WO2011044778A1 - 芳香族聚合物离子交换膜及其复合膜在酸性电解液液流储能电池中的应用 - Google Patents

芳香族聚合物离子交换膜及其复合膜在酸性电解液液流储能电池中的应用 Download PDF

Info

Publication number
WO2011044778A1
WO2011044778A1 PCT/CN2010/074501 CN2010074501W WO2011044778A1 WO 2011044778 A1 WO2011044778 A1 WO 2011044778A1 CN 2010074501 W CN2010074501 W CN 2010074501W WO 2011044778 A1 WO2011044778 A1 WO 2011044778A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion exchange
exchange membrane
polymer
membrane
aromatic polymer
Prior art date
Application number
PCT/CN2010/074501
Other languages
English (en)
French (fr)
Inventor
张华民
李先锋
代化
毕成
Original Assignee
中国科学院大连化学物理研究所
大连融科储能技术发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所, 大连融科储能技术发展有限公司 filed Critical 中国科学院大连化学物理研究所
Priority to EP10823010.3A priority Critical patent/EP2490279B1/en
Priority to JP2012533463A priority patent/JP5451892B2/ja
Priority to US13/395,991 priority patent/US9276282B2/en
Publication of WO2011044778A1 publication Critical patent/WO2011044778A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/18Polybenzimidazoles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to an acidic electrolyte liquid flow energy storage battery separator, in particular to an aromatic polymer ion exchange membrane and a composite membrane thereof for use in an acidic electrolyte liquid flow energy storage battery.
  • the liquid energy storage battery containing acidic electrolyte is a new electrochemical energy storage technology with high energy conversion efficiency, flexible system design, large storage capacity, free site selection, deep discharge, safety and environmental protection, low maintenance cost, etc.
  • Advantages are one of the preferred technologies for large-scale and efficient energy storage technology.
  • all vanadium redox flow energy storage batteries are considered to be the most promising and representative of liquid energy storage batteries due to their high safety, good stability, high efficiency, long life (>15 years) and low cost.
  • An energy storage battery is considered to be the most promising and representative of liquid energy storage batteries due to their high safety, good stability, high efficiency, long life (>15 years) and low cost.
  • the ion exchange membrane not only isolates the positive and negative electrolytes, but also provides ion conduction channels for the positive and negative electrolytes. Therefore, ion exchange membranes are required to have good ion conductivity, ion selectivity and chemical stability.
  • Skyllas-kazacos et al. evaluated some commercial films and thought that, besides some perfluorosulfonic acid membranes (such as Flemiotu National, etc.), they have sufficient stable comprehensive properties, such as Selemion CMV, CMS, AMV, DMV, ASS, DSV, etc.) are not sufficiently stable in acidic vanadium solutions (J. Appl Electrochem, 2004, 34(2): 137).
  • Aromatic polymer ion exchange membranes containing nitrogen heterocycles have received extensive attention in various fields due to their excellent mechanical properties, thermal stability and chemical stability. Especially in high-temperature fuel cells, acid-doped nitrogen heterocyclic aromatic polymer films have shown good application prospects. Since acid and nitrogen heterocycles can form a donor-acceptor network capable of transporting protons, such films generally exhibit good proton conductivity. However, during the long-term operation of the fuel cell, the acid doped in the membrane leaks, which leads to a decrease in proton conductivity and thus a decrease in battery performance.
  • the invention relates to the application of a kind of aromatic polymer ion exchange membrane and a composite membrane thereof in an acidic electrolyte liquid storage energy storage battery, in particular to an all-vanadium liquid flow energy storage battery.
  • aromatic polymers are nitrogen heterocycles which can interact with an acid to form a donor-acceptor network.
  • the network structure can transfer protons and maintain the ionic conductivity of the membrane.
  • These membrane materials have excellent thermal stability, chemical stability and good ionic conductivity and can be used in many applications, and are particularly suitable for use as ion exchange membranes in acidic electrolyte flow storage batteries.
  • the nitrogen-containing heterocyclic aromatic polymer according to the present invention is a nitrogen-containing heterocyclic aromatic polymer which is benzimidazole, vinylimidazole, pyridine, vinylpyridine, pyrazole, pyrimidine, thiazole, benzothiazole, oxazole, A homopolymer or copolymer of one or more of benzoxazole, oxadiazole, quinoline, quinoxaline, thiadiazole, tetraterpene.
