xa因子构建体。
在一些实施方式中,所述RSVF蛋白胞外域多肽的氨基酸序列含改变的弗林蛋白酶切割位置,且约101位-约161位之间的其他蛋白酶切割位置(如胰蛋白酶切割位置)被改变或缺失以阻止蛋白酶(如胰蛋白酶)切割。例如,已知胰蛋白酶在赖氨酸和精氨酸残基之后切割。在某些优选实施方式中,所述未切割的RSVF蛋白胞外域多肽的氨基酸序列含改变的弗林蛋白酶切割位置,约101位和约161位之间存在的一种或多种赖氨酸和/或精氨酸残基(如所有赖氨酸和精氨酸残基)缺失或被非赖氨酸或精氨酸的氨基酸替换,所述RSVF蛋白胞外域多肽分泌自宿主细胞,该细胞生成约101位和约161位之间没有切割的多肽,且所述RSVF蛋白胞外域多肽在约101位和约161位之间没有被胰蛋白酶切割。用千分之一体积的胰蛋白酶溶液(牛血浆胰蛋白酶在25mMTrispH7.5,300mMNaCl中稀释为1mg/ml浓度;消化反应中的最终质量比胰蛋白酶:RSVF胞外域为0.001∶1;胰蛋白酶以10-15BAEE单位/毫克蛋白使用)在37℃处理1mg/mlRSVF蛋白胞外域多肽溶液(在25mMTrispH7.5,300mMNaCl中稀释)1小时的时候,所述RSVF蛋白胞外域多肽优选没有被胰蛋白酶切割。
如果需要,所述未切割的RSVF蛋白胞外域多肽(如含改变的弗林蛋白酶切割位置的多肽和含改变的弗林蛋白酶切割位置和改变的胰蛋白酶切割位置的多肽)还可含改变的融合肽,如未切割的RSVF蛋白胞外域多肽,其中例如约氨基酸137-152缺失、约氨基酸137-154缺失、约氨基酸137-145缺失或约氨基酸137-142缺失。还描述了其他合适的融合肽缺失,如137-146位氨基酸的缺失。Ruiz-Arguello等,J.Gen.Virol.,85:3677-3687(2004)。
在具体实施方式中,本发明包括:a)提供含未切割的RSVF蛋白胞外域多肽的生物材料,如细胞裂解物、细胞匀浆或细胞条件培养基,其中所述未切割的RSVF蛋白胞外域多肽的氨基酸序列含改变的弗林蛋白酶切割位置,约101位和约161位之间存在的一种或多种赖氨酸和精氨酸残基缺失或被非赖氨酸或精氨酸的氨基酸替换,所述RSVF蛋白胞外域多肽分泌自宿主细胞,该细胞生成约101位和约161位之间没有切割的多肽,且所述RSVF蛋白胞外域多肽在约101位和约161位之间没有被胰蛋白酶切割;和b)从所述生物材料中纯化未切割的RSVF蛋白胞外域多肽单体、三聚体或单体和三聚体的组合。
在更具体的实施例中,含未切割的RSVF蛋白胞外域多肽的生物材料包括至少一种选自下组的多肽:Furx、FurxR113QK123NK124N、delp21furx和delp23furx。
在其他具体实施方式中,本方法包括:a)提供含未切割的RSVF蛋白胞外域多肽的生物材料,其中所述融合肽经突变(如至少部分所述融合肽缺失),如细胞裂解物、细胞匀浆或细胞条件培养基;和b)从所述生物材料中纯化所述未切割的RSVF蛋白胞外域多肽。所述未切割的RSVF蛋白胞外域多肽可含改变的弗林蛋白酶切割位置,且所述RSVF蛋白胞外域多肽分泌自宿主细胞,该细胞生成约101位-约161位没有被切割(包括106-109和131-136位的弗林蛋白酶切割位置上)的多肽。如果需要,具有改变的弗林蛋白酶切割位置的未切割的RSVF蛋白胞外域多肽还在约101位和约161位之间含改变或缺失的其他蛋白酶位置(如胰蛋白酶切割位置)以防止蛋白酶(如胰蛋白酶)切割。例如,约101位和约161位之间存在的一种或多种赖氨酸和/或精氨酸残基(如所有赖氨酸和精氨酸残基)缺失或被非赖氨酸或精氨酸的氨基酸替换,且所述RSVF蛋白胞外域多肽在约101位和约161位之间没有被胰蛋白酶切割。
所述未切割的RSVF蛋白胞外域多肽单体、三聚体以及单体和三聚体的组合可纯化到需要的程度。通常优选纯化所述未切割的RSVF蛋白胞外域多肽单体或三聚体,例如纯化为至少约75%、至少约80%、至少约85%、至少约90%、至少约95%或基本均质。如本文所述,未切割的RSVF蛋白胞外域多肽可容易地用例如尺寸排阻色谱法从脂质和脂蛋白中纯化。因此,本方法可用于容易地生产含切割的RSVF蛋白胞外域多肽单体、三聚体或单体和三聚体的组合而基本不含脂质和脂蛋白的组合物。
在一个实施例中,所述方法包括提供昆虫细胞条件培养基、哺乳动物细胞条件培养基、禽类细胞条件培养基、酵母细胞条件培养基、四膜虫细胞条件培养基或其组合。在一些实施方式中,纯化未切割的RSVF蛋白胞外域多肽三聚体。在其他实施方式中,纯化未切割的RSVF蛋白胞外域多肽单体。在其他实施方式中,纯化未切割的RSVF蛋白胞外域多肽单体和三聚体。
生产具有已改变融合肽的切割的RSVF蛋白胞外域多肽的方法
在一个方面,本发明是制备含切割的RSVF蛋白胞外域多肽的组合物的方法,所述多肽含改变的融合肽。宿主细胞中表达不含改变的弗林蛋白酶位置切割位置的RSVF蛋白胞外域多肽时,所述宿主细胞加工所述多肽,部分通过在约109/110位和约136/137位的弗林蛋白酶位置切割所述多肽以产生F1和F2亚基。加工的多肽可分泌到所述培养基中且可作为结合的F1-F2亚基(如二硫化物结合的F1和F2亚基)回收,其可通过聚集暴露的融合肽来形成三聚体的玫瑰花结。含改变的融合肽的RSVF蛋白胞外域多肽可在宿主细胞中生成并作为结合的F1-F2亚基分泌,且优选不聚集为玫瑰花结或与脂质或脂蛋白污染物聚集。不希望受限于任何特定的理论,认为由于所述改变的融合肽不介导聚集,所述多肽不形成玫瑰花结或与脂质和脂蛋白污染物结合。
本发明这方面的方法包括:a)提供含切割的RSVF蛋白胞外域多肽的生物材料,其中所述多肽含改变的融合肽(如至少部分所述融合肽缺失),如细胞裂解物、细胞匀浆或细胞条件培养基;和b)从所述生物材料中纯化切割的RSVF蛋白胞外域多肽。所述纯化的经切割RSVF蛋白胞外域多肽可纯化为切割三聚体、切割三聚体的玫瑰花结或切割三聚体和切割三聚体的玫瑰花结的混合物。含已改变融合肽的合适的RSVF蛋白胞外域多肽在约109/110和约136/137含有可切割的弗林蛋白酶切割位置,还含有本文所述的改变的融合肽。例如,本方法中可用缺失约137-152氨基酸、缺失约137-153氨基酸、缺失约137-145氨基酸、缺失约137-146氨基酸、缺失约137-142氨基酸的RSVF蛋白胞外域多肽。在具体实施例中,含未切割的RSVF蛋白胞外域多肽的生物材料;至少包括所述融合肽缺失1。
所述切割的RSVF蛋白胞外域多肽(如切割三聚体或切割三聚体和切割三聚体的玫瑰花结的混合物)可纯化到需要的程度。通常优选纯化所述切割的RSVF蛋白胞外域多肽,例如纯化为至少约75%、至少约80%、至少约85%、至少约90%、至少约95%或基本均质。如本文所述,含已改变融合肽的切割的RSVF蛋白胞外域多肽可容易地用例如尺寸排阻色谱法从脂质和脂蛋白中纯化。因此,本方法可用于容易地生产含切割的RSVF蛋白胞外域多肽三聚体、切割三聚体的玫瑰花结或切割三聚体和切割三聚体的玫瑰花结的组合而基本不含脂质和脂蛋白的组合物。
生产具有C末端弗林蛋白酶突变的RSVF蛋白胞外域多肽的方法
在另一方面,本发明是制备含C末端未切割的RSVF蛋白胞外域多肽的组合物的方法和制备切割的RSVF蛋白胞外域多肽的方法。不希望受限于任何具体理论,认为C末端未切割的RSVF蛋白胞外域多肽在约109/110位的弗林蛋白酶切割位置而不是约136/137位的弗林蛋白酶切割位置被生产所述蛋白的细胞切割,其作为结合F2亚基的F1亚基被分泌到培养基中。还认为所述疏水融合肽不在C末端未切割的RSVF蛋白胞外域多肽中暴露,因此C末端未切割的多肽不与脂质和脂蛋白污染物结合。如本文进一步所述,C末端未切割的RSVF蛋白胞外域还可被切割以产生结合F2亚基的F1亚基,其中氨基末端为110位-约161位。所述F1和F2亚基,可被纯化为三聚体、三聚体的玫瑰花结或三聚体和三聚体的玫瑰花结的混合物。
通常,改变C末端未切割的RSVF蛋白胞外域的氨基酸序列以防止在约136/137位的弗林蛋白酶切割位置的切割,但其含天然产生或引入的蛋白酶切割位置,切割时产生F1亚基和F2亚基,所述F1亚基中氨基末端从110位到约161位。例如,所述C末端未切割的RSVF蛋白胞外域多肽可具有改变的氨基酸序列以防止在约136/137位的弗林蛋白酶切割位置的切割,但其从约101位到约161位含一种或多种天然产生或引入的蛋白酶切割位置。在具体实施例中,改变所述C末端未切割的RSVF蛋白胞外域多肽的氨基酸序列以防止在约136/137位的弗林蛋白酶切割位置的切割,但其在约109/110位含天然产生的弗林蛋白酶切割位置。
本领域普通技术人员可容易地设计并构想会使宿主细胞生产并表达C末端未切割的RSVF蛋白胞外域多肽的各种具体的氨基酸序列,包括没有在约136/137位的弗林蛋白酶切割位置切割的氨基酸序列。通常,独立替换或缺失约136/137位的弗林蛋白酶切割位置部分或邻近其的一种或多种氨基酸。本文描述了防止约136/137位切割的合适的氨基酸替代和缺失。例如,可使用K131Q替代、131-134位的氨基酸缺失或K131Q/R133Q/R135Q/R136Q替代,这些各自抑制136/137上的切割。在某些实施方式中,C末端未切割的RSVF蛋白胞外域多肽在约133-136位包括至少一种氨基酸替代或缺失。
相似地,含蛋白酶切割位置(如天然产生或引入的)的C末端未切割的RSVF蛋白胞外域多肽的各种具体氨基酸序列可能存在并可容易地设计和构想,所述序列切割时产生含F1的第一亚基和含F2的第二亚基。例如,从约101位到约161位的RSVF蛋白的氨基酸序列含胰蛋白酶切割位置,且一种或多种所述胰蛋白酶切割位置可被胰蛋白酶切割以生成F1和F2亚基。如果需要,一种或多种合适的蛋白酶识别位置可引入所述C末端未切割的RSVF蛋白胞外域多肽,例如约101位到约161位之间。所引入的蛋白酶识别位置可用所述合适的蛋白酶切割以产生F1和F2亚基。将蛋白酶切割位置引入C末端未切割的RSVF蛋白胞外域多肽的氨基酸序列时,优选所述位置被不切割天然产生的RSVF蛋白胞外域的蛋白酶识别。
C末端未切割的RSVF蛋白胞外域多肽可用任何合适的方法生产。优选的方法是通过编码RSVF蛋白胞外域的构建体的重组表达,其中约136/137位的弗林蛋白酶切割位置的氨基酸序列被改变,从而所述C末端未切割的RSVF蛋白胞外域多肽由生成约136/137位的弗林蛋白酶切割位置没有被切割的多肽的宿主细胞分泌。所述C末端未切割的RSVF蛋白胞外域多肽优选由将其生成为结合F2亚基的F1亚基的宿主细胞分泌,其中F1亚基的氨基末端为132位-约161位,而不是137位。所述C末端未切割的RSVF蛋白胞外域多肽可用本文所述任何合适的宿主细胞生成。
本发明这方面的一种方法包括:a)提供含136/137位弗林蛋白酶切割位置改变的C末端未切割的RSVF蛋白胞外域多肽,且所述C末端未切割的RSVF蛋白胞外域多肽分泌自宿主细胞,该细胞以结合含F1的亚基但136/137位没有被切割的F2片段的形式生产所述多肽,和b)用在约101-161位之间的位置切割RSVF蛋白胞外域的蛋白酶切割所提供的C末端未切割的RSVF蛋白胞外域多肽,从而生产所述组合物。在具体实施方式中,步骤b)包括用在约101-132位、或约132-161位或约110-132位之间的位置切割RSVF蛋白胞外域的蛋白酶切割所提供的C末端未切割的RSVF蛋白胞外域多肽。或者或此外,在一些实施方式中,所述C末端未切割的RSVF蛋白胞外域多肽在136/137位含改变的弗林蛋白酶切割位置,条件为该改变的弗林蛋白酶切割位置不缺失氨基酸131-134.在具体实施例中,含C末端未切割的RSVF蛋白胞外域多肽的生物材料;至少包括所述N末端弗林蛋白酶多肽。
所提供的C末端未切割的RSVF蛋白胞外域多肽可纯化到需要的程度。例如,所提供的C末端未切割的RSVF蛋白胞外域多肽可在基本未加工(如未加工或仅澄清)或者部分或基本纯化形式的细胞裂解物、细胞匀浆或细胞条件培养基中提供。在具体例子中,所提供的C末端未切割的RSVF蛋白胞外域多肽在选自下组的细胞条件培养基中提供:昆虫细胞条件培养基、哺乳动物细胞条件培养基、禽类细胞条件培养基、酵母细胞条件培养基、四膜虫细胞条件培养基、和其组合。
通常优选纯化所提供的C末端未切割的RSVF蛋白胞外域多肽,例如纯化为至少约80%、至少约85%、至少约90%、至少约95%或基本均质。如本文所述,C末端未切割的RSVF蛋白胞外域多肽可容易地从脂质和脂蛋白中纯化,而常规生产的RSVF蛋白的切割形式与脂质和脂蛋白污染物共纯化。因此,提供纯化的C末端未切割的RSVF蛋白胞外域多肽时,本方法可用于容易地生产含切割的RSVF蛋白胞外域而基本不含脂质或磷脂的组合物。
本领域熟知并常用蛋白酶切割多肽的合适方法。通常,待切割的多肽与足量的蛋白酶在适于切割所述多肽的条件(如pH、多肽和蛋白酶浓度、温度)下结合。许多合适的蛋白酶可市售获得,且已知许多蛋白酶进行切割的合适条件。如果需要,所述RSVF蛋白胞外域多肽可在蛋白酶切割后纯化。
本方法的一个实施例中,提供含完整融合肽的C末端未切割的RSVF蛋白胞外域多肽,如137-154位氨基酸都未被替换或缺失的C末端未切割的RSVF蛋白胞外域多肽。本方法的另一实施例中,提供含已改变融合肽的C末端未切割的RSVF蛋白胞外域多肽,如约137-152氨基酸、约137-153氨基酸、约137-145氨基酸或约137-142氨基酸缺失的C末端未切割的RSVF蛋白胞外域多肽。还描述了其他合适的融合肽缺失,如137-146位的氨基酸缺失。Ruiz-Arguello等,J.Gen.Virol.,85:3677-3687(2004)。
在一些实施方式中,纯化所提供的C末端未切割的RSVF蛋白胞外域多肽。切割所提供的未切割的RSVF蛋白胞外域多肽,且切割引起已切割RSVF蛋白胞外域多肽形成三聚体。如果需要,所述三聚体可用任何合适的方法如尺寸排阻色谱进一步纯化。
在本方法的具体实施例中,所提供的C末端未切割的RSVF蛋白胞外域多肽至少含所述N末端弗林蛋白酶多肽(图1)。例如用胰蛋白酶切割所提供的C末端未切割的RSVF蛋白胞外域多肽,且切割引起RSVF蛋白胞外域多肽的切割三聚体、切割三聚体的玫瑰花结或切割三聚体和切割三聚体的玫瑰花结的组合的形成。如果需要,所述切割三聚体和/或切割三聚体的玫瑰花结可用任何合适的方法如尺寸排阻色谱进一步纯化。
本发明这方面的另一方法包括:a)提供含在136/137位含改变的弗林蛋白酶切割位置的C末端未切割的RSVF蛋白胞外域多肽的生物材料如细胞裂解物、细胞匀浆或细胞条件培养基,且所述可溶性RSVF蛋白胞外域多肽分泌自以结合含F1的亚基但136/137位没有被切割的F2片段的形式生成该多肽的细胞,条件为该改变的弗林蛋白酶切割位置不缺失氨基酸131-134;和b)从所述生物材料中纯化所述C末端未切割的RSVF蛋白胞外域多肽,从而生产所述组合物。所述F1亚基的氨基末端优选为约110位-约132位。所述F1亚基的氨基末端更优选为约110位。所述F1亚基的氨基末端特别优选不在137位。在具体实施例中,含C末端未切割的RSVF蛋白胞外域多肽的生物材料;至少包括所述N末端弗林蛋白酶多肽。
如果需要,所述C末端未切割的RSVF蛋白胞外域多肽还在约101位和约161位之间含改变或缺失的其他蛋白酶位置(如胰蛋白酶切割位置)以防止蛋白酶(如胰蛋白酶)切割。例如,约101位和约161位之间存在的一种或多种赖氨酸和/或精氨酸残基(如所有赖氨酸和精氨酸残基)缺失或被非赖氨酸或精氨酸的氨基酸替换,且所述C末端未切割的RSVF蛋白胞外域多肽在约101位和约161位之间没有被胰蛋白酶切割。所述C末端未切割的RSVF蛋白胞外域多肽可含本文所述的完整融合肽或改变的融合肽。
所述C末端未切割的RSVF蛋白胞外域多肽如单体、三聚体以及单体和三聚体的组合可纯化到需要的程度。通常优选纯化所述C末端未切割的RSVF蛋白胞外域多肽单体或三聚体,例如纯化为至少约75%、至少约80%、至少约85%、至少约90%、至少约95%或基本均质。如本文所述,C末端未切割的RSVF蛋白胞外域多肽可容易地用例如尺寸排阻色谱法从脂质和脂蛋白中纯化。因此,本方法可用于容易地生产含C末端未切割的RSVF蛋白胞外域多肽如单体、三聚体或单体和三聚体的组合而基本不含脂质和脂蛋白的组合物。在本发明的具体实施例中,所述C末端未切割的RSVF蛋白胞外域多肽至少含所述N末端弗林蛋白酶多肽(图1)。
在一个实施例中,所述方法包括提供昆虫细胞条件培养基、哺乳动物细胞条件培养基、禽类细胞条件培养基、酵母细胞条件培养基、四膜虫细胞条件培养基或其组合。在一些实施方式中,纯化C末端未切割的RSVF蛋白胞外域多肽三聚体。在其他实施方式中,纯化C末端未切割的RSVF蛋白胞外域多肽单体。在其他实施方式中,纯化C末端未切割的RSVF蛋白胞外域多肽单体和三聚体。
自复制RNA
本文所述RSV-F多肽可通过在对象细胞中表达编码该多肽的重组核酸来生产。能给予对象以引起RSV-F多肽生产的优选核酸为自复制RNA分子。本发明的自复制RNA分子是基于RNA病毒的基因组RNA,但缺失编码一种或多种结构蛋白的基因。所述自复制RNA分子能经翻译生成所述RNA病毒的非结构蛋白和自复制RNA编码的异源蛋白。
所述自复制RNA通常含至少一种或多种选自下组的基因:病毒复制酶、病毒蛋白酶、病毒解旋酶和其他非结构性病毒蛋白,还含有5’-和3’-末端顺式激活复制序列和(如果需要)编码所需氨基酸序列(如蛋白、抗原)的异源序列。引导所述异源序列表达的亚基因组启动子可包括在所述自复制RNA中。如果需要,所述异源序列可与所述自复制RNA中的其他编码区域在框内融合和/或可在内部核糖体进入位点(IRES)的控制下。
本发明的自复制RNA分子可设计成使所述自复制RNA分子不能诱导感染性病毒颗粒的生成。这可通过例如省略所述自复制RNA中的一种或多种编码结构蛋白的病毒基因实现,所述蛋白是病毒颗粒生成所必需的。例如,所述自复制RNA分子基于α病毒如辛德毕斯病毒(SIN)、西门利克森林病毒和委内瑞拉马脑炎病毒(VEE)时,可省略一种或多种编码病毒结构蛋白如衣壳或包膜糖蛋白的基因。如果需要,本发明的自复制RNA分子可设计成诱导减毒或强毒的感染性病毒颗粒的生成,或生成能进行一轮后续感染的病毒颗粒。
自复制RNA分子在甚至无任何蛋白下递送到脊椎动物细胞时,能通过其自身(或其自身的反义拷贝)转录引导生成多种子RNA。所述自复制RNA递送到细胞后能直接翻译,且该翻译提供RNA依赖性RNA聚合酶,所述酶然后从该递送RNA中生成转录本。因此所递送RNA引导多种子RNA的生成。这些转录本相对所递送RNA为反义且可自身翻译以提供基因产物的原位表达,或可转录以进一步提供与该递送RNA同义的转录本,其经翻译提供编码的RSVF多肽的原位表达。
实现自复制的一种合适系统为使用基于α病毒的RNA复制子。这些+链复制子在递送到细胞后翻译以得到复制酶(或复制酶-逆转录酶)。这些复制酶翻译为自切割产生复制复合物的聚蛋白,所述复合物形成所述+链递送RNA的基因组-链拷贝。这些-链转录本可自我转录以进一步得到所述+链亲本RNA的拷贝和得到编码所述RSV-F多肽的亚基因组转录本。因此所述亚基因组转录本的翻译引起所述感染细胞原位表达RSV-F多肽。合适的α病毒复制子可使用来自辛德毕斯病毒、西门利克森林病毒、东部马脑炎病毒、委内瑞拉马脑炎病毒等的复制酶。
因此优选的自复制RNA分子编码(i)可从所述自复制RNA分子转录RNA的RNA依赖性RNA聚合酶和(ii)RSV-F多肽。所述聚合酶可为α病毒复制酶例如包括α病毒蛋白nsP4。
尽管除了所述非结构复制酶聚蛋白,天然α病毒基因组还编码结构病毒体蛋白,但本发明中基于α病毒的自复制RNA分子优选不编码α病毒结构蛋白。因此所述自复制RNA可引导细胞中基因组RNA拷贝的自我生成,但不引导含RNA的α病毒病毒体的生成。不能生成这些病毒体说明所述自复制RNA分子不像野生型α病毒,其自身不能以感染形式永存。野生型病毒永存必需的α病毒结构蛋白在本发明的自复制RNA中缺失,且他们的位置被编码所需基因产物的基因占据,从而所述亚基因组转录本编码所需要的基因产物而不是所述结构α病毒病毒体蛋白。
因此本发明有用的自复制RNA分子可具有两个开放阅读框。第一(5′)开放阅读框编码复制酶;第二(3′)开放阅读框编码RSV-F多肽。在一些实施方式中,所述RNA可具有额外的(下游)开放阅读框如编码其他需要的基因产物。自复制RNA分子可具有与所述编码的复制酶相容的5′序列。
在一个方面,所述自复制RNA分子源自或基于α病毒。在其他方面,所述自复制RNA分子源自或基于非α病毒的病毒,优选正链RNA病毒,更优选小RNA病毒、黄病毒、风疹病毒、瘟病毒、丙型肝炎病毒、萼状病毒或冠状病毒。合适的野生型α病毒序列已知且可从序列保藏所如马里兰州罗克维尔的美国典型培养物保藏中心(AmericanTypeCultureCollection)获得。合适的α病毒的代表示例包括奥拉病毒(ATCCVR-368)、贝巴鲁病毒(ATCCVR-600、ATCCVR-1240)、犰狳病毒(ATCCVR-922)、基孔肯雅病毒(ATCCVR-64、ATCCVR-1241)、东方马脑脊髓炎病毒(Easternequineencephalomyelitisvirus)(ATCCVR-65、ATCCVR-1242)、摩根堡病毒(ATCCVR-924)、格塔病毒(ATCCVR-369、ATCCVR-1243)、克泽拉格齐病毒(ATCCVR-927)、马亚罗(Mayaro)(ATCCVR-66)、马亚罗病毒(ATCCVR-1277)、米德尔堡病毒(Middleburg)(ATCCVR-370)、穆坎博病毒(ATCCVR-580、ATCCVR-1244)、恩杜姆病毒(Ndumu)(ATCCVR-371)、皮春纳病毒(ATCCVR-372、ATCCVR-1245)、罗斯河病毒(ATCCVR-373、ATCCVR-1246)、西门利克森林病毒(ATCCVR-67、ATCCVR-1247)、辛德比斯病毒(ATCCVR-68、ATCCVR-1248)、托纳特(ATCCVR-925)、特里尼蒂病毒(ATCCVR-469)、乌纳病毒(ATCCVR-374)、委内瑞拉马脑脊髓炎病毒(ATCCVR-69、ATCCVR-923、ATCCVR-1250ATCCVR-1249、ATCCVR-532)、西马脑脊髓炎病毒(ATCCVR-70、ATCCVR-1251、ATCCVR-622、ATCCVR-1252)、沃达罗河病毒(ATCCVR-926)和Y-62-33(ATCCVR-375)。
所述自复制RNA可与递送系统关联。所述自复制RNA可和或不和佐剂一起递送。
RNA递送系统
本发明的自复制RNA适于以各种形式递送,如裸露RNA递送或与有助于进入细胞的脂质、聚合物或其他化合物结合。本发明的自复制RNA分子可用任何合适的技术如通过直接注射、微注射、电穿孔、脂质转染、生物裂解(biolystics)等引入靶细胞或对象。所述自复制RNA分子还可通过受体介导的胞吞作用导入细胞。参见例如美国专利第6,090,619号;Wu和Wu,J.Biol.Chem.,263:14621(1988);和Curiel等,Proc.Natl.Acad.Sci.USA,88:8850(1991)。例如,美国专利第6,083,741号公开了通过将核酸连接聚阳离子组分(如具有3-100个赖氨酸残基的聚L赖氨酸)来导入外源核酸到哺乳动物细胞,所述聚阳离子组分自身偶联整联蛋白受体结合组分(如具有序列Arg-Gly-Asp的环肽)。
本发明的自复制RNA分子可通过两亲物递送入细胞。参见例如,美国专利号6,071,890。通常,核酸分子可形成具有阳离子两亲物的复合物。与该复合物接触的哺乳动物能容易地将其吸收。
所述自复制RNA可作为裸露RNA递送(如仅作为RNA水溶液),但为了增强进入细胞以及随后的细胞间效应,所述自复制RNA优选与递送系统如微粒或乳液递送系统组合给予。本领域技术人员熟知大量递送系统。所述递送系统包括例如基于脂质体的递送(Debs和Zhu(1993)WO93/24640;Mannino和Gould-Fogerite(1988)BioTechniques6(7):682-691;Rose美国专利号5,279,833;Brigham(1991)WO9I/06309;和Felgner等(1987)Proc.Natl.Acad.Sci.USA84:7413-7414),以及病毒载体的应用(如腺病毒(参见例如Berns等(1995)Ann.NYAcad.Sci.772:95-104;Ali等(1994)GeneTher.1:367-384;和Haddada等(1995)Curr.Top.Microbiol.Immunol.199(Pt3):297-306forreview)、乳头瘤病毒、逆转录病毒(参见例如Buchscher等(1992)J.Virol.66(5)2731-2739;Johann等(1992)J.Virol.66(5):1635-1640(1992);Sommerfelt等,(1990)Virol.176:58-59;Wilson等(1989)J.Virol.63:2374-2378;Miller等,J.Virol.65:2220-2224(1991);Wong-Staal等,PCT/US94/05700,和Rosenburg和Fauci(1993),FundamentalImmunology(《基础免疫学》),第三版Paul(编辑)纽约雷文出版社有限公司(RavenPress,Ltd.)和其参考文献,和Yu等,GeneTherapy(《基因治疗》)(1994)同上)、和腺伴随病毒载体(参见West等(1987)Virology160:38-47;Carter等(1989)美国专利号4,797,368;Carter等WO93/24641(1993);Kotin(1994)HumanGeneTherapy(《人类基因治疗》)5:793-801;Muzyczka(1994)J.Clin.Invst.94:1351和Samulski(同上)的anoverviewofAAVvectors(《AAV载体概述》);还参见Lebkowski,美国专利号5,173,414;Tratschin等(1985)Mol.Cell.Biol.5(11):3251-3260;Tratschin,等(1984)Mol.Cell.Biol.,4:2072-2081;Hermonat和Muzyczka(1984)Proc.Natl.Acad.Sci.USA,81:6466-6470;McLaughlin等(1988)和Samulski等(1989)J.Virol.,63:03822-3828)等。
三种特别有用的递送系统是(i)脂质体(ii)非毒性和可生物降解聚合物微粒(iii)阳离子亚微米水包油乳液。
脂质体
水环境下各种两亲性脂质能形成双分子层以包埋含RNA的水核心形成脂质体。这些脂质可具有阴离子、阳离子或两性离子亲水头基。从阴离子磷脂形成脂质体可追溯到上世纪六十年代,而形成阳离子脂质体的脂质从上世纪九十年代已开始研究。一些磷脂为阴离子型而其他为两性离子型。合适类型的磷脂包括但不限于:磷脂酰乙醇胺、磷脂酰胆碱、磷脂酰丝氨酸、磷脂酰甘油和表20所列的一些有用的磷脂。有用的阳离子脂质包括但不限于:二油酰-三甲基铵丙烷(DOTAP)、1,2-二硬脂氧基-N,N-二甲基-3-氨基丙烷(DSDMA)、1,2-二油烯氧基-N,N二甲基-3-氨基丙烷(DODMA)、1,2-二亚油氧基-N,N-二甲基-3-氨基丙烷(DLinDMA)、1,2-二亚麻氧基-N,N-二甲基-3-氨基丙烷(DLenDMA)。两性脂质包括但不限于酰基两性脂质和醚基两性脂质。有用的两性脂质示例为DPPC、DOPC和十二烷基磷酸胆碱。所述脂质可为饱和或不饱和。
脂质体可从单一脂质或脂质混合物形成。混合物可包括(i)阴离子脂质混合物(ii)阳离子脂质混合物(iii)两性脂质混合物(iv)阴离子脂质和阳离子脂质混合物(v)阴离子脂质和两性脂质混合物(vi)两性脂质和阳离子脂质混合物或(vii)阴离子脂质、阳离子脂质和两性脂质混合物。相似地,混合物可包括饱和和不饱和脂质。例如,混合物可包括DSPC(两性、饱和)、DlinDMA(阳离子型、不饱和)和/或DMPG(阴离子型、饱和)。使用脂质混合物时,不是混合物中的所有组成脂质需要为两亲性,例如一种或多种两亲性脂质可与胆固醇混合。
脂质的亲水部分可PEG化(即通过聚乙二醇共价连接修饰)。这些修饰可增加稳定性并阻止所述脂质体的非特异性吸收。例如,脂质可用如Heyes等.(2005)JControlledRelease107:276-287中公开的技术偶联PEG。
实施例中使用DSPC、DlinDMA、PEG-DMPG和胆固醇的混合物。本发明的单独部分为含DSPC、DlinDMA、PEG-DMG和胆固醇的脂质体。该脂质体优选包埋RNA,如例如编码免疫原的自复制RNA。
脂质体通常分为3组:多室脂囊(MLV);小单室脂囊(SUV);和大单室脂囊(LUV)。MLV的各脂囊中具有多种双分子层,形成许多分离的水性隔室。SUV和LUV具有包埋水核心的单一双分子层;SUV通常直径≤50nm,LUV直径>50nm。本发明所用的脂质体理想上为直径范围50-220nm的LUV。对于含不同直径LUV群体的组合物:(i)至少数量上有80%的直径应为20-220nm,(ii)所述群体的平均直径(Zav,强度)理想上为40-200nm,和/或(iii)所述直径的多分散性指数应<0.2。
本领域已知制备合适的脂质体的技术,例如参见Liposomes:MethodsandProtocols(《脂质体:方法和实验方案》),卷一:PharmaceuticalNanocarriers:MethodsandProtocols(《药物纳米载体:方法和实验方案》)(Weissig编著).哈马那(Humana)出版,2009.ISBN160327359X;LiposomeTechnology(《脂质体技术》),卷I、II和III(Gregoriadis编著).英富曼医疗保健公司(InformaHealthcare),2006;和FunctionalPolymerColloidsandMicroparticles(《功能性聚合物胶质和微粒》),卷4(Microspheres,microcapsules&liposomes(微球、微囊和脂质体)).(Arshady和Guyot编著).辞塔斯图书公司(CitusBooks),2002。一种有用的方法涉及混合(i)所述脂质的乙醇溶液(ii)所述核酸的水溶液和(iii)缓冲液,随后混合、平衡、稀释和纯化(Heyes等.(2005)JControlledRelease107:276-87.)。
RNA优选包埋在所述脂质体中,且因此所述脂质体形成围绕含RNA水性核心的外层。发现所述包埋可保护RNA不受RNA酶消化。所述脂质体可包括一些外部的RNA(如所述脂质体的表面),但至少包埋一半的RNA(理想上为全部)。
聚合微粒
许多聚合物可形成微粒以包埋或吸收RNA。基本使用非毒性聚合物表明受体可安全的接受所述颗粒,而使用可生物降解聚合物表明所述颗粒可在递送后代谢以避免长期留存。有用的聚合物还可进行灭菌,以辅助制备药物级别制剂。
合适的非毒性和可生物降解的聚合物包括但不限于:聚(α-羟酸)、聚羟基丁酸、聚内酯(包括聚己内酯)、聚二烷酮、聚戊内酯、聚原酸酯、聚酸酐、聚氰基丙烯酸酯、酪氨酸源的聚碳酸酯、聚乙烯基吡咯烷酮或聚酯酰胺和其组合。
在一些实施方式中,所述微粒形成自聚(α-羟酸)如聚(丙交酯)(“PLA”)、丙交酯和乙交酯的共聚物如聚(D,L-丙交酯-共-乙交酯)(“PLG”)、和D,L-丙交酯和己内酯的共聚物。有用的PLG聚合物包括那些丙交酯/乙交酯摩尔比范围为例如20∶80-80∶20如25∶75、40∶60、45∶55、55∶45、60∶40、75∶25。有用的PLG聚合物包括那些分子量为例如5,000-200,000Da,如10,000-100,000、20,000-70,000、40,000-50,000Da。
所述微粒直径理想上为0.02μm-8μm。对于含直径不同的微粒群的组合物,至少数量上80%的直径应为0.03-7μm。
本领域熟知制备合适的微粒的技术,例如参见FunctionalPolymerColloidsandMicroparticles(《功能性聚合物胶质和微粒》),卷4(Microspheres,microcapsules&liposomes(微球、微囊和脂质体)).(Arshady和Guyot编著).辞塔斯图书公司(CitusBooks),2002;PolymersinDrugDelivery(《药物递送中的聚合物》).(Uchegbu和Schatzlein编著).CRC出版社,2006.(具体第7章)和MicroparticulateSystemsfortheDeliveryofProteinsandVaccines(《递送蛋白和疫苗的微粒系统》).(Cohen和Bernstein编著).CRC出版社,1996。为了有助于RNA的吸收,微粒可包括阳离子表面活性剂和/或脂质,如O’Hagan等.(2001)JVirology75:9037-9043;和Singh等.(2003)PharmaceuticalResearch20:247-251中所公开。制作聚合微粒的替代方法是通过模塑和固化如WO2009/132206中所公开。
本发明的微粒可具有40-100mV的ζ电势。
RNA可被所述微粒吸收,且该吸收通过在所述微粒中纳入阳离子材料(如阳离子脂质)来促进。
水包油阳离子乳液
已知水包油乳液能辅助流感疫苗如FLUADTM产品中的MF59TM佐剂和PREPANDRIXTM产品中的AS03佐剂。按照本发明的RNA递送能利用水包油乳液,只要该乳液包括一种或多种阳离子分子。例如,阳离子脂质可包括在所述乳液中,以提供带负电RNA能结合的带正电液滴表面。
所述乳液包含一种或多种油。合适的油包括来自例如动物(如鱼)或植物来源的油。所述油理想上是可生物降解(可代谢)和生物相容的。植物油的来源包括坚果、种籽和谷物。最常见的花生油、大豆油、椰子油和橄榄油是坚果油的示例。可以使用例如获自霍霍巴豆的霍霍巴油。种籽油包括红花油、棉花籽油、葵花籽油、芝麻籽油等。在谷物油中,最常见的是玉米油,但也可以使用其它谷类的油,如小麦、燕麦、黑麦、稻、画眉草、黑小麦等。可从坚果和种籽油开始,通过水解、分离和酯化合适物质制备甘油和1,2-丙二醇的6-10碳脂肪酸酯,其不是种籽油中天然产生。来自哺乳动物乳液的脂肪和油可代谢并因而可以使用。获得动物来源纯油所必需的分离、纯化、皂化和其它方法的过程为本领域熟知。
大多数鱼类含有容易回收的可代谢油。例如,鳕鱼肝油、鲨鱼肝油和诸如鲸蜡的鲸油是可以用于本发明的几种鱼油的示例。通过生化途径用5-碳异戊二烯单位合成许多支链油,其总称为萜类。也可采用鲨烯的饱和类似物鲨烷。包括鲨烯和鲨烷在内的鱼油,易于从商业来源获得,或可以通过本领域已知的方法获得。
其他有用的油为生育酚,特别是和角鲨烯结合。当乳液的油相包含生育酚时,可采用α、β、γ、δ、ε或ξ生育酚中的任何一种,但优选α-生育酚。可同时采用D-α-生育酚和DL-α-生育酚。优选的α生育酚是DL-α生育酚。可使用包括角鲨烯和生育酚(如DL-α-生育酚)的油组合。
乳液优选包含角鲨烯,其是一种支链不饱和萜类鲨鱼肝油(C30H50;[(CH3)2C[=CHCH2CH2C(CH3)]2=CHCH2-]2;2,6,10,15,19,23-六甲基-2,6,10,14,18,22-二十四碳己烯;CASRN7683-64-9)。
所述乳液中的油可包括油例如角鲨烯和至少一种其他油的组合。
所述乳液的水性组分可为淡水(如w.f.i.)或可包括其他组分如溶质。例如,其可包括盐以形成缓冲液,例如柠檬酸或磷酸盐如钠盐。常用缓冲剂包括:磷酸盐缓冲剂;Tris缓冲剂;硼酸盐缓冲剂;琥珀酸盐缓冲剂;组氨酸缓冲剂;或柠檬酸缓冲剂。优选缓冲的水相,且缓冲液的浓度一般是5-20mM。
所述乳液也包括阳离子脂质。优选此脂质为表面活性剂从而其有助于所述乳液的形成和稳定。有用的阳离子脂质通常含生理条件下带正电的氮原子如叔胺或季胺。所述氮可在两亲性表面活性剂的亲水头基里。有用的阳离子脂质包括但不限于:1,2-二油酰氧基-3-(三甲基胺基)丙烷(DOTAP)、3′-[N-(N′,N′-二甲基氨基乙基)-氨甲酰基]胆固醇(DC胆固醇)、二甲基双十八烷基-铵(DDA如溴化物)、1,2-二肉豆蔻酰-3-三甲基-铵丙烷(DMTAP)、二棕榈酰(C16:0)三甲基铵丙烷(DPTAP)、二硬脂酰三甲基铵丙烷(DSTAP)。其他有用的阳离子脂质是:苯扎氯铵(BAK)、氯化苄乙铵、溴棕三甲铵(其含十四烷基三甲基溴化铵和可能少量的十二烷基三甲基溴化铵和十六烷基三甲基溴化铵)、十六烷基氯化吡啶(CPC)、十六烷基三甲基氯化铵(CTAC)、N,N′,N′-聚氧乙烯(10)-N-牛油-1,3-二氨基丙烷、十二烷基三甲基溴化铵、十六烷基三甲基溴化铵、混合的烷基-三甲基-溴化铵、苄基二甲基十二烷基氯化铵、苄基二甲基十六烷基氯化铵、苄基三甲基甲醇铵、十六烷基二甲基乙基溴化铵、二甲基十八烷基溴化铵(DDAB)、甲基氯化苄乙铵、氯化十烃季铵、甲基混合的三烷基氯化铵、甲基三辛基氯化铵)、N,N-二甲基-N-[2(2-甲基-4-(1,1,3,3四甲基丁基)-苯氧基]-乙氧基)乙基]-苯甲烷-氯化铵(DEBDA)、二烷基二甲基铵盐、[1-(2,3-二油烯基氧基)-丙基]-N,N,N,三甲基氯化铵、1,2-二酰基-3-(三甲基铵)丙烷(酰基=二肉豆蔻酰、二棕榈酰、二硬脂酰、二油酰)、1,2-二酰基-3(二甲基铵)丙烷(酰基=二肉豆蔻酰、二棕榈酰、二硬脂酰、二油酰)、1,2-二油酰-3-(4′-三甲基-铵)丁酰-sn-甘油、1,2-二油酰-3-琥珀酰-sn-甘油胆碱酯、(4′-三甲基铵)丁酸胆固醇)、N-烷基吡啶盐(如溴化十六烷基吡啶和氯化十六烷基吡啶)、N-烷基哌啶盐、双阳离子波拉型电解质(C12Me6;C12BU6)、二烷基甘油基磷酸胆碱、溶血卵磷脂、L-α二油酰磷脂酰乙醇胺、胆固醇半琥珀酸胆碱酯、脂聚胺,包括但不限于双十八烷基酰胺基甘氨酰精胺(DOGS)、二棕榈酰磷脂酰乙醇-酰胺基精胺(DPPES)、脂聚-L(或D)-赖氨酸(LPLL、LPDL)、聚(L(或D)-赖氨酸偶联N-戊二酰磷脂酰乙醇胺、具有侧接氨基的双十二烷基谷氨酸酯(C^GluPhCnN)、具有侧接氨基的双十四烷基谷氨酸酯(Cl4GIuCnN+)、胆固醇阳离子衍生物,包括但不限于胆固醇基-3β-氧琥珀酰胺基乙烯基三甲基铵盐、胆固醇基-3β-氧琥珀酰胺基乙烯基-二甲基铵、胆固醇基-3β-羧基酰氨基乙烯基三甲基铵盐、和胆固醇基-3β-羧基酰氨基乙烯基二甲基铵。其它有用的阳离子脂质在美国2008/0085870和美国2008/0057080中描述,其通过引用纳入本文。
阳离子脂质优选可生物降解(可代谢)和生物相容的。
除了所述油和阳离子脂质,乳液可包括非离子型表面活性剂和/或两性表面活性剂。所述表面活性剂包括但不限于:聚氧乙烯去水山梨糖醇酯表面活性剂(通常称为吐温),特别是聚山梨酯20和聚山梨酯80;以商品名DOWFAXTM出售的环氧乙烷(EO)、环氧丙烷(PO)和/或环氧丁烷(BO)的共聚物,如直链EP/PO嵌段共聚物;重复的乙氧基(氧-1,2-乙二基)数量不同的辛苯聚醇,特别感兴趣的是辛苯聚醇9(曲通(Triton)X-100,或叔辛基苯氧基聚乙氧基乙醇);(辛基苯氧基)聚乙氧基乙醇(IGEPALCA-630/NP-40);磷脂如磷脂酰胆碱(卵磷脂);衍生自十二烷醇、十六烷醇、十八烷醇和油醇的聚氧乙烯脂肪醚(称为苄泽表面活性剂),如三乙二醇单月桂基醚(苄泽30);聚氧乙烯-9-月桂醚以及去水山梨糖醇酯(通常称为司盘),如去水山梨糖醇三油酸酯(司盘85)和去水山梨糖醇单月桂酸酯。乳液中包含的优选表面活性剂是聚山梨酯80(吐温80;聚氧乙烯去水山梨糖醇单油酸酯)、司盘85(去水山梨糖醇三油酸酯)、卵磷脂和曲通X100。
所述乳液中可包括这些表面活性剂的混合物,如吐温80/司盘85混合物或吐温80/曲通-X100混合物。聚氧乙烯脱水山梨糖醇酯如聚氧乙烯脱水山梨糖醇单油酸酯(吐温80)和辛苯聚醇如叔辛基苯氧基-聚乙氧基乙醇(曲通X-100)的组合也适用。另一种有用的组合包含月桂醇聚醚-9和聚氧乙烯去水山梨糖醇酯和/或辛苯聚醇。有用的混合物可包括HLB值为10-20的表面活性剂(如聚山梨酯80,HLB为15.0)和HLB值为1-10的表面活性剂(如去水山梨糖醇三油酸酯,HLB为1.8)。
最终乳液中油的含量(体积%)优选为2-20%,如5-15%、6-14%、7-13%、8-12%。约4-6%或约9-11%的角鲨烯含量特别有用。
最终乳液中角鲨烯的含量(重量%)优选在0.001%和8%之间。例如:聚氧乙烯去水山梨糖醇酯(如聚山梨酯80)0.2-4%,具体为0.4-0.6%、0.45-0.55%、约0.5%或1.5-2%、1.8-2.2%、1.9-2.1%、约2%、或0.85-0.95%、或约1%;去水山梨糖醇酯(如去水山梨糖醇三油酸酯)0.02-2%,具体约0.5%或约1%;辛基-或壬基苯氧基聚氧乙醇(如曲通X-100)0.001-0.1%,具体为0.005-0.02%;聚氧乙烯酯(如月桂醇聚醚9)0.1-8%,优选0.1-10%且具体为0.1-1%或约0.5%。
油和表面活性剂的绝对含量和其比例可在较广范围内变化而仍能形成乳液。技术人员可容易地改变组分的相对比例以获得需要的乳液,但油和表面活性剂常用4∶1-5∶1的重量比(油过量)。
确保乳液的免疫刺激活性的重要参数,特别是在大型动物中,是油滴尺寸(直径)。最有效的乳液液滴尺寸为亚微米范围。所述液滴尺寸适于为50-750nm。最常用的平均液滴尺寸小于250nm如小于200nm、小于150nm。平均液滴尺寸常用80-180nm。理想地,至少80%(数量)的乳液油滴直径小于250nm,且优选至少90%。测量乳液中平均液滴尺寸和尺寸分布的仪器可市售获得。这些通常使用动态光散射和/或单颗粒光学感应的技术如获自颗粒尺寸系统公司(ParticleSizingSystems)的AccusizerTM和NicompTM系列仪器(美国圣塔芭芭拉),或马文仪器公司(MalvernInstruments)的ZetasizerTM仪器(英国),或厚利巴公司(Horiba)的颗粒尺寸分布分析仪(ParticleSizeDistributionAnalyzerinstruments)(日本京都)。
理想地,液滴尺寸分布(数量)仅有一个最大值而不是两个最大值,即围绕平均值(模式)分布有单一液滴群。优选的乳液的多分散性<0.4如0.3、0.2或更小。
含亚微米液滴和窄尺寸分布的合适乳液可通过使用微流化获得。该技术通过几何学固定的通道以高压和高速推动输入流组分来降低油滴平均尺寸。这些流接触通道壁、室壁和彼此。造成的剪切力、冲击力和空化力使液滴尺寸变小。可重复微流化步骤直至得到的乳液含所需平均液滴尺寸和分布。
作为微流化的替代,加热法可用于引起相转化。这些方法还可提供颗粒尺寸分布紧密的亚微米乳液。
优选的乳液可过滤灭菌,即其液滴可穿过220nm滤器。除了提供灭菌,这个过程还去除所述乳液中的任何大液滴。
在某些实施方式中,所述乳液中的阳离子脂质是DOTAP。所述阳离子水包油乳液可含约0.5mg/ml-约25mg/ml的DOTAP。例如,所述阳离子水包油乳液包含的DOTAP可为约0.5mg/ml-约25mg/ml、约0.6mg/ml-约25mg/ml、约0.7mg/ml-约25mg/ml、约0.8mg/ml-约25mg/ml、约0.9mg/ml-约25mg/ml、约1.0mg/ml-约25mg/ml、约1.1mg/ml-约25mg/ml、约1.2mg/ml-约25mg/ml、约1.3mg/ml-约25mg/ml、约1.4mg/ml-约25mg/ml、约1.5mg/ml-约25mg/ml、约1.6mg/ml-约25mg/ml、约1.7mg/ml-约25mg/ml、约0.5mg/ml-约24mg/ml、约0.5mg/ml-约22mg/ml、约0.5mg/ml-约20mg/ml、约0.5mg/ml-约18mg/ml、约0.5mg/ml-约15mg/ml、约0.5mg/ml-约12mg/ml、约0.5mg/ml-约10mg/ml、约0.5mg/ml-约5mg/ml、约0.5mg/ml-约2mg/ml、约0.5mg/ml-约1.9mg/ml、约0.5mg/ml-约1.8mg/ml、约0.5mg/ml-约1.7mg/ml、约0.5mg/ml-约1.6mg/ml、约0.6mg/ml-约1.6mg/ml、约0.7mg/ml-约1.6mg/ml、约0.8mg/ml-约1.6mg/ml、约0.5mg/ml、约0.6mg/ml、约0.7mg/ml、约0.8mg/ml、约0.9mg/ml、约1.0mg/ml、约1.1mg/ml、约1.2mg/ml、约1.3mg/ml、约1.4mg/ml、约1.5mg/ml、约1.6mg/ml、约12mg/ml、约18mg/ml、约20mg/ml、约21.8mg/ml、约24mg/ml等。在一个示例性实施方式中,所述阳离子水包油乳液包含约0.8mg/ml-约1.6mg/mlDOTAP,如0.8mg/ml、1.2mg/ml、1.4mg/ml或1.6mg/ml。
在某些实施方式中,所述阳离子脂质为DC胆固醇。所述阳离子水包油乳液可含约0.1mg/ml-约5mg/ml的DC胆固醇。例如,所述阳离子水包油乳液包含的DC胆固醇可为约0.1mg/ml-约5mg/ml、约0.2mg/ml-约5mg/ml、约0.3mg/ml-约5mg/ml、约0.4mg/ml-约5mg/ml、约0.5mg/ml-约5mg/ml、约0.62mg/ml-约5mg/ml、约1mg/ml-约5mg/ml、约1.5mg/ml-约5mg/ml、约2mg/ml-约5mg/ml、约2.46mg/ml-约5mg/ml、约3mg/ml-约5mg/ml、约3.5mg/ml-约5mg/ml、约4mg/ml-约5mg/ml、约4.5mg/ml-约5mg/ml、约0.1mg/ml-约4.92mg/ml、约0.1mg/ml-约4.5mg/ml、约0.1mg/ml-约4mg/ml、约0.1mg/ml-约3.5mg/ml、约0.1mg/ml-约3mg/ml、约0.1mg/ml-约2.46mg/ml、约0.1mg/ml-约2mg/ml、约0.1mg/ml-约1.5mg/ml、约0.1mg/ml-约1mg/ml、约0.1mg/ml-约0.62mg/ml、约0.15mg/ml、约0.3mg/ml、约0.6mg/ml、约0.62mg/ml、约0.9mg/ml、约1.2mg/ml、约2.46mg/ml、约4.92mg/ml等。在一个示例性实施方式中,所述阳离子水包油乳液包含约0.62mg/ml-约4.92mg/mlDC胆固醇,如2.46mg/ml。
在某些实施方式中,所述阳离子脂质为DDA。所述阳离子水包油乳液可含约0.1mg/ml-约5mg/ml的DDA。例如,所述阳离子水包油乳液包含的DDA可为约0.1mg/ml-约5mg/ml、约0.1mg/ml-约4.5mg/ml、约0.1mg/ml-约4mg/ml、约0.1mg/ml-约3.5mg/ml、约0.1mg/ml-约3mg/ml、约0.1mg/ml-约2.5mg/ml、约0.1mg/ml-约2mg/ml、约0.1mg/ml-约1.5mg/ml、约0.1mg/ml-约1.45mg/ml、约0.2mg/ml-约5mg/ml、约0.3mg/ml-约5mg/ml、约0.4mg/ml-约5mg/ml、约0.5mg/ml-约5mg/ml、约0.6mg/ml-约5mg/ml、约0.73mg/ml-约5mg/ml、约0.8mg/ml-约5mg/ml、约0.9mg/ml-约5mg/ml、约1.0mg/ml-约5mg/ml、约1.2mg/ml-约5mg/ml、约1.45mg/ml-约5mg/ml、约2mg/ml-约5mg/ml、约2.5mg/ml-约5mg/ml、约3mg/ml-约5mg/ml、约3.5mg/ml-约5mg/ml、约4mg/ml-约5mg/ml、约4.5mg/ml-约5mg/ml、约1.2mg/ml、约1.45mg/ml等。或者,所述阳离子水包油乳液包含约20mg/ml、约21mg/ml、约21.5mg/ml、约21.6mg/ml、约25mg/mlDDA。在一个示例性实施方式中,所述阳离子水包油乳液包含约0.73mg/ml-约1.45mg/mlDDA,如1.45mg/ml。
导管或类似设备可用于将本发明的自复制RNA分子以裸露RNA或与递送系统组合递送到靶器官或组织。合适的导管在例如美国专利号4,186,745;5,397,307;5,547,472;5,674,192;和6,129,705中公开,其都通过引用纳入本文。
本发明包括使用合适的递送系统如包埋或吸收有自复制RNA的脂质体、聚合微粒或亚微米乳液微粒来递送编码RSV-F多肽的自复制RNA分子,以例如单独或结合其他大分子激发免疫应答。本发明包括吸收和/或包埋有自复制RNA分子的脂质体、微粒和亚微米乳液、及其组合。
如实施例中进一步证明,与脂质体和亚微米乳液微粒结合的自复制RNA分子可有效地递送到所述宿主细胞,且可引起针对所述自复制RNA编码的蛋白的免疫应答。
免疫原性组合物
本发明提供免疫原性组合物。所述免疫原性组合物可包括单一活性免疫原性剂或数种免疫原性剂。例如,所述免疫原性组合物可包括单一形式(如单体、三聚体或玫瑰花结)或两种或更多形式(如单体和三聚体的混合物或单体和三聚体之间的动态平衡)的RSVF多肽。所述免疫组合物可包括编码RSV-F多肽的自复制RNA,且优选还包括合适的递送系统如脂质体、多聚微粒、水包油乳液、及其组合。
本发明免疫原性组合物也可包含一种或多种免疫调节剂。一种或多种所述免疫调节剂优选包括一种或多种佐剂,例如两种、三种、四种或更多佐剂。佐剂可包括TH1佐剂和/或TH2佐剂,详述见下。
在另一个实施方式中,本发明的免疫原性组合物包含多肽,所述多肽展示RSV-F糖蛋白融合前或中间融合构型中存在的表位,但不展示所述糖蛋白的融合后构型。
在另一个实施方式中,本发明的免疫原性组合物包含第一多肽和第二多肽,其中所述第一多肽含完整或部分RSVF蛋白,且所述第二多肽含异源寡聚结构域。所述第一多肽可含RSVF蛋白胞外域。所述第二多肽可为来自流感血凝素的三聚结构域,来自SARS刺突的三聚结构域,来自HIVgp41、NadA、改良的GCN4、或ATCase的三聚结构域。
在一个方面,本发明是包含切割的RSVF蛋白胞外域多肽的组合物,其生成是如本文所述通过提供未切割的RSVF蛋白胞外域多肽或C末端未切割的RSVF蛋白胞外域多肽并切割它们以产生F1和F2亚基。
在另一个方面,本发明是包含未切割的RSVF蛋白胞外域多肽三聚体和/或单体的组合物,其生成是如本文所述通过提供含未切割的RSVF蛋白胞外域多肽的生物材料,并从所述生物材料中纯化未切割的RSVF蛋白胞外域多肽单体、未切割的三聚体或未切割的单体和未切割的三聚体的组合(如混合物或动态平衡)。在一些实施方式中,所述RSVF蛋白胞外域多肽在约106-109位和约133-136位含改变的弗林蛋白酶切割位置,且如果需要还可含改变的融合肽。在其他实施方式中,所述RSVF蛋白胞外域在约106-109位和约133-136位含改变的弗林蛋白酶切割位置,在约101位和约161位之间含改变的胰蛋白酶切割位置,且如果需要还可含改变的融合肽。
在另一个方面,本发明是包含C末端未切割的RSVF蛋白胞外域多肽三聚体和/或单体的组合物,其生成是如本文所述通过提供含C末端未切割的RSVF蛋白胞外域多肽的生物材料,并从所述生物材料中纯化未切割的RSVF蛋白胞外域多肽单体、未切割的三聚体或未切割的单体和未切割的三聚体的组合(如混合物或动态平衡)。
在另一个方面,本发明是包含切割的RSVF蛋白胞外域多肽的组合物,其生成是如本文所述通过提供含切割的RSVF蛋白胞外域多肽的生物材料,所述多肽含改变的融合肽(如至少部分所述融合肽缺失),并从所述生物材料中纯化切割的RSVF蛋白胞外域多肽三聚体。
在另一个方面,本发明是包含未切割的RSVF蛋白胞外域多肽的组合物,其生成是如本文所述通过提供含未切割的RSVF蛋白胞外域多肽的生物材料,所述多肽含改变的融合肽(如至少部分所述融合肽缺失),并从所述生物材料中纯化未切割的RSVF蛋白胞外域多肽单体。
本发明的组合物优选适于给予哺乳动物对象如人,且包括一种或多种药学上可接受的载体和/或赋形剂包括佐剂。对这类组分的充分讨论参见参考文献29。组合物通常是水性形式。当所述组合物是免疫原性组合物并给予哺乳动物如人时,其会引发免疫应答。所述免疫原性组合物可用于制备用于免疫哺乳动物的疫苗制剂。
所述免疫原性组合物可包括单一活性免疫原性剂或数种免疫原性剂。例如,所述RSVF蛋白胞外域多肽可为单一形式(如未切割单体、切割单体、未切割三聚体、切割三聚体或切割三聚体的玫瑰花结)或两种或更多形式(如未切割单体和未切割三聚体的混合物或未切割单体和未切割三聚体之间的动态平衡)。此外,所述组合物可包含RSVF蛋白胞外域多肽及一种或多种其他RSV蛋白(如G蛋白和/或M蛋白)和/或其可结合来自其他病原体的免疫原。
该组合物可含有防腐剂,如硫柳汞或2-苯氧乙醇。然而,疫苗优选应基本无(即小于5μg/ml)含汞物质,如不含硫柳汞。更优选无汞的免疫原性组合物。特别优选不含防腐剂的免疫原性组合物。
为了控制张度,优选包含生理性盐如钠盐。优选氯化钠(NaCl),其浓度可为1-20mg/ml。可以存在其它盐,包括氯化钾、磷酸二氢钾、二水合磷酸氢二钠、氯化镁、氯化钙等。
组合物的渗透压通常为200mOsm/kg-400mOsm/kg,优选为240-360mOsm/kg,更优选为290-310mOsm/kg。
