WO2003057822A2 - Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends - Google Patents

Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends Download PDF

Info

Publication number
WO2003057822A2
WO2003057822A2 PCT/US2002/034247 US0234247W WO03057822A2 WO 2003057822 A2 WO2003057822 A2 WO 2003057822A2 US 0234247 W US0234247 W US 0234247W WO 03057822 A2 WO03057822 A2 WO 03057822A2
Authority
WO
WIPO (PCT)
Prior art keywords
immunomer
linker
deoxy
nucleoside
selected
Prior art date
Application number
PCT/US2002/034247
Other languages
French (fr)
Other versions
WO2003057822A9 (en
WO2003057822A3 (en
Inventor
Sudhir Agrawal
Ekambar M. Kandimalla
Dong Yu
Lakshmi Bhagat
Original Assignee
Hybridon, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US34476701P priority Critical
Priority to US60/344,767 priority
Application filed by Hybridon, Inc. filed Critical Hybridon, Inc.
Publication of WO2003057822A2 publication Critical patent/WO2003057822A2/en
Publication of WO2003057822A3 publication Critical patent/WO2003057822A3/en
Publication of WO2003057822A9 publication Critical patent/WO2003057822A9/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/117Nucleic acids having immunomodulatory properties, e.g. containing CpG-motifs
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55561CpG containing adjuvants; Oligonucleotide containing adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/18Type of nucleic acid acting by a non-sequence specific mechanism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/318Chemical structure of the backbone where the PO2 is completely replaced, e.g. MMI or formacetal
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/318Chemical structure of the backbone where the PO2 is completely replaced, e.g. MMI or formacetal
    • C12N2310/3183Diol linkers, e.g. glycols or propanediols
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/52Physical structure branched

Abstract

The invention relates to the therapeutic use of oligonucleotides as immunostimulatory agents in immunotherapy applications. More particularly, the invention provides immunomers for use in methods for generating an immune response or for treating a patient in need of immunostimulation. The immunomers of the invention comprise at least two oligonucleotides linked at their 3' ends, internucleoside linkages or functionalized nucleobase or sugar to a non-nucleotidic linker, at least one of the oligonucleotides being an immunostimulatory oligonucleotide and having an accessible 5' end.

Description

MODULATION OF IMMUNOSTIMULATORY PROPERTIIES OF

OLIGONUCLEOTIDE-BASED COMPOUNDS BY OPTIMAL

PRESENTATION OF 5' ENDS

(Attorney Docket No. HYB-007US2) BACKGROUND OF THE INVENTION

Field of the Invention

The invention relates to immunology and immunotherapy applications using oligonucleotides as immunostimulatory agents.

Summary of the Related Art

Oligonucleotides have become indispensable tools in modern molecular biology, being used in a wide variety of techniques, ranging from diagnostic probing methods to PCR to antisense inhibition of gene expression and immunotherapy applications. This widespread use of oligonucleotides has led to an increasing demand for rapid, inexpensive and efficient methods for synthesizing oligonucleotides.

The synthesis of oligonucleotides for antisense and diagnostic applications can now be routinely accomplished. See, e.g., Methods in Molecular Biology, Vol. 20: Protocols for Oligonucleotides and Analogs pp. 165-189 (S. Agrawal, ed., Humana Press, 1993); Oligonucleotides and Analogues, A Practical Approach, pp. 87-108 (F. Eckstein, ed., 1991); and Uhlmann and Peyman, supra; Agrawal and Iyer, Curr. Op. in Biotech. 6: 12 ( 1995); and Antisense Research and Applications (Crooke and Lebleu, eds., CRC Press, Boca Raton, 1993). Early synthetic approaches included phosphodiester and phosphotriester chemistries. For example, Khorana et al., J. Molec. Biol. 72:209 (1972) discloses phosphodiester chemistry for oligonucleotide synthesis. Reese, Tetrahedron Lett. 34:3143-3179 (1 78), discloses phosphotriester chemistry for synthesis of oligonucleotides and polynucleotides. These early approaches have largely given way to the more efficient phosphoramidite and H- phosphonate approaches to synthesis. For example, Beaucage and Caruthers, Tetrahedron Lett. 22:1859-1862 (1981), discloses the use of deoxyribonucleoside phosphoramidites in polynucleotide synthesis. Agrawal and Zamecnik, U.S. Patent No. 5,149,798 (1992), discloses optimized synthesis of oligonucleotides by the H- phosphonate approach. Both of these modern approaches have been used to synthesize oligonucleotides having a variety of modified internucleotide linkages. Agrawal and Goodchild, Tetrahedron Lett. 28:3539-3542 (1987), teaches synthesis of oligonucleotide methylphosphonates using phosphoramidite chemistry. Connolly et al., Biochem. 23:3443 (1984), discloses synthesis of oligonucleotide phosphorothioates using phosphoramidite chemistry. Jager et al., Biochem. 27:7237 (1988), discloses synthesis of oligonucleotide phosphoramidates using phosphoramidite chemistry. Agrawal et al., Proc. Natl. Acad. Sci. (USA) 85:7079- 7083 (1988), discloses synthesis of oligonucleotide phosphoramidates and phosphorothioates using H-phosphonate chemistry.

More recently, several researchers have demonstrated the validity of the use of oligonucleotides as immunostimulatory agents in immunotherapy applications. The observation that phosphodiester and phosphorothioate oligonucleotides can induce immune stimulation has created interest in developing this side effect as a therapeutic tool. These efforts have focused on phosphorothioate oligonucleotides containing the dinucleotide natural CpG. Kuramoto et al, Jpn. J. Cancer Res. 83: 1 128- 1 131 ( 1992) teaches that phosphodiester oligonucleotides containing a palindrome that includes a CpG dinucleotide can induce interferon-alpha and gamma synthesis and enhance natural killer activity. rieg et al, Nature 371:546-549 (1995) discloses that phosphorothioate CpG-containing oligonucleotides are immunostimulatory. Liang et al., J. Clin. Invest. 98:1 1 19-1 129 (1996) discloses that such oligonucleotides activate human B cells. Moldoveanu et al., Vaccine 16: 1216- 124 ( 1998) teaches that CpG- containing phosphorothioate oligonucleotides enhance immune response against influenza virus. McCluskie and Davis, J. Immunol. 161:4463-4466 (1998) teaches that CpG-containing oligonucleotides act as potent adjuvants, enhancing immune response against hepatitis B surface antigen. Other modifications of CpG-containing phosphorothioate oligonucleotides can also affect their ability to act as modulators of immune response. See, e.g., Zhao et al., Biochem. Pharmacol. ( 1996) 51 : 173- 182; Zhao et al., Biochem Pharmacol. ( 1996) 52: 1537- 1544; Zhao et al., Antisense Nucleic Acid Drug Dev. ( 1997) 7:495- 502; Zhao et al., Bioorg. Med. Chem. Lett. ( 1999) 9:3453-3458; Zhao et al., Bioorg. Med. Chem. Lett. (2000) 10:1051-1054; Yu et al., Bioorg. Med. Chem. Lett. (2000) 10:2585-2588; Yu et al., Bioorg. Med. Chem. Lett. (2001) 11:2263-2267; and andimalla et al., Bioorg. Med. Chem. (2001) 9:807-813.

These reports make clear that there remains a need to be able to enhance the immune response caused by immunostimulatory oligonucleotides.

BRIEF SUMMARY OF THE INVENTION

The invention provides methods for enhancing the immune response caused by oligonucleotide compounds. The methods according to the invention enable increasing the immunostimulatory effect of immunostimulatory oligonucleotides for immunotherapy applications. The present inventors have suφrisingly discovered that modification of an immunostimulatory oligonucleotide to optimally present its 5' end dramatically enhances its immunostimulatory capability. Such an oligonucleotide is referred to herein as an "immunomer."

In a first aspect, therefore, the invention provides immunomers comprising at least two oligonucleotides linked at their 3' ends, an internuceotide linkage, or a functionalized nucleobase or sugar via a non-nucleotidic linker, at least one of the oligonucleotides being an immunostimulatory oligonucleotide and having an accessible 5' end.

In one embodiment, the immunomer comprises an immunostimulatory dinucleotide of formula 5'-Pyr-Pur-3\ wherein Pyr is a natural or non-natural pyrimidine nucleoside and Pur is a natural or non-natural purine nucleoside.

In another embodiment, the immunomer comprises an immunostimulatory dinucleotide selected from the group consisting of CpG, C*pG, CpG*, and C*pG*, wherein C is cytidine or 2'-deoxycytidine, C* is 2'-deoxythymidine. arabinocytidine, 2'-deoxy-2'-substitutedarabinocytidine, 2'-O-substitutedarabinocytidine, 2'-deoxy-5- hydroxycytidine, 2'-deoxy-N4-alkyl-cytidine, 2'-deoxy-4-thiouridine or other non- natural pyrimidine nucleoside, G is guanosine or 2'-deoxyguanosine, G* is 2' deoxy- 7-deazaguanosine, 2'-deoxy-6-thioguanosine, arabinoguanosine, 2'-deoxy- 2'substituted-arabinoguanosine, 2'-O-substituted-arabinoguanosine, or other non- natural purine nucleoside, and p is an internucleoside linkage selected from the group consisting of phosphodiester, phosphorothioate, and phosphorodithioate. In certain preferred embodiments, the immunostimulatory dinucleotide is not CpG. In yet another embodiment, the immunostimulatory oligonucleotide comprises an immunostimulatory domain of formula (III):

5'-Nn-Nl-Y-Z-N l-Nn-3' (III)

wherein:

Y is cytidine, 2'-deoxythymidine, 2' deoxycytidine, arabinocytidine, 2'- deoxythymidine, 2'-deoxy-2'-substitutedarabinocytidine, 2'-O- substitutedarabinocytidine, 2'-deoxy-5-hydroxycytidine, 2'-deoxy-N4-alkyl-cytidine, 2'-deoxy-4-thiouridine or other non-natural pyrimidine nucleoside;

Z is guanosine or 2'-deoxyguanosine, G* is 2' deoxy-7-deazaguanosine, 2'- deoxy-6-thioguanosine, arabinoguanosine, 2'-deoxy-2'substituted-arabinoguanosine, 2,-O-substituted-arabinoguanosine, 2'- deoxyinosine, or other non-natural purine nucleoside

N 1 , at each occurrence, is preferably a naturally occurring or a synthetic nucleoside or an immunostimulatory moiety selected from the group consisting of abasic nucleosides, arabinonucleosides, 2'-deoxyuridine, α-deoxyribonucleosides, β-L-deoxyribonucleosides, and nucleosides linked by a phosphodiester or modified internucleoside linkage to the adjacent nucleoside on the 3' side, the modified internucleotide linkage being selected from, without limitation, a linker having a length of from about 2 angstroms to about 200 angstroms, C2-C18 alkyl linker, poly(ethylene glycol) linker, 2-aminobutyl-l,3-propanediol linker, glyceryl linker, 2'- 5' internucleoside linkage, and phosphorothioate, phosphorodithioate, or methylphosphonate internucleoside linkage;

Nn, at each occurrence, is a naturally occurring nucleoside or an immunostimulatory moiety, preferably selected from the group consisting of abasic nucleosides, arabinonucleosides, 2'-deoxyuridine, α-deoxyribonucleosides, 2'-O- substituted ribonucleosides, and nucleosides linked by a modified internucleoside linkage to the adjacent nucleoside on the 3' side, the modified internucleotide linkage being selected from the group consisting of amino linker, 2'-5' internucleoside linkage, and methylphosphonate internucleoside linkage;

provided that at least one N 1 or Nn is an immunostimulatory moiety;

wherein n is a number from 0-30;

wherein the 3 'end , an internucleotide linkage, or a functionalized nucleobase or sugar is linked directly or via a non-nucleotidic linker to another oligonucleotide, which may or may not be immunostimulatory.

In a second aspect, the invention provides immunomer conjugates, comprising an immunomer, as described above, and an antigen conjugated to the immunomer at a position other than the accessible 5' end.

In a third aspect, the invention provides pharmaceutical formulation comprising an immunomer or an immunomer conjugate according to the invention and a physiologically acceptable carrier.

In a fourth aspect, the invention provides methods for generating an immune response in a vertebrate, such methods comprising administering to the vertebrate an immunomer or immunomer conjugate according to the invention. In some embodiments, the vertebrate is a mammal.

In a fifth aspect, the invention provides methods for therapeutically treating a patient having a disease or disorder, such methods comprising administering to the patient an immunomer or immunomer conjugate according to the invention. In various embodiments, the disease or disorder to be treated is cancer, an autoimmune disorder, airway inflammation, asthma, allergy, or a disease caused by a pathogen. BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic representation of representative immunomers of the invention.

Figure 2 depicts several representative immunomers of the invention.

Figure 3 depicts a group of representative small molecule linkers suitable for linear synthesis of immumomers of the invention.

Figure 4 depicts a group of representative small molecule linkers suitable for parallel synthesis of immunomers of the invention.

Figure 5 is a synthetic scheme for the linear synthesis of immunomers of the invention. DMTr = 4,4'-dimethoxytrityl; CE = cyanoethyl.

Figure 6 is a synthetic scheme for the parallel synthesis of immunomers of the invention. DMTr = 4,4'-dimethoxytrityl; CE = cyanoethyl.

Figure 7A is a graphic representation of the induction of IL-12 by immunomers 1-3 in BALB/c mouse spleen cell cultures. These data suggest that Immunomer 2, which has accessible 5'-ends, is a stronger inducer of IL-12 than monomeric Oligo 1, and that Immunomer 3, which does not have accessible 5'-ends, has equal or weaker ability to produce immune stimulation compared with oligo I .

Figure 7B is a graphic representation of the induction of IL-6 (top to bottom, respectively) by Immunomers 1-3 in BALB/c mouse spleen cells cultures. These data suggest that Immunomer 2, which has accessible 5'-ends, is a stronger inducer of IL-6 than monomeric Oligo 1, and that Immunomer 3, which does not have accessible 5'- ends, has equal or weaker ability to induce immune stimulation compared with Oligo I .

Figure 7C is a graphic representation of the induction of IL-10 by Immunomers 1-3 (top to bottom, respectively) in BALB/c mouse spleen cell cultures. Figure 8A is a graphic representation of the induction of BALB/c mouse spleen cell proliferation in cell cultures by different concentrations of Immunomers 5 and 6, which have inaccessible and accessible 5'-ends, respectively.

Figure 8B is a graphic representation of BALB/c mouse spleen enlargement by Immunomers 4-6, which have an immunogenic chemical modification in the 5'- flanking sequence of the CpG motif. Again, the immunomer, which has accessible 5 '-ends (6), has a greater ability to increase spleen enlargement compared with Immunomer 5, which does not have accessible 5 '-end and with monomeric Oligo 4.

Figure 9A is a graphic representation of induction of IL-12 by different concentrations of Oligo 4 and Immunomers 7 and 8 in BALB/c mouse spleen cell cultures.

Figure 9B is a graphic representation of induction of IL-6 by different concentrations of Oligo 4 and Immunomers 7 and 8 in BALB/c mouse spleen cell cultures.

Figure 9C is a graphic representation of induction of I L- 10 by different concentrations of Oligo 4 and Immunomers 7 and 8 in BALB/c mouse spleen cell cultures.

Figure 10A is a graphic representation of the induction of cell proliferation by Immunomers 14, 15, and 16 in BALB/c mouse spleen cell cultures.

Figure 10B is a graphic representation of the induction of cell proliferation by

IL-12 by different concentrations of Immunomers 14 and 16 in BALB/c mouse spleen cell cultures.

Figure IOC is a graphic representation of the induction of cell proliferation by IL-6 by different concentrations of Immunomers 14 and 16 in BALB/c mouse spleen cell cultures. Figure 1 1 A is a graphic representation of the induction of cell proliferation by Oligo 4 and 17 and Immunomers 19 and 20 in BALB/c mouse spleen cell cultures.

Figure 1 1 B is a graphic representation of the induction of cell proliferation IL- 12 by different concentrations of Oligo 4 and 17 and Immunomers 19 and 20 in BALB/c mouse spleen cell cultures.

Figure 1 1C is a graphic representation of the induction of cell proliferation 1L- 6 by different concentrations of Oligo 4 and 17 and Immunomers 19 and 20 in BALB/c mouse spleen cell cultures.

Figure 12 is a graphic representation of BALB/c mouse spleen enlargement using oligonucleotides 4 and immunomers 14, 23, and 24.

Figure 13 is a schematic representation of the 3'-terminal nucleoside of an oligonucleotide, showing that a non-nucleotidic linkage can be attached to the nucleoside at the nucleobase, at the 3' position, or at the 2' position.

Figure 14 shows the chemical substitutions used in Example 13.

Figure 15 shows cytokine profiles obtained using the modified oligonucleotides of Example 13.

Figure 16 shows relative cytokine induction for glycerol linkers compared with amino linkers.

Figure 17 shows relative cytokine induction for various linkers and linker combinations.

Figures 18 A-E shows relative nuclease resistance for various PS and PO immunomers and oligonucleotides.

Figure 19 shows relative cytokine induction for PO immunomers compared with PS immunomers in BALB/c mouse spleen cell cultures. Figure 20 shows relative cytokine induction for PO immunomers compared with PS immunomers in C3H/Hej mouse spleen cell cultures.

