New! View global litigation for patent families

WO2003035836A2 - Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends - Google Patents

Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends

Info

Publication number
WO2003035836A2
WO2003035836A2 PCT/US2002/033756 US0233756W WO2003035836A2 WO 2003035836 A2 WO2003035836 A2 WO 2003035836A2 US 0233756 W US0233756 W US 0233756W WO 2003035836 A2 WO2003035836 A2 WO 2003035836A2
Authority
WO
Grant status
Application
Patent type
Prior art keywords
cpg
immunostimulatory
linker
immunomer
il
Prior art date
Application number
PCT/US2002/033756
Other languages
French (fr)
Inventor
Sudhir Agrawal
Ekambar R. Kandimalla
Dong Yu
Lakshmi Bhagat
Original Assignee
Hybridon Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/117Nucleic acids having immunomodulatory properties, e.g. containing CpG-motifs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55561CpG containing adjuvants; Oligonucleotide containing adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • C07K2319/003
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/18Type of nucleic acid acting by a non-sequence specific mechanism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/318Chemical structure of the backbone where the PO2 is completely replaced, e.g. MMI or formacetal
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/318Chemical structure of the backbone where the PO2 is completely replaced, e.g. MMI or formacetal
    • C12N2310/3183Diol linkers, e.g. glycols or propanediols
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/52Physical structure branched

Abstract

The invention relates to the therapeutic use of oligonucleotides as immunostimulatory agents in immunotherapy applications. More particularly, the invention provides immunomers for use in methods for generating a immune response or for treating a patient in need of immunostimulation. The immunomers of the invention comprise at least two oligonucleotides linked at their 3' ends, internucleoside linkages or functionalized nucleobase or sugar to a non-nucleotidic linker, at least one of the oligonucleotides being an immunostimulatory oligonucleotide and having an accessible 5' end.

Description

MODULATION OF IMMUNOSTIMULATORY PROPERTIES OF

OLIGONUCLEOTIDE-BASED COMPOUNDS BY OPTIMAL

PRESENTATION OF 5' ENDS

(Attorney Docket No. HYB-007US) BACKGROUND OF THE INVENTION

Field of the Invention

The invention relates to immunology and immunotherapy applications using oligonucleotides as immunostimulatory agents.

Summary of the Related Art

Oligonucleotides have become indispensable tools in modern molecular biology, being used in a wide variety of techniques, ranging from diagnostic probing methods to PCR to antisense inhibition of gene expression and immunotherapy applications. This widespread use of oligonucleotides has led to an increasing demand for rapid, inexpensive and efficient methods for synthesizing oligonucleotides.

The synthesis of oligonucleotides for antisense and diagnostic applications can now be routinely accomplished. See, e.g., Methods in Molecular Biology, Vol. 20: Protocols for Oligonucleotides and Analogs pp. 165-189 (S. Agrawal, ed., Humana Press, 1993); Oligonucleotides and Analogues, A Practical Approach, pp. 87-108 (F. Eckstein, ed., 1 91); and Uhlmann and Peyman, supra; Agrawal and Iyer, Curr. Op. in Biotech. 6:12 (1995); and Antisense Research and Applications (Crooke and Lebleu, eds., CRC Press, Boca Raton, 1993). Early synthetic approaches included phosphodiester and phosphotriester chemistries. For example, horana et al., J. Molec. Biol. 72:209 (1972) discloses phosphodiester chemistry for oligonucleotide synthesis. Reese, Tetrahedron Lett. 34:3143-3179 (1978), discloses phosphotriester chemistry for synthesis of oligonucleotides and polynucleotides. These early approaches have largely given way to the more efficient phosphoramidite and H- phosphonate approaches to synthesis. For example, Beaucage and Caruthers, Tetrahedron Lett. 22:1859-1862 (1981), discloses the use of deoxyribonucleoside phosphoramidites in polynucleotide synthesis. Agrawal and Zamecnik, U.S. Patent No. 5,149,798 (1992), discloses optimized synthesis of oligonucleotides by the H- phosphonate approach. Both of these modern approaches have been used to synthesize oligonucleotides having a variety of modified internucleotide linkages. Agrawal and Goodchild, Tetrahedron Lett. 28:3539-3542 (1987), teaches synthesis of oligonucleotide methylphosphonates using phosphoramidite chemistry. Connolly et al., Biochem. 23:3443 (1984), discloses synthesis of oligonucleotide phosphorothioates using phosphoramidite chemistry. Jager et al., Biochem.27:7237 (1988), discloses synthesis of oligonucleotide phosphoramidates using phosphoramidite chemistry. Agrawal et al., Proc. Natl. Acad. Sci. (USA) 85:7079- 7083 (1988), discloses synthesis of oligonucleotide phosphoramidates and phosphorothioates using H-phosphonate chemistry.

More recently, several researchers have demonstrated the validity of the use of oligonucleotides as immunostimulatory agents in immunotherapy applications. The observation that phosphodiester and phosphorothioate oligonucleotides can induce immune stimulation has created interest in developing this side effect as a therapeutic tool. These efforts have focused on phosphorothioate oligonucleotides containing the dinucleotide natural CpG. Kura oto et al, Jpn. J. Cancer Res. 83: 1 128- 1 131 ( 1992) teaches that phosphodiester oligonucleotides containing a palindrome that includes a CpG dinucleotide can induce interferon-alpha and gamma synthesis and enhance natural killer activity. Krieg et al, Nature 371:546-549 (1995) discloses that phosphorothioate CpG-containing oligonucleotides are immunostimulatory. Liang et al, J. Clin. Invest. 98:1119-1129 (1996) discloses that such oligonucleotides activate human B cells. Moldoveanu et al, Vaccine 16:1216-124 (1998) teaches that CpG- containing phosphorothioate oligonucleotides enhance immune response against influenza virus. McCluskie and Davis, J. Immunol. 161:4463-4466 (1998) teaches that CpG-containing oligonucleotides act as potent adjuvants, enhancing immune response against hepatitis B surface antigen. Other modifications of CpG-containing phosphorothioate oligonucleotides can also affect their ability to act as modulators of immune response. See, e.g., Zhao et al., Biochem. Pharmacol. (1996) 51:173-182; Zhao et al., Biochem Pharmacol. (1996) 52:1537-1544; Zhao et al., Antisense Nucleic Acid Drug Dev. (1997) 7:495- 502; Zhao et al., Bioorg. Med. Chem. Lett. (1999) 9:3453-3458; Zhao et al., Bioorg. Med. Chem. Lett. (2000) 10:1051-1054; Yu et al., Bioorg. Med. Chem. Lett. (2000) 10:2585-2588; Yu et al., Bioorg. Med. Chem. Lett. (2001) 11:2263-2267; and Kandimalla et al., Bioorg. Med. Chem. (2001) 9:807-813.

These reports make clear that there remains a need to be able to enhance the immune response caused by immunostimulatory oligonucleotides.

BRIEF SUMMARY OF THE INVENTION

The invention provides methods for enhancing the immune response caused by oligonucleotide compounds. The methods according to the invention enable increasing the immunostimulatory effect of immunostimulatory oligonucleotides for immunotherapy applications. The present inventors have surprisingly discovered that modification of an immunostimulatory oligonucleotide to optimally present its 5' end dramatically enhances its immunostimulatory capability. Such an oligonucleotide is referred to herein as an "immunomer."

In a first aspect, therefore, the invention provides immunomers comprising at least two oligonucleotides linked at their 3' ends, an internuceotide linkage, or a functionalized nucleobase or sugar via a non-nucleotidic linker, at least one of the oligonucleotides being an immunostimulatory oligonucleotide and having an accessible 5' end.

In one embodiment, the immunomer comprises an immunostimulatory dinucleotide of formula 5'-Pyr-Pur-3', wherein Pyr is a natural or non-natural pyrimidine nucleoside and Pur is a natural or non-natural purine nucleoside.

In another embodiment, the immunomer comprises an immunostimulatory dinucleotide selected from the group consisting of CpG, C*pG, CpG*, and C*pG*, wherein C is cytidine or 2-deoxycytidine, C* is 2'-deoxythymidine. arabinocytidine, 2'-deoxy-2'-substitutedarabinocytidine, 2'-O-substitutedarabinocytidine, 2'-deoxy-5- hydroxycytidine, 2'-deoxy-N4-alkyI-cytidine, 2'-deoxy-4-thiouridine or other non- natural pyrimidine nucleoside, G is guanosine or 2'-deoxyguanosine, G* is 2' deoxy- 7-deazaguanosine, 2'-deoxy-6-thioguanosine, arabinoguanosine, 2'-deoxy- 2'substituted-arabinoguanosine, 2'-O-substituted-arabinoguanosine, or other non- natural purine nucleoside, and p is an internucleoside linkage selected from the group consisting of phosphodiester, phosphorothioate, and phosphorodithioate. In certain preferred embodiments, the immunostimulatory dinucleotide is not CpG. In yet another embodiment, the immunostimulatory oligonucleotide comprises an immunostimulatory domain of formula (HI):

5'-Nn-Nl-Y-Z-Nl-Nn-3' (III)

wherein:

Y is cytidine, 2'-deoxythymidine, 2' deoxycytidine, arabinocytidine, 2'- deoxythymidine, 2'-deoxy-2'-substitutedarabinocytidine, 2'-O- substitutedarabinocytidine, 2'-deoxy-5-hydroxycytidine, 2'-deoxy-N4-alkyl-cytidine, 2'-deoxy-4-thiouridine or other non-natural pyrimidine nucleoside;

Z is guanosine or 2'-deoxyguanosine, G* is 2' deoxy-7-deazaguanosine, 2'- deoxy-6-thioguanosine, arabinoguanosine, 2'-deoxy-2'substituted-arabinoguanosine, 2'-O-substituted-arabinoguanosine, 2'- deoxyinosine, or other non-natural purine nucleoside

N 1 , at each occurrence, is preferably a naturally occurring or a synthetic nucleoside or an immunostimulatory moiety selected from the group consisting of abasic nucleosides, arabinonucleosides, 2 -deoxyuridine, α-deoxyribonucleosides, β-L-deoxyribonucleosides, and nucleosides linked by a phosphodiester or modified internucleoside linkage to the adjacent nucleoside on the 3' side, the modified internucleotide linkage being selected from, without limitation, a linker having a length of from about 2 angstroms to about 200 angstroms, C2-C18 alkyl linker, poly(ethylene glycol) linker, 2-aminobutyl-l,3-propanediol linker, glyceryl linker, 2'- 5' internucleoside linkage, and phosphorothioate, phosphorodithioate, or methylphosphonate internucleoside linkage;

Nn, at each occurrence, is a naturally occurring nucleoside or an immunostimulatory moiety, preferably selected from the group consisting of abasic nucleosides, arabinonucleosides, 2'-deoxyuridine, α-deoxyribonucleosides, 2'-O- substituted ribonucleosides, and nucleosides linked by a modified internucleoside linkage to the adjacent nucleoside on the 3' side, the modified intemucleotide linkage being selected from the group consisting of amino linker, 2'-5' internucleoside linkage, and methylphosphonate internucleoside linkage;

provided that at least one Nl or Nn is an immunostimulatory moiety;

wherein n is a number from 0-30;

wherein the 3 'end , an intemucleotide linkage, or a functionalized nucleobase or sugar is linked directly or via a non-nucleotidic linker to another oligonucleotide, which may or may not be immunostimulatory.

In a second aspect, the invention provides immunomer conjugates, comprising an immunomer, as described above, and an antigen conjugated to the immunomer at a position other than the accessible 5' end.

In a third aspect, the invention provides pharmaceutical formulation comprising an immunomer or an immunomer conjugate according to the invention and a physiologically acceptable carrier.

In a fourth aspect, the invention provides methods for generating an immune response in a vertebrate, such methods comprising administering to the vertebrate an immunomer or immunomer conjugate according to the invention. In some embodiments, the vertebrate is a mammal.

In a fifth aspect, the invention provides methods for therapeutically treating a patient having a disease or disorder, such methods comprising administering to the patient an immunomer or immunomer conjugate according to the invention. In various embodiments, the disease or disorder to be treated is cancer, an autoimmune disorder, airway inflammation, asthma, allergy, or a disease caused by a pathogen. BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic representation of representative immunomers of the invention.

Figure 2 depicts several representative immunomers of the invention.

Figure 3 depicts a group of representative small molecule linkers suitable for linear synthesis of immumomers of the invention.

Figure 4 depicts a group of representative small molecule linkers suitable for parallel synthesis of immunomers of the invention.

Figure 5 is a synthetic scheme for the linear synthesis of immunomers of the invention. DMTr = 4,4 -dimethoxytrityl; CE = cyanoethyl.

Figure 6 is a synthetic scheme for the parallel synthesis of immunomers of the invention. DMTr = 4,4'-dimethoxytrityl; CE = cyanoethyl.

Figure 7A is a graphic representation of the induction of IL-12 by immunomers 1-3 in BALB/c mouse spleen cell cultures. These data suggest that Immunomer 2, which has accessible 5 '-ends, is a stronger inducer of IL- 12 than monomeric Oligo 1, and that Immunomer 3, which does not have accessible 5'-ends, has equal or weaker ability to produce immune stimulation compared with oligo 1.

Figure 7B is a graphic representation of the induction of IL-6 (top to bottom, respectively) by Immunomers 1-3 in BALB/c mouse spleen cells cultures. These data suggest that Immunomer 2, which has accessible 5'-ends, is a stronger inducer of IL-6 than monomeric Oligo 1, and that Immunomer 3, which does not have accessible 5'- ends, has equal or weaker ability to induce immune stimulation compared with Oligo

Figure 7C is a graphic representation of the induction of IL-10 by Immunomers 1-3 (top to bottom, respectively) in BALB/c mouse spleen cell cultures. Figure 8A is a graphic representation of the induction of BALB/c mouse spleen cell proliferation in cell cultures by different concentrations of Immunomers 5 and 6, which have inaccessible and accessible 5 '-ends, respectively.

Figure 8B is a graphic representation of BALB/c mouse spleen enlargement by Immunomers 4-6, which have an immunogenic chemical modification in the 5'- flanking sequence of the CpG motif. Again, the immunomer, which has accessible 5 '-ends (6), has a greater ability to increase spleen enlargement compared with Immunomer 5, which does not have accessible 5'-end and with monomeric Oligo 4.

Figure 9A is a graphic representation of induction of IL-12 by different concentrations of Oligo 4 and Immunomers 7 and 8 in BALB/c mouse spleen cell cultures.

Figure 9B is a graphic representation of induction of IL-6 by different concentrations of Oligo 4 and Immunomers 7 and 8 in BALB/c mouse spleen cell cultures.

Figure 9C is a graphic representation of induction of IL- 10 by different concentrations of Oligo 4 and Immunomers 7 and 8 in BALB/c mouse spleen cell cultures.

Figure 10A is a graphic representation of the induction of cell proliferation by Immunomers 14, 15, and 16 in BALB/c mouse spleen cell cultures.

Figure 1 OB is a graphic representation of the induction of cell proliferation by

IL-12 by different concentrations of Immunomers 14 and 16 in BALB/c mouse spleen cell cultures.

Figure IOC is a graphic representation of the induction of cell proliferation by IL-6 by different concentrations of Immunomers 14 and 16 in BALB/c mouse spleen cell cultures. Figure 1 1 A is a graphic representation of the induction of cell proliferation by Oligo 4 and 17 and Immunomers 19 and 20 in BALB/c mouse spleen cell cultures.

Figure 1 IB is a graphic representation of the induction of cell proliferation IL- 12 by different concentrations of Oligo 4 and 17 and Immunomers 19 and 20 in BALB/c mouse spleen cell cultures.

Figure 1 IC is a graphic representation of the induction of cell proliferation IL- 6 by different concentrations of Oligo 4 and 17 and Immunomers 19 and 20 in BALB/c mouse spleen cell cultures.

Figure 12 is a graphic representation of BALB/c mouse spleen enlargement using oligonucleotides 4 and immunomers 14, 23, and 24.

Figure 13 is a schematic representation of the 3-terminal nucleoside of an oligonucleotide, showing that a non-nucleotide linkage can be attached to the nucleoside at the nucleobase, the 3' position, or at the 2' position.

Figure 14 shows the chemical substitutions used in Example 13.

Figure 15 shows cytokine profiles obtained using the modified oligonucleotides of Example 13.

Figure 16 shows relative cytokine induction for glycerol linkers compared with amino linkers.

Figure 17 shows relative cytokine induction for various linkers and linker combinations.

Figures 18 A-E shows relative nuclease resistance for various PS and PO immunomers and oligonucleotides.

Figure 19 shows relative cytokine induction for PO immunomers compared with PS immunomers in BALB/c mouse spleen cell cultures. Figure 20 shows relative cytokine induction for PO immunomers compared with PS immunomers in C3H/Hej mouse spleen cell cultures.

Figure 21 shows relative cytokine induction for PO immunomers compared with PS immunomers in C3H/Hej mouse spleen cell cultures at high concentrations of immunomers.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The invention relates to the therapeutic use of oligonucleotides as immunostimulatory agents for immunotherapy applications. The issued patents, patent applications, and references that are cited herein are hereby incorporated by reference to the same extent as if each was specifically and individually indicated to be incorporated by reference. In the event of inconsistencies between any teaching of any reference cited herein and the present specification, the latter shall prevail for purposes of the invention.

The invention provides methods for enhancing the immune response caused by immunostimulatory compounds used for immunotherapy applications such as, but not limited to, treatment of cancer, autoimmune disorders, asthma, respiratory allergies, food allergies, and bacteria, parasitic, and viral infections in adult and pediatric human and veterinary applications. Thus, the invention further provides compounds having optimal levels of immunostimulatory effect for immunotherapy and methods for making and using such compounds. In addition, immunomers of the invention are useful as adjuvants in combination with DNA vaccines, antibodies, allergens, chemotherapeutic agents, and antisense oligonucleotides.