  • the structural formula of some of the polymers is:
  • n is a positive integer, 10 ⁇ n ⁇
  • R 2 is one of a hydrogen atom, a saturated hydrocarbon of dC 4 or a C 2 -C 4 unsaturated hydrocarbon group.
  • the above nitrogen-containing heterocyclic aromatic polymer according to the present invention is a homopolymer or a copolymer.
  • polybenzimidazole is taken as an example to describe the structure in detail:
  • the polybenzimidazole homopolymer has the following structural formula:
  • the polybenzimidazole copolymer has the following structural formula:
  • X is a positive integer
  • 10 ⁇ x 2 Ri R 3 and R4 are in the following structure
  • 1 2 is one of a hydrogen atom, a d-C 4 saturated hydrocarbon or a c 2 -c 4 unsaturated hydrocarbon group.
  • m and n are the molar percentages of different structural units, respectively, 0 ⁇ n ⁇ 0.8, 0.2 ⁇ m ⁇ l, m+n, and the polybenzimidazoles have the following structural formulas,
  • R 2 represents one of the following structures:
  • R 3 and R 4 are each a hydrogen atom, a dC 4 saturated alkane group or a C 2 -C 4 unsaturated alkane group, and R 3 and may be the same or different groups.
  • copolymer of the present invention may be a random copolymer or a block copolymer.
  • the copolymer of the present invention may also be a copolymer of different nitrogen heterocyclic structures, such as a copolymer of polyoxadiazole and polybenzimidazole, in the following structure.
  • n is a positive integer
  • R 2 is one of a hydrogen atom, a d-C 4 saturated hydrocarbon or a C 2 - C 4 unsaturated hydrocarbon group.
  • the nitrogen-containing heterocyclic aromatic polymer according to the present invention is obtained by a nucleophilic polycondensation reaction [Progress in
  • the ion exchange membrane of the present invention is obtained by a method of casting a film from a polymer of the above structure.
  • the preparation method can be referred to related patents or literature reports.
  • Different polymers should be selected according to their solubility, the polymer is dissolved, and the formed polymer solution is directly cast on a glass plate or other flat plate, dried and volatilized at a certain temperature to obtain an aromatic polymer ion exchange membrane.
  • the aromatic polymer ion exchange membrane is immersed in a strong acid solution having a concentration of 0.1-25 mol/L, the soaking time is 0.05-1000 h, the solution temperature is 5-100 ° C, and the thickness of the aromatic polymer ion exchange membrane is 0.1 to 200 ⁇ m. After acid doping, the number of strong acid molecules contained in each polymer repeat unit is ⁇ 1.
  • the present invention also relates to a composite film material based on the above nitrogen-containing heterocyclic polymer.
  • the invention comprises an organic-inorganic composite membrane material and an organic-organic composite membrane material.
  • the organic phase is the above-mentioned nitrogen heterocyclic polymer and the inorganic phase is inorganic nanoparticles, including inorganic oxide nanoparticles such as silicon oxide, titanium oxide, and zirconium oxide, and also includes zirconium phosphate.
  • Other inorganic nanoparticles such as heteropoly acid, but are not limited to the above.
  • the inorganic particles account for 0.1 ⁇ 40% of the mass of the aromatic polymer, and the organic/inorganic composite ion exchange membrane is prepared; the ion exchange membrane is immersed in a strong acid solution having a concentration of 0.1-25 mol/L, the soaking time is 0.05-1000 h, and the solution temperature is The 5-100 ° C, aromatic polymer ion exchange membrane has a thickness of 0.1 to 200 ⁇ m; after acid doping, the number of strong acid molecules contained in each polymer repeat unit is ⁇ 1.
  • organic-inorganic composite ion exchange membrane wherein the organic phase is a polybenzimidazole polymer material, and the structural formula is as follows.
  • n is a positive integer, 10 ⁇ n ⁇ 200, and R represents the following structure -
  • the organic-inorganic composite membrane material according to the present invention can be obtained by a common solution casting method, and the inorganic particles can be obtained by direct blending or by in situ sol-gel method, but not limited to the above two methods. .
  • the organic-organic composite membrane material of the present invention contains a sulfonic acid type polymer material.
  • a sulfonic acid type polymer material for example, perfluorosulfonic acid polymer, sulfonated polysulfone, sulfonated polypropylene, sulfonated polyethersulfone, sulfonated polyaryl ether sulfone, sulfonated polyarylsulfone, sulfonated polyphenylene ether, sulfonated polyetheretherketone, One or more of sulfonated polyaryletherketones.