Figure 21 shows relative cytokine induction for PO immunomers compared with PS immunomers in C3H/Hej mouse spleen cell cultures at high concentrations of immunomers.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The invention relates to the therapeutic use of oligonucleotides as immunostimulatory agents for immunotherapy applications. The issued patents, patent applications, and references that are cited herein are hereby incoφorated by reference to the same extent as if each was specifically and individually indicated to be incoφorated by reference. In the event of inconsistencies between any teaching of any reference cited herein and the present specification, the latter shall prevail for puφoses of the invention.

The invention provides methods for enhancing the immune response caused by immunostimulatory compounds used for immunotherapy applications such as, but not limited to, treatment of cancer, autoimmune disorders, asthma, respiratory allergies, food allergies, and bacteria, parasitic, and viral infections in adult and pediatric human and veterinary applications. Thus, the invention further provides compounds having optimal levels of immunostimulatory effect for immunotherapy and methods for making and using such compounds. In addition, immunomers of the invention are useful as adjuvants in combination with DNA vaccines, antibodies, allergens, chemotherapeutic agents, and antisense oligonucleotides.

The present inventors have suφrisingly discovered that modification of an immunostimulatory oligonucleotide to optimally present its 5' ends dramatically affects its immunostimulatory capabilities. Such an oligonucleotide is referred to herein as an "immunomer."

In a first aspect, the invention provides immunomers comprising at least two oligonucleotides linked at their 3' ends, or an internucleoside linkage or a functionalized nucleobase or sugar to a non-nucleotidic linker, at least one of the oligonucleotides being an immunostimulatory oligonucleotide and having an accessible 5' end. As used herein, the term "accessible 5' end" means that the 5' end of the oligonucleotide is sufficiently available such that the factors that recognize and bind to immunomers and stimulate the immune system have access to it. In oligonucleotides having an accessible 5' end, the 5' OH position of the terminal sugar is not covalently linked to more than two nucleoside residues. Optionally, the 5' OH can be linked to a phosphate, phosphorothioate, or phosphorodithioate moiety, an aromatic or aliphatic linker, cholesterol, or another entity which does not interfere with accessibility.

For puφoses of the invention, the term "immunomer" refers to any compound comprising at least two oligonucleotides linked at their 3' ends or internucleoside linkages, or functionalized nucleobase or sugar directly or via a non-nucleotidic linker, at least one of the oligonucleotides (in the context of the immunomer) being an immunostimulatory oligonucleotide and having an accessible 5' end, wherein the compound induces an immune response when administered to a vertebrate. In some embodiments, the vertebrate is a mammal, including a human.

In some embodiments, the immunomer comprises two or more immunostimulatory oligonucleotides, (in the context of the immunomer) which may be the same or different. Preferably, each such immunostimulatory oligonucleotide has at least one accessible 5' end.

In certain embodiments, in addition to the immunostimulatory oligonucleotide(s), the immunomer also comprises at least one oligonucleotide that is complementary to a gene. As used herein, the term "complementary to" means that the oligonucleotide hybridizes under physiological conditions to a region of the gene. In some embodiments, the oligonucleotide downregulates expression of a gene. Such downregulatory oligonucleotides preferably are selected from the group consisting of antisense oligonucleotides, ribozyme oligonucleotides, small inhibitory RNAs and decoy oligonucleotides. As used herein, the term "downregulate a gene" means to inhibit the transcription of a gene or translation of a gene product. Thus, the immunomers according to these embodiments of the invention can be used to target one or more specific disease targets, while also stimulating the immune system. In certain embodiments, the immunomer includes a ribozyme or a decoy oligonucleotide. As used herein, the term "ribozyme" refers to an oligonucleotide that possesses catalytic activity. Preferably, the ribozyme binds to a specific nucleic acid target and cleaves the target. As used herein, the term "decoy oligonucleotide" refers to an oligonucleotide that binds to a transcription factor in a sequence-specific manner and arrests transcription activity. Preferably, the ribozyme or decoy oligonucleotide exhibits secondary structure, including, without limitation, stem-loop or haiφin structures. In certain embodiments, at least one oligonucleotide comprising poly(l)- poly(dC). In certain embodiments, at least one set of Nn includes a string of 3 to 10 dGs and/or Gs or 2 '-substituted ribo or arabino Gs.

For puφoses of the invention, the term "oligonucleotide" refers to a polynucleoside formed from a plurality of linked nucleoside units. Such oligonucleotides can be obtained from existing nucleic acid sources, including genomic or cDNA, but are preferably produced by synthetic methods. In preferred embodiments each nucleoside unit includes a heterocyclic base and a pentofuranosyl, trehalose, arabinose, 2'-deoxy-2'-substitutedarabinose, 2'-O-substitutedarabinose or hexose sugar group. The nucleoside residues can be coupled to each other by any of the numerous known internucleoside linkages. Such internucleoside linkages include, without limitation, phosphodiester, phosphorothioate, phosphorodithioate, alkylphosphonate, alkyl phosphonothioate, phosphotriester, phosphoramidate, siloxane, carbonate, carboalkoxy, acetamidate, carbamate, moφholino, borano, thioether, bridged phosphoramidate, bridged methylene phosphonate, bridged phosphorothioate, and sulfone internucleoside linkages. The term "oligonucleotide" also encompasses polynucleosides having one or more stereospecific internucleoside linkage (e.g., (/? )- or (S/>)-phosphorothioate, alkylphosphonate, or phosphotriester linkages). As used herein, the terms "oligonucleotide" and "dinucleotide" are expressly intended to include polynucleosides and dinucleosides having any such internucleoside linkage, whether or not the linkage comprises a phosphate group. In certain preferred embodiments, these internucleoside linkages may be phosphodiester, phosphorothioate, or phosphorodithioate linkages, or combinations thereof.

In some embodiments, the oligonucleotides each have from about 3 to about 35 nucleoside residues, preferably from about 4 to about 30 nucleoside residues, more preferably from about 4 to about 20 nucleoside residues. In some embodiments, the oligonucleotides have from about 5 to about 18, or from about 5 to about 14, nucleoside residues. As used herein, the term "about" implies that the exact number is not critical. Thus, the number of nucleoside residues in the oligonucleotides is not critical, and oligonucleotides having one or two fewer nucleoside residues, or from one to several additional nucleoside residues are contemplated as equivalents of each of the embodiments described above. In some embodiments, one or more of the oligonucleotides have 1 1 nucleotides.

The term "oligonucleotide" also encompasses polynucleosides having additional substituents including, without limitation, protein groups, lipophilic groups, intercalating agents, diamines, folic acid, cholesterol and adamantane. The term "oligonucleotide" also encompasses any other nucleobase containing polymer, including, without limitation, peptide nucleic acids (PNA), peptide nucleic acids with phosphate groups (PHONA), locked nucleic acids (LNA), morpho lino-backbone oligonucleotides , and oligonucleotides having backbone sections with alkyl linkers or amino linkers.

The oligonucleotides of the invention can include naturally occurring nucleosides, modified nucleosides, or mixtures thereof. As used herein, the term "modified nucleoside" is a nucleoside that includes a modified heterocyclic base, a modified sugar moiety, or a combination thereof. In some embodiments, the modified nucleoside is a non-natural pyrimidine or purine nucleoside, as herein described. In some embodiments, the modified nucleoside is a 2'-substituted ribonucleoside an arabinonucleoside or a 2,-deoxy-2'-fluoroarabinoside. For puφoses of the invention, the term "2'-substituted ribonucleoside" includes ribonucleosides in which the hydroxyl group at the 2' position of the pentose moiety is substituted to produce a 2'-O-substituted ribonucleoside. Preferably, such substitution is with a lower alkyl group containing 1-6 saturated or unsaturated carbon atoms, or with an aryl group having 6-10 carbon atoms, wherein such alkyl, or aryl group may be unsubstituted or may be substituted, e.g., with halo, hydroxy, trifluoromethyl, cyano, nitro, acyl, acyloxy, alkoxy, carboxyl, carboalkoxy, or amino groups. Examples of such 2'-O-substituted ribonucleosides include, without limitation 2'-O-methylribonucleosides and 2'-O-methoxyethylribonucleosides.

The term "2'-substituted ribonucleoside" also includes ribonucleosides in which the 2'-hydroxyl group is replaced with a lower alkyl group containing 1-6 saturated or unsaturated carbon atoms, or with an amino or halo group. Examples of such 2'-substituted ribonucleosides include, without limitation, 2'-amino, 2'-fluoro, 2'-allyl, and 2'-propargyl ribonucleosides.

The term "oligonucleotide" includes hybrid and chimeric oligonucleotides. A

"chimeric oligonucleotide" is an oligonucleotide having more than one type of internucleoside linkage. One preferred example of such a chimeric oligonucleotide is a chimeric oligonucleotide comprising a phosphorothioate, phosphodiester or phosphorodithioate region and non-ionic linkages such as alkylphosphonate or alkylphosphonothioate linkages (see e.g., Pederson et al. U.S. Patent Nos. 5,635,377 and 5,366,878).

A "hybrid oligonucleotide" is an oligonucleotide having more than one type of nucleoside. One preferred example of such a hybrid oligonucleotide comprises a ribonucleotide or 2'-substituted ribonucleotide region, and a deoxyribonucleotide region (see, e.g., Metelev and Agrawal, U.S. Patent No. 5,652,355, 6,346,614 and 6,143,881).

For puφoses of the invention, the term "immunostimulatory oligonucleotide" refers to an oligonucleotide as described above that induces an immune response when administered to a vertebrate, such as a fish, fowl, or mammal. As used herein, the term "mammal" includes, without limitation rats, mice, cats, dogs, horses, cattle, cows, pigs, rabbits, non-human primates, and humans. Useful immunostimulatory oligonucleotides can be found described in Agrawal et al., WO 98/49288, published November 5, 1998; WO 01/12804, published February 22, 2001; WO 01/55370, published August 2, 2001 ; PCT/US01/13682, filed April 30, 2001 ; and PCT/US01/30137, filed September 26, 2001. Preferably, the immunostimulatory oligonucleotide comprises at least one phosphodiester, phosphorothioate, or phosphordithioate internucleoside linkage.

In some embodiments, the immunostimulatory oligonucleotide comprises an immunostimulatory dinucleotide of formula 5'-Pyr-Pur-3', wherein Pyr is a natural or synthetic pyrimidine nucleoside and Pur is a natural or synthetic purine nucleoside. As used herein, the term "pyrimidine nucleoside" refers to a nucleoside wherein the base component of the nucleoside is a pyrimidine base. Similarly, the term "purine nucleoside" refers to a nucleoside wherein the base component of the nucleoside is a purine base. For puφoses of the invention, a "synthetic" pyrimidine or purine nucleoside includes a non-naturally occurring pyrimidine or purine base, a non- naturally occurring sugar moiety, or a combination thereof.

Preferred pyrimidine nucleosides according to the invention have the structure (/):

Figure imgf000017_0001
wherein:

D is a hydrogen bond donor;

D' is selected from the group consisting of hydrogen, hydrogen bond donor, hydrogen bond acceptor, hydrophilic group, hydrophobic group, electron withdrawing group and electron donating group;

A is a hydrogen bond acceptor or a hydrophilic group;

A' is selected from the group consisting of hydrogen bond acceptor, hydrophilic group, hydrophobic group, electron withdrawing group and electron donating group;

X is carbon or nitrogen; and

S1 is a pentose or hexose sugar ring, or a non-naturally occurring sugar.

Preferably, the sugar ring is derivatized with a phosphate moiety, modified phosphate moiety, or other linker moiety suitable for linking the pyrimidine nucleoside to another nucleoside or nucleoside analog.

Preferred hydrogen bond donors include, without limitation, -NH-, -NH2, -SH and -OH. Preferred hydrogen bond acceptors include, without limitation, C=O, C=S, and the ring nitrogen atoms of an aromatic heterocycle, e.g., N3 of cytosine.

In some embodiments, the base moiety in (7) is a non-naturally occurring pyrimidine base. Examples of preferred non-naturally occurring pyrimidine bases include, without limitation, 5-hydroxycytosine, 5-hydroxymethylcytosine,

N4-alkylcytosine, preferably N4-ethylcytosine, and 4-thiouracil. However, in some embodiments 5-bromocytosine is specifically excluded.

In some embodiments, the sugar moiety S' in (I) is a non-naturally occurring sugar moiety. For puφoses of the present invention, a "naturally occurring sugar moiety" is a sugar moiety that occurs naturally as part of nucleic acid, e.g., ribose and 2'-deoxyribose, and a "non-naturally occurring sugar moiety" is any sugar that does not occur naturally as part of a nucleic acid, but which can be used in the backbone for an oligonucleotide, e.g, hexose. Arabinose and arabinose derivatives are examples of a preferred sugar moieties.

Preferred purine nucleoside analogs according to the invention have the structure (II):

Figure imgf000019_0001

wherein:

D is a hydrogen bond donor;

D' is selected from the group consisting of hydrogen, hydrogen bond donor, and hydrophilic group;

A is a hydrogen bond acceptor or a hydrophilic group;

X is carbon or nitrogen;

each L is independently selected from the group consisting of C, O, N and S; and

S1 is a pentose or hexose sugar ring, or a non-naturally occurring sugar. Preferably, the sugar ring is derivatized with a phosphate moiety, modified phosphate moiety, or other linker moiety suitable for linking the pyrimidine nucleoside to another nucleoside or nucleoside analog.

Preferred hydrogen bond donors include, without limitation, -NH-, -NH2, -SH and -OH. Preferred hydrogen bond acceptors include, without limitation, C=O, C=S, -NO2 and the ring nitrogen atoms of an aromatic heterocycle, e.g., Nl of guanine.

In some embodiments, the base moiety in (II) is a non-naturally occurring purine base. Examples of preferred non-naturally occurring purine bases include, without limitation, 6-thioguanine and 7-deazaguanine. In some embodiments, the sugar moiety S1 in (II) is a naturally occurring sugar moiety, as described above for structure (I).

In preferred embodiments, the immunostimulatory dinucleotide is selected from the group consisting of CpG, C*pG, CpG*, and C*pG*, wherein C is cytidine or 2'-deoxycytidine, C* is 2'-deoxythymidine, arabinocytidine, 2'-deoxythymidine, 2'- deoxy-2'-substitutedarabinocytidine, 2'-O-substitutedarabinocytidine, 2'-deoxy-5- hydroxycytidine, 2'-deoxy-N4-alkyl-cytidine, 2'-deoxy-4-thiouridine or other non- natural pyrimidine nucleoside, G is guanosine or 2'-deoxyguanosine, G* is 2' deoxy- 7-deazaguanosine, 2'-deoxy-6-thioguanosine, arabinoguanosine, 2'-deoxy- 2'substituted-arabinoguanosine, 2'-O-substituted-arabinoguanosine, 2'-deoxyinosine, or other non-natural purine nucleoside, and p is an internucleoside linkage selected from the group consisting of phosphodiester, phosphorothioate, and phosphorodithioate. In certain preferred embodiments, the immunostimulatory dinucleotide is not CpG.

The immunostimulatory oligonucleotides may include immunostimulatory moieties on one or both sides of the immunostimulatory dinucleotide. Thus, in some embodiments, the immunostimulatory oligonucleotide comprises in immunostimulatory domain of structure (III): 5'-Nn-Nl-Y-Z-NI-Nn-3' (III)

wherein:

Y is cytidine, 2'deoxythymidine, 2' deoxycytidine arabinocytidine, 2'-deoxy- 2'-substitutedarabinocytidine, 2'-deoxythymidine, 2'-O-substitutedarabinocytidine, 2'-deoxy-5-hydroxycytidine, 2'-deoxy-N4-alkyl-cytidine, 2'-deoxy-4-thiouridine or other non-natural pyrimidine nucleoside;

Z is guanosine or 2'-deoxyguanosine, G* is 2' deoxy-7-deazaguanosine, 2'- deoxy-6-thioguanosine, arabinoguanosine, 2'-deoxy-2'substituted-arabinoguanosine, 2'-O-substituted-arabinoguanosine, 2'deoxyinosine, or other non-natural purine nucleoside;

N I, at each occurrence, is preferably a naturally occurring or a synthetic nucleoside or an immunostimulatory moiety selected from the group consisting of abasic nucleosides, arabinonucleosides, 2'-deoxyuridine, α-deoxyribonucleosides, β-L-deoxyribonucleosides, and nucleosides linked by a phosphodiester or modified internucleoside linkage to the adjacent nucleoside on the 3' side, the modified internucleotide linkage being selected from, without limitation, a linker having a length of from about 2 angstroms to about 200 angstroms, C2-C 18 alkyl linker, poly(ethylene glycol) linker, 2-aminobutyl-l,3-propanediol linker, glyceryl linker, 21- 5' internucleoside linkage, and phosphorothioate, phosphorodithioate, or methylphosphonate internucleoside linkage;

Nn, at each occurrence, is preferably a naturally occurring nucleoside or an immunostimulatory moiety selected from the group consisting of abasic nucleosides, arabinonucleosides, 2'-deoxyuridine, α-deoxyribonucleosides, 2'-O-substituted ribonucleosides, and nucleosides linked by a modified internucleoside linkage to the adjacent nucleoside on the 3' side, the modified internucleotide linkage preferably being selected from the group consisting of amino linker, 2'-5' internucleoside linkage, and methylphosphonate internucleoside linkage; provided that at least one N 1 or Nn is an immunostimulatory moiety;

wherein n is a number from 0 to 30; and

wherein the 3'end, an internucleoside linker, or a derivatized nucleobase or sugar is linked directly or via a non-nucleotidic linker to another oligonucleotide, which may or may not be immunostimulatory.