The present inventors have surprisingly discovered that modification of an immunostimulatory oligonucleotide to optimally present its 5' ends dramatically affects its immunostimulatory capabilities. Such an oligonucleotide is referred to herein as an "immunomer."

In a first aspect, the invention provides immunomers comprising at least two oligonucleotides linked at their 3' ends, or an internucleoside linkage or a functionalized nucleobase or sugar to a non-nucleotidic linker, at least one of the oligonucleotides being an immunostimulatory oligonucleotide and having an accessible 51 end. As used herein, the term "accessible 5' end" means that the 5' end of the oligonucleotide is sufficiently available such that the factors that recognize and bind to immunomers and stimulate the immune system have access to it. In oligonucleotides having an accessible 5' end, the 5' OH position of the terminal sugar is not covalently linked to more than two nucleoside residues. Optionally, the 5' OH can be linked to a phosphate, phosphorothioate, or phosphorodithioate moiety, an aromatic or aliphatic linker, cholesterol, or another entity which does not interfere with accessibility.

For purposes of the invention, the term "immunomer" refers to any compound comprising at least two oligonucleotides linked at their 3' ends or internucleoside linkages, or functionalized nucleobase or sugar directly or via a non-nucleotidic linker, at least one of the oligonucleotides (in the context of the immunomer) being an immunostimulatory oligonucleotide and having an accessible 5' end, wherein the compound induces an immune response when administered to a vertebrate. In some embodiments, the vertebrate is a mammal, including a human.

In some embodiments, the immunomer comprises two or more immunostimulatory oligonucleotides, (in the context of the immunomer) which may be the same or different. Preferably, each such immunostimulatory oligonucleotide has at least one accessible 51 end.

In certain embodiments, in addition to the immunostimulatory oligonucleotide(s), the immunomer also comprises at least one oligonucleotide that is complementary to a gene. As used herein, the term "complementary to" means that the oligonucleotide hybridizes under physiological conditions to a region of the gene. In some embodiments, the oligonucleotide downregulates expression of a gene. Such downregulatory oligonucleotides preferably are selected from the group consisting of antisense oligonucleotides, ribozyme oligonucleotides, small inhibitory RNAs and decoy oligonucleotides. As used herein, the term "downregulate a gene" means to inhibit the transcription of a gene or translation of a gene product. Thus, the immunomers according to these embodiments of the invention can be used to target one or more specific disease targets, while also stimulating the immune system. In certain embodiments, the immunomer includes a ribozyme or a decoy oligonucleotide. As used herein, the term "ribozyme" refers to an oligonucleotide that possesses catalytic activity. Preferably, the ribozyme binds to a specific nucleic acid target and cleaves the target. As used herein, the term "decoy oligonucleotide" refers to an oligonucleotide that binds to a transcription factor in a sequence-specific manner and arrests transcription activity. Preferably, the ribozyme or decoy oligonucleotide exhibits secondary structure, including, without limitation, stem-loop or hairpin structures. In certain embodiments, at least one oligonucleotide comprising poly(I)- poly(dC). In certain embodiments, at least one set of Nn includes a string of 3 to 10 dGs and/or Gs or 2 '-substituted ribo or arabino Gs.

For purposes of the invention, the term "oligonucleotide" refers to a polynucleoside formed from a plurality of linked nucleoside units. Such oligonucleotides can be obtained from existing nucleic acid sources, including genomic or cDNA, but are preferably produced by synthetic methods. In preferred embodiments each nucleoside unit includes a heterocyclic base and a pentofuranosyl, trehalose, arabinose, 2'-deoxy-2'-substitutedarabinose, 2'-O-substitutedarabinose or hexose sugar group. The nucleoside residues can be coupled to each other by any of the numerous known internucleoside linkages. Such internucleoside linkages include, without limitation, phosphodiester, phosphorothioate, phosphorodithioate, alkylphosphonate, alkylphosphonothioate, phosphotriester, phosphoramidate, siloxane, carbonate, carboalkoxy, acetamidate, carbamate, morpholino, borano, thioether, bridged phosphoramidate, bridged methylene phosphonate, bridged phosphorothioate, and sulfone internucleoside linkages. The term "oligonucleotide" also encompasses polynucleosides having one or more stereospecific internucleoside linkage (e.g., (Rp)- or (S/>)-phosphorothioate, alkylphosphonate, or phosphotriester linkages). As used herein, the terms "oligonucleotide" and "dinucleotide" are expressly intended to include polynucleosides and dinucleosides having any such internucleoside linkage, whether or not the linkage comprises a phosphate group. In certain preferred embodiments, these internucleoside linkages may be phosphodiester, phosphorothioate, or phosphorodithioate linkages, or combinations thereof.

In some embodiments, the oligonucleotides each have from about 3 to about 35 nucleoside residues, preferably from about 4 to about 30 nucleoside residues, more preferably from about 4 to about 20 nucleoside residues. In some embodiments, the oligonucleotides have from about 5 to about 18, or from about 5 to about 14, nucleoside residues. As used herein, the term "about" implies that the exact number is not critical. Thus, the number of nucleoside residues in the oligonucleotides is not critical, and oligonucleotides having one or two fewer nucleoside residues, or from one to several additional nucleoside residues are contemplated as equivalents of each of the embodiments described above. In some embodiments, one or more of the oligonucleotides have 1 1 nucleotides.

The term "oligonucleotide" also encompasses polynucleosides having additional substituents including, without limitation, protein groups, lipophilic groups, intercalating agents, diamines, folic acid, cholesterol and adamantane. The term "oligonucleotide" also encompasses any other nucleobase containing polymer, including, without limitation, peptide nucleic acids (PNA), peptide nucleic acids with phosphate groups (PHONA), locked nucleic acids (LNA), morpholino-backbone oligonucleotides , and oligonucleotides having backbone sections with alkyl linkers or amino linkers.

The oligonucleotides of the invention can include naturally occurring nucleosides, modified nucleosides, or mixtures thereof. As used herein, the term "modified nucleoside" is a nucleoside that includes a modified heterocyclic base, a modified sugar moiety, or a combination thereof. In some embodiments, the modified nucleoside is a non-natural pyrimidine or purine nucleoside, as herein described. In some embodiments, the modified nucleoside is a 2'-substituted ribonucleoside an arabinonucleoside or a 2'-deoxy-2'-fluoroarabinoside. For purposes of the invention, the term "2 '-substituted ribonucleoside" includes ribonucleosides in which the hydroxyl group at the 2' position of the pentose moiety is substituted to produce a 2'-O-substituted ribonucleoside. Preferably, such substitution is with a lower alkyl group containing 1 -6 saturated or unsaturated carbon atoms, or with an aryl group having 6-10 carbon atoms, wherein such alkyl, or aryl group may be unsubstituted or may be substituted, e.g., with halo, hydroxy, trifluoromethyl, cyano, nitro, acyl, acyloxy, alkoxy, carboxyl, carboalkoxy, or amino groups. Examples of such 2'-O-substituted ribonucleosides include, without limitation 2'-O-methylribonucleosides and 2'-O-methoxyethylribonucleosides.

The term "2'-substituted ribonucleoside" also includes ribonucleosides in which the 2-hydroxyl group is replaced with a lower alkyl group containing 1-6 saturated or unsaturated carbon atoms, or with an amino or halo group. Examples of such 2'-substituted ribonucleosides include, without limitation, 2'-amino, 2'-fluoro, 2'-allyl, and 2'-propargyl ribonucleosides.

The term "oligonucleotide" includes hybrid and chimeric oligonucleotides. A

"chimeric oligonucleotide" is an oligonucleotide having more than one type of internucleoside linkage. One preferred example of such a chimeric oligonucleotide is a chimeric oligonucleotide comprising a phosphorothioate, phosphodiester or phosphorodithioate region and non-ionic linkages such as alkylphosphonate or alkylphosphonothioate linkages (see e.g., Pederson et al. U.S. Patent Nos. 5,635,377 and 5,366,878).

A "hybrid oligonucleotide" is an oligonucleotide having more than one type of nucleoside. One preferred example of such a hybrid oligonucleotide comprises a ribonucleotide or 2'-substituted ribonucleotide region, and a deoxyribonucleotide region (see, e.g., Metelev and Agrawal, U.S. Patent No. 5,652,355, 6,346,614 and 6,143,881).

For purposes of the invention, the term "immunostimulatory oligonucleotide" refers to an oligonucleotide as described above that induces an immune response when administered to a vertebrate, such as a fish, fowl, or mammal. As used herein, the term "mammal" includes, without limitation rats, mice, cats, dogs, horses, cattle, cows, pigs, rabbits, non-human primates, and humans. Useful immunostimulatory oligonucleotides can be found described in Agrawal et al, WO 98/49288, published November 5, 1998; WO 01/12804, published February 22, 2001 ; WO 01/55370, published August 2, 2001 ; PCT/US01/13682, filed April 30, 2001 ; and PCT/US01/30137, filed September 26, 2001. Preferably, the immunostimulatory oligonucleotide comprises at least one phosphodiester, phosphorothioate, or phosphordithioate internucleoside linkage.

In some embodiments, the immunostimulatory oligonucleotide comprises an immunostimulatory dinucleotide of formula 5'-Pyr-Pur-3', wherein Pyr is a natural or synthetic pyrimidine nucleoside and Pur is a natural or synthetic purine nucleoside. As used herein, the term "pyrimidine nucleoside" refers to a nucleoside wherein the base component of the nucleoside is a pyrimidine base. Similarly, the term "purine nucleoside" refers to a nucleoside wherein the base component of the nucleoside is a purine base. For purposes of the invention, a "synthetic" pyrimidine or purine nucleoside includes a non-naturally occurring pyrimidine or purine base, a non- naturally occurring sugar moiety, or a combination thereof.

Preferred pyrimidine nucleosides according to the invention have the structure (I):

wherein: D is a hydrogen bond donor;

D' is selected from the group consisting of hydrogen, hydrogen bond donor, hydrogen bond acceptor, hydrophilic group, hydrophobic group, electron withdrawing group and electron donating group;

A is a hydrogen bond acceptor or a hydrophilic group;

A' is selected from the group consisting of hydrogen bond acceptor, hydrophilic group, hydrophobic group, electron withdrawing group and electron donating group;

X is carbon or nitrogen; and

S' is a pentose or hexose sugar ring, or a non-naturally occurring sugar.

Preferably, the sugar ring is derivatized with a phosphate moiety, modified phosphate moiety, or other linker moiety suitable for linking the pyrimidine nucleoside to another nucleoside or nucleoside analog.

Preferred hydrogen bond donors include, without limitation, -NH-, -NH2, -SH and -OH. Preferred hydrogen bond acceptors include, without limitation, C=O, C=S, and the ring nitrogen atoms of an aromatic heterocycle, e.g., N3 of cytosine.

In some embodiments, the base moiety in (I) is a non-naturally occurring pyrimidine base. Examples of preferred non-naturally occurring pyrimidine bases include, without limitation, 5-hydroxycytosine, 5-hydroxymethylcytosine, N4-alkylcytosine, preferably N4-ethylcytosine, and 4-thiouracil. However, in some embodiments 5-bromocytosine is specifically excluded.

In some embodiments, the sugar moiety S' in (I) is a non-naturally occurring sugar moiety. For purposes of the present invention, a "naturally occurring sugar moiety" is a sugar moiety that occurs naturally as part of nucleic acid, e.g., ribose and 2'-deoxyribose, and a "non-naturally occurring sugar moiety" is any sugar that does not occur naturally as part of a nucleic acid, but which can be used in the backbone for an oligonucleotide, e.g, hexose. Arabinose and arabinose derivatives are examples of a preferred sugar moieties.

Preferred purine nucleoside analogs according to the invention have the structure (II):

wherein:

D is a hydrogen bond donor;

D' is selected from the group consisting of hydrogen, hydrogen bond donor, and hydrophilic group;

A is a hydrogen bond acceptor or a hydrophilic group;

X is carbon or nitrogen;

L is an atom selected from the group consisting of C, O, N and S; and

S' is a pentose or hexose sugar ring, or a non-naturally occurring sugar.

Preferably, the sugar ring is derivatized with a phosphate moiety, modified phosphate moiety, or other linker moiety suitable for linking the pyrimidine nucleoside to another nucleoside or nucleoside analog. Preferred hydrogen bond donors include, without limitation, -NH-, -NH2, -SH and -OH. Preferred hydrogen bond acceptors include, without limitation, C=O, C=S, -NO2 and the ring nitrogen atoms of an aromatic heterocycle, e.g., Nl of guanine.

In some embodiments, the base moiety in (II) is a non-naturally occurring purine base. Examples of preferred non-naturally occurring purine bases include, without limitation, 6-thioguanine and 7-deazaguanine. In some embodiments, the sugar moiety S' in (II) is a naturally occurring sugar moiety, as described above for structure (I).

In preferred embodiments, the immunostimulatory dinucleotide is selected from the group consisting of CpG, C*pG, CpG*, and C*pG*, wherein C is cytidine or 2'-deoxycytidine, C* is 2'-deoxythymidine, arabinocytidine, 2'-deoxythymidine, 2'- deoxy-2'-substitutedarabinocytidine, 2'-O-substitutedarabinocytidine, 2'-deoxy-5- hydroxycytidine, 2'-deoxy-N4-alkyl-cytidine, 2'-deoxy-4-thiouridine or other non- natural pyrimidine nucleoside, G is guanosine or 2'-deoxyguanosine, G* is 2' deoxy- 7-deazaguanosine, 2'-deoxy-6-thioguanosine, arabinoguanosine, 2'-deoxy-

2'substituted-arabinoguanosine, 2'-O-substituted-arabinoguanosine, 2'-deoxyinosine, or other non-natural purine nucleoside, and p is an internucleoside linkage selected from the group consisting of phosphodiester, phosphorothioate, and phosphorodithioate. In certain preferred embodiments, the immunostimulatory dinucleotide is not CpG.

The immunostimulatory oligonucleotides may include immunostimulatory moieties on one or both sides of the immunostimulatory dinucleotide. Thus, in some embodiments, the immunostimulatory oligonucleotide comprises in immunostimulatory domain of structure (III):

5'-Nn-Nl-Y-Z-Nl-Nn-3' (III)

wherein: Y is cytidine, 2'deoxythymidine, 2' deoxycytidine arabinocytidine, 2'-deoxy- 2'-substitutedarabinocytidine, 2'-deoxythymidine, 2'-O-substitutedarabinocytidine, 2'-deoxy-5-hydroxycytidine, 2'-deoxy-N4-alkyl-cytidine, 2'-deoxy-4-thiouridine or other non-natural pyrimidine nucleoside;

Z is guanosine or 2'-deoxyguanosine, G* is 2' deoxy-7-deazaguanosine, 2'- deoxy-6-th ioguanosine, arabinoguanosine, 2 ' -deoxy-2 ' substituted-arab i noguanosi ne, 2'-O-substituted-arabinoguanosine, 2'deoxyinosine, or other non-natural purine nucleoside;

N 1 , at each occurrence, is preferably a naturally occurring or a synthetic nucleoside or an immunostimulatory moiety selected from the group consisting of abasic nucleosides, arabinonucleosides, 2'-deoxyuridine, α-deoxyribonucleosides, β-L-deoxyribonucleosides, and nucleosides linked by a phosphodiester or modified internucleoside linkage to the adjacent nucleoside on the 3' side, the modified intemucleotide linkage being selected from, without limitation, a linker having a length of from about 2 angstroms to about 200 angstroms, C2-C 18 alkyl linker, poly(ethylene glycol) linker, 2-aminobutyl-l,3-propanediol linker, glyceryl linker, 2'- 5' internucleoside linkage, and phosphorothioate, phosphorodithioate, or methylphosphonate internucleoside linkage;

Nn, at each occurrence, is preferably a naturally occurring nucleoside or an immunostimulatory moiety selected from the group consisting of abasic nucleosides, arabinonucleosides, 2'-deoxyuridine, α-deoxyribonucleosides, 2'-O-substituted ribonucleosides, and nucleosides linked by a modified internucleoside linkage to the adjacent nucleoside on the 3' side, the modified intemucleotide linkage preferably being selected from the group consisting of amino linker, 2'-5' internucleoside linkage, and methylphosphonate internucleoside linkage;

provided that at least one Nl or Nn is an immunostimulatory moiety;

wherein n is a number from 0 to 30; and wherein the 3 'end, an internucleoside linker, or a derivatized nucleobase or sugar is linked directly or via a non-nucleotidic linker to another oligonucleotide, which may or may not be immunostimulatory.

In some preferred embodiments, YZ is arabinocytidine or 2'-deoxy-2'- substituted arabinocytidine and arabinoguanosine or 2 'deoxy-2' -substituted arabinoguanosine. Preferred immunostimulatory moieties include modifications in the phosphate backbones, including, without limitation, methylphosphonates, methylphosphonothioates, phosphotriesters, phosphothiotriesters, phosphorothioates, phosphorodithioates, triester prodrugs, sulfones, sulfonamides, sulfamates, formacetal, N-methylhydroxylamine, carbonate, carbamate, morpholino, boranophosphonate, phosphoramidates, especially 'primary amino-phosphoramidates, N3. phosphoramidates and N5 phosphoramidates, and stereospecific linkages (e.g., (Rp)- or (Sp)-phosphorothioate, alkylphosphonate, or phosphotriester linkages).

Preferred immunostimulatory moieties according to the invention further include nucleosides having sugar modifications, including, without limitation, 2 '-substituted pentose sugars including, without limitation, 2'-O-methylribose, 2'-O-methoxyethylribose, 2'-O-propargylribose, and 2'-deoxy-2'-fluororibose; 3 '-substituted pentose sugars, including, without limitation, 3'-O-methylribose; l',2'-dideoxyribose; arabinose; substituted arabinose sugars, including, without limitation, l'-methylarabinose, 3'-hydroxymethylarabinose, 4'-hydroxymethyl- arabinose, and 2' -substituted arabinose sugars; hexose sugars, including, without limitation, 1 ,5-anhydrohexitol; and alpha-anomers. In embodiments in which the modified sugar is a 3'-deoxyribonucleoside or a 3'-O-substituted ribonucleoside, the immunostimulatory moiety is attached to the adjacent nucleoside by way of a 2'-5' internucleoside linkage.