组合物可含有一种或多种缓冲剂。常用缓冲剂包括:磷酸盐缓冲剂;Tris缓冲剂;硼酸盐缓冲剂;琥珀酸盐缓冲剂;组氨酸缓冲剂(具体是有氢氧化铝佐剂);或柠檬酸盐缓冲剂。包含的缓冲剂一般是5-20mM。组合物的pH通常为5.0-8.1,更常为6.0-8.0,例如6.5-7.5,或者7.0-7.8。因此,本发明方法可包括在包装前调整散装疫苗pH的步骤。
该组合物优选无菌。该组合物优选无热原,如每剂量含有<1EU(内毒素单位,标准量度),优选每剂量<0.1EU。该组合物优选不含谷蛋白。人疫苗的给药剂量体积一般为约0.5ml,但可将一半剂量(即约0.25ml)给予儿童。
佐剂
本发明的组合物含RSV-F多肽或编码RSV-F多肽的核酸,其还可包含一种或多种佐剂,例如2种、3种、4种或更多佐剂,所述佐剂可用于提高接受所述组合物的患者体内引发的免疫应答(体液和/或细胞)。所述佐剂可包括TH1佐剂和/或TH2佐剂。可以用于本发明组合物的佐剂包括但不限于:
●含矿物质的组合物。本发明中适合用作佐剂的含有矿物质的组合物包括矿物盐,例如钙盐和铝盐(或其混合物)。本发明包括无机盐,例如氢氧化物(如羟基氧化物)、磷酸盐(如羟磷酸盐、正磷酸盐)、硫酸盐等,或不同无机化合物的混合物,这些化合物可采用任何合适的形式(如凝胶、晶体、无定形等),优选具有吸附性。钙盐包括磷酸钙(如参考文献38公开的“CAP”颗粒)。铝盐包括氢氧化铝、磷酸铝、硫酸铝等,也可将含有矿物质的组合物制成金属盐的颗粒(39)。铝盐佐剂详述于下。
●油乳液组合物(详述见下)。适用作本发明佐剂的油乳液组合物包含角鲨烯-水乳液,如MF59(5%角鲨烯、0.5%吐温80和0.5%司盘85,用微流化床配制成亚微米颗粒)。
●细胞因子诱导剂(详述见下)。适用于本发明的细胞因子诱导剂包括toll样受体7(TLR7)激动剂(如WO2009/111337中公开的苯并萘啶化合物)。
●皂苷(参考文献74第22章)是在许多植物种类的树皮、叶、茎干、根甚至花中发现的甾醇糖苷和三萜糖苷的异质群。已广泛研究了作为佐剂的来自皂树(Quillaiasaponaria)Molina树皮的皂苷。皂苷也可购自丽花菝葜(Smilaxornata)(墨西哥菝葜)、满天星(Gypsophillapaniculata)(婚纱花)和肥皂草(Saponariaofficianalis)(皂根)。皂苷佐剂制剂包括纯化制剂如QS21,以及脂质制剂如ISCOM。QS21以STIMULON(TM)出售。已采用HPLC和RP-HPLC纯化皂苷组合物。已鉴定了用这些技术纯化的特定组分,包括QS7、QS17、QS18、QS21、QH-A、QH-B和QH-C。所述皂苷优选QS21。生产QS21的方法在参考文献40中公开。皂苷制剂也可以包含甾醇,如胆固醇(41)。皂苷和胆固醇的组合可用于形成称为免疫刺激复合物(ISCOM)的独特颗粒(参考文献74的第23章)。ISCOM通常还包含磷脂,如磷脂酰乙醇胺或磷脂酰胆碱。任何已知的皂苷均可用于ISCOM中。ISCOM优选包含QuilA、QHA和QHC中的一种或多种。参考文献41-43中进一步描述了ISCOM。41-43.任选地,所述ISCOM可以不含另外的去污剂(44)。关于开发基于皂苷的佐剂的综述可以参见参考文献45和46。
●脂肪佐剂(详见下)包括水包油乳液、源自肠细菌脂多糖的改良的天然脂质As、磷脂化合物(如合成磷脂二聚体,E6020)等。
●细菌ADP-核糖基化毒素(如大肠杆菌不耐热肠毒素″LT″、霍乱毒素″CT″或百日咳毒素″PT″)及其脱毒衍生物,如称为LT-K63和LT-R72的突变毒素(47)。参考文献48中描述了将脱毒的ADP-核糖基化毒素用作粘膜佐剂,参考文献49中描述了将其用作胃肠道外佐剂。
●生物粘附剂和粘膜粘附剂,如酯化透明质酸微球(50)或壳聚糖及其衍生物(51)。
●由可生物降解和无毒材料(例如聚(α-羟酸)、聚羟基丁酸、聚正酯、聚酐、聚己酸内酯等),优选丙交酯-乙交酯共聚物形成的微粒(即直径约100nm-150μm,更优选约200nm-30μm,或约500nm-10μm的颗粒),任选处理以具有带负电表面(如用SDS处理)或带正电表面(例如用阳离子去污剂如CTAB处理)。
●脂质体(参考文献74的第13和14章)。适用作佐剂的脂质体制剂的例子见参考文献52-54所述。
●·聚氧乙烯醚和聚氧乙烯酯制剂(55)。该类制剂还包括聚氧乙烯脱水山梨糖醇酯表面活性剂和辛苯糖醇的组合(56),以及聚氧乙烯烷基醚或酯表面活性剂和至少一种另外的非离子表面活性剂如辛苯糖醇的组合(57)。优选的聚氧乙烯醚选自下组:聚氧乙烯-9-月桂醚(月桂醇聚醚9)、聚氧乙烯-9-硬脂醚、聚氧乙烯-8-硬脂醚、聚氧乙烯-4-月桂醚、聚氧乙烯-35-月桂醚和聚氧乙烯-23-月桂醚。
●胞壁酰肽,例如N-乙酰胞壁酰-L-苏氨酰-D-异谷氨酰胺(thr-MDP)、N-乙酰-去甲胞壁酰-L-丙氨酰-D-异谷氨酰胺(去甲MDP)、N-乙酰葡萄糖胺酰-N-乙酰胞壁酰-L-Al-D-异谷氨酸-L-Ala-二棕榈酰丙酰胺(″DTP-DPP″或″TheramideTM″)和N-乙酰胞壁酰-L-丙氨酰-D-异谷氨酰胺酰-L-丙氨酸-2-(1′-2′-二棕榈酰-sn-甘油-3-羟基磷酰氧基)-乙胺(MTP-PE)。
●由第一种革兰氏阴性菌制备的外膜蛋白蛋白质体制剂与衍生自第二种革兰氏阴性菌脂多糖制剂的组合,其中外膜蛋白蛋白质体和脂多糖制剂形成稳定的非共价连接佐剂复合物。这类复合物包括″IVX-908″,它是由脑膜炎奈瑟球菌外膜和脂多糖组成的复合物。
●聚氧(polyoxidonium)聚合物(58,59)或其它N-氧化的聚乙烯-哌嗪衍生物。
●甲基肌苷5′-单磷酸酯(″MIMP″)(60)。
●多聚羟化吡咯双烷类化合物(61),如下式化合物:
其中,R选白:氢,直链或支链、未取代或取代、饱和或不饱和的酰基、烷基(如环烷基)、烯基、炔基和芳基或其药学上可接受的盐或衍生物。例子包括但不限于:木麻黄(casuarine)、木麻黄-6-α-D-吡喃葡萄糖、3-表-木麻黄、7-表-木麻黄、3,7-二表-木麻黄等。
●CD1配体,如α-糖基神经酰胺(62-69)(如α-半乳糖基神经酰胺)、含植物鞘氨醇的α-葡萄糖糖神经酰胺、OCH、KRN7000[(2S,3S,4R)-1-O-(α-D-吡喃半乳糖基)-2-(N-二十六烷酰氨基)-1,3,4-十八烷三醇、CRONY-101、3″-O-硫代-半乳糖基神经酰胺等等。
●γ菊糖(70)或其衍生物,如阿尔加穆林(algammulin)。
●病毒体和病毒样颗粒(VLP)。这些结构通常包含一种或多种任选与磷脂组合或一起配制的病毒蛋白质。其通常无病原性,不能复制,且通常不含任何天然病毒基因组。所述病毒蛋白可重组生成或分离自全病毒。这些适用于病毒体或VLP的病毒蛋白包括源自流感病毒(例如HA或NA)、乙肝病毒(例如核心蛋白或衣壳蛋白)、戊肝病毒、麻疹病毒、辛德比斯病毒、轮状病毒、口蹄疫病毒、逆转录病毒、诺沃克病毒、人乳头状瘤病毒、HIV、RNA-噬菌体、Qβ-噬菌体(如外壳蛋白)、GA-噬菌体、fr-噬菌体、AP205噬菌体和Ty(如反转录转座子Ty蛋白p1)的蛋白。
参考文献74和75中更详细地讨论了这些和其它佐剂活性物质。
组合物可包含2种、3种、4种或更多佐剂。例如,本发明的组合物可优选包括水包油乳剂和细胞因子诱导剂,或含矿物质的组合物和细胞因子诱导剂,或两种水包油乳液佐剂、或两种苯并萘啶化合物等。
组合物中的抗原和佐剂通常形成混合物。
油乳液佐剂
适用作本发明佐剂的油乳液组合物包含角鲨烯-水乳液,如MF59(5%角鲨烯、0.5%吐温80和0.5%司盘85,用微流化床配制成亚微米颗粒)。也可以使用完全弗氏佐剂(CFA)和不完全弗氏佐剂(IFA)。
已知各种水包油乳液,它们通常包括至少一种油和至少一种表面活性剂,所述油和表面活性剂是可生物降解(可代谢)和生物相容的。乳液中的油滴直径通常小于5μm,甚至可具有亚微米直径,通过微流化床实现这种小尺寸以提供稳定乳液。优选尺寸小于220nm的液滴,因为其可进行过滤灭菌。
本发明可使用的油诸如来自动物(如鱼)或植物的油。植物油的来源包括坚果、种籽和谷物。最常见的花生油、大豆油、椰子油和橄榄油是坚果油的示例。可以使用例如获自霍霍巴豆的霍霍巴油。种籽油包括红花油、棉花籽油、葵花籽油、芝麻籽油等。在谷物油中,最常见的是玉米油,但也可以使用其它谷类的油,如小麦、燕麦、黑麦、稻、画眉草、黑小麦等。可从坚果和种籽油开始,通过水解、分离和酯化合适物质制备甘油和1,2-丙二醇的6-10碳脂肪酸酯,其不是种籽油中天然产生。来自哺乳动物乳汁的脂肪和油类是可代谢的,因此可以用于实施本发明。获得动物来源纯油所必需的分离、纯化、皂化和其它方法的过程为本领域熟知。大多数鱼类含有容易回收的可代谢油。例如,鳕鱼肝油、鲨鱼肝油和诸如鲸蜡的鲸油是可以用于本发明的几种鱼油的示例。通过生化途径用5-碳异戊二烯单位合成许多支链油,其总称为萜类。鲨鱼肝油含有称为角鲨烯的支链不饱和萜类化合物,2,6,10,15,19,23-六甲基-2,6,10,14,18,22-二十四碳六烯,其为本文特别优选。角鲨烯的饱和类似物角鲨烷也是优选的油。包括角鲨烯和角鲨烷在内的鱼油,易于从商业来源获得,或可以通过本领域已知的方法获得。其它优选油是生育酚(见下)。可以使用油的混合物。
表面活性剂可以按其‘HLB’(亲水/亲脂平衡)分类。本发明优选的表面活性剂的HLB为至少10,优选至少15,更优选至少16。可以与本发明一起使用的表面活性剂包括但不限于:聚氧乙烯脱水山梨糖醇酯表面活性剂(通常称为吐温),特别是聚山梨酯20和聚山梨酯80;以商品名DOWFAX(TM)出售的环氧乙烷(EO)、环氧丙烷(PO)和/或环氧丁烷(BO)的共聚物,如直链EP/PO嵌段共聚物;重复的乙氧基(氧-1,2-乙二基)数量不同的辛苯聚醇,特别感兴趣的是辛苯聚醇9(曲通(Triton)X-100,或叔辛基苯氧基聚乙氧基乙醇);(辛基苯氧基)聚乙氧基乙醇(IGEPALCA-630/NP-40);磷脂,如磷脂酰胆碱(卵磷脂);壬酚乙醇酯,如TERGITOL(TM)NP系列;衍生自月桂醇、鲸蜡醇、硬脂醇和油醇的聚氧乙烯脂肪醚(称为苄泽(Brii)表面活性剂),如三甘醇单月桂基醚(苄泽30);以及脱水山梨糖醇酯(通常称为司盘(SPAN)),如脱水山梨糖醇三油酸酯(司盘85)和脱水山梨糖醇单月桂酸酯。优选非离子型表面活性剂。乳液中包含的表面活性剂优选吐温80(TM)(聚氧乙烯去水山梨糖醇单油酸酯)、司盘85(去水山梨糖醇三油酸酯)、卵磷脂和曲通X-100。
可使用表面活性剂的混合物,如吐温80(TM)/司盘85混合物。聚氧乙烯脱水山梨糖醇酯如聚氧乙烯脱水山梨糖醇单油酸酯(吐温80(TM))和辛苯聚醇如叔辛基苯氧基聚乙氧基乙醇(曲通X-100)的混合物也适用。另一种有用的组合包含月桂醇聚醚-9加聚氧乙烯去水山梨糖醇酯和/或辛苯聚醇。
优选的表面活性剂的含量(重量%)为:聚氧乙烯脱水山梨糖醇酯(如吐温80(TM))0.01-1%,特别是约0.1%;辛基-或壬基苯氧基聚氧乙醇(如曲通X-100或曲通系列的其它去污剂)0.001-0.1%,特别是0.005-0.02%;聚氧乙烯醚(如月桂醇聚醚9)0.1-20%,优选0.1-10%,特别是0.1-1%或约0.5%。
本发明所用的具体水包油乳液佐剂包括但不限于:
●角鲨烯、吐温80(TM)和司盘85的亚微米乳液。所述乳液的体积组成可以是约5%角鲨烯、约0.5%聚山梨酯80和约0.5%司盘85。以重量计,这些比例为4.3%鲨烯、0.5%聚山梨酯80和0.48%司盘85。这种佐剂称为‘MF59’[71-73],参考文献74的第10章和参考文献75的第12章有更详细的描述。MF59乳液宜包含柠檬酸根离子,如10mM柠檬酸钠缓冲液。
●角鲨烯、生育酚和吐温80(TM)的乳液。所述乳液可包含磷酸盐缓冲盐水。其还可包含司盘85(例如1%)和/或卵磷脂。这些乳液可含有2-10%角鲨烯、2-10%生育酚和0.3-3%吐温80(TM),角鲨烯∶生育酚的重量比优选<1,因为这能使乳液更稳定。角鲨烯和吐温80(TM)的体积比可约为5∶2。可通过下述方法制备一种此类乳液:将吐温80(TM)溶解于PBS得到2%溶液,然后将90ml该溶液与5gDL-α-生育酚和5ml角鲨烯的混合物混合,然后微流体化该混合物。得到的乳液可含有(如)平均直径为100-250nm,优选约180nm的亚微米油滴。
●角鲨烯、生育酚和曲通去污剂(如曲通X-100)的乳液。该乳液也可包含3d-MPL(见下)。所述乳液可包含磷酸盐缓冲液。
●含有聚山梨酯(如聚山梨酯80)、曲通去污剂(如曲通X-100)和生育酚(如琥珀酸α-生育酚)的乳液。该乳液可包含这三种组分,其质量比约为75∶11∶10(如750μg/ml聚山梨酯80、110μg/ml曲通X-100和100μg/ml琥珀酸α-生育酚),这些浓度应包括抗原中这些组分的贡献。所述乳液还可包含鲨烯。该乳液也可包含3d-MPL(见下)。所述水相可包含磷酸盐缓冲液。
●角鲨烷、聚山梨酯80和泊洛沙姆401(“普流罗尼克(TM)L121”)的乳液。所述乳液可用pH7.4的磷酸盐缓冲盐水配制。该乳液是一种有用的胞壁酰二肽递送载体,已与苏氨酰基-MDP一起用于“SAF-I”佐剂(0.05-1%Thr-MDP、5%鲨烯、2.5%普流罗尼克(Pluronic)L121和0.2%聚山梨酸酯80)中(76)。也可不与Thr-MDP一起使用,例如用“AF”佐剂(5%鲨烯、1.25%普流罗尼克L121和0.2%聚山梨酸酯80)(77)。优选微流体化。
●含有鲨烯、水性溶剂、聚氧乙烯烷基醚亲水性非离子型表面活性剂(如聚氧乙烯(12)十六十八醚)和疏水性非离子型表面活性剂(如去水山梨糖醇酯或二缩甘露醇酯,如去水山梨糖醇单油酸酯或‘司盘80’)的乳液。该乳液优选为热可逆的和/或其中至少90%油滴(以体积计)的尺寸小于200nm。该乳液也可含有以下一种或多种物质:糖醇;低温保护剂(例如,糖,如十二烷基麦芽苷和/或蔗糖);和/或烷基糖苷(alkylpolyglycoside)。这类乳液可冻干。
●含有0.5-50%油、0.1-10%磷脂和0.05-5%非离子型表面活性剂的乳液。如参考文献78所述,优选的磷脂组分是磷脂酰胆碱、磷脂酰乙醇胺、磷脂酰丝氨酸、磷脂酰肌醇、磷脂酰甘油、磷脂酸、鞘磷脂和心磷脂。优选亚微米液滴尺寸。
●不可代谢油(如轻质矿物油)和至少一种表面活性剂(如卵磷脂、吐温80(TM)或司盘80)的亚微米水包油乳液。可包含添加剂,例如QuilA皂苷、胆固醇、皂苷-亲脂体偶联物(如通过葡糖醛酸的羧基将脂族胺加到脱酰基皂苷上而产生的GPI-0100,如参考文献79所述)、二甲基双十八烷基溴化铵和/或N,N-双十八烷基-N,N-双(2-羟乙基)丙二胺。
●包含矿物油、非离子亲脂性乙氧基化脂肪醇和非离子亲水性表面活性剂(例如,乙氧基化脂肪醇和/或聚氧乙烯-聚氧丙烯嵌段共聚物)的乳液。
●包含矿物油、非离子亲水性乙氧基化脂肪醇和非离子亲脂性表面活性剂(例如,乙氧基化脂肪醇和/或聚氧乙烯-聚氧丙烯嵌段共聚物)的乳液。
●皂苷(如QuilA或QS21)和固醇(如胆固醇)结合成螺旋胶束的乳液(80)。
可以在递送时,将该乳液与抗原临时混合。因此,在包装或出售的疫苗中该佐剂和抗原可分开保存,使用时配制成最终制剂。所述抗原通常是水性形式,从而最终通过混合两种液体制备疫苗。所述两种液体的混合体积比可变(例如5∶1-1∶5),但通常约为1∶1。
细胞因子诱导剂
包含在本发明组合物中的细胞因子诱导剂在给予患者时能够引发免疫应答,以释放细胞因子,包括干扰素和白介素。优选的药剂可引发以下一种或多种物质的释放:干扰素-γ;白介素-1;白介素-2;白介素-12;TNF-α;TNF-β;和GM-CSF。优选的药剂可诱发与Th1-型免疫应答有关的细胞因子的释放,例如干扰素γ、TNFα、白介素2。优选刺激干扰素γ和白介素2。
因此,接受本发明组合物的结果是,用RSVF蛋白刺激时,患者会具有以抗原特异性方式释放所需细胞因子的T细胞。例如,由其血液纯化的T细胞在体外接触F蛋白时会释放γ-干扰素。测定外周血单核细胞(PBMC)中这种应答的方法是本领域已知的,这些方法包括ELISA,ELISPOT,流式细胞术和实时PCR。例如,参考文献81报道的研究监测针对破伤风类毒素的抗原特异性T细胞介导的免疫应答,特别是γ干扰素应答,发现ELISPOT是区别抗原特异性TT-诱导的应答与自发应答的灵敏度最高的方法,但流式细胞术检测胞质内细胞因子是测定重刺激效果的最有效方法。
合适的细胞因子诱导剂包括但不限于:
●免疫调节性寡核苷酸,如含有CpG基序的寡核苷酸(含有通过磷酸键连接于鸟嘌呤的未甲基化胞嘧啶的二核苷酸序列)、或双链RNA、或含有回文序列的寡核苷酸、或含有聚(dG)序列的寡核苷酸。
●3-O-去酰基单磷酰脂质A(“3dMPL”,也称为“MPL(TM)”)(82-85)。
●咪唑喹啉化合物,如IMIQUIMOD(TM)(″R-837″)(86-87)、RESIQUIMOD(TM)(″R-848″)(88)和其类似物;及其盐(如盐酸盐)。有关免疫刺激性咪唑喹啉的其它细节可参见参考文献89-93。
●苯并萘啶化合物,例如:(a)具有下式的化合物:
式中:
R4选自H、卤素、-C(O)OR7、-C(O)R7、-C(O)N(R11R12)、-N(R11R12)、-N(R9)2、-NHN(R9)2、-SR7、-(CH2)nOR7、-(CH2)nR7、-LR8、-LR10、-OLR8、-OLR10、C1-C6烷基、C1-C6杂烷基、C1-C6卤代烷基、C2-C8烯烃、C2-C8炔烃、C1-C6烷氧基、C1-C6卤代烷氧基、芳基、杂芳基、C3-C8环烷基和C3-C8杂环烷基,其中R4的C1-C6烷基、C1-C6杂烷基、C1-C6卤代烷基、C2-C8烯烃、C2-C8炔烃、C1-C6烷氧基、C1-C6卤代烷氧基、芳基、杂芳基、C3-C8环烷基和C3-C8杂环烷基各自任选由1-3个取代基取代,所述取代基独立地选自卤素、-CN、-NO2、-R7、-OR8、-C(O)R8、-OC(O)R8、-C(O)OR8、-N(R9)2、-P(O)(OR8)2、-OP(O)(OR8)2、-P(O)(OR10)2、-OP(O)(OR10)2、-C(O)N(R9)2、-S(O)2R8、-S(O)R8、-S(O)2N(R9)2和-NR9S(O)2R8
各L独立地选自键、-(O(CH2)m)t-、C1-C6烷基、C2-C6亚烯基和C2-C6亚炔基,其中L的C1-C6烷基、C2-C6亚烯基和C2-C6亚炔基各自可任选由1-4个取代基取代,所述取代基独立地选自卤素、-R8、-OR8、-N(R9)2、-P(O)(OR8)2、-OP(O)(OR8)2、-P(O)(OR10)2和-OP(O)(OR10)2
R7选自H、C1-C6烷基、芳基、杂芳基、C3-C8环烷基、C1-C6杂烷基、C1-C6卤代烷基、C2-C8烯烃、C2-C8炔烃、C1-C6烷氧基、C1-C6卤代烷氧基、C3-C8杂环烷基,其中R7的C1-C6烷基、芳基、杂芳基、C3-C8环烷基、C1-C6杂烷基、C1-C6卤代烷基、C2-C8烯烃、C2-C8炔烃、C1-C6烷氧基、C1-C6卤代烷氧基、C3-C8杂环烷基各自可任选由1-3个R13基团取代;
各R8独立地选自H、-CH(R10)2、C1-C8烷基、C2-C8烯烃、C2-C8炔烃、C1-C6卤代烷基、C1-C6烷氧基、C1-C6杂烷基、C3-C8环烷基、C2-C8杂环烷基、C1-C6羟基烷基和C1-C6卤代烷氧基,其中R8的C1-C8烷基、C2-C8烯烃、C2-C8炔烃、C1-C6杂烷基、C1-C6卤代烷基、C1-C6烷氧基、C3-C8环烷基、C2-C8杂环烷基、C1-C6羟基烷基和C1-C6卤代烷氧基各自可任选由1-3个取代基取代,所述取代基独立地选自-CN、R11、-OR11、-SR11、-C(O)R11、-OC(O)R11、-C(O)N(R9)2、-C(O)OR11、-NR9C(O)R11、-NR9R10、-NR11R12、-N(R9)2、-OR9、-OR10、-C(O)NR11R12、-C(O)NR11OH、-S(O)2R11、-S(O)R11、-S(O)2NR11R12、-NR11S(O)2R11、-P(O)(OR11)2和-OP(O)(OR11)2
各R9独立地选自H、-C(O)R8、-C(O)OR8、-C(O)R10、-C(O)OR10、-S(O)2R10、-C1-C6烷基、C1-C6杂烷基和C3-C6环烷基,或各R9独立为与所连N一起形成C3-C8杂环烷基的C1-C6烷基,其中所述C3-C8杂环烷基环可任选含有选自N、O和S的额外杂原子,且其中R9的C1-C6烷基、C1-C6杂烷基、C3-C6环烷基或C3-C8杂环烷基各可任选由1-3个取代基取代,所述取代基独立地选自-CN、R11、-OR11、-SR11、-C(O)R11、-OC(O)R11、-C(O)OR11、-NR11R12、-C(O)NR11R12、-C(O)NR11OH、-S(O)2R11、-S(O)R11、-S(O)2NR11R12、-NR11S(O)2R11、-P(O)(OR11)2和-OP(O)(OR11)2
各R10独立地选自芳基、C3-C8环烷基、C3-C8杂环烷基和杂芳基,其中所述芳基、C3-C8环烷基、C3-C8杂环烷基和杂芳基可任选由1-3个取代基取代,所述取代基选自卤素、-R8、-OR8、-LR9、-LOR9、-N(R9)2、-NR9C(O)R8、-NR9CO2R8、-CO2R8、-C(O)R8和-C(O)N(R9)2
R11和R12独立地选自H、C1-C6烷基、C1-C6杂烷基、C1-C6卤代烷基、芳基、杂芳基、C3-C8环烷基和C3-C8杂环烷基,其中R11和R12的C1-C6烷基、C1-C6杂烷基、C1-C6卤代烷基、芳基、杂芳基、C3-C8环烷基和C3-C8杂环烷基各自可任选由1-3个取代基取代,所述取代基独立地选自卤素、-CN、R8、-OR8、-C(O)R8、-OC(O)R8、-C(O)OR8、-N(R9)2、-NR8C(O)R8、-NR8C(O)OR8、-C(O)N(R9)2、C3-C8杂环烷基、-S(O)2R8、-S(O)2N(R9)2、-NR9S(O)2R8、C1-C6卤代烷基和C1-C6卤代烷氧基;
或者R11和R12各自独立为C1-C6烷基,并与所连接的N原子一起形成可任选取代的C3-C8杂环烷基环,该环可任选含有选自N、O和S的额外杂原子;
各R13独立地选自卤素、-CN、-LR9、-LOR9、-OLR9、-LR10、-LOR10、-OLR10、-LR8、-LOR8、-OLR8、-LSR8、-LSR10、-LC(O)R8、-OLC(O)R8、-LC(O)OR8、-LC(O)R10、-LOC(O)OR8、-LC(O)NR9R11、-LC(O)NR9R8、-LN(R9)2、-LNR9R8、-LNR9R10、-LC(O)N(R9)2、-LS(O)2R8、-LS(O)R8、-LC(O)NR8OH、-LNR9C(O)R8、-LNR9C(O)OR8、-LS(O)2N(R9)2、-OLS(O)2N(R9)2、-LNR9S(O)2R8、-LC(O)NR9LN(R9)2、-LP(O)(OR8)2、-LOP(O)(OR8)2、-LP(O)(OR10)2和-OLP(O)(OR10)2
各RA独立地选自-R8、-R7、-OR7、-OR8、-R10、-OR10、-SR8、-NO2、-CN、-N(R9)2、-NR9C(O)R8、-NR9C(S)R8、-NR9C(O)N(R9)2、-NR9C(S)N(R9)2、-NR9CO2R8、-NR9NR9C(O)R8、-NR9NR9C(O)N(R9)2、-NR9NR9CO2R8、-C(O)C(O)R8、-C(O)CH2C(O)R8、-CO2R8、-(CH2)nCO2R8、-C(O)R8、-C(S)R8、-C(O)N(R9)2、-C(S)N(R9)2、-OC(O)N(R9)2、-OC(O)R8、-C(O)N(OR8)R8、-C(NOR8)R8、-S(O)2R8、-S(O)3R8、-SO2N(R9)2、-S(O)R8、-NR9SO2N(R9)2、-NR9SO2R8、-P(O)(OR8)2、-OP(O)(OR8)2、-P(O)(OR10)2、-OP(O)(OR10)2、-N(OR8)R8、-CH=CHCO2R8、-C(=NH)-N(R9)2和-(CH2)nNHC(O)R8;或环A上的两个相邻RA取代基形成含最多两个杂原子作为环成员的5-6元环;
各n独立地为0、1、2、3、4、5、6、7或8;
各m独立地选自1、2、3、4、5和6,以及
t为1、2、3、4、5、6、7或8;(b)具有下式的化合物:
式中:
R4选自H、卤素、-C(O)OR7、-C(O)R7、-C(O)N(R11R12)、-N(R11R12)、-N(R9)2、-NHN(R9)2、-SR7、-(CH2)nOR7、-(CH2)nR7、-LR8、-LR10、-OLR8、-OLR10、C1-C6烷基、C1-C6杂烷基、C1-C6卤代烷基、C2-C8烯烃、C2-C8炔烃、C1-C6烷氧基、C1-C6卤代烷氧基、芳基、杂芳基、C3-C8环烷基和C3-C8杂环烷基,其中R4的C1-C6烷基、C1-C6杂烷基、C1-C6卤代烷基、C2-C8烯烃、C2-C8炔烃、C1-C6烷氧基、C1-C6卤代烷氧基、芳基、杂芳基、C3-C8环烷基和C3-C8杂环烷基各自任选由1-3个取代基取代,所述取代基独立地选自卤素、-CN、-NO2、-R7、-OR8、-C(O)R8、-OC(O)R8、-C(O)OR8、-N(R9)2、-P(O)(OR8)2、-OP(O)(OR8)2、-P(O)(OR10)2、-OP(O)(OR10)2、-C(O)N(R9)2、-S(O)2R8、-S(O)R8、-S(O)2N(R9)2和-NR9S(O)2R8
各L独立地选自键、-(O(CH2)m)t-、C1-C6烷基、C2-C6亚烯基和C2-C6亚炔基,其中L的C1-C6烷基、C2-C6亚烯基和C2-C6亚炔基各自可任选由1-4个取代基取代,所述取代基独立地选自卤素、-R8、-OR8、-N(R9)2、-P(O)(OR8)2、-OP(O)(OR8)2、-P(O)(OR10)2和-OP(O)(OR10)2
R7选自H、C1-C6烷基、芳基、杂芳基、C3-C8环烷基、C1-C6杂烷基、C1-C6卤代烷基、C2-C8烯烃、C2-C8炔烃、C1-C6烷氧基、C1-C6卤代烷氧基、C3-C8杂环烷基,其中R7的C1-C6烷基、芳基、杂芳基、C3-C8环烷基、C1-C6杂烷基、C1-C6卤代烷基、C2-C8烯烃、C2-C8炔烃、C1-C6烷氧基、C1-C6卤代烷氧基、C3-C8杂环烷基各自可任选由1-3个R13基团取代;
各R8独立地选自H、-CH(R10)2、C1-C8烷基、C2-C8烯烃、C2-C8炔烃、C1-C6卤代烷基、C1-C6烷氧基、C1-C6杂烷基、C3-C8环烷基、C2-C8杂环烷基、C1-C6羟基烷基和C1-C6卤代烷氧基,其中R8的C1-C8烷基、C2-C8烯烃、C2-C8炔烃、C1-C6杂烷基、C1-C6卤代烷基、C1-C6烷氧基、C3-C8环烷基、C2-C8杂环烷基、C1-C6羟基烷基和C1-C6卤代烷氧基各自可任选由1-3个取代基取代,所述取代基独立地选自-CN、R11、-OR11、-SR11、-C(O)R11、-OC(O)R11、-C(O)N(R9)2、-C(O)OR11、-NR9C(O)R11、-NR9R10、-NR11R12、-N(R9)2、-OR9、-OR10、-C(O)NR11R12、-C(O)NR11OH、-S(O)2R11、-S(O)R11、-S(O)2NR11R12、-NR11S(O)2R11、-P(O)(OR11)2和-OP(O)(OR11)2
各R9独立地选自H、-C(O)R8、-C(O)OR8、-C(O)R10、-C(O)OR10、-S(O)2R10、-C1-C6烷基、C1-C6杂烷基和C3-C6环烷基,或各R9独立为与所连N一起形成C3-C8杂环烷基的C1-C6烷基,其中所述C3-C8杂环烷基环可任选含有选自N、O和S的额外杂原子,且其中R9的C1-C6烷基、C1-C6杂烷基、C3-C6环烷基或C3-C8杂环烷基可任选由1-3个取代基取代,所述取代基独立地选自-CN、R11、-OR11、-SR11、-C(O)R11、-OC(O)R11、-C(O)OR11、-NR11R12、-C(O)NR11R12、-C(O)NR11OH、-S(O)2R11、-S(O)R11、-S(O)2NR11R12、-NR11S(O)2R11、-P(O)(OR11)2和-OP(O)(OR11)2
各R10独立地选自芳基、C3-C8环烷基、C3-C8杂环烷基和杂芳基,其中所述芳基、C3-C8环烷基、C3-C8杂环烷基和杂芳基可任选由1-3个取代基取代,所述取代基选自卤素、-R8、-OR8、-LR9、-LOR9、-N(R9)2、-NR9C(O)R8、-NR9CO2R8、-CO2R8、-C(O)R8和-C(O)N(R9)2
R11和R12独立地选自H、C1-C6烷基、C1-C6杂烷基、C1-C6卤代烷基、芳基、杂芳基、C3-C8环烷基和C3-C8杂环烷基,其中R11和R12的C1-C6烷基、C1-C6杂烷基、C1-C6卤代烷基、芳基、杂芳基、C3-C8环烷基和C3-C8杂环烷基各自可任选由1-3个取代基取代,所述取代基独立地选自卤素、-CN、R8、-OR8、-C(O)R8、-OC(O)R8、-C(O)OR8、-N(R9)2、-NR8C(O)R8、-NR8C(O)OR8、-C(O)N(R9)2、C3-C8杂环烷基、-S(O)2R8、-S(O)2N(R9)2、-NR9S(O)2R8、C1-C6卤代烷基和C1-C6卤代烷氧基;
或者R11和R12各自独立为C1-C6烷基,并与所连接的N原子一起形成可任选取代的C3-C8杂环烷基环,该环可任选含有选自N、O和S的额外杂原子;
各R13独立地选自卤素、-CN、-LR9、-LOR9、-OLR9、-LR10、-LOR10、-OLR10、-LR8、-LOR8、-OLR8、-LSR8、-LSR10、-LC(O)R8、-OLC(O)R8、-LC(O)OR8、-LC(O)R10、-LOC(O)OR8、-LC(O)NR9R11、-LC(O)NR9R8、-LN(R9)2、-LNR9R8、-LNR9R10、-LC(O)N(R9)2、-LS(O)2R8、-LS(O)R8、-LC(O)NR8OH、-LNR9C(O)R8、-LNR9C(O)OR8、-LS(O)2N(R9)2、-OLS(O)2N(R9)2、-LNR9S(O)2R8、-LC(O)NR9LN(R9)2、-LP(O)(OR8)2、-LOP(O)(OR8)2、-LP(O)(OR10)2和-OLP(O)(OR10)2
各RA独立地选自-R8、-R7、-OR7、-OR8、-R10、-OR10、-SR8、-NO2、-CN、-N(R9)2、-NR9C(O)R8、-NR9C(S)R8、-NR9C(O)N(R9)2、-NR9C(S)N(R9)2、-NR9CO2R8、-NR9NR9C(O)R8、-NR9NR9C(O)N(R9)2、-NR9NR9CO2R8、-C(O)C(O)R8、-C(O)CH2C(O)R8、-CO2R8、-(CH2)nCO2R8、-C(O)R8、-C(S)R8、-C(O)N(R9)2、-C(S)N(R9)2、-OC(O)N(R9)2、-OC(O)R8、-C(O)N(OR8)R8、-C(NOR8)R8、-S(O)2R8、-S(O)3R8、-SO2N(R9)2、-S(O)R8、-NR9SO2N(R9)2、-NR9SO2R8、-P(O)(OR8)2、-OP(O)(OR8)2、-P(O)(OR10)2、-OP(O)(OR10)2、-N(OR8)R8、-CH=CHCO2R8、-C(=NH)-N(R9)2和-(CH2)nNHC(O)R8
各n独立地为0、1、2、3、4、5、6、7或8;
各m独立地选自1、2、3、4、5和6,以及
t为1、2、3、4、5、6、7或8;或(c)任意(a)或(b)的药学上可接受的盐。其他苯并萘啶化合物和制备苯并萘啶化合物的方法描述于WO2009/111337。苯并萘啶化合物或其盐可单独使用,或者与一种或多种其它化合物联用。例如,苯并萘啶化合物可与水包油乳液或含矿物质的组合物联用。在具体的实施方式中,苯并萘啶化合物与水包油乳液(如角鲨烯-水乳液如MF59)或含矿物质的组合物(如无机盐如铝盐或钙盐)联用。
●缩氨基硫脲化合物,如参考文献94所述的化合物。参考文献94中也描述了配制、制备和筛选活性化合物的方法。缩氨基硫脲在刺激人外周血单核细胞产生细胞因子如TNF-α方面特别有效。
●色胺酮化合物,如参考文献95所述的化合物。参考文献95中也描述了配制、制备和筛选活性化合物的方法。缩氨基硫脲在刺激人外周血单核细胞产生细胞因子如TNF-α方面特别有效。
●核苷类似物,如(a)埃索他宾(Isatorabine)(ANA-245;7-硫杂-8-氧代鸟苷):
及其前药;(b)ANA975;(c)ANA-025-1;(d)ANA380;(e)参考文献96-98所述的化合物;(f)具有下式的化合物:
式中:
R1和R2各自独立地是氢、卤素、-NRaRb、-OH、C1-6烷氧基、取代的C1-6烷氧基、杂环基、取代的杂环基、C6-10芳基、取代的C6-10芳基、C1-6烷基或取代的C1-6烷基;
R3为缺失、H、C1-6烷基、取代的C1-6烷基、C6-10芳基、取代的C6-10芳基、杂环基或取代的杂环基;
R4和R5各自独立地是氢、卤素、杂环基、取代的杂环基、-C(O)-Rd、C1-6烷基、取代的C1-6烷基,或结合在一起形成5元环,如R4-5
所示的化学键处实现结合
X1和X2各自独立地是N、C、O或S;
R8是氢、卤素、-OH、C1-6烷基、C2-6烯基、C2-6炔基、-OH、-NRaRb、-(CH2)n-O-Rc、-O-(C1-6烷基)、-S(O)pRe或-C(O)-Rd
R9是氢、C1-6烷基、取代的C1-6烷基、杂环基、取代的杂环基或R9a,其中R9a是:
所示的化学键处实现结合
R10和R11各自独立地是氢、卤素、C1-6烷氧基、取代的C1-6烷氧基、-NRaRb或-OH;
Ra和Rb各自独立地是氢、C1-6烷基、取代的C1-6烷基、-C(O)Rd、C6-10芳基;
Rc各自独立地是氢、磷酸酯、二磷酸酯、三磷酸酯、C1-6烷基或取代的C1-6烷基;
Rd各自独立地是氢、卤素、C1-6烷基、取代的C1-6烷基、C1-6烷氧基、取代的C1-6烷氧基、-NH2、-NH(C1-6烷基)、-NH(取代的C1-6烷基)、-N(C1-6烷基)2、-N(取代的C1-6烷基)2、C6-10芳基或杂环基;
Re各自独立地是氢、C1-6烷基、取代的C1-6烷基、C6-10芳基、取代的C6-10芳基、杂环基或取代的杂环基;
Rf各自独立地是氢、C1-6烷基、取代的C1-6烷基、-C(O)Rd、磷酸酯、二磷酸酯或三磷酸酯基;
n各自独立地是0、1、2或3;
p各自独立地是0、1或2;或者
或(g)(a)-(f)中任一项的药学上可接受的盐,(a)-(f)中任一项的互变异构体,或互变异构体的药学上可接受的盐。
●洛索立宾(Loxoribine)(7-烯丙基-8-氧代鸟苷)(99)。
●参考文献100所述化合物,包括:酰基哌嗪化合物、吲哚二酮化合物、四氢异喹啉(THIQ)化合物、苯并环二酮化合物、氨基氮乙烯基化合物、氨基苯并咪唑喹啉酮(ABIQ)化合物(101,102),水合邻苯二甲酰亚胺(hydrapthalamide)化合物、苯并苯基酮化合物、异唑化合物、固醇化合物、喹唑啉酮(quinazilinone)化合物、吡咯化合物(103)、蒽醌化合物、喹喔啉化合物、三嗪化合物、吡唑嘧啶化合物和吲哚化合物(104)。
●参考文献105所述化合物。
●氨烷基氨基葡糖苷磷酸衍生物,如RC-529(106,107)。
●磷腈,如例如参考文献108和109中所述的聚[二(羧基苯氧基)磷腈](poly[di(carboxylatophenoxy)phosphazene])(“PCPP”)。
●小分子免疫增强剂(SMIP),例如:
N2-甲基-1-(2-甲基丙基)-1H-咪唑[4,5-c]喹啉-2,4-二胺;
N2,N2-二甲基-1-(2-甲基丙基)-1H-咪唑[4,5-c]喹啉-2,4-二胺;
N2-乙基-N2-甲基-1-(2-甲基丙基)-1H-咪唑[4,5-c]喹啉-2,4-二胺;
N2-甲基-1-(2-甲基丙基)-N2-丙基-1H-咪唑[4,5-c]喹啉-2,4-二胺;
1-(2-甲基丙基)-N2-丙基-1H-咪唑[4,5-c]喹啉-2,4-二胺;
N2-丁基-1-(2-甲基丙基)-1H-咪唑[4,5-c]喹啉-2,4-二胺;
N2-丁基-N2-甲基-1-(2-甲基丙基)-1H-咪唑[4,5-c]喹啉-2,4-二胺;
N2-甲基-1-(2-甲基丙基)-N2-戊基-1H-咪唑[4,5-c]喹啉-2,4-二胺;
N2-甲基-1-(2-甲基丙基)-N2-丙-2-烯基-1H-咪唑[4,5-c]喹啉-2,4-二胺;
1-(2-甲基丙基)-2-[(苯基甲基)硫]-1H-咪唑并[4,5-c]喹啉-4-胺;
1-(2-甲基丙基)-2-(丙硫基)-1H-咪唑[4,5-c]喹啉-4-胺;
2-[[4-氨基-1-(2-甲基丙基)-1H-咪唑[4,5-c]喹啉-2-基](甲基)氨基]乙醇;
2-[[4-氨基-1-(2-甲基丙基)-1H-咪唑[4,5-c]喹啉-2-基](甲基)氨基]乙酸乙酯;
4-氨基-1-(2-甲基丙基)-1,3-二氢-2H-咪唑[4,5-c]喹啉-2-酮;
N2-丁基-1-(2-甲基丙基)-N4,N4-双(苯基甲基)-1H-咪唑[4,5-c]喹啉-2,4-二胺;
N2-丁基-N2-甲基-1-(2-甲基丙基)-N4,N4-双(苯基甲基)-1H-咪唑[4,5-c]喹啉-2,4-二胺;
N2-甲基-1-(2-甲基丙基)-N4,N4-双(苯基甲基)-1H-咪唑[4,5-c]喹啉-2,4-二胺;
N2,N2-二甲基-1-(2-甲基丙基)-N4,N4-双(苯基甲基)-1H-咪唑并[4,5-c]喹啉-2,4-二胺;
1-[4-氨基-2-[甲基(丙基)氨基]-1H-咪唑[4,5-c]喹啉-1-基]-2-甲基丙-2-醇;
1-[4-氨基-2-(丙基氨基)-1H-咪唑[4,5-c]喹啉-1-基]-2-甲基丙-2-醇;
N4,N4-二苄基-1-(2-甲氧基-2-甲基丙基)-N2-丙基-1H-咪唑[4,5-c]喹啉-2,4-二胺。
用于本发明的细胞因子诱导剂可以是Toll样受体(TLR)的调节剂和/或激动剂。例如,它们可以是人TLR1、TLR2、TLR3、TLR4、TLR7、TLR8和/或TLR9蛋白中一种或多种的激动剂。优选的试剂为TLR4(如源自肠细菌脂多糖的改良的天然脂质As、磷脂化合物如合成磷脂二聚体,E6020)、TLR7(如苯并萘啶、咪唑喹啉)和/或TLR9(CpG寡核苷酸)的激动剂。这些药剂可用于激活先天性免疫途径。
可以在本发明组合物生产过程的各个阶段加入细胞因子诱导剂。例如,它可位于抗原组合物内,然后将该混合物加入到水包油乳液中。或者,它可位于水包油乳液中,在这种情况下,可将试剂在乳化之前加入乳液组分,或者可以在乳化之后加入乳液中。类似地,试剂可以凝聚在乳液滴中。细胞因子诱导剂在最终组合物中的位置和分布将取决于其亲水/亲脂特性,例如该药剂可位于水相、油相和/或油水界面上。
该细胞因子诱导剂可偶联于另一种药剂,如抗原(如CRM197)。参考文献110中提供了有关小分子偶联技术的综述。作为替代,佐剂可与其它药剂非共价结合,例如通过疏水作用或离子相互作用。
优选的细胞因子诱导剂是(a)苯并萘啶(benzonapthridine)化合物;(b)免疫刺激性寡核苷酸和(c)3dMPL。
免疫刺激性寡核苷酸可包含核苷酸修饰/类似物如硫代磷酸修饰,可以是双链或(除RNA外)单链。参考文献111、112和113公开了可能的类似物取代,例如用2′-脱氧-7-脱氮鸟苷取代鸟苷。参考文献114-119中进一步讨论了CpG寡核苷酸的佐剂作用。CpG序列可导向TLR9,例如基序GTCGTT或TTCGTT(120)。CpG序列可特异性诱导Th1免疫应答,例如CpG-AODN(寡脱氧核苷酸),或更特异地诱导B细胞应答,例如CpG-BODN。参考文献121-123中讨论了CpG-A和CpG-BODN。优选CpG为CpG-AODN。CpG寡核苷酸优选构建成5’末端可被受体识别。任选将两个CpG寡核苷酸序列的3’端相连接形成“免疫聚体”。参见例如,参考文献120和124-126。有用的CpG佐剂是CpG7909,也称为PROMUNE(TM)(科雷制药集团公司(ColeyPharmaceuticalGroup,Inc.))。
作为使用CpG序列的替代或除此之外,可使用TpG序列(127)。这些寡核苷酸可不含未甲基化的CpG基序。
免疫刺激性寡核苷酸可能富含嘧啶。例如,其可包含一个以上连续的胸腺嘧啶核苷酸(例如参考文献127公开的TTTT)且/或其核苷酸组成中可具有>25%的胸腺嘧啶(例如,>35%、>40%、>50%、>60%、>80%等)。例如,它可能含有一个以上连续的胞嘧啶核苷酸(例如,参考文献127所公开的CCCC),和/或它的核苷酸组成中可能含有>25%胞嘧啶(例如>35%、>40%、>50%、>60%、>80%等)。这些寡核苷酸可不含未甲基化的CpG基序。
免疫刺激性寡核苷酸通常包含至少20个核苷酸。其可包含少于100个核苷酸。
3dMPL(也称为3脱-O-酰化单磷酰脂质A或3-O-脱酰化4′-单磷酰脂质A)是单磷酰脂质A的还原性末端葡糖胺的3位脱酰化的佐剂。3dMPL可由明尼苏达沙门菌(Salmonellaminnesota)的无庚糖突变体制备,在化学上类似于脂质A,但缺少酸不稳定性磷酰基和碱不稳定性酰基。它能激活单核细胞/巨噬细胞谱系的细胞,并刺激释放数种细胞因子,包括IL-I、IL-12、TNF-α和GM-CSF(也参见参考文献128)。参考文献129最先描述了3dMPL的制备。
3dMPL可以取酰基化不同的相关分子(如具有3、4、5或6个酰基链,它们的长度可以不同)的混合物的形式。两个葡糖胺(也称为2-脱氧-2-氨基-葡萄糖)单糖在其2-位(即2和2′位)碳上N-酰基化,3′位上也有O-酰基化。连接于C2的基团具有下式:-NH-CO-CH2-CR1R1′。连接于C2′的基团具有下式:-NH-CO-CH2-CR2R2′。连接于C3′的基团具有下式:-O-CO-CH2-CR3R3′。代表性结构为:
基团R1、R2和R3各自独立地是-(CH2)n-CH3。n值优选为8-16,更优选为9-12,最优选为10。
基团R1′、R2′和R3′各自独立地是:(a)-H;(b)-OH;或(c)-O-CO-R4,其中R4是-H或-(CH2)m-CH3,其中m值优选为8-16,更优选为10、12或14。在2位上,m优选为14。在2′位上,m优选为10。在3′位上,m优选为12。因此基团R1′、R2′和R3′优选为来自十二烷酸、十四烷酸或十六烷酸的-O-酰基。
R1′、R2′和R3′均为-H时,3dMPL仅含有3条酰基链(2、2′和3′位上各有一条)。R1′、R2′和R3′中仅有两个是-H时,3dMPL可含有4条酰基链。R1′、R2′和R3′中仅有一个是-H时,3dMPL可含有5条酰基链。R1′、R2′和R3′中没有一个是-H时,3D-MPL可含有6条酰基链。本发明所用的3dMPL佐剂可以是含有3-6条酰基链的这些形式的混合物,但混合物中优选包含具有6条酰基链的3dMPL,具体说,保证6条酰基链的形式占3dMPL总重的至少10%,例如>20%、>30%、>40%、>50%或更多。发现具有6条酰基链的3dMPL是佐剂活性最高的形式。
因此,本发明组合物包含的3dMPL的最优选形式具有下式(IV)。
以混合物的形式使用3dMPL时,提到3dMPL在本发明组合物中的含量或浓度,是指混合物中的混合3dMPL物质。
在水性条件下,3dMPL可形成不同大小如直径<150nm或>500nm的胶束聚集体或颗粒。这些中的一种或两种可用于本发明,可通过常规试验选择较好的颗粒。本发明优选使用较小的颗粒(例如小到足以产生澄清的3dMPL水悬液),因为其具有优良的活性(130)。优选颗粒的平均直径小于220nm,更优选小于200nm或小于150nm或小于120nm,甚至平均直径小于100nm。然而在大多数情况下,所述平均直径不小于50nm。这些颗粒足够小,以便适合过滤除菌。可用揭示平均粒径的常规动态光散射技术评价粒径。据称颗粒的直径为xnm时,颗粒通常分布在此平均值附近,但至少50数量%(例如>60%、>70%、>80%、>90%或更多)颗粒的直径在x+25%的范围内。
3dMPL宜与水包油乳液联用。基本上所有3dMPL均位于该乳液的水相中。
3dMPL可以单独使用,或者与一种或多种其它化合物联用。例如,已知将3dMP与以下物质联用:QS21皂苷(131)(包含在水包油乳液中(132))、免疫刺激性寡核苷酸、QS21和免疫刺激性寡核苷酸、磷酸铝(133)、氢氧化铝(134)或磷酸铝和氢氧化铝。
脂肪佐剂
本发明可使用的脂肪佐剂包括上述水包油乳液,还包括例如:
●式I、II或III的磷脂化合物或其盐:
如参考文献135所述,例如‘ER803058’、‘ER803732’、‘ER804053’、ER804058’、‘ER804059’、‘ER804442’、‘ER804680’、‘ER804764’、ER803022或‘ER804057’,如:
ER804057还称为E6020。式I、II或III的磷脂化合物或其盐可单独使用,或者与一种或多种其它化合物联用。例如,式I、II或III的化合物可与水包油乳液或含矿物质的组合物联用。在具体的实施方式中,E6020与水包油乳液(如角鲨烯-水乳液如MF59)或含矿物质的组合物(如无机盐如铝盐或钙盐)联用。
●大肠杆菌(Escherichiacoli)如OM-174的脂质A的衍生物(如参考文献136和137所述)。
●阳离子脂质与(通常为中性)共脂质(co-lipid),如氨基丙基-二甲基-肉豆蔻烯酰氧基-溴化丙铵-二植酰基磷脂酰-乙醇胺(″VAXFECTIN(TM)″)或氨基丙基-二甲基-双十二烷基氧基-溴化丙铵-二油酰基磷脂酰-乙醇胺(″GAP-DLRIE:DOPE″)的制剂。优选含有(+)-N-(3-氨基丙基)-N,N-二甲基-2,3-双(顺-9-四癸烯氧基)-1-丙铵盐的制剂(138)。
●3-O-脱酰化单磷酰脂质A(见上)。
●含有连接于含磷酸无环主链的脂质的化合物,如TLR4拮抗剂E5564(139,140):
●脂肽(即含一种或多种脂肪酸残基和两种或更多氨基酸残基的化合物),如基于甘油半胱氨酸的脂肽。该肽的特定例子包括具有下式的化合物
其中R1和R2各代表具有8-30,优选11-21个碳原子的饱和或不饱和,脂族或混合的脂族-脂环族烃基,其也任选地由氧功能团取代,R3代表氢或基团R1-CO-O-CH2-,其中R1与上述相同,且X代表肽键结合的氨基酸,其含游离、酯化或酰胺化的羧基或末端羧基基团为游离、酯化或酰胺化的2-10个氨基酸的氨基酸序列。在某些实施方式中,所述氨基酸序列含D-氨基酸,例如D-谷氨酸(D-Glu)或D-γ-羧基-谷氨酸(D-Gla)。
细菌脂肽通常识别TLR2,不需要TLR6参与。(TLR协同操作以提供各种激发的特异识别,TLR2和TLR6一起识别肽聚糖,而TLR2识别脂肽但不需要TLR6。)这些有时分类为天然脂肽和合成脂肽。合成脂肽往往表现相似,且主要被TLR2识别。
适合用作佐剂的脂肽包括具有下式的化合物:
其中*标记的手性中心和***标记的都在R构型中;
**标记的手性中心在R或S构型中;
R1a和R1b各自独立为具有7-21个碳原子的脂族或脂环族-脂族烃基基团,任选由氧功能团取代,或者R1a和R1b之一但非全部是H;
R2是具有1-21个碳原子的脂族或脂环族烃基基团且任选由氧功能团取代;
n是0或1;
As代表-O-Kw-CO-或-NH-Kw-CO-,其中Kw是具有1-12碳原子的脂族烃基基团。
As1是D-或L-α-氨基酸;
Z1和Z2各自独立代表-OH或者氨基-(低级烷烃)-磺酸的D-或L-α-氨基酸N末端基团或选自D-和L-α氨基羧酸和氨基-低级烷基-磺酸的至多6氨基酸的肽的N末端基团;和
Z3为H或-CO-Z4,其中Z4为-OH或者氨基-(低级烷烃)-磺酸的D-或L-α-氨基酸N末端基团或选自D-和L-α氨基羧酸和氨基-低级烷基-磺酸的至多6氨基酸的肽的N末端基团;或从所述化合物的羧酸形成的酯或酰胺。合适的酰胺包含-NH2和NH(低级烷基),合适的酯包含C1-C4烷基酯。(本文所用的低级烷基或低级烷烃指C1-C6直连或支链烷基)。
所述化合物在US4,666,886中更详细描述。在一个具体实施方式中,所述脂肽具有式:
脂肽种类的另一示例称为LP40,且其是TLR2的激动剂。Akdis等,Eur.J.Immunology,33:2717-26(2003)。
这些涉及来自大肠杆菌的已知脂肽种类,称为胞壁质脂肽。这些蛋白的某些部分降解产物称为胞壁质脂肽,描述于Hantke等,Eur.J.Biochem.,34:284-296(1973)。这些包含连接N-乙酰胞壁酸的肽且因此涉及胞壁酰肽,描述于Baschang等,Tetrahedron,45(20):6331-6360(1989)。
铝盐佐剂
可采用称为“氢氧化铝”和“磷酸铝”的佐剂。这些名称是常规名称,但仅为方便使用,因为它们都不是所存在的实际化合物的准确描述(例如参见参考文献74的第9章)。本发明可采用通常用作佐剂的任何″氢氧化物″或″磷酸盐″佐剂。
称为″氢氧化铝″的佐剂一般是羟基氧化铝盐,其通常至少部分为晶体。羟基氧化铝以分子式AlO(OH)表示,其与其它铝化合物例如氢氧化铝Al(OH)3的区别在于红外(IR)光谱,特别是在1070cm-1处存在吸收带和在3090-3100cm-1处存在强烈的肩峰(参考文献74的第9章)。半峰高处衍射带的宽度(WHH)反映了氢氧化铝佐剂的结晶程度,结晶不佳的颗粒因晶体尺寸较小而显示更强的谱线增宽。表面积随WHH的增加而增加,WHH值较大的佐剂显示吸附抗原的能力较强。氢氧化铝佐剂呈典型的纤维形态(例如,由电子透射显微照片所见)。氢氧化铝佐剂的pI通常约11,即在生理pH下佐剂本身具有表面正电荷。据报道,pH7.4时,氢氧化铝佐剂的吸附容量为每mgAl+++1.8-2.6mg蛋白质。
称为″磷酸铝″的佐剂一般是羟基磷酸铝,也常常含有少量硫酸盐(即羟基磷酸硫酸铝)。可通过沉淀获得这些佐剂,沉淀期间的反应条件和浓度影响磷酸根取代所述盐中羟基的程度。羟基磷酸盐中PO4/Al摩尔比通常为0.3-1.2。羟基磷酸盐因存在羟基而有别于严格的AlPO4。例如,3164cm-1的IR光谱带(例如,当加热至200℃时)表明存在结构性羟基(参考文献74的第9章)。
磷酸铝佐剂的PO4/Al3+摩尔比通常为0.3-1.2,优选为0.8-1.2,更优选为0.95±0.1。磷酸铝通常是无定形的,尤其是羟基磷酸盐。典型的佐剂是PO4/Al摩尔比为0.84-0.92的无定形的羟基磷酸铝,包含0.6mgAl3+/ml。磷酸铝通常是颗粒(如在透射电子显微镜照片上观察到的板状形态)。抗原吸附后颗粒直径一般是0.5-20μm(如约5-10μm)。据报道,pH7.4时磷酸铝佐剂的吸附容量为0.7-1.5毫克蛋白质/毫克Al+++
磷酸铝的零电点(PZC)与磷酸对羟基的取代程度逆相关,这种取代程度的变化可能取决于用于沉淀制备盐的反应条件和反应物浓度。也通过改变溶液中游离磷酸根离子的浓度(更多磷酸根=更多酸性PZC)或加入缓冲剂如组氨酸缓冲剂(使PZC碱性更强)改变PZC。本发明所用的磷酸铝的PZC通常为4.0-7.0,更优选为5.0-6.5,例如约为5.7。
用于制备本发明组合物的铝盐悬浮液可以,但不一定含有缓冲液(如磷酸盐或组氨酸或Tris缓冲液)。该悬浮液优选无菌且无热原。悬浮液可含有游离的水性磷酸根离子,如存在浓度为1.0-20mM,优选5-15mM,更优选约10mM。该悬浮液也可含有氯化钠。
本发明可使用氢氧化铝和磷酸铝的混合物。在这种情况下,磷酸铝多于氢氧化铝,例如重量比为至少2∶1,例如,>5∶1、>6∶1、>7∶1、>8∶1、>9∶1等。
给予患者的组合物中Al+++的浓度优选小于10mg/ml,例如<5mg/ml、<4mg/ml、<3mg/ml、<2mg/ml、<1mg/ml等。优选范围是0.3-1mg/ml。优选最大值是0.85mg/剂。
除包含一种或多种铝盐佐剂外,佐剂组分还可包含一种或多种其它佐剂或免疫刺激剂。其它这类组分包括但不限于:苯并萘啶化合物,3-O-脱酰化单磷酰脂质A佐剂(′3d-MPL′);和/或水包油乳液。3dMPL也称为3脱-O-酰化单磷酰脂质A或3-O-脱酰化4′-单磷酰脂质A。该命名表明单磷酰脂质A的还原性末端葡糖胺的3位脱酰化。它是由明尼苏达沙门菌(S.minnesota)的无庚糖突变体制备,在化学上类似于脂质A,但缺少酸不稳定性磷酰基和碱不稳定性酰基。它能激活单核细胞/巨噬细胞谱系的细胞,并刺激释放数种细胞因子,包括IL-I、IL-12、TNF-α和GM-CSF。最初在参考文献129中描述了3d-MPL的制备,该产品由科雷莎公司(CorixaCorporation)生产并以商品名MPL(TM)出售。其它详情可参见参考文献82-85。
特别是在儿童中,使用氢氧化铝和/或磷酸铝佐剂有效,且抗原通常吸附于这些盐。也优选水包角鲨烯乳液,特别是在老年人中。有用的佐剂组合包括Th1和Th2佐剂的组合,如CpG和明矾或雷西莫特和明矾。可以使用磷酸铝和3dMPL的组合。其他可用的组合包括:明矾和苯并萘啶化合物或SMIP、水包角鲨烯乳液(如MF59)和苯并萘啶化合物或SMIP以及E6020和水包角鲨烯乳液(如MF59)或明矾。
