CN102044648B - 聚芳基醚苯并咪唑离子交换膜及其制备和全钒液流电池 - Google Patents

聚芳基醚苯并咪唑离子交换膜及其制备和全钒液流电池 Download PDF

Info

Publication number
CN102044648B
CN102044648B CN200910187902XA CN200910187902A CN102044648B CN 102044648 B CN102044648 B CN 102044648B CN 200910187902X A CN200910187902X A CN 200910187902XA CN 200910187902 A CN200910187902 A CN 200910187902A CN 102044648 B CN102044648 B CN 102044648B
Authority
CN
China
Prior art keywords
preparation
benzimidazole
amberplex
film
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200910187902XA
Other languages
English (en)
Other versions
CN102044648A (zh
Inventor
张华民
代化
毕成
肖少华
麦振声
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Rongke Power Co Ltd
Original Assignee
Dalian Rongke Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Rongke Power Co Ltd filed Critical Dalian Rongke Power Co Ltd
Priority to CN200910187902XA priority Critical patent/CN102044648B/zh
Priority to EP10823010.3A priority patent/EP2490279B1/en
Priority to JP2012533463A priority patent/JP5451892B2/ja
Priority to PCT/CN2010/074501 priority patent/WO2011044778A1/zh
Priority to US13/395,991 priority patent/US9276282B2/en
Publication of CN102044648A publication Critical patent/CN102044648A/zh
Application granted granted Critical
Publication of CN102044648B publication Critical patent/CN102044648B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/18Polybenzimidazoles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明涉及适用于全钒氧化还原液流电池的一种聚芳基醚苯并咪唑离子交换膜及其制备方法。本发明还涉及包含本发明聚合物离子交换膜的全钒氧化还原液流电池。本发明聚芳基醚苯并咪唑离子交换膜的制备条件温和,制备工艺简单,有利于实现批量生产。通过调节醚键和咪唑环的比例,制备的聚芳基醚苯并咪唑离子交换膜具有优良力学强度的同时具有良好的韧性,其在全钒氧化还原液流电池中具有优良的质子传导性能和优异的阻隔钒离子渗透性能。