Preferred immunostimulatory moieties according to the invention further include oligonucleotides having other carbohydrate backbone modifications and replacements, including peptide nucleic acids (PNA), peptide nucleic acids with phosphate groups (PHONA), locked nucleic acids (LNA), morpholino backbone oligonucleotides, and oligonucleotides having backbone linker sections having a length of from about 2 angstroms to about 200 angstroms, including without limitation, alkyl linkers or amino linkers. The alkyl linker may be branched or unbranched, substituted or unsubstituted, and chirally pure or a racemic mixture. Most preferably, such alkyl linkers have from about 2 to about 18 carbon atoms. In some preferred embodiments such alkyl linkers have from about 3 to about 9 carbon atoms. Some alkyl linkers include one or more functional groups selected from the group consisting of hydroxy, amino, thiol, thioether, ether, amide, thioamide, ester, urea, and thioether. Some such functionalized alkyl linkers are poly(ethylene glycol) linkers of formula -O-(CH2-CH2-O-)„ (n = 1-9). Some other functionalized alkyl linkers are peptides or amino acids.

Preferred immunostimulatory moieties according to the invention further include DNA isoforms, including, without limitation, β-L-deoxyribonucleosides and α-deoxyribonucleosides. Preferred immunostimulatory moieties according to the invention incorporate 3' modifications, and further include nucleosides having unnatural internucleoside linkage positions, including, without limitation, 2'-5\ 2'-2', 3'-3' and 5'-5' linkages.

Preferred immunostimulatory moieties according to the invention further include nucleosides having modified heterocyclic bases, including, without limitation, 5-hydroxycytosine, 5-hydroxymethylcytosine, N4-alkylcytosine, preferably N4-ethylcytosine, 4-thiouracil, 6-thioguanine, 7-deazaguanine, inosine, nitropyrrole, C5-propynylpyrimidine, and diaminopurines, including, without limitation, 2,6-diaminopurine.

By way of specific illustration and not by way of limitation, for example, in the immunostimulatory domain of structure (III), a methylphosphonate internucleoside linkage at position Nl or Nn is an immunostimulatory moiety, a linker having a length of from about 2 angstroms to about 200 angstroms, C2-C 18 alkyl linker at position XI is an immunostimulatory moiety, and a β-L-deoxyribonucleoside at position XI is an immunostimulatory moiety. See Table 1 below for representative positions and structures of immunostimulatory moieties. It is to be understood that reference to a linker as the immunostimulatory moiety at a specified position means that the nucleoside residue at that position is substituted at its 3'-hydroxyl with the indicated linker, thereby creating a modified internucleoside linkage between that nucleoside residue and the adjacent nucleoside on the 3' side. Similarly, reference to a modified internucleoside linkage as the immunostimulatory moiety at a specified position means that the nucleoside residue at that position is linked to the adjacent nucleoside on the 3' side by way of the recited linkage.

Table 1

Table 2 shows representative positions and structures of immunostimulatory moieties within an immunostimulatory oligonucleotide having an upstream potentiation domain. As used herein, the term "Spacer 9" refers to a poly(ethylene glycol) linker of formula -O-(CH2CH2-O)„-, wherein n is 3. The term "Spacer 18" refers to a polyethylene glycol) linker of formula -O-(CH2CH2-O)„-, wherein n is 6. As used herein, the term "C2-C18 alkyl linker refers to a linker of formula -O-(CH2)?-O-, where q is an integer from 2 to 18. Accordingly, the terms "C3-linker" and "C3-alkyl linker" refer to a linker of formula -O-(CH2)3-O-. For each of Spacer 9, Spacer 18, and C2-C 18 alkyl linker, the linker is connected to the adjacent nucleosides by way of phosphodiester, phosphorothioate, or phosphorodithioate linkages.

Table 2

Table 3 shows representative positions and structures of immunostimulatory moieties within an immunostimulatory oligonucleotide having a downstream potentiation domain.

Table 3

The immunomers according to the invention comprise at least two oligonucleotides linked at their 3' ends or internucleoside linkage or a functionalized nucleobase or sugar via a non-nucleotidic linker. For purposes of the invention, a "non-nucleotidic linker" is any moiety that can be linked to the oligonucleotides by way of covalent or non-covalent linkages. Preferably such linker is from about 2 angstroms to about 200 angstroms in length. Several examples of preferred linkers are set forth below. Non-covalent linkages include, but are not limited to, electrostatic interaction, hydrophobic interactions, π-stacking interactions, and hydrogen bonding. The term "non-nucleotidic linker" is not meant to refer to an internucleoside linkage, as described above, e.g., a phosphodiester, phosphorothioate, or phosphorodithioate functional group, that directly connects the 3'-hydroxyl groups of two nucleosides. For purposes of this invention, such a direct 3'-3' linkage is considered to be a "nucleotidic linkage."

In some embodiments, the non-nucleotidic linker is a metal, including, without limitation, gold particles. In some other embodiments, the non-nucleotidic linker is a soluble or insoluble biodegradable polymer bead.

In yet other embodiments, the non-nucleotidic linker is an organic moiety having functional groups that permit attachment to the oligonucleotide. Such attachment preferably is by any stable covalent linkage. As a non-limiting example, the linker may be attached to any suitable position on the nucleoside, as illustrated in Figure 13. In some preferred embodiments, the linker is attached to the 3'-hydroxyl. In such embodiments, the linker preferably comprises a hydroxyl functional group, which preferably is attached to the 3'-hydroxyl by means of a phosphodiester, phosphorothioate, phosphorodithioate or non-phosphate-based linkages.

In some embodiments, the non-nucleotidic linker is a biomolecule, including, without limitation, polypeptides, antibodies, lipids, antigens, allergens, and oligosaccharides. In some other embodiments, the non-nucleotidic linker is a small molecule. For purposes of the invention, a small molecule is an organic moiety having a molecular weight of less than 1,000 Da. In some embodiments, the small molecule has a molecular weight of less than 750 Da.

In some embodiments, the small molecule is an aliphatic or aromatic hydrocarbon, either of which optionally can include, either in the linear chain connecting the oligonucleotides or appended to it, one or more functional groups selected from the group consisting of hydroxy, amino, thiol, thioether, ether, amide, thioamide, ester, urea, and thiourea. The small molecule can be cyclic or acyclic. Examples of small molecule linkers include, but are not limited to, amino acids, carbohydrates, cyclodextrins, adamantane, cholesterol, haptens and antibiotics. However, for purposes of describing the non-nucleotidic linker, the term "small molecule" is not intended to include a nucleoside.

In some embodiments, the small molecule linker is glycerol or a glycerol homolog of the formula HO-(CH2)0-CH(OH)-(CH2)p-OH, wherein o and;? independently are integers from 1 to about 6, from 1 to about 4, or from 1 to about 3. In some other embodiments, the small molecule linker is a derivative of 1 ,3-diamino- 2-hydroxypropane. Some such derivatives have the formula HO-(CH2)m-C(O)NH-CH2-CH(OH)-CH2-NHC(O)-(CH2)m-OH, wherein m is an integer from 0 to about 10, from 0 to about 6, from 2 to about 6, or from 2 to about 4. Some non-nucleotidic linkers according to the invention permit attachment of more than two oligonucleotides, as schematically depicted in Figure 1. For example, the small molecule linker glycerol has three hydroxyl groups to which oligonucleotides may be covalently attached. Some immunomers according to the invention, therefore, comprise more than two oligonucleotides linked at their 3* ends to a non-nucleotidic linker. Some such immunomers comprise at least two immunostimulatory oligonucleotides, each having an accessible 5' end.

The immunomers of the invention may conveniently be synthesized using an automated synthesizer and phosphoramidite approach as schematically depicted in Figures 5 and 6, and further described in the Examples. In some embodiments, the immunomers are synthesized by a linear synthesis approach (see Figure 5). As used herein, the term "linear synthesis" refers to a synthesis that starts at one end of the immunomer and progresses linearly to the other end. Linear synthesis permits incorporation of either identical or un-identical (in terms of length, base composition and/or chemical modifications incoφorated) monomeric units into the immunomers.

An alternative mode of synthesis is "parallel synthesis", in which synthesis proceeds outward from a central linker moiety (see Figure 6). A solid support attached linker can be used for parallel synthesis, as is described in U.S. Patent No. 5,912,332. Alternatively, a universal solid support (such as phosphate attached controlled pore glass support can be used.

Parallel synthesis of immunomers has several advantages over linear synthesis: (1) parallel synthesis permits the incorporation of identical monomeric units; (2) unlike in linear synthesis, both (or all) the monomeric units are synthesized at the same time, thereby the number of synthetic steps and the time required for the synthesis is the same as that of a monomeric unit; and (3) the reduction in synthetic steps improves purity and yield of the final immunomer product.

At the end of the synthesis by either linear synthesis or parallel synthesis protocols, the immunomers may conveniently be deprotected with concentrated ammonia solution or as recommended by the phosphoramidite supplier, if a modified nucleoside is incoφorated. The product immunomer is preferably purified by reversed phase HPLC, detritylated, desalted and dialyzed.

Table 4 shows representative immunomers according to the invention. Additional immunomers are found described in the Examples.

Table 4. Examples of Immunomer Sequences

= Symmetric longer branches; = Symmetric glycerol (short) branches L = C3-alkyl linker; X = 1',2'-dideoxyriboside; Y = 50H dC; R = 7-deaza-dG

In a second aspect, the invention provides immunomer conjugates, comprising an immunomer, as described above, and an antigen conjugated to the immunomer at a position other than the accessible 5' end. In some embodiments, the non-nucleotidic linker comprises an antigen, which is conjugated to the oligonucleotide. In some other embodiments, the antigen is conjugated to the oligonucleotide at a position other than its 3' end. In some embodiments, the antigen produces a vaccine effect.

The antigen is preferably selected from the group consisting of antigens associated with a pathogen, antigens associated with a cancer, antigens associated with an auto-immune disorder, and antigens associated with other diseases such as, but not limited to, veterinary or pediatric diseases. For puφoses of the invention, the term "associated with" means that the antigen is present when the pathogen, cancer, auto-immune disorder, food allergy, respiratory allergy, asthma or other disease is present, but either is not present, or is present in reduced amounts, when the pathogen, cancer, auto-immune disorder, food allergy, respiratory allergy, or disease is absent.

The immunomer is covalently linked to the antigen, or it is otherwise operatively associated with the antigen. As used herein, the term "operatively associated with" refers to any association that maintains the activity of both immunomer and antigen. Nonlimiting examples of such operative associations include being part of the same liposome or other such delivery vehicle or reagent. In embodiments wherein the immunomer is covalently linked to the antigen, such covalent linkage preferably is at any position on the immunomer other than an accessible 5' end of an immunostimulatory oligonucleotide. For example, the antigen may be attached at an internucleoside linkage or may be attached to the non- nucleotidic linker. Alternatively, the antigen may itself be the non-nucleotidic linker.

In a third aspect, the invention provides pharmaceutical formulations comprising an immunomer or immunomer conjugate according to the invention and a physiologically acceptable carrier. As used herein, the term "physiologically acceptable" refers to a material that does not interfere with the effectiveness of the immunomer and is compatible with a biological system such as a cell, cell culture, tissue, or organism. Preferably, the biological system is a living organism, such as a vertebrate.

As used herein, the term "carrier" encompasses any excipient, diluent, filler, salt, buffer, stabilizer, solubilizer, lipid, or other material well known in the art for use in pharmaceutical formulations. It will be understood that the characteristics of the carrier, excipient, or diluent will depend on the route of administration for a particular application. The preparation of pharmaceutically acceptable formulations containing these materials is described in, e.g., Remington 's Pharmaceutical Sciences, 18th Edition, ed. A. Gennaro, Mack Publishing Co., Easton, PA, 1990.

In a fourth aspect, the invention provides methods for generating an immune response in a vertebrate, such methods comprising administering to the vertebrate an immunomer or immunomer conjugate according to the invention. In some embodiments, the vertebrate is a mammal. For purposes of this invention, the term "mammal" is expressly intended to include humans. In preferred embodiments, the immunomer or immunomer conjugate is administered to a vertebrate in need of immunostimulation.

In the methods according to this aspect of the invention, administration of immunomers can be by any suitable route, including, without limitation, parenteral, oral, sublingual, transdermal, topical, intranasal, aerosol, intraocular, intratracheal, intrarectal, vaginal, by gene gun, dermal patch or in eye drop or mouthwash form. Administration of the therapeutic compositions of immunomers can be carried out using known procedures at dosages and for periods of time effective to reduce symptoms or surrogate markers of the disease. When administered systemically, the therapeutic composition is preferably administered at a sufficient dosage to attain a blood level of immunomer from about 0.0001 micromolar to about 10 micromolar. For localized administration, much lower concentrations than this may be effective, and much higher concentrations may be tolerated. Preferably, a total dosage of immunomer ranges from about 0.001 mg per patient per day to about 200 mg per kg body weight per day. It may be desirable to administer simultaneously, or sequentially a therapeutically effective amount of one or more of the therapeutic compositions of the invention to an individual as a single treatment episode.

In certain preferred embodiments, immunomers according to the invention are administered in combination with vaccines, antibodies, cytotoxic agents, allergens, antibiotics, antisense oligonucleotides, peptides, proteins, gene therapy vectors, DNA vaccines and/or adjuvants to enhance the specificity or magnitude of the immune response. In these embodiments, the immunomers of the invention can variously act as adjuvants and/or produce direct immunostimulatory effects.

Either the immunomer or the vaccine, or both, may optionally be linked to an immunogenic protein, such as keyhole limpet hemocyanin (KLH), cholera toxin B subunit, or any other immunogenic carrier protein. Any of the plethora of adjuvants may be used including, without limitation, Freund's complete adjuvant, KLH, monophosphoryl lipid A (MPL), alum, and saponins, including QS-21, imiquimod, R848, or combinations thereof.

For puφoses of this aspect of the invention, the term "in combination with" means in the course of treating the same disease in the same patient, and includes administering the immunomer and/or the vaccine and/or the adjuvant in any order, including simultaneous administration, as well as temporally spaced order of up to several days apart. Such combination treatment may also include more than a single administration of the immunomer, and/or independently the vaccine, and/or independently the adjuvant. The administration of the immunomer and/or vaccine and/or adjuvant may be by the same or different routes.

The methods according to this aspect of the invention are useful for model studies of the immune system. The methods are also useful for the prophylactic or therapeutic treatment of human or animal disease. For example, the methods are useful for pediatric and veterinary vaccine applications.

In a fifth aspect, the invention provides methods for therapeutically treating a patient having a disease or disorder, such methods comprising administering to the patient an immunomer or immunomer conjugate according to the invention. In various embodiments, the disease or disorder to be treated is cancer, an autoimmune disorder, airway inflammation, inflammatory disorders, allergy, asthma or a disease caused by a pathogen. Pathogens include bacteria, parasites, fungi, viruses, viroids and prions. Administration is carried out as described for the fourth aspect of the invention. For puφoses of the invention, the term "allergy" includes, without limitation, food allergies and respiratory allergies. The term "airway inflammation" includes, without limitation, asthma. As used herein, the term "autoimmune disorder" refers to disorders in which "self proteins undergo attack by the immune system. Such term includes autoimmune asthma.

In any of the methods according to this aspect of the invention, the immunomer or immunomer conjugate can be administered in combination with any other agent useful for treating the disease or condition that does not diminish the immunostimulatory effect of the immunomer. For example, in the treatment of cancer, it is contemplated that the immunomer or immunomer conjugate may be administered in combination with a chemotherapeutic compound.

The examples below are intended to further illustrate certain preferred embodiments of the invention, and are not intended to limit the scope of the invention.

EXAMPLES

Example 1: Synthesis of Oligonucleotides Containing Immunomodulatory Moieties

Oligonucleotides were synthesized on a 1 μmol scale using an automated DNA synthesizer (Expedite 8909; PerSeptive Biosystems, Framingham, MA), following the linear synthesis or parallel synthesis procedures outlined in Figures 5 and 6.

Deoxyribonucleoside phosphoramidites were obtained from Applied Biosystems (Foster City, CA). 1 ',2'-dideoxyribose phosphoramidite, propyl- 1 - phosphoramidite, 2-deoxyuridine phosphoramidite, l,3-bis-[5-(4,4'- dimethoxytrityl)pentylamidyl]-2-propanol phosphoramidite and methyl phosponamidite were obtained from Glen Research (Sterling, VA). β-L-2'- deoxyribonucleoside phosphoramidite, α-2'-deoxyribonucleoside phosphoramidite, mono-DMT-glycerol phosphoramidite and di-DMT-glycerol phosphoramidite were obtained from ChemGenes (Ashland, MA). (4-Aminobutyl)-l,3-propanediol phosphoramidite was obtained from Clontech (Palo Alto, CA). Arabinocytidine phosphoramidite, arabinoguanosine, arabinothymidine and arabinouridine were obtained from Reliable Pharmaceutical (St. Louis, MO). Arabinoguanosine phosphoramidite, arabinothymidine phosphoramidite and arabinouridine phosphoramidite were synthesized at Hybridon, Inc. (Cambridge, MA) (Noronha et al. (2000) Biochem., 39:7050-7062).

All nucleoside phosphoramidites were characterized by 31P and Η NMR spectra. Modified nucleosides were incoφorated at specific sites using normal coupling cycles. After synthesis, oligonucleotides were deprotected using concentrated ammonium hydroxide and purified by reverse phase HPLC, followed by dialysis. Purified oligonucleotides as sodium salt form were lyophilized prior to use. Purity was tested by CGE and MALDI-TOF MS.