本发明组合物可引起细胞介导的免疫应答以及体液免疫应答。
通常认为两种T细胞类型CD4和CD8细胞是启动和/或增强细胞介导免疫和体液免疫所必需的。CD8T细胞可表达CD8共受体,通常称为细胞毒性T淋巴细胞(CTL)。CD8T细胞能够识别MHCI型分子上展示的抗原或与之相互作用。
CD4T细胞可表达CD4共受体,通常称为T辅助细胞。CD4T细胞能够识别结合于MHCII型分子的抗原性肽。与MHCII型分子相互作用时,CD4细胞可分泌诸如细胞因子等因子。这些分泌的细胞因子可激活B细胞、细胞毒性T细胞、巨噬细胞和参与免疫应答的其它细胞。辅助T细胞或CD4+细胞可进一步分成两个功能不同的亚组:即细胞因子和效应功能不同的TH1表型和TH2表型。
活化的TH1细胞能增强细胞免疫(包括抗原特异性CTL生成增加),因而对响应胞内感染具有特定价值。活化的TH1细胞可分泌IL-2、IFN-γ和TNF-β中的一种或多种。TH1免疫应答可通过激活巨噬细胞、NK(自然杀伤)细胞和CD8细胞毒性T细胞(CTL)导致局部炎症反应。通过用IL-12刺激B和T细胞的生长,TH1免疫应答也可用于放大免疫应答。TH1刺激的B细胞可分泌IgG2a。
活化的TH2细胞提高抗体产量,因此对响应胞外感染具有价值。活化的TH2细胞可分泌IL-4、IL-5、IL-6和IL-10中的一种或多种。TH2免疫应答可引起生成IgG1、IgE、IgA和用于未来保护的记忆B细胞。
增强的免疫应答可包括增强的TH1免疫应答和TH2免疫应答中的一种或多种。
TH1免疫应答可包括一种或多种的CTL增加,与TH1免疫应答相关的一种或多种细胞因子(如IL-2、IFNγ和TNF-β)增加,活化巨噬细胞增加,NK活性增加,或者IgG2a产量增加。增强的TH1免疫应答优选包括IgG2a生成增加。
可使用TH1佐剂引发TH1免疫应答。相对于不用佐剂的抗原免疫,TH1佐剂通常引起IgG2a生成水平增加。适用于本发明的TH1佐剂可包括例如,皂苷制剂、病毒体和病毒样颗粒、肠细菌脂多糖(LPS)的无毒衍生物、免疫刺激性寡核苷酸。免疫刺激性寡核苷酸,如含有CpG基序的寡核苷酸是本发明所用的优选TH1佐剂。
TH2免疫应答可包括以下一种或多种:与TH2免疫应答相关的一种或多种细胞因子(如IL-4、IL-5、IL-6和IL-10)增加,或者IgG1、IgE、IgA和记忆B细胞生成增加。增强的TH2免疫应答优选包括IgG1产量增加。
可使用TH2佐剂引发TH2免疫应答。相对于不用佐剂的抗原免疫,TH2佐剂通常引起IgG1生成水平增加。适用于本发明的TH2佐剂包括例如,含矿物质组合物、油乳剂和ADP-核糖基化毒素和其脱毒衍生物。含矿物质组合物如铝盐是本发明使用的优选TH2佐剂。
组合物可包括TH1佐剂和TH2佐剂的组合。这种组合物优选引起增强的TH1和增强的TH2应答,即IgG1和IgG2a的生成相对于不用佐剂的免疫均有增加。更优选地,相对于用单一佐剂的免疫(即,相对于只用TH1佐剂的免疫或只用TH2佐剂的免疫),包含TH1和TH2佐剂组合的组合物引起TH1和/或TH2免疫应答增强。
所述免疫应答可以是TH1免疫应答和TH2免疫应答之一或两种。免疫应答优选提供增强的TH1应答和增强的TH2应答之一或两种。
增强的免疫应答可以是全身免疫应答和粘膜免疫应答之一或两种。该免疫应答优选提供增强的全身免疫应答和增强的粘膜免疫应答之一或两种。优选粘膜免疫应答为TH2免疫应答。粘膜免疫应答优选包括IgA生成增加。
治疗方法和给药
本发明组合物适合给予哺乳动物,且本发明提供了在哺乳动物中诱导免疫应答的方法,所述方法包括将本发明组合物(如免疫原性组合物)给予哺乳动物的步骤。所述组合物(如免疫原性组合物)可用于生成疫苗制剂以免疫哺乳动物。所述哺乳动物一般是人,且所述RSVF蛋白胞外域一般是人RSVF蛋白胞外域。然而,所述哺乳动物可为任何其他易于感染RSV的哺乳动物,如可感染牛RSV的牛。例如,所述免疫应答可在给予纯RSVF蛋白、α病毒颗粒或自复制RNA后产生。
本发明还提供本发明组合物用作药物,例如用于免疫患者抵御RSV感染。
本发明还提供上述多肽在生产引起患者免疫应答的药物中的应用。
这些方法和应用引起的免疫应答通常包括抗体应答,优选保护性抗体应答。评价RSV疫苗免疫后抗体应答的方法为本领域熟知。
本发明的组合物可以多种合适方式给予,如肌肉内注射(如入臂或腿中)、皮下注射、鼻内给药、口服给药、皮内给药、经皮给药、透皮给药等。给药的合适途径取决于所述动物的年龄、健康和其他特征。临床医生能基于这些和其他因素确定给药的合适途径。
免疫原组合物和疫苗制剂可用于治疗儿童和成年人,包括孕妇。因此,对象可小于1岁、1-5岁、5-15岁、15-55岁或至少55岁。接受所述疫苗的优选对象为老年人(如>50岁、>60岁且优选>65岁)、年轻人(如<6岁,如4-6岁、<5岁)和孕妇。然而所述疫苗不仅适用于这些人群,还可用于更广泛的人群。
可通过单剂量方案或多剂量方案进行治疗。多剂量可用于初免方案和/或加强免疫方案。在多剂量方案中,可通过相同或不同的途径如胃肠道外初次和粘膜加强、粘膜初次和胃肠道外加强等给予各剂量。对于首次免疫患者,给予一个以上的剂量(一般是两个剂量)特别有效。一般以至少1周(例如约2周、约3周、约4周、约6周、约8周、约10周、约12周、约16周等)的间隔给予多个剂量。
可在与其它疫苗基本相同的时间(例如在向医疗保健专业人员或疫苗接种中心的同一次医疗咨询或就诊期间),将用本发明组合物生产的疫苗制剂给予患者。
本发明其它方面
本发明还提供了含第一结构域和第二结构域的多肽(如重组多肽),其中(i)所述第一结构域含完整或部分RSVF糖蛋白胞外域,和(ii)所述第二结构域含异源寡聚化结构域。其它详情如上所述。如果所述寡聚化结构域含七残基序列(如上述来自GCN的序列),则其优选在具有所述胞外域HR2序列(如果有)的七残基重复相中。
本发明还提供编码该多肽的核酸(如DNA)。本发明还提供包含所述核酸的载体和包含所述载体的宿主细胞。所述载体可用于例如重组表达目的、核酸免疫等。
本发明还提供含包含RSVF糖蛋白胞外域的分子的组合物,其中所述分子至少50%(如50%、60%、70%、80%、85%、90%、95%或100%)的胞外域存在于融合前构型中。
其他病毒
除了使用人RSV,本发明还可使用肺炎病毒(Pneumoviridae)和副粘病毒(Paramyxoviridae)的其他成员,包括但不限于牛呼吸道合胞病毒(RSV)、副流感病毒1、副流感病毒2、副流感病毒3和副流感病毒5。
因此,本发明提供含来自肺炎病毒或副粘病毒的F糖蛋白的免疫原性组合物,其中所述F糖蛋白在融合前构型中。
本发明还提供含多肽的免疫原性组合物,所述多肽展示的表位存在于肺炎病毒或副粘病毒的F糖蛋白的融合前构型,但在所述糖蛋白的融合后构型中缺失。
本发明还提供了含第一结构域和第二结构域的多肽,其中(i)所述第一结构域含完整或部分肺炎病毒或副粘病毒的F糖蛋白胞外域,和(ii)所述第二结构域含异源寡聚化结构域。
本发明还提供这些多肽和组合物用于免疫接种等。
本发明还提供含包含RSVF糖蛋白胞外域的分子的组合物,其中所述分子至少50%(如50%、60%、70%、80%、85%、90%、95%或100%)的胞外域存在于融合前或中间构型中。
RSVF蛋白胞外域多肽
本发明的一些实施方式中使用或包括具体RSVF蛋白胞外域多肽。一些所述具体的RSVF蛋白胞外域多肽在约100位-约161位含改变的氨基酸序列。数种具体的RSVF蛋白胞外域多肽的100位-150位的氨基酸序列示于图1C。本文提供数种具体的RSVF蛋白胞外域多肽的氨基酸序列,如实施例1。
概述
术语“包含”涵盖“包括”以及“由...组成”和“主要由...组成”,例如,“包含”X的组合物可以仅由X组成或可以包括其它物质,例如X+Y。
术语“基本上”不排除“完全”,如“基本上不含”Y的组合物可能完全不含Y。必要时,术语“基本上”可从本发明定义中省略。
与数值x相关的术语“约”表示例如,x±10%。
除非另有说明,包括混合两种或多种组分的步骤的过程不要求任何特定的混合顺序。因此,组分可以任何顺序混合。在有三种组分时,可将两种组分相互合并,然后可将合并物再与第三种组分混合等。
将动物(具体是牛)材料用于培养细胞时,其应获自未患传染性海绵状脑病(TSE),具体是未患牛海绵状脑病(BSE)的来源。总之,优选在完全不含动物来源材料的情况下培养细胞。
在将化合物作为组合物的一部分给予机体时,该化合物可另外由合适的前药替代。
当细胞底物用于重组或反向遗传学方法时,优选批准用于人类疫苗生产的细胞底物,例如PhEur(《欧洲药典》)总纲5.2.3所述的细胞底物。
优选通过MPSRCH程序(牛津分子科技公司(OxfordMolecular))执行的Smith-Waterman同源性搜索算法,利用仿射缺口搜索测定多肽序列之间的相同性,其中参数为缺口开放罚分=12、缺口延伸罚分=1。
表1.磷脂
实施例
实施例1-RSVF多肽
本实施例提供多种多肽例子(如含信号序列)的序列和可用于表达本发明RSVF多肽核酸序列的核酸序列。列出的氨基酸序列包括所述信号肽且含任选的C末端接头和His标记(GGSAGSGHHHHHH(SEQIDNO:90))。在宿主细胞中生成这些多肽时,所述多肽通常被所述细胞加工以去除所述信号肽且如本文所述一些所述多肽会在例如未修饰的弗林蛋白酶切割位置被切割。本发明包括的组合物含本文所述所有形式的具体RSVF蛋白胞外域多肽,包括缺失所述信号肽的成熟形式、可切割为含F1和F2的亚基的形式以及缺失所述任选的C末端His标记的形式。以下实施例仅用于说明本发明的范围,因此并非旨在以任何方式限制该范围。
野生型弗林蛋白酶切割的示例为RSVF野生型截短HIS(SEQIDNO:84)。
可生产为单体的多肽示例包括:RSVFFurx(SEQIDNO:45);RSVF老furx截短HIS(SEQIDNO:88);RSVFFurxR113QK123NK124N截短HIS(SEQIDNO:89);RSVFdelp21furx截短HIS(SEQIDNO:47);和RSVFdelP23furx截短HIS(SEQIDNO:48)。
可生产为三聚体的多肽示例包括:RSVFN末端弗林蛋白酶截短HIS(SEQIDNO:85);RSVF融合缺失截短HIS(SEQIDNO:67);和RSVF融合缺失2截短HIS(SEQIDNO:68)。
可生产为单体或三聚体的玫瑰花结的多肽示例包括:RSVFfurmt截短HIS(SEQIDNO:50);RSVFfurdel截短HIS(SEQIDNO:51);RSVFdelP21furdel截短HIS(SEQIDNO:86);和RSVFdelP23furdel截短HIS(SEQIDNO:49),和RSVFXa因子截短HIS(SEQIDNO:52)。
可能产生玫瑰花结构成的野生型切割的示例为RSVFC末端弗林蛋白酶截短HIS(SEQIDNO:87)。
全长
下述多肽是全长RSVF多肽。
1MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIE
61LSNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTLN
121NAKKTNVTLSKKRKRRFLGFLLGVGSAIASGVAVSKVLHLEGEVNKIKSALLSTNKAVVS
181LSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLLEITREFSVN
241AGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYV
301VQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKV
361QSNRVFCDTMNSLTLPSEVNLCNVDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKT
421KCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQEGKSLYVKGEPIINFYDP
481LVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNIMITTIIIVIIVILLS
541LIAVGLLLYCKARSTPVTLSKDQLSGINNIAFSN(SEQIDNO:21)
下述核酸序列为上述多肽序列的优化编码序列。
1ATGGAACTGCTGATCCTGAAGGCCAACGCCATCACCACCATCCTGACCGCCGTGACCTTC
61TGCTTCGCCAGCGGCCAGAACATCACCGAGGAATTCTACCAGAGCACCTGCAGCGCCGTG
121AGCAAGGGCTACCTGAGCGCCCTGCGGACCGGCTGGTACACCAGCGTGATCACCATCGAG
181CTGTCCAACATCAAAGAAAACAAGTGCAACGGCACCGACGCCAAGGTGAAACTGATCAAG
241CAGGAACTGGACAAGTACAAGAACGCCGTGACCGAGCTGCAGCTGCTGATGCAGAGCACC
301CCCGCCACCAACAACCGGGCCAGAAGAGAGCTGCCCCGGTTCATGAACTACACCCTGAAC
361AACGCCAAGAAAACCAACGTGACCCTGAGCAAGAAGCGGAAGCGGCGGTTCCTGGGCTTC
421CTGCTGGGCGTGGGCAGCGCCATCGCCAGCGGGGTGGCCGTGTCCAAGGTGCTGCACCTG
481GAAGGCGAGGTGAACAAGATCAAGTCCGCCCTGCTGTCCACCAACAAGGCCGTGGTGTCC
541CTGAGCAACGGCGTGAGCGTGCTGACCAGCAAGGTGCTGGATCTGAAGAACTACATCGAC
601AAGCAGCTGCTGCCCATCGTGAACAAGCAGAGCTGCAGCATCAGCAACATCGAGACCGTG
661ATCGAGTTCCAGCAGAAGAACAACCGGCTGCTGGAAATCACCCGGGAGTTCAGCGTGAAC
721GCCGGCGTGACCACCCCCGTGAGCACCTACATGCTGACCAACAGCGAGCTGCTGTCCCTG
781ATCAATGACATGCCCATCACCAACGACCAGAAAAAGCTGATGAGCAACAACGTGCAGATC
841GTGCGGCAGCAGAGCTACTCCATCATGAGCATCATCAAAGAAGAGGTGCTGGCCTACGTG
901GTGCAGCTGCCCCTGTACGGCGTGATCGACACCCCCTGCTGGAAGCTGCACACCAGCCCC
961CTGTGCACCACCAACACCAAAGAGGGCAGCAACATCTGCCTGACCCGGACCGACCGGGGC
1021TGGTACTGCGACAACGCCGGCAGCGTGAGCTTCTTCCCCCAAGCCGAGACCTGCAAGGTG
1081CAGAGCAACCGGGTGTTCTGCGACACCATGAACAGCCTGACCCTGCCCTCCGAGGTGAAC
1141CTGTGCAACGTGGACATCTTCAACCCCAAGTACGACTGCAAGATCATGACCTCCAAGACC
1201GACGTGAGCAGCTCCGTGATCACCTCCCTGGGCGCCATCGTGAGCTGCTACGGCAAGACC
1261AAGTGCACCGCCAGCAACAAGAACCGGGGCATCATCAAGACCTTCAGCAACGGCTGCGAC
1321TACGTGAGCAACAAGGGCGTGGACACCGTGAGCGTGGGCAACACACTGTACTACGTGAAT
1381AAGCAGGAAGGCAAGAGCCTGTACGTGAAGGGCGAGCCCATCATCAACTTCTACGACCCC
1441CTGGTGTTCCCCAGCGACGAGTTCGACGCCAGCATCAGCCAGGTCAACGAGAAGATCAAC
1501CAGAGCCTGGCCTTCATCCGGAAGAGCGACGAGCTGCTGCACAATGTGAATGCCGGCAAG
1561AGCACCACCAATATCATGATCACCACAATCATCATCGTGATCATTGTGATCCTGCTGTCT
1621CTGATTGCCGTGGGCCTGCTGCTGTACTGCAAGGCCCGCAGCACCCCTGTGACCCTGTCC
1681AAGGACCAGCTGTCCGGCATCAACAATATCGCCTTCTCCAACTGAAG(SEQIDNO:22)
全长HIS
下述多肽包括全长RSVF多肽,然后是六组氨酸标记。
1MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIE
61LSNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTLN
121NAKKTNVTLSKKRKRRFLGFLLGVGSAIASGVAVSKVLHLEGEVNKIKSALLSTNKAVVS
181LSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLLEITREFSVN
241AGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYV
301VQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKV
361QSNRVFCDTMNSLTLPSEVNLCNVDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKT
421KCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQEGKSLYVKGEPIINFYDP
481LVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNIMITTIIIVIIVILLS
541LIAVGLLLYCKARSTPVTLSKDQLSGINNIAFSNSGGSAGSGHHHHHH(SEQIDNO:23)
下述核酸序列为上述多肽序列的优化编码序列。
1ATGGAACTGCTGATCCTGAAGGCCAACGCCATCACCACCATCCTGACCGCCGTGACCTTC
61TGCTTCGCCAGCGGCCAGAACATCACCGAGGAATTCTACCAGAGCACCTGCAGCGCCGTG
121AGCAAGGGCTACCTGAGCGCCCTGCGGACCGGCTGGTACACCAGCGTGATCACCATCGAG
181CTGTCCAACATCAAAGAAAACAAGTGCAACGGCACCGACGCCAAGGTGAAACTGATCAAG
241CAGGAACTGGACAAGTACAAGAACGCCGTGACCGAGCTGCAGCTGCTGATGCAGAGCACC
301CCCGCCACCAACAACCGGGCCAGAAGAGAGCTGCCCCGGTTCATGAACTACACCCTGAAC
361AACGCCAAGAAAACCAACGTGACCCTGAGCAAGAAGCGGAAGCGGCGGTTCCTGGGCTTC
421CTGCTGGGCGTGGGCAGCGCCATCGCCAGCGGGGTGGCCGTGTCCAAGGTGCTGCACCTG
481GAAGGCGAGGTGAACAAGATCAAGTCCGCCCTGCTGTCCACCAACAAGGCCGTGGTGTCC
541CTGAGCAACGGCGTGAGCGTGCTGACCAGCAAGGTGCTGGATCTGAAGAACTACATCGAC
601AAGCAGCTGCTGCCCATCGTGAACAAGCAGAGCTGCAGCATCAGCAACATCGAGACCGTG
661ATCGAGTTCCAGCAGAAGAACAACCGGCTGCTGGAAATCACCCGGGAGTTCAGCGTGAAC
721GCCGGCGTGACCACCCCCGTGAGCACCTACATGCTGACCAACAGCGAGCTGCTGTCCCTG
781ATCAATGACATGCCCATCACCAACGACCAGAAAAAGCTGATGAGCAACAACGTGCAGATC
841GTGCGGCAGCAGAGCTACTCCATCATGAGCATCATCAAAGAAGAGGTGCTGGCCTACGTG
901GTGCAGCTGCCCCTGTACGGCGTGATCGACACCCCCTGCTGGAAGCTGCACACCAGCCCC
961CTGTGCACCACCAACACCAAAGAGGGCAGCAACATCTGCCTGACCCGGACCGACCGGGGC
1021TGGTACTGCGACAACGCCGGCAGCGTGAGCTTCTTCCCCCAAGCCGAGACCTGCAAGGTG
1081CAGAGCAACCGGGTGTTCTGCGACACCATGAACAGCCTGACCCTGCCCTCCGAGGTGAAC
1141CTGTGCAACGTGGACATCTTCAACCCCAAGTACGACTGCAAGATCATGACCTCCAAGACC
1201GACGTGAGCAGCTCCGTGATCACCTCCCTGGGCGCCATCGTGAGCTGCTACGGCAAGACC
1261AAGTGCACCGCCAGCAACAAGAACCGGGGCATCATCAAGACCTTCAGCAACGGCTGCGAC
1321TACGTGAGCAACAAGGGCGTGGACACCGTGAGCGTGGGCAACACACTGTACTACGTGAAT
1381AAGCAGGAAGGCAAGAGCCTGTACGTGAAGGGCGAGCCCATCATCAACTTCTACGACCCC
1441CTGGTGTTCCCCAGCGACGAGTTCGACGCCAGCATCAGCCAGGTCAACGAGAAGATCAAC
1501CAGAGCCTGGCCTTCATCCGGAAGAGCGACGAGCTGCTGCACAATGTGAATGCCGGCAAG
1561AGCACCACCAATATCATGATCACCACAATCATCATCGTGATCATTGTGATCCTGCTGTCT
1621CTGATTGCCGTGGGCCTGCTGCTGTACTGCAAGGCCCGCAGCACCCCTGTGACCCTGTCC
1681AAGGACCAGCTGTCCGGCATCAACAATATCGCCTTCTCCAACAGCGGCGGCAGCGCCGGC
1741TCTGGCCACCACCACCATCACCACTGAAG(SEQIDNO:24)
全长前HIS
下述多肽包括全长RSVF多肽,GCN4的三聚化结构域(下划线)连接所述RSVF多肽的C末端,然后是六组氨酸标记。
1MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIE
61LSNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTLN
121NAKKTNVTLSKKRKRRFLGFLLGVGSAIASGVAVSKVLHLEGEVNKIKSALLSTNKAVVS
181LSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLLEITREFSVN
241AGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYV
301VQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKV
361QSNRVFCDTMNSLTLPSEVNLCNVDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKT
421KCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQEGKSLYVKGEPIINFYDP
481LVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNIMITTIIIVIIVILLS
541LIAVGLLLYCKARSTPVTLSKDQLSGINNIAFSNGSSGRMKQIEDKIEEILSKIYHIENE
601IARIKKLIGESGGSAGSGHHHHHH(SEQIDNO:25)
下述核酸序列为上述多肽序列的优化编码序列。
1ATGGAACTGCTGATCCTGAAGGCCAACGCCATCACCACCATCCTGACCGCCGTGACCTTC
61TGCTTCGCCAGCGGCCAGAACATCACCGAGGAATTCTACCAGAGCACCTGCAGCGCCGTG
121AGCAAGGGCTACCTGAGCGCCCTGCGGACCGGCTGGTACACCAGCGTGATCACCATCGAG
181CTGTCCAACATCAAAGAAAACAAGTGCAACGGCACCGACGCCAAGGTGAAACTGATCAAG
241CAGGAACTGGACAAGTACAAGAACGCCGTGACCGAGCTGCAGCTGCTGATGCAGAGCACC
301CCCGCCACCAACAACCGGGCCAGAAGAGAGCTGCCCCGGTTCATGAACTACACCCTGAAC
361AACGCCAAGAAAACCAACGTGACCCTGAGCAAGAAGCGGAAGCGGCGGTTCCTGGGCTTC
421CTGCTGGGCGTGGGCAGCGCCATCGCCAGCGGGGTGGCCGTGTCCAAGGTGCTGCACCTG
481GAAGGCGAGGTGAACAAGATCAAGTCCGCCCTGCTGTCCACCAACAAGGCCGTGGTGTCC
541CTGAGCAACGGCGTGAGCGTGCTGACCAGCAAGGTGCTGGATCTGAAGAACTACATCGAC
601AAGCAGCTGCTGCCCATCGTGAACAAGCAGAGCTGCAGCATCAGCAACATCGAGACCGTG
661ATCGAGTTCCAGCAGAAGAACAACCGGCTGCTGGAAATCACCCGGGAGTTCAGCGTGAAC
721GCCGGCGTGACCACCCCCGTGAGCACCTACATGCTGACCAACAGCGAGCTGCTGTCCCTG
781ATCAATGACATGCCCATCACCAACGACCAGAAAAAGCTGATGAGCAACAACGTGCAGATC
841GTGCGGCAGCAGAGCTACTCCATCATGAGCATCATCAAAGAAGAGGTGCTGGCCTACGTG
901GTGCAGCTGCCCCTGTACGGCGTGATCGACACCCCCTGCTGGAAGCTGCACACCAGCCCC
961CTGTGCACCACCAACACCAAAGAGGGCAGCAACATCTGCCTGACCCGGACCGACCGGGGC
1021TGGTACTGCGACAACGCCGGCAGCGTGAGCTTCTTCCCCCAAGCCGAGACCTGCAAGGTG
1081CAGAGCAACCGGGTGTTCTGCGACACCATGAACAGCCTGACCCTGCCCTCCGAGGTGAAC
1141CTGTGCAACGTGGACATCTTCAACCCCAAGTACGACTGCAAGATCATGACCTCCAAGACC
1201GACGTGAGCAGCTCCGTGATCACCTCCCTGGGCGCCATCGTGAGCTGCTACGGCAAGACC
1261AAGTGCACCGCCAGCAACAAGAACCGGGGCATCATCAAGACCTTCAGCAACGGCTGCGAC
1321TACGTGAGCAACAAGGGCGTGGACACCGTGAGCGTGGGCAACACACTGTACTACGTGAAT
1381AAGCAGGAAGGCAAGAGCCTGTACGTGAAGGGCGAGCCCATCATCAACTTCTACGACCCC
1441CTGGTGTTCCCCAGCGACGAGTTCGACGCCAGCATCAGCCAGGTCAACGAGAAGATCAAC
1501CAGAGCCTGGCCTTCATCCGGAAGAGCGACGAGCTGCTGCACAATGTGAATGCCGGCAAG
1561AGCACCACCAATATCATGATCACCACAATCATCATCGTGATCATTGTGATCCTGCTGTCT
1621CTGATTGCCGTGGGCCTGCTGCTGTACTGCAAGGCCCGCAGCACCCCTGTGACCCTGTCC
1681AAGGACCAGCTGTCCGGCATCAACAATATCGCCTTCTCCAACGGCAGCAGCGGCCGGATG
1741AAGCAGATCGAGGACAAGATCGAGGAAATCCTGAGCAAGATCTACCACATCGAGAACGAG
1801ATCGCCCGGATCAAGAAGCTGATCGGCGAAAGCGGCGGCTCTGCCGGAAGCGGCCACCAC
1861CACCATCACCACTGAAG(SEQIDNO:26)
全长前HIS2
下述多肽包括全长RSVF多肽,GCN4的三聚化结构域(下划线)连接所述RSVF多肽的C末端,然后是六组氨酸标记。
1MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIE
61LSNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTLN
121NAKKTNVTLSKKRKRRFLGFLLGVGSAIASGVAVSKVLHLEGEVNKIKSALLSTNKAVVS
181LSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLLEITREFSVN
241AGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYV
301VQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKV
361QSNRVFCDTMNSLTLPSEVNLCNVDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKT
421KCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQEGKSLYVKGEPIINFYDP
481LVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNIMITTIIIVIIVILLS
541LIAVGLLLYCKARSTPVTLSKDQLSGINNIAFSNGSSGSGRMKQIEDKIEEILSKIYHIE
601NEIARIKKLIGESGGSAGSGHHHHHH(SEQIDNO:27)
下述核酸序列为上述多肽序列的优化编码序列。
1ATGGAACTGCTGATCCTGAAGGCCAACGCCATCACCACCATCCTGACCGCCGTGACCTTC
61TGCTTCGCCAGCGGCCAGAACATCACCGAGGAATTCTACCAGAGCACCTGCAGCGCCGTG
121AGCAAGGGCTACCTGAGCGCCCTGCGGACCGGCTGGTACACCAGCGTGATCACCATCGAG
181CTGTCCAACATCAAAGAAAACAAGTGCAACGGCACCGACGCCAAGGTGAAACTGATCAAG
241CAGGAACTGGACAAGTACAAGAACGCCGTGACCGAGCTGCAGCTGCTGATGCAGAGCACC
301CCCGCCACCAACAACCGGGCCAGAAGAGAGCTGCCCCGGTTCATGAACTACACCCTGAAC
361AACGCCAAGAAAACCAACGTGACCCTGAGCAAGAAGCGGAAGCGGCGGTTCCTGGGCTTC
421CTGCTGGGCGTGGGCAGCGCCATCGCCAGCGGGGTGGCCGTGTCCAAGGTGCTGCACCTG
481GAAGGCGAGGTGAACAAGATCAAGTCCGCCCTGCTGTCCACCAACAAGGCCGTGGTGTCC
541CTGAGCAACGGCGTGAGCGTGCTGACCAGCAAGGTGCTGGATCTGAAGAACTACATCGAC
601AAGCAGCTGCTGCCCATCGTGAACAAGCAGAGCTGCAGCATCAGCAACATCGAGACCGTG
661ATCGAGTTCCAGCAGAAGAACAACCGGCTGCTGGAAATCACCCGGGAGTTCAGCGTGAAC
721GCCGGCGTGACCACCCCCGTGAGCACCTACATGCTGACCAACAGCGAGCTGCTGTCCCTG
781ATCAATGACATGCCCATCACCAACGACCAGAAAAAGCTGATGAGCAACAACGTGCAGATC
841GTGCGGCAGCAGAGCTACTCCATCATGAGCATCATCAAAGAAGAGGTGCTGGCCTACGTG
901GTGCAGCTGCCCCTGTACGGCGTGATCGACACCCCCTGCTGGAAGCTGCACACCAGCCCC
961CTGTGCACCACCAACACCAAAGAGGGCAGCAACATCTGCCTGACCCGGACCGACCGGGGC
1021TGGTACTGCGACAACGCCGGCAGCGTGAGCTTCTTCCCCCAAGCCGAGACCTGCAAGGTG
1081CAGAGCAACCGGGTGTTCTGCGACACCATGAACAGCCTGACCCTGCCCTCCGAGGTGAAC
1141CTGTGCAACGTGGACATCTTCAACCCCAAGTACGACTGCAAGATCATGACCTCCAAGACC
1201GACGTGAGCAGCTCCGTGATCACCTCCCTGGGCGCCATCGTGAGCTGCTACGGCAAGACC
1261AAGTGCACCGCCAGCAACAAGAACCGGGGCATCATCAAGACCTTCAGCAACGGCTGCGAC
1321TACGTGAGCAACAAGGGCGTGGACACCGTGAGCGTGGGCAACACACTGTACTACGTGAAT
1381AAGCAGGAAGGCAAGAGCCTGTACGTGAAGGGCGAGCCCATCATCAACTTCTACGACCCC
1441CTGGTGTTCCCCAGCGACGAGTTCGACGCCAGCATCAGCCAGGTCAACGAGAAGATCAAC
1501CAGAGCCTGGCCTTCATCCGGAAGAGCGACGAGCTGCTGCACAATGTGAATGCCGGCAAG
1561AGCACCACCAATATCATGATCACCACAATCATCATCGTGATCATTGTGATCCTGCTGTCT
1621CTGATTGCCGTGGGCCTGCTGCTGTACTGCAAGGCCCGCAGCACCCCTGTGACCCTGTCC
1681AAGGACCAGCTGTCCGGCATCAACAATATCGCCTTCTCCAACGGCAGCAGCGGCAGCGGC
1741CGGATGAAGCAGATCGAGGACAAGATCGAGGAAATCCTGAGCAAGATCTACCACATCGAG
1801AACGAGATCGCCCGGATCAAGAAGCTGATCGGCGAAAGCGGCGGCTCTGCCGGAAGCGGC
1861CACCACCACCATCACCACTGAAG(SEQIDNO:28)
胞外HIS
下述多肽包括RSVF多肽的胞外域,然后是六组氨酸标记。
1MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIE
61LSNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTLN
121NAKKTNVTLSKKRKRRFLGFLLGVGSAIASGVAVSKVLHLEGEVNKIKSALLSTNKAVVS
181LSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLLEITREFSVN
241AGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYV
301VQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKV
361QSNRVFCDTMNSLTLPSEVNLCNVDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKT
421KCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQEGKSLYVKGEPIINFYDP
481LVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNSGGSAGSGHHHHHH(SEQIDNO:29)
下述核酸序列为上述多肽序列的优化编码序列。
1ATGGAACTGCTGATCCTGAAGGCCAACGCCATCACCACCATCCTGACCGCCGTGACCTTC
61TGCTTCGCCAGCGGCCAGAACATCACCGAGGAATTCTACCAGAGCACCTGCAGCGCCGTG
121AGCAAGGGCTACCTGAGCGCCCTGCGGACCGGCTGGTACACCAGCGTGATCACCATCGAG
181CTGTCCAACATCAAAGAAAACAAGTGCAACGGCACCGACGCCAAGGTGAAACTGATCAAG
241CAGGAACTGGACAAGTACAAGAACGCCGTGACCGAGCTGCAGCTGCTGATGCAGAGCACC
301CCCGCCACCAACAACCGGGCCAGAAGAGAGCTGCCCCGGTTCATGAACTACACCCTGAAC
361AACGCCAAGAAAACCAACGTGACCCTGAGCAAGAAGCGGAAGCGGCGGTTCCTGGGCTTC
421CTGCTGGGCGTGGGCAGCGCCATCGCCAGCGGGGTGGCCGTGTCCAAGGTGCTGCACCTG
481GAAGGCGAGGTGAACAAGATCAAGTCCGCCCTGCTGTCCACCAACAAGGCCGTGGTGTCC
541CTGAGCAACGGCGTGAGCGTGCTGACCAGCAAGGTGCTGGATCTGAAGAACTACATCGAC
601AAGCAGCTGCTGCCCATCGTGAACAAGCAGAGCTGCAGCATCAGCAACATCGAGACCGTG
661ATCGAGTTCCAGCAGAAGAACAACCGGCTGCTGGAAATCACCCGGGAGTTCAGCGTGAAC
721GCCGGCGTGACCACCCCCGTGAGCACCTACATGCTGACCAACAGCGAGCTGCTGTCCCTG
781ATCAATGACATGCCCATCACCAACGACCAGAAAAAGCTGATGAGCAACAACGTGCAGATC
841GTGCGGCAGCAGAGCTACTCCATCATGAGCATCATCAAAGAAGAGGTGCTGGCCTACGTG
901GTGCAGCTGCCCCTGTACGGCGTGATCGACACCCCCTGCTGGAAGCTGCACACCAGCCCC
961CTGTGCACCACCAACACCAAAGAGGGCAGCAACATCTGCCTGACCCGGACCGACCGGGGC
1021TGGTACTGCGACAACGCCGGCAGCGTGAGCTTCTTCCCCCAAGCCGAGACCTGCAAGGTG
1081CAGAGCAACCGGGTGTTCTGCGACACCATGAACAGCCTGACCCTGCCCTCCGAGGTGAAC
1141CTGTGCAACGTGGACATCTTCAACCCCAAGTACGACTGCAAGATCATGACCTCCAAGACC
1201GACGTGAGCAGCTCCGTGATCACCTCCCTGGGCGCCATCGTGAGCTGCTACGGCAAGACC
1261AAGTGCACCGCCAGCAACAAGAACCGGGGCATCATCAAGACCTTCAGCAACGGCTGCGAC
1321TACGTGAGCAACAAGGGCGTGGACACCGTGAGCGTGGGCAACACACTGTACTACGTGAAT
1381AAGCAGGAAGGCAAGAGCCTGTACGTGAAGGGCGAGCCCATCATCAACTTCTACGACCCC
1441CTGGTGTTCCCCAGCGACGAGTTCGACGCCAGCATCAGCCAGGTCAACGAGAAGATCAAC
1501CAGAGCCTGGCCTTCATCCGGAAGAGCGACGAGCTGCTGCACAATGTGAATAGCGGCGGC
1561AGCGCCGGCTCTGGCCACCACCACCATCACCACTGAAG(SEQIDNO:30)
胞外前HIS
下述多肽包括RSVF多肽的胞外域,GCN4的三聚化结构域(下划线)插入上游的所述RSVF多肽,其中所述RSV蛋白的TM结构域(起始于氨基酸517)后是六组氨酸标记。
1MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIE
61LSNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTLN
121NAKKTNVTLSKKRKRRFLGFLLGVGSAIASGVAVSKVLHLEGEVNKIKSALLSTNKAVVS
181LSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLLEITREFSVN
241AGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYV
301VQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKV
361QSNRVFCDTMNSLTLPSEVNLCNVDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKT
421KCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQEGKSLYVKGEPIINFYDP
481LVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNDKIEEILSKIYHIENEIARIKKL
541IGESGGSAGSGHHHHHH(SEQIDNO:31)
下述核酸序列为上述多肽序列的优化编码序列。
1ATGGAACTGCTGATCCTGAAGGCCAACGCCATCACCACCATCCTGACCGCCGTGACCTTC
61TGCTTCGCCAGCGGCCAGAACATCACCGAGGAATTCTACCAGAGCACCTGCAGCGCCGTG
121AGCAAGGGCTACCTGAGCGCCCTGCGGACCGGCTGGTACACCAGCGTGATCACCATCGAG
181CTGTCCAACATCAAAGAAAACAAGTGCAACGGCACCGACGCCAAGGTGAAACTGATCAAG
241CAGGAACTGGACAAGTACAAGAACGCCGTGACCGAGCTGCAGCTGCTGATGCAGAGCACC
301CCCGCCACCAACAACCGGGCCAGAAGAGAGCTGCCCCGGTTCATGAACTACACCCTGAAC
361AACGCCAAGAAAACCAACGTGACCCTGAGCAAGAAGCGGAAGCGGCGGTTCCTGGGCTTC
421CTGCTGGGCGTGGGCAGCGCCATCGCCAGCGGGGTGGCCGTGTCCAAGGTGCTGCACCTG
481GAAGGCGAGGTGAACAAGATCAAGTCCGCCCTGCTGTCCACCAACAAGGCCGTGGTGTCC
541CTGAGCAACGGCGTGAGCGTGCTGACCAGCAAGGTGCTGGATCTGAAGAACTACATCGAC
601AAGCAGCTGCTGCCCATCGTGAACAAGCAGAGCTGCAGCATCAGCAACATCGAGACCGTG
661ATCGAGTTCCAGCAGAAGAACAACCGGCTGCTGGAAATCACCCGGGAGTTCAGCGTGAAC
721GCCGGCGTGACCACCCCCGTGAGCACCTACATGCTGACCAACAGCGAGCTGCTGTCCCTG
781ATCAATGACATGCCCATCACCAACGACCAGAAAAAGCTGATGAGCAACAACGTGCAGATC
841GTGCGGCAGCAGAGCTACTCCATCATGAGCATCATCAAAGAAGAGGTGCTGGCCTACGTG
901GTGCAGCTGCCCCTGTACGGCGTGATCGACACCCCCTGCTGGAAGCTGCACACCAGCCCC
961CTGTGCACCACCAACACCAAAGAGGGCAGCAACATCTGCCTGACCCGGACCGACCGGGGC
1021TGGTACTGCGACAACGCCGGCAGCGTGAGCTTCTTCCCCCAAGCCGAGACCTGCAAGGTG
1081CAGAGCAACCGGGTGTTCTGCGACACCATGAACAGCCTGACCCTGCCCTCCGAGGTGAAC
1141CTGTGCAACGTGGACATCTTCAACCCCAAGTACGACTGCAAGATCATGACCTCCAAGACC
1201GACGTGAGCAGCTCCGTGATCACCTCCCTGGGCGCCATCGTGAGCTGCTACGGCAAGACC
1261AAGTGCACCGCCAGCAACAAGAACCGGGGCATCATCAAGACCTTCAGCAACGGCTGCGAC
1321TACGTGAGCAACAAGGGCGTGGACACCGTGAGCGTGGGCAACACACTGTACTACGTGAAT
1381AAGCAGGAAGGCAAGAGCCTGTACGTGAAGGGCGAGCCCATCATCAACTTCTACGACCCC
1441CTGGTGTTCCCCAGCGACGAGTTCGACGCCAGCATCAGCCAGGTCAACGAGAAGATCAAC
1501CAGAGCCTGGCCTTCATCCGGAAGAGCGACGAGCTGCTGCACAATGTGAATGACAAGATC
1561GAGGAAATCCTGAGCAAGATCTACCACATCGAGAACGAGATCGCCCGGATCAAGAAGCTG
1621ATCGGCGAAAGCGGCGGCTCTGCCGGAAGCGGCCACCACCACCATCACCACTGAAG(SEQIDNO:32)
全长前HAHIS
下述多肽包括全长RSVF多肽,流感血凝素多肽的融合后三聚化结构域(下划线)连接所述RSVF多肽的C末端,然后是六组氨酸标记。
1MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIE
61LSNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTLN
121NAKKTNVTLSKKRKRRFLGFLLGVGSAIASGVAVSKVLHLEGEVNKIKSALLSTNKAVVS
181LSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLLEITREFSVN
241AGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYV
301VQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKV
361QSNRVFCDTMNSLTLPSEVNLCNVDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKT
421KCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQEGKSLYVKGEPIINFYDP
481LVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNIMITTIIIVIIVILLS
541LIAVGLLLYCKARSTPVTLSKDQLSGINNIAFSNGSSGNEKFHQIEKEFSEVEGRIQDLE
601GACTAGATCTGGGTCAAGGCAGAAGAATTCCGCC(SEQIDNO:33)
下述核酸序列为上述多肽序列的优化编码序列。
1ATGGAACTGCTGATCCTGAAGGCCAACGCCATCACCACCATCCTGACCGCCGTGACCTTC
61TGCTTCGCCAGCGGCCAGAACATCACCGAGGAATTCTACCAGAGCACCTGCAGCGCCGTG
121AGCAAGGGCTACCTGAGCGCCCTGCGGACCGGCTGGTACACCAGCGTGATCACCATCGAG
181CTGTCCAACATCAAAGAAAACAAGTGCAACGGCACCGACGCCAAGGTGAAACTGATCAAG
241CAGGAACTGGACAAGTACAAGAACGCCGTGACCGAGCTGCAGCTGCTGATGCAGAGCACC
301CCCGCCACCAACAACCGGGCCAGAAGAGAGCTGCCCCGGTTCATGAACTACACCCTGAAC
361AACGCCAAGAAAACCAACGTGACCCTGAGCAAGAAGCGGAAGCGGCGGTTCCTGGGCTTC
421CTGCTGGGCGTGGGCAGCGCCATCGCCAGCGGGGTGGCCGTGTCCAAGGTGCTGCACCTG
481GAAGGCGAGGTGAACAAGATCAAGTCCGCCCTGCTGTCCACCAACAAGGCCGTGGTGTCC
541CTGAGCAACGGCGTGAGCGTGCTGACCAGCAAGGTGCTGGATCTGAAGAACTACATCGAC
601AAGCAGCTGCTGCCCATCGTGAACAAGCAGAGCTGCAGCATCAGCAACATCGAGACCGTG
661ATCGAGTTCCAGCAGAAGAACAACCGGCTGCTGGAAATCACCCGGGAGTTCAGCGTGAAC
721GCCGGCGTGACCACCCCCGTGAGCACCTACATGCTGACCAACAGCGAGCTGCTGTCCCTG
781ATCAATGACATGCCCATCACCAACGACCAGAAAAAGCTGATGAGCAACAACGTGCAGATC
841GTGCGGCAGCAGAGCTACTCCATCATGAGCATCATCAAAGAAGAGGTGCTGGCCTACGTG
901GTGCAGCTGCCCCTGTACGGCGTGATCGACACCCCCTGCTGGAAGCTGCACACCAGCCCC
961CTGTGCACCACCAACACCAAAGAGGGCAGCAACATCTGCCTGACCCGGACCGACCGGGGC
1021TGGTACTGCGACAACGCCGGCAGCGTGAGCTTCTTCCCCCAAGCCGAGACCTGCAAGGTG
1081CAGAGCAACCGGGTGTTCTGCGACACCATGAACAGCCTGACCCTGCCCTCCGAGGTGAAC
1141CTGTGCAACGTGGACATCTTCAACCCCAAGTACGACTGCAAGATCATGACCTCCAAGACC
1201GACGTGAGCAGCTCCGTGATCACCTCCCTGGGCGCCATCGTGAGCTGCTACGGCAAGACC
1261AAGTGCACCGCCAGCAACAAGAACCGGGGCATCATCAAGACCTTCAGCAACGGCTGCGAC
1321TACGTGAGCAACAAGGGCGTGGACACCGTGAGCGTGGGCAACACACTGTACTACGTGAAT