Description

聚芳基醚苯并咪唑离子交换膜及其制备和全钒液流电池
技术领域
本发明涉及一种聚芳基醚苯并咪唑离子交换膜及其制备方法,特别涉及该聚芳基醚苯并咪唑离子交换膜在全钒氧化还原液流电池中的应用。
背景技术
全钒氧化还原液流电池是以不同价态钒离子硫酸溶液作为电解液、以离子交换膜为隔膜的新型储能电池,具有容量和功率可调、大电流无损深度放电、使用寿命长、易操作和维护等优点,通过对现有电网系统“削峰填谷”,将不稳定的电能输入变为连续、安全可靠的电能输出,改善电网安全性和可靠性,是风力、太阳能发电领域理想的储能系统,具有广阔的应用空间。
全钒氧化还原液流的隔膜是核心部件。液流电池的性能和成本在很大程度上取决于所用的膜材料。全钒氧化还原液流电池用隔膜要求具有优异的化学稳定性,良好的质子传导性能和良好的阻钒离子渗透性能。目前使用的隔膜主要是杜邦公司生产的全氟磺酸离子交换膜(
Figure G200910187902XD00011
膜),虽然其具有优异的化学稳定性和质子传导性能,但是高昂的价格和较高的钒离子透过率限制了其广泛应用。因此,开发低成本、高性能的全钒氧化还原液流电池用隔膜是液流电池领域十分关注的课题。
聚苯并咪唑是一种碱性聚合物(pKa=5.5),能够与强酸杂化而形成一种酸掺杂体系而具备传导质子的能力,文献(Xavier Glipa,J.Mater.Chem.,1999,9,3045-3049)报道磷酸和硫酸掺杂的聚苯并咪唑膜室温下的质子电导率数量级在10-3S cm-1,进一步提高温度膜的质子传导能力进一步提高。因而,磷酸掺杂的聚苯并咪唑膜被广泛用于高温质子交换膜燃料电池领域。全钒氧化还原液流电池采用不同价态钒离子的硫酸溶液作为电解液,因而,硫酸掺杂的聚苯并咪唑膜能够用作全钒氧化还原液流电池隔膜起传导质子的作用。目前,市场上唯一商业化的聚苯并咪唑树脂为聚[2,2’-(间-亚苯基)-5,5’-二苯并咪唑],该树脂存在难熔融、难溶解、难加工的缺陷。其成膜过程先将树脂在高温250℃加压条件下溶解在有机溶剂如N,N-二甲基乙酰胺(沸点165℃)中,再浇铸成膜(Journal of Membrane Science,2006,280,351-362)。成膜过程对实验装置要求较高,操作条件较为苛刻。而且,全芳香结构的聚[2,2’-(间-亚苯基)-5,5’-二苯并咪唑]制备的膜刚性太强,缺乏韧性。全钒氧化还原液流电池的工作环境要求膜具有良好力学强度的同时还需要具有良好的韧性,以应对电池组装力和长期的流体冲刷产生的作用力。因此,从液流电池实际应用的角度来看,应当有针对性的开发具有良好溶解和加工性能的聚苯并咪唑树脂,能够在较温和的条件下制备酸掺杂的聚并咪唑离子交换膜,得到成本低廉、在全钒氧化还原液流电池中具有良好性能的离子交换膜,得到成本低廉、具有良好韧性、在全钒氧化还原液流电池中具有良好性能的离子交换膜。
发明内容
本发明的目的在于提供一种聚芳基醚苯并咪唑离子交换膜及其制备方法,以及其在全钒液流电池中的应用。
本发明的聚芳基醚苯并咪唑膜的结构通式如下:
Figure G200910187902XD00021
其中:0<y<1,n=20~2000
R1代表:
Figure G200910187902XD00022
R2代表:
Figure G200910187902XD00023
中的一种;
R3代表:
中的一种;
本发明所述的聚芳基醚苯并咪唑离子交换膜的制备方法,包括如下步骤:
(1)将P2O5溶解在CH3SO3H中形成澄清溶液,其中P2O5与CH3SO3H的重量比为0.8∶10~2∶10。
(2)将3,4-二氨基苯甲酸,含醚键二元羧酸和芳香四元胺以一定的摩尔比加入到步骤1配制的溶液中。其中含醚键二元羧酸和芳香四元胺加入的摩尔数之比为1∶1,含醚键二元羧酸和芳香四元胺的摩尔数之和与3,4-二氨基苯甲酸的摩尔数之比为9∶1~5∶5,三种单体重量占整个体系重量的8~20%。在惰性气体保护条件下,于120~160℃反应10~300min后,得到聚芳基醚苯并咪唑溶液。
(3)将得到的聚芳基醚苯并咪唑溶液直接浇铸于玻璃板或不锈钢板上,于60~100℃下干燥5h以上,然后80~150℃真空干燥1h以上成膜,将膜浸泡在去离子水或乙醇中2天以上除去膜中残留的CH3SO3H;将制备的膜浸入硫酸或者磷酸1h以上,得到聚芳基醚苯并咪唑离子交换膜,膜的厚度在10~200μm之间。
所述的含醚键二元羧酸为4,4’-羟基二苯甲酸,4,4’-[(1,4-亚苯基)双氧]二苯甲酸,4,4’-[2-苯基-(1,4-亚苯基)双氧]二苯甲酸中的一种。
所述的芳香四元胺为:3,3,4,4’-四氨基联苯,2,3,6,7-萘四胺,1,2,4,5-苯四胺,3,3,4,4’-四氨基二苯醚,3,3,4,4’-四氨基二苯硫醚,3,3,4,4’-四氨基二苯砜,3,3,4,4’-四氨基二苯酮,3,3,4,4’-四氨基二苯基甲烷2,2-二(3,4-二氨基苯基)丙烷或2,2-二(3,4-二氨基苯基)六氟丙烷。
所述的硫酸和磷酸的浓度在1~16mol L-1之间。
本发明还提供包括本方法制备的聚芳基醚苯并咪唑离子交换膜的全钒氧化还原液流电池。