Example 2: Analysis of Spleen Cell Proliferation

In vitro analysis of splenocyte proliferation was carried out using standard procedures as described previously (see, e.g., Zhao etal, Biochem Pharma 51:173- 182 (1996)). The results are shown in Figure 8A. These results demonstrate that at the higher concentrations, Immunomer 6, having two accessible 5' ends results in greater splenocyte proliferation than does Immunomer 5, having no accessible 5' end or Oligonucleotide 4, with a single accessible 5' end. Immunomer 6 also causes greater splenocyte proliferation than the LPS positive control.

Example 3: In vivo Splenomegaly Assays

To test the applicability of the in vitro results to an in vivo model, selected oligonucleotides were administered to mice and the degree of splenomegaly was measured as an indicator of the level of immunostimulatory activity. A single dose of 5 mg/kg was administered to BALB/c mice (female, 4-6 weeks old, Harlan Sprague Dawley Inc, Baltic, CT) intraperitoneal ly. The mice were sacrificed 72 hours after oligonucleotide administration, and spleens were harvested and weighed. The results are shown in Figure 8B. These results demonstrate that Immunomer 6, having two accessible 5' ends, has a far greater immunostimulatory effect than do Oligonucleotide 4 or Immunomer 5.

Example 4: Cytokine Analysis

The secretion of IL-12 and IL-6 in vertebrate cells, preferably BALB/c mouse spleen cells or human PBMC, was measured by sandwich ELISA. The required reagents including cytokine antibodies and cytokine standards were purchased form PharMingen, San Diego, CA. ELISA plates (Costar) were incubated with appropriate antibodies at 5 μg/mL in PBSN buffer (PBS/0.05% sodium azide, pH 9.6) overnight at 4°C and then blocked with PBS/1% BSA at 37 °C for 30 minutes. Ceil culture supernatants and cytokine standards were appropriately diluted with PBS/10% FBS, added to the plates in triplicate, and incubated at 25 °C for 2 hours. Plates were overlaid with 1 μg mL appropriate biotinylated antibody and incubated at 25 °C for 1.5 hours. The plates were then washed extensively with PBS-T Buffer (PBS/0.05% Tween 20) and further incubated at 25 °C for 1.5 hours after adding streptavidin conjugated peroxidase (Sigma, St. Louis, MO). The plates were developed with Sure Blue™ (Kirkegaard and Perry) chromogenic reagent and the reaction was terminated by adding Stop Solution (Kirkegaard and Perry). The color change was measured on a Ceres 900 HDI Spectrophotometer (Bio-Tek Instruments). The results are shown in Table 5A below.

Human peripheral blood mononuclear cells (PBMCs) were isolated from peripheral blood of healthy volunteers by Ficoll-Paque density gradient centrifugation (Histopaque-1077, Sigma, St. Louis, MO). Briefly, heparinized blood was layered onto the Histopaque-1077 (equal volume) in a conical centrifuge and centrifuged at 400 x g for 30 minutes at room temperature. The buffy coat, containing the mononuclear cells, was removed carefully and washed twice with isotonic phosphate buffered saline (PBS) by centrifugation at 250 x g for 10 minutes. The resulting cell pellet was then resuspended in RPMI 1640 medium containing L-glutamine (MediaTech, Inc., Herndon, VA) and supplemented with 10% heat inactivated FCS and penicillin-streptomycin (lOOU/ml). Cells were cultured in 24 well plates for different time periods at 1 X 106 cells/ml/well in the presence or absence of oligonucleotides. At the end of the incubation period, supernatants were harvested and stored frozen at -70 °C until assayed for various cytokines including IL-6 (BD Pharmingen, San Diego, CA), IL-10 (BD Pharmingen), IL-12 (BioSource International, Camarillo, CA), IFN-α (BioSource International) and -γ (BD Pharmingen) and TNF-α (BD Pharmingen) by sandwich ELISA. The results are shown in Table 5 below.

In all instances, the levels of IL-12 and IL-6 in the cell culture supernatants were calculated from the standard curve constructed under the same experimental conditions for IL-12 and IL-6, respectively. The levels of IL-10, IFN-gamma and TNF-α in the cell culture supernatants were calculated from the standard curve constructed under the same experimental conditions for IL-10, IFN-gamma and TNF- α, respectively.

Table δ. Immunomer Structure and Immunostimulatory Activity in Human PBMC Cultures

D1 and D2 are donors 1 and 2.

Table 6A. Immunomer Structure and Immunostimulatory Activity in BALB/c Mouse Spleen Cell Cultures

Normal phase represents a phosphorothioate linkage; Italic phase represents a phosphodiester linkage.

In addition, the results shown in Figures 7A-C demonstrate that Oligonucleotide 2, with two accessible 5' ends elevates IL-12 and IL-6, but not IL-10 at lower concentrations than Oligonucleotides 1 or 3, with one or zero accessible 5' ends, respectively. Example 5: Effect of Chain Length on Immunostimulatory Activity of Immunomers

In order to study the effect of length of the oligonucleotide chains, immunomers containing 18, 14, 11, and 8 nucleotides in each chain were synthesized and tested for immunostimulatory activity, as measured by their ability to induce secretion of the cytokines IL-12 and IL-6 in BALB/c mouse spleen cell cultures (Tables 6-8). In this, and all subsequent examples, cytokine assays were carried out in BALB/c spleen cell cultures as described in Example 4.

Table 6. Immunomer Structure and Immunostimulatory Activity

Table 7. Immunomer Structure and Immunostimulatory Activity

Table 8. Immunomer Structure and Immunostimulatory Activity

The results suggest that the immunostimulatory activity of immunomers increased as the length of the oligonucleotide chains is decreased from 18-mers to 7-mers. Immunomers having oligonucleotide chain lengths as short as 6-mers or 5-mers showed immunostimulatory activity comparable to that of the 18-mer oligonucleotide with a single 5' end. However, immunomers having oligonucleotide chain lengths as short as 6-mers or 5-mers have increased immunostimulatory activity when the linker is in the length of from about 2 angstroms to about 200 angstroms.

Example 6: Immunostimulatory Activity of Immunomers Containing A Non- Natural Pyrimidine or Non-Natural Purine Nucleoside

As shown in Tables 9-11, immunostimulatory activity was maintained for immunomers of various lengths having a non-natural pyrimidine nucleoside or non- natural purine nucleoside in the immunostimulatory dinucleotide motif. Table 9. Immunomer Structure and Immunostimulatory Activity

Table 10. Immunomer Structure and Immunostimulatory Activity

Table 11. Immunomer Structure and Immunostimulatory Activity

Example 7: Effect of the Linker on Immunostimulatory Activity

In order to examine the effect of the length of the linker connecting the two oligonucleotides, immunomers that contained the same oligonucleotides, but different linkers were synthesized and tested for immunostimulatory activity. The results shown in Table 12 suggest that linker length plays a role in the immunostimulatory activity of immunomers. The best immunostimulatory effect was achieved with C3- to C6-alkyl linkers or abasic linkers having interspersed phosphate charges.

Table 12. Immunomer Structure and Immunostimulatory Activity

Example 8: Effect of Oligonucleotide Backbone on Immunostimulatory Activity

In general, immunostimulatory oligonucleotides that contain natural phosphodiester backbones are less immunostimulatory than are the same length oligonucleotides with a phosphorothioate backbones. This lower degree of immunostimulatory activity could be due in part to the rapid degradation of phosphodiester oligonucleotides under experimental conditions. Degradation of oligonucleotides is primarily the result of 3'-exonucleases, which digest the oligonucleotides from the 3' end. The immunomers of this example do not contain a free 3' end. Thus, immunomers with phosphodiester backbones should have a longer half life under experimental conditions than the corresponding monomeric oligonucleotides, and should therefore exhibit improved immunostimulatory activity. The results presented in Table 13 demonstrate this effect, with Immunomers 84 and 85 exhibiting immunostimulatory activity as determined by cytokine induction in BALB/c mouse spleen cell cultures.

Table 13. Immunomer Structure and Immunostimulatory Activity

L = C3-Linker

Example 9: Synthesis of Immunomers 73-92

Oligonucleotides were synthesized on 1 μmol scale using an automated DNA synthesizer (Expedite 8909 PerSeptive Biosystems). Deoxynucleoside phosphoramidites were obtained from Applied Biosystems (Foster City, CA). 7- Deaza-2'-deoxyguanosine phosphoramidite was obtained from Glen Research (Sterling Virginia). 1,3-Bis-DMT-glycerol-CPG was obtained from ChemGenes (Ashland, MA). Modified nucleosides were incorporated into the oligonucleotides at specific site using normal coupling cycles. After the synthesis, oligonucleotides were deprotected using concentrated ammonium hydroxide and purified by reversed-phase HPLC, followed by dialysis. Purified oligonucleotides as sodium salt form were lyophilized prior to use. Purity of oligonucleotides was checked by CGE and MALDI- TOF MS (Bruker Proflex III MALDI-TOF Mass spectrometer).

Example 11: Immunomer Stability

Oligonucleotides were incubated in PBS containing 10% bovine serum at 37°

C for 4, 24 or 48 hours. Intact oligonucleotide was determined by capillary gel electrophoresis. The results are shown in Table 14.

Table 14. Digestion of Oligonucleotides in 10 % Bovine Serum PBS Solution

X = C3-Linker, U, C = 2'-OMe-ribonucleoside Example 12: Effect of accessible 5' ends on immunostimulatory activity.

BALB/c mouse (4-8 weeks) spleen cells were cultured in RPMI complete medium. Murine macrophage-like cells, J774 (American Type Culture Collection, Rockville, MD) were cultured in Dulbecco's modified Eagle's medium supplemented with 10% (v/v) FCS and antibiotics (100 IU/mL of penicillin G/streptomycin). All other culture reagents were purchased from Mediatech (Gaithersburg, MD).

ELISAsfor IL-12 and IL-6. BALB/c mouse spleen or J774 cells were plated in 24-well dishes at a density of 5xl06 or IxlO6 cells/mL, respectively. The CpG DNA dissolved in TE buffer (10 mM Tris-HCl, pH 7.5, 1 mM EDTA) was added to a final concentration of 0.03, 0.1, 0.3, 1.0, 3.0, or 10.0 μg/mL to mouse spleen cell cultures and 1.0, 3.0, or 10.0 μg/mL to J774 cell cultures. The cells were then incubated at 37 °C for 24 hr and the supernatants were collected for ELISA assays. The experiments were performed two or three times for each CpG DNA in triplicate for each concentration.

The secretion of IL-12 and IL-6 was measured by sandwich ELISA. The required reagents, including cytokine antibodies and standards were purchased from PharMingen. ELISA plates (Costar) were incubated with appropriate antibodies at 5 μg/mL in PBSN buffer (PBS/0.05% sodium azide, pH 9.6) overnight at 4 °C and then blocked with PBS/1 % BSA at 37 °C for 30 min. Cell culture supernatants and cytokine standards were appropriately diluted with PBS/1% BSA, added to the plates in triplicate, and incubated at 25 °C for 2 hr. Plates were washed and incubated with 1 μg/mL of appropriate biotinylated antibody and incubated at 25 °C for 1.5 hr. The plates were washed extensively with PBS/0.05% Tween 20 and then further incubated at 25 °C for 1.5 hr after the addition of streptavidine-conjugated peroxidase (Sigma). The plates were developed with Sure Blue™ (Kirkegaard and Perry) chromogenic reagent and the reaction was terminated by adding Stop Solution (Kirkegaard and Perry). The color change was measured on a Ceres 900 HDI Spectrophotometer (Bio- Tek Instruments) at 450 nm. The levels of IL-12 and IL-6 in the cell culture supernatants were calculated from the standard curve constructed under the same experimental conditions for IL-12 and IL-6, respectively.

The results are shown in Table 15. Table 15: Phosphorothioate CpG DNA sequences and modifications used in the studya

CpG Sequence Length 5 '-end 3 '-end

DNA #

89 5 '-TCCATGACGTTCCTGATGC-3 ' 19-mer 1 1

90 5 '-TCCATGACGTTCCTGATGC-3 '-b 19-mer 1 blocked

91 S'-TCCATGACGTTCCTGATGC-S'-S'-g-S' 20-mer 2 blocked

92 5'-TCCATGACGTTCCTGATGC-3'-3'-h-5' 23-mer 2 blocked

93 5'-TCCATGACGTTCCTGATGC-3'-3'-i-5' 27-mer 2 blocked

94 5'-TCCATGACGTTCCTGATGC-3'-3'-j-5' 38-mer 2 blocked

95 b-5'-TCCATGACGTTCCTGATGC-3' 19-mer blocked 1

96 3 '-c-5 '-5 '-TCCATGACGTTCCTGATGC-3 ' 20-mer blocked 2

97 3'-d-5'-5'-TCCATGACGTTCCTGATGC-3' 23-mer blocked 2

98 3'-e-5'-5'-TCCATGACGTTCCTGATGC-3' 27-mer blocked 2

99 3 '-f-5 '-5 '-TCCATGACGTTCCTGATGC-3' 38-mer blocked 2

100 5'-TCCATGACGTTCCTGATGC-3'-k 19-mer 1 blocked

101 l-5'-TCCATGACGTTCCTGATGC-3' 19-mer blocked 1

: See Chart I for chemical structures b-1; 5'-CG-3' dinucleotide is shown underlined.

Chart 1

Table 16. Induction of IL-12 and IL-6 secretion by CpG DNA-conjugates in BALB/c mice spleen cell cultures

CpG IL-12 (pg/mL)±SD IL-6 (pg/mL)±SD

DNA #a O.lμg/mL 0.3μg/mL l.Oμg/mL 3.0μg/mL lO.Oμg/mL O.lμg/mL 0.3μg/mL l.Oμg/mL 3.0μg/mL lO.Oμg/mL

89 991±121 1820±224 2391±175 3507±127 2615±279 652±48 2858±180 13320±960 18625±1504 17229±1750

90 526±32 2100±175 1499±191 3019±35 3489±162 1387±152 1426±124 5420±370 19096±484 19381±2313

91 1030±11 1348±102 2060±130 3330±130 3582±259 923±22 2542±81 9054±120 14114±179 13693±264

92 1119±159 1726±207 2434±100 2966±204 3215±464 870±146 1905±56 7841±350 17146±1246 15713±693

93 1175±68 2246±124 1812±75 2388±320 2545±202 1152±238 3499±116 7142±467 14064±167 13566±477

94 1087±121 1705±163 1797±141 2522±195 3054±103 1039±105 2043±157 4848±288 15527±224 21021±1427

95 1173±107 2170±155 2132±58 2812±203 3689±94 807±0.5 927±0.5 3344±0.5 10233±0.5 9213±0.5

96 866±51 1564±63 1525±63 2666±97 4030±165 750±63 1643±30 5559±415 11549±251 11060±651

97 227±3 495±96 1007±68 897±15 1355±97 302±18 374±22 1000±68 9106±271 13077±381

98 139±18 211±12 452±22 458±29 1178±237 220±23 235±18 383±35 1706±33 11530±254

99 181±85 282±105 846±165 2082±185 3185±63 467±122 437±85 1697±283 9781±13 11213±294

Medium 86±6 60±12 a: See Table 1 for sequences.

Taken together, the current results suggest that an accessible 5 '-end of CpG DNA is required for its optimal immunostimulatory activity and smaller groups such as a phosphorothioate, a mononucleotide, or a dinucleotide do not effectively block the accessibility of the 5 '-end of CpG DNA to receptors or factors involved in the immunostimulatory pathway. However, the conjugation of molecules as large as fluorescein or larger at the 5'-end of CpG DNA could abrogate immunostimulatory activity. These results have a direct impact on the studies of immunostimulatory activity of CpG DNA- antigen/vaccine/monoclonal antibody (mAb) conjugates. The conjugation of large molecules such as vaccines or mAbs at the 5'-end of a CpG DNA could lead to suboptimal immunostimulatory activity of CpG DNA. The conjugation of functional ligands at the 3 '-end of CpG DNA not only contributes to increased nuclease stability but also increased immunostimulatory potency of CpG DNA in vivo.

Example 13: Effect of linkers on cytokine secretion

The following oligonucleotides were synthesized for this study. Each of these modified oligonucleotides can be incorporated into an immunomer.

Table 17. Sequences of CpG DNA showing the position of substitution.

CpG DNA Sequence (5'— >3')a Number

102 CCTACTAGCGTTCTCATC 103 CCTACTAGC2TTCTCATC

104 CCTACT2GCGTTCTCATC

105 CCTA2TAGCGTTCTCATC

106 CCT22TAGCGTTCTCATC

107 22TACTAGCGTTCTCATC 108 CCTACTAGCGT2CTCATC

109 CCTACTAGCGTTC2CATC

110 CCTACTAGCGTTC22ATC

111 CCT6CTAGCGTTCTCATC

112 CCTACTAGCGTTC6CATC 113 CCT7CTAGCGTTCTCATC

114 CCTACTAGCGTTC7CATC 4 CTATCTGACGTTCTCTGT

115 CTAT1TGACGTTCTCTGT

116 CTA1CTGACGTTCTCTGT 117 CTATCTG2CGTTCTCTGT

118 CTATC2GACGTTCTCTGT

119 CTA2CTGACGTTCTCTGT

120 22222TGACGTTCTCTGT

121 2222TGACGTTCTCTGT 122 222TGACGTTCTCTGT

123 22TGACGTTCTCTGT

124 2TGACGTTCTCTGT

125 CTAT3TGACGTTCTCTGT

126 CTA3CTGACGTTCTCTGT 127 CTA33TGACGTTCTCTGT

128 33TGACGTTCTCTGT

129 CTAT4TGACGTTCTCTGT

130 CTA4CTGACGTTCTCTGT 131 CTA44TGACGTTCTCTGT

132 44TGACGTTCTCTGT

133 CTAT5TGACGTTCTCTGT

134 CTA5CTGACGTTCTCTGT 135 CTA55TGACGTTCTCTGT

136 55TGACGTTCTCTGT

137 CTA6CTGACGTTCTCTGT

138 CTATCTGACGTTC6CTGT

139 CTA7CTGACGTTCTCTGT 140 CTATCTGACGTTC7CTGT

141 CTATCTG8CGTTCTCTGT

142 CTATCT8ACGTTCTCTGT

143 CTATC8GACGTTCTCTGT

144 CTAT8TGACGTTCTCTGT 145 CTA8CTGACGTTCTCTGT

146 CTATCTGACG8TCTCTGT

147 CTATCTGACGT8CTCTGT

148 CTATCTGACGTT8TCTGT

149 CTATCTGACGTTC8CTGT 150 CTATCTG9CGTTCTCTGT

151 CTATCT9ACGTTCTCTGT

152 CTA9CTGACGTTCTCTGT

153 CTATCTGACGT9CTCTGT

154 CTATCTGACGTTC9CTGT a: See Figure 14 for the chemical structures of substitutions 1-9. All CpG DNAs are phosphorothioate backbone modified.