1381AAGCAGGAAGGCAAGAGCCTGTACGTGAAGGGCGAGCCCATCATCAACTTCTACGACCCC
1441CTGGTGTTCCCCAGCGACGAGTTCGACGCCAGCATCAGCCAGGTCAACGAGAAGATCAAC
1501CAGAGCCTGGCCTTCATCCGGAAGAGCGACGAGCTGCTGCACAATGTGAATGCCGGCAAG
1561AGCACCACCAATATCATGATCACCACAATCATCATCGTGATCATTGTGATCCTGCTGTCT
1621CTGATTGCCGTGGGCCTGCTGCTGTACTGCAAGGCCCGCAGCACCCCTGTGACCCTGTCC
1681AAGGACCAGCTGTCCGGCATCAACAATATCGCCTTCTCCAACGGCAGCAGCGGCAATGAG
1741AAGTTCCACCAGATCGAGAAAGAATTCAGCGAGGTGGAGGGCCGGATCCAGGACCTGGAA
1801AAGAGCGGCGGCTCTGCCGGAAGCGGCCACCACCACCATCACCACTGAAG(SEQIDNO:34)
胞外前HAHIS
下述多肽包括RSVF多肽的胞外域,流感血凝素多肽的融合后三聚化结构域(下划线)插入上游的所述RSVF多肽,其中所述RSV蛋白的TM结构域(起始于氨基酸517)后是六组氨酸标记。
1MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIE
61LSNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTLN
121NAKKTNVTLSKKRKRRFLGFLLGVGSAIASGVAVSKVLHLEGEVNKIKSALLSTNKAVVS
181LSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLLEITREFSVN
241AGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYV
301VQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKV
361QSNRVFCDTMNSLTLPSEVNLCNVDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKT
421KCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQEGKSLYVKGEPIINFYDP
481LVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNEKFHQIEKEFSEVEGRIQDLEKS
541GGSAGSGHHHHHH(SEQIDNO:35)
下述核酸序列为上述多肽序列的优化编码序列。
1ATGGAACTGCTGATCCTGAAGGCCAACGCCATCACCACCATCCTGACCGCCGTGACCTTC
61TGCTTCGCCAGCGGCCAGAACATCACCGAGGAATTCTACCAGAGCACCTGCAGCGCCGTG
121AGCAAGGGCTACCTGAGCGCCCTGCGGACCGGCTGGTACACCAGCGTGATCACCATCGAG
181CTGTCCAACATCAAAGAAAACAAGTGCAACGGCACCGACGCCAAGGTGAAACTGATCAAG
241CAGGAACTGGACAAGTACAAGAACGCCGTGACCGAGCTGCAGCTGCTGATGCAGAGCACC
301CCCGCCACCAACAACCGGGCCAGAAGAGAGCTGCCCCGGTTCATGAACTACACCCTGAAC
361AACGCCAAGAAAACCAACGTGACCCTGAGCAAGAAGCGGAAGCGGCGGTTCCTGGGCTTC
421CTGCTGGGCGTGGGCAGCGCCATCGCCAGCGGGGTGGCCGTGTCCAAGGTGCTGCACCTG
481GAAGGCGAGGTGAACAAGATCAAGTCCGCCCTGCTGTCCACCAACAAGGCCGTGGTGTCC
541CTGAGCAACGGCGTGAGCGTGCTGACCAGCAAGGTGCTGGATCTGAAGAACTACATCGAC
601AAGCAGCTGCTGCCCATCGTGAACAAGCAGAGCTGCAGCATCAGCAACATCGAGACCGTG
661ATCGAGTTCCAGCAGAAGAACAACCGGCTGCTGGAAATCACCCGGGAGTTCAGCGTGAAC
721GCCGGCGTGACCACCCCCGTGAGCACCTACATGCTGACCAACAGCGAGCTGCTGTCCCTG
781ATCAATGACATGCCCATCACCAACGACCAGAAAAAGCTGATGAGCAACAACGTGCAGATC
841GTGCGGCAGCAGAGCTACTCCATCATGAGCATCATCAAAGAAGAGGTGCTGGCCTACGTG
901GTGCAGCTGCCCCTGTACGGCGTGATCGACACCCCCTGCTGGAAGCTGCACACCAGCCCC
961CTGTGCACCACCAACACCAAAGAGGGCAGCAACATCTGCCTGACCCGGACCGACCGGGGC
1021TGGTACTGCGACAACGCCGGCAGCGTGAGCTTCTTCCCCCAAGCCGAGACCTGCAAGGTG
1081CAGAGCAACCGGGTGTTCTGCGACACCATGAACAGCCTGACCCTGCCCTCCGAGGTGAAC
1141CTGTGCAACGTGGACATCTTCAACCCCAAGTACGACTGCAAGATCATGACCTCCAAGACC
1201GACGTGAGCAGCTCCGTGATCACCTCCCTGGGCGCCATCGTGAGCTGCTACGGCAAGACC
1261AAGTGCACCGCCAGCAACAAGAACCGGGGCATCATCAAGACCTTCAGCAACGGCTGCGAC
1321TACGTGAGCAACAAGGGCGTGGACACCGTGAGCGTGGGCAACACACTGTACTACGTGAAT
1381AAGCAGGAAGGCAAGAGCCTGTACGTGAAGGGCGAGCCCATCATCAACTTCTACGACCCC
1441CTGGTGTTCCCCAGCGACGAGTTCGACGCCAGCATCAGCCAGGTCAACGAGAAGATCAAC
1501CAGAGCCTGGCCTTCATCCGGAAGAGCGACGAGCTGCTGCACAATGTGAATGAGAAGTTC
1561CACCAGATCGAGAAAGAATTCAGCGAGGTGGAGGGCCGGATCCAGGACCTGGAAAAGAGC
1621GGCGGCTCTGCCGGAAGCGGCCACCACCACCATCACCACTGAAG(SEQIDNO:36)
全长ΔHRBHIS
下述多肽包括缺失HRB结构域的全长RSVF多肽,然后是六组氨酸标记。
1MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIE
61LSNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTLN
121NAKKTNVTLSKKRKRRFLGFLLGVGSAIASGVAVSKVLHLEGEVNKIKSALLSTNKAVVS
181LSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLLEITREFSVN
241AGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYV
301VQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKV
361QSNRVFCDTMNSLTLPSEVNLCNVDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKT
421KCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQEGKSLYVKGEPNIMITTI
481IIVIIVILLSLIAVGLLLYCKARSTPVTLSKDQLSGINNIAFSNMGGSHHHHHH(SEQIDNO:37)
下述核酸序列为上述多肽序列的优化编码序列。
1ATGGAACTGCTGATCCTGAAGGCCAACGCCATCACCACCATCCTGACCGCCGTGACCTTC
61TGCTTCGCCAGCGGCCAGAACATCACCGAGGAATTCTACCAGAGCACCTGCAGCGCCGTG
121AGCAAGGGCTACCTGAGCGCCCTGCGGACCGGCTGGTACACCAGCGTGATCACCATCGAG
181CTGTCCAACATCAAAGAAAACAAGTGCAACGGCACCGACGCCAAGGTGAAACTGATCAAG
241CAGGAACTGGACAAGTACAAGAACGCCGTGACCGAGCTGCAGCTGCTGATGCAGAGCACC
301CCCGCCACCAACAACCGGGCCAGAAGAGAGCTGCCCCGGTTCATGAACTACACCCTGAAC
361AACGCCAAGAAAACCAACGTGACCCTGAGCAAGAAGCGGAAGCGGCGGTTCCTGGGCTTC
421CTGCTGGGCGTGGGCAGCGCCATCGCCAGCGGGGTGGCCGTGTCCAAGGTGCTGCACCTG
481GAAGGCGAGGTGAACAAGATCAAGTCCGCCCTGCTGTCCACCAACAAGGCCGTGGTGTCC
541CTGAGCAACGGCGTGAGCGTGCTGACCAGCAAGGTGCTGGATCTGAAGAACTACATCGAC
601AAGCAGCTGCTGCCCATCGTGAACAAGCAGAGCTGCAGCATCAGCAACATCGAGACCGTG
661ATCGAGTTCCAGCAGAAGAACAACCGGCTGCTGGAAATCACCCGGGAGTTCAGCGTGAAC
721GCCGGCGTGACCACCCCCGTGAGCACCTACATGCTGACCAACAGCGAGCTGCTGTCCCTG
781ATCAATGACATGCCCATCACCAACGACCAGAAAAAGCTGATGAGCAACAACGTGCAGATC
841GTGCGGCAGCAGAGCTACTCCATCATGAGCATCATCAAAGAAGAGGTGCTGGCCTACGTG
901GTGCAGCTGCCCCTGTACGGCGTGATCGACACCCCCTGCTGGAAGCTGCACACCAGCCCC
961CTGTGCACCACCAACACCAAAGAGGGCAGCAACATCTGCCTGACCCGGACCGACCGGGGC
1021TGGTACTGCGACAACGCCGGCAGCGTGAGCTTCTTCCCCCAAGCCGAGACCTGCAAGGTG
1081CAGAGCAACCGGGTGTTCTGCGACACCATGAACAGCCTGACCCTGCCCTCCGAGGTGAAC
1141CTGTGCAACGTGGACATCTTCAACCCCAAGTACGACTGCAAGATCATGACCTCCAAGACC
1201GACGTGAGCAGCTCCGTGATCACCTCCCTGGGCGCCATCGTGAGCTGCTACGGCAAGACC
1261AAGTGCACCGCCAGCAACAAGAACCGGGGCATCATCAAGACCTTCAGCAACGGCTGCGAC
1321TACGTGAGCAACAAGGGCGTGGACACCGTGAGCGTGGGCAACACACTGTACTACGTGAAT
1381AAGCAGGAAGGCAAGAGCCTGTACGTGAAGGGCGAGCCCAATATCATGATCACCACAATC
1441ATCATCGTGATCATTGTGATCCTGCTGTCTCTGATTGCCGTGGGCCTGCTGCTGTACTGC
1501AAGGCCCGCAGCACCCCTGTGACCCTGTCCAAGGACCAGCTGTCCGGCATCAACAATATC
1561GCCTTCTCCAACATGGGGGGTTCTCATCATCATCATCATCATTGAAG(SEQIDNO:38)
胞外
下述多肽仅包含所述RSVF多肽的胞外域。
1MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIE
61LSNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTLN
121NAKKTNVTLSKKRKRRFLGFLLGVGSAIASGVAVSKVLHLEGEVNKIKSALLSTNKAVVS
181LSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLLEITREFSVN
241AGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYV
301VQLPLYGVIDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKV
361QSNRVFCDTMNSLTLPSEVNLCNVDIFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKT
421KCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQEGKSLYVKGEPIINFYDP
481LVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTN(SEQIDNO:39)
下述核酸序列为上述多肽序列的优化编码序列。
1ATGGAACTGCTGATCCTGAAGGCCAACGCCATCACCACCATCCTGACCGCCGTGACCTTC
61TGCTTCGCCAGCGGCCAGAACATCACCGAGGAATTCTACCAGAGCACCTGCAGCGCCGTG
121AGCAAGGGCTACCTGAGCGCCCTGCGGACCGGCTGGTACACCAGCGTGATCACCATCGAG
181CTGTCCAACATCAAAGAAAACAAGTGCAACGGCACCGACGCCAAGGTGAAACTGATCAAG
241CAGGAACTGGACAAGTACAAGAACGCCGTGACCGAGCTGCAGCTGCTGATGCAGAGCACC
301CCCGCCACCAACAACCGGGCCAGAAGAGAGCTGCCCCGGTTCATGAACTACACCCTGAAC
361AACGCCAAGAAAACCAACGTGACCCTGAGCAAGAAGCGGAAGCGGCGGTTCCTGGGCTTC
421CTGCTGGGCGTGGGCAGCGCCATCGCCAGCGGGGTGGCCGTGTCCAAGGTGCTGCACCTG
481GAAGGCGAGGTGAACAAGATCAAGTCCGCCCTGCTGTCCACCAACAAGGCCGTGGTGTCC
541CTGAGCAACGGCGTGAGCGTGCTGACCAGCAAGGTGCTGGATCTGAAGAACTACATCGAC
601AAGCAGCTGCTGCCCATCGTGAACAAGCAGAGCTGCAGCATCAGCAACATCGAGACCGTG
661ATCGAGTTCCAGCAGAAGAACAACCGGCTGCTGGAAATCACCCGGGAGTTCAGCGTGAAC
721GCCGGCGTGACCACCCCCGTGAGCACCTACATGCTGACCAACAGCGAGCTGCTGTCCCTG
781ATCAATGACATGCCCATCACCAACGACCAGAAAAAGCTGATGAGCAACAACGTGCAGATC
841GTGCGGCAGCAGAGCTACTCCATCATGAGCATCATCAAAGAAGAGGTGCTGGCCTACGTG
901GTGCAGCTGCCCCTGTACGGCGTGATCGACACCCCCTGCTGGAAGCTGCACACCAGCCCC
961CTGTGCACCACCAACACCAAAGAGGGCAGCAACATCTGCCTGACCCGGACCGACCGGGGC
1021TGGTACTGCGACAACGCCGGCAGCGTGAGCTTCTTCCCCCAAGCCGAGACCTGCAAGGTG
1081CAGAGCAACCGGGTGTTCTGCGACACCATGAACAGCCTGACCCTGCCCTCCGAGGTGAAC
1141CTGTGCAACGTGGACATCTTCAACCCCAAGTACGACTGCAAGATCATGACCTCCAAGACC
1201GACGTGAGCAGCTCCGTGATCACCTCCCTGGGCGCCATCGTGAGCTGCTACGGCAAGACC
1261AAGTGCACCGCCAGCAACAAGAACCGGGGCATCATCAAGACCTTCAGCAACGGCTGCGAC
1321TACGTGAGCAACAAGGGCGTGGACACCGTGAGCGTGGGCAACACACTGTACTACGTGAAT
1381AAGCAGGAAGGCAAGAGCCTGTACGTGAAGGGCGAGCCCATCATCAACTTCTACGACCCC
1441CTGGTGTTCCCCAGCGACGAGTTCGACGCCAGCATCAGCCAGGTCAACGAGAAGATCAAC
1501CAGAGCCTGGCCTTCATCCGGAAGAGCGACGAGCTGCTGCACAATGTGAATGCCGGCAAG
1561AGCACCACCAATTGAAG(SEQIDNO:40)
RSVF全长
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTLNNAKKTNVTLSKKRKRRFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNIMITTIIIVIIVILL
SLIAVGLLLYCKARSTPVTLSKDQLSGINNIAFSN(SEQIDNO:41)
理想化的RSVF切割肠激酶
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTLNNAKKTNVTLSKKRKRRFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQINEKINQILAFIRKIDELLHNINAGKSTTNGSGSGDDDDDKGSGS
GIMITTIIIVIIVILLSLIAVGLLLYCKARSTPVTLSKDQLSGINNIAFSN(SEQIDNO:42)
理想化的RSVF切割凝血酶
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTLNNAKKTNVTLSKKRKRRFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQINEKINQILAFIRKIDELLHNINAGKSTTNGSGSGLVPRGSGSGI
MITTIIIVIIVILLSLIAVGLLLYCKARSTPVTLSKDQLSGINNIAFSN(SEQIDNO:43)
理想化的RSVF切割Xa因子
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTLNNAKKTNVTLSKKRKRRFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQINEKINQILAFIRKIDELLHNINAGKSTTNGSGSGIEGRGSGSGI
MITTIIIVIIVILLSLIAVGLLLYCKARSTPVTLSKDQLSGINNIAFSN(SEQIDNO:44)
RSVFfurx截短HIS
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNQAQNELPRFMNYTLNNAKKTNVTLSQNQNQNFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNGGSAGSGHHHHHH(SEQIDNO:45)
RSVFfurxR113Q,K123N,K124N截短HIS
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNQAQNELPQFMNYTLNNANNTNVTLSQNQNQNFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNGGSAGSGHHHHHH(SEQIDNO:46)
RSVFfurxR113Q,K123Q,K124Q截短HIS
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNQAQNELPQFMNYTLNNAQQTNVTLSQNQNQNFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNGGSAGSGHHHHHH(SEQIDNO:93)
RSVFdelP21furx截短HIS
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNQAQN---------------------QNQNQNFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNGGSAGSGHHHHHH(SEQIDNO:47)(符号″-″表示该位置的氨基酸缺失)
RSVFdelP23furx截短HIS
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNQAQN-----------------------QNQNFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNGGSAGSGHHHHHH(SEQIDNO:48)(符号″-″表示该位置的氨基酸缺失)
RSVFdelP23furdel截短HIS
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNRARQ-----------------------QQQRFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNGGSAGSGHHHHHH(SEQIDNO:49)(符号″-″表示该位置的氨基酸缺失)
RSVFfurmt截短HIS
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNRARKELPRFMNYTLNNAKKTNVTLSKKRKKKFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNGGSAGSGHHHHHH(SEQIDNO:50)
RSVFfurdel截短HIS
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNRARQELPRFMNYTLNNAKKTNVTLSKK---RFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNGGSAGSGHHHHHH(SEQIDNO:51)(符号″-″表示该位置的氨基酸缺失)
RSVFXa因子截短HIS
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNIEGRELPRFMNYTLNNAKKTNVTLSKKIEGRFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNGGSAGSGHHHHHH(SEQIDNO:52)
RSVF短接头折叠子HIS
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTLNNAKKTNVTLSKKRKRRFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNGSGYIPEAPRDGQAY
VRKDGEWVLLSTFLGGSAGSGHHHHHH(SEQIDNO:53)
RSVF长接头折叠子HIS
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTLNNAKKTNVTLSKKRKRRFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNNKNDDKGSGYIPEAP
RDGQAYVRKDGEWVLLSTFLGGSAGSGHHHHHH(SEQIDNO:54)
RSV_F_胞外_前_his
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTLNNAKKTNVTLSKKRKRRFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNDKIEEILSKIYHIENEIARIKK
LIGESGGSAGSGHHHHHH(SEQIDNO:55)
胞外前HAHIS
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTLNNAKKTNVTLSKKRKRRFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNEKFHQIEKEFSEVEGRIQDLEK
SGGSAGSGHHHHHH(SEQIDNO:56)
RSVF胞外FurxGCNHIS
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNQAQNELPQFMNYTLNNANNTNVTLSQNQNQNFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVN
DKIEEILSKIYHIENEIARIKKLIGESGGSAGSGHHHHHH(SEQIDNO:57)
RSVF胞外delp21GCNHIS
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNQAQN---------------------QNQNQNFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNDKIEEILSKIYHIENEIARIKK
LIGESGGSAGSGHHHHHH(SEQIDNO:58)(符号″-″表示该位置的氨基酸缺失)
RSVF胞外delp23FurxGCNHIS
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNQAQN-----------------------QNQNFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVN
DKIEEILSKIYHIENEIARIKKLIGESGGSAGSGHHHHHH(SEQIDNO:59)
(符号″-″表示该位置的氨基酸缺失)
RSVF胞外delp23FurdelGCNHIS
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNRARQ-----------------------QQQRFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVN
DKIEEILSKIYHIENEIARIKKLIGESGGSAGSGHHHHHH(SEQIDNO:60)(符号″-″表示该位置的氨基酸缺失)
RSVF全长Furx
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNQAQNELPQFMNYTLNNANNTNVTLSQNQNQNFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVN
AGKSTTNIMITTIIIVIIVILLSLIAVGLLLYCKARSTPVTLSKDQLSGINNIAFSN(SEQIDNO:61)
RSVF全长delp21
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNQAQN---------------------QNQNQNFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVN
AGKSTTNIMITTIIIVIIVILLSLIAVGLLLYCKARSTPVTLSKDQLSGINNIAFSN(SEQIDNO:62)(符号″-″表示该位置的氨基酸缺失)
RSVF全长p23FurxGCNHIS
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNQAQN-----------------------QNQNFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVN
AGKSTTNIMITTIIIVIIVILLSLIAVGLLLYCKARSTPVTLSKDQLSGINNIAFSN(SEQIDNO:63)(符号″-″表示该位置的氨基酸缺失)
RSVF全长p23FurdelGCNHIS
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNRARQ-----------------------QQQRFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVN
AGKSTTNIMITTIIIVIIVILLSLIAVGLLLYCKARSTPVTLSKDQLSGINNIAFSN(SEQIDNO:64)(符号″-″表示该位置的氨基酸缺失)
RSVFN末端弗林蛋白酶Furx截短HIS
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNQAQNELPQFMNYTLNNAQQTNVTLSKKRKRRFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNGGSAGSGHHHHHH(SEQIDNO:65)
RSVFC末端弗林蛋白酶Furx截短HIS
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNRARRELPQFMNYTLNNAQQTNVTLSQNQNQNFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNGGSAGSGHHHHHH(SEQIDNO:66)
RSVF融合缺失1截短HIS
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTLNNAKKTNVTLSKKRKRRSAIASGVAVSKVLHLEGE
VNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLLEITREFSVN
AGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGVIDTPCWKLH
TSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVDIFNPKYDCK
IMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQEGKSLYVKG
EPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNGGSAGSGHHHHHH(SEQIDNO:67)
RSVF融合缺失2截短HIS
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTLNNAKKTNVTLSKKRKRRGVGSAIASGVAVSKVLHL
EGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLLEITREF
SVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGVIDTPCW
KLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVDIFNPKY
DCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQEGKSLY
VKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNGGSAGSGHHHHHH(SEQIDNO:68)
RSVFFurx截短HIS
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNQAQNELPQFMNYTLNNAQQTNVTLSQNQNQNFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNGGSAGSGHHHHHH(SEQIDNO:69)
RSVFFurx截短
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNQAQNELPQFMNYTLNNAQQTNVTLSQNQNQNFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTN(SEQIDNO:70)
RSVFdelP23furdel截短无HIS(用于CHO细胞)
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNRARQ-----------------------QQQRFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTN(SEQIDNO:71)(符号″-″表示该位置的氨基酸缺失)
RSVF(Wt)截短HIS
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNRARRELPRFMNYTLNNAKKTNVTLSKKRKRRFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNGGSAGSGHHHHHH(SEQIDNO:84)
RSVF老furx截短HIS
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNQAQNELQRFMNYTLNNANNTNVTLSQNQNQNFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNGGSAGSGHHHHHH(SEQIDNO:88)
RSVFFurxR113Q,K123N,K124N截短HIS
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNQAQNELPQFMNYTLNNAQQTNVTLSQNQNQNFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNGGSAGSGHHHHHH(SEQIDNO:89)
RSVFN末端弗林蛋白酶截短HIS
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNRARRELPQFMNYTLNNAQQTNVTLSQNQNQNFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNGGSAGSGHHHHHH(SEQIDNO:85)
RSVFdelP21furdel截短HIS
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNRARQ---------------------QNQQQRFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNGGSAGSGHHHHHH(SEQIDNO:86)
RSVFC末端弗林蛋白酶截短HIS
MELLILKANAITTILTAVTFCFASGQNITEEFYQSTCSAVSKGYLSALRTGWYTSVITIELSNIKENKCNGTDAKVK
LIKQELDKYKNAVTELQLLMQSTPATNNQAQNELPQFMNYTLNNAQQTNVTLSKKRKRRFLGFLLGVGSAIASGVAV
SKVLHLEGEVNKIKSALLSTNKAVVSLSNGVSVLTSKVLDLKNYIDKQLLPIVNKQSCSISNIETVIEFQQKNNRLL
EITREFSVNAGVTTPVSTYMLTNSELLSLINDMPITNDQKKLMSNNVQIVRQQSYSIMSIIKEEVLAYVVQLPLYGV
IDTPCWKLHTSPLCTTNTKEGSNICLTRTDRGWYCDNAGSVSFFPQAETCKVQSNRVFCDTMNSLTLPSEVNLCNVD
IFNPKYDCKIMTSKTDVSSSVITSLGAIVSCYGKTKCTASNKNRGIIKTFSNGCDYVSNKGVDTVSVGNTLYYVNKQ
EGKSLYVKGEPIINFYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELLHNVNAGKSTTNGGSAGSGHHHHHH(SEQIDNO:87)
实施例2-RSVF构建体的表达和纯化
将RSVFECTO和截短的构建体克隆到pFastBac杆状病毒表达载体(英杰公司)中,所述构建体缺失跨膜结构域和胞质尾区域,具有野生型弗林蛋白酶切割位置或携带所述弗林蛋白酶切割位置的敲除突变,并且有或没有融合前稳定化突变。数种这些构建体含C末端柔性接头,然后是His6标记序列用于螯合纯化。制作高效价杆状病毒原液在Sf9昆虫细胞中传代。通过用需要的杆状病毒感染Sf9、Tn5或HighFive昆虫细胞并在感染后2或3天收获培养基上清来表达蛋白,并用抗RSVF或抗6HIS的抗体通过western印迹来监控。
大规模表达培养基通过两种常用策略之一来浓缩/纯化以消除昆虫细胞培养基中存在的铁蛋白破坏螯合树脂的不利影响。第一种方法是用GE医疗保健(GEHealthcare)Hollotube滤器浓缩柱将约10-20升昆虫表达培养基浓缩到约300ml。在该浓缩混合物中添加硫酸铜到终浓度为500μM,并将得到的溶液上样于5mlHiTrap螯合柱。然后用25mMTrispH7.5、300mMNaCl和咪唑梯度从所述柱上洗脱结合的HIS标记蛋白。
在第二种纯化策略中,将CuCl2加入培养基上清至终浓度500μM。每1升培养基加入4毫升螯合树脂(螯合树脂(ChelatingResin),伯乐公司(BioRad)),4摄氏度摇动该浆液至少30分钟,然后通过重力柱将所述树脂和培养基分离。用10倍柱体积的平衡缓冲液(25mMTrispH7.5,300mMNaCl)清洗所述树脂,并用10倍柱体积的洗脱缓冲液(含250mM咪唑的平衡缓冲液)洗脱F蛋白。用25mMTris缓冲液pH7.5透析所述洗脱物,并将所得的溶液上样于加入NiSO4的5mlHitrap螯合树脂,并用25mMTrispH7.5,300mMNaCl和咪唑梯度洗脱。
用抗6HISwestern和考马斯蓝凝胶评价两种情况的咪唑梯度洗脱。收集含纯构建体的组分,用不同缓冲液/盐水溶液透析并用密理博(Millipore)CP(Centriprep)浓缩器和/或VS(Vivaspin)浓缩单元将其浓缩用于随后的分析。我们还开发了尺寸排阻纯化实验方案,该方案能进一步从玫瑰花结中纯化单分散RSV三聚体(见下)。
RSVF蛋白的SEC分析:
在融合前构型中稳定化的其他副粘病毒融合蛋白的记录特征是其不形成融合后构型中观察到的玫瑰花结,即使被切割时暴露所述融合肽。简单的尺寸排阻色谱分析可鉴定蛋白并确定蛋白是否形成玫瑰花结。开发了两种方法,HPLC-SEC和FPLC-SEC,其还用做有效的纯化步骤。
用伯乐(Biorad)SEC柱(18mm)进行HPLC-SEC,移动相为25mMTrispH7.5,300mMNaCl。使用伯乐HPLC-SEC标准校准所述系统,我们发现所述RSV玫瑰花结(代表切割的融合后构型)洗脱在分析的柱空体积中,而RSV单分散三聚体(来自随后EM分析的推测三聚体)以约100kDa的表观分子量洗脱。
在GE医疗保健FPLC上用16/60Superdex200柱进行FPLC-SEC,移动相为25mMTrispH7.5,300mMNaCl。使用GE医疗保健高分子量标准校准所述系统,我们发现所述RSV玫瑰花结洗脱在分析的柱空体积中,而RSV单分散三聚体以约100kDa的表观分子量洗脱。
RSVF蛋白的电子显微镜观察(EM)。
约50微克/毫升RSVF构建体的蛋白溶液吸收在辉光放电的碳涂覆栅网上,并用2%磷钨酸钠(pH7.0)或0.75%甲酸铀(Urynal-formate)(未测量的低pH)进行负染。在TS(TechnaiSpirit)或JOEL1230透射电子显微镜上于80-120kV操作下观察所述栅网,基于所需的分辨率放大20,000-150,000倍。
表2
实施例3-检测融合前和融合后RSVF
可用许多方法检测RSVF蛋白的构型以分析对该RSVF多肽的修饰或添加的分子是否不利于融合后构型。示例包括脂质体关联、构型特异性单克隆抗体(包括用于FACS、ELISA等)、电子显微镜、构型之间的差异蛋白酶敏感性、凝胶过滤色谱、分析超速离心、动态光散射、氘交换NMR实验、质谱、圆二色谱、等温滴定量热法、色氨酸光谱法和X射线晶体学。
脂质体关联
脂质体关联可用于分析所述RSVF蛋白的构型。合适形式的RSVF蛋白在融合前构型中不关联脂质体而融合后构型关联脂质体。
脂质体可如下制备:1-棕榈酰-2-油酰-sn-甘油-3-磷脂酰胆碱、1-棕榈酰-2-油酰-sn-甘油-3-磷脂酰乙醇胺和氯仿中的胆固醇(获自阿凡提极性脂质公司(AvantiPolarLipids))以8∶2∶5的摩尔比混合。在氩气中蒸发氯仿。真空干燥过夜并以40mM总脂质重悬于PBS会形成脂质膜。5次冻融后,涡旋所述脂质并用小型挤压机(获自阿凡提极性脂质公司)将其挤压穿过2个100μm滤器21次。
一旦所述脂质体制备完成,进行所述脂质体关联实验。对于各待测样品,用溶于100mM磷酸盐缓冲液(pH7.1)的25毫单位胰蛋白酶(获自沃明顿生物化学公司(WorthingtonBiochemical))于25℃切割检测的2μgRSVF多肽30分钟。切割后,各样品中添加40pg大豆胰蛋白酶抑制剂(获自沃明顿生物化学公司)以终止反应。60℃预处理所述样品30分钟,这会诱导天然分离的RSFF蛋白从所述融合前向所述融合后构型的转变。加入脂质体(每样品40μl)和PBS(终体积80μl),并将所述样品在60℃孵育30分钟。加入蔗糖至终浓度为50%(终体积500μl)。用各500μl的40%蔗糖、25%蔗糖和PBS覆盖所述样品并在TLS55转子中于25℃,49,000rp旋转3小时。从所述梯度的顶部收集组分(500μl)。蛋白溶解于0.5%曲通X-100并用12.5%v/v三氯乙酸沉淀。用SDS/PAGE分离多肽并转移到PVDF膜上。用抗RSVF单克隆抗体探测印迹。
电子显微镜
电子显微镜用于分析RSVF多肽的构型分布。融合前形式中的RSVF多肽具有约12nm长的“球和茎”形状。相反,融合后形式中的RSVF多肽具有约16nm长的“高尔夫球座”形状。此外,所述“高尔夫球座”的窄末端的融合肽聚集形成玫瑰花结结构。因此,由于可容易区分形状,电子显微镜可用于分析RSVF多肽样品中的构型分布。
实施例4RSVF胞外域三聚体和玫瑰花结
将RSVF蛋白胞外域构建体克隆到pFastBac杆状病毒表达载体(英杰公司)中,所述构建体编码的多肽缺失跨膜结构域和胞质尾区域、具有野生型弗林蛋白酶切割位置或携带所述弗林蛋白酶切割位置的敲除突变和/或融合肽突变。数种这些构建体含C末端柔性接头,然后是HIS6标记序列用于螯合纯化。通过在Sf9昆虫细胞中传代获得高效价杆状病毒原液。通过用需要的杆状病毒感染Sf9、Tn5或HighFive昆虫细胞并在感染后2或3天收获条件培养基上清来表达蛋白。用抗RSVF或抗HIS6的抗体通过western印迹来监控蛋白生成。
大规模表达培养基用两种常用策略之一来浓缩/纯化以消除昆虫细胞培养基中存在的铁蛋白破坏螯合树脂的不利影响。第一种方法是用GE健康护理公司(GEHealthcare)的Hollotube滤器浓缩柱将约10-20升昆虫表达培养基浓缩到约300ml在该浓缩混合物中添加硫酸铜到终浓度500μM,并将得到的溶液上样于5mlHiTrap螯合柱。然后用25mMTrispH7.5、300mMNaCl和咪唑梯度将结合的HIS标记蛋白从所述柱上洗脱。
在第二种纯化策略中,将CuCl2加入培养基上清至终浓度500μM。每1升培养基加入约4-10毫升螯合树脂(螯合树脂(ChelatingResin),伯乐公司(BioRad)),4摄氏度摇动该浆液至少30分钟,然后用重力柱将所述树脂和培养基分离。用约10倍柱体积的平衡缓冲液(25mMTrispH7.5,300mMNaCl)清洗所述树脂,并用约10倍柱体积的洗脱缓冲液(含250mM咪唑的平衡缓冲液)洗脱F蛋白胞外域。用pH7.5的25mMTris缓冲液透析所述洗脱物,并将所得的溶液上样于加入NiSO4的5mlHitrap螯合树脂。用25mMTrispH7.5、300mMNaCl和咪唑梯度洗脱结合的蛋白。
用抗HIS6western印迹和/或考马斯蓝染色的SDS-PAGE凝胶评价两种情况的咪唑梯度洗脱。收集含纯构建体的组分,用不同缓冲液/盐水溶液透析并用密理博CP(Centriprep)浓缩器和/或VS(Vivaspin)浓缩单元将其浓缩用于随后的分析。在一些情况中,用尺寸排阻色谱进一步纯化单体、三聚体或玫瑰花结。
RSVF胞外域的SEC分析和纯化
尺寸排阻色谱用于纯化和分析RSVF蛋白胞外域单体、三聚体和玫瑰花结。本方法也可从宿主细胞中或培养基衍生的脂质和脂蛋白污染物中纯化未切割的RSVF蛋白胞外域。开发了两种方法HPLC-SEC和FPLC-SEC,其还可用做有效的纯化步骤。
用伯乐(Biorad)SEC柱(18mm)进行HPLC-SEC,移动相为25mMTrispH7.5,300mMNaCl。使用伯乐HPLC-SEC标准校准所述系统,我们发现所述RSV玫瑰花结(代表切割的融合后构型)洗脱在分析的柱空体积中,而RSVF单体以约75-85kDa的表观分子量洗脱。
在GE医疗保健FPLC上用16/60Superdex200柱进行FPLC-SEC,移动相为25mMTrispH7.5,300mMNaCl。使用GE医疗保健高分子量标准校准所述系统,我们发现所述RSV玫瑰花结洗脱在分析的柱空体积中,而RSV单分散三聚体以约140-160kDa的表观分子量洗脱且RSVF单体以约75-85kDa的表观分子量洗脱。
为了纯化,使用所述FPLC-SEC方法并收集1ml组分。
胰蛋白酶切割Furdel或Delp23Furdel构建体形成融合后玫瑰花结
通常,用重量1∶1000的胰蛋白酶:RSVF进行Delp23Furdel单体的胰蛋白酶消化,或1mgRSVF抗原用10-15BAEE单位的胰蛋白酶。在典型反应中,来自牛血浆的胰蛋白酶(西格玛-奥德里奇公司(SigmaAldrich)T8802:10,000-15,000BAEE单位/毫克胰蛋白酶)在25mMTrispH7.5、300mMNaCl中稀释为1mg/ml浓度。用1微升胰蛋白酶溶液(胰蛋白酶:RSV终质量比0.001∶1,或每毫克RSVF中约10-15BAEE单位胰蛋白酶)于37℃处理1mg/mlRSVF蛋白胞外域多肽溶液(稀释于25mMTrispH7.5,300mMNaCl中)1小时。通常,切割反应的过程由SDS-PAGE凝胶监控。所述切割反应用胰蛋白酶抑制剂停止。所述切割的RSVF蛋白用尺寸排阻色谱进一步纯化。
有时,将1∶100体积的固定胰蛋白酶抑制剂(西格玛公司(Sigma))或1微升1mM大豆胰蛋白酶抑制剂加入所述切割溶液且该混合物室温孵育并温和摇动约15-30分钟以终止胰蛋白酶反应。用微量离心柱将抑制剂树脂从所述蛋白溶液中分离。得到的溶液用SEC纯化法纯化。
RSVF蛋白的电子显微镜观察(EM)。
RSVF蛋白胞外域多肽(约50微克/毫升)吸收在辉光放电的碳涂覆栅网上,并用2%磷钨酸钠(pH7.0)或0.75%甲酸铀(Urynal-formate)(未测量的低pH)进行负染。在TS(TechnaiSpirit)或JOEL1230透射电子显微镜上于80-120kV操作下观察所述栅网,基于所需的分辨率放大20,000-150,000倍。
磷脂实验
本实验是基于瓦克纯化学工业有限公司(WakoPureChemicalIndustries,Ltd.)实验磷脂C胆碱氧化酶-DAOS方法(目录号433-36201)。相对生产商的通用实验方案,所述实验方案仅改变以减少实验中使用的材料含量,并降低反应中的样品稀释。为了确定所述RSVF样品的脂质含量,通过用一瓶缓冲液溶解一瓶显色剂(ColorReagent)来产生显色剂(显色剂在4℃下稳定1周)。用蒸馏水稀释所述300mg/dL(3mg/ml)磷脂标准到1.5、1.0、0.75、0.5和0.25mg/ml。对于各标准、水空白和样品反应,在微量离心管中加入10μl显色剂和2μl各标准、蒸馏水(0mg/ml标准)或样品。进行短暂离心反应以确保混合适当并于37℃孵育该管15分钟。记录各标准点595nm处的吸光度并生成标准曲线。记录各样品595nm处的吸光度并从制备得到的校准曲线中计算磷脂浓度。
棉鼠中的免疫原性
在两个研究中检测棉鼠(刚毛棉花鼠(Sigmodonhispidus))中单体(未切割的delp21furx)、三聚体的玫瑰花结(切割的delp23furdel)和三聚体(融合肽缺失)形式的RSVF蛋白胞外域多肽的免疫原性。在研究1中(图8A和8B),在第0天和第21天每组10只棉鼠肌肉内免疫接种10μg单体或玫瑰花结(各吸收到氢氧化铝上)。血清抗RSVF蛋白IgG和RSV中和抗体效价在第一次疫苗接种后2周(2wp1)和第二次疫苗接种后2周(2wp2)或第一次疫苗接种后3周(3wp1)和第二次疫苗接种后2周(2wp2)测量。用RSVF蛋白包被板和马辣根过氧化物酶偶联的鸡抗棉鼠IgG检测抗体,通过ELISA检测抗RSVF蛋白IgG(图8A)。数据显示为log10几何平均效价(GMT)+个体棉鼠的标准偏差。通过蚀斑减少中和试验(PRNT)测量RSV中和效价(图8B)。简而言之,热灭活血清的稀释物用RSVLong预孵育,然后接种在在12孔板中的HEp-2细胞上。感染2小时后,移除所述接种物并用琼脂糖覆盖细胞。5天后用中性红色染料计数空斑。中和效价定义为相对对照(无血清),产生每孔至少60%的空斑数量减少的血清稀释度的倒数。数据显示为log10GMT+每组5只棉鼠的2个库的标准差。
在研究2中(图8C),每组9只棉鼠肌肉免疫接种指定剂量的单体、三聚体或玫瑰花结(各吸收到氢氧化铝上)。如上在2wp1测量血清抗RSVF蛋白IgG效价。
结果
表达了可溶性RSVF胞外域(具有未突变的弗林蛋白酶切割位置),但其不能用尺寸排阻色谱从源自宿主细胞或培养基的脂质和脂蛋白杂质中纯化。这些RSVF胞外域多肽在SEC柱空体积中和所述脂质和脂蛋白污染物一起洗脱。
制备数种构建体以制作含弗林蛋白酶切割位置突变的RSVF胞外域多肽,包括所述Furdel构建体。参见图1。通过表达该Furdel构建体产生的多肽以约65kDa未切割种类从细胞中分泌。该Furdel突变还阻止融合肽暴露,继而阻止玫瑰花结形成。因此,可溶性RSVFFurdel迁移至Superdex200制备柱的内体积中,使得其与脂质碎片和昆虫蛋白杂质分离,所述脂质碎片洗脱在空体积中。这些结果显示弗林蛋白酶切割位置突变的RSVF胞外域多肽可作为能用SEC纯化的未切割多肽生成。此外,所述未切割的RSVF保留时间的分析与所述多肽单体而不是三聚体相一致。