In some preferred embodiments, YZ is arabinocytidine or 2'-deoxy-2'- substituted arabinocytidine and arabinoguanosine or 2'deoxy-2'-substituted arabinoguanosine. Preferred immunostimulatory moieties include modifications in the phosphate backbones, including, without limitation, methylphosphonates, methylphosphonothioates, phosphotnesters, phosphothiotriesters, phosphorothioates, phosphorodithioates, triester prodrugs, sulfones, sulfonamides, sulfamates, formacetal, N-methylhydroxylamine, carbonate, carbamate, morpholino, boranophosphonate, phosphoramidates, especially primary amino-phosphoramidates, N3 phosphoramidates and N5 phosphoramidates, and stereospecific linkages (e.g., (Rp)- or (S/ -phosphorothioate, alkylphosphonate, or phosphotriester linkages).

Preferred immunostimulatory moieties according to the invention further include nucleosides having sugar modifications, including, without limitation, 2' -substituted pentose sugars including, without limitation, 2'-O-methylribose, 2'-O-methoxyethylribose, 2'-O-propargylribose, and 2'-deoxy-2'-fluororibose; 3 '-substituted pentose sugars, including, without limitation, 3'-O-methylribose; ,2'-dideoxyribose; arabinose; substituted arabinose sugars, including, without limitation, 1 '-methylarabinose, 3'-hydroxymethyIarabinose, 4'-hydroxymethyl- arabinose, and 2 '-substituted arabinose sugars; hexose sugars, including, without limitation, 1,5-anhydrohexitol; and alpha-anomers. In embodiments in which the modified sugar is a 3'-deoxyribonucleoside or a 3'-O-substituted ribonucleoside, the immunostimulatory moiety is attached to the adjacent nucleoside by way of a 2'-5' internucleoside linkage. Preferred immunostimulatory moieties according to the invention further include oligonucleotides having other carbohydrate backbone modifications and replacements, including peptide nucleic acids (PNA), peptide nucleic acids with phosphate groups (PHONA), locked nucleic acids (LNA), morpholino backbone oligonucleotides, and oligonucleotides having backbone linker sections having a length of from about 2 angstroms to about 200 angstroms, including without limitation, alkyl linkers or amino linkers. The alkyl linker may be branched or unbranched, substituted or unsubstituted, and chirally pure or a racemic mixture. Most preferably, such alkyl linkers have from about 2 to about 18 carbon atoms. In some preferred embodiments such alkyl linkers have from about 3 to about 9 carbon atoms. Some alkyl linkers include one or more functional groups selected from the group consisting of hydroxy, amino, thiol, thioether, ether, amide, thioamide, ester, urea, and thioether. Some such functionalized alkyl linkers are polyethylene glycol) linkers of formula -O-(CH2-CH2-O-)n (n = 1 -9). Some other functionalized alkyl linkers are peptides or amino acids.

Preferred immunostimulatory moieties according to the invention further include DNA isoforms, including, without limitation, β-L-deoxyribonucleosides and α-deoxyribonucleosides. Preferred immunostimulatory moieties according to the invention incoφorate 3' modifications, and further include nucleosides having unnatural internucleoside linkage positions, including, without limitation, 2'-5', 2'-2', 3'-3' and 5'-5' linkages.

Preferred immunostimulatory moieties according to the invention further include nucleosides having modified heterocyclic bases, including, without limitation, 5-hydroxycytosine, 5-hydroxymethylcytosine, N4-alkylcytosine, preferably N4-ethylcytosine, 4-thiouracil, 6-thioguanine, 7-deazaguanine, inosine, nitropyrrole, C5-propynylpyrimidine, and diaminopurines, including, without limitation, 2,6-diaminopurine. By way of specific illustration and not by way of limitation, for example, in the immunostimulatory domain of structure (III), a methylphosphonate internucleoside linkage at position N I or Nn is an immunostimulatory moiety, a linker having a length of from about 2 angstroms to about 200 angstroms, C2-C 18 alkyl linker at position XI is an immunostimulatory moiety, and a β-L-deoxyribonucleoside at position XI is an immunostimulatory moiety. See Table I below for representative positions and structures of immunostimulatory moieties. It is to be understood that reference to a linker as the immunostimulatory moiety at a specified position means that the nucleoside residue at that position is substituted at its 3'-hydroxyl with the indicated linker, thereby creating a modified internucleoside linkage between that nucleoside residue and the adjacent nucleoside on the 3' side. Similarly, reference to a modified internucleoside linkage as the immunostimulatory moiety at a specified position means that the nucleoside residue at that position is linked to the adjacent nucleoside on the 3' side by way of the recited linkage.

Table 1

Figure imgf000024_0001

Table 2 shows representative positions and structures of immunostimulatory moieties within an immunostimulatory oligonucleotide having an upstream potentiation domain. As used herein, the term "Spacer 9" refers to a poly(ethylene glycol) linker of formula -O-(CH2CH2-O)n-, wherein n is 3. The term "Spacer 18" refers to a poly(ethylene glycol) linker of formula -O-(CH2CH2-O)n-, wherein n is 6. As used herein, the term "C2-C 18 alkyl linker refers to a linker of formula -O-(CH2VO-, where q is an integer from 2 to 18. Accordingly, the terms "C3-linker" and "C3-alkyl linker" refer to a linker of formula -O-(CH2)3-O-. For each of Spacer 9, Spacer 18, and C2-C 18 alkyl linker, the linker is connected to the adjacent nucleosides by way of phosphodiester, phosphorothioate, or phosphorodithioate linkages.

Table 2

Figure imgf000025_0001

Table 3 shows representative positions and structures of immunostimulatory moieties within an immunostimulatory oligonucleotide having a downstream potentiation domain.

Table 3

Figure imgf000026_0001

The immunomers according to the invention comprise at least two oligonucleotides linked at their 3' ends or internucleoside linkage or a functionalized nucleobase or sugar via a non-nucleotidic linker. For puφoses of the invention, a "non-nucleotidic linker" is any moiety that can be linked to the oligonucleotides by way of covalent or non-covalent linkages. Preferably such linker is from about 2 angstroms to about 200 angstroms in length. Several examples of preferred linkers are set forth below. Non-covalent linkages include, but are not limited to, electrostatic interaction, hydrophobic interactions, π-stacking interactions, and hydrogen bonding. The term "non-nucleotidic linker" is not meant to refer to an internucleoside linkage, as described above, e.g., a phosphodiester, phosphorothioate, or phosphorodithioate functional group, that directly connects the 3'-hydroxyl groups of two nucleosides. For puφoses of this invention, such a direct 3'-3' linkage is considered to be a "nucleotidic linkage."

In some embodiments, the non-nucleotidic linker is a metal, including, without limitation, gold particles. In some other embodiments, the non-nucleotidic linker is a soluble or insoluble biodegradable polymer bead.

In yet other embodiments, the non-nucleotidic linker is an organic moiety having functional groups that permit attachment to the oligonucleotide. Such attachment preferably is by any stable covalent linkage. As a non-limiting example, the linker may be attached to any suitable position on the nucleoside, as illustrated in Figure 13. In some preferred embodiments, the linker is attached to the 3'-hydroxyl. In such embodiments, the linker preferably comprises a hydroxyl functional group, which preferably is attached to the 3'-hydroxyl by means of a phosphodiester, phosphorothioate, phosphorodithioate or non-phosphate-based linkages.

In some embodiments, the non-nucleotidic linker is a biomolecule, including, without limitation, polypeptides, antibodies, lipids, antigens, allergens, and oligosaccharides. In some other embodiments, the non-nucleotidic linker is a small molecule. For puφoses of the invention, a small molecule is an organic moiety having a molecular weight of less than 1 ,000 Da. In some embodiments, the small molecule has a molecular weight of less than 750 Da.

In some embodiments, the small molecule is an aliphatic or aromatic hydrocarbon, either of which optionally can include, either in the linear chain connecting the oligonucleotides or appended to it, one or more functional groups selected from the group consisting of hydroxy, amino, thiol, thioether, ether, amide, thioamide, ester, urea, and thiourea. The small molecule can be cyclic or acyclic. Examples of small molecule linkers include, but are not limited to, amino acids, carbohydrates, cyclodextrins, adamantane, cholesterol, haptens and antibiotics. However, for puφoses of describing the non-nucleotidic linker, the term "small molecule" is not intended to include a nucleoside.

In some embodiments, the small molecule linker is glycerol or a glycerol homolog of the formula HO-(CH2)0-CH(OH)-(CH2)p-OH, wherein o and/? independently are integers from I to about 6, from I to about 4, or from 1 to about 3. In some other embodiments, the small molecule linker is a derivative of 1 ,3-diamino- 2-hydroxypropane. Some such derivatives have the formula

HO-(CH2)m-C(O)NH-CH2-CH(OH)-CH2-NHC(O)-(CH2VOH, wherein m is an integer from 0 to about 10, from 0 to about 6, from 2 to about 6, or from 2 to about 4. Some non-nucleotidic linkers according to the invention permit attachment of more than two oligonucleotides, as schematically depicted in Figure 1. For example, the small molecule linker glycerol has three hydroxyl groups to which oligonucleotides may be covalently attached. Some immunomers according to the invention, therefore, comprise more than two oligonucleotides linked at their 3' ends to a non-nucleotidic linker. Some such immunomers comprise at least two immunostimulatory oligonucleotides, each having an accessible 5' end.

The immunomers of the invention may conveniently be synthesized using an automated synthesizer and phosphoramidite approach as schematically depicted in Figures 5 and 6, and further described in the Examples. In some embodiments, the immunomers are synthesized by a linear synthesis approach (see Figure 5). As used herein, the term "linear synthesis" refers to a synthesis that starts at one end of the immunomer and progresses linearly to the other end. Linear synthesis permits incoφoration of either identical or un-identical (in terms of length, base composition and/or chemical modifications incoφorated) monomeric units into the immunomers.

An alternative mode of synthesis is "parallel synthesis", in which synthesis proceeds outward from a central linker moiety (see Figure 6). A solid support attached linker can be used for parallel synthesis, as is described in U.S. Patent No. 5,912,332. Alternatively, a universal solid support (such as phosphate attached controlled pore glass support can be used.

Parallel synthesis of immunomers has several advantages over linear synthesis: (I) parallel synthesis permits the incoφoration of identical monomeric units; (2) unlike in linear synthesis, both (or all) the monomeric units are synthesized at the same time, thereby the number of synthetic steps and the time required for the synthesis is the same as that of a monomeric unit; and (3) the reduction in synthetic steps improves purity and yield of the final immunomer product.

At the end of the synthesis by either linear synthesis or parallel synthesis protocols, the immunomers may conveniently be deprotected with concentrated ammonia solution or as recommended by the phosphoramidite supplier, if a modified nucleoside is incorporated. The product immunomer is preferably purified by reversed phase HPLC, detritylated, desalted and dialyzed.

Table 4 shows representative immunomers according to the invention. Additional immunomers are found described in the Examples.

Table 4. Examples of Immunomer Sequences

Figure imgf000029_0001

Figure imgf000030_0002

NHCOC4H8-

= Symmetric longer branches; = Symmetric glycerol (short) branches NHCOC4H8-

Figure imgf000030_0001

L = C3-alkyl linker; X = 1',2'-dideoxyriboside; Y = 50H dC; R = 7-deaza-dG

In a second aspect, the invention provides immunomer conjugates, comprising an immunomer, as described above, and an antigen conjugated to the immunomer at a position other than the accessible 5' end. In some embodiments, the non-nucleotidic linker comprises an antigen, which is conjugated to the oligonucleotide. In some other embodiments, the antigen is conjugated to the oligonucleotide at a position other than its 3' end. In some embodiments, the antigen produces a vaccine effect.

The antigen is preferably selected from the group consisting of antigens associated with a pathogen, antigens associated with a cancer, antigens associated with an auto-immune disorder, and antigens associated with other diseases such as, but not limited to, veterinary or pediatric diseases. For purposes of the invention, the term "associated with" means that the antigen is present when the pathogen, cancer, auto-immune disorder, food allergy, respiratory allergy, asthma or other disease is present, but either is not present, or is present in reduced amounts, when the pathogen, cancer, auto-immune disorder, food allergy, respiratory allergy, or disease is absent. The immunomer is covalently linked to the antigen, or it is otherwise operatively associated with the antigen. As used herein, the term "operatively associated with" refers to any association that maintains the activity of both immunomer and antigen. Nonlimiting examples of such operative associations include being part of the same liposome or other such delivery vehicle or reagent. In embodiments wherein the immunomer is covalently linked to the antigen, such covalent linkage preferably is at any position on the immunomer other than an accessible 5' end of an immunostimulatory oligonucleotide. For example, the antigen may be attached at an internucleoside linkage or may be attached to the non- nucleotidic linker. Alternatively, the antigen may itself be the non-nucleotidic linker.

In a third aspect, the invention provides pharmaceutical formulations comprising an immunomer or immunomer conjugate according to the invention and a physiologically acceptable carrier. As used herein, the term "physiologically acceptable" refers to a material that does not interfere with the effectiveness of the immunomer and is compatible with a biological system such as a cell, cell culture, tissue, or organism. Preferably, the biological system is a living organism, such as a vertebrate.

As used herein, the term "carrier" encompasses any excipient, diluent, filler, salt, buffer, stabilizer, solubilizer, lipid, or other material well known in the art for use in pharmaceutical formulations. It will be understood that the characteristics of the carrier, excipient, or diluent will depend on the route of administration for a particular application. The preparation of pharmaceutically acceptable formulations containing these materials is described in, e.g., Remington 's Pharmaceutical Sciences, 18th Edition, ed. A. Gennaro, Mack Publishing Co., Easton, PA, 1990.

In a fourth aspect, the invention provides methods for generating an immune response in a vertebrate, such methods comprising administering to the vertebrate an immunomer or immunomer conjugate according to the invention. In some embodiments, the vertebrate is a mammal. For puφoses of this invention, the term "mammal" is expressly intended to include humans. In preferred embodiments, the immunomer or immunomer conjugate is administered to a vertebrate in need of immunostimulation.

In the methods according to this aspect of the invention, administration of immunomers can be by any suitable route, including, without limitation, parenteral, oral, sublingual, transdermal, topical, intranasal, aerosol, intraocular, intratracheal, intrarectal, vaginal, by gene gun, dermal patch or in eye drop or mouthwash form. Administration of the therapeutic compositions of immunomers can be carried out using known procedures at dosages and for periods of time effective to reduce symptoms or surrogate markers of the disease. When administered systemically, the therapeutic composition is preferably administered at a sufficient dosage to attain a blood level of immunomer from about 0.0001 micromolar to about 10 micromolar. For localized administration, much lower concentrations than this may be effective, and much higher concentrations may be tolerated. Preferably, a total dosage of immunomer ranges from about 0.001 mg per patient per day to about 200 mg per kg body weight per day. It may be desirable to administer simultaneously, or sequentially a therapeutical ly effective amount of one or more of the therapeutic compositions of the invention to an individual as a single treatment episode.

In certain preferred embodiments, immunomers according to the invention are administered in combination with vaccines, antibodies, cytotoxic agents, allergens, antibiotics, antisense oligonucleotides, peptides, proteins, gene therapy vectors, DNA vaccines and/or adjuvants to enhance the specificity or magnitude of the immune response. In these embodiments, the immunomers of the invention can variously act as adjuvants and/or produce direct immunostimulatory effects.

Either the immunomer or the vaccine, or both, may optionally be linked to an immunogenic protein, such as keyhole limpet hemocyanin (KLH), cholera toxin B subunit, or any other immunogenic carrier protein. Any of the plethora of adjuvants may be used including, without limitation, Freund's complete adjuvant, KLH, monophosphoryl lipid A (MPL), alum, and saponins, including QS-21, imiquimod, R848, or combinations thereof.

For puφoses of this aspect of the invention, the term "in combination with" means in the course of treating the same disease in the same patient, and includes administering the immunomer and/or the vaccine and/or the adjuvant in any order, including simultaneous administration, as well as temporally spaced order of up to several days apart. Such combination treatment may also include more than a single administration of the immunomer, and/or independently the vaccine, and/or independently the adjuvant. The administration of the immunomer and/or vaccine and/or adjuvant may be by the same or different routes.

The methods according to this aspect of the invention are useful for model studies of the immune system. The methods are also useful for the prophylactic or therapeutic treatment of human or animal disease. For example, the methods are useful for pediatric and veterinary vaccine applications.

In a fifth aspect, the invention provides methods for therapeutical ly treating a patient having a disease or disorder, such methods comprising administering to the patient an immunomer or immunomer conjugate according to the invention. In various embodiments, the disease or disorder to be treated is cancer, an autoimmune disorder, airway inflammation, inflammatory disorders, allergy, asthma or a disease caused by a pathogen. Pathogens include bacteria, parasites, fungi, viruses, viroids and prions. Administration is carried out as described for the fourth aspect of the invention.

For puφoses of the invention, the term "allergy" includes, without limitation, food allergies and respiratory allergies. The term "airway inflammation" includes, without limitation, asthma. As used herein, the term "autoimmune disorder" refers to disorders in which "self proteins undergo attack by the immune system. Such term includes autoimmune asthma. In any of the methods according to this aspect of the invention, the immunomer or immunomer conjugate can be administered in combination with any other agent useful for treating the disease or condition that does not diminish the immunostimulatory effect of the immunomer. For example, in the treatment of cancer, it is contemplated that the immunomer or immunomer conjugate may be administered in combination with a chemotherapeutic compound.