To evaluate the optimal linker size for potentiation of immunostimulatory activity, we measured IL-12 and IL-6 secretion induced by modified CpG DNAs in BALB/c mouse spleen cell cultures. All CpG DNAs induced concentration-dependent IL-12 and IL-6 secretion. Figure 15 shows data obtained at 1 μg/mL concentration of selected CpG DNAs, 116, 119, 126, 130, and 134, which had a linker at the fifth nucleotide position in the 5 '-flanking sequence to the CpG dinucleotide compared with the parent CpG DNA. The CpG DNAs, which contained C2- (1), C3- (2), and C4-linkers (3), induced secretion of IL-12 production similar to that of the parent CpG DNA 4. The CpG DNA that contained C6 and C9-linkers (4 and 5) at the fifth nucleotide position from CpG dinucleotide in the 5 '-flanking sequence induced lower levels of IL-12 secretion than did the parent CpG DNA (Fig. 15), suggesting that substitution of linkers longer than a C4-linker results in the induction of lower levels of IL-12. All five CpG DNAs, which had linkers, induced two to three times higher IL-6 secretion than did the parent CpG DNA. The presence of a linker in these CpG DNAs showed a significant effect on the induction of IL-6 compared with CpG DNAs that did not have a linker. However, we did not observe length-dependent linker effect on IL-6 secretion.

To examine the effect on immunostimulatory activity of CpG DNA containing ethylenegylcol-linkers, we synthesized CpG DNAs 137 and 138, in which a triethyleneglycol-linker (6) is incorporated at the fifth nucleotide position in the 5'- and at the fourth nucleotide position in the 3 '-flanking sequences to the CpG dinucleotide, respectively. Similarly, CpG DNAs 139 and 140 contained a hexaethyleneglycol-linker (7) in the 5'- or the 3 '-flanking sequence to the CpG dinucleotide, respectively. All four modified CpG DNAs (137-140) were tested in BALB/c mouse spleen cell cultures for cytokine induction (IL-12, IL-6, and IL-10) in comparison with parent CpG DNA 4. All CpG DNAs induced concentration-dependent cytokine production over the concentration range tested (0.03-10.0 μg/mL) (data not shown). The levels of cytokines induced at 0.3 μg/mL concentration of CpG DNAs 137-140 are shown in Table 18. CpG DNAs 137 and 139, which had an ethyleneglycol-linker in the 5'-flanking sequence induced higher levels of IL-12 (2106±143 and 2066±153 pg/mL) and IL-6 (2362±166 and 2507±66 pg/mL) secretion than did parent CpG DNA 4 (Table 18). At the same concentration, 137 and 139 induced slightly lower levels of IL-10 secretion than did the parent CpG DNA (Table 18). CpG DNA 138, which had a shorter ethyleneglycol-linker (6) in the 3'- flanking sequence induced IL-12 secretion similar to that of the parent CpG DNA, but significantly lower levels of IL-6 and IL-10 (Table 18). CpG DNA 140, which had a longer ethyleneglycol-linker (7) induced significantly lower levels of all three cytokines tested compared with the parent CpG DNA (Table 18).

Though triethyleneglycol-linker (6) had a chain length similar to that of C9-linker (5), the CpG DNA containing triethyleneglycol-linker had better immunostimulatory activity than did CpG DNA containing C9-linker, as determined by induction of cytokine secretion in spleen cell cultures. These results suggest that the lower immunostimulatory activity observed with CpG DNA containing longer alkyl-linkers (4 and 5) may not be related to their increased length but to their hydrophobic characteristics. This observation prompted us to examine substitution of branched alkyl-linkers containing hydrophilic functional groups on immunostimulatory activity.

Table 18. Cytokine secretion induced by CpG DNAs containing an ethyleneglycol-linker in BALB/c mice spleen cell cultures.

CpG Cytokine, pg/mL

DNA Number

IL-12 IL-6 IL-10

4 1887±233 2130±221 86±14

137 2106±143 2362±166 78±21

138 1888±259 1082±25 47±14

139 2066±153 2507±66 73±17

140 1318±162 476±13 25±5

Medium 84±13 33±6 2±1

To test the effect on immunostimulatory activity of CpG DNA containing branched alkyl-linkers, two branched alkyl-linkers containing a hydroxyl (8) or an amine (9) functional group were incorporated in parent CpG DNA 4 and the effects on immunostimulatory activity of the resulting modified CpG DNAs (150-154-Table 19) were examined. The data obtained with CpG DNAs 150-154, containing amino-linker 9 at different nucleotide positions, in BALB/c mouse spleen cell cultures (proliferation) and in vivo (splenomegaly) are shown in Table 19. Table 19. Spleen cell proliferation induced by CpG DNA containing an aminobutyryl propanediol-linker in BALB/c mice spleen cell cultures and splenomegaly in BALB/c mice.

Parent CpG DNA 4 showed a proliferation index of 3.7±0.8 at a concentration of 0.1 μg/mL. At the same concentration, modified CpG DNAs 151-154 containing amino-linker 9 at different positions caused higher spleen cell proliferation than did the parent CpG DNA (Table 19). As observed with other linkers, when the substitution was placed adjacent to CpG dinucleotide (150), a lower proliferation index was noted compared with parent CpG DNA (Table 19), further confirming that the placement of a linker substitution adjacent to CpG dinucleotide has a detrimental effect on immunostimulatory activity. In general, substitution of an amino- linker for 2'-deoxyribonucleoside in the 5'-flanking sequence (151 and 152) resulted in higher spleen cell proliferation than found with the substitution in the 3 '-flanking sequence (153 and 154). Similar results were observed in the splenomegaly assay (Table 19), confirming the results observed in spleen cell cultures. Modified CpG DNAs containing glycerol-linker (8) showed immunostimulatory activity similar to or slightly higher that that observed with modified CpG DNA containing amino-linker (9) (data not shown).

In order to compare the immunostimulatory effects of CpG DNA containing linkers 8 and 9, we selected CpG DNAs 145 and 152, which had substitution in the 5'- flanking sequence and assayed their ability to induce cytokines IL-12 and IL-6 secretion in BALB/c mouse spleen cell cultures. Both CpG DNAs 145 and 152 induced concentration-dependent cytokine secretion. Figure 4 shows the levels of IL-12 and IL-6 induced by 145 and 152 in mouse spleen cell cultures at 0.3 μg/mL concentration compared with parent CpG DNA 4. Both CpG DNAs induced higher levels of IL-12 and IL-6 than did parent CpG DNA 4. CpG DNA containing glycerol-linker (8) induced slightly higher levels of cytokines (especially IL-12) than did CpG DNA containing amino-linker (9) (Figure 16). These results further confirm that the linkers containing hydrophilic groups are more favorable for immunostimulatory activity of CpG DNA.

We examined two different aspects of multiple linker substitutions in CpG DNA. In one set of experiments, we kept the length of nucleotide sequence to 13-mer and incorporated one to five C3-linker (2) substitutions at the 5'-end (120-124). These modified CpG DNAs permitted us to study the effect of an increase in the length of linkers without causing solubility problems. In the second set of experiments, we incorporated two of the same linker substitutions (3, 4, or 5) in adjacent positions in the 5 '-flanking sequence to the CpG dinucleotide to study if there would be any additive effect on immunostimulatory activity.

Modified CpG DNAs were studied for their ability to induce cytokine production in BALB/c mouse spleen cell cultures in comparison with parent CpG DNA 4. All CpG DNAs induced concentration-dependent cytokine production. The data obtained at 1.0 μg/mL concentration of CpG DNAs is shown in Table 20. In this assay, parent CpG DNA 4 induced 967±28 pg/mL of IL-12, 1593±94 pg/mL of IL-6, and 14±6 pg/mL of IL-10 secretion at 1 μg/mL of concentration. The data presented in Table 20 suggest that as the number of linker substitutions decreased IL-12 induction decreased. However, the induction of lower levels of IL-12 secretion by CpG DNAs 123 and 124 could be the result of the shorter length of CpG DNAs. Our studies with unmodified CpG DNA shorter than 15 -nucleotides showed insignificant immunostimulatory activity (data not shown). Neither length nor the number of linker substitutions have a lesser effect on IL-6 secretion. Though IL-10 secretion increased with linker substitutions, the overall IL-10 secretion by these CpG DNAs was minimal.

CpG DNAs containing two linker substitutions (linker 3 - 127; linker-4 - 131; linker-5 - 135) at the fourth and fifth positions in the 5'-flanking sequences to the CpG dinucleotide and the corresponding 5'-truncated versions 128, 132, and 136, respectively, were tested for their ability to induce cytokine secretion in BALB/c mouse spleen cell cultures. The levels of IL-12 and IL-6 secreted at 1.0 μg/mL concentration are shown in Figure 17. The results presented in Figure 17 suggest that the immunostimulatory activity is dependent on the nature of the linker incorporated. The substitution of the fourth and fifth nucleosides with C4-linker 3 (CpG DNA 127) had an insignificant effect on cytokine secretion compared with parent CpG DNA 4, suggesting that the nucleobase and sugar ring at these positions are not required for receptor recognition and/or binding. The deletion of the nucleotides beyond the linker substitutions (CpG DNA 128) caused higher IL-12 and IL-6 secretion than that found with CpG DNAs 4 and 127. As expected, the substitution of two Cό-linkers (4) resulted in IL-12 secretion lower than and IL-6 secretion similar to that induced by parent CpG DNA 4. The 5 '-truncated CpG DNA 132 induced higher cytokine secretion than did CpG DNA 131. The CpG DNAs 135 and 136, which had two C9-linkers (5), induced insignificant cytokine secretion, confirming the results obtained with mono-substituted CpG DNA containing the same linker as described above.

Example 14: Effect of Phosphodiester Linkages on Cytokine Induction

To test the effect of phosphodiester linkages on imrnunomer-induced cytokine induction, the following molecules were synthesized. Table 21: PO-Immunomer sequences and analytical data

"Arrows indicate 5'-3' directionality of CpG dinucleotide in each DNA molecule and structures of X and Y are shown in boxes. bPS and PO stand for phosphorothioate and phosphodiester backbones, respectively. °As determined by MALD1-TOF mass spectrometry.

PS-CpG DNA 4 (Table 21) was found to induce an immune response in mice (data not shown) with PO-CpG DNA 155 serving as a control. PO-immunomers 156 and 157 each contain two identical, truncated copies of the parent CpG DNA 155 joined through their 3 '-ends via a glyceryl linker, X (Table 21). While 156 and 157 each contain the same oligonucleotide segments of 14 bases, the 5'-ends of 157 were modified by the addition of two C3-linkers, Y (Table 21). All oligonucleotides 4, 155-157 contain a 'GACGTT hexameric motif known to activate the mouse immune system.

The stability of PO-immunomers against nucleases was assessed by incubating

CpG DNAs 4, 155-157 in cell culture medium containing 10% fetal bovine serum (FBS) (non-heat-inactivated) at 37 °C for 4, 24, and 48 hr. Intact CpG DNA remaining in the reaction mixtures were then determined by CGE. Figure 18 A-D shows the nuclease digestion profiles of CpG DNAs 4, 155-157 incubated in 10% FBS for 24 hr. The amount of full-length CpG DNA remaining at each time point is shown in Figure 18 E. As expected, the parent PS-CpG DNA 4 is the most resistant to serum nucleases. About 55% of 18-mer 4 remained undegraded after 48 hr incubation. In contrast, only about 5% of full-length PO-immunomer 155 remained after 4 hr under the same experimental conditions confirming that DNA containing phosphodiester linkages undergoes rapid degradation. As expected, both PO-immunomers 156 and 157 were more resistant than 155 to serum nucleases. After 4 hr, about 62% and 73% of 156 and 157 respectively were intact compared with about 5% of 155 (Fig.18 E). Even after 48 hr, about 23% and 37% of 156 and 157, respectively, remained undegraded. As well as showing that 3 '-3'- linked PO-immunomers are more stable against serum nucleases, these studies indicate that chemical modifications at the 5 '-end can further increase nuclease stability.

The immunostimulatory activity of CpG DNAs was studied in BALB/c and C3H/HeJ mice spleen cell cultures by measuring levels of cytokines IL-12 and IL-6 secreted. All CpG DNAs induced a concentration-dependent cytokine secretion in BALB/c mouse spleen cell cultures (Fig. 19). At 3 μg/mL, PS-CpG DNA 4 induced 2656±256 and 12234±1180 pg/mL of IL-12 and IL-6 respectively. The parent PO-CpG DNA 155 did not raise cytokine levels above background except at a concentration of 10 μg/mL. This observation is consistent with the nuclease stability assay results. In contrast, PO-immunomers 156 and 157 induced both IL-12 and IL-6 secretion in BALB/c mouse spleen cell cultures.

The results presented in Figure 19 show a clear distinction in cytokine induction profiles of PS- and PO-CpG DNAs. PO-immunomers 156 and 157 induced higher levels of IL-12 than did PS-CpG DNA 4 in BALB/c mouse spleen cell cultures (Fig. 19 A). In contrast, at concentrations up to 3 μg/mL, they produced negligible amounts of IL-6 (Fig. 19B). Even at the highest concentration (10 μg/mL), PO-immunomer 156 induced significantly less IL-6 than did PS-CpG DNA 4. The presence of C3 linkers at the 5'- terminus of PO-immunomer 157 resulted in slightly higher levels of IL-6 secretion compared with 156. However, importantly, the levels of IL-6 produced by PO- immunomer 157 are much lower than those induced by PS CpG DNA 4. The inset of Figure 19A shows the ratio of IL-12 to IL-6 secreted at 3 μg/mL concentration. In addition to increasing IL-12 secretion, PO-immunomers 156 and 157 induced higher levels of IFN-γ than did PS-CpG DNA 4 in BALB/c mouse spleen cell cultures (data not shown).

The different cytokine profiles induced by PO- and PS-CpG DNAs in BALB/c mouse spleen cell cultures prompted us to study the pattern of cytokine induction of CpG DNAs in C3H/HeJ mouse spleen cell cultures (an LPS lower-responsive strain). All three CpG DNAs tested in this assay induced concentration-dependent cytokine secretion (Fig. 20A and B). Since PO-CpG DNA 155 failed to induce cytokine secretion in BALB/c mouse spleen cell cultures, it was not further tested in C3H/HeJ spleen cell cultures. Both PO-immunomers 156 and 157 induced higher IL-12 production than did PS-CpG DNA 4 (Fig. 20A). However, at concentrations up to 3 μg/mL, neither induced IL-6 production. At the highest concentration tested (10 μg/mL), both induced significantly less IL-6 than did PS-CpG DNA 4 (Fig. 20B). The ratio of IL-12 to IL-6 secreted is calculated to distinguish cytokine secretion profiles of PS and PO CpG DNAs (Fig. 20A inset). In addition, the C3H/HeJ spleen cell culture results suggest that the responses observed with CpG DNAs are not due to LPS contamination.

PS-CpG DNAs have been shown to induce potent antitumor activity in vivo. Since PO-CpG DNAs exhibited greater nuclease stability and induced higher levels of IL-12 and IFN-γ secretion in in vitro assays, we were interested to see if these desirable properties of PO-immunomers improve the antitumor activity in vivo. We administered PO-immunomer 157 subcutaneously at a dose of 0.5 mg/kg every other day to nude mice bearing tumor xenografts of MCF-7 breast cancer cells that express wild-type p53, or DU-145 prostate cancer cells that express mutated p53. PO- immunomer 157 gave 57% growth inhibition of MCF-7 tumors on day 15 compared with the saline control (Fig. 21 A). It also produced 52% growth inhibition of DU-145 tumors on day 34 (Fig. 2 IB). These antitumor studies suggest that PO-immunomers of the proposed design exhibit potent antitumor activity in vivo.

Example 22: Short immunomers To test the effects of short immunomers on cytokine induction, the following immunomers were used. These results show that immunomers as short as 5 nucleotides per segment are effective in inducing cytokine production.

Table 22. Immunomer Structure and Immunostimulatory Activity in BABL/C Mouse Spleen Cell Cultures

Normal phase represents a phosphorothioate linkage.

EQUIVALENTS

While the foregoing invention has been described in some detail for purposes of clarity and understanding, it will be appreciated by one skilled in the art from a reading of this disclosure that various changes in form and detail can be made without departing from the true scope of the invention and appended claims.