本发明的有益结果是:(1)本发明通过选择活性较高的含醚键二元羧酸与3,4-二氨基苯甲酸和芳香四元胺反应,合成聚芳醚基苯并咪唑的条件温和,通过将反应溶液直接浇铸制备聚合物膜的工艺操作步骤简单,有利于实现批量生产。(2)单体3,4-二氨基苯甲酸由于同时含有氨基和羧酸基团,在本实验条件下,能够在发生自聚的同时和含醚键二元羧酸、芳香四元胺发生共聚。便于调节聚合物体系中醚键和咪唑环的比例。(3)通过调节三种反应单体的比例来调节聚芳醚基苯并咪唑中醚键的含量,制备的聚芳基醚苯并咪唑离子交换膜既具有优异的力学性能又具有良好的韧性,同时具有良好的抗氧化性能。(4)聚芳基醚苯并咪唑离子交换膜应用于全钒氧化还原液流电池具有优良的质子传导性能和优异的阻隔钒离子渗透性能。
附图说明
图1为实施例1干态聚芳基醚苯并咪唑膜的拉伸曲线。
图2为实施例1聚芳基醚苯并咪唑离子交换膜的拉伸曲线。
图3为实施例6聚芳基醚苯并咪唑离子交换膜的全钒氧化还原电池在50mA cm-2时的充放电曲线。
具体实施方式
下面的实施例是对本发明的进一步说明,而不是限制本发明的范围。
实施例1
将P2O5和CH3SO3H以重量比为1∶10的比例在加热搅拌条件下混合形成均匀透明的溶液,取200ml加入干燥的三颈烧瓶中,然后将4.56g 3,4-二氨基苯甲酸,18.1g 4,4’-羟基二苯甲酸和15.0g 3,3,4,4’-四胺基联苯加入三颈烧瓶充分溶解,缓慢加热至140℃,然后反应60min,得到粘稠的聚合物溶液,将聚合物溶液倾倒在平铺的玻璃板上,用铸模刀推平,于60℃干燥20h后真空110℃干燥10h。将膜从玻璃板上取下,用去离子水和乙醇洗涤除去残留的CH3SO3H,取出烘干得到干态的聚合物膜。溶解在二甲亚砜中配成0.5gL-1的溶液,用旋转粘度仪测得其固有粘度为2.4dL g-1,干态聚合物膜的拉伸曲线见图1,膜的拉伸强度为134MPa,断裂伸长率为12.3%,表明聚合物具有较高的分子量,制备的膜具有很好的强度和一定的韧性。聚合物膜1H NMR:(500MHz,DMSO-d6),δ13.10(s,3H),δ8.53(s,1H),δ8.20-8.30(m,6H),δ7.65-7.80(m,6H),δ7.30(d,4H)。FTIR分析:3450-3250cm-2,γ(N-H);1630cm-2,γ(C=N);1243cm-2和1171cm-2,γ(Ar-O-Ar);1443cm-2,γ(2,6-二取代咪唑环的面内环振动特征吸收峰)。
将干态聚合物膜室温浸泡在4M硫酸中处理3h,得到厚度为35μ的聚芳基醚苯并咪唑离子交换膜。膜的拉伸曲线见图2,膜的拉伸强度为67MPa,断裂伸长率为23%,表明制备的离子交换膜维持了良好的强度和韧性。
实施例2
同实施例1,用6M磷酸取代硫酸将膜室温浸泡处理3天,取出并烘干得到厚度为45μ的聚芳基醚苯并咪唑离子交换膜。膜的拉伸强度为90MPa,断裂伸长率为28%。
实施例3
同实施例1,用12M磷酸取代硫酸将膜室温浸泡处理3天,取出并烘干得到厚度为80μ的聚芳基醚苯并咪唑离子交换膜。膜的拉伸强度为35MPa,断裂伸长率为95%。
实施例4
将P2O5和CH3SO3H以重量比为0.8∶10的比例在加热搅拌条件下混合形成均匀透明的溶液,取100ml加入干燥的三颈烧瓶中,然后将1.52g 3,4-二氨基苯甲酸,10.32g 4,4’-羟基二苯甲酸和8.57g 3,3,4,4’-四胺基联苯加入三颈烧瓶充分溶解,缓慢加热至160℃,然后反应50min,得到粘稠的聚合物溶液,将聚合物溶液倾倒在平铺的玻璃板上,用铸模刀推平,于60℃干燥20h后真空110℃干燥10h。将膜从玻璃板上取下,用去离子水和乙醇洗涤除去残留的CH3SO3H,取出烘干。聚合物膜1H NMR:(500MHz,DMSO-d6),δ13.10(s,3H),δ8.53(s,1H),δ8.20-8.30(m,6H),δ7.65-7.80(m,6H),δ7.30(d,4H)。FTIR分析:3450-3250cm-2,γ(N-H);1630cm-2,γ(C=N);1243cm-2和1171cm-2,γ(Ar-O-Ar);1443cm-2,γ(2,6-二取代咪唑环的面内环振动特征吸收峰)。
将干态聚合物膜室温浸泡在10M磷酸中处理72h,烘干得到厚度为70μ的聚芳基醚苯并咪唑离子交换膜。膜的拉伸强度为45MPa,断裂伸长率为83%。
实施例5
同实施例4,用3M硫酸取代磷酸将膜室温浸泡处理3天,取出得到厚度为40μ的聚芳基醚苯并咪唑离子交换膜。膜的拉伸强度为60MPa,断裂伸长率为32%。
实施例6
将实施例1中的聚芳基醚苯并咪唑离子交换膜组装全钒氧化还原液流电池,活性碳毡为催化层,石墨板为双极板,膜有效面积为6cm-2,电流密度为50mA cm-2,电解液中钒离子浓度为1.50mol L-1,H2SO4浓度为3mol L-1。组装的液流电池电流效率为97.2%,电压效率为85.1%,能量效率为82.6%。电池充放电曲线见图3,图中充电时间和放电时间基本相当,放电相当平缓,表明膜的钒渗透率相当低。
实施例7
将实施例5中的聚芳基醚苯并咪唑离子交换膜组装全钒氧化还原液流电池,其他条件同实施例6。组装的液流电池电流效率为97%,电压效率为84.5%,能量效率为82.0%。
比较例
与实施例6和7相比,将膜换成杜邦公司生产的Nafion 115膜,其他条件不变。电池电流效率为90.2%,电压效率为91.9%,能量效率为82.9%。与商业化的Nafion相比,制备的聚芳基醚苯并咪唑离子交换膜在能量效率相当的前提下,电流效率显著提高(提高7个百分点)。