The examples below are intended to further illustrate certain preferred embodiments of the invention, and are not intended to limit the scope of the invention.

EXAMPLES

Example 1: Synthesis of Oligonucleotides Containing Immunomodulatory Moieties

Oligonucleotides were synthesized on a 1 μmol scale using an automated DNA synthesizer (Expedite 8909; PerSeptive Biosystems, Framingham, MA), following the linear synthesis or parallel synthesis procedures outlined in Figures 5 and 6.

Deoxyribonucleoside phosphoramidites were obtained from Applied Biosystems (Foster City, CA). 1 ',2'-dideoxyribose phosphoramidite, propyl- 1 - phosphoramidite, 2-deoxyuridine phosphoramidite, 1 ,3-bis-[5-(4,4'- dimethoxytrityl)pentylamidyl]-2-propanol phosphoramidite and methyl phosponamidite were obtained from Glen Research (Sterling, VA). β-L-2'- deoxyribonucleoside phosphoramidite, α-2'-deoxyribonucleoside phosphoramidite, mono-DMT-glycerol phosphoramidite and di-DMT-glycerol phosphoramidite were obtained from ChemGenes (Ashland, MA). (4-Aminobutyl)-l,3-propanediol phosphoramidite was obtained from Clontech (Palo Alto, CA). Arabinocytidine phosphoramidite, arabinoguanosine, arabinothymidine and arabinouridine were obtained from Reliable Pharmaceutical (St. Louis, MO). Arabinoguanosine phosphoramidite, arabinothymidine phosphoramidite and arabinouridine phosphoramidite were synthesized at Hybridon, Inc. (Cambridge, MA) (Noronha et al. (2000) Biochem., 39:7050-7062).

All nucleoside phosphoramidites were characterized by 3,P and Η NMR spectra. Modified nucleosides were incoφorated at specific sites using normal coupling cycles. After synthesis, oligonucleotides were deprotected using concentrated ammonium hydroxide and purified by reverse phase HPLC, followed by dialysis. Purified oligonucleotides as sodium salt form were lyophilized prior to use. Purity was tested by CGE and MALDI-TOF MS.

Example 2: Analysis of Spleen Cell Proliferation

In vitro analysis of splenocyte proliferation was carried out using standard procedures as described previously (see, e.g., Zhao et al., Biochem Pharma 51 : 173- 182 (1996)). The results are shown in Figure 8A. These results demonstrate that at the higher concentrations, Immunomer 6, having two accessible 5' ends results in greater splenocyte proliferation than does Immunomer 5, having no accessible 5' end or Oligonucleotide 4, with a single accessible 5' end. Immunomer 6 also causes greater splenocyte proliferation than the LPS positive control.

Example 3: In vivo Splenomegaly Assays

To test the applicability of the in vitro results to an in vivo model, selected oligonucleotides were administered to mice and the degree of splenomegaly was measured as an indicator of the level of immunostimulatory activity. A single dose of 5 mg/kg was administered to BALB/c mice (female, 4-6 weeks old, Harlan Sprague Dawley Inc, Baltic, CT) intraperitoneally. The mice were sacrificed 72 hours after oligonucleotide administration, and spleens were harvested and weighed. The results are shown in Figure 8B. These results demonstrate that Immunomer 6, having two accessible 5' ends, has a far greater immunostimulatory effect than do Oligonucleotide 4 or Immunomer 5. Example 4: Cytokine Analysis

The secretion of IL-12 and IL-6 in vertebrate cells, preferably BALB/c mouse spleen cells or human PBMC, was measured by sandwich ELISA. The required reagents including cytokine antibodies and cytokine standards were purchased form PharMingen, San Diego, CA. ELISA plates (Costar) were incubated with appropriate antibodies at 5 μg/mL in PBSN buffer (PBS/0.05% sodium azide, pH 9.6) overnight at 4°C and then blocked with PBS/1% BSA at 37 °C for 30 minutes. Cell culture supernatants and cytokine standards were appropriately diluted with PBS/ 10% FBS, added to the plates in triplicate, and incubated at 25 °C for 2 hours. Plates were overlaid with I μg/mL appropriate biotinylated antibody and incubated at 25 °C for 1.5 hours. The plates were then washed extensively with PBS-T Buffer (PBS/0.05% Tween 20) and further incubated at 25 °C for 1.5 hours after adding streptavidin conjugated peroxidase (Sigma, St. Louis, MO). The plates were developed with Sure Blue™ (Kirkegaard and Perry) chromogenic reagent and the reaction was terminated by adding Stop Solution (Kirkegaard and Perry). The color change was measured on a Ceres 900 HD1 Spectrophotometer (Bio-Tek Instruments). The results are shown in Table 5A below.

Human peripheral blood mononuclear cells (PBMCs) were isolated from peripheral blood of healthy volunteers by Ficoll-Paque density gradient centrifugation (Histopaque-1077, Sigma, St. Louis, MO). Briefly, heparinized blood was layered onto the Histopaque-1077 (equal volume) in a conical centrifuge and centrifuged at 400 x g for 30 minutes at room temperature. The buffy coat, containing the mononuclear cells, was removed carefully and washed twice with isotonic phosphate buffered saline (PBS) by centrifugation at 250 x g for 10 minutes. The resulting cell pellet was then resuspended in RPMI 1640 medium containing L-glutamine

(MediaTech, Inc., Herndon, VA) and supplemented with 10% heat inactivated FCS and penicillin-streptomycin (lOOU/ml). Cells were cultured in 24 well plates for different time periods at I X 106 cells/ml/well in the presence or absence of oligonucleotides. At the end of the incubation period, supernatants were harvested and stored frozen at -70 °C until assayed for various cytokines including IL-6 (BD Pharmingen, San Diego, CA), IL-10 (BD Pharmingen), IL-12 (BioSource International, Camarillo, CA), IFN-α (BioSource International) and -γ (BD Pharmingen) and TNF-α (BD Pharmingen) by sandwich ELISA. The results are shown in Table 5 below.

In all instances, the levels of IL-12 and IL-6 in the cell culture supernatants were calculated from the standard curve constructed under the same experimental conditions for IL-12 and IL-6, respectively. The levels of IL-10, IFN-gamma and TNF-α in the cell culture supernatants were calculated from the standard curve constructed under the same experimental conditions for IL-10, IFN-gamma and TNF- α, respectively.

Table 5. Immunomer Structure and Immunostimulatory Activity in Human PBMC Cultures

Figure imgf000037_0001

Figure imgf000037_0002

Oligo Sequences and Modification (5'-3') Oligo Length/ TNF-α(pg/mL) No. or Each Chain D1 D2

25 5'-CTATCTGTCGTTCTCTGT-3' 18mer (PS) 537 nt

26 S'-TCTGTCRiTTCT-S' 11mer (PS) 681 nt

Xi δ'-TCTGTCRiTTCT-S'

D1 and D2 are donors 1 and 2. Table 5A. Immunomer Structure and Immunostimulatory Activity in BALB/c Mouse Spleen Cell Cultures

Figure imgf000038_0001

Normal phase represents a phosphorothioate linkage; Italic phase represents a phosphodiester linkage.

Figure imgf000039_0001

Figure imgf000039_0002

In addition, the results shown in Figures 7A-C demonstrate that Oligonucleotide 2, with two accessible 5' ends elevates IL-12 and IL-6, but not IL-10 at lower concentrations than Oligonucleotides 1 or 3, with one or zero accessible 5' ends, respectively. Example 5: Effect of Chain Length on Immunostimulatory Activity of Immunomers

In order to study the effect of length of the oligonucleotide chains, immunomers containing 18, 14, 1 1, and 8 nucleotides in each chain were synthesized and tested for immunostimulatory activity, as measured by their ability to induce secretion of the cytokines IL-12 and IL-6 in BALB/c mouse spleen cell cultures (Tables 6-8). In this, and all subsequent examples, cytokine assays were carried out in BALB/c spleen cell cultures as described in Example 4.

Table 6. Immunomer Structure and Immunostimulatory Activity

Figure imgf000040_0001

Table 7. Immunomer Structure and Immunostimulatory Activity

Figure imgf000041_0001

Table 8. Immunomer Structure and Immunostimulatory Activity

Figure imgf000042_0001

The results suggest that the immunostimulatory activity of immunomers increased as the length of the oligonucleotide chains is decreased from 18-mers to 7-tners. Immunomers having oligonucleotide chain lengths as short as 6-mers or 5-mers showed immunostimulatory activity comparable to that of the 18-mer oligonucleotide with a single 5' end. However, immunomers having oligonucleotide chain lengths as short as 6-mers or 5-mers have increased immunostimulatory activity when the linker is in the length of from about 2 angstroms to about 200 angstroms.

Example 6: Immunostimulatory Activity of Immunomers Containing A Non- Natural Pyrimidine or Non-Natural Purine Nucleoside

As shown in Tables 9-1 1, immunostimulatory activity was maintained for immunomers of various lengths having a non-natural pyrimidine nucleoside or non- natural purine nucleoside in the immunostimulatory dinucleotide motif.

Table 9. Immunomer Structure and Immunostimulatory Activity

Figure imgf000043_0002

Figure imgf000043_0001

Table 10. Immunomer Structure and Immunostimulatory Activity

Figure imgf000044_0002

Figure imgf000044_0001

Table 11. Immunomer Structure and Immunostimulatory Activity

Figure imgf000045_0002

Figure imgf000045_0001

Example 7: Effect of the Linker on Immunostimulatory Activity

In order to examine the effect of the length of the linker connecting the two oligonucleotides, immunomers that contained the same oligonucleotides, but different linkers were synthesized and tested for immunostimulatory activity. The results shown in Table 12 suggest that linker length plays a role in the immunostimulatory activity of immunomers. The best immunostimulatory effect was achieved with C3- to C6-alkyl linkers or abasic linkers having interspersed phosphate charges.

Table 12. Immunomer Structure and Immunostimulatory Activity

Figure imgf000047_0002

Figure imgf000047_0001
Example 8: Effect of Oligonucleotide Backbone on Immunostimulatory Activity

In general, immunostimulatory oligonucleotides that contain natural phosphodiester backbones are less immunostimulatory than are the same length oligonucleotides with a phosphorothioate backbones. This lower degree of immunostimulatory activity could be due in part to the rapid degradation of phosphodiester oligonucleotides under experimental conditions. Degradation of oligonucleotides is primarily the result of 3'-exonuc leases, which digest the oligonucleotides from the 3' end. The immunomers of this example do not contain a free 3' end. Thus, immunomers with phosphodiester backbones should have a longer half life under experimental conditions than the corresponding monomeric oligonucleotides, and should therefore exhibit improved immunostimulatory activity. The results presented in Table 13 demonstrate this effect, with Immunomers 84 and 85 exhibiting immunostimulatory activity as determined by cytokine induction in BALB/c mouse spleen cell cultures.

Table 13. Immunomer Structure and Immunostimulatory Activity

Figure imgf000048_0001

L = C3-Linker

Example 9: Synthesis of Immunomers 73-92

Oligonucleotides were synthesized on I μmol scale using an automated DNA synthesizer (Expedite 8909 PerSeptive Biosystems). Deoxynucleoside phosphoramidites were obtained from Applied Biosystems (Foster City, CA). 7- Deaza-2'-deoxyguanosine phosphoramidite was obtained from Glen Research (Sterling Virginia). 1,3-Bis-DMT-glycerol-CPG was obtained from ChemGenes (Ashland, MA). Modified nucleosides were incoφorated into the oligonucleotides at specific site using normal coupling cycles. After the synthesis, oligonucleotides were deprotected using concentrated ammonium hydroxide and purified by reversed-phase HPLC, followed by dialysis. Purified oligonucleotides as sodium salt form were lyophilized prior to use. Purity of oligonucleotides was checked by CGE and MALDI- TOF MS (Bruker Proflex III MALDI-TOF Mass spectrometer).

Example 11

Immunomer Stability

Oligonucleotides were incubated in PBS containing 10% bovine serum at 37° C for 4, 24 or 48 hours. Intact oligonucleotide was determined by capillary gel electrophoresis. The results are shown in Table 14.

Table 14. Digestion of Oligonucleotides in 10 % Bovine Serum PBS Solution

Figure imgf000049_0001
Example 12: Effect of accessible 5' ends on immunostimulatory activity.

BALB/c mouse (4-8 weeks) spleen cells were cultured in RPMI complete medium. Murine macrophage-like cells, J774 (American Type Culture Collection, Rockville, MD) were cultured in Dulbecco's modified Eagle's medium supplemented with 10% (v/v) FCS and antibiotics (100 lU/mL of penicillin G/streptomycin). All other culture reagents were purchased from Mediatech (Gaithersburg, MD).

ELISAsfor IL-12 and IL-6. BALB/c mouse spleen or J774 cells were plated in 24-well dishes at a density of 5xl06 or lxlO6 cells/mL, respectively. The CpG DNA dissolved in TE buffer (10 mM Tris-HCI, pH 7.5, 1 mM EDTA) was added to a final concentration of 0.03, 0.1 , 0.3, 1.0, 3.0, or 10.0 μg/mL to mouse spleen cell cultures and 1.0, 3.0, or 10.0 μg/mL to J774 cell cultures. The cells were then incubated at 37 °C for 24 hr and the supernatants were collected for ELISA assays. The experiments were performed two or three times for each CpG DNA in triplicate for each concentration.

The secretion of IL-12 and IL-6 was measured by sandwich ELISA. The required reagents, including cytokine antibodies and standards were purchased from PharMingen. ELISA plates (Costar) were incubated with appropriate antibodies at 5 μg/mL in PBSN buffer (PBS/0.05% sodium azide, pH 9.6) overnight at 4 °C and then blocked with PBS/1% BSA at 37 °C for 30 min. Cell culture supernatants and cytokine standards were appropriately diluted with PBS/1% BSA, added to the plates in triplicate, and incubated at 25 °C for 2 hr. Plates were washed and incubated with 1 μg/mL of appropriate biotinylated antibody and incubated at 25 °C for 1.5 hr. The plates were washed extensively with PBS/0.05% Tween 20 and then further incubated at 25 °C for 1.5 hr after the addition of streptavidine-conjugated peroxidase (Sigma). The plates were developed with Sure Blue™ (Kirkegaard and Perry) chromogenic reagent and the reaction was terminated by adding Stop Solution (Kirkegaard and Perry). The color change was measured on a Ceres 900 HDI Spectrophotometer (Bio- Tek Instruments) at 450 nm. The levels of IL-12 and IL-6 in the cell culture supernatants were calculated from the standard curve constructed under the same experimental conditions for IL-12 and IL-6, respectively.

The results are shown in Table 15.

Table 15: Phosphorothioate CpG DNA sequences and modifications used in the study3

CpG Sequence Length 5 '-end 3 '-end

DNA #

89 S'-TCCATGACGTTCCTGATGCJ' 19-mer 1 1

90 5'-TCCATGACGTTCCTGATGC-3'-b 19-mer 1 blocked

91 5 '-TCC ATG ACGTTCCTG ATGC-3 '-3 '-g-5 ' 20-mer 2 blocked

92 5'-TCCATGACGTTCCTGATGC-3'-3'-h-5' 23-mer 2 blocked

93 5'-TCCATGACGTTCCTGATGC-3'-3'-i-5' 27-mer 2 blocked

94 5'-TCCATGACGTTCCTGATGC-3'-3'-j-5' 38-mer 2 blocked

95 b-5'-TCCATGACGTTCCTGATGC-3' 19-mer blocked 1

96 3'-c-5'-5'-TCCATGACGTTCCTGATGC-3' 20-mer blocked 2

97 3'-d-5'-5'-TX.CATGACGTTCCTGATGC-3' 23-mer blocked 2

98 3 '-e-5 '-5 '-TCCATG ACGTTCCTG ATGC-3 ' 27-mer blocked 2

99 3'-f-5'-5'-TCCATGACGTTCCTGATGC-3' 38-mer blocked 2

100 5 '-TCC ATG ACGTTCCTG ATGC-3 '-k 19-mer 1 blocked

101 l-5'-TCCATGACGTTCCTGATGC-3' 19-mer blocked 1

See Chart I for chemical structures b-l; 5'-CG-3' dinucleotide is shown underlined.