Claims

WHAT IS CLAIMED IS:
1. An immunomer, comprising at least two oligonucleotides linked at their 3' ends or internucleoside linkages or a functionalized nucleobase or sugar to a non- nucleotidic linker, wherein at least one of the oligonucleotides is an immunostimulatory oligonucleotide having an accessible 5' end and comprising an immunostimulatory dinucleotide.
2. The immunoner according to claim 1 wherien the immunostimulatory dinucleotide is selected from the group consisting of CpG, C*pG, CpG*, and C*pG*, wherein C is cytidine or 2'-deoxycytidine, C* is 2'deoxythymidine, arabinocytidine, 2'-deoxy-2'-substitutedarabinocytidine, 2'-O- substitutedarabinocytidine, 2'-deoxy-5-hydroxycytidine, 2'-deoxy-N4-alkyl- cytidine, 2'-deoxy-4-thiouridine or other non-natural pyrimidine nucleoside, G is guanosine or 2'-deoxyguanosine, G* is 2' deoxy-7-deazaguanosine, 2'-deoxy-6- thioguanosine, arabinoguanosine, 2'-deoxy-2'substituted-arabinoguanosine, 2'-O- substituted-arabinoguanosine, or other non-natural purine nucleoside, and p is an internucleoside linkage selected from the group consisting of phosphodiester, phosphorothioate, and phosphorodithioate. In certain preferred embodiments, the immunostimulatory dinucleotide is not CpG.
3. The immunomer according to claim 1 having the structure
5'-Nn-Nl-Y-Z-Nl-Nn-3' (III)
wherein:
Y is cytidine, 2' deoxycytidine arabinocytidine, 2'-deoxythymidine, 2'-deoxy-2'- substitutedarabinocytidine, 2'-O-substitutedarabinocytidine, 2'-deoxy-5- hydroxycytidine, 2'-deoxy-N4-alkyl-cytidine, 2'-deoxy-4-thiouridine or other non- natural pyrimidine nucleoside;
Z is guanosine or 2'-deoxyguanosine, G* is 2' deoxy-7-deazaguanosine, 2'- deoxy-6-thioguanosine, arabinoguanosine, 2'-deoxy-2'substituted- arabinoguanosine, 2'-O-substituted-arabinoguanosine, 2'deoxyinosine or other non-natural purine nucleoside,
Nl, at each occurrence, is preferably a naturally occurring or a synthetic nucleoside or an immunostimulatory moiety selected from the group consisting of abasic nucleosides, arabinonucleosides, 2'-deoxyuridine, α-deoxyribonucleosides, β-L-deoxyribonucleosides, and nucleosides linked by a phosphodiester or modified internucleoside linkage to the adjacent nucleoside on the 3' side, the modified intemucleotide linkage being selected from, without limitation, a linker having a length of from about 2 angstroms to about 200 angstroms, C2-C 18 alkyl linker, poly(ethylene glycol) linker, 2-aminobutyl-l,3-propanediol linker, glyceryl linker, 2'-5' internucleoside linkage, and phosphorothioate, phosphorodithioate, or methylphosphonate internucleoside linkage;
The immunomer according to claim 2 wherein the immunostimulatory moiety is selected from the group consisting of abasic nucleosides, arabinonucleosides, 2'- deoxyuridine, α-deoxyribonucleosides, β-L-deoxyribonucleosides, and nucleosides linked by a modified internucleoside linkage to the adjacent nucleoside on the 31 side, the modified intemucleotide linkage being selected from the group consisting of C2-C18 alkyl linker, poly(ethylene glycol) linkage, 2-aminobutyl-l,3-propanediol linker, 2'-5' internucleoside linkage, methylphosphonate internucleoside linkage; methylphosphonothioates, phosphotriesters, phosphothiotriesters, phosphorothioates, phosphorodithioates, triester prodrugs, sulfones, sulfonamides, sulfamates, formacetal, N- methylhydroxylamine, carbonate, carbamate, morpholino, boranophosphonate, phosphoramidates, especially primary amino-phosphoramidates, N3 phosphor- amidates and N5 phosphoramidates, and stereospecific linkages, nucleosides having sugar modifications, 2 '-substituted pentose sugars including, without limitation, 2'-O-methylribose, 2'-O-methoxyethylribose, 2'-O-propargylribose, and 2'-deoxy-2'-fluororibose; 3 '-substituted pentose sugars, including, without limitation, 3'-O-methylribose; r,2'-dideoxyribose; arabinose; substituted arabinose sugars, hexose sugars, and alpha-anomers, peptide nucleic acids (PNA), peptide nucleic acids with phosphate groups (PHONA), locked nucleic acids (LNA), morpholinonucleic acids, and oligonucleotides having backbone linker sections having a length of from about 2 angstroms to about 200 angstroms, alkyl linkers or amino linkers, DNA isoforms, β-L-deoxyribonucleosides, α-deoxyribonucleosides, nucleosides having unnatural internucleoside linkage positions, and nucleosides having modified heterocyclic bases.
The immunostimulatory oligonucleotide according to claim 2 wherein Nn, at each occurrence, is a naturally occurring nucleoside or an immunostimulatory moiety, selected from the group consisting of abasic nucleosides, arabinonucleosides, 2'-deoxyuridine, α-deoxyribonucleosides, 2'-O-substituted or 2 '-substituted ribonucleosides, and nucleosides linked by a modified internucleoside linkage to the adjacent nucleoside on the 3' side, the modified intemucleotide linkage being selected from the group consisting of amino linker, 2'-5' internucleoside linkage, and methylphosphonate internucleoside linkage;
provided that at least one Nl or Nn is an immunostimulatory moiety and that the 5' Nl includes a nucleobase;
wherein n is a number from 0-30; wherein the 3 'end or internucleoside linkages or a functionalized nucleobase or sugar is linked directly or via a non-nucleotidic linker to another oligonucleotide.
The immunomer according to claim 2 having the structure
7. The immunomer of claim 1 wherein the immunomer comprises at least one oligonucleotide that is complementary to a gene.
8. The immunomer of claim 1 wherein the immunomer comprises at least one ribozyme or a decoy oligonucleotide.
9. The immunomer of claim 1 wherein the immunomer comprises at least one Nn portion includes a G4 tetranucleotide.
10. The immunomer of claim 1 wherein the non-naturally occurring pyrimidine has the structure (/):
wherein:
D is a hydrogen bond donor;
D' is selected from the group consisting of hydrogen, hydrogen bond donor, hydrogen bond acceptor, hydrophilic group, hydrophobic group, electron withdrawing group and electron donating group, excluding bromine; A is a hydrogen bond acceptor or a hydrophilic group;
A is a hydrogen bond acceptor or a hydrophilic group;
A' is selected from the group consisting of hydrogen bond acceptor, hydrophilic group, hydrophobic group, electron withdrawing group and electron donating group;
X is carbon or nitrogen; and
S' is a pentose or hexose sugar ring or a non-naturally occurring sugar.
11. The immunomer according to claim 10 wherein the sugar ring is derivatized with a phosphate moiety, modified phosphate moiety, or other non-nucleotidic linker moiety suitable for linking the pyrimidine nucleoside to another nucleoside or nucleoside analog.
12. The immunomer according to claim 10 wherein the hydrogen bond donors are selected from the group consisting of -NH-, -NH2, -SH and -OH.
13. The immunomer according to claim 10 wherein the hydrogen bond acceptors are selected from the group consisting of C= , C=S, and the ring nitrogen atoms of an aromatic heterocycle.
14. The immunomer according to claim 10 wherein the non-naturally occurring pyrimidine base is selected from the group consisting of 5-hydroxycytosine, 5- hydroxymethylcytosine, N4-alkylcytosine, N4-ethylcytosine, and 4-thiouracil.
15. The immunomer according to claim 10 wherein the non-naturally occurring sugar is selected from arabinose and arabinose analogs.
16. The immunomer according to claim 1 wherein the purine nucleoside has the structure (If):
wherein:
D is a hydrogen bond donor;
D' is selected from the group consisting of hydrogen, hydrogen bond donor, and hydrophilic group;
A is a hydrogen bond acceptor or a hydrophilic group; X is carbon or nitrogen;
L is an atom selected from the group consisting of C, O, N and S; and
S' is a pentose or hexose sugar ring, or a non-naturally occurring sugar.
17. The immunomer according to claim 13 wherein the sugar ring is derivatized with a phosphate moiety, modified phosphate moiety, or other linker moiety suitable for linking the pyrimidine nucleoside to another nucleoside or nucleoside analog.
18. The immunomer according to claim 13 wherein the hydrogen bond donors are selected from the group consisting of -NH-, -NH2, -SH and -OH.
19. The immunomer according to claim 13 wherein the hydrogen bond acceptors are selected from the group consisting of C=O, C=S, -N= and the ring nitrogen atoms of an aromatic heterocycle.
20. The immunomer according to claim 13 wherein the non-naturally occurring purine is 6-thioguanine or 7-deazaguanine.
21. The immunomer according to claim 1, wherein the non-nucleotidic linker is selected from the group consisting of a linker from about 2angstroms to about 200 angstroms in length, a metal, a soluble or insoluble biodegradable polymer bead, an organic moiety having functional groups that permit attachment to the 3'- terminal nucleoside of the oligonucleotide, a biomolecule, a cyclic or acyclic small molecule, an aliphatic or aromatic hydrocarbon, either of which optionally can include, either in the linear chain connecting the oligonucleotides or appended to it, one or more functional groups selected from the group consisting of hydroxy, amino, thiol, thioether, ether, amide, thioamide, ester, urea, and thiourea; amino acids, carbohydrates, cyclodextrins, adamantane, cholesterol, haptens antibiotics, glycerol or a glycerol homolog of the formula HO-(CH2)0-CH(OH)-(CH2)p-OH, wherein o and p independently are integers from 1 to about 6, and a derivative of l,3-diamino-2-hydroxypropane.
22. The immunomer according to claim 1, wherein the internucleoside linkages consist essentially of phosphodiester linkages. .
23. An immunomer conjugate, comprising an immunomer, according to claim 1 and an antigen conjugated to the immunomer at a position other than the accessible 5' end.
24. The immunomer according to claim 1, wherein C*G* is arabinocytosine or 2'- deoxy-2-substituted arabincytosine and arabinoguanosine or 2'-deoxy-2'- substituted arabinguanosine, 2'-deoxy-7-deazaguanosine or 2'-deoxy-6- thioguanosine, or 2'-deoxyinosine.
25. A pharmaceutical formulation comprising an immunomer according to claim 1 and a physiologically acceptable carrier.
26. A method for generating an immune response in a vertebrate, the method comprising administering to the vertebrate an immunomer according to claim 1.
27. A method for generating an immune response in a vertebrate, the method comprising administering to the vertebrate an immunomer conjugate according to claim 19.
28. A method for therapeutically treating a patient having a disease or disorder, such method comprising administering to the patient an immunomer according to claim 1.
29. The method according to claim 23 wherein the disease or disorder to be treated is cancer, an autoimmune disorder, airway inflammation, inflammatory disorders, skin disorders, allergy, asthma or a disease caused by a pathogen.
30. A method for therapeutically treating a patient having a disease or disorder, such method comprising administering to the patient an immunomer conjugate according to claim 20.
31. A method for therapeutically treating a patient having a disease or disorder, such method comprising administering to the patient an immunomer according to claim 19.
32. The method according to claim 25 wherein the disease or disorder to be treated is cancer, an autoimmune disorder, airway inflammation, allergy, asthma or a disease caused by a pathogen.
33. The method according to claim 25 wherein the disease or disorder to be treated is cancer, an autoimmune disorder, airway inflammation, allergy, asthma or a disease caused by a pathogen.
34. The method of claim 25 further comprising administering a vaccine.
35. The method of claim 31, wherein the immunomer or the vaccine, or both, are linked to an immunogenic protein.
36. The method of claim 25 further comprising administering an adjuvant.
PCT/US2002/033756 2001-10-24 2002-10-22 Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends WO2003035836A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US34476701 true 2001-10-24 2001-10-24
US60/344,767 2001-10-24

Publications (1)

Publication Number Publication Date
WO2003035836A2 true true WO2003035836A2 (en) 2003-05-01

Family

ID=23351942

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2002/033756 WO2003035836A2 (en) 2001-10-24 2002-10-22 Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends
PCT/US2002/034247 WO2003057822A9 (en) 2001-10-24 2002-10-24 Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2002/034247 WO2003057822A9 (en) 2001-10-24 2002-10-24 Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends

Country Status (4)

Country Link
JP (1) JP5005878B2 (en)
KR (1) KR100945104B1 (en)
CA (1) CA2463798C (en)
WO (2) WO2003035836A2 (en)