Claims (6)

1.一种聚芳基醚苯并咪唑离子交换膜,其特征在于:结构通式如下,
Figure FDA00002087232900011
其中:0<y<1,n=20~2000
R1代表:
Figure FDA00002087232900012
R2代表:
Figure FDA00002087232900013
中的一种;
R3代表:
Figure FDA00002087232900014
中的一种。
2.一种权利要求1所述聚芳基醚苯并咪唑离子交换膜的制备方法,其特征在于:包括如下步骤,
(1)将P2O5溶解在CH3SO3H中形成澄清溶液,其中P2O5与CH3SO3H的重量比为0.8:10~2:10;
(2)将3,4-二氨基苯甲酸,含醚键二元羧酸和芳香四元胺以一定的摩尔比加入到步骤1配制的溶液中;其中含醚键二元羧酸和芳香四元胺加入的摩尔数之比为1:1,含醚键二元羧酸和芳香四元胺的摩尔数之和与3,4-二氨基苯甲酸的摩尔数之比为9:1~5:5,三种单体总重量占整个体系总重量的8~20%;
在惰性气体保护条件下,于120~160℃反应10~300min后,得到聚芳基醚苯并咪唑溶液;
(3)将得到的聚芳基醚苯并咪唑溶液直接浇铸于玻璃板或不锈钢板上,于60~100℃下干燥5h以上,然后80~150℃真空干燥1h以上成膜,将膜浸泡在去离子水或乙醇中2天以上除去膜中残留的CH3SO3H;将制备的膜浸入硫酸或者磷酸1h以上,得到聚芳基醚苯并咪唑离子交换膜,膜的厚度在10~200μm之间。
3.根据权利要求2所述的制备方法,其特征在于:含醚键二元羧酸为4,4’-羟基二苯甲酸,3,3’-(间-亚苯基双氧)二苯甲酸,4,4’-(间-亚苯基双氧)二苯甲酸中的一种。
4.根据权利要求2所述的制备方法,其特征在于:
芳香四元胺为:3,3’,4,4’-四氨基联苯,2,3,6,7-萘四胺,1,2,4,5-苯四胺,3,3’,4,4’-四氨基二苯醚,3,3’,4,4’-四氨基二苯硫醚,3,3’,4,4’-四氨基二苯砜,3,3’,4,4’-四氨基二苯酮,3,3’,4,4’-四氨基二苯基甲烷、2,2-二(3,4-二氨基苯基)丙烷或2,2-二(3,4-二氨基苯基)六氟丙烷中的一种。
5.根据权利要求2所述的制备方法,其特征在于:硫酸或磷酸的浓度在1~16mol·L-1之间。
6.一种全钒氧化还原液流电池,其特征是:其所应用的离子交换膜为权利要求1的聚芳基醚苯并咪唑离子交换膜。
CN200910187902XA 2009-10-16 2009-10-16 聚芳基醚苯并咪唑离子交换膜及其制备和全钒液流电池 Active CN102044648B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200910187902XA CN102044648B (zh) 2009-10-16 2009-10-16 聚芳基醚苯并咪唑离子交换膜及其制备和全钒液流电池
EP10823010.3A EP2490279B1 (en) 2009-10-16 2010-06-25 Aromatic polymer ion exchange membrane and its complex membrane and its application for acidic electrolyte flow energy storage battery
JP2012533463A JP5451892B2 (ja) 2009-10-16 2010-06-25 芳香族ポリマーイオン交換膜及びその複合膜の酸性電解液フローエネルギー貯蔵電池への応用
PCT/CN2010/074501 WO2011044778A1 (zh) 2009-10-16 2010-06-25 芳香族聚合物离子交换膜及其复合膜在酸性电解液液流储能电池中的应用
US13/395,991 US9276282B2 (en) 2009-10-16 2010-06-25 Aromatic polymer ion exchange membranes, its composite membrane, and its application in acidic electrolyte flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910187902XA CN102044648B (zh) 2009-10-16 2009-10-16 聚芳基醚苯并咪唑离子交换膜及其制备和全钒液流电池