Chart 1

Figure imgf000052_0001

53 -

Table 16. Induction of IL-12 and IL-6 secretion by CpG DNA-conjugates in BALB/c mice spleen cell cultures

CpG IL-12 (pg/mL)±SD IL-6 (pg/mL)±SD

DNA#a 0.1μg/mL 0.3μgmL l.Oμg/mL 3.0μg/mL lO.Oμg/mL 0.1μg/mL 0.3μg/mL l.Oμg/mL 3.0μg/mL lO.Oμg/mL

89 991±121 1820±224 2391±175 3507±127 2615±279 652±48 2858±180 13320±960 18625±1504 17229±1750

90 526±32 2100±175 1499±191 3019±35 3489±I62 1387±152 1426±124 5420±370 19096±484 19381±2313

91 1030±11 1348±102 2060±130 3330±130 3582±259 923±22 2542±81 9054±120 14114±179 13693±264

92 1I19±159 1726±207 2434±100 2966±204 3215±464 870±146 1905±56 7841±350 17146±1246 15713±693

93 1175±68 2246±124 1812±75 2388±320 2545±202 1152±238 3499±116 7142±467 14064±167 13566±477

94 1087±121 1705±163 1797±14I 2522±195 3054±103 1039±105 2043±157 4848±288 15527±224 21021±1427

95 1173±107 2170±155 2132±58 2812±203 3689±94 807±0.5 927±0.5 3344±0.5 10233±0.5 9213±0.5

96 866±51 1564±63 1525±63 2666±97 4030±165 750±63 1643±30 5559±415 11549±251 11060±651

97 227±3 495±96 1007±68 897±15 1355±97 302±18 374±22 1000±68 9106±271 13077±381

98 139±18 211±12 452±22 458±29 1178±237 220±23 235±18 383±35 1706±33 11530±254

99 181±85 282±105 846±165 2082±185 3185±63 467±122 437±85 1697±283 9781±13 11213±294

Medium 86±6 60±12

: See Table 1 for sequences.

Taken together, the current results suggest that an accessible 5 '-end of CpG DNA is required for its optimal immunostimulatory activity and smaller groups such as a phosphorothioate, a mononucleotide, or a dinucleotide do not effectively block the accessibility of the 5 '-end of CpG DNA to receptors or factors involved in the immunostimulatory pathway. However, the conjugation of molecules as large as fluorescein or larger at the 5'-end of CpG DNA could abrogate immunostimulatory activity. These results have a direct impact on the studies of immunostimulatory activity of CpG DNA-antigen/vaccine/monoclonal antibody (mAb) conjugates. The conjugation of large molecules such as vaccines or mAbs at the 5*-end of a CpG DNA could lead to suboptimal immunostimulatory activity of CpG DNA. The conjugation of functional ligands at the 3'-end of CpG DNA not only contributes to increased nuclease stability but also increased immunostimulatory potency of CpG DNA in vivo.

Example 13: Effect of linkers on cytokine secretion

The following oligonucleotides were synthesized for this study. Each of these modified oligonucleotides can be incoφorated into an immunomer.

Table 17. Sequences of CpG DNA showing the position of substitution.

CpG DNA Sequence (5'— >3' Number

102 CCTACTAGCGTTCTCATC

103 CCTACTAGC2TTCTCATC 104 CCTACT2GCGTTCTCATC

105 CCTA2TAGCGTTCTCATC

106 CCT22TAGCGTTCTCATC

107 22TACTAGCGTTCTCATC

108 CCTACTAGCGT2CTCATC 109 CCTACTAGCGTTC2CATC

110 CCTACTAGCGTTC22ATC

111 CCT6CTAGCGTTCTCATC

112 CCTACTAGCGTTC6CATC

113 CCT7CTAGCGTTCTCATC 114 CCTACTAGCGTTC7CATC

4 CTATCTGACGTTCTCTGT

115 CTATITGACGTTCTCTGT

116 CTAICTGACGTTCTCTGT

117 CTATCTG2CGTTCTCTGT 118 CTATC2GACGTTCTCTGT

119 CTA2CTGACGTTCTCTGT

120 22222TGACGTTCTCTGT

121 2222TGACGTTCTCTGT

122 222TGACGTTCTCTGT 123 22TGACGTTCTCTGT

124 2TGACGTTCTCTGT

125 CTAT3TGACGTTCTCTGT

126 CTA3CTGACGTTCTCTGT

127 CTA33TGACGTTCTCTGT 128 33TGACGTTCTCTGT

129 CTAT4TGACGTTCTCTGT

130 CTA4CTGACGTTCTCTGT

131 CTA44TGACGTTCTCTGT

132 44TGACGTTCTCTGT 133 CTAT5TGACGTTCTCTGT

134 CTA5CTGACGTTCTCTGT

135 CTA55TGACGTTCTCTGT 136 55TGACGTTCTCTGT

137 CTA6CTGACGTTCTCTGT

138 CTATCTGACGTTC6CTGT

139 CTA7CTGACGTTCTCTGT 140 CTATCTGACGTTC7CTGT

141 CTATCTG8CGTTCTCTGT

142 CTATCT8ACGTTCTCTGT

143 CTATC8GACGTTCTCTGT

144 CTAT8TGACGTTCTCTGT 145 CTA8CTGACGTTCTCTGT

146 CTATCTGACG8TCTCTGT

147 CTATCTGACGT8CTCTGT

148 CTATCTGACGTT8TCTGT

149 CTATCTGACGTTC8CTGT 150 CTATCTG9CGTTCTCTGT

151 CTATCT9ACGTTCTCTGT

152 CTA9CTGACGTTCTCTGT

153 CTATCTGACGT9CTCTGT

154 CTATCTGACGTTC9CTGT

: See Figure 14 for the chemical structures of substitutions 1-9. All CpG DNAs are phosphorothioate backbone modified. To evaluate the optimal linker size for potentiation of immunostimulatory activity, we measured IL-12 and IL-6 secretion induced by modified CpG DNAs in BALB/c mouse spleen cell cultures. All CpG DNAs induced concentration- dependent IL-12 and IL-6 secretion. Figure 15 shows data obtained at 1 μg/mL concentration of selected CpG DNAs, 116, 119, 126, 130, and 134, which had a linker at the fifth nucleotide position in the 5 '-flanking sequence to the CpG dinucleotide compared with the parent CpG DNA. The CpG DNAs, which contained C2- (1), C3- (2), and C4-1 inkers (3), induced secretion of IL-12 production similar to that of the parent CpG DNA 4. The CpG DNA that contained C6 and C9-1 inkers (4 and 5) at the fifth nucleotide position from CpG dinucleotide in the 5 '-flanking sequence induced lower levels of IL-12 secretion than did the parent CpG DNA (Fig. 15), suggesting that substitution of linkers longer than a C4-linker results in the induction of lower levels of IL-12. All five CpG DNAs, which had linkers, induced two to three times higher IL-6 secretion than did the parent CpG DNA. The presence of a linker in these CpG DNAs showed a significant effect on the induction of IL-6 compared with CpG DNAs that did not have a linker. However, we did not observe length-dependent linker effect on IL-6 secretion.

To examine the effect on immunostimulatory activity of CpG DNA containing ethylenegylcol-1 inkers, we synthesized CpG DNAs 137 and 138, in which a triethyleneglycol-linker (6) is incoφorated at the fifth nucleotide position in the 5'- and at the fourth nucleotide position in the 3 '-flanking sequences to the CpG dinucleotide, respectively. Similarly, CpG DNAs 139 and 140 contained a hexaethyleneglycol-linker (7) in the 5'- or the 3'-flanking sequence to the CpG dinucleotide, respectively. All four modified CpG DNAs (137-140) were tested in BALB/c mouse spleen cell cultures for cytokine induction (IL-12, IL-6, and IL-10) in comparison with parent CpG DNA 4. All CpG DNAs induced concentration- dependent cytokine production over the concentration range tested (0.03-10.0 μg/mL) (data not shown). The levels of cytokines induced at 0.3 μg/mL concentration of CpG DNAs 137-140 are shown in Table 18. CpG DNAs 137 and 139, which had an ethyleneglycol-l inker in the 5'-flanking sequence induced higher levels of IL-12

(2106=-- 143 and 2066±153 pg/mL) and IL-6 (2362±166 and 2507±66 pg/mL) secretion than did parent CpG DNA 4 (Table 18). At the same concentration, 137 and 139 induced slightly lower levels of IL-10 secretion than did the parent CpG DNA (Table 18). CpG DNA 138, which had a shorter ethyleneglycol-l inker (6) in the 3'-flanking sequence induced IL-12 secretion similar to that of the parent CpG DNA, but significantly lower levels of IL-6 and IL-10 (Table 18). CpG DNA 140, which had a longer ethyleneglycol-linker (7) induced significantly lower levels of all three cytokines tested compared with the parent CpG DNA (Table 18).

Though triethyleneglycol-linker (6) had a chain length similar to that of C9- linker (5), the CpG DNA containing triethyleneglycol-linker had better immunostimulatory activity than did CpG DNA containing C9-linker, as determined by induction of cytokine secretion in spleen cell cultures. These results suggest that the lower immunostimulatory activity observed with CpG DNA containing longer alkyl-linkers (4 and 5) may not be related to their increased length but to their hydrophobic characteristics. This observation prompted us to examine substitution of branched alkyl-linkers containing hydrophilic functional groups on immunostimulatory activity.

Table 18. Cytokine secretion induced by CpG DNAs containing an ethyleneglycol- linker in BALB/c mice spleen cell cultures.

CpG Cytokine, pg/mL

DNA

Number

IL-12 IL-6 IL-10

4 1887±233 2130±221 86±I4

137 2I06±143 2362±166 78±21

138 I888±259 1082-1-25 47±14

139 2066±153 2507±66 73±17

140 I318±162 476±13 25±5

Medium 84±13 33±6 2±l

To test the effect on immunostimulatory activity of CpG DNA containing branched alkyl-linkers, two branched alkyl-linkers containing a hydroxyl (8) or an amine (9) functional group were incorporated in parent CpG DNA 4 and the effects on immunostimulatory activity of the resulting modified CpG DNAs (150-154-Table 19) were examined. The data obtained with CpG DNAs 150-154, containing amino- linker 9 at different nucleotide positions, in BALB/c mouse spleen cell cultures (proliferation) and in vivo (splenomegaly) are shown in Table 19.

Table 19. Spleen cell proliferation induced by CpG DNA containing an aminobutyryl propanediol-linker in BALB/c mice spleen cell cultures and splenomegaly in BALB/c mice.

Parent CpG DNA 4 showed a proliferation index of 3.7±0.8 at a concentration of 0.1 μg/mL. At the same concentration, modified CpG DNAs 151-154 containing amino-linker 9 at different positions caused higher spleen cell proliferation than did the parent CpG DNA (Table 19). As observed with other linkers, when the substitution was placed adjacent to CpG dinucleotide (150), a lower proliferation

Figure imgf000058_0001
index was noted compared with parent CpG D A (Table 19), further confirming that the placement of a linker substitution adjacent to CpG dinucleotide has a detrimental effect on immunostimulatory activity. In general, substitution of an amino-linker for 2'-deoxyribonucleoside in the 5 '-flanking sequence (151 and 152) resulted in higher spleen cell proliferation than found with the substitution in the 3'-flanking sequence (153 and 154). Similar results were observed in the splenomegaly assay (Table 19), confirming the results observed in spleen cell cultures. Modified CpG DNAs containing glycerol-1 inker (8) showed immunostimulatory activity similar to or slightly higher that that observed with modified CpG DNA containing amino-linker (9) (data not shown).

In order to compare the immunostimulatory effects of CpG DNA containing linkers 8 and 9, we selected CpG DNAs 145 and 152, which had substitution in the 5'-flanking sequence and assayed their ability to induce cytokines IL-12 and IL-6 secretion in BALB/c mouse spleen cell cultures. Both CpG DNAs 145 and 152 induced concentration-dependent cytokine secretion. Figure 4 shows the levels of IL- 12 and IL-6 induced by 145 and 152 in mouse spleen cell cultures at 0.3 μg/mL concentration compared with parent CpG DNA 4. Both CpG DNAs induced higher levels of IL-12 and IL-6 than did parent CpG DNA 4. CpG DNA containing glycerol- linker (8) induced slightly higher levels of cytokines (especially IL-12) than did CpG DNA containing amino-linker (9) (Figure 16). These results further confirm that the linkers containing hydrophilic groups are more favorable for immunostimulatory activity of CpG DNA.

We examined two different aspects of multiple linker substitutions in CpG DNA. In one set of experiments, we kept the length of nucleotide sequence to 13-mer and incorporated one to five C3-linker (2) substitutions at the 5 '-end (120-124). These modified CpG DNAs permitted us to study the effect of an increase in the length of linkers without causing solubility problems. In the second set of experiments, we incoφorated two of the same linker substitutions (3, 4, or 5) in adjacent positions in the 5 '-flanking sequence to the CpG dinucleotide to study if there would be any additive effect on immunostimulatory activity.

Modified CpG DNAs were studied for their ability to induce cytokine production in BALB/c mouse spleen cell cultures in comparison with parent CpG DNA 4. All CpG DNAs induced concentration-dependent cytokine production. The data obtained at 1.0 μg/mL concentration of CpG DNAs is shown in Table 20. In this assay, parent CpG DNA 4 induced 967±28 pg/mL of IL-12, l593±94 pg/mL of IL-6, and 14±6 pg/mL of IL-10 secretion at 1 μg/mL of concentration. The data presented in Table 20 suggest that as the number of linker substitutions decreased IL-12 induction decreased. However, the induction of lower levels of IL-12 secretion by CpG DNAs 123 and 124 could be the result of the shorter length of CpG DNAs. Our studies with unmodified CpG DNA shorter than 15-nucleotides showed insignificant immunostimulatory activity (data not shown). Neither length nor the number of linker substitutions have a lesser effect on IL-6 secretion. Though IL-10 secretion increased with linker substitutions, the overall IL-10 secretion by these CpG DNAs was minimal.

CpG DNAs containing two linker substitutions (linker 3 - 127; linker-4 - 131; linker-5 - 135) at the fourth and fifth positions in the 5'-flanking sequences to the CpG dinucleotide and the corresponding 5' -truncated versions 128, 132, and 136, respectively, were tested for their ability to induce cytokine secretion in BALB/c mouse spleen cell cultures. The levels of IL-12 and IL-6 secreted at 1.0 μg/mL concentration are shown in Figure 17. The results presented in Figure 17 suggest that the immunostimulatory activity is dependent on the nature of the linker incoφorated. The substitution of the fourth and fifth nucleosides with C4-linker 3 (CpG DNA 127) had an insignificant effect on cytokine secretion compared with parent CpG DNA 4, suggesting that the nucleobase and sugar ring at these positions are not required for receptor recognition and/or binding. The deletion of the nucleotides beyond the linker substitutions (CpG DNA 128) caused higher IL-12 and IL-6 secretion than that found with CpG DNAs 4 and 127. As expected, the substitution of two Cό-linkers (4) resulted in IL-12 secretion lower than and IL-6 secretion similar to that induced by parent CpG DNA 4. The 5'-truncated CpG DNA 132 induced higher cytokine secretion than did CpG DNA 131. The CpG DNAs 135 and 136, which had two C9- I inkers (5), induced insignificant cytokine secretion, confirming the results obtained with mono-substituted CpG DNA containing the same linker as described above.

Example 14: Effect of Phosphodiester Linkages on Cytokine Induction

To test the effect of phosphodiester linkages on immunomer-induced cytokine induction, the following molecules were synthesized.

Table 21 PO-Immunomer sequences and analytical data

Figure imgf000060_0001

"Arrows indicate 5'-3' directionality of CpG dinucleotide in each DNA molecule and structures of X and Y arc shown in boxes. bPS and PO stand for phosphorothioate and phosphodiester backbones, respectively. cΛs determined by MALDI-TOF mass spectrometry. PS-CpG DNA 4 (Table 21) was found to induce an immune response in mice (data not shown) with PO-CpG DNA 155 serving as a control. PO-immunomers 156 and 157 each contain two identical, truncated copies of the parent CpG DNA 155 joined through their 3'-ends via a glyceryl linker, X (Table 21). While 156 and 157 each contain the same oligonucleotide segments of 14 bases, the 5'-ends of 157 were modified by the addition of two C3-linkers, Y (Table 21). All oligonucleotides 4, 155-157 contain a 'GACGTT hexameric motif known to activate the mouse immune system.

The stability of PO-immunomers against nucleases was assessed by incubating CpG DNAs 4, 155-157 in cell culture medium containing 10% fetal bovine serum (FBS) (non-heat-inactivated) at 37 "C for 4, 24, and 48 hr. Intact CpG DNA remaining in the reaction mixtures were then determined by CGE. Figure 18 A-D shows the nuclease digestion profiles of CpG DNAs 4, 155-157 incubated in 10% FBS for 24 hr. The amount of full-length CpG DNA remaining at each time point is shown in Figure 18 E. As expected, the parent PS-CpG DNA 4 is the most resistant to serum nucleases. About 55% of 18-mer 4 remained undegraded after 48 hr incubation. In contrast, only about 5% of full-length PO-immunomer 155 remained after 4 hr under the same experimental conditions confirming that DNA containing phosphodiester linkages undergoes rapid degradation. As expected, both PO- immunomers 156 and 157 were more resistant than 155 to serum nucleases. After 4 hr, about 62% and 73% of 156 and 157 respectively were intact compared with about 5% of 155 (Fig.18 E). Even after 48 hr, about 23% and 37% of 156 and 157, respectively, remained undegraded. As well as showing that 3'-3'-linked PO- immunomers are more stable against serum nucleases, these studies indicate that chemical modifications at the 5 '-end can further increase nuclease stability.

The immunostimulatory activity of CpG DNAs was studied in BALB/c and C3H/HeJ mice spleen cell cultures by measuring levels of cytokines IL-12 and IL-6 secreted. All CpG DNAs induced a concentration-dependent cytokine secretion in BALB/c mouse spleen cell cultures (Fig. 19). At 3 μg/mL, PS-CpG DNA 4 induced 2656±256 and 12234±1 180 pg/mL of IL-12 and IL-6 respectively. The parent PO- CpG DNA 155 did not raise cytokine levels above background except at a concentration of 10 μg/mL. This observation is consistent with the nuclease stability assay results. In contrast, PO-immunomers 156 and 157 induced both IL-12 and IL-6 secretion in BALB/c mouse spleen cell cultures.