Cited By (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1393745A1 (en) * 2002-07-29 2004-03-03 Hybridon, Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5'ends
WO2004092360A2 (en) 2003-04-10 2004-10-28 Chiron Corporation The severe acute respiratory syndrome coronavirus
WO2004103301A3 (en) * 2003-05-16 2005-11-03 Hybridon Inc Synergistic treatment of cancer using immunomers in conjunction with chemotherapeutic agents
EP1725266A2 (en) * 2004-02-20 2006-11-29 Hybridon, Inc. Potent mucosal immune response induced by modified immunomodulatory oligonucleotides
US7276489B2 (en) 2002-10-24 2007-10-02 Idera Pharmaceuticals, Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends
WO2008020335A2 (en) 2006-06-09 2008-02-21 Novartis Ag Immunogenic compositions for streptococcus agalactiae
WO2009034473A2 (en) 2007-09-12 2009-03-19 Novartis Ag Gas57 mutant antigens and gas57 antibodies
US7566703B2 (en) * 2004-10-20 2009-07-28 Coley Pharmaceutical Group, Inc. Semi-soft C-class immunostimulatory oligonucleotides
EP2108374A1 (en) 2004-04-30 2009-10-14 Novartis Vaccines and Diagnostics S.r.l. Combined meningococcal conjugates with common carrier protein
US7723500B2 (en) 1994-07-15 2010-05-25 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
EP2193810A1 (en) 2005-01-14 2010-06-09 Novartis Vaccines and Diagnostics S.r.l. Meningococcal conjugate vaccination
WO2010079464A1 (en) 2009-01-12 2010-07-15 Novartis Ag Cna_b domain antigens in vaccines against gram positive bacteria
WO2010100632A2 (en) 2009-03-06 2010-09-10 Novartis Ag Chlamydia antigens
WO2010146414A1 (en) 2009-06-15 2010-12-23 National University Of Singapore Influenza vaccine, composition, and methods of use
EP2267036A1 (en) 2003-10-02 2010-12-29 Novartis Vaccines and Diagnostics S.r.l. Hypo- and Hyper-Acetylated Meningococcal Capsular Saccharides
EP2272531A2 (en) 2004-04-30 2011-01-12 Novartis Vaccines and Diagnostics S.r.l. Integration of meningococcal conjugate vaccination
WO2011004263A2 (en) 2009-07-07 2011-01-13 Novartis Ag Conserved escherichia coli immunogens
WO2011008974A2 (en) 2009-07-15 2011-01-20 Novartis Ag Rsv f protein compositions and methods for making same
WO2011007257A1 (en) 2009-07-16 2011-01-20 Novartis Ag Detoxified escherichia coli immunogens
EP2277538A1 (en) 2003-10-02 2011-01-26 Novartis Vaccines and Diagnostics S.r.l. Combined meningitis vaccines
EP2279747A1 (en) 2004-10-29 2011-02-02 Novartis Vaccines and Diagnostics S.r.l. Immunogenic bacterial vesicles with outer membrane proteins
EP2289546A2 (en) 2003-01-30 2011-03-02 Novartis Vaccines and Diagnostics S.r.l. Injectable vaccines against multiple meningococcal serogroups
WO2011024072A2 (en) 2009-08-27 2011-03-03 Novartis Ag Hybrid polypeptides including meningococcal fhbp sequences
WO2011030218A1 (en) 2009-09-10 2011-03-17 Novartis Ag Combination vaccines against respiratory tract diseases
EP2298795A1 (en) 2005-02-18 2011-03-23 Novartis Vaccines and Diagnostics, Inc. Immunogens from uropathogenic escherichia coli
WO2011036562A1 (en) 2009-09-28 2011-03-31 Novartis Vaccines Institute For Global Health Srl Purification of bacterial vesicles
WO2011036564A2 (en) 2009-09-28 2011-03-31 Novartis Vaccines Institute For Global Health Srl Hyperblebbing shigella strains
WO2011039631A2 (en) 2009-09-30 2011-04-07 Novartis Ag Expression of meningococcal fhbp polypeptides
WO2011048561A1 (en) 2009-10-20 2011-04-28 Novartis Ag Diagnostic and therapeutic methods for rheumatic heart disease based upon group a streptococcus markers
WO2011051893A1 (en) 2009-10-27 2011-05-05 Novartis Ag Modified meningococcal fhbp polypeptides
WO2011058302A1 (en) 2009-11-10 2011-05-19 Guy's And St Thomas's Nhs Foundation Trust Bacteremia-associated antigen from staphylococcus aureus
US7956043B2 (en) 2002-12-11 2011-06-07 Coley Pharmaceutical Group, Inc. 5′ CpG nucleic acids and methods of use
EP2329843A2 (en) 2005-04-18 2011-06-08 Novartis Vaccines and Diagnostics, Inc. Expressing Hepatitis B Virus surface antigen for vaccine preparation
US20110158937A1 (en) * 2003-07-15 2011-06-30 Idera Pharmaceuticals, Inc. Synergistic stimulation of the immune system using immunostimulatory oligonucleotides and/or immunomer compounds in conjunction with cytokines and/or chemotherapeutic agents or radiation therapy
EP2341069A1 (en) 2004-05-14 2011-07-06 Novartis Vaccines and Diagnostics S.r.l. Polypeptides from non-typeable haemophilus influenzae
WO2011080595A2 (en) 2009-12-30 2011-07-07 Novartis Ag Polysaccharide immunogens conjugated to e. coli carrier proteins
EP2351772A1 (en) 2005-02-18 2011-08-03 Novartis Vaccines and Diagnostics, Inc. Proteins and nucleic acids from meningitis/sepsis-associated Escherichia coli
EP2351579A1 (en) 2002-10-11 2011-08-03 Novartis Vaccines and Diagnostics S.r.l. Polypeptide vaccines for broad protection against hypervirulent meningococcal lineages
US7998492B2 (en) 2002-10-29 2011-08-16 Coley Pharmaceutical Group, Inc. Methods and products related to treatment and prevention of hepatitis C virus infection
EP2357000A1 (en) 2005-10-18 2011-08-17 Novartis Vaccines and Diagnostics, Inc. Mucosal and systemic immunizations with alphavirus replicon particles
EP2357184A1 (en) 2006-03-23 2011-08-17 Novartis AG Imidazoquinoxaline compounds as immunomodulators
EP2360175A2 (en) 2005-11-22 2011-08-24 Novartis Vaccines and Diagnostics, Inc. Norovirus and Sapovirus virus-like particles (VLPs)
WO2011104632A1 (en) 2010-02-26 2011-09-01 Novartis Ag Immunogenic proteins and compositions
EP2368572A2 (en) 2005-11-04 2011-09-28 Novartis Vaccines and Diagnostics S.r.l. Adjuvanted vaccines with non-virion antigens prepared from influenza viruses grown in cell culture
EP2368573A2 (en) 2005-11-04 2011-09-28 Novartis Vaccines and Diagnostics S.r.l. Influenza vaccines including combinations of particulate adjuvants and immunopotentiators
WO2011121576A2 (en) 2010-04-01 2011-10-06 Novartis Ag Immunogenic proteins and compositions
WO2011127316A1 (en) 2010-04-07 2011-10-13 Novartis Ag Method for generating a parvovirus b19 virus-like particle
EP2377552A2 (en) 2005-11-04 2011-10-19 Novartis Vaccines and Diagnostics S.r.l. Influenza vaccines with reduced amount of emulsion adjuvant
EP2377551A2 (en) 2005-11-04 2011-10-19 Novartis Vaccines and Diagnostics S.r.l. Adjuvanted influenza vaccines including cytokine-inducing agents
WO2011130379A1 (en) 2010-04-13 2011-10-20 Novartis Ag Benzonapthyridine compositions and uses thereof
EP2382988A1 (en) 2006-03-31 2011-11-02 Novartis AG Combined mucosal and parenteral immunization against HIV
EP2382987A1 (en) 2006-03-24 2011-11-02 Novartis Vaccines and Diagnostics GmbH Storage of influenza vaccines without refrigeration
EP2385127A1 (en) 2005-11-25 2011-11-09 Novartis Vaccines and Diagnostics S.r.l. Chimeric, hybrid and tandem polypeptides of meningococcal NMB1870
WO2011138636A1 (en) 2009-09-30 2011-11-10 Novartis Ag Conjugation of staphylococcus aureus type 5 and type 8 capsular polysaccharides
WO2011149564A1 (en) 2010-05-28 2011-12-01 Tetris Online, Inc. Interactive hybrid asynchronous computer game infrastructure
WO2011161551A2 (en) 2010-06-11 2011-12-29 Novartis Ag Omv vaccines
WO2012006293A1 (en) 2010-07-06 2012-01-12 Novartis Ag Norovirus derived immunogenic compositions and methods
WO2012006359A1 (en) 2010-07-06 2012-01-12 Novartis Ag Delivery of self-replicating rna using biodegradable polymer particles
WO2012035519A1 (en) 2010-09-16 2012-03-22 Novartis Ag Immunogenic compositions
WO2012049662A1 (en) 2010-10-15 2012-04-19 Novartis Vaccines Institute For Global Health Srl Hyperblebbing salmonella strains
WO2012072769A1 (en) 2010-12-01 2012-06-07 Novartis Ag Pneumococcal rrgb epitopes and clade combinations
WO2012085668A2 (en) 2010-12-24 2012-06-28 Novartis Ag Compounds
EP2478916A1 (en) 2006-01-27 2012-07-25 Novartis Vaccines and Diagnostics GmbH Influenza vaccines containing hemagglutinin and matrix proteins
WO2012103361A1 (en) 2011-01-26 2012-08-02 Novartis Ag Rsv immunization regimen
EP2484377A1 (en) 2007-06-27 2012-08-08 Novartis AG Low-additive influenza vaccines
EP2497495A2 (en) 2006-09-11 2012-09-12 Novartis AG Making influenza virus vaccines without using eggs
US8283328B2 (en) 2002-08-19 2012-10-09 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acids
EP2510947A1 (en) 2009-04-14 2012-10-17 Novartis AG Compositions for immunising against Staphylococcus aureus
EP2514437A1 (en) 2006-07-20 2012-10-24 Novartis AG Frozen stockpiling of influenza vaccines
WO2012158613A1 (en) 2011-05-13 2012-11-22 Novartis Ag Pre-fusion rsv f antigens
EP2532362A1 (en) 2006-12-06 2012-12-12 Novartis AG Vaccines including antigen from four strains of influenza virus
EP2537857A2 (en) 2007-12-21 2012-12-26 Novartis AG Mutant forms of streptolysin O
WO2013006838A1 (en) 2011-07-06 2013-01-10 Novartis Ag Immunogenic combination compositions and uses thereof
WO2013006842A2 (en) 2011-07-06 2013-01-10 Novartis Ag Immunogenic compositions and uses thereof
EP2548895A1 (en) 2007-01-11 2013-01-23 Novartis AG Modified saccharides
WO2013016460A1 (en) 2011-07-25 2013-01-31 Novartis Ag Compositions and methods for assessing functional immunogenicity of parvovirus vaccines
WO2013038375A2 (en) 2011-09-14 2013-03-21 Novartis Ag Methods for making saccharide-protein glycoconjugates
EP2572726A1 (en) 2007-08-01 2013-03-27 Novartis AG Compositions comprising pneumococcal antigens
EP2586790A2 (en) 2006-08-16 2013-05-01 Novartis AG Immunogens from uropathogenic Escherichia coli
WO2013068949A1 (en) 2011-11-07 2013-05-16 Novartis Ag Carrier molecule comprising a spr0096 and a spr2021 antigen
EP2612679A1 (en) 2004-07-29 2013-07-10 Novartis Vaccines and Diagnostics, Inc. Immunogenic compositions for gram positive bacteria such as streptococcus agalactiae
EP2614709A1 (en) 2005-07-18 2013-07-17 Novartis AG Small animal model for HCV replication
EP2614835A1 (en) 2007-11-26 2013-07-17 Novartis AG Vaccination with multiple clades of H5 influenza A virus
WO2013108272A2 (en) 2012-01-20 2013-07-25 International Centre For Genetic Engineering And Biotechnology Blood stage malaria vaccine
EP2659912A2 (en) 2007-07-17 2013-11-06 Novartis AG Conjugate purification
US8580268B2 (en) 2006-09-27 2013-11-12 Coley Pharmaceutical Gmbh CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity
DE202005022108U1 (en) 2004-03-09 2013-11-12 Novartis Vaccines And Diagnostics, Inc. Influenza virus vaccines
WO2013174832A1 (en) 2012-05-22 2013-11-28 Novartis Ag Meningococcus serogroup x conjugate
WO2014005958A1 (en) 2012-07-06 2014-01-09 Novartis Ag Immunogenic compositions and uses thereof
WO2014053521A2 (en) 2012-10-02 2014-04-10 Novartis Ag Nonlinear saccharide conjugates
WO2014053612A1 (en) 2012-10-03 2014-04-10 Novartis Ag Immunogenic composition
EP2811027A1 (en) 2004-05-21 2014-12-10 Novartis Vaccines and Diagnostics, Inc. Alphavirus vectors for RSV and PIV vaccines
US9028845B2 (en) 2001-06-21 2015-05-12 Dynavax Technologies Corporation Chimeric immunomodulatory compounds and methods of using the same-IV
WO2015068129A1 (en) 2013-11-08 2015-05-14 Novartis Ag Salmonella conjugate vaccines
EP2886551A2 (en) 2008-02-21 2015-06-24 Novartis AG Meningococcal fhbp polypeptides
EP2889042A2 (en) 2008-03-18 2015-07-01 Novartis AG Improvements in preparation of influenza virus vaccine antigens
EP2891498A1 (en) 2007-12-20 2015-07-08 Novartis AG Fermentation processes for cultivating streptococci and purification processes for obtaining CPS therefrom
US20160201060A1 (en) * 2013-01-08 2016-07-14 Idera Pharmaceuticals, Inc. Immune regulatory oligonucleotide (iro) compounds to modulate toll-like receptor based immune response
WO2016207853A2 (en) 2015-06-26 2016-12-29 Seqirus UK Limited Antigenically matched influenza vaccines
US9764027B2 (en) 2012-09-18 2017-09-19 Glaxosmithkline Biologicals Sa Outer membrane vesicles

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1625140A4 (en) * 2002-12-23 2008-06-18 Dynavax Tech Corp Branched immunomodulatory compounds and methods of using the same
US7354907B2 (en) * 2003-02-07 2008-04-08 Idera Pharmaceuticals, Inc. Short immunomodulatory oligonucleotides
CA2540949A1 (en) 2003-10-30 2005-05-12 Coley Pharmaceutical Gmbh C-class oligonucleotide analogs with enhanced immunostimulatory potency
EP1699814A4 (en) * 2003-12-08 2009-01-14 Hybridon Inc Modulation of immunostimulatory properties by small oligonucleotide-based compounds
JP4817599B2 (en) * 2003-12-25 2011-11-16 独立行政法人科学技術振興機構 The method enhancing immune activity enhancer and immunoreactivity using the same
WO2006080946A3 (en) * 2004-06-08 2006-12-21 Coley Pharm Gmbh Abasic oligonucleotide as carrier platform for antigen and immunostimulatory agonist and antagonist
KR20070028537A (en) * 2004-06-15 2007-03-12 이데라 파마슈티칼즈, 인코포레이티드 Immunostimulatory oligonucleotide multimers
JP2009514525A (en) * 2005-11-07 2009-04-09 イデラ ファーマシューティカルズ インコーポレイテッドIdera Pharmaceuticals, Inc. Comprising a modified immunostimulatory dinucleotide, immunostimulatory properties of compounds based on oligonucleotide
EP2402442B1 (en) * 2005-11-07 2013-07-31 Idera Pharmaceuticals Immunostimulatory properties of oligonucleotide-based compounds comprising modified immunostimulatory dinucleotides
CN101378779B (en) 2005-12-22 2015-09-02 葛兰素史密丝克莱恩生物有限公司 vaccine
JP2009531387A (en) 2006-03-30 2009-09-03 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム Immunogenic composition
CN101678091A (en) 2007-05-24 2010-03-24 葛兰素史密丝克莱恩生物有限公司 Lyophilised antigen composition
WO2008032534A1 (en) 2006-09-14 2008-03-20 Konica Minolta Medical & Graphic, Inc. Fluorescent semiconductor microparticle assembly, fluorescent labeling agent assembly for biological substance, and bioimaging method and biological substance analysis method using the assemblies
CN101784282B (en) 2007-06-26 2015-07-08 葛兰素史密丝克莱恩生物有限公司 Vaccine comprising streptococcus pneumoniae capsular polysaccharide conjugates
JP5721441B2 (en) 2008-01-31 2015-05-20 キュアバック ゲーエムベーハーCurevac Gmbh Expression as immunostimulant / adjuvant (I) (NuGlXmGnNv) nucleic acid molecules and derivatives thereof represented by a
WO2010037408A1 (en) 2008-09-30 2010-04-08 Curevac Gmbh Composition comprising a complexed (m)rna and a naked mrna for providing or enhancing an immunostimulatory response in a mammal and uses thereof
US8853177B2 (en) * 2008-10-06 2014-10-07 Idera Pharmaceuticals, Inc. Use of inhibitors of toll-like receptors in the prevention and treatment of hypercholesterolemia and hyperlipidemia and diseases related thereto
GB0913681D0 (en) 2009-08-05 2009-09-16 Glaxosmithkline Biolog Sa Immunogenic composition
GB0913680D0 (en) 2009-08-05 2009-09-16 Glaxosmithkline Biolog Sa Immunogenic composition
WO2011031520A1 (en) * 2009-08-27 2011-03-17 Idera Pharmaceuticals, Inc. Composition for inhibiting gene expression and uses thereof
US20110053829A1 (en) 2009-09-03 2011-03-03 Curevac Gmbh Disulfide-linked polyethyleneglycol/peptide conjugates for the transfection of nucleic acids
GB201003924D0 (en) 2010-03-09 2010-04-21 Glaxosmithkline Biolog Sa Immunogenic composition
EP2955230A1 (en) 2010-07-30 2015-12-16 CureVac AG Complexation of nucleic acids with disulfide-crosslinked cationic components for transfection and immunostimulation
GB201021867D0 (en) 2010-12-23 2011-02-02 Mologen Ag Non-coding immunomodulatory DNA construct
EP2707393B1 (en) 2011-04-13 2017-12-20 GlaxoSmithKline Biologicals S.A. Fusion proteins and combination vaccines comprising haemophilus influenzae protein e and pilin a
KR20160124774A (en) 2014-02-24 2016-10-28 글락소스미스클라인 바이오로지칼즈 에스.에이. Uspa2 protein constructs and uses thereof
US20170281744A1 (en) 2014-12-10 2017-10-05 Glaxosmithkline Biologicals Sa Method of treatment
JPWO2016152767A1 (en) * 2015-03-20 2018-03-15 国立研究開発法人医薬基盤・健康・栄養研究所 CpG spacer oligonucleotides containing complexes and uses thereof having immunostimulatory activity

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172208B1 (en) * 1992-07-06 2001-01-09 Genzyme Corporation Oligonucleotides modified with conjugate groups
CA2246503A1 (en) * 1996-02-15 1997-08-21 National Institutes Of Health Rnase l activators and antisense oligonucleotides effective to treat rsv infections
US5856462A (en) * 1996-09-10 1999-01-05 Hybridon Incorporated Oligonucleotides having modified CpG dinucleosides
DE69935507D1 (en) * 1998-04-03 2007-04-26 Univ Iowa Res Found Methods and products for stimulating the immune system by means of immunotherapeutic oligonucleotides and cytokines
WO2002026757A3 (en) * 2000-09-26 2003-01-03 Hybridon Inc Modulation of immunostimulatory activity of immunostimulatory oligonucleotide analogs by positional chemical changes
ES2487645T3 (en) * 2001-06-21 2014-08-22 Dynavax Technologies Corporation chimeric immunomodulatory compounds and methods of use thereof