Publications (2)

Publication Number Publication Date
CN102044648A CN102044648A (zh) 2011-05-04
CN102044648B true CN102044648B (zh) 2013-04-10

Family

ID=43875810

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910187902XA Active CN102044648B (zh) 2009-10-16 2009-10-16 聚芳基醚苯并咪唑离子交换膜及其制备和全钒液流电池

Country Status (5)

Country Link
US (1) US9276282B2 (zh)
EP (1) EP2490279B1 (zh)
JP (1) JP5451892B2 (zh)
CN (1) CN102044648B (zh)
WO (1) WO2011044778A1 (zh)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8785023B2 (en) 2008-07-07 2014-07-22 Enervault Corparation Cascade redox flow battery systems
US7820321B2 (en) 2008-07-07 2010-10-26 Enervault Corporation Redox flow battery system for distributed energy storage
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
US9382274B2 (en) 2012-07-27 2016-07-05 Lockheed Martin Advanced Energy Storage, Llc Aqueous redox flow batteries featuring improved cell design characteristics
US8753761B2 (en) 2012-07-27 2014-06-17 Sun Catalytix Corporation Aqueous redox flow batteries comprising metal ligand coordination compounds
US9899694B2 (en) 2012-07-27 2018-02-20 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring high open circuit potential
US8691413B2 (en) 2012-07-27 2014-04-08 Sun Catalytix Corporation Aqueous redox flow batteries featuring improved cell design characteristics
US9865893B2 (en) * 2012-07-27 2018-01-09 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring optimal membrane systems
US9692077B2 (en) 2012-07-27 2017-06-27 Lockheed Martin Advanced Energy Storage, Llc Aqueous redox flow batteries comprising matched ionomer membranes
US10164284B2 (en) 2012-07-27 2018-12-25 Lockheed Martin Energy, Llc Aqueous redox flow batteries featuring improved cell design characteristics
US9768463B2 (en) 2012-07-27 2017-09-19 Lockheed Martin Advanced Energy Storage, Llc Aqueous redox flow batteries comprising metal ligand coordination compounds
US9559374B2 (en) 2012-07-27 2017-01-31 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring large negative half-cell potentials
CN103682211B (zh) * 2012-09-06 2016-09-14 中国科学院大连化学物理研究所 一种多孔隔膜在液流储能电池中的应用
JP6156358B2 (ja) * 2012-11-27 2017-07-05 東レ株式会社 高分子電解質組成物、およびそれを用いた高分子電解質膜、膜電極複合体および固体高分子型燃料電池
CN105009341A (zh) * 2012-12-17 2015-10-28 纳幕尔杜邦公司 具有包含离聚物的隔膜的液流电池
JP6447520B2 (ja) * 2014-02-07 2019-01-09 東洋紡株式会社 レドックス電池用イオン交換膜、複合体、及びレドックス電池
US20160036060A1 (en) * 2014-07-30 2016-02-04 Concurrent Technologies Corporation Composite electrode for flow battery
RU2573836C1 (ru) * 2014-10-21 2016-01-27 ЭлДжи КЕМ, ЛТД. Способ снижения проницаемости мембраны по отношению к ионам ванадия и мембрана, полученная данным способом
JP6837967B2 (ja) 2014-11-18 2021-03-03 レンセラー ポリテクニク インスティチュート 新規ポリマー及びその製造方法
US11236196B2 (en) 2014-11-18 2022-02-01 Rensselaer Polytechnic Institute Polymers and methods for their manufacture
MX2017004888A (es) 2014-11-26 2017-07-27 Lockheed Martin Advanced Energy Storage Llc Complejos de metales de catecolatos sustituidos y baterias de flujo redox que los contienen.
CN105990594A (zh) * 2015-02-12 2016-10-05 张华民 一种酸性液流电池用电解液的制备方法
US10253051B2 (en) 2015-03-16 2019-04-09 Lockheed Martin Energy, Llc Preparation of titanium catecholate complexes in aqueous solution using titanium tetrachloride or titanium oxychloride