The results presented in Figure 19 show a clear distinction in cytokine induction profiles of PS- and PO-CpG DNAs. PO-immunomers 156 and 157 induced higher levels of IL-12 than did PS-CpG DNA 4 in BALB/c mouse spleen cell cultures (Fig. 19A). In contrast, at concentrations up to 3 μg/mL, they produced negligible amounts of 1 L-6 (Fig. 19B). Even at the highest concentration (10 μg/mL), PO- immunomer 156 induced significantly less IL-6 than did PS-CpG DNA 4. The presence of C3 linkers at the 5'-terminus of PO-immunomer 157 resulted in slightly higher levels of IL-6 secretion compared with 156. However, importantly, the levels of IL-6 produced by PO-immunomer 157 are much lower than those induced by PS CpG DNA 4. The inset of Figure 19A shows the ratio of IL-12 to I L-6 secreted at 3 μg/mL concentration. In addition to increasing IL-12 secretion, PO-immunomers 156 and 157 induced higher levels of IFN-γ than did PS-CpG DNA 4 in BALB/c mouse spleen cell cultures (data not shown).

The different cytokine profiles induced by PO- and PS-CpG DNAs in BALB/c mouse spleen cell cultures prompted us to study the pattern of cytokine induction of CpG DNAs in C3H/HeJ mouse spleen cell cultures (an LPS lower-responsive strain). All three CpG DNAs tested in this assay induced concentration-dependent cytokine secretion (Fig. 20A and B). Since PO-CpG DNA 155 failed to induce cytokine secretion in BALB/c mouse spleen cell cultures, it was not further tested in C3H/HeJ spleen cell cultures. Both PO-immunomers 156 and 157 induced higher IL-12 production than did PS-CpG DNA 4 (Fig. 20A). However, at concentrations up to 3 μg/mL, neither induced IL-6 production. At the highest concentration tested (10 μg/mL), both induced significantly less IL-6 than did PS-CpG DNA 4 (Fig. 20B). The ratio of IL-12 to IL-6 secreted is calculated to distinguish cytokine secretion profiles of PS and PO CpG DNAs (Fig. 20A inset). In addition, the C3H/HeJ spleen cell culture results suggest that the responses observed with CpG DNAs are not due to LPS contamination.

PS-CpG DNAs have been shown to induce potent antitumor activity in vivo.

Since PO-CpG DNAs exhibited greater nuclease stability and induced higher levels of IL-12 and IFN-γ secretion in in vitro assays, we were interested to see if these desirable properties of PO-immunomers improve the antitumor activity in vivo. We administered PO-immunomer 157 subcutaneously at a dose of 0.5 mg/kg every other day to nude mice bearing tumor xenografts of MCF-7 breast cancer cells that express wild-type p53, or DU-145 prostate cancer cells that express mutated p53. PO- immunomer 157 gave 57% growth inhibition of MCF-7 tumors on day 15 compared with the saline control (Fig. 21 A). It also produced 52% growth inhibition of DU-145 tumors on day 34 (Fig. 21 B). These antitumor studies suggest that PO-immunomers of the proposed design exhibit potent antitumor activity in vivo.

Example 22: Short immunomers

To test the effects of short immunomers on cytokine induction, the following immunomers were used. These results show that immunomers as short as 5 nucleotides per segment are effective in inducing cytokine production.

Table 22. Immunomer Structure and Immunostimulatory Activity in BABL/C Mouse Spleen Cell Cultures

IL-6 (pg/mL)

10 μg/mL 4547

789 53Ϊ9

4625

Figure imgf000063_0001

Figure imgf000064_0002

Normal phase represents a phosphorothioate linkage.

Figure imgf000064_0001

EQUIVALENTS

While the foregoing invention has been described in some detail for puφoses of clarity and understanding, it will be appreciated by one skilled in the art from a reading of this disclosure that various changes in form and detail can be made without departing from the true scope of the invention and appended claims.

Claims

WHAT IS CLAIMED IS: 1. An immunomer, comprising at least two oligonucleotides linked at their 3' ends or internucleoside linkages or a functionalized nucleobase or sugar to a non-nucleotidic linker, wherein at least one of the oligonucleotides is an immunostimulatory oligonucleotide having an accessible 5' end and comprising an immunostimulatory dinucleotide.
2. The immunoner according to claim 1 wherien the immunostimulatory dinucleotide is selected from the group consisting of CpG, C*pG, CpG*, and C*pG*, wherein C is cytidine or 2'-deoxycytidine, C* is 2'deoxythymidine, arabinocytidine, 2'-deoxy-2'-substitutedarabinocytidine, 2'-O- substitutedarabinocytidine, 2'-deoxy-5-hydroxycytidine, 2'-deoxy-N4-alkyl- cytidine, 2'-deoxy-4-thiouridine or other non-natural pyrimidine nucleoside, G is guanosine or 2'-deoxyguanosine, G* is 2' deoxy-7-deazaguanosine, 2'- deoxy-6-thioguanosine, arabinoguanosine, 2'-deoxy-2'substituted- arabinoguanosine, 2'-O-substituted-arabinoguanosine, or other non-natural purine nucleoside, and p is an internucleoside linkage selected from the group consisting of phosphodiester, phosphorothioate, and phosphorodithioate. In certain preferred embodiments, the immunostimulatory dinucleotide is not CpG.
3. The immunomer according to claim 1 having the structure
5 '-Nn-N 1 -Y-Z-N 1 -Nn-3 ' (III)
wherein:
Y is cytidine, 2' deoxycytidine arabinocytidine, 2'-deoxythymidine, 2'- deoxy-2'-substitutedarabinocytidine, 2'-O-substitutedarabinocytidine, 2'- deoxy-5-hydroxycytidine, 2'-deoxy-N4-alkyl-cytidine, 2'-deoxy-4-thiouridine or other non-natural pyrimidine nucleoside; Z is guanosine or 2'-deoxyguanosine, G* is 2' deoxy-7-deazaguanosine, 2'- deoxy-6-thioguanosine, arabinoguanosine, 2'-deoxy-2'substituted- arabinoguanosine, 2'-O-substituted-arabinoguanosine, 2'deoxyinosine or other non-natural purine nucleoside,
N 1 , at each occurrence, is preferably a naturally occurring or a synthetic nucleoside or an immunostimulatory moiety selected from the group consisting of abasic nucleosides, arabinonucleosides, 2'-deoxyuridine, α-deoxyribonucleosides, β-L-deoxyribonucleosides, and nucleosides linked by a phosphodiester or modified internucleoside linkage to the adjacent nucleoside on the 31 side, the modified internucleotide linkage being selected from, without limitation, a linker having a length of from about 2 angstroms to about 200 angstroms, C2-C 18 alkyl linker, poly(ethylene glycol) linker, 2- aminobutyl-l,3-propanediol linker, glyceryl linker, 2'-5' internucleoside linkage, and phosphorothioate, phosphorodithioate, or methylphosphonate internucleoside linkage;
The immunomer according to claim 2 wherein the immunostimulatory moiety is selected from the group consisting of abasic nucleosides, arabinonucleosides, 2'-deoxyuridine, α-deoxyribonucleosides, β-L-deoxy- ribonucleosides, and nucleosides linked by a modified internucleoside linkage to the adjacent nucleoside on the 3' side, the modified internucleotide linkage being selected from the group consisting of C2-C18 alkyl linker, poly(ethylene glycol) linkage, 2-aminobutyl-l,3-propanediol linker, 2'-5' internucleoside linkage, methylphosphonate internucleoside linkage; methylphosphono- thioates, phosphotriesters, phosphothiotriesters, phosphorothioates, phosphorodithioates, triester prodrugs, sulfones, sulfonamides, sulfamates, formacetal, N-methylhydroxylamine, carbonate, carbamate, morpholino, boranophosphonate, phosphoramidates, especially primary amino- phosphoramidates, N3 phosphoramidates and N5 phosphoramidates, and stereospecific linkages, nucleosides having sugar modifications, 2'-substituted pentose sugars including, without limitation, 2'-O-methylribose, 2'-O-methoxyethylribose, 2'-O-propargylribose, and 2,-deoxy-2'-fluororibose; 3 '-substituted pentose sugars, including, without limitation, 3'-O- methylribose; 1 ',2'-dideoxyribose; arabinose; substituted arabinose sugars, hexose sugars, and alpha-anomers, peptide nucleic acids (PNA), peptide nucleic acids with phosphate groups (PHONA), locked nucleic acids (LNA), moφholinonucleic acids, and oligonucleotides having backbone linker sections having a length of from about 2 angstroms to about 200 angstroms, alkyl linkers or amino linkers, DNA isoforms, β-L-deoxyribonucleosides, α-deoxyribonucleosides, nucleosides having unnatural internucleoside linkage positions, and nucleosides having modified heterocyclic bases.
The immunostimulatory oligonucleotide according to claim 2 wherein Nn, at each occurrence, is a naturally occurring nucleoside or an immunostimulatory moiety, selected from the group consisting of abasic nucleosides, arabinonucleosides, 2'-deoxyuridine, α-deoxyribonucleosides, 2'-O-substituted or 2'-substituted ribonucleosides, and nucleosides linked by a modified internucleoside linkage to the adjacent nucleoside on the 3' side, the modified internucleotide linkage being selected from the group consisting of amino linker, 2'-5' internucleoside linkage, and methylphosphonate internucleoside linkage;
provided that at least one N 1 or Nn is an immunostimulatory moiety and that the 5' N 1 includes a nucleobase;
wherein n is a number from 0-30;
wherein the 3 'end or internucleoside linkages or a functionalized nucleobase or sugar is linked directly or via a non-nucleotidic linker to another oligonucleotide. The immunomer according to claim 2 having the structure
5,-TCTGπCRTTCT-3,
\ X
5'-TCTCT(^TTCT-3' y
Figure imgf000069_0001
7. The immunomer of claim I wherein the immunomer comprises at least one oligonucleotide that is complementary to a gene.
8. The immunomer of claim 1 wherein the immunomer comprises at least one ribozyme or a decoy oligonucleotide.
9. The immunomer of claim 1 wherein the immunomer comprises at least one Nn portion includes a G4 tetranucleotide.
10. The immunomer of claim 1 wherein the non-naturally occurring pyrimidine has the structure (I):
Figure imgf000070_0001
4 wherein:
5 D is a hydrogen bond donor;
6 D' is selected from the group consisting of hydrogen, hydrogen bond donor, 7 hydrogen bond acceptor, hydrophilic group, hydrophobic group, electron 8 withdrawing group and electron donating group, excluding bromine; A is a 9 hydrogen bond acceptor or a hydrophilic group;
10 A is a hydrogen bond acceptor or a hydrophilic group;
I I A' is selected from the group consisting of hydrogen bond acceptor, 12 hydrophilic group, hydrophobic group, electron withdrawing group and 13 electron donating group;
14 X is carbon or nitrogen; and
15 S' is a pentose or hexose sugar ring or a non-naturally occurring sugar.
I I . The immunomer according to claim 10 wherein the sugar ring is derivatized
2 with a phosphate moiety, modified phosphate moiety, or other non-nucleotidic 3 linker moiety suitable for linking the pyrimidine nucleoside to another 4 nucleoside or nucleoside analog. 12, The immunomer according to claim 10 wherein the hydrogen bond donors are selected from the group consisting of -NH-, -NH2, -SH and -OH.
13. The immunomer according to claim 10 wherein the hydrogen bond acceptors are selected from the group consisting of C=O, C=S, and the ring nitrogen atoms of an aromatic heterocycle.
14. The immunomer according to claim 10 wherein the non-naturally occurring pyrimidine base is selected from the group consisting of 5-hydroxycytosine, 5- hydroxymethylcytosine, N4-alkylcytosine, N4-ethylcytosine, and 4-thiouracil.
15, The immunomer according to claim 10 wherein the non-naturally occurring sugar is selected from arabinose and arabinose analogs.
16 The immunomer according to claim 1 wherein the purine nucleoside has the structure (If):
Figure imgf000071_0001
wherein:
D is a hydrogen bond donor;
D' is selected from the group consisting of hydrogen, hydrogen bond donor, and hydrophilic group;
A is a hydrogen bond acceptor or a hydrophilic group;
X is carbon or nitrogen; each L is independently selected from the group consisting of C, O, N and S; and
S' is a pentose or hexose sugar ring, or a non-naturally occurring sugar.
17. The immunomer according to claim 13 wherein the sugar ring is derivatized with a phosphate moiety, modified phosphate moiety, or other linker moiety suitable for linking the pyrimidine nucleoside to another nucleoside or nucleoside analog.
18. The immunomer according to claim 13 wherein the hydrogen bond donors are selected from the group consisting of -NH-, -NH2, -SH and -OH.
19. The immunomer according to claim 13 wherein the hydrogen bond acceptors are selected from the group consisting of C=O, C=S, -N= and the ring nitrogen atoms of an aromatic heterocycle.
20. The immunomer according to claim 13 wherein the non-naturally occurring purine is 6-thioguanine or 7-deazaguanine.
21. The immunomer according to claim 1 , wherein the non-nucleotidic linker is selected from the group consisting of a linker from about 2angstroms to about 200 angstroms in length, a metal, a soluble or insoluble biodegradable polymer bead, an organic moiety having functional groups that permit attachment to the 3'-terminal nucleoside of the oligonucleotide, a biomolecule, a cyclic or acyclic small molecule, an aliphatic or aromatic hydrocarbon, either of which optionally can include, either in the linear chain connecting the oligonucleotides or appended to it, one or more functional groups selected from the group consisting of hydroxy, amino, thiol, thioether, ether, amide, thioamide, ester, urea, and thiourea; amino acids, carbohydrates, cyclodextrins, adamantane, cholesterol, haptens antibiotics, glycerol or a glycerol homolog of the formula HO-(CH2)0-CH(OH)-(CH2VOH, wherein o and p independently are integers from 1 to about 6, and a derivative of 1 ,3- diamino-2-hydroxypropane.
22. The immunomer according to claim I , wherein the internucleoside linkages consist essentially of phosphodiester linkages. .
23. An immunomer conjugate, comprising an immunomer, according to claim I and an antigen conjugated to the immunomer at a position other than the accessible 5' end.
24. The immunomer according to claim 1 , wherein C*G* is arabinocytosine or 2'- deoxy-2-substituted arabincytosine and arabinoguanosine or 2'-deoxy-2'- substituted arabinguanosine, 2'-deoxy-7-deazaguanosine or 2'-deoxy-6- thioguanosine, or 2'-deoxyinosine.
25. A pharmaceutical formulation comprising an immunomer according to claim 1 and a physiologically acceptable carrier.
26. A method for generating an immune response in a vertebrate, the method comprising administering to the vertebrate an immunomer according to claim 1.
27. A method for generating an immune response in a vertebrate, the method comprising administering to the vertebrate an immunomer conjugate according to claim 19.
28. A method for therapeutical ly treating a patient having a disease or disorder, such method comprising administering to the patient an immunomer according to claim I .
29. The method according to claim 23 wherein the disease or disorder to be treated is cancer, an autoimmune disorder, airway inflammation, inflammatory disorders, skin disorders, allergy, asthma or a disease caused by a pathogen.
30. A method for therapeutical ly treating a patient having a disease or disorder, such method comprising administering to the patient an immunomer conjugate according to claim 20.
31. A method for therapeutical ly treating a patient having a disease or disorder, such method comprising administering to the patient an immunomer according to claim 19.
32. The method according to claim 25 wherein the disease or disorder to be treated is cancer, an autoimmune disorder, airway inflammation, allergy, asthma or a disease caused by a pathogen.
33. The method according to claim 25 wherein the disease or disorder to be treated is cancer, an autoimmune disorder, airway inflammation, allergy, asthma or a disease caused by a pathogen.
34. The method of claim 25 further comprising administering a vaccine.
35. The method of claim 31 , wherein the immunomer or the vaccine, or both, are linked to an immunogenic protein.
36. The method of claim 25 further comprising administering an adjuvant.
PCT/US2002/034247 2001-10-24 2002-10-24 Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends WO2003057822A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US34476701P true 2001-10-24 2001-10-24
US60/344,767 2001-10-24

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20047006160A KR100945104B1 (en) 2001-10-24 2002-10-24 Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends
AU2002365141A AU2002365141C1 (en) 2001-10-24 2002-10-24 Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends
JP2003558124A JP5005878B2 (en) 2001-10-24 2002-10-24 5 'end immunostimulatory regulation of oligonucleotide compounds according optimal display
CA2463798A CA2463798C (en) 2001-10-24 2002-10-24 Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends

Publications (3)

Publication Number Publication Date
WO2003057822A2 true WO2003057822A2 (en) 2003-07-17
WO2003057822A3 WO2003057822A3 (en) 2004-02-26
WO2003057822A9 WO2003057822A9 (en) 2004-07-01

Family

ID=23351942

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2002/033756 WO2003035836A2 (en) 2001-10-24 2002-10-22 Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends
PCT/US2002/034247 WO2003057822A2 (en) 2001-10-24 2002-10-24 Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/US2002/033756 WO2003035836A2 (en) 2001-10-24 2002-10-22 Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends

Country Status (5)