无论RSVFfurdel多肽是单体、三聚体或单体和三聚体的混合物,用分析超速离心进一步评价。用纯化自SEC纯化中单体峰的蛋白进行分析超速离心研究。未切割的RSVF的沉降速率数据显示阶段型图,表明溶液中有两种。沉降速率实验的分析显示在溶液中所述未切割的RSVF胞外域具有大群体单体和小群体的明显三聚体。收集平衡运行数据并尝试将该数据拟合理想的单体模型或单体-三聚体平衡模型。然而,所述残差的拟合较差,尤其是在蛋白浓度更高的细胞底部。这些观察表明所述未切割的RSVF胞外域多肽主要是小群体单体,其自结合(可能为三聚体)或高浓度聚集。
用尺寸排阻(SEC)色谱进行所选RSVF蛋白胞外域多肽的进一步分析。图6A-6D。图6A-6D中含单体、三聚体或三聚体的玫瑰花结的主峰用星号表示,SuperdexP20016/60柱(GE医疗保健公司(GEHealthcare))的保留时间用毫升表示。在校准柱上,约47mls、65mls和77mls的保留时间分别对应于柱空体积、F三聚体保留和单体保留。在图6A中,未切割的Delp23Furdel(Δp23Furdel)构建体纯化自所述单体峰。用胰蛋白酶处理未切割的Delp23FurdelRSVF抗原时,蛋白形成玫瑰花结,其在SEC空体积中迁移(图6B)。RSVF融合肽缺失的经切割三聚体种类纯化自约65mls保留时间的三聚体峰(图6C)而未切割的Delp21Furx构建体(Δp21Furx)纯化自约77mls的单体峰(图6D)。
用EM评价未切割形式或胰蛋白酶切割后的数种RSVF蛋白胞外域多肽。RSVFFurdel和delp23Furdel构建体在弗林蛋白酶切割位置仍有精氨酸残基。这些精氨酸易于被胰蛋白酶切割。切割后,所述未切割的F0种类转化为F1/F2种类,其中所述融合肽暴露。EM分析证实了胰蛋白酶切割后,所述未切割的RSV胞外域由于其融合肽而形成了三聚体的玫瑰花结,这已在相关融合蛋白中观察到。结果示于表3,显示未切割的RSVF蛋白胞外域多肽可切割形成三聚体的玫瑰花结。所述融合肽缺失的构建体被弗林蛋白酶切割,形成单分散三聚体。参见图7A-7D。有利的是,用这种方式生成三聚体的玫瑰花结可产生基本不含脂质碎片和脂蛋白的三聚体的玫瑰花结。
免疫原性研究的结果显示棉鼠(刚毛棉花鼠(Sigmodonhispidus))中单体(未切割的delp21furx)、三聚体的玫瑰花结(切割的delp23furdel)和三聚体(融合肽缺失)形式的RSVF蛋白胞外域多肽具有免疫原性,并诱导中和抗体。图8A-8C。
实施例5-在昆虫或CHO细胞中制作RSVF亚基抗原的方法
从昆虫细胞纯化RSVF抗原:
包括Delp21Furx、Delp23Furdel和融合肽缺失构建体的RSVF胞外域亚基用pFASTBac杆状病毒系统在HiFive昆虫细胞(英杰公司)中表达。所述RSVF亚基通过2步螯合法从10-25升的大规模表达中纯化,所述方法降低昆虫细胞培养基中存在的铁蛋白能破坏螯合树脂的不利影响。将CuSO4加入培养基上清至终浓度500μM。每1升培养基加入约10-20毫升螯合树脂(螯合树脂(ChelatingResin),伯乐公司(BioRad)),4℃摇动该浆液至少30分钟,然后用重力柱将所述树脂和培养基分离。用约2倍树脂体积的平衡缓冲液(25mMTrispH7.5,300mMNaCl)清洗所述树脂,并用约2倍柱体积的洗脱缓冲液(含250mM咪唑的平衡缓冲液)洗脱F蛋白胞外域。用pH7.5,300mMNaCl的25mMTris缓冲液透析所述洗脱物,并将所得的溶液上样于加入NiSO4的5mlHitrap螯合树脂(GE医疗保健公司)。用25mMTrispH7.5、300mMNaCl和咪唑梯度洗脱结合的蛋白。
用抗HIS6western印迹和/或考马斯蓝染色的SDS-PAGE凝胶评价两种情况的咪唑梯度洗脱。收集含纯化构建体的组分并用密理博CP(Centriprep)浓缩器和/或VS(Vivaspin)浓缩单元浓缩至约1mg/ml用于随后通过尺寸排阻色谱的分析/纯化。
RSVF胞外域的SEC分析和纯化
尺寸排阻色谱(SEC)用于纯化和分析RSVF蛋白胞外域未切割单体和切割的三聚体。本方法也可从宿主细胞中或培养基衍生的脂质和脂蛋白污染物中纯化未切割的RSVF蛋白胞外域。在纯玫瑰花结产生中,所述未切割的Delp23Furdel构建体最初纯化为单体,然后用蛋白酶处理并用SEC再次纯化以纯化均质的玫瑰花结(见下)。开发了两种方法用于分析RSVF寡聚化,HPLC-SEC和FPLC-SEC,其还可用做有效的纯化步骤。
用伯乐(Biorad)SEC柱(18mm)进行HPLC-SEC,移动相为25mMTrispH7.5,300mMNaCl。使用伯乐HPLC-SEC标准校准所述系统,我们发现所述RSV玫瑰花结(代表切割的融合后构型)洗脱在分析的柱空体积中,而RSVF单体以约75-85kDa的表观分子量洗脱。
在GE医疗保健FPLC上用16/60Superdex200柱进行FPLC-SEC,移动相为25mMTrispH7.5,300mMNaCl。使用GE医疗保健高分子量标准校准所述系统,我们发现所述RSV玫瑰花结洗脱在分析的柱空体积中,而RSV单分散三聚体以约140-160kDa的表观分子量洗脱且RSVF单体以约75-85kDa的表观分子量洗脱。对于RSV未切割Delp21Furx或Delp23Furdel(单体)或融合肽缺失(三聚体)的纯化,将0.5-2ml约1mg/ml螯合纯化的材料上样到平衡的SuperdexP20016/60柱上,流速0.5-2ml/分钟,并收集相关组分。
胰蛋白酶切割Delp23Furdel构建体形成融合后玫瑰花结
来自牛血浆的胰蛋白酶(西格玛-奥德里奇公司T8802:10,000-15,000BAEE单位/毫克胰蛋白酶)在25mMTrispH7.5、300mMNaCl中稀释为1mg/ml浓度。用1微升胰蛋白酶溶液(胰蛋白酶:RSV终质量比0.001∶1,或每毫克RSVF中约10-15BAEE单位胰蛋白酶)于37℃处理1mg/mlRSVF蛋白胞外域多肽溶液(稀释于25mMTrispH7.5,300mMNaCl中)1小时。用SDS-PAGE凝胶监控切割反应的过程。用胰蛋白酶抑制剂(吉布可大豆胰蛋白酶抑制剂公司(GibcoSoyBeanTrypsinInhibitor),用与胰蛋白酶相等质量的抑制剂)终止所述切割反应。发现所述切割步骤和随后的玫瑰花结纯化之间需要孵育期以使单体更高效率的转化为玫瑰花结。37℃进行1-6小时孵育期以提供更高的玫瑰花结形成效率。用尺寸排阻色谱(如上所述)从未切割单体种类中进一步纯化切割的RSVF蛋白,其中可在柱空体积组分中收集均质的玫瑰花结。
从CH0细胞纯化RSVF抗原:
不含HIS标记的RSVF融合肽缺失构建体用阳离子纯化法纯化。在GE健康医疗公司中空纤维筒浓缩系统(MWCO10,000kDa)上将含表达的RSVF三聚体抗原的CHO材料浓缩到初始体积的约十分之一。然后用等体积pH6.0,25mMNaCl的25mM乙酸钠将所述浓缩溶液的缓冲液替换四次。得到的溶液含乙酸/盐水缓冲液中的浓缩RSVF三聚体,将其上样于已用乙酸/盐水缓冲液平衡的预加的GE健康医疗公司HiTrapCM柱上。用含25、150、250、500或1000mMNaCl的25mM乙酸缓冲液分级梯度从所述柱中洗脱所述蛋白(所述250mM和500mMNaCl组合含大部分的洗脱材料)。该肽了可用与上述实验方案相似的SEC纯化法进一步纯化。
实施例6-棉鼠中RSVF亚基的免疫原性
在棉鼠模型中评价各用明矾或MF59配制的RSV-F三聚体(RSV-F-融合-肽-缺失-截短)和玫瑰花结(RSV-F-delp23-furdel-截短,切割)亚基的免疫原性和保护能力。本研究中用于ELISA的抗原是RSV-F-融合-肽-缺失-截短(表4)。中和反应针对感染性RSV,Long株(表5)。所有组合具有免疫原性,引发高效价的RSV-F-特异性IgG和RSV中和抗体应答,所述应答被第二次疫苗接种加强,并提供保护抵御鼻RSV攻击。
方法
棉鼠的疫苗接种和攻击
雌性棉鼠(刚毛棉花鼠(Sigmodonhispidis))获自哈伦实验室(HarlanLaboratories)。
在第0天和第21天动物组肌肉内接种(i.m.,100μl)指定的疫苗。
第一次免疫后3周(3wp1)和第二次免疫后2周(2wp2)收集血清样品。第一次免疫后4周用1x105pfuRSVLong鼻内攻击(i.n.)免疫或未免疫接种的对照动物。3%异氟烷麻醉下用精密蒸发器进行血液收集和RSV攻击。
RSVF-特异性ELISA
通过酶联免疫吸附实验(ELISA)分析个体血清样品中RSVF特异性IgG的存在。用溶于PBS的1μg/ml纯化RSVF(融合-肽缺失-截短)在4℃过夜包被ELISA板(MaxiSorp96孔,纽恩克公司(Nunc))。清洗(含0.1%吐温-20的PBS)后,于37℃用溶于PBS的Superblock封闭缓冲液(赛默科技公司(ThermoScientific))封闭板至少1.5小时。然后清洗所述板,加入实验稀释剂(含0.1%吐温-20和5%山羊血清的PBS)中实验或对照棉鼠的血清连续稀释物,并在37℃孵育所述板2小时。清洗后,用马辣根过氧化物酶(HRP)-偶联的鸡抗棉鼠IgG(免疫学咨询实验室公司(ImmunologyConsultantsLaboratory,Inc),实验稀释剂中1∶5,000稀释)在37℃孵育所述板1小时。最后,清洗所述板并在各孔中加入100μlTMB过氧化物酶底物溶液(柯克加德和佩里实验室公司(Kirkegaard&PerryLaboratories,Inc))。通过添加100μl1MH3PO4终止反应,并用读板仪读取450nm的吸光度。对各血清样品,通过非线性回归(GP公司(GraphPadPrism))产生光密度(OD)与血清稀释度倒数的对数曲线。效价定义为约0.5OD时血清稀释度的倒数(根据来自RSV感染棉鼠的标准、合并血清归一化,效价定义为1∶2500,其包括在每个板上)。
微中和实验
用微中和实验检测血清样品中是否存在中和抗体。热灭活(HI)血清的2倍连续稀释物(在含5%HI胎牛血清(FBS)的PBS中)加入等体积的预先滴定以达到约115PFU/25μl的RSVLong株中。37℃和5%CO2下孵育血清/病毒混合物2小时以发生病毒中和,然后将25μl该混合物(含约115PFU)接种到96孔板中HEp-2细胞的两重孔上。37℃和5%CO2持续2小时后,用0.75%甲基纤维素/EMEM5%HI-FBS覆盖所述细胞并孵育42小时。通过用免疫染色检测合胞体形成然后自动计数来确定感染性病毒颗粒的数量。中和效价定义为相对对照(无血清),产生每孔至少60%合胞体数量减少的血清稀释度的倒数。
病毒负荷
通过空斑实验检测肺中的病毒负荷。具体地说,RSV感染后5天收集肺,将一个右叶放入含25%蔗糖的2.5ml达氏修正伊氏培养基(Dulbecco′sModifiedEagleMedium,DMEM,英杰公司)并用组织匀化器破碎。来自这些样品的无细胞上清保存于-80℃。为了分析感染性病毒,澄清的肺匀浆稀释物(在含5%HI-FBS的PBS中)以200μl/孔的体积接种在12孔板的融合HEp-2细胞单层上。周期性温和摇动(37℃,5%CO2)2小时后移除接种物,用1.5ml溶解于补充有5%HI-FBS、谷氨酰胺和抗体的Eagle极限必需培养基(Eagle’sMinimalEssentialMedium,EMEM,龙沙公司(Lonza))中的1.25%SeaPlaque琼脂糖(龙沙公司)覆盖细胞。孵育3-4天后,再次用1ml溶于含0.1%中性红(西格玛公司)的EMEM(西格玛公司)中的1.25%琼脂糖覆盖细胞。一天后在光盒协助下计数空斑。
检测病毒负荷的替代方法是定量实时PCR(qRT-PCR)。用RSV-F基因特异性寡核苷酸引物通过qRT-PCR检测病毒负荷,如(I.Borg等,EurRespirJ2003;21:944-51)所述,略作改动。简而言之,从140μl澄清的肺匀浆或已知数量的RSV噬斑形成单位(PFU)(通过斑块实验确定,并在未感染动物的肺匀浆中稀释)中分离RNA,使用RNeasy试剂盒(凯杰公司(Qiagen)),最终洗脱体积为100μl水。使用SuperScriptIIIPlatinum一步定量RT-PCR试剂盒(英杰公司)在单管中进行cDNA合成和PCR,用5μL洗脱RNA、10μM各引物和50μM探针(引物和探针来自整合DNA技术公司(IntegratedDNATechnologies))。正向引物:TTGGATCTGCAATCGCCA(SEQIDNO:72).反向引物:CTTTTGATCTTGTTCACTTCTCCTTCT(SEQIDNO:73)。探针:5’-羧基荧光素(FAM)-TGGCACTGCTGTATCTAAGGTCCTGCACT-四甲基羧基罗丹明(TAMRA)-3’(SEQIDNO:74).用ABIPrism7900HT或7500(应用生物系统公司(AppliedBiosystems))进行扩增和检测。循环阈值(Ct)定义为各样品荧光信号首次超出设定阈值成为可检测时的循环数。然后基于Ct相对所定义病毒RNA拷贝数的对数的标准曲线检测各样品的PFU当量。
结果
棉鼠作为模型已被广泛用于RSV发病机理和免疫的研究,这是由于棉鼠和人之间RSV诱导的疾病有许多相似性。两种重要的类比是中和抗体的功效和有关福尔马林灭活的RSV疫苗接种的肺组织病理学加强。棉鼠比其他小动物如小鼠还更易于被RSV感染。
为了评价我们RSV-F亚基疫苗的免疫原性,雌性棉鼠组肌肉内免疫接种各种剂量的三聚体(RSV-F-融合-肽-缺失-截短)或玫瑰花结(RSV-F-delp23-furdel-截短,切割),其各用明矾或MF59配制。在所有情况中,第一次疫苗接种后3周(3wp1)测量时,单一免疫足以在所述血清中诱导F特异和中和抗体。第一次3周后对所有的棉鼠给予同源加强免疫,这导致2周后(2wp2)检测时F特异性IgG和中和抗体显著增加。总体上,所述玫瑰花结的免疫原性等同于或高于三聚体的免疫原性,MF59制剂的效价高于明矾制剂,且更高的蛋白剂量产生更高的效价,尽管有一些例外。
为了检测所述亚基疫苗的保护能力,所有棉鼠在第二次疫苗接种4周后经鼻途径感染RSV,并在5天后用空斑实验测量所述肺中的病毒负荷。在所有情况中,亚基疫苗接种产生保护免受攻击,疫苗接种的棉鼠的肺部病毒负荷比未免疫但受到攻击的对照动物低超过三个数量级。
表4:F特异性血清IgG效价
a个体棉鼠的几何平均效价(每组7-8只)
三聚体免疫原为RSV-F-融合-肽-缺失-截短
玫瑰花结免疫原为RSV-F-delp23-furdel-截短,切割。
表4A:RSV攻击5天后的肺病毒效价
a用1x105空斑形成单位(pfu)的RSVLong鼻内攻击
bpfu/g肺,攻击5天后
7-8只个体棉鼠/组的几何平均效价
若个体动物效价<203(检测界限),则其效价为100
表5:RSV血清中和效价
a60%合胞体减少中和效价
3-4只棉鼠/组的2个实验库的几何平均效价
实施例7-RSVRNA疫苗
RNA合成
编码α病毒复制子的质粒DNA(图4,SEQIDNO:77)作为体外合成RNA的模板。这些实验使用RSV的全长表面融合糖蛋白(RSV-F,图4)。将所述复制子递送给真核细胞后,正义链RNA翻译产生4种非结构性蛋白,它们一起复制基因组RNA并转录大量编码异源基因产物的亚基因组mRNA。由于缺少α病毒结构蛋白的表达,复制子不能诱导产生感染性颗粒。所述α病毒eDNA上游的噬菌体(T7或SP6)启动子促进所述复制子RNA体外合成,且紧邻聚(A)尾下游的丁型肝炎病毒(HDV)核酶通过其自切割活性产生校正的3’末端。
所述HDV核酶下游的质粒DNA用合适的限制性内切核酸酶线性化后,用T7或SP6噬菌体来源的DNA依赖性RNA聚合酶体外合成流出转录本。按照生产商(得克萨斯州奥斯汀的安碧公司(Ambion))提供的说明,在存在7.5mM(T7RNA聚合酶)或5mM(SP6RNA聚合酶)的各三磷酸核苷(ATP、CTP、GTP和UTP)时于37℃转录2小时。转录后,用TURBODNA酶(得克萨斯州奥斯汀的安碧公司)消化模板DNA。用LiCl沉淀所述复制子RNA并复溶于无核酸酶的水中。如用户手册所述,未加帽的RNA转录后通过牛痘加帽酶(VCE)用ScriptCapm7G加帽系统(威斯康星州麦迪逊的艾比森得(Epicentre)生物技术公司)加帽。用LiCl沉淀转录后加帽的RNA并复溶于无核酸酶的水中。通过测量260nm下的光密度确定RNA样品的浓度。体外转录本的完整性通过变性琼脂糖凝胶电泳证实。
脂质纳米颗粒(脂质体)制剂RV01(01)
用先前发表的方法[Heyes,J.,Palmer,L,Bremner,K.,MacLachlan,I.Cationiclipidsaturationinfluencesintracellulardeliveryofencapsulatednucleicacids.(阳离子脂质饱和影响包埋核酸的细胞内递送)JournalofControlledRelease,107:276-287(2005)]合成1,2-二亚油基氧基-N,N-二甲基-3-氨基丙烷(DLinDMA)。1,2-二硬脂酰-sn-甘油-3-磷脂酰胆碱(DSPC)购自基酶公司(Genzyme)。胆固醇获自西格玛-奥德里奇公司(密苏里州圣路易斯)。1,2-二肉豆蔻酰-sn-甘油-3-磷脂酰乙醇胺-N-[甲氧基(聚乙烯甘油)-2000](铵盐)(PEGDMG2000)、1,2-二肉豆蔻酰-sn-甘油-3-磷脂酰乙醇胺-N-[甲氧基(聚乙烯甘油)-2000](铵盐)获自阿凡提极性脂质制品公司(阿拉巴马州阿拉巴斯特)。
在乙醇中配制新鲜的脂质储液。称量37mgDlinDMA、11.8mgDSPC、27.8mg胆固醇和8.07mgPEGDMG2000并溶于7.55mL乙醇中。37℃温和摇动新鲜配制的脂质储液约15分钟以形成均质混合物。然后将755μL所述储液加入1.245mL乙醇中形成2mL工作脂质储液。该含量的脂质用于以8∶1的N∶P(氮比磷)比形成含250μgRNA的LNP。DlinDMA(所述阳离子脂质)上可质子化的氮和RNA上的磷酸盐用于所述计算。假定每μg自复制RNA分子含3nmol阴离子磷酸盐,假定每μgDlinDMA含1.6nmol阳离子氮。还从100mM柠檬酸缓冲液(pH6)(加利福尼亚州霍利斯特的天惠华公司(Teknova))中的约1μg/μL储液制备2mLRNA工作液。使用前用RNA酶去除(RNaseAway)液(加利福尼亚州圣迭戈的分子生物产品公司(MolecularBioProducts))冲洗3个20mL的玻璃瓶(有搅拌棒)并用大量MilliQ水清洗以去除瓶的RNA酶污染。所述瓶之一用于所述RNA工作液,其他的用于收集所述脂质和RNA混合物(如下所述)。工作脂质和RNA溶液在37℃加热10分钟,然后加入3cc鲁尔接口(luer-lok)注射器(新泽西州富兰克林湖的BD医疗公司(BDMedical))。2mL柠檬酸缓冲液(pH6)加入另一3cc注射器中。含RNA和所述脂质的注射器用FEP管([氟化乙烯-丙烯]2mmIDx3mmOD,华盛顿州奥克港的艺达思健康科学公司(IdexHealthScience))连接T混合器(PEEKTM500μmID接头,华盛顿州奥克港的艺达思健康科学公司)。所述T混合器的出口也是FEP管(2mmIDx3mm)。含所述柠檬酸缓冲液的第三注射器连接管(2mmIDx3mmOD)的分离部分。然后用注射泵(型号KDS-220,马萨诸塞州霍利斯顿的KD科学公司(kdScientific))以7mL/分钟的流速驱动所有注射器。所述管出口置成将所述混合物收集到20mL玻璃瓶(搅拌时)。取出搅拌棒并将乙醇/水性溶液室温平衡1小时。将4mL混合物加入连接部分FEP管(2mmIDx3mmOD,华盛顿州奥克港的艺达思健康科学公司)的5cc注射器(BD医疗公司)中,在另一个连接等长FEP管的5cc注射器中加入等量100mM柠檬酸缓冲液(pH6)。用注射泵以7mL/分钟的流速驱动所述两个注射器,并将最终混合物收集到20mL玻璃瓶中(搅拌时)。之后,第二混合步骤(脂质体)收集的混合物穿过MustangQ膜(结合并移除阴离子分子的阴离子交换支持物,获自美国密歇根州安娜堡的波乐公司(PallCorporation))。穿过所述脂质体前,用4mL的1MNaOH、4mL的1MNaCl和10mL的100mM柠檬酸缓冲液(pH6)依次通过所述Mustang膜。穿过所述mustang膜前,脂质体在37℃升温10分钟。之后,在回收终产物前,将脂质体浓缩到2mL并使用切向流过滤(TFF)系统用10-15体积1XPBS(来自天惠华公司)透析。所述TFF系统和中空纤维素过滤膜购自斯派实验室(SpectrumLabs)(加利福尼亚州多明格斯牧场(RanchoDominguez,CA))并按照生产商指南使用。使用100kD孔径截止值和8cm2表面积的聚砜中空纤维素过滤膜(部件编号P/N:X1AB-100-20P)。体外和体内实验中,制剂用1XPBS(来自天惠华公司)稀释到所需的RNA浓度。
制备阳离子乳液17(CNE17)的方法
角鲨烯、去水山梨糖醇三油酸酯(司盘85)和聚氧乙烯去水山梨糖醇单油酸酯(吐温80)获自西格玛公司(美国密苏里州圣路易斯)。1,2-二油酰-3-三甲基铵-丙烷(DOTAP)购自类脂公司(Lipoid)(德国路德维希)。配制阳离子纳米乳液(CNE)与加入的MF59相似,如先前描述并略作修改(Ott等.JournalofControlledRelease,79(1-3):1-5(2002))。简单的说,油可溶性组分(即角鲨烯、司盘85、阳离子脂质、脂质表面活性剂)在烧杯中结合,脂质组分溶于氯仿(CHCl3)或二氯甲烷(DCM)。得到的脂质溶液直接加入到油和司盘85中。溶剂在通风橱中室温蒸发2小时,然后结合水相并用IKAT25匀化器以24KRPM均质化所述样品以提供均质原料。原始乳液穿过具有冰浴冷却螺旋微射流(Microfluidezer)M110S或M110PS均质机3-5次,均质压力为约15k-20kPSI(马萨诸塞州牛顿市的微流体公司(Microfluidics))。从单元中移出20ml批料样品并存于4℃。下表描述了CNE17的组合物。
表6:CNE17的组合物
RNA络合
从所述阳离子脂质浓度计算溶液中氮的量,例如DOTAP每分子有1个可质子化的氮。所述RNA浓度用于计算溶液中磷酸盐的量,所用估值为每微克RNA约3nmol磷酸盐。通过改变RNA:脂质的量可调节N/P比。氮/磷比(N/P)为10∶1时RNA络合CNE17。用这些值在无RNA酶水中将所述RNA稀释到合适的浓度,并在轻微涡旋时直接加到等体积乳液中。该溶液在室温静置约2小时。一旦络合后,给药前将得到的溶液稀释到需要的浓度。
电穿孔
电穿孔是递送pDNA疫苗的非常有效的方法,该技术用于递送自复制RNA。用异氟烷麻醉小鼠,双后腿几乎刮光以暴露肢上待处理的区域。用1/2cc胰岛素注射器将30ul剂量的疫苗注射到所述后腿的小腿肌肉中。用DNA递送系统(圣迭戈的因诺公司(Inovio))电穿孔所述肌肉。仪器参数如下:60V,每60ms2脉冲。将另一剂量相似地递送到第二肢,然后电穿孔。
病毒复制子颗粒(VRP)
为了对比RNA疫苗和传统RNA载体方法的体内报告基因或抗原表达的实现,我们通过Perri等描述的方法使用BHK细胞生产的病毒复制子颗粒(VRP)。本系统中,由源自委内瑞拉马脑炎病毒(VEEV)基因组的α病毒嵌合复制子(VCR)组成的抗原(或报告基因)复制子经遗传工程改造以包含辛德毕斯病毒的3‘末端序列(3‘UTR)和辛德毕斯病毒包装信号(PS)(参见Perri等的图2)。通过将这些复制子与编码辛德毕斯病毒衣壳和糖蛋白基因的缺陷性辅助RNA一起共同电穿孔入幼仓鼠肾(BHK)细胞来将其包装在VRP中(参见Perri等的图2)。然后收获所述VRP并用标准方法滴定,并在培养液体或其他等渗缓冲液中接种到动物内。PerriS,GreerCE,ThudiumK,DoeB,LeggH,LiuH,RomeroRE,TangZ,BinQ,小DubenskyTW,等(2003)Analphavirusrepliconparticlechimeraderivedfromvenezuelanequineencephalitisandsindbisvirusesisapotentgene-basedvaccinedeliveryvector.(源自委内瑞拉马脑炎和辛德毕斯病毒的α病毒复制子颗粒嵌合体是有效的基于基因的疫苗递送载体)JVirol77:10394-10403
RSVF三聚体亚基疫苗
所述RSVF三聚体是含RSVF胞外域的重组蛋白,该RSVF胞外域缺失所述融合肽区域以阻止结合其他三聚体。如尺寸排阻色谱所观察到的,得到的构建体形成均质的三聚体,且具有与电子显微镜观察到的融合后F构型一致的预期表型。所述蛋白在昆虫细胞中表达并用融合所述构建体C末端的HIS标记纯化,然后用常规技术进行尺寸排阻色谱。得到的蛋白样品表现出超过95%的纯度。为了F亚基疫苗的体内评价,使用pH6.3且用氯化钠调节至与150mM等渗的10mM组氨酸缓冲液将100μg/mL三聚体蛋白吸收在2mg/mL明矾上。2-8℃搅拌温和过夜使F亚基蛋白吸收到明矾上。所述最终疫苗的pH和渗透压设定为6.5-7.5和240-360mOsm/kg。所述疫苗用SDS-PAGE(美国英杰集团公司(InvitrogenCorporation))表征蛋白吸收,并用LAL实验(美国查尔斯河实验室(CharlesRiverLaboratories))表征内毒素含量。免疫接种前通过温和转化来混合所述疫苗。
鼠免疫原性研究
10只8-10周龄且重约20克的雌BALB/c小鼠组在第0天和第21天免疫接种,第14、35和49天提取血液。所有动物双后腿四头肌各注射等体积(每处50μl)共100μl疫苗以递送10μg抗原剂量。当需要检测T细胞应答时,在第35天或49天收获脾脏。
棉鼠的疫苗接种和攻击
雌性棉鼠(刚毛棉花鼠(Sigmodonhispidis))获自哈伦实验室(HarlanLaboratories)。所有实验依照诺华动物保护和使用委员会批准和进行。在第0天和第21天,动物组肌肉内免疫接种(肌内(i.m.)100μl)指定的疫苗。每次免疫接种后2周收集血清样品。第一次免疫后4周用1x105PFURSV鼻内(i.n.)攻击免疫或未免疫接种的对照动物。3%异氟烷麻醉下用精密蒸发器进行血液收集和RSV攻击。
小鼠T细胞功能实验
细胞内细胞因子免疫荧光实验
收集来自相同免疫的BALB/c小鼠的2-5个脾脏,并制备单细胞悬浮液用于培养。建立2种抗原刺激培养物和2种未刺激培养物用于各脾细胞库。抗原刺激的培养物含1x106脾细胞、RSVF肽85-93(1x10-6M)、RSVF肽249-258(1x10-6M)、RSVF肽51-66(1x10-6M)、抗CD28mAb(1mcg/mL)和布雷菲德菌素A(BrefeldinA)(1∶1000)。未刺激的培养物不含RSV肽,其他和所述刺激的培养物相同。37℃培养6小时后,加工培养物用于免疫荧光。清洗细胞,然后用荧光标记的抗CD4和抗CD8单克隆抗体(mAb)染色。再次清洗细胞,然后用细胞固定/细胞通透剂(Cytofix/cytoperm)固定20分钟。然后用Perm洗涤缓冲液清洗该固定细胞,随后用荧光标记的IFN-g、TNF-a、IL-2和IL-5特异性mAb染色。清洗染色细胞,然后在LSRII流式细胞仪上分析。用FlowJo软件分析所得数据。分别分析CD4+8-和CD8+4-T细胞子集。在给定样品的各子集中,检测细胞因子阳性细胞%。RSVF抗原特异性T细胞%计算为抗原刺激的培养物中细胞因子阳性细胞%和未刺激的培养物中细胞因子阳性细胞%的差异。用标准方法(StatisticalMethods (《统计方法》)第7版,G.W.Snedecor和W.G.Cochran)确定抗原特异性细胞%的95%置信界限。
分泌细胞因子实验
分泌细胞因子实验的培养物与用于细胞内细胞因子免疫荧光实验的相似,除了省略布雷菲德菌素A。37℃过夜培养后收集培养物上清液,并用美索规模发现公司(MesoScaleDiscovery)的小鼠Th1/Th2细胞因子试剂盒分析多种细胞因子。每种培养物中各细胞因子的量从标准曲线中确定,所述标准曲线用生产商提供的纯化的重组细胞因子产生。
RSVF-特异性ELISA
通过酶联免疫吸附实验(ELISA)分析个体血清样品中RSVF特异IgG性存在。用溶于PBS的1μg/ml纯化RSVF(delp23-furdel-截短未切割)在4℃过夜包被ELISA板(MaxiSorp96孔,纽恩克公司)。清洗(含0.1%吐温-20的PBS)后,在37℃用溶于PBS的Superblock封闭缓冲液(赛默科技公司(ThermoScientific))封闭板至少1.5小时。然后清洗所述板,加入实验稀释剂(含0.1%吐温-20和5%山羊血清的PBS)中实验或对照棉鼠的血清连续稀释物,并将板在37℃孵育2小时。清洗后,用马辣根过氧化物酶(HRP)-偶联的鸡抗棉鼠IgG(免疫学咨询实验室公司(ImmunologyConsultantsLaboratory,Inc),实验稀释剂中1∶5,000稀释)在37℃孵育所述板1小时。最后,清洗所述板并在各孔中加入100lTMB过氧化物酶底物溶液(柯克加德和佩里实验室公司(Kirkegaard&PerryLaboratories,Inc))。通过添加100μl1MH3PO4终止反应,并用读板仪读取450nm的吸光度。对各血清样品,通过非线性回归(GP公司(GraphPadPrism))产生光密度(OD)与血清稀释度倒数的对数曲线。效价定义为约0.5OD时血清稀释度的倒数(根据来自RSV感染棉鼠的标准、合并血清归一化,效价定义为1∶2500,其包括在每个板上)。
微中和实验
用空斑减少中和测试(PRNT)检测血清样品中是否存在中和抗体。将HI血清的2倍连续稀释物(在含5%HI-FBS的PBS中)加入等体积的预先滴定以达到约115PFU/25μl的RSVLong中。37℃和5%CO2下孵育血清/病毒混合物2小时以发生病毒中,然后将25μl该混合物(含约115PFU)接种到96孔板中HEp-2细胞的两重孔上。37℃和5%CO2持续2小时后,用0.75%甲基纤维素/EMEM5%HI-FBS覆盖所述细胞并孵育42小时。通过用免疫染色检测合胞体形成然后自动计数来确定感染性病毒颗粒的数量。中和效价定义为相对对照(无血清),产生每孔至少60%合胞体数量减少的血清稀释度的倒数。
病毒负荷
通过空斑实验检测肺中的病毒负荷。具体地说,RSV感染后5天收集肺,将一个右叶放入含25%蔗糖的2.5ml达氏修正伊氏培养基(DMEM,英杰公司)并用组织匀化器破碎。来自这些样品的无细胞上清保存于-80℃。为了分析感染性病毒,澄清的肺匀浆稀释物(含5%热灭活的胎牛血清HI-FBS的PBS中)以200μl/孔的体积接种在12孔板的融合HEp-2细胞单层上。周期性温和摇动(37℃,5%CO2)2小时后移除接种物,用1.5ml溶解于补充有5%HI-FBS、谷氨酰胺和抗体的Eagle极限必需培养基(EMEM,龙沙公司(Lonza))中的1.25%SeaPlaque琼脂糖(龙沙公司)覆盖细胞。孵育3-4天后,再次用1ml溶于含0.1%中性红(西格玛公司)的EMEM(西格玛公司)中的1.25%琼脂糖覆盖细胞。一天后在光盒协助下计数空斑。
棉鼠肺病理学
RSV攻击5天后收集肺,用10%中性缓冲福尔马林(NBF)通过温和鼻内灌注然后浸没固定收集并固定每只动物的4叶。组织经常规加工以制备显微镜检验所用的苏木精和伊红染色切片。用先前发表标准[PrinceGA,等,2001]的改良评价发现,参数如下:细支气管周炎(peribronchiolitis)、肺泡炎、支气管炎、血管周围细胞浸润和间质性肺炎。损伤按4分半定量表分级。最小(+)变化包括一或很少小灶点;轻度(++)变化由小-中等大小灶点组成;中度(+++)变化含频繁和/或中等大小灶点;和显著(++++)变化显示影响大多数/所有组织的大量到融合的灶点。
实施例7
A-棉鼠RSV攻击研究(CRIS14)
本实验使用表达RSV表面融合糖蛋白(RSV-F)的A317复制子。棉鼠(刚毛棉花鼠(Sigmodonhispidus)),每组8只,第0天和第21天进行双侧肌肉内免疫接种(50μL/腿)裸露自复制RNA(A317,1μg或10μg)、LNP中配制的自复制RNA[RV01(01),A317,0.1μg或1μg)、表达RSV-F的VRP(5x106IU)、F-三聚体/明矾亚基(10μg)、或福尔马林灭活的RSV疫苗(5200FI-pfu)。第14天(2wp1)和35天(2wp2)收集血清用于抗体分析。第49天用1x105pfuRSV鼻内攻击所有动物并在第54天(5dpc)收集肺用于检测病毒负荷和肺病理学。
结果
表7:第14天和35天的F-特异性血清IgG效价
表7第0天和21天肌肉内免疫后,每组8只的棉鼠(刚毛棉花鼠(Sigmodonhispidus))的F特异性血清IgG效价。在第14天(2wp1)和35天(2wp2)收集血清用于抗体分析,第49天用1x105pfuRSV鼻内攻击所有动物。第54天(5dpc)收集肺用于检测病毒负荷和肺病理学。数据用每组8只个体棉鼠的几何平均效价表示。若个体动物效价<25(检测界限),则其效价为5。
表8:第14天和35天的RSV血清中和效价
表8第0天和21天肌肉内免疫后,每组8只的棉鼠(刚毛棉花鼠(Sigmodonhispidus))的RSV血清中和效价。在第14天(2wp1)和35天(2wp2)收集血清用于分析。数据用60%空斑减少中和效价表示。4只棉鼠/组的2个实验库的几何平均效价。若个体动物效价<25(检测界限),则其效价为5。
表9:RSV攻击5天后的肺病毒效价
表9:第0天和21天肌肉内免疫后,每组8只的棉鼠(刚毛棉花鼠(Sigmodonhispidus))的RSV攻击5天后肺病毒效价。第49天用1x105pfuRSV鼻内攻击所有动物。第54天(5dpc)收集肺用于检测病毒负荷和肺病理学。数据用空斑实验检测的空斑形成单位/克肺表示。8只个体棉鼠/组的几何平均效价在效价<200(检测界限)的个体动物中,其效价为100。
表10:RSV攻击5天后的肺泡炎分值
表10第0天和21天肌肉内免疫后,每组8只的棉鼠(刚毛棉花鼠(Sigmodonhispidus))的RSV攻击5天后的肺泡炎。第49天用1x105pfuRSV鼻内攻击所有动物。第54天(5dpc)收集肺用于检测病毒负荷和肺病理学。损伤按4分半定量表分级。最小(1)变化包括一个或很少小灶点;轻度(2)变化由小-中等大小灶点组成;中度(3)变化含频繁和/或中等大小灶点;和显著(4)变化显示影响大多数/所有组织的大量到融合的灶点。
结论
本发明的一个目的是确定棉鼠RSV模型中复制子RNA的免疫原性和保护能力。另一目的是评价脂质体和CNE17制剂对疫苗免疫原性和功效的影响。未配制的复制子RNA在一次疫苗接种后诱导血清F特异性IgG和RSV中和抗体,且此应答被第二次疫苗接种加强。此模型中脂质体和CNE17制剂效果相似,在第二次免疫接种后使F特异性IgG效价对1μg复制子RNA加强约8倍且中和效价加强4-10倍(分别为CNE17和脂质体)。5天后检测时,所有复制子RNA疫苗提供保护免受鼻RSV攻击,降低肺病毒负荷超过3个数量级。脂质体配制的1μg复制子RNA产生的免疫应答的程度和保护能力在5x106VRP引发的应答的2倍之内。在本研究测试的任何疫苗制剂的攻击下,所述明矾辅助的三聚体亚基在肺中产生最高的总抗FIgGELISA效价,产生最高的中和效价,并产生最大程度的保护抵御RSV效价。
实施例7B-RSV-F免疫原性研究(10-1001)
本实验使用表达RSV表面融合糖蛋白(RSV-F)的A317复制子。每组10只的BALB/c小鼠在第0天和第21天双侧肌肉内免疫接种(50μL/腿)表达RSV-F的VRP(1x106IU)、裸露自复制RNA(A317,1μg)、用电穿孔递送的自复制RNA(A317,10μg)、脂质体中配制的自复制RNA[RV01(01),A317,0.1μg或1μg)和用CNE17配制的自复制RNA(A317,0.1μg或1μg)。在第14天(2wp1)、35天(2wp2)和49天(4wp2)收集血清用于抗体分析。第49天(4wp2)从每组5只小鼠中收获脾脏用于T细胞分析。
结果
表11:第14天的F特异性血清IgG效价
表11(10-1001)肌肉免疫接种14天后的每组10只小鼠的F特异性血清IgG效价。数据用个体小鼠的效价和每组10只个体小鼠的几何平均效价表示。若个体动物效价<25(检测界限),则其效价为5。
表12:第35天的F特异性血清IgG效价
表12(10-1001)第0和21天肌肉免疫接种后的每组10只小鼠的F特异性血清IgG效价。第35天(2wp2)收集血清用于抗体分析。数据用个体小鼠的效价和每组10只个体小鼠的几何平均效价表示。若个体动物效价<25(检测界限制),则其效价为5。
表13:第49天的F特异性血清IgG效价
表13(10-1001)第0和21天肌肉免疫接种后的每组10只小鼠的F特异性血清IgG效价。第49天(4wp2)收集血清用于抗体分析。数据用个体小鼠的效价和每组10只个体小鼠的几何平均效价表示。若个体动物效价<25(检测界限),则其效价为5。
表14:第35天的RSV血清中和效价
表14:(10-1001)第0和21天肌肉免疫接种后的每组10只小鼠的RSV血清中和效价。第35天(2wp2)收集血清用于分析。数据用个体小鼠的60%空斑减少中和效价和每组10只个体小鼠的几何平均效价表示。若个体动物效价<40(检测界限),则其效价为20。NA=无分析
表15:第49天的RSV血清中和效价
表15:(10-1001)第0和21天肌肉免疫接种后的每组10只小鼠的RSV血清中和效价。第49天(4wp2)收集血清用于分析。数据用个体小鼠的60%空斑减少中和效价和每组10只个体小鼠的几何平均效价表示。若个体动物效价<40(检测界限),则其效价为20。NA=无分析
表16:第49天的T细胞应答
表16(10-1001)第49天(4wp2)RSVF特异性CD4+脾T细胞的频率。显示的是净(抗原特异的)细胞因子阳性频率(%)±95%置信半区间。粗体显示的净频率表示统计上显著>0的刺激的应答。
表17:第49天的T细胞应答
表17(10-1001)第49天(4wp2)RSVF特异性CD8+脾T细胞的频率。显示的是净(抗原特异的)细胞因子阳性频率(%)±95%置信半区间。粗体显示的净频率表示统计上显著>0的刺激的应答。
结论
与所述裸露RNA对照相比,脂质体制剂显著提高了免疫原性,如F特异性IgG效价(8-30倍的增加)、中和效价、和CD4及CD8T细胞应答的增加所测得。令人惊讶的是,0.1和1.0μg剂量的RV01(01)的F特异性IgG效价和中和效价与VRP(1x106IU)相等。LNP制剂的T细胞应答在更高的剂量时与VRP(1x106IU)相等。与所述裸露RNA对照相比,用CNE17配制自复制RNA显著提高了免疫原性,如F特异性IgG效价(2-5倍的增加)、中和效价、和CD4和CD8T细胞应答的增加所测得。相对所述裸露RNA对照,RNA电穿孔免疫原性升高,但显著低于脂质体递送。
实施例7C-RSV-F免疫原性研究(10-1018)
本实验使用表达RSV表面融合糖蛋白(RSV-F)的A317复制子。每组8只的BALB/c小鼠在第0天和第21天双侧肌肉内免疫接种(50μL/腿)表达RSV-F的VRP(1x106IU)、裸露自复制RNA(A306,1、0.1、0.01μg)和脂质体中配制的自复制RNA(RV01(01),用方法1(A317,10.0、1.0、0.1、0.01μg))。在第14天(2wp1)天和(2wp2)收集血清用于抗体分析。第49天(4wp2)从每组5只小鼠中收获脾脏用于T细胞分析。
结果
RV01(01)脂质体制剂的Z平均颗粒直径为158nm,多分散性指数为0.14,包埋功效为96%。第14天和35天F-特异性血清IgG效价示于表18和19,第49天的T细胞应答示于表20和21。
表18:第14和35天的F特异性血清IgG效价
表18:(10-1018)第0和21天肌肉免疫接种后的每组8只小鼠的F特异性血清IgG效价。第14天(2wp1)和35天(2wp2)收集血清用于抗体分析。数据用个体小鼠和每组8只个体棉鼠的几何平均效价表示。若个体动物效价<25(检测界限),则其效价为5。
表19:第14和35天的F特异性血清IgG效价
表19:上接23A。(10-1018)第0和21天肌肉免疫接种后的每组8只小鼠的F特异性血清IgG效价。在第14天(2wp1)和35天(2wp2)收集血清用于抗体分析。数据用个体动物和每组8只个体棉鼠的几何平均效价(GMT)表示。若个体动物效价<25(检测界限),则其效价为5。
表20:第49天的T细胞应答
表20第49天(实验10-1018,4wp2)RSVF特异性CD4+脾T细胞的频率。显示的是净(抗原特异的)细胞因子阳性频率(%)±95%置信半区间。粗体显示的净频率表示统计上显著>0的刺激的应答。
表21:第49天的T细胞应答
表21第49天(实验10-1018,4wp2)F特异性脾CD8+T细胞的频率。显示的是净(抗原特异的)细胞因子阳性频率(%)±95%置信半区间。粗体显示的净频率表示统计上显著>0的刺激的应答。
结论
与所述裸露RNA对照相比,脂质体制剂显著提高了免疫原性,如F特异性IgG效价和T细胞频率的增加所测得。10μgRNA剂量下RV01(01)的F特异性IgG效价和CD8T细胞频率比VRP组(1x106IU)高。
其他参考文献
下述参考文献通过引用全文纳入本文。
1.FieldsVirology.(《菲尔兹病毒学》)第四版,2001.
2.Snell等.(1997)VirusGenes14:63-72.
3.Bembridge等.(1999)JVirol73:10086-10094.
4.Li等.(1998)JExpMed188:681-688
5.美国专利号6,060,308.
6.Yin等.(2006)Nature439:38-45.
7.Kim等.(2007)JMedVirol79:820-828.
8.Yin等.(2005)ProcNatlAcadSciUSA.102(26):9288-93.
9.Chen等.(2004)JVirol78:4508-16.
10.Yang等.(2002)JVirol76:4634-42.
11.Harbury等.(1993)Science262:1401-1407.
12.Stevens等.(2004)Science303:1866-70.
13.Burkhard等.(2001)TrendsCellBiol11:82-88.
14.Creighton,Proteins《蛋白》第5.5.2节(ISBN0-7167-2317-4).
15.Yu(2002)AdvDrugDelivRev54:1113-1129.
16.Muller等.(2000)MethodsEnzymol328:261-282.
17.Beck和Brodsky(1998)JStructBiol122:17-29.
18.Lupas(1996)TrendsBiochemSci21:375-382.
19.Adamson等.(1993)CurrOpinBiotechnol4:428-347.
20.Kammerer(1997)MatrixBiol15:555-568.
21.Chao等.(1998)JChromatogBBiomedSciAppl715:307-329.
22.Arndt等.(2002)Structure10:1235-1248.
23.Liu和Lu(2002)JBiolChem277:48708-48713.
24.W02006/011060.
25.Creighton,Proteins《蛋白》第5.5.3节(ISBN0-7167-2317-4).
26.Zhang和Chen(1999)JBiolChem274:22409-22413.
27.Slovic等.(2003)ProteinSci12:337-348
28.Gardner和Dutch(2007)JVirol81:8303-14.
29.Gennaro(2000)Remington:TheScienceandPracticeofPharmacy.(《雷明登:药物科学与实践》)第20版,ISBN:0683306472.
30.Nony等.(2001)Vaccine27:3645-51.
31.Greenbaum等.(2004)Vaccine22:2566-77.
32.Zurbriggen等.(2003)ExpertRevVaccines2:295-304.
33.Piascik(2003)JAmPharmAssoc(WashDC).43:728-30.
34.Mann等.(2004)Vaccine22:2425-9.
35.Halperin等.(1979)AmJPubllicHealth69:1247-50.
36.Herbert等.(1979)JInfectDis140:234-8.
37.Chen等.(2003)Vaccine21:2830-6.
38.美国专利号6355271.
39.WO00/23105.
40.美国专利号5,057,540.
41.WO96/33739.
42.EP-A-0109942.
43.WO96/11711.
44.WO00/07621.
45.Barr等.(1998)AdvancedDrugDeliveryReviews32:247-271.
46.Sjolanderet等.(1998)AdvancedDrugDeliveryReviews32:321-338.
47.Pizza等.(2000)IntJMedMicrobiol290:455-461.
48.WO95/17211.
49.WO98/42375.
50.Singh等(2001)JContRelease70:267-276.
51.WO99/27960.
52.美国专利号6,090,406.
53.美国专利号5,916,588.
54.EP-A-0626169.
55.WO99/52549.
56.WO01/21207.
57.WO01/21152.
58.Dyakonova等.(2004)IntImmunopharmacol4(13):1615-23.
59.FR-2859633.
60.Signorelli和Hadden(2003)IntImmunopharmacol3(8):1177-86.
61.WO2004/064715.
62.DeLibero等,(2005)NatureReviewsImmunology5:485-496
63.美国专利号5,936,076.
64.Old等.,JClinInvestig,113:1631-1640
65.US2005/0192248
66.Yang等.(2004)AngewChemIntEd43:3818-3822
67.WO2005/102049.
68.Goffet等(2004)AmChemSoc126:13602-13603
69.WO03/105769.
70.Cooper(1995)PharmBiotechnol6:559-80.
71.WO90/14837.
72.Podda和DelGiudice(2003)ExpertRevVaccines2:197-203.
73.Podda(2001)Vaccine19:2673-2680.
74.VaccineDesign:TheSubunitandAdjuvantApproach(《疫苗设计:亚基和佐剂方法》)(Powell和Newman编),普莱努出版社(PlenumPress)1995(ISBN0-306-44867-X).
75.VaccineAdjuvants:PreparationMethodsandResearchProtocols(《疫苗佐剂:制备方法和研究方案》)(Volume42ofMethodsinMolecularMedicineseries(《分子医学方法丛书》第42卷)).ISBN:1-59259-083-7.Ed.O’Hagan.
76.Allison和Byars(1992)ResImmunol143:519-25.
77.Hariharan等.(1995)CancerRes55:3486-9.
78.WO95/11700.
79.美国专利号.6,080,725.
80.WO2005/097181.
81.Tassignon等.(2005)JImmunolMeth305:188-98.
82.Myers等.(1990)Celluarandmolecularaspectsofendotoxinreactions.(《内毒素反应的细胞和分子方面》)第145-156页
83.Ulrich(2000)参考文献75的第16章(273-282页)
84.Johnson等.(1999)JMedChem42:4640-9.
85.Baldrick等.(2002)RegulatoryToxicolPharmacol35:398-413.
86.美国专利号4,680,338.
87.美国专利号4,988,815.
88.WO92/15582.
89.Stanley(2002)ClinExpDermatol27:571-577.
90.Wu等.(2004)AntiviralRes.64(2):79-83.
91.Vasilakos等.(2000)CellImmunol.204(1):64-74.
92.美国专利号4689338,4929624,5238944,5266575,5268376,5346905,5352784,5389640,5395937,5482936,5494916,5525612,6083505,6440992,6627640,6664264,6664265,6667312,6677347,6677348,6677349,6683088,6703402,6743920,6800624,6809203,6888000,和6924293.
93.Jones(2003)CurrOpinInvestigDrugs4:214-218.
94.WO2004/060308.
95.WO2004/064759.
96.美国专利号6,924,271.
97.US2005/0070556.
98.美国专利号5,658,731.
99.美国专利号5,011,828.
100.WO2004/87153.
101.美国专利号6,605,617.
102.WO02/18383.
103.WO2004/018455.
104.WO03/082272.
105.WO2006/002422.
106.Johnson等.(1999)BioorgMedChemLett9:2273-2278.
107.Evans等.(2003)ExpertRevVaccines2:219-229.
108.Andrianov等.(1998)Biomaterials19:109-115.
109.Payne等.(1998)AdvDrugDeliveryReview31:185-196.
110.Thompson等.(2003)MethodsinMolecularMedicine94:255-266.
111.Kandimalla等.(2003)NucleicAcidsResearch31:2393-2400.
112.WO02/26757.
113.WO99/62923.
114.Krieg(2003)NatureMedicine9:831-835.
115.McCluskie等.(2002)FEMSImmunologyandMedicalMicrobiology32:179-185.
116.WO98/40100.
117.美国专利号6,207,646.
118.美国专利号6,239,116.
119.美国专利号6,429,199.
120.Kandimalla等.(2003)BiochemicalSocietyTransactions31(第3部分):654-658.
121.Blackwell等.(2003)JInmunol170:4061-4068.
122.Krieg(2002)TrendsImmunol23:64-65.
123.WO01/95935.
124.Kandimalla等.(2003)BBRC306:948-953.
125.Bhagat等.(2003)BBRC300:853-861.
126.WO03/035836.
127.WO01/22972.
128.Thompson等.(2005)JLeukocBiol78:‘Thelow-toxicityversionsofLPS,adjuvantandRC529,areefficientadjuvantsforCD4+Tcells’.(低毒素形式的LPS、佐剂和RC529是CD4+T细胞的有效佐剂。)
129.英国专利申请GB-A-2220211.
130.WO94/21292.
131.WO94/00153.
132.WO95/17210.
133.WO96/26741.
134.WO93/19780.
135.WO03/011223.
136.Meraldi等.(2003)Vaccine21:2485-2491.
137.Pajak等.(2003)Vaccine21:836-842.
138.美国专利号6,586,409.
139.Wong等.(2003)JClinPharmacol43(7):735-42.
140.US2005/0215517.
本文引用的所有文件的全部内容通过引用纳入本文。