US10644342B2 (en) 2016-03-03 2020-05-05 Lockheed Martin Energy, Llc Coordination complexes containing monosulfonated catecholate ligands and methods for producing the same
US10316047B2 (en) 2016-03-03 2019-06-11 Lockheed Martin Energy, Llc Processes for forming coordination complexes containing monosulfonated catecholate ligands
US9938308B2 (en) 2016-04-07 2018-04-10 Lockheed Martin Energy, Llc Coordination compounds having redox non-innocent ligands and flow batteries containing the same
US10343964B2 (en) 2016-07-26 2019-07-09 Lockheed Martin Energy, Llc Processes for forming titanium catechol complexes
US10377687B2 (en) 2016-07-26 2019-08-13 Lockheed Martin Energy, Llc Processes for forming titanium catechol complexes
US10065977B2 (en) 2016-10-19 2018-09-04 Lockheed Martin Advanced Energy Storage, Llc Concerted processes for forming 1,2,4-trihydroxybenzene from hydroquinone
US10930937B2 (en) 2016-11-23 2021-02-23 Lockheed Martin Energy, Llc Flow batteries incorporating active materials containing doubly bridged aromatic groups
US10497958B2 (en) 2016-12-14 2019-12-03 Lockheed Martin Energy, Llc Coordinatively unsaturated titanium catecholate complexes and processes associated therewith
US11621433B2 (en) 2016-12-20 2023-04-04 Rensselaer Polytechnic Institute Proton exchange membrane material and methods of making the same
US10741864B2 (en) 2016-12-30 2020-08-11 Lockheed Martin Energy, Llc Aqueous methods for forming titanium catecholate complexes and associated compositions
US10320023B2 (en) 2017-02-16 2019-06-11 Lockheed Martin Energy, Llc Neat methods for forming titanium catecholate complexes and associated compositions
US20190386276A1 (en) * 2017-03-06 2019-12-19 Council Of Scientific And Industrial Research Porous polybenzimidazole as separator for lithium ion batteries
WO2019010290A1 (en) * 2017-07-06 2019-01-10 Rensselaer Polytechnic Institute IONIC FUNCTIONALIZATION OF AROMATIC POLYMERS FOR ION EXCHANGE MEMBRANES
US20200238272A1 (en) 2017-07-06 2020-07-30 Rensselaer Polytechnic Institute Ionic functionalization of aromatic polymers for ion exchange membranes
US11056698B2 (en) 2018-08-02 2021-07-06 Raytheon Technologies Corporation Redox flow battery with electrolyte balancing and compatibility enabling features
JP7410584B2 (ja) * 2018-09-14 2024-01-10 ユニバーシティー オブ サウス カロライナ レドックスフロー電池用の低透過性ポリベンズイミダゾール(pbi)膜
JP7523808B2 (ja) * 2018-09-14 2024-07-29 ユニバーシティー オブ サウス カロライナ レドックスフロー電池膜を形成する方法
EP3850035A1 (en) 2018-09-14 2021-07-21 University of South Carolina New method for producing pbi films without organic solvents
CA3120957A1 (en) 2018-11-26 2020-06-04 Rensselaer Polytechnic Institute Phosphate anion-quaternary ammonium ion pair coordinated polymer membranes
US11342573B2 (en) 2019-01-11 2022-05-24 Advent Technologies Inc. Ion-imbibed membranes based on proton conducting aromatic polyether type copolymers and their application in redox flow batteries
IT201900013734A1 (it) 2019-08-01 2021-02-01 Eni Spa Membrana a scambio ionico con struttura a cerniera.
EP4037045B1 (en) * 2019-09-27 2024-08-14 Ohki Yamada Separation membrane for redox flow battery, and method of producing said separation membrane
EP4065753A1 (en) 2019-11-25 2022-10-05 Twelve Benefit Corporation Membrane electrode assembly for co x reduction
US11777124B2 (en) 2020-03-06 2023-10-03 University Of South Carolina Proton-conducting PBI membrane processing with enhanced performance and durability