Country Link
JP (1) JP5005878B2 (en)
KR (1) KR100945104B1 (en)
AU (1) AU2002365141C1 (en)
CA (1) CA2463798C (en)
WO (2) WO2003035836A2 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187402A (en) * 2003-12-25 2005-07-14 Japan Science & Technology Agency Immune activity enhancer and method for enhancing immune activity by using the same
EP1625140A2 (en) * 2002-12-23 2006-02-15 Dynavax Technologies Corporation Branched immunomodulatory compounds and methods of using the same
WO2006080946A2 (en) * 2004-06-08 2006-08-03 Coley Pharmaceutical Gmbh Abasic oligonucleotide as carrier platform for antigen and immunostimulatory agonist and antagonist
WO2004071468A3 (en) * 2003-02-07 2007-01-18 Hybridon Inc Short immunomodulatory oligonucleotides
EP1765417A2 (en) * 2004-06-15 2007-03-28 Hybridon, Inc. Immunostimulatory oligonucleotide multimers
WO2007071711A2 (en) 2005-12-22 2007-06-28 Glaxosmithkline Biologicals Sa Vaccine
JP2007523173A (en) * 2004-02-20 2007-08-16 イデラ ファーマシューティカルズ インコーポレイテッド Strong mucosal immune responses induced by modified immunomodulatory oligonucleotide
JP2007530449A (en) * 2003-12-08 2007-11-01 イデラ ファーマシューティカルズ インコーポレイテッド Regulation of immune stimulating properties by compounds based on small oligonucleotide
JP2007531699A (en) * 2003-07-15 2007-11-08 イデラ ファーマシューティカルズ インコーポレイテッド The immunostimulatory oligonucleotides and / or immunomer compounds used in combination with cytokines and / or chemotherapeutic agent or radiation therapy, synergistic stimulation of the immune system
EP1942945A2 (en) * 2005-11-07 2008-07-16 Idera Pharmaceuticals Immunostimulatory properties of oligonucleotide-based compounds comprising modified immunostimulatory dinucleotides
WO2009000826A1 (en) 2007-06-26 2008-12-31 Glaxosmithkline Biologicals S.A. Vaccine comprising streptococcus pneumoniae capsular polysaccharide conjugates
WO2011015590A1 (en) 2009-08-05 2011-02-10 Glaxosmithkline Biologicals S.A. Immunogenic composition comprising variants of staphylococcal clumping factor a
WO2011015591A1 (en) 2009-08-05 2011-02-10 Glaxosmithkline Biologicals S.A. Immunogenic composition comprising antigenic s. aureus proteins
WO2011110241A1 (en) 2010-03-09 2011-09-15 Glaxosmithkline Biologicals S.A. Immunogenic composition comprising s. pneumoniae polysaccharides conjugated to carrier proteins
EP2476431A1 (en) 2007-05-24 2012-07-18 GlaxoSmithKline Biologicals S.A. Lyophilised antigen composition
EP2476434A1 (en) 2006-03-30 2012-07-18 GlaxoSmithKline Biologicals S.A. Immunogenic composition
WO2012139225A1 (en) 2011-04-13 2012-10-18 Glaxosmithkline Biologicals S.A. Fusion proteins and combination vaccines comprising haemophilus influenzae protein e and pilin a
US8580268B2 (en) 2006-09-27 2013-11-12 Coley Pharmaceutical Gmbh CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity
US8968746B2 (en) 2010-07-30 2015-03-03 Curevac Gmbh Complexation of nucleic acids with disulfide-crosslinked cationic components for transfection and immunostimulation
US9028845B2 (en) 2001-06-21 2015-05-12 Dynavax Technologies Corporation Chimeric immunomodulatory compounds and methods of using the same-IV
WO2015125118A1 (en) 2014-02-24 2015-08-27 Glaxosmithkline Biologicals Sa Uspa2 protein constructs and uses thereof
US9226959B2 (en) 2008-01-31 2016-01-05 Curevac Ag Nucleic acids comprising formula (NuGlXmGnNv)a and derivatives thereof as immunostimulating agent/adjuvant
US9314535B2 (en) 2009-09-03 2016-04-19 Curevac Ag Disulfide-linked polyethyleneglycol/peptide conjugates for the transfection of nucleic acids
WO2016091904A1 (en) 2014-12-10 2016-06-16 Glaxosmithkline Biologicals Sa Method of treatment
US9572874B2 (en) 2008-09-30 2017-02-21 Curevac Ag Composition comprising a complexed (M)RNA and a naked mRNA for providing or enhancing an immunostimulatory response in a mammal and uses thereof
EP2655623B1 (en) 2010-12-23 2017-02-22 Mologen AG Non-coding immunomodulatory dna construct
EP3087988A3 (en) * 2008-10-06 2017-03-01 Idera Pharmaceuticals, Inc. Use of inhibitors of toll-like receptors in the prevention and treatment of hypercholesterolemia and hyperlipidemia and diseases related thereto
WO2018178265A1 (en) 2017-03-31 2018-10-04 Glaxosmithkline Intellectual Property Development Limited Immunogenic composition, use and method of treatment
WO2018178264A1 (en) 2017-03-31 2018-10-04 Glaxosmithkline Intellectual Property Development Limited Immunogenic composition, use and method of treatment
US10111967B2 (en) 2007-09-04 2018-10-30 Curevac Ag Complexes of RNA and cationic peptides for transfection and for immunostimulation
WO2019034575A1 (en) 2017-08-14 2019-02-21 Glaxosmithkline Biologicals Sa Methods of boosting immune responses

Families Citing this family (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207646B1 (en) 1994-07-15 2001-03-27 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
EP1393745A1 (en) * 2002-07-29 2004-03-03 Hybridon, Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5'ends
AR040996A1 (en) * 2002-08-19 2005-04-27 Coley Pharm Group Inc Immunostimulatory Nucleic Acids
CA2501812C (en) 2002-10-11 2012-07-10 Mariagrazia Pizza Polypeptide-vaccines for broad protection against hypervirulent meningococcal lineages
US7276489B2 (en) 2002-10-24 2007-10-02 Idera Pharmaceuticals, Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends
AT544466T (en) 2002-10-29 2012-02-15 Coley Pharm Group Inc Use of CpG oligonucleotides for treatment of hepatitis C virus infection
CA2502015A1 (en) 2002-12-11 2004-06-24 Coley Pharmaceutical Group, Inc. 5' cpg nucleic acids and methods of use
WO2004067030A2 (en) 2003-01-30 2004-08-12 Chiron Srl Injectable vaccines against multiple meningococcal serogroups
WO2004092360A2 (en) 2003-04-10 2004-10-28 Chiron Corporation The severe acute respiratory syndrome coronavirus
KR20060012622A (en) 2003-05-16 2006-02-08 하이브리돈, 인코포레이티드 Synergistic treatment of cancer using immunomers in conjuction with chemotherapeutic agents
WO2005032583A2 (en) 2003-10-02 2005-04-14 Chiron Srl Liquid vaccines for multiple meningococcal serogroups
GB0323103D0 (en) 2003-10-02 2003-11-05 Chiron Srl De-acetylated saccharides
KR101107818B1 (en) 2003-10-30 2012-01-31 콜레이 파마시티컬 그룹, 인코포레이티드 C-class oligonucleotide analogs with enhanced immunostimulatory potency
US20080254065A1 (en) 2004-03-09 2008-10-16 Chiron Corporation Influenza Virus Vaccines
GB0409745D0 (en) 2004-04-30 2004-06-09 Chiron Srl Compositions including unconjugated carrier proteins
WO2005105140A2 (en) 2004-04-30 2005-11-10 Chiron Srl Meningococcal conjugate vaccination
GB0410866D0 (en) 2004-05-14 2004-06-16 Chiron Srl Haemophilius influenzae
CA2567446C (en) 2004-05-21 2018-01-02 Chiron Corporation Alphavirus vectors for respiratory pathogen vaccines
US20090317420A1 (en) 2004-07-29 2009-12-24 Chiron Corporation Immunogenic compositions for gram positive bacteria such as streptococcus agalactiae
MY159370A (en) 2004-10-20 2016-12-30 Coley Pharm Group Inc Semi-soft-class immunostimulatory oligonucleotides
GB0424092D0 (en) 2004-10-29 2004-12-01 Chiron Srl Immunogenic bacterial vesicles with outer membrane proteins
GB0500787D0 (en) 2005-01-14 2005-02-23 Chiron Srl Integration of meningococcal conjugate vaccination
GB0502095D0 (en) 2005-02-01 2005-03-09 Chiron Srl Conjugation of streptococcal capsular saccharides
NZ560929A (en) 2005-02-18 2009-12-24 Novartis Vaccines & Diagnostic Immunogens from uropathogenic escherichia coli
HUE027400T2 (en) 2005-02-18 2016-10-28 Glaxosmithkline Biologicals Sa Proteins and nucleic acids from meningitis/sepsis-associated escherichia coli
RU2442825C2 (en) 2005-04-18 2012-02-20 Новартис Вэксинес Энд Дайэгностикс Инк. Immunogenic compositions, methods for their production and plasmid included in such compositions
EP2614709A1 (en) 2005-07-18 2013-07-17 Novartis AG Small animal model for HCV replication
CN101355960A (en) 2005-10-18 2009-01-28 诺华疫苗和诊断公司 Mucosal and systemic immunizations with alphavirus replicon particles
EP1951302A2 (en) 2005-11-04 2008-08-06 Novartis Vaccines and Diagnostics S.r.l. Influenza vaccine with reduced amount of oil-in-water emulsion as adjuvant
EP2368572A3 (en) 2005-11-04 2013-04-24 Novartis Vaccines and Diagnostics S.r.l. Adjuvanted vaccines with non-virion antigens prepared from influenza viruses grown in cell culture
ES2377884T3 (en) 2005-11-04 2012-04-02 Novartis Vaccines And Diagnostics S.R.L. Flu vaccines that include combinations of particulate adjuvants and immunopotentiating
EP1951298A1 (en) 2005-11-04 2008-08-06 Novartis Vaccines and Diagnostics S.r.l. Adjuvanted influenza vaccines including cytokine-inducing agents
JP2009514525A (en) * 2005-11-07 2009-04-09 イデラ ファーマシューティカルズ インコーポレイテッドIdera Pharmaceuticals, Inc. Comprising a modified immunostimulatory dinucleotide, immunostimulatory properties of compounds based on oligonucleotide
JP5215865B2 (en) 2005-11-22 2013-06-19 ノバルティス ヴァクシンズ アンド ダイアグノスティクス インコーポレイテッド Norovirus antigen and support viral antigens
GB0524066D0 (en) 2005-11-25 2006-01-04 Chiron Srl 741 ii
EP1976559B1 (en) 2006-01-27 2017-01-04 Novartis Influenza Vaccines Marburg GmbH Influenza vaccines containing hemagglutinin and matrix proteins
EP2357184B1 (en) 2006-03-23 2015-02-25 Novartis AG Imidazoquinoxaline compounds as immunomodulators
CA2646349A1 (en) 2006-03-24 2007-10-04 Novartis Vaccines And Diagnostics Gmbh & Co Kg Storage of influenza vaccines without refrigeration
WO2007126825A2 (en) 2006-03-31 2007-11-08 Novartis Ag Combined mucosal and parenteral immunization against hiv
WO2009030978A2 (en) 2006-06-09 2009-03-12 Novartis Ag Conformers of bacterial adhesins
GB0614460D0 (en) 2006-07-20 2006-08-30 Novartis Ag Vaccines
US20100166788A1 (en) 2006-08-16 2010-07-01 Novartis Vaccines And Diagnostics Immunogens from uropathogenic escherichia coli
US20100010199A1 (en) 2006-09-11 2010-01-14 Novartis Ag Making influenza virus vaccines without using eggs
WO2008032534A1 (en) 2006-09-14 2008-03-20 Konica Minolta Medical & Graphic, Inc. Fluorescent semiconductor microparticle assembly, fluorescent labeling agent assembly for biological substance, and bioimaging method and biological substance analysis method using the assemblies
WO2008068631A2 (en) 2006-12-06 2008-06-12 Novartis Ag Vaccines including antigen from four strains of influenza virus
GB0700562D0 (en) 2007-01-11 2007-02-21 Novartis Vaccines & Diagnostic Modified Saccharides
ES2393162T3 (en) 2007-06-27 2012-12-19 Novartis Ag influenza vaccines with a reduced additive content
GB0713880D0 (en) 2007-07-17 2007-08-29 Novartis Ag Conjugate purification
GB0714963D0 (en) 2007-08-01 2007-09-12 Novartis Ag Compositions comprising antigens
KR101621837B1 (en) 2007-09-12 2016-05-17 노파르티스 아게 Gas57 mutant antigens and gas57 antibodies
NZ586430A (en) 2007-12-21 2012-09-28 Novartis Ag Mutant forms of streptolysin o (slo)
RU2475496C2 (en) 2008-02-21 2013-02-20 Новартис Аг MENINGOCOCCAL fHBP POLYPEPTIDES
EP2889042A3 (en) 2008-03-18 2015-10-14 Novartis AG Improvements in preparation of influenza virus vaccine antigens
GB0810305D0 (en) 2008-06-05 2008-07-09 Novartis Ag Influenza vaccination
GB0818453D0 (en) 2008-10-08 2008-11-12 Novartis Ag Fermentation processes for cultivating streptococci and purification processes for obtaining cps therefrom
MX2011007456A (en) 2009-01-12 2011-08-03 Novartis Ag Cna_b domain antigens in vaccines against gram positive bacteria.
EP2403526B1 (en) 2009-03-06 2019-05-15 GlaxoSmithKline Biologicals SA Chlamydia antigens
JP5830009B2 (en) 2009-04-14 2015-12-09 ノバルティス アーゲー Composition for immunizing against Staphylococcusaureus
DK2442826T3 (en) 2009-06-15 2015-09-21 Univ Singapore Influenza vaccine, composition and methods of using
JP2012532600A (en) 2009-07-07 2012-12-20 ノバルティス アーゲー Stored E. coli immunogen
SG178026A1 (en) 2009-07-15 2012-03-29 Novartis Ag Rsv f protein compositions and methods for making same
EP2464658B1 (en) 2009-07-16 2014-10-01 Novartis AG Detoxified escherichia coli immunogens
NZ622048A (en) 2009-08-27 2015-10-30 Novartis Ag Hybrid polypeptides including meningococcal fhbp sequences
SI2470656T1 (en) * 2009-08-27 2015-07-31 Idera Pharmaceuticals, Inc. Composition for inhibiting gene expression and uses thereof
CA2773637A1 (en) 2009-09-10 2011-03-17 Novartis Ag Combination vaccines against respiratory tract diseases
GB0917002D0 (en) 2009-09-28 2009-11-11 Novartis Vaccines Inst For Global Health Srl Improved shigella blebs
GB0917003D0 (en) 2009-09-28 2009-11-11 Novartis Vaccines Inst For Global Health Srl Purification of bacterial vesicles
CA2779798C (en) 2009-09-30 2019-03-19 Novartis Ag Conjugation of staphylococcus aureus type 5 and type 8 capsular polysaccharides
AU2010302344A1 (en) 2009-09-30 2012-04-26 Novartis Ag Expression of meningococcal fhbp polypeptides
GB0918392D0 (en) 2009-10-20 2009-12-02 Novartis Ag Diagnostic and therapeutic methods
JP5960055B2 (en) 2009-10-27 2016-08-02 ノバルティス アーゲー Modified meningococcal fHBP polypeptide
GB0919690D0 (en) 2009-11-10 2009-12-23 Guy S And St Thomas S Nhs Foun compositions for immunising against staphylococcus aureus
ES2707778T3 (en) 2009-12-30 2019-04-05 Glaxosmithkline Biologicals Sa Immunogens polysaccharides conjugated with carrier proteins of E. coli
GB201003333D0 (en) 2010-02-26 2010-04-14 Novartis Ag Immunogenic proteins and compositions
GB201005625D0 (en) 2010-04-01 2010-05-19 Novartis Ag Immunogenic proteins and compositions
EP2556151A1 (en) 2010-04-07 2013-02-13 Novartis AG Method for generating a parvovirus b19 virus-like particle
US9597326B2 (en) 2010-04-13 2017-03-21 Glaxosmithkline Biologicals Sa Benzonapthyridine compositions and uses thereof
KR20130121699A (en) 2010-05-28 2013-11-06 테트리스 온라인, 인코포레이티드 Interactive hybrid asynchronous computer game infrastructure
GB201009861D0 (en) 2010-06-11 2010-07-21 Novartis Ag OMV vaccines
MX2013000163A (en) 2010-07-06 2013-03-05 Novartis Ag Norovirus derived immunogenic compositions and methods.
US9192661B2 (en) 2010-07-06 2015-11-24 Novartis Ag Delivery of self-replicating RNA using biodegradable polymer particles
GB201017519D0 (en) 2010-10-15 2010-12-01 Novartis Vaccines Inst For Global Health S R L Vaccines
WO2012072769A1 (en) 2010-12-01 2012-06-07 Novartis Ag Pneumococcal rrgb epitopes and clade combinations
EP2655389A2 (en) 2010-12-24 2013-10-30 Novartis AG Compounds
SI2667892T1 (en) 2011-01-26 2019-05-31 Glaxosmithkline Biologicals Sa Rsv immunization regimen
GB201101665D0 (en) 2011-01-31 2011-03-16 Novartis Ag Immunogenic compositions
AU2012255971A1 (en) 2011-05-13 2013-05-02 Novartis Ag Pre-fusion RSV F antigens
CA2841047A1 (en) 2011-07-06 2013-01-10 Novartis Ag Immunogenic compositions and uses thereof
ES2656050T3 (en) 2011-07-06 2018-02-22 Glaxosmithkline Biologicals Sa Immunogenic compositions combination and uses thereof
ES2687129T3 (en) 2011-07-25 2018-10-23 Glaxosmithkline Biologicals Sa Compositions and methods for assessing functional immunogenicity of vaccines against parvovirus
EP2755683B1 (en) 2011-09-14 2019-04-03 GlaxoSmithKline Biologicals SA Methods for making saccharide-protein glycoconjugates
EP2776069A1 (en) 2011-11-07 2014-09-17 Novartis AG Carrier molecule comprising a spr0096 and a spr2021 antigen
WO2013108272A2 (en) 2012-01-20 2013-07-25 International Centre For Genetic Engineering And Biotechnology Blood stage malaria vaccine
MX2014014067A (en) 2012-05-22 2015-02-04 Novartis Ag Meningococcus serogroup x conjugate.
JP2015522580A (en) 2012-07-06 2015-08-06 ノバルティス アーゲー Immunological compositions and the use thereof
AU2013320313B2 (en) 2012-09-18 2018-07-12 Glaxosmithkline Biologicals Sa Outer membrane vesicles
TR201808684T4 (en) 2012-10-02 2018-07-23 Glaxosmithkline Biologicals Sa Non-linear saccharide conjugates.
KR20150073943A (en) 2012-10-03 2015-07-01 글락소스미스클라인 바이오로지칼즈 에스.에이. Immunogenic composition
US9260719B2 (en) * 2013-01-08 2016-02-16 Idera Pharmaceuticals, Inc. Immune regulatory oligonucleotide (IRO) compounds to modulate toll-like receptor based immune response
EP2870974A1 (en) 2013-11-08 2015-05-13 Novartis AG Salmonella conjugate vaccines
JPWO2016152767A1 (en) * 2015-03-20 2018-03-15 国立研究開発法人医薬基盤・健康・栄養研究所 CpG spacer oligonucleotides containing complexes and uses thereof having immunostimulatory activity
BR112017028011A2 (en) 2015-06-26 2018-08-28 Seqirus Uk Ltd corresponding influenza vaccines antigenically