Claims (10)

1.一种含可溶呼吸道合胞病毒F(RSVF)胞外域多肽的免疫原性组合物,其中,相对于SEQIDNO:1或2,所述多肽的氨基酸100-150用氨基酸序列SEQIDNO:9或SEQIDNO:12替代,且所述RSVF多肽在电子显微镜下显示拐杖、高尔夫球座、或玫瑰花结构型,且所述组合物至少95%不含污染脂质和脂蛋白。
2.如权利要求1中所述的免疫原性组合物,其特征在于,所述RSVF多肽含SEQIDNO:1或SEQIDNO:2的氨基酸23-99和151-524。
3.如权利要求1所述的免疫原性组合物,其包含多肽,所述多肽含选自下组的氨基酸序列:SEQIDNO:49、SEQIDNO:71、SEQIDNO:60、SEQIDNO:64、省略信号肽和/或HIS标记的任何上述序列及其组合。
4.如权利要求3所述的免疫原性组合物,其特征在于,所述多肽选自下组:SEQIDNO:49、SEQIDNO:71和其中省略所述信号肽和任选所述HIS标记的任何上述序列。
5.如权利要求1-4中任一项所述的免疫原性组合物,其特征在于,所述组合物还包含佐剂。
6.如权利要求5所述的免疫原性组合物,其特征在于,所述佐剂选自下组:铝盐、水包角鲨烯乳液、苯并萘啶化合物、磷脂化合物、小分子免疫增强剂和任何上述的组合。
7.如权利要求1-6中任一项所述的组合物,其特征在于,所述RSVF胞外域多肽多肽还包括异源寡聚化结构域、表位、信号肽或其组合。
8.如权利要求7所述的组合物,其特征在于,所述异源寡聚化结构域选自下组:来自T4噬菌体次要纤维蛋白、流感血凝素,来自SARS刺突,或来自HIVgp41、NadA、改良的GCN4、或天冬氨酸转氨甲酰酶的三聚结构域。
9.权利要求1-8中任一项所述的组合物在制备用于在对象中引起针对RSVF的免疫应答的药物中的用途。
10.如权利要求1-8中任一项所述的组合物,其特征在于,所述呼吸道合胞病毒F(RSVF)胞外域多肽在对应SEQIDNO:1的位置101-161的位置上含切割的RSVF胞外域多肽。
CN201080040594.9A 2009-07-15 2010-07-15 Rsv f 蛋白组合物和其制作方法 Expired - Fee Related CN102639147B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510703646.0A CN105214080A (zh) 2009-07-15 2010-07-15 Rsv f蛋白组合物和其制作方法