US11465139B2 (en) 2020-03-20 2022-10-11 Rensselaer Polytechnic Institute Thermally stable hydrocarbon-based anion exchange membrane and ionomers
US11271226B1 (en) 2020-12-11 2022-03-08 Raytheon Technologies Corporation Redox flow battery with improved efficiency
CN113948746B (zh) * 2021-10-12 2024-07-26 南京工业大学 一种带有有机层的金属有机骨架膜及其应用
CN114188585B (zh) * 2021-11-26 2024-02-09 大连理工大学 一种含有亲水离子筛分微孔的离子交换膜制备方法
CN114276572B (zh) * 2021-12-07 2023-05-23 常州大学 全钒液流电池用聚醚醚酮基双官能团离子交换膜及其制备方法
WO2023210781A1 (ja) * 2022-04-27 2023-11-02 旭化成株式会社 イオン交換膜、膜電極接合体、レドックスフロー電池用セル、及びレドックスフロー電池
CN115627072B (zh) * 2022-11-01 2023-10-10 河北科技大学 一种聚苯并咪唑/磺化聚亚芳基靛红复合质子交换膜的制备和应用
CN118240252B (zh) * 2024-05-23 2024-08-06 蓝固(湖州)新能源科技有限公司 一种聚合物全固态电解质膜及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1703443A (zh) * 2002-10-08 2005-11-30 东洋纺织株式会社 含有磺酸基的聚亚芳基醚系化合物、含有其的组合物及其制备方法
CN1848504A (zh) * 2005-04-05 2006-10-18 中国科学院大连化学物理研究所 一种高温燃料电池用复合质子交换膜及其制备方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3708439A (en) * 1971-09-28 1973-01-02 Upjohn Co Polybenzimidazoles
US6468688B2 (en) * 1995-05-03 2002-10-22 Pinnacle Vrb Limited High energy density vanadium electrolyte solutions, methods of preparation thereof and all-vanadium redox cells and batteries containing high energy vanadium electrolyte solutions
US5599639A (en) * 1995-08-31 1997-02-04 Hoechst Celanese Corporation Acid-modified polybenzimidazole fuel cell elements
JPH09223513A (ja) * 1996-02-19 1997-08-26 Kashimakita Kyodo Hatsuden Kk 液循環式電池
JP3729296B2 (ja) * 1996-12-10 2005-12-21 株式会社トクヤマ バナジウム系レドックスフロー電池用隔膜
JP3218291B2 (ja) * 1998-12-14 2001-10-15 住友電気工業株式会社 電池用隔膜
JP2000281819A (ja) * 1999-01-27 2000-10-10 Aventis Res & Technol Gmbh & Co Kg 架橋高分子膜の製造方法及び燃料電池
DE10021106A1 (de) * 2000-05-02 2001-11-08 Univ Stuttgart Polymere Membranen
US20020127474A1 (en) * 2001-01-09 2002-09-12 E.C.R.-Electro-Chemical Research Ltd. Proton-selective conducting membranes
EP1465277A1 (en) * 2003-03-19 2004-10-06 HONDA MOTOR CO., Ltd. Solid polymer electrolyte and protonconducting membrane
WO2005090480A1 (ja) * 2004-03-23 2005-09-29 Mitsubishi Gas Chemical Co., Inc. 固体高分子電解質、固体高分子ゲル膜、固体高分子電解質膜、および燃料電池
WO2005111103A1 (ja) * 2004-05-13 2005-11-24 Mitsubishi Gas Chemical Co., Inc. 固体高分子電解質膜および燃料電池
EP1798795B1 (en) * 2004-09-03 2012-08-22 Toray Industries, Inc. Polyelectrolyte material, polyelectrolyte component, membrane electrode composite body, and polyelectrolyte type fuel cell
CN101213700B (zh) * 2005-06-20 2012-11-21 新南创新私人有限公司 用于氧化还原电池和电池组的改进的全氟化膜和改进的电解液
KR100717790B1 (ko) * 2005-07-29 2007-05-11 삼성에스디아이 주식회사 연료 전지용 막-전극 어셈블리 및 이를 포함하는 연료 전지시스템.
CN1312788C (zh) * 2005-09-30 2007-04-25 清华大学 全钒氧化还原液流电池用质子交换复合膜及其制备方法
CN100336866C (zh) * 2005-11-10 2007-09-12 上海交通大学 改性聚苯醚基质子交换膜材料及其制备方法
GB0608079D0 (en) * 2006-04-25 2006-05-31 Acal Energy Ltd Fuel cells
JP2008027627A (ja) * 2006-07-18 2008-02-07 Kansai Electric Power Co Inc:The レドックスフロー電池用隔膜
CN101148537A (zh) * 2007-02-08 2008-03-26 上海交通大学 一种纳米级锆盐分散的改性聚苯醚复合质子交换膜材料
DE102007056423A1 (de) * 2007-11-23 2009-06-04 Süd-Chemie AG Herstellung und Verwendung neuer Polyaniline zur Wasserbehandlung
JP2010086935A (ja) * 2008-09-03 2010-04-15 Sharp Corp レドックスフロー電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1703443A (zh) * 2002-10-08 2005-11-30 东洋纺织株式会社 含有磺酸基的聚亚芳基醚系化合物、含有其的组合物及其制备方法
CN1848504A (zh) * 2005-04-05 2006-10-18 中国科学院大连化学物理研究所 一种高温燃料电池用复合质子交换膜及其制备方法