Cited By (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7723500B2 (en) 1994-07-15 2010-05-25 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US9028845B2 (en) 2001-06-21 2015-05-12 Dynavax Technologies Corporation Chimeric immunomodulatory compounds and methods of using the same-IV
US7407944B2 (en) 2001-10-24 2008-08-05 Idera Pharmaceuticals, Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends
US8202850B2 (en) * 2001-10-24 2012-06-19 Idera Pharmaceuticals, Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends
US7812000B2 (en) 2001-10-24 2010-10-12 Idera Pharmaceuticals, Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends
US7517862B2 (en) 2001-10-24 2009-04-14 Idera Pharmaceuticals, Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends
US20110229456A1 (en) * 2001-10-24 2011-09-22 Idera Pharmaceuticals, Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends
US7749975B2 (en) 2001-10-24 2010-07-06 Idera Pharmaceuticals, Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends
EP1393745A1 (en) * 2002-07-29 2004-03-03 Hybridon, Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5'ends
US8283328B2 (en) 2002-08-19 2012-10-09 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acids
US8304396B2 (en) * 2002-08-19 2012-11-06 Coley Pharmaceutical Group, Inc. Immunostimulatory nucleic acids
EP2353608A1 (en) 2002-10-11 2011-08-10 Novartis Vaccines and Diagnostics S.r.l. Polypeptide-vaccines for broad protection against hypervirulent meningococcal lineages
EP2351579A1 (en) 2002-10-11 2011-08-03 Novartis Vaccines and Diagnostics S.r.l. Polypeptide vaccines for broad protection against hypervirulent meningococcal lineages
US7276489B2 (en) 2002-10-24 2007-10-02 Idera Pharmaceuticals, Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends
US7998492B2 (en) 2002-10-29 2011-08-16 Coley Pharmaceutical Group, Inc. Methods and products related to treatment and prevention of hepatitis C virus infection
US7956043B2 (en) 2002-12-11 2011-06-07 Coley Pharmaceutical Group, Inc. 5′ CpG nucleic acids and methods of use
EP2289546A2 (en) 2003-01-30 2011-03-02 Novartis Vaccines and Diagnostics S.r.l. Injectable vaccines against multiple meningococcal serogroups
WO2004092360A2 (en) 2003-04-10 2004-10-28 Chiron Corporation The severe acute respiratory syndrome coronavirus
WO2004103301A3 (en) * 2003-05-16 2005-11-03 Hybridon Inc Synergistic treatment of cancer using immunomers in conjunction with chemotherapeutic agents
US7569554B2 (en) 2003-05-16 2009-08-04 Idera Pharmaceuticals, Inc. Synergistic treatment of cancer using immunomers in conjunction with therapeutic agents
US7875594B2 (en) 2003-05-16 2011-01-25 Idera Pharmaceuticals, Inc. Synergistic treatment of cancer using immunomers in conjunction with chemotherapeutic agents
US20110158937A1 (en) * 2003-07-15 2011-06-30 Idera Pharmaceuticals, Inc. Synergistic stimulation of the immune system using immunostimulatory oligonucleotides and/or immunomer compounds in conjunction with cytokines and/or chemotherapeutic agents or radiation therapy
EP2267036A1 (en) 2003-10-02 2010-12-29 Novartis Vaccines and Diagnostics S.r.l. Hypo- and Hyper-Acetylated Meningococcal Capsular Saccharides
EP2277538A1 (en) 2003-10-02 2011-01-26 Novartis Vaccines and Diagnostics S.r.l. Combined meningitis vaccines
EP1725266A4 (en) * 2004-02-20 2008-05-07 Hybridon Inc Potent mucosal immune response induced by modified immunomodulatory oligonucleotides
EP1725266A2 (en) * 2004-02-20 2006-11-29 Hybridon, Inc. Potent mucosal immune response induced by modified immunomodulatory oligonucleotides
DE202005022108U1 (en) 2004-03-09 2013-11-12 Novartis Vaccines And Diagnostics, Inc. Influenza virus vaccines
EP2108374A1 (en) 2004-04-30 2009-10-14 Novartis Vaccines and Diagnostics S.r.l. Combined meningococcal conjugates with common carrier protein
EP2272531A2 (en) 2004-04-30 2011-01-12 Novartis Vaccines and Diagnostics S.r.l. Integration of meningococcal conjugate vaccination
EP2351774A1 (en) 2004-05-14 2011-08-03 Novartis Vaccines and Diagnostics S.r.l. Polypeptides from non-typeable haemophilus influenzae
EP2351773A1 (en) 2004-05-14 2011-08-03 Novartis Vaccines and Diagnostics S.r.l. Polypeptides from non-typeable haemophilus influenzae
EP2343313A1 (en) 2004-05-14 2011-07-13 Novartis Vaccines and Diagnostics S.r.l. Polypeptides from non-typeable haemophilus influenzae
EP2341069A1 (en) 2004-05-14 2011-07-06 Novartis Vaccines and Diagnostics S.r.l. Polypeptides from non-typeable haemophilus influenzae
EP2848692A1 (en) 2004-05-21 2015-03-18 Novartis Vaccines and Diagnostics, Inc. Alphavirus vectors for influenza virus vaccines
EP2811027A1 (en) 2004-05-21 2014-12-10 Novartis Vaccines and Diagnostics, Inc. Alphavirus vectors for RSV and PIV vaccines
EP2612679A1 (en) 2004-07-29 2013-07-10 Novartis Vaccines and Diagnostics, Inc. Immunogenic compositions for gram positive bacteria such as streptococcus agalactiae
US7795235B2 (en) 2004-10-20 2010-09-14 Coley Pharmaceutical Gmbh Semi-soft c-class immunostimulatory oligonucleotides
US7566703B2 (en) * 2004-10-20 2009-07-28 Coley Pharmaceutical Group, Inc. Semi-soft C-class immunostimulatory oligonucleotides
EP2279747A1 (en) 2004-10-29 2011-02-02 Novartis Vaccines and Diagnostics S.r.l. Immunogenic bacterial vesicles with outer membrane proteins
EP2193810A1 (en) 2005-01-14 2010-06-09 Novartis Vaccines and Diagnostics S.r.l. Meningococcal conjugate vaccination
EP2298795A1 (en) 2005-02-18 2011-03-23 Novartis Vaccines and Diagnostics, Inc. Immunogens from uropathogenic escherichia coli
EP2351772A1 (en) 2005-02-18 2011-08-03 Novartis Vaccines and Diagnostics, Inc. Proteins and nucleic acids from meningitis/sepsis-associated Escherichia coli
EP2329843A2 (en) 2005-04-18 2011-06-08 Novartis Vaccines and Diagnostics, Inc. Expressing Hepatitis B Virus surface antigen for vaccine preparation
EP2614709A1 (en) 2005-07-18 2013-07-17 Novartis AG Small animal model for HCV replication
EP2357000A1 (en) 2005-10-18 2011-08-17 Novartis Vaccines and Diagnostics, Inc. Mucosal and systemic immunizations with alphavirus replicon particles
EP2368572A2 (en) 2005-11-04 2011-09-28 Novartis Vaccines and Diagnostics S.r.l. Adjuvanted vaccines with non-virion antigens prepared from influenza viruses grown in cell culture
EP2377551A2 (en) 2005-11-04 2011-10-19 Novartis Vaccines and Diagnostics S.r.l. Adjuvanted influenza vaccines including cytokine-inducing agents
EP2377552A2 (en) 2005-11-04 2011-10-19 Novartis Vaccines and Diagnostics S.r.l. Influenza vaccines with reduced amount of emulsion adjuvant
EP2368573A2 (en) 2005-11-04 2011-09-28 Novartis Vaccines and Diagnostics S.r.l. Influenza vaccines including combinations of particulate adjuvants and immunopotentiators
EP2360175A2 (en) 2005-11-22 2011-08-24 Novartis Vaccines and Diagnostics, Inc. Norovirus and Sapovirus virus-like particles (VLPs)
EP2385127A1 (en) 2005-11-25 2011-11-09 Novartis Vaccines and Diagnostics S.r.l. Chimeric, hybrid and tandem polypeptides of meningococcal NMB1870
EP2385126A1 (en) 2005-11-25 2011-11-09 Novartis Vaccines and Diagnostics S.r.l. Chimeric, hybrid and tandem polypeptides of meningococcal NMB1870
EP2478916A1 (en) 2006-01-27 2012-07-25 Novartis Vaccines and Diagnostics GmbH Influenza vaccines containing hemagglutinin and matrix proteins
EP2357184A1 (en) 2006-03-23 2011-08-17 Novartis AG Imidazoquinoxaline compounds as immunomodulators
EP2382987A1 (en) 2006-03-24 2011-11-02 Novartis Vaccines and Diagnostics GmbH Storage of influenza vaccines without refrigeration
EP2382988A1 (en) 2006-03-31 2011-11-02 Novartis AG Combined mucosal and parenteral immunization against HIV
WO2008020335A2 (en) 2006-06-09 2008-02-21 Novartis Ag Immunogenic compositions for streptococcus agalactiae
EP2514437A1 (en) 2006-07-20 2012-10-24 Novartis AG Frozen stockpiling of influenza vaccines
EP2586790A2 (en) 2006-08-16 2013-05-01 Novartis AG Immunogens from uropathogenic Escherichia coli
EP2497495A2 (en) 2006-09-11 2012-09-12 Novartis AG Making influenza virus vaccines without using eggs
US8580268B2 (en) 2006-09-27 2013-11-12 Coley Pharmaceutical Gmbh CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity
US9382545B2 (en) 2006-09-27 2016-07-05 Coley Pharmaceutical Gmbh CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity
EP2679240A1 (en) 2006-12-06 2014-01-01 Novartis AG Vaccines including antigen from four strains of influenza virus
EP2532362A1 (en) 2006-12-06 2012-12-12 Novartis AG Vaccines including antigen from four strains of influenza virus
EP2548895A1 (en) 2007-01-11 2013-01-23 Novartis AG Modified saccharides
EP2484377A1 (en) 2007-06-27 2012-08-08 Novartis AG Low-additive influenza vaccines
EP2659912A2 (en) 2007-07-17 2013-11-06 Novartis AG Conjugate purification
US9463250B2 (en) 2007-07-17 2016-10-11 Glaxosmithkline Biologicals Sa Conjugate purification
EP2572726A1 (en) 2007-08-01 2013-03-27 Novartis AG Compositions comprising pneumococcal antigens
WO2009034473A2 (en) 2007-09-12 2009-03-19 Novartis Ag Gas57 mutant antigens and gas57 antibodies
EP2614835A1 (en) 2007-11-26 2013-07-17 Novartis AG Vaccination with multiple clades of H5 influenza A virus
EP2891498A1 (en) 2007-12-20 2015-07-08 Novartis AG Fermentation processes for cultivating streptococci and purification processes for obtaining CPS therefrom
EP2537857A2 (en) 2007-12-21 2012-12-26 Novartis AG Mutant forms of streptolysin O
EP2886551A2 (en) 2008-02-21 2015-06-24 Novartis AG Meningococcal fhbp polypeptides
EP2889042A2 (en) 2008-03-18 2015-07-01 Novartis AG Improvements in preparation of influenza virus vaccine antigens
WO2010079464A1 (en) 2009-01-12 2010-07-15 Novartis Ag Cna_b domain antigens in vaccines against gram positive bacteria
WO2010100632A2 (en) 2009-03-06 2010-09-10 Novartis Ag Chlamydia antigens
EP2510947A1 (en) 2009-04-14 2012-10-17 Novartis AG Compositions for immunising against Staphylococcus aureus
EP2944320A1 (en) 2009-06-15 2015-11-18 National University of Singapore Influenza vaccine, composition, and methods of use
WO2010146414A1 (en) 2009-06-15 2010-12-23 National University Of Singapore Influenza vaccine, composition, and methods of use
WO2011004263A2 (en) 2009-07-07 2011-01-13 Novartis Ag Conserved escherichia coli immunogens
WO2011008974A2 (en) 2009-07-15 2011-01-20 Novartis Ag Rsv f protein compositions and methods for making same
EP3178490A2 (en) 2009-07-15 2017-06-14 GlaxoSmithKline Biologicals S.A. Rsv f protein compositions and methods for making same
WO2011007257A1 (en) 2009-07-16 2011-01-20 Novartis Ag Detoxified escherichia coli immunogens
EP2837386A1 (en) 2009-07-16 2015-02-18 Novartis AG Detoxified Escherichia coli immunogens
EP3017828A1 (en) 2009-08-27 2016-05-11 GlaxoSmithKline Biologicals SA Hybrid polypeptides including meningococcal fhbp sequences
WO2011024072A2 (en) 2009-08-27 2011-03-03 Novartis Ag Hybrid polypeptides including meningococcal fhbp sequences
WO2011030218A1 (en) 2009-09-10 2011-03-17 Novartis Ag Combination vaccines against respiratory tract diseases
WO2011036562A1 (en) 2009-09-28 2011-03-31 Novartis Vaccines Institute For Global Health Srl Purification of bacterial vesicles
WO2011036564A2 (en) 2009-09-28 2011-03-31 Novartis Vaccines Institute For Global Health Srl Hyperblebbing shigella strains
WO2011138636A1 (en) 2009-09-30 2011-11-10 Novartis Ag Conjugation of staphylococcus aureus type 5 and type 8 capsular polysaccharides
WO2011039631A2 (en) 2009-09-30 2011-04-07 Novartis Ag Expression of meningococcal fhbp polypeptides
WO2011048561A1 (en) 2009-10-20 2011-04-28 Novartis Ag Diagnostic and therapeutic methods for rheumatic heart disease based upon group a streptococcus markers
WO2011051893A1 (en) 2009-10-27 2011-05-05 Novartis Ag Modified meningococcal fhbp polypeptides
WO2011058302A1 (en) 2009-11-10 2011-05-19 Guy's And St Thomas's Nhs Foundation Trust Bacteremia-associated antigen from staphylococcus aureus
WO2011080595A2 (en) 2009-12-30 2011-07-07 Novartis Ag Polysaccharide immunogens conjugated to e. coli carrier proteins
WO2011104632A1 (en) 2010-02-26 2011-09-01 Novartis Ag Immunogenic proteins and compositions
WO2011121576A2 (en) 2010-04-01 2011-10-06 Novartis Ag Immunogenic proteins and compositions
WO2011127316A1 (en) 2010-04-07 2011-10-13 Novartis Ag Method for generating a parvovirus b19 virus-like particle
WO2011130379A1 (en) 2010-04-13 2011-10-20 Novartis Ag Benzonapthyridine compositions and uses thereof
WO2011149564A1 (en) 2010-05-28 2011-12-01 Tetris Online, Inc. Interactive hybrid asynchronous computer game infrastructure
WO2011161551A2 (en) 2010-06-11 2011-12-29 Novartis Ag Omv vaccines
WO2012006293A1 (en) 2010-07-06 2012-01-12 Novartis Ag Norovirus derived immunogenic compositions and methods
EP3153578A1 (en) 2010-07-06 2017-04-12 Novartis Ag Norovirus derived immunogenic compositions and methods
WO2012006359A1 (en) 2010-07-06 2012-01-12 Novartis Ag Delivery of self-replicating rna using biodegradable polymer particles
WO2012035519A1 (en) 2010-09-16 2012-03-22 Novartis Ag Immunogenic compositions
WO2012049662A1 (en) 2010-10-15 2012-04-19 Novartis Vaccines Institute For Global Health Srl Hyperblebbing salmonella strains
WO2012072769A1 (en) 2010-12-01 2012-06-07 Novartis Ag Pneumococcal rrgb epitopes and clade combinations
WO2012085668A2 (en) 2010-12-24 2012-06-28 Novartis Ag Compounds
WO2012103361A1 (en) 2011-01-26 2012-08-02 Novartis Ag Rsv immunization regimen
WO2012158613A1 (en) 2011-05-13 2012-11-22 Novartis Ag Pre-fusion rsv f antigens
WO2013006842A2 (en) 2011-07-06 2013-01-10 Novartis Ag Immunogenic compositions and uses thereof
WO2013006838A1 (en) 2011-07-06 2013-01-10 Novartis Ag Immunogenic combination compositions and uses thereof
WO2013016460A1 (en) 2011-07-25 2013-01-31 Novartis Ag Compositions and methods for assessing functional immunogenicity of parvovirus vaccines
WO2013038375A2 (en) 2011-09-14 2013-03-21 Novartis Ag Methods for making saccharide-protein glycoconjugates
WO2013068949A1 (en) 2011-11-07 2013-05-16 Novartis Ag Carrier molecule comprising a spr0096 and a spr2021 antigen
WO2013108272A2 (en) 2012-01-20 2013-07-25 International Centre For Genetic Engineering And Biotechnology Blood stage malaria vaccine
WO2013174832A1 (en) 2012-05-22 2013-11-28 Novartis Ag Meningococcus serogroup x conjugate
WO2014005958A1 (en) 2012-07-06 2014-01-09 Novartis Ag Immunogenic compositions and uses thereof
US9764027B2 (en) 2012-09-18 2017-09-19 Glaxosmithkline Biologicals Sa Outer membrane vesicles
WO2014053521A2 (en) 2012-10-02 2014-04-10 Novartis Ag Nonlinear saccharide conjugates
WO2014053607A1 (en) 2012-10-03 2014-04-10 Novartis Ag Immunogenic compositions
WO2014053612A1 (en) 2012-10-03 2014-04-10 Novartis Ag Immunogenic composition
US20160312225A1 (en) * 2013-01-08 2016-10-27 Idera Pharmaceuticals, Inc. Immune regulatory oligonucleotide (iro) compounds to modulate toll-like receptor based immune response
US20160201060A1 (en) * 2013-01-08 2016-07-14 Idera Pharmaceuticals, Inc. Immune regulatory oligonucleotide (iro) compounds to modulate toll-like receptor based immune response
WO2015068129A1 (en) 2013-11-08 2015-05-14 Novartis Ag Salmonella conjugate vaccines
WO2016207853A2 (en) 2015-06-26 2016-12-29 Seqirus UK Limited Antigenically matched influenza vaccines

Also Published As

Publication number Publication date Type
KR20040047969A (en) 2004-06-05 application
WO2003057822A9 (en) 2004-07-01 application
JP5005878B2 (en) 2012-08-22 grant
JP2005518402A (en) 2005-06-23 application
WO2003057822A3 (en) 2004-02-26 application
KR100945104B1 (en) 2010-03-02 grant
WO2003057822A2 (en) 2003-07-17 application
CA2463798A1 (en) 2003-07-17 application
CA2463798C (en) 2015-02-03 grant

Similar Documents

Publication Publication Date Title
US20060241076A1 (en) Modified oligoribonucleotide analogs with enhanced immunostimulatory activity
US20030060440A1 (en) Oligodeoxynucleotide and its use to induce an immune response
Zhao et al. Effect of different chemically modified oligodeoxynucleotides on immune stimulation
US20040171571A1 (en) 5' CpG nucleic acids and methods of use
US20050239734A1 (en) C-class oligonucleotide analogs with enhanced immunostimulatory potency
US20060074040A1 (en) Synergistic stimulation of the immune system using immunostimulatory oligonucleotides and/or immunomer compounds in conjunction with cytokines and/or chemotherapeutic agents or radiation therapy
US7615227B2 (en) Use of CpG oligodeoxynucleotides to induce angiogenesis
US6476000B1 (en) Modulation of oligonucleotide CpG-mediated immune stimulation by positional modification of nucleosides
US20070280929A1 (en) Adjuvant in the form of a lipid-modified nucleic acid
US20020137714A1 (en) Modulation of immunostimulatory activity of immunostimulatory oligonucleotide analogs by positional chemical changes
US20120128699A1 (en) Immune regulatory oligonucleotide (iro) compounds to modulate toll-like receptor based immune response
US20050239733A1 (en) Sequence requirements for inhibitory oligonucleotides
US7115579B2 (en) Modulation of oligonucleotide CpG-mediated immune stimulation by positional modification of nucleosides
WO2008014979A2 (en) NUCLEIC ACID OF FORMULA (I): GIXmGn, OR (II): CIXmCn, IN PARTICULAR AS AN IMMUNE-STIMULATING AGENT/ADJUVANT
US7105495B2 (en) Modulation of oligonucleotide CpG-mediated immune stimulation by positional modification of nucleosides
US6815429B2 (en) Modulation of oligonucleotide CpG-mediated immune stimulation by positional modification of nucleosides
US7405285B2 (en) Immunostimulatory oligonucleotide multimers
US20030144229A1 (en) Multiple CpG oligodeoxynucleotides and their use to induce an immune response
US20060025365A1 (en) Immunostimulatory oligonucleotide multimers
WO2006028742A2 (en) Methods and conpositions for inhibition of innate immune responses and autoimmunity
US20080089883A1 (en) Immune regulatory oligonucleotide (iro) compounds to modulate toll-like receptor based immune response
WO2011031520A1 (en) Composition for inhibiting gene expression and uses thereof
US20050026861A1 (en) Stabilized immunomodulatory oligonucleotides
US7354907B2 (en) Short immunomodulatory oligonucleotides
US20090053148A1 (en) Toll like receptor modulators

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

WA Withdrawal of international application
NENP Non-entry into the national phase in:

Ref country code: JP