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US22580509P 2009-07-15 2009-07-15
US61/225,805 2009-07-15
US29442610P 2010-01-12 2010-01-12
US61/294,426 2010-01-12
PCT/US2010/042161 WO2011008974A2 (en) 2009-07-15 2010-07-15 Rsv f protein compositions and methods for making same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201510703646.0A Division CN105214080A (zh) 2009-07-15 2010-07-15 Rsv f蛋白组合物和其制作方法

Publications (2)

Publication Number Publication Date
CN102639147A CN102639147A (zh) 2012-08-15
CN102639147B true CN102639147B (zh) 2015-11-25

Family

ID=42834367

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510703646.0A Pending CN105214080A (zh) 2009-07-15 2010-07-15 Rsv f蛋白组合物和其制作方法
CN201080040594.9A Expired - Fee Related CN102639147B (zh) 2009-07-15 2010-07-15 Rsv f 蛋白组合物和其制作方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201510703646.0A Pending CN105214080A (zh) 2009-07-15 2010-07-15 Rsv f蛋白组合物和其制作方法

Country Status (22)

Country Link
US (13) US20110305727A1 (zh)
EP (6) EP3988115A3 (zh)
JP (2) JP5829210B2 (zh)
CN (2) CN105214080A (zh)
AR (1) AR077757A1 (zh)
BR (1) BR112012001666A2 (zh)
CA (1) CA2768186A1 (zh)
CL (1) CL2012000119A1 (zh)
CO (1) CO6491045A2 (zh)
DK (1) DK3178490T3 (zh)
ES (2) ES2563730T3 (zh)
HR (1) HRP20220756T1 (zh)
HU (1) HUE058971T2 (zh)
LT (1) LT3178490T (zh)
MX (1) MX2012000667A (zh)
PL (1) PL3178490T3 (zh)
PT (1) PT3178490T (zh)
RU (1) RU2585227C2 (zh)
SG (1) SG178026A1 (zh)
SI (1) SI3178490T1 (zh)
TW (1) TW201116294A (zh)
WO (1) WO2011008974A2 (zh)