Also Published As

Publication number Publication date
US20120196188A1 (en) 2012-08-02
EP2490279A1 (en) 2012-08-22
US9276282B2 (en) 2016-03-01
CN102044648A (zh) 2011-05-04
EP2490279A4 (en) 2014-04-30
EP2490279B1 (en) 2017-08-02
JP5451892B2 (ja) 2014-03-26
WO2011044778A1 (zh) 2011-04-21
JP2013507742A (ja) 2013-03-04

Similar Documents

Publication Publication Date Title
CN102044648B (zh) 聚芳基醚苯并咪唑离子交换膜及其制备和全钒液流电池
US9975995B2 (en) Ion conducting polymer comprising partially branched block copolymer and use thereof
CN112955498B (zh) 用于氧化还原液流电池的聚苯并咪唑(pbi)膜
CN101383404B (zh) 一种氟/烃复合离子交换膜及其制备方法
Quan et al. Novel sulfonated poly (ether ether ketone)/triphenylamine hybrid membrane for vanadium redox flow battery applications
Lv et al. Preparation and properties of ZrPA doped CMPSU cross-linked PBI based high temperature and low humidity proton exchange membranes
Lee et al. Dually cross-linked polymer electrolyte membranes for direct methanol fuel cells
US10483576B2 (en) Polymer electrolyte membrane
CN108649255A (zh) 聚苯并咪唑质子交换膜及制备方法和应用
Moorthy et al. Neoteric advancements in polybenzimidazole based polymer electrolytes for high-temperature proton exchange membrane fuel cells-A versatile review
CN105085913A (zh) 一种含支化结构的磺化聚酰亚胺质子导电膜的制备方法
Das et al. Salt‐leaching technique for the synthesis of porous poly (2, 5‐benzimidazole)(ABPBI) membranes for fuel cell application
CN108649256A (zh) 磺化聚苯并咪唑质子交换膜的制备方法和应用
KR20090088646A (ko) 양이온 전도성 폴리술폰계 가교 고분자막, 막-전극 접합체및 연료전지
CN112259769A (zh) 自具微孔聚苯并咪唑质子交换膜及制备方法和应用
CN102120874A (zh) 含交联基团的磺化聚芳醚类聚合物离子交换膜及其应用
KR101778382B1 (ko) 고분자 중합용 조성물, 이를 이용한 고분자, 이를 이용한 고분자 전해질막
Cai et al. Preparation and properties of sulfonated poly (aryl ether sulfone) s proton exchange membranes based on amino graft for vanadium flow battery
KR101771323B1 (ko) 브랜처용 불소계 화합물, 이를 이용한 고분자 및 이를 이용한 고분자 전해질막
Han et al. Poly (phenylene oxide) cross-linked with polybenzimidazole for the applications of high-temperature proton-exchange membrane fuel cells
CN101733021A (zh) 一种互穿网络结构全氟离子交换膜及其制备方法
CN108682883A (zh) 一种氢键自交联型磺化聚酰亚胺膜及其制备方法、应用
KR102055965B1 (ko) 화합물, 이를 포함하는 고분자 전해질막 및 이의 제조방법
CN112820920B (zh) 高温质子交换膜及制备方法、电化学设备
CN115627072B (zh) 一种聚苯并咪唑/磺化聚亚芳基靛红复合质子交换膜的制备和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: DALIAN RONGKE POWER CO., LTD.

Free format text: FORMER OWNER: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES

Effective date: 20120629

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 116023 DALIAN, LIAONING PROVINCE TO: 116025 DALIAN, LIAONING PROVINCE

TA01 Transfer of patent application right

Effective date of registration: 20120629

Address after: 116025 No. 22, XinDa street, Dalian hi tech Industrial Park, Liaoning

Applicant after: Dalian Rongke Power Co., Ltd.

Address before: 116023 Zhongshan Road, Liaoning, No. 457,

Applicant before: Dalian Institute of Chemical Physics, Chinese Academy of Sciences

C14 Grant of patent or utility model
GR01 Patent grant