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5856462A (en) * 1996-09-10 1999-01-05 Hybridon Incorporated Oligonucleotides having modified CpG dinucleosides
US6172208B1 (en) * 1992-07-06 2001-01-09 Genzyme Corporation Oligonucleotides modified with conjugate groups
US6218371B1 (en) * 1998-04-03 2001-04-17 University Of Iowa Research Foundation Methods and products for stimulating the immune system using immunotherapeutic oligonucleotides and cytokines

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2246503A1 (en) * 1996-02-15 1997-08-21 National Institutes Of Health Rnase l activators and antisense oligonucleotides effective to treat rsv infections
ES2298269T3 (en) * 2000-09-26 2008-05-16 Idera Pharmaceuticals, Inc. Modulation of immunostimulatory activity of immunostimulatory oligonucleotide Analogs by Positional chemical changes.
ES2487645T3 (en) * 2001-06-21 2014-08-22 Dynavax Technologies Corporation chimeric immunomodulatory compounds and methods of use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172208B1 (en) * 1992-07-06 2001-01-09 Genzyme Corporation Oligonucleotides modified with conjugate groups
US5856462A (en) * 1996-09-10 1999-01-05 Hybridon Incorporated Oligonucleotides having modified CpG dinucleosides
US6218371B1 (en) * 1998-04-03 2001-04-17 University Of Iowa Research Foundation Methods and products for stimulating the immune system using immunotherapeutic oligonucleotides and cytokines

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9028845B2 (en) 2001-06-21 2015-05-12 Dynavax Technologies Corporation Chimeric immunomodulatory compounds and methods of using the same-IV
EP1625140A2 (en) * 2002-12-23 2006-02-15 Dynavax Technologies Corporation Branched immunomodulatory compounds and methods of using the same
US7625872B2 (en) 2002-12-23 2009-12-01 Dynavax Technologies Corporation Branched immunomodulatory compounds and methods of using the same
EP1625140A4 (en) * 2002-12-23 2008-06-18 Dynavax Tech Corp Branched immunomodulatory compounds and methods of using the same
US7851454B2 (en) 2003-02-07 2010-12-14 Idera Pharmaceutials, Inc. Short immunomodulatory oligonucleotides
WO2004071468A3 (en) * 2003-02-07 2007-01-18 Hybridon Inc Short immunomodulatory oligonucleotides
US7354907B2 (en) * 2003-02-07 2008-04-08 Idera Pharmaceuticals, Inc. Short immunomodulatory oligonucleotides
JP2007531699A (en) * 2003-07-15 2007-11-08 イデラ ファーマシューティカルズ インコーポレイテッド The immunostimulatory oligonucleotides and / or immunomer compounds used in combination with cytokines and / or chemotherapeutic agent or radiation therapy, synergistic stimulation of the immune system
US20110158937A1 (en) * 2003-07-15 2011-06-30 Idera Pharmaceuticals, Inc. Synergistic stimulation of the immune system using immunostimulatory oligonucleotides and/or immunomer compounds in conjunction with cytokines and/or chemotherapeutic agents or radiation therapy
KR101138131B1 (en) * 2003-12-08 2012-04-23 이데라 파마슈티칼즈, 인코포레이티드 Modulation of immunostimulatory properties by small oligonucleotide-based compounds
JP2007530449A (en) * 2003-12-08 2007-11-01 イデラ ファーマシューティカルズ インコーポレイテッド Regulation of immune stimulating properties by compounds based on small oligonucleotide
US7713535B2 (en) 2003-12-08 2010-05-11 Idera Pharmaceuticals, Inc. Modulation of immunostimulatory properties by small oligonucleotide-based compounds
EP2060269A3 (en) * 2003-12-08 2009-08-19 Hybridon, Inc. Modulation of immunostimulatory properties by small oligonucleotide-based compounds
JP2005187402A (en) * 2003-12-25 2005-07-14 Japan Science & Technology Agency Immune activity enhancer and method for enhancing immune activity by using the same
JP2007523173A (en) * 2004-02-20 2007-08-16 イデラ ファーマシューティカルズ インコーポレイテッド Strong mucosal immune responses induced by modified immunomodulatory oligonucleotide
WO2006080946A2 (en) * 2004-06-08 2006-08-03 Coley Pharmaceutical Gmbh Abasic oligonucleotide as carrier platform for antigen and immunostimulatory agonist and antagonist
WO2006080946A3 (en) * 2004-06-08 2006-12-21 Coley Pharm Gmbh Abasic oligonucleotide as carrier platform for antigen and immunostimulatory agonist and antagonist
US8420615B2 (en) 2004-06-15 2013-04-16 Idera Pharmaceuticals, Inc. Immunostimulatory oligonucleotide multimers
JP4942646B2 (en) * 2004-06-15 2012-05-30 イデラ ファーマシューティカルズ インコーポレイテッドIdera Pharmaceuticals, Inc. Immunostimulatory oligonucleotide multimers
EP1765417A4 (en) * 2004-06-15 2009-03-25 Idera Pharmaceuticals Inc Immunostimulatory oligonucleotide multimers
JP2008502688A (en) * 2004-06-15 2008-01-31 イデラ ファーマシューティカルズ インコーポレイテッド Immunostimulatory oligonucleotide multimers
AU2005257938B2 (en) * 2004-06-15 2010-11-11 Idera Pharmaceuticals, Inc. Immunostimulatory oligonucleotide multimers
EP1765417A2 (en) * 2004-06-15 2007-03-28 Hybridon, Inc. Immunostimulatory oligonucleotide multimers
EP1942945A2 (en) * 2005-11-07 2008-07-16 Idera Pharmaceuticals Immunostimulatory properties of oligonucleotide-based compounds comprising modified immunostimulatory dinucleotides
EP2402442A3 (en) * 2005-11-07 2012-03-28 Idera Pharmaceuticals Immunostimulatory properties of oligonucleotide-based compounds comprising modified immunostimulatory dinucleotides
EP1942945A4 (en) * 2005-11-07 2009-01-21 Idera Pharmaceuticals Immunostimulatory properties of oligonucleotide-based compounds comprising modified immunostimulatory dinucleotides
EP2371956A3 (en) * 2005-11-07 2012-01-04 Idera Pharmaceuticals Immunostimulatory properties of oligonucleotide-based compounds comprising modified immunostimulatory dinucleotides
WO2007071710A2 (en) 2005-12-22 2007-06-28 Glaxosmithkline Biologicals Sa Vaccine comprising streptococcus pneumoniae capsular polysaccharide conjugates
EP2382986A2 (en) 2005-12-22 2011-11-02 GlaxoSmithKline Biologicals s.a. Vaccine against streptococcus pneumoniae
EP2384765A2 (en) 2005-12-22 2011-11-09 GlaxoSmithKline Biologicals S.A. Streptococcus pneumoniae vaccine
WO2007071707A2 (en) 2005-12-22 2007-06-28 Glaxosmithkline Biologicals Sa Pneumococcal polysaccharide conjugate vaccine
EP2402025A2 (en) 2005-12-22 2012-01-04 GlaxoSmithKline Biologicals S.A. Vaccine
WO2007071711A2 (en) 2005-12-22 2007-06-28 Glaxosmithkline Biologicals Sa Vaccine
EP3020411A1 (en) 2005-12-22 2016-05-18 GlaxoSmithKline Biologicals s.a. Vaccine
EP2476434A1 (en) 2006-03-30 2012-07-18 GlaxoSmithKline Biologicals S.A. Immunogenic composition
EP3141261A1 (en) 2006-03-30 2017-03-15 GlaxoSmithKline Biologicals S.A. Immunogenic composition
US8580268B2 (en) 2006-09-27 2013-11-12 Coley Pharmaceutical Gmbh CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity
US10260071B2 (en) 2006-09-27 2019-04-16 Coley Pharmaceutical Gmbh CpG oligonucleotide analogs containing hydrophobic T analogs with enhanced immunostimulatory activity
US8557247B2 (en) 2007-05-24 2013-10-15 Glaxosmithkline Biologicals Sa Lyophilised antigen composition
EP2489367A1 (en) 2007-05-24 2012-08-22 GlaxoSmithKline Biologicals S.A. Lyophilised antigen composition
EP2476431A1 (en) 2007-05-24 2012-07-18 GlaxoSmithKline Biologicals S.A. Lyophilised antigen composition
WO2009000826A1 (en) 2007-06-26 2008-12-31 Glaxosmithkline Biologicals S.A. Vaccine comprising streptococcus pneumoniae capsular polysaccharide conjugates
EP2687228A2 (en) 2007-06-26 2014-01-22 GlaxoSmithKline Biologicals S.A. Vaccine comprising streptococcus pneumoniae capsular polysaccharide conjugates
US10111967B2 (en) 2007-09-04 2018-10-30 Curevac Ag Complexes of RNA and cationic peptides for transfection and for immunostimulation
US9226959B2 (en) 2008-01-31 2016-01-05 Curevac Ag Nucleic acids comprising formula (NuGlXmGnNv)a and derivatives thereof as immunostimulating agent/adjuvant
US9572874B2 (en) 2008-09-30 2017-02-21 Curevac Ag Composition comprising a complexed (M)RNA and a naked mRNA for providing or enhancing an immunostimulatory response in a mammal and uses thereof
EP3087988A3 (en) * 2008-10-06 2017-03-01 Idera Pharmaceuticals, Inc. Use of inhibitors of toll-like receptors in the prevention and treatment of hypercholesterolemia and hyperlipidemia and diseases related thereto
WO2011015590A1 (en) 2009-08-05 2011-02-10 Glaxosmithkline Biologicals S.A. Immunogenic composition comprising variants of staphylococcal clumping factor a
WO2011015591A1 (en) 2009-08-05 2011-02-10 Glaxosmithkline Biologicals S.A. Immunogenic composition comprising antigenic s. aureus proteins
US9907862B2 (en) 2009-09-03 2018-03-06 Curevac Ag Disulfide-linked polyethyleneglycol/peptide conjugates for the transfection of nucleic acids
US9314535B2 (en) 2009-09-03 2016-04-19 Curevac Ag Disulfide-linked polyethyleneglycol/peptide conjugates for the transfection of nucleic acids
WO2011110241A1 (en) 2010-03-09 2011-09-15 Glaxosmithkline Biologicals S.A. Immunogenic composition comprising s. pneumoniae polysaccharides conjugated to carrier proteins
US8968746B2 (en) 2010-07-30 2015-03-03 Curevac Gmbh Complexation of nucleic acids with disulfide-crosslinked cationic components for transfection and immunostimulation
EP2655623B1 (en) 2010-12-23 2017-02-22 Mologen AG Non-coding immunomodulatory dna construct
WO2012139225A1 (en) 2011-04-13 2012-10-18 Glaxosmithkline Biologicals S.A. Fusion proteins and combination vaccines comprising haemophilus influenzae protein e and pilin a
EP3498292A1 (en) 2014-02-24 2019-06-19 GlaxoSmithKline Biologicals SA Uspa2 protein constructs and uses thereof
WO2015125118A1 (en) 2014-02-24 2015-08-27 Glaxosmithkline Biologicals Sa Uspa2 protein constructs and uses thereof
WO2016091904A1 (en) 2014-12-10 2016-06-16 Glaxosmithkline Biologicals Sa Method of treatment
WO2018178265A1 (en) 2017-03-31 2018-10-04 Glaxosmithkline Intellectual Property Development Limited Immunogenic composition, use and method of treatment
WO2018178264A1 (en) 2017-03-31 2018-10-04 Glaxosmithkline Intellectual Property Development Limited Immunogenic composition, use and method of treatment
WO2019034575A1 (en) 2017-08-14 2019-02-21 Glaxosmithkline Biologicals Sa Methods of boosting immune responses

Also Published As

Publication number Publication date
KR20040047969A (en) 2004-06-05
AU2002365141B2 (en) 2007-06-14
WO2003057822A9 (en) 2004-07-01
AU2002365141A1 (en) 2003-07-24
WO2003035836A2 (en) 2003-05-01
JP5005878B2 (en) 2012-08-22
JP2005518402A (en) 2005-06-23
WO2003057822A3 (en) 2004-02-26
KR100945104B1 (en) 2010-03-02
AU2002365141C1 (en) 2008-07-24
CA2463798A1 (en) 2003-07-17
CA2463798C (en) 2015-02-03

Similar Documents

Publication Publication Date Title
Zhao et al. Effect of different chemically modified oligodeoxynucleotides on immune stimulation
ES2634328T3 (en) Immunostimulatory Nucleic Acids
DE60132471T2 (en) Modulating the immunostimulatory activity of immunostimulatory oligonucleotide by chemical positional changes
JP4989225B2 (en) Nucleic Acids lipophilic conjugate
JP4383534B2 (en) The combination motif immune stimulatory oligonucleotides with improved activity
JP4101888B2 (en) Immunostimulatory oligonucleotides, compositions thereof and methods of use thereof
CN100338086C (en) Immunostimulatory nucleic acid molecules
ES2233426T3 (en) Modulation of immune stimulation by CpG oligonucleotide measure by changing the position of nucleosides.
US20060217328A1 (en) Synergisitic stimulation of the immune system using immunostimulatory oligonucleotides and/or immunomer compounds in conjunction with cytokines and/or chemotherapeutic agents or radiation therapy
ES2645158T3 (en) Multimers immunostimulatory oligonucleotides
JP2007509983A (en) C-class oligonucleotide analogs with enhanced immune stimulation
EP2960333B1 (en) Composition for inhibiting gene expression and uses thereof
US20070280929A1 (en) Adjuvant in the form of a lipid-modified nucleic acid
US8853375B2 (en) Toll like receptor modulators
AU2011329668B2 (en) Immune regulatory oligonucleotide (IRO) compounds to modulate toll-like receptor based immune response
AU2005282889B2 (en) Methods and conpositions for inhibition of innate immune responses and autoimmunity
US8759310B2 (en) Stabilized immune modulatory RNA (SIMRA) compounds for TLR7 and TLR8
ES2536103T3 (en) immunostimulatory oligoribonucleotides
US7115579B2 (en) Modulation of oligonucleotide CpG-mediated immune stimulation by positional modification of nucleosides
JP4443810B2 (en) Adjusting oligonucleotide CpG induced immune stimulation by positional modification of nucleosides
US7935351B2 (en) Use of CPG oligodeoxynucleotides to induce angiogenesis
CN101287742B (en) Adjusting oligonucleotide (an IRO) based on variation of an immune response modulating Toll-like receptor compound
JP2004537535A (en) And their use chimeric immunomodulatory compound
US20050239733A1 (en) Sequence requirements for inhibitory oligonucleotides
JP4643906B2 (en) Synthetic double stranded oligonucleotide for targeted inhibition of gene expression

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

WWE Wipo information: entry into national phase

Ref document number: 2002365141

Country of ref document: AU

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2463798

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003558124

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020047006160

Country of ref document: KR

COP Corrected version of pamphlet

Free format text: PAGES 1/21-21/21, DRAWINGS, REPLACED BY NEW PAGES 1/20-20/20

WWG Wipo information: grant in national office

Ref document number: 2002365141

Country of ref document: AU