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11446374B2 (en) 2008-12-09 2022-09-20 Novavax, Inc. Modified RSV F proteins and methods of their use
MX2011006205A (es) * 2008-12-09 2011-09-01 Novavax Inc Proteinas f del vrs modificadas y metodos de uso de las mismas.
HRP20220756T1 (hr) 2009-07-15 2022-09-02 Glaxosmithkline Biologicals S.A. Proteinski pripravci rsv f i postupci za izradu istih
WO2012006369A2 (en) 2010-07-06 2012-01-12 Novartis Ag Immunisation of large mammals with low doses of rna
US9770463B2 (en) * 2010-07-06 2017-09-26 Glaxosmithkline Biologicals Sa Delivery of RNA to different cell types
ES2557382T3 (es) 2010-07-06 2016-01-25 Glaxosmithkline Biologicals Sa Liposomas con lípidos que tienen un valor de pKa ventajoso para el suministro de ARN
BR112013000392B8 (pt) * 2010-07-06 2022-10-04 Novartis Ag Composição farmacêutica contendo partícula de distribuição semelhante a vírion para moléculas de rna autorreplicantes e seu uso
HUE047796T2 (hu) 2010-07-06 2020-05-28 Glaxosmithkline Biologicals Sa RNS bevitele több immunútvonal bekapcsolására
JP2013538569A (ja) 2010-08-31 2013-10-17 ノバルティス アーゲー 免疫原をコードするrnaの送達のための小さなリポソーム
DK4066855T3 (da) 2010-08-31 2023-02-20 Glaxosmithkline Biologicals Sa Pegylerede liposomer til forsyning af RNA, der koder for immunogen
TR201903651T4 (tr) 2010-10-11 2019-04-22 Glaxosmithkline Biologicals Sa Antijen uygulama platformları.
TR201908715T4 (tr) 2011-01-26 2019-07-22 Glaxosmithkline Biologicals Sa Rsv immünizasyon rejimi.
US9597390B2 (en) 2011-03-02 2017-03-21 Utrech University Infectious bronchitis virus (IBV) spike protein as subunit vaccine
JP6069295B2 (ja) * 2011-03-22 2017-02-01 ミュコシス ベー.フェー. 免疫組成物、免疫組成物の製造方法、疾患の治療剤または予防剤、組み替えポリペプチド、核酸配列、ベクターおよび宿主細胞
EP2688590B1 (en) * 2011-03-24 2020-02-12 GlaxoSmithKline Biologicals SA Adjuvant nanoemulsions with phospholipids
PL2707385T3 (pl) * 2011-05-13 2018-03-30 Glaxosmithkline Biologicals Sa Prefuzyjne antygeny RSV F
JP6022557B2 (ja) 2011-06-08 2016-11-09 シャイアー ヒューマン ジェネティック セラピーズ インコーポレイテッド 切断可能な脂質
US11896636B2 (en) 2011-07-06 2024-02-13 Glaxosmithkline Biologicals Sa Immunogenic combination compositions and uses thereof
SG10201605537XA (en) 2011-07-06 2016-09-29 Novartis Ag Liposomes having useful n:p ratio for delivery of rna molecules
EP2729168A2 (en) 2011-07-06 2014-05-14 Novartis AG Immunogenic compositions and uses thereof
SG10201602456WA (en) * 2011-08-31 2016-04-28 Novartis Ag Pegylated liposomes for delivery of immunogen-encoding rna
US9119813B2 (en) * 2012-03-22 2015-09-01 Crucell Holland B.V. Vaccine against RSV
AU2013245950B2 (en) 2012-04-10 2016-04-21 The Trustees Of The University Of Pennsylvania Human respiratory syncytial virus consensus antigens, nucleic acid constructs and vaccines made therefrom, and methods of using same
JP6523955B2 (ja) * 2012-08-01 2019-06-05 バヴァリアン・ノルディック・アクティーゼルスカブ 組換え改変ワクシニアウイルスアンカラ(mva)rsウイルス(rsv)ワクチン
AU2013301312A1 (en) * 2012-08-06 2015-03-19 Glaxosmithkline Biologicals S.A. Method for eliciting in infants an immune response against RSV and B. pertussis
US20140037680A1 (en) 2012-08-06 2014-02-06 Glaxosmithkline Biologicals, S.A. Novel method
EP2922570A1 (en) * 2012-11-20 2015-09-30 GlaxoSmithKline Biologicals SA Rsv f prefusion trimers
MX2015008847A (es) * 2013-01-10 2015-10-30 Novartis Ag Composiciones inmunogenicas de virus de influenza y usos de las mismas.
US9738689B2 (en) 2013-03-13 2017-08-22 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Prefusion RSV F proteins and their use
WO2014160463A1 (en) * 2013-03-13 2014-10-02 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Prefusion rsv f proteins and their use
TWI659968B (zh) 2013-03-14 2019-05-21 再生元醫藥公司 針對呼吸道融合病毒f蛋白質的人類抗體及其使用方法
US9060975B2 (en) * 2013-03-14 2015-06-23 Mucosis Bv Heat-stable respiratory syncytial virus F protein oligomers and their use in immunological compositions
AU2014239583B2 (en) 2013-03-14 2020-07-02 Children's Healthcare Of Atlanta, Inc. Recombinant RSV with silent mutations, vaccines, and methods related thereto
DE102013004595A1 (de) * 2013-03-15 2014-09-18 Emergent Product Development Germany Gmbh RSV-Impfstoffe
AU2014251247A1 (en) * 2013-04-08 2015-11-05 Medimmune, Llc Vaccine composition and method of use
PL2988780T3 (pl) * 2013-04-25 2019-06-28 Janssen Vaccines & Prevention B.V. Stabilizowane rozpuszczalne prefuzyjne polipeptydy F RSV
WO2014202570A1 (en) 2013-06-17 2014-12-24 Crucell Holland B.V. Stabilized soluble pre-fusion rsv f polypeptides
JP6685903B2 (ja) 2013-07-25 2020-04-22 アバター・メディカル・エルエルシー 立体構造的に安定化されたrsv融合前fタンパク質
KR20160040290A (ko) 2013-08-05 2016-04-12 글락소스미스클라인 바이오로지칼즈 에스.에이. 조합 면역원성 조성물
CN105473157A (zh) 2013-08-21 2016-04-06 库瑞瓦格股份公司 组合疫苗
EP2974739A1 (en) 2014-07-15 2016-01-20 Novartis AG RSVF trimerization domains
US11571472B2 (en) 2014-06-13 2023-02-07 Glaxosmithkline Biologicals Sa Immunogenic combinations
EP3270962A4 (en) * 2015-03-17 2018-08-22 Sequoia Sciences, Inc. Compositions of vaccines and adjuvants and methods for the treatment of urinary tract infections
US10457708B2 (en) 2015-07-07 2019-10-29 Janssen Vaccines & Prevention B.V. Stabilized soluble pre-fusion RSV F polypeptides
KR102638978B1 (ko) 2015-07-07 2024-02-22 얀센 백신스 앤드 프리벤션 비.브이. Rsv에 대한 백신
WO2017040387A2 (en) * 2015-08-31 2017-03-09 Technovax, Inc. Human respiratory syncytial virus (hrsv) virus-like particles (vlps) based vaccine
CN114796474A (zh) 2015-09-03 2022-07-29 诺瓦瓦克斯股份有限公司 具有改进的稳定性和免疫原性的疫苗组合物
RU2723039C2 (ru) 2015-12-23 2020-06-08 Пфайзер Инк. Мутанты белка f rsv
AU2017242020B2 (en) 2016-03-29 2021-08-05 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Substitutions-modified prefusion RSV F proteins and their use
CA3018139A1 (en) 2016-04-05 2017-10-12 Janssen Vaccines & Prevention B.V. Vaccine against rsv
KR102506895B1 (ko) 2016-04-05 2023-03-08 얀센 백신스 앤드 프리벤션 비.브이. 안정화된 용해성 융합-전 rsv f 단백질
CN106124767A (zh) * 2016-05-12 2016-11-16 广州瑞辉生物科技股份有限公司 呼吸道合胞病毒IgA抗体检测试纸条及其检测方法
KR102421049B1 (ko) 2016-05-30 2022-07-15 얀센 백신스 앤드 프리벤션 비.브이. 안정화된 융합-전 rsv f 단백질
TWI634899B (zh) * 2016-11-22 2018-09-11 國立臺灣大學 包含類b肝病毒顆粒作為佐劑的疫苗組成物
GB201621686D0 (en) 2016-12-20 2017-02-01 Glaxosmithkline Biologicals Sa Novel methods for inducing an immune response
CA3061278A1 (en) 2017-05-17 2018-11-22 Janssen Vaccines & Prevention B.V. Methods and compositions for inducing protective immunity against rsv infection
JP7291633B2 (ja) 2017-05-30 2023-06-15 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム アジュバントを製造する方法
CN111148509A (zh) 2017-07-24 2020-05-12 诺瓦瓦克斯股份有限公司 治疗呼吸系统疾病的方法和组合物
IL272281B2 (en) 2017-07-28 2023-04-01 Janssen Vaccines Prevention B V Methods and preparations for heterologous reprna vaccines
KR20200035115A (ko) 2017-08-07 2020-04-01 칼더 바이오사이언시스 인코포레이티드 입체형태적으로 안정화된 rsv 융합전 f 단백질
WO2019036008A1 (en) 2017-08-16 2019-02-21 Acuitas Therapeutics, Inc. LIPIDS FOR USE IN LIPID NANOPARTICULAR FORMULATIONS
KR20200053518A (ko) 2017-09-15 2020-05-18 얀센 백신스 앤드 프리벤션 비.브이. Rsv에 대한 면역의 안전한 유도를 위한 방법
CA3083078A1 (en) 2017-12-01 2019-06-06 Glaxosmithkline Biologicals Sa Saponin purification
US11566051B2 (en) 2018-01-29 2023-01-31 Merck Sharp & Dohme Llc Stabilized RSV F proteins and uses thereof
SG11202009206QA (en) 2018-03-19 2020-10-29 Novavax Inc Multivalent influenza nanoparticle vaccines
EP3775174A4 (en) * 2018-03-30 2022-07-06 Georgia State University Research Foundation, Inc. RESPIRATORY SYNCYTIAL VIRUS (RSV) VACCINES
EP3773704A1 (en) 2018-04-03 2021-02-17 Sanofi Antigenic respiratory syncytial virus polypeptides
MX2021001479A (es) 2018-08-07 2021-04-28 Glaxosmithkline Biologicals Sa Novedosos procesos y vacunas.
KR20200050264A (ko) * 2018-11-01 2020-05-11 에스케이바이오사이언스(주) 재조합 호흡기 세포융합 바이러스 f 단백질 및 이를 포함하는 백신 조성물
CN109694400A (zh) * 2019-01-31 2019-04-30 苏州高泓利康生物科技有限公司 一种表达呼吸道合胞病毒f蛋白及其制备方法
EP3956351A1 (en) * 2019-04-18 2022-02-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Biological and synthetic molecules inhibiting respiratory syncytial virus infection
US20220235095A1 (en) 2019-06-05 2022-07-28 Glaxosmithkline Biologicals Sa Saponin purification
EP4086275A4 (en) * 2019-12-31 2024-04-17 Xiamen University MULTIMERIZATION DELIVERY SYSTEM FOR INTRACELLULAR DELIVERY OF MOLECULES
WO2021170131A1 (zh) * 2020-02-27 2021-09-02 华辉安健(北京)生物科技有限公司 可溶性ace2和融合蛋白,及其应用
WO2021249009A1 (en) * 2020-06-10 2021-12-16 Sichuan Clover Biopharmaceuticals, Inc. Rsv vaccine compositions, methods, and uses thereof
JP2022060169A (ja) 2020-10-02 2022-04-14 ファイザー・インク Rsv fタンパク質生産のための細胞培養工程
CN114685676B (zh) * 2020-12-28 2024-02-13 兰州生物制品研究所有限责任公司 一种重组蛋白及其表达方法、纯化方法及用途
EP4169513A1 (en) 2021-10-19 2023-04-26 GlaxoSmithKline Biologicals S.A. Adjuvant composition comprising sting agonists
WO2023237649A1 (en) * 2022-06-10 2023-12-14 Glaxosmithkline Biologicals Sa Rsv vaccination with trimeric rsv f fusion protein
WO2024069420A2 (en) 2022-09-29 2024-04-04 Pfizer Inc. Immunogenic compositions comprising an rsv f protein trimer
WO2024078597A1 (en) * 2022-10-13 2024-04-18 Rvac Medicines (Us) , Inc. Rsv f protein variants and uses thereof
WO2024089634A1 (en) 2022-10-27 2024-05-02 Pfizer Inc. Immunogenic compositions against influenza and rsv
TW202424187A (zh) 2022-10-27 2024-06-16 美商輝瑞大藥廠 Rna分子
CN116284266B (zh) * 2022-11-21 2024-01-19 怡道生物科技(苏州)有限公司 突变型呼吸道合胞病毒融合前f蛋白及其应用
US20240252612A1 (en) 2022-12-11 2024-08-01 Pfizer Inc. Immunogenic compositions and uses thereof
WO2024155561A2 (en) * 2023-01-17 2024-07-25 The Scripps Research Institute Engineered paramyxovirus soluble fusion (f) proteins and related vaccines
WO2024154048A1 (en) 2023-01-18 2024-07-25 Pfizer Inc. Vaccines against respiratory diseases
WO2024175579A1 (en) * 2023-02-21 2024-08-29 Janssen Vaccines & Prevention B.V. Stabilized trimeric rsv fusion proteins without a heterologous trimerzation domain
WO2024194153A1 (en) * 2023-03-17 2024-09-26 Glaxosmithkline Biologicals Sa Rsv-f-encoding nucleic acids
CN117304280B (zh) * 2023-11-28 2024-04-16 江苏瑞科生物技术股份有限公司 一种重组rsv f蛋白及其应用
CN117304278B (zh) * 2023-11-28 2024-04-16 江苏瑞科生物技术股份有限公司 一种重组rsv f蛋白及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009079796A1 (en) * 2007-12-24 2009-07-02 Id Biomedical Corporation Of Quebec Recombinant rsv antigens
WO2010077717A1 (en) * 2008-12-09 2010-07-08 Novavax, Inc. Modified rsv f proteins and methods of their use

Family Cites Families (173)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US119A (en) 1837-02-10 Improvement in the machine for weighing heavy bodies
US118A (en) 1837-02-10 Improvement in the machine for weighing heavy bodies
US139A (en) 1837-03-11 Robert wilson
US4186745A (en) 1976-07-30 1980-02-05 Kauzlarich James J Porous catheters
US4235877A (en) 1979-06-27 1980-11-25 Merck & Co., Inc. Liposome particle containing viral or bacterial antigenic subunit
US4372945A (en) 1979-11-13 1983-02-08 Likhite Vilas V Antigen compounds
IL61904A (en) 1981-01-13 1985-07-31 Yeda Res & Dev Synthetic vaccine against influenza virus infections comprising a synthetic peptide and process for producing same
US4436727A (en) 1982-05-26 1984-03-13 Ribi Immunochem Research, Inc. Refined detoxified endotoxin product
US4866034A (en) 1982-05-26 1989-09-12 Ribi Immunochem Research Inc. Refined detoxified endotoxin
SE8205892D0 (sv) 1982-10-18 1982-10-18 Bror Morein Immunogent membranproteinkomplex, sett for framstellning och anvendning derav som immunstimulerande medel och sasom vaccin
EP0114787B1 (de) 1983-01-25 1991-09-25 Ciba-Geigy Ag Neue Peptidderivate
IL73534A (en) 1983-11-18 1990-12-23 Riker Laboratories Inc 1h-imidazo(4,5-c)quinoline-4-amines,their preparation and pharmaceutical compositions containing certain such compounds
US6090406A (en) 1984-04-12 2000-07-18 The Liposome Company, Inc. Potentiation of immune responses with liposomal adjuvants
US5916588A (en) 1984-04-12 1999-06-29 The Liposome Company, Inc. Peptide-containing liposomes, immunogenic liposomes and methods of preparation and use
US4797368A (en) 1985-03-15 1989-01-10 The United States Of America As Represented By The Department Of Health And Human Services Adeno-associated virus as eukaryotic expression vector
US4707543A (en) 1985-09-17 1987-11-17 The United States Of America As Represented By The Secretary Of The Army Process for the preparation of detoxified polysaccharide-outer membrane protein complexes, and their use as antibacterial vaccines
US4680338A (en) 1985-10-17 1987-07-14 Immunomedics, Inc. Bifunctional linker
US5011828A (en) 1985-11-15 1991-04-30 Michael Goodman Immunostimulating guanine derivatives, compositions and methods
US5149650A (en) 1986-01-14 1992-09-22 University Of North Carolina At Chapel Hill Vaccines for human respiratory virus
US4877611A (en) 1986-04-15 1989-10-31 Ribi Immunochem Research Inc. Vaccine containing tumor antigens and adjuvants
CA1331443C (en) 1987-05-29 1994-08-16 Charlotte A. Kensil Saponin adjuvant
US5057540A (en) 1987-05-29 1991-10-15 Cambridge Biotech Corporation Saponin adjuvant
US5726292A (en) 1987-06-23 1998-03-10 Lowell; George H. Immuno-potentiating systems for preparation of immunogenic materials
US5639853A (en) 1987-09-29 1997-06-17 Praxis Biologics, Inc. Respiratory syncytial virus vaccines
WO1989005823A1 (en) 1987-12-23 1989-06-29 The Upjohn Company Chimeric glycoproteins containing immunogenic segments of the glycoproteins of human respiratory syncytial virus
US5278302A (en) 1988-05-26 1994-01-11 University Patents, Inc. Polynucleotide phosphorodithioates
US4912094B1 (en) 1988-06-29 1994-02-15 Ribi Immunochem Research Inc. Modified lipopolysaccharides and process of preparation
AU631377B2 (en) 1988-08-25 1992-11-26 Liposome Company, Inc., The Affinity associated vaccine
US5238944A (en) 1988-12-15 1993-08-24 Riker Laboratories, Inc. Topical formulations and transdermal delivery systems containing 1-isobutyl-1H-imidazo[4,5-c]quinolin-4-amine
US4929624A (en) 1989-03-23 1990-05-29 Minnesota Mining And Manufacturing Company Olefinic 1H-imidazo(4,5-c)quinolin-4-amines
HU212924B (en) 1989-05-25 1996-12-30 Chiron Corp Adjuvant formulation comprising a submicron oil droplet emulsion
US4988815A (en) 1989-10-26 1991-01-29 Riker Laboratories, Inc. 3-Amino or 3-nitro quinoline compounds which are intermediates in preparing 1H-imidazo[4,5-c]quinolines
EP0800830A3 (en) 1989-11-03 1999-03-17 Vanderbilt University Method of in vivo delivery of functioning foreign genes
US5674192A (en) 1990-12-28 1997-10-07 Boston Scientific Corporation Drug delivery
US5279833A (en) 1990-04-04 1994-01-18 Yale University Liposomal transfection of nucleic acids into animal cells
US5658731A (en) 1990-04-09 1997-08-19 Europaisches Laboratorium Fur Molekularbiologie 2'-O-alkylnucleotides as well as polymers which contain such nucleotides
US5173414A (en) 1990-10-30 1992-12-22 Applied Immune Sciences, Inc. Production of recombinant adeno-associated virus vectors
US5389640A (en) 1991-03-01 1995-02-14 Minnesota Mining And Manufacturing Company 1-substituted, 2-substituted 1H-imidazo[4,5-c]quinolin-4-amines
DE69229114T2 (de) 1991-03-01 1999-11-04 Minnesota Mining And Mfg. Co., Saint Paul 1,2-substituierte 1h-imidazo[4,5-c]chinolin-4-amine
US5936076A (en) 1991-08-29 1999-08-10 Kirin Beer Kabushiki Kaisha αgalactosylceramide derivatives
US5268376A (en) 1991-09-04 1993-12-07 Minnesota Mining And Manufacturing Company 1-substituted 1H-imidazo[4,5-c]quinolin-4-amines
US5266575A (en) 1991-11-06 1993-11-30 Minnesota Mining And Manufacturing Company 2-ethyl 1H-imidazo[4,5-ciquinolin-4-amines
MY111880A (en) 1992-03-27 2001-02-28 Smithkline Beecham Biologicals S A Hepatitis vaccines containing 3-0 deacylated monophosphoryl lipid a
IL105325A (en) 1992-04-16 1996-11-14 Minnesota Mining & Mfg Immunogen/vaccine adjuvant composition
US5340740A (en) 1992-05-15 1994-08-23 North Carolina State University Method of producing an avian embryonic stem cell culture and the avian embryonic stem cell culture produced by the process
US5587308A (en) 1992-06-02 1996-12-24 The United States Of America As Represented By The Department Of Health & Human Services Modified adeno-associated virus vector capable of expression from a novel promoter
EP0646178A1 (en) 1992-06-04 1995-04-05 The Regents Of The University Of California expression cassette with regularoty regions functional in the mammmlian host
ES2143716T3 (es) 1992-06-25 2000-05-16 Smithkline Beecham Biolog Composicion de vacuna que contiene adyuvantes.
WO1994015968A1 (en) 1993-01-08 1994-07-21 The Upjohn Company Process for the purification and refolding of human respiratory syncytial virus fg glycoprotein
US5395937A (en) 1993-01-29 1995-03-07 Minnesota Mining And Manufacturing Company Process for preparing quinoline amines
SG48309A1 (en) 1993-03-23 1998-04-17 Smithkline Beecham Biolog Vaccine compositions containing 3-0 deacylated monophosphoryl lipid a
US5352784A (en) 1993-07-15 1994-10-04 Minnesota Mining And Manufacturing Company Fused cycloalkylimidazopyridines
JPH09500128A (ja) 1993-07-15 1997-01-07 ミネソタ マイニング アンド マニュファクチャリング カンパニー イミダゾ〔4,5−c〕ピリジン−4−アミン
US5961970A (en) 1993-10-29 1999-10-05 Pharmos Corporation Submicron emulsions as vaccine adjuvants
AU5543294A (en) 1993-10-29 1995-05-22 Pharmos Corp. Submicron emulsions as vaccine adjuvants
PT729473E (pt) 1993-11-17 2001-02-28 Deutsche Om Arzneimittel Gmbh Dissacaridos de glucosamina metodo para a sua preparacao composicao farmaceutica contendo os mesmos e sua utilizacao
US5397307A (en) 1993-12-07 1995-03-14 Schneider (Usa) Inc. Drug delivery PTCA catheter and method for drug delivery
GB9326174D0 (en) 1993-12-22 1994-02-23 Biocine Sclavo Mucosal adjuvant
GB9326253D0 (en) 1993-12-23 1994-02-23 Smithkline Beecham Biolog Vaccines
JP3403233B2 (ja) 1994-01-20 2003-05-06 テルモ株式会社 バルーンカテーテル
WO1995026204A1 (en) 1994-03-25 1995-10-05 Isis Pharmaceuticals, Inc. Immune stimulation by phosphorothioate oligonucleotide analogs
FR2718452B1 (fr) 1994-04-06 1996-06-28 Pf Medicament Elément d'immunogène, agent immunogène, composition pharmaceutique et procédé de préparation.
US6207646B1 (en) 1994-07-15 2001-03-27 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US6239116B1 (en) 1994-07-15 2001-05-29 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US6429199B1 (en) 1994-07-15 2002-08-06 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules for activating dendritic cells
EP1167377B2 (en) 1994-07-15 2012-08-08 University of Iowa Research Foundation Immunomodulatory oligonucleotides
AUPM873294A0 (en) 1994-10-12 1994-11-03 Csl Limited Saponin preparations and use thereof in iscoms
FR2726003B1 (fr) 1994-10-21 2002-10-18 Agronomique Inst Nat Rech Milieu de culture de cellules embryonnaires totipotentes aviaires, procede de culture de ces cellules, et cellules embryonnaires totipotentes aviaires
JPH10509166A (ja) 1994-11-17 1998-09-08 インペリアル カレッジ オブ サイエンス,テクノロジー アンド メディシン ポリ−l−リシン及びインテグリンレセプターリガンドの複合体を用いた、dnaのインターナリゼーション
US6071890A (en) 1994-12-09 2000-06-06 Genzyme Corporation Organ-specific targeting of cationic amphiphile/DNA complexes for gene therapy
US5482936A (en) 1995-01-12 1996-01-09 Minnesota Mining And Manufacturing Company Imidazo[4,5-C]quinoline amines
GB9503863D0 (en) 1995-02-25 1995-04-19 Smithkline Beecham Biolog Vaccine compositions
UA56132C2 (uk) 1995-04-25 2003-05-15 Смітклайн Бічем Байолоджікалс С.А. Композиція вакцини (варіанти), спосіб стабілізації qs21 відносно гідролізу (варіанти), спосіб приготування композиції вакцини
US5811524A (en) 1995-06-07 1998-09-22 Idec Pharmaceuticals Corporation Neutralizing high affinity human monoclonal antibodies specific to RSV F-protein and methods for their manufacture and therapeutic use thereof
US5666153A (en) 1995-10-03 1997-09-09 Virtual Shopping, Inc. Retractable teleconferencing apparatus
US6020182A (en) * 1996-07-12 2000-02-01 Connaught Laboratories Limited Subunit respiratory syncytial virus vaccine preparation
US5856462A (en) 1996-09-10 1999-01-05 Hybridon Incorporated Oligonucleotides having modified CpG dinucleosides
AU753688B2 (en) 1997-03-10 2002-10-24 Ottawa Civic Loeb Research Institute Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
US6818222B1 (en) 1997-03-21 2004-11-16 Chiron Corporation Detoxified mutants of bacterial ADP-ribosylating toxins as parenteral adjuvants
US6113918A (en) 1997-05-08 2000-09-05 Ribi Immunochem Research, Inc. Aminoalkyl glucosamine phosphate compounds and their use as adjuvants and immunoeffectors
US6303347B1 (en) 1997-05-08 2001-10-16 Corixa Corporation Aminoalkyl glucosaminide phosphate compounds and their use as adjuvants and immunoeffectors
US6764840B2 (en) 1997-05-08 2004-07-20 Corixa Corporation Aminoalkyl glucosaminide phosphate compounds and their use as adjuvants and immunoeffectors
US6080725A (en) 1997-05-20 2000-06-27 Galenica Pharmaceuticals, Inc. Immunostimulating and vaccine compositions employing saponin analog adjuvants and uses thereof
US6060308A (en) 1997-09-04 2000-05-09 Connaught Laboratories Limited RNA respiratory syncytial virus vaccines
US6090619A (en) 1997-09-08 2000-07-18 University Of Florida Materials and methods for intracellular delivery of biologically active molecules
KR100550132B1 (ko) 1997-09-19 2006-02-08 와이어쓰 홀딩스 코포레이션 호흡 신시티아 바이러스의 부착 (지) 단백질에서 유도된펩티드
DE69828963T2 (de) 1997-10-01 2006-01-26 Medtronic AVE, Inc., Santa Rosa Wirkstoffabgabe und Gentherapieabgabesystem
GB9725084D0 (en) 1997-11-28 1998-01-28 Medeva Europ Ltd Vaccine compositions
GB9727262D0 (en) 1997-12-24 1998-02-25 Smithkline Beecham Biolog Vaccine
JP2002511423A (ja) 1998-04-09 2002-04-16 スミスクライン ビーチャム バイオロジカルズ ソシエテ アノニム ワクチン
US6562798B1 (en) 1998-06-05 2003-05-13 Dynavax Technologies Corp. Immunostimulatory oligonucleotides with modified bases and methods of use thereof
HUP0102332A3 (en) 1998-06-08 2002-11-28 Sca Emballage France Fast flattening packaging
ATE355266T1 (de) 1998-06-30 2006-03-15 Om Pharma Neue acylierte pseudodipeptide, verfahren zu ihrer herstellung, und diese enthaltende pharmazeutische zusammensetzungen
US6110929A (en) 1998-07-28 2000-08-29 3M Innovative Properties Company Oxazolo, thiazolo and selenazolo [4,5-c]-quinolin-4-amines and analogs thereof
GB9817052D0 (en) 1998-08-05 1998-09-30 Smithkline Beecham Biolog Vaccine
CA2773698C (en) 1998-10-16 2015-05-19 Glaxosmithkline Biologicals S.A. Adjuvant systems comprising an immunostimulant adsorbed to a metallic salt particle and vaccines thereof
US20030130212A1 (en) 1999-01-14 2003-07-10 Rossignol Daniel P. Administration of an anti-endotoxin drug by intravenous infusion
US20040006242A1 (en) 1999-02-01 2004-01-08 Hawkins Lynn D. Immunomodulatory compounds and method of use thereof
US6551600B2 (en) 1999-02-01 2003-04-22 Eisai Co., Ltd. Immunological adjuvant compounds compositions and methods of use thereof
CA2361421A1 (en) 1999-02-03 2000-08-10 Biosante Pharmaceuticals, Inc. Therapeutic calcium phosphate particles and methods of manufacture and use
JP4800485B2 (ja) 1999-03-26 2011-10-26 バイカル インコーポレイテッド ポリヌクレオチドベースのワクチンに対する免疫応答を増強するためのアジュバント組成物および方法
US6331539B1 (en) 1999-06-10 2001-12-18 3M Innovative Properties Company Sulfonamide and sulfamide substituted imidazoquinolines
CO5200837A1 (es) 1999-09-24 2002-09-27 Smithkline Beecham Corp Vacunas
PL355232A1 (en) 1999-09-24 2004-04-05 Smithkline Beecham Biologicals S.A. Adjuvant comprising a polyxyethylene alkyl ether or ester and at least one nonionic surfactant
AP1775A (en) 1999-09-25 2007-08-28 Univ Iowa Res Found Immunostimulatory nucleic acids.
WO2001046127A1 (fr) 1999-12-22 2001-06-28 Om Pharma Pseudodipeptides acyles porteurs d'un bras auxiliaire fonctionnalise
CA2396871A1 (en) 2000-01-20 2001-12-20 Ottawa Health Research Institute Immunostimulatory nucleic acids for inducing a th2 immune response
ATE448226T1 (de) 2000-09-01 2009-11-15 Novartis Vaccines & Diagnostic Aza heterocyclische derivate und ihre therapeutische verwendung
PT1650203E (pt) 2000-09-11 2008-05-13 Novartis Vaccines & Diagnostic Processo de preparação de derivados de benzimidazol-2-ilquinolinona
ES2298269T3 (es) 2000-09-26 2008-05-16 Idera Pharmaceuticals, Inc. Modulacion de la actividad inmunoestimulante de analogos oligonucleotidicos inmunoestimulantes mediante cambios quimicos posicionales.
US20040161846A1 (en) 2000-11-22 2004-08-19 Mason Anthony John Method of expression and agents identified thereby
US6677348B2 (en) 2000-12-08 2004-01-13 3M Innovative Properties Company Aryl ether substituted imidazoquinolines
US6664265B2 (en) 2000-12-08 2003-12-16 3M Innovative Properties Company Amido ether substituted imidazoquinolines
US6664264B2 (en) 2000-12-08 2003-12-16 3M Innovative Properties Company Thioether substituted imidazoquinolines
US6667312B2 (en) 2000-12-08 2003-12-23 3M Innovative Properties Company Thioether substituted imidazoquinolines
US6677347B2 (en) 2000-12-08 2004-01-13 3M Innovative Properties Company Sulfonamido ether substituted imidazoquinolines
UA74852C2 (en) 2000-12-08 2006-02-15 3M Innovative Properties Co Urea-substituted imidazoquinoline ethers
DK1395669T3 (da) 2001-01-26 2009-11-16 Selexis Sa Matriks bindingsregioner og fremgangsmåder til anvendelse af disse
MXPA03008154A (es) 2001-03-09 2004-11-12 Id Biomedical Corp Quebec Novedoso adyuvante de vacuna de proteosoma-liposacarido.
KR100892614B1 (ko) 2001-04-17 2009-04-09 다이닛본 스미토모 세이야꾸 가부시끼가이샤 신규 아데닌 유도체
WO2003035836A2 (en) 2001-10-24 2003-05-01 Hybridon Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends
US20040014779A1 (en) 2001-11-16 2004-01-22 3M Innovative Properties Company Methods and compositions related to IRM compounds and toll-like recptor pathways
FR2832423B1 (fr) 2001-11-22 2004-10-08 Vivalis Systeme d'expression de proteines exogenes dans un systeme aviaire
US7321033B2 (en) 2001-11-27 2008-01-22 Anadys Pharmaceuticals, Inc. 3-B-D-ribofuranosylthiazolo [4,5-d] pyrimidine nucleosides and uses thereof
JP4493337B2 (ja) 2001-11-27 2010-06-30 アナディス ファーマシューティカルズ インク 3−β−D−リボフラノシルチアゾロ[4,5−d]ピリミジンヌクレオシド及びその使用
US6677349B1 (en) 2001-12-21 2004-01-13 3M Innovative Properties Company Sulfonamide and sulfamide substituted imidazoquinolines
EP1485468A4 (en) 2002-02-21 2007-01-03 Medimmune Vaccines Inc EXPRESSION SYSTEMS OF RECOMBINANT PARAINFLUENZA VIRUSES AND VACCINES COMPRISING HETEROLOGOUS ANTIGENS DERIVED FROM METAPNEUMOVIRUS
FR2836924B1 (fr) 2002-03-08 2005-01-14 Vivalis Lignees de cellules aviaires utiles pour la production de substances d'interet
US7071216B2 (en) 2002-03-29 2006-07-04 Chiron Corporation Substituted benz-azoles and methods of their use as inhibitors of Raf kinase
WO2003083095A1 (en) * 2002-04-03 2003-10-09 Akzo Nobel N.V. Viral mutants, manipulated in the furin cleavage sites of glycoproteins
WO2003101949A2 (en) 2002-05-29 2003-12-11 3M Innovative Properties Company Process for imidazo[4,5-c]pyridin-4-amines
WO2003105769A2 (en) 2002-06-13 2003-12-24 New York University Synthetic c-glycolipid and its use for treating cancer infectious diseases and autoimmune diseases
DE60333762D1 (de) 2002-08-23 2010-09-23 Novartis Vaccines & Diagnostic Pyrrolverbindungen als glykogen synthase kinase 3 inhibitoren
CA2756797C (en) 2002-12-23 2015-05-05 Vical Incorporated Codon-optimized polynucleotide-based vaccines against human cytomegalovirus infection
CA2511646A1 (en) 2002-12-27 2004-07-22 Chiron Corporation Thiosemicarbazones as anti-virals and immunopotentiators
EP1594524B1 (en) 2003-01-21 2012-08-15 Novartis Vaccines and Diagnostics, Inc. Use of tryptanthrin compounds for immune potentiation
GB0301554D0 (en) 2003-01-23 2003-02-26 Molecularnature Ltd Immunostimulatory compositions
WO2004071459A2 (en) 2003-02-13 2004-08-26 3M Innovative Properties Company Methods and compositions related to irm compounds and toll-like receptor 8
ES2423800T3 (es) 2003-03-28 2013-09-24 Novartis Vaccines And Diagnostics, Inc. Uso de compuestos orgánicos para la inmunopotenciación
US7368537B2 (en) 2003-07-15 2008-05-06 Id Biomedical Corporation Of Quebec Subunit vaccine against respiratory syncytial virus infection
RU2236257C1 (ru) 2003-09-15 2004-09-20 Косяков Константин Сергеевич Синтетический иммуноген для терапии и профилактики злоупотреблений наркотическими и психоактивными веществами
US7771726B2 (en) 2003-10-08 2010-08-10 New York University Use of synthetic glycolipids as universal adjuvants for vaccines against cancer and infectious diseases
EP2292754B1 (en) 2003-10-24 2012-12-26 Selexis S.A. High efficiency gene transfer and expression in mammalian cells by a multiple transfection procedure of matrix attachment region sequences
EP1528101A1 (en) 2003-11-03 2005-05-04 ProBioGen AG Immortalized avian cell lines for virus production
AU2005235080A1 (en) 2004-03-31 2005-11-03 New York University Novel synthetic C-glycolipids, their synthesis and use to treat infections, cancer and autoimmune diseases
KR20090051129A (ko) 2004-04-05 2009-05-20 화이자 프로덕츠 인코포레이티드 미세유체화된 수중유 유화액 및 백신 조성물
US20060024670A1 (en) 2004-05-18 2006-02-02 Luke Catherine J Influenza virus vaccine composition and methods of use
CA2571421A1 (en) 2004-06-24 2006-01-05 Nicholas Valiante Compounds for immunopotentiation
DE602005025647D1 (de) 2004-07-23 2011-02-10 Novartis Vaccines & Diagnostic Polypeptide für die oligomerisierung von antigenen
FR2873378A1 (fr) 2004-07-23 2006-01-27 Pierre Fabre Medicament Sa Complexes immunogenes, leur procede de preparation et leur utilisation dans des compositions pharmaceutiques
EP2808384B1 (en) 2004-10-08 2017-12-06 The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services Modulation of replicative fitness by using less frequently used synonymous codons
GB0422439D0 (en) 2004-10-08 2004-11-10 European Molecular Biology Lab Embl Inhibitors of infection
US7951384B2 (en) * 2005-08-05 2011-05-31 University Of Massachusetts Virus-like particles as vaccines for paramyxovirus
TWI457133B (zh) 2005-12-13 2014-10-21 Glaxosmithkline Biolog Sa 新穎組合物
US20080233150A1 (en) 2006-11-16 2008-09-25 Gale Smith Respiratory syncytial virus-virus like particle (vlps)
JP2010522540A (ja) * 2007-03-21 2010-07-08 アイディー バイオメディカル コーポレイション オブ ケベック キメラ抗原
EP2164860A2 (en) 2007-06-06 2010-03-24 Nationwide Children's Hospital, Inc. Methods and compositions relating to viral fusion proteins
CN101148479A (zh) * 2007-09-11 2008-03-26 浙江理工大学 一种重组类人胶原蛋白及生物合成方法
WO2009111337A1 (en) 2008-03-03 2009-09-11 Irm Llc Compounds and compositions as tlr activity modulators
WO2009128950A2 (en) 2008-04-18 2009-10-22 Vaxinnate Corporation Deletion mutants of flagellin and methods of use
WO2009132206A1 (en) 2008-04-25 2009-10-29 Liquidia Technologies, Inc. Compositions and methods for intracellular delivery and release of cargo
JP5781929B2 (ja) * 2008-07-15 2015-09-24 ノバルティス アーゲー 免疫原性の両親媒性ペプチド組成物
BRPI0915960A2 (pt) 2008-07-18 2019-09-24 Id Biomedical Corp antígenos de polipeptídeos do vírus sincicial respiratório qimérico
WO2010077712A1 (en) 2008-12-09 2010-07-08 Novavax, Inc. Bovine respiratory syncytial virus virus-like particle (vlps)
WO2010149745A1 (en) 2009-06-24 2010-12-29 Glaxosmithkline Biologicals S.A. Recombinant rsv antigens
MX2012000036A (es) 2009-06-24 2012-02-28 Glaxosmithkline Biolog Sa Vacuna.
HRP20220756T1 (hr) * 2009-07-15 2022-09-02 Glaxosmithkline Biologicals S.A. Proteinski pripravci rsv f i postupci za izradu istih
US9405700B2 (en) 2010-11-04 2016-08-02 Sonics, Inc. Methods and apparatus for virtualization in an integrated circuit
JP6069295B2 (ja) 2011-03-22 2017-02-01 ミュコシス ベー.フェー. 免疫組成物、免疫組成物の製造方法、疾患の治療剤または予防剤、組み替えポリペプチド、核酸配列、ベクターおよび宿主細胞
PL2707385T3 (pl) 2011-05-13 2018-03-30 Glaxosmithkline Biologicals Sa Prefuzyjne antygeny RSV F
ES2395677B1 (es) 2011-07-29 2013-12-26 Instituto De Salud Carlos Iii Proteína F del VRSH en conformación pre-fusión estabilizada y anticuerpos neutralizantes específicos frente a la misma.
ES2900331T3 (es) 2014-10-15 2022-03-16 Amgen Inc Elementos promotores y reguladores para mejorar la expresión de genes heterólogos en células hospederas
SG11201908280SA (en) 2017-03-30 2019-10-30 Univ Queensland "chimeric molecules and uses thereof"

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009079796A1 (en) * 2007-12-24 2009-07-02 Id Biomedical Corporation Of Quebec Recombinant rsv antigens
WO2010077717A1 (en) * 2008-12-09 2010-07-08 Novavax, Inc. Modified rsv f proteins and methods of their use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Bovine respiratory syncytial virus lacking the virokinin or with a mutation in furin cleavage site RA(R K)R109 induces less pulmonary inflammation without impeding the induction of protective immunity in calves;valarcher j-f et al.;《journal of general virology》;20060630;第87卷;图1-3,表1-2 *

Also Published As

Publication number Publication date
US11655284B2 (en) 2023-05-23
US20220340645A1 (en) 2022-10-27
CN102639147A (zh) 2012-08-15
CN105214080A (zh) 2016-01-06
EP3178490A3 (en) 2017-08-30
US20230357371A1 (en) 2023-11-09
EP4183412A1 (en) 2023-05-24
EP4218799A1 (en) 2023-08-02
RU2585227C2 (ru) 2016-05-27
US11827694B2 (en) 2023-11-28
HRP20220756T1 (hr) 2022-09-02
ES2563730T3 (es) 2016-03-16
SG178026A1 (en) 2012-03-29
US11629181B2 (en) 2023-04-18
US20200172600A1 (en) 2020-06-04
US20230357370A1 (en) 2023-11-09
EP2453918B1 (en) 2015-12-16
EP4183412C0 (en) 2024-08-14
SI3178490T1 (sl) 2022-08-31
JP5829210B2 (ja) 2015-12-09
US11261239B2 (en) 2022-03-01
CA2768186A1 (en) 2011-01-20
EP2453918A2 (en) 2012-05-23
JP2012533558A (ja) 2012-12-27
EP3988115A3 (en) 2022-08-17
US20230348574A1 (en) 2023-11-02
PT3178490T (pt) 2022-06-30
EP4183412B1 (en) 2024-08-14
HUE058971T2 (hu) 2022-09-28
US20220213177A1 (en) 2022-07-07
AR077757A1 (es) 2011-09-21
LT3178490T (lt) 2022-07-25
TW201116294A (en) 2011-05-16
US11820812B2 (en) 2023-11-21
US20220372115A1 (en) 2022-11-24
WO2011008974A2 (en) 2011-01-20
ES2918381T3 (es) 2022-07-15
CL2012000119A1 (es) 2012-08-10
US20230357369A1 (en) 2023-11-09
US20120164176A1 (en) 2012-06-28
RU2012105308A (ru) 2013-08-20
JP2015145422A (ja) 2015-08-13
EP3178490B1 (en) 2022-04-20
US20240034773A1 (en) 2024-02-01
DK3178490T3 (da) 2022-06-20
US20110305727A1 (en) 2011-12-15
EP4218800A1 (en) 2023-08-02
WO2011008974A3 (en) 2011-04-28
EP3178490A2 (en) 2017-06-14
US20230303669A1 (en) 2023-09-28
MX2012000667A (es) 2012-06-01
PL3178490T3 (pl) 2022-08-01
CO6491045A2 (es) 2012-07-31
EP3988115A2 (en) 2022-04-27
BR112012001666A2 (pt) 2019-09-24
US20230348575A1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
CN102639147B (zh) Rsv f 蛋白组合物和其制作方法
US20230287056A1 (en) Pre-fusion rsv f antigens

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Address after: Basel

Applicant after: Novartis Ag

Address before: Basel

Applicant before: Novartis Vaccines & Diagnostic

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: NOVARTIS VACCINES + DIAGNOSTIC TO: NOVARTIS CO., LTD.

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151125

Termination date: 20160715