  • the sulfonic acid type polymer accounts for 0.1 to 50% of the mass of the aromatic polymer, and an organic/organic composite ion exchange membrane is prepared; the ion exchange membrane is immersed in a strong acid solution having a concentration of 0.1-25 mol/L, and the immersion time is 0.05-1000 h.
  • the solution temperature is 5-100 ° C, and the thickness of the aromatic polymer ion exchange membrane is 0.1 to 200 ⁇ m; after acid doping, the number of strong acid molecules contained in each polymer repeat unit is ⁇ 1.
  • the composite membrane is characterized in that the interaction between the sulfonic acid group and the nitrogen heterocycle can effectively prevent the mutual penetration of ions and improve the selectivity of the membrane particles.
  • the present invention uses an aromatic polymer membrane as an ion exchange membrane for an acidic electrolyte liquid storage battery.
  • the membrane utilizes an acidic electrolyte as a conductive medium, and the nitrogen heterocycle in the acid and polymer can form a structure of the donor acceptor, and a proton is guided by a Grothus hopping mechanism (see Fig. 1).
  • the process has a very low water mobility and a very high ion-selective permeability, which greatly reduces the uneven distribution of the positive and negative electrolytes and self-discharge, and effectively prolongs the service life of the electrolyte;
  • the prepared ion exchange membrane material has good film forming properties.
  • the ion exchange membrane prepared by the present invention has excellent thermal stability, mechanical stability and oxidation stability.
  • the membrane material used in the invention has stable structure and low cost, and is beneficial to the long-term, stable use and large-scale commercial development of the acidic electrolyte liquid storage battery.
  • the ion exchange membrane prepared by the present invention has excellent ion conductivity.
  • the ion exchange membrane prepared by the present invention has good ion selectivity. Cross-contamination of the dielectric on both sides of the flow battery can be avoided.
  • the organic-inorganic composite ion exchange membrane prepared by the invention can effectively improve the ion conductivity and maintain the high ion selectivity in the acidic liquid storage battery.
  • the organic-organic composite ion exchange membrane prepared by the invention can effectively improve the mechanical stability and chemical stability of the membrane.
  • Figure 1 Proton transport mechanism of nitrogen heterocyclic aromatic polymers.
  • Figure 2 Charge and discharge curves of a vanadium redox flow energy storage battery of the polymer ion exchange membrane prepared in Example 1.
  • Figure 3 Infrared spectrum of the polymer prepared in Example 2.
  • Figure 5 is a graph showing the charge and discharge curves of a full vanadium redox flow energy storage battery of the polymer ion exchange membrane prepared in Example 2.
  • Figure 6 Infrared spectrum of the polymer prepared in Example 6.
  • Example 6 Charge and discharge curves of a vanadium redox flow energy storage battery prepared by polymer ion exchange membrane.
  • Figure 9. Nuclear magnetic diagram of the polymer prepared in Example 10.
  • FIG 11 Example 10 Charge and discharge curves of a full vanadium redox flow energy storage cell for preparing a polymer ion exchange membrane.
  • Figure 12 is a graph showing the charge and discharge curves of a full vanadium redox flow energy storage battery for preparing a polymer ion exchange membrane. detailed description
  • the whole vanadium redox flow energy storage battery is assembled.
  • the activated carbon felt is the catalytic layer
  • the graphite plate is the bipolar plate
  • the effective area of the membrane is 9cm- 2
  • the current density is 80 mA cm- 2
  • the electrolysis The concentration of vanadium ions in the liquid was 1.50 mol L - H 2 S0 4 concentration was 3 mol L -
  • the battery current efficiency was 94.8%
  • the voltage efficiency was 88.9%
  • the energy efficiency was 84.5%.
  • a polybenzimidazole having a structure of lg (having a weight average molecular weight of about 50,000) was dissolved in hydrazine, hydrazine-dimethylacetamide to prepare a polymer solution having a mass fraction of 5%.
  • the solution was cast onto a glass plate and flattened with a cast film knife. After drying at 80 ° C for 20 hours, the film was removed from the glass plate. The dry polymer film was immersed in 4 M sulfuric acid for 5 h at room temperature.
  • the above ion exchange membrane is assembled into a vanadium redox flow energy storage battery, and the activated carbon felt is a catalytic layer, stone
  • the ink plate is a bipolar plate, the effective area of the film is 9cm - 2 , the current density is 80 mA cm - 2 , the vanadium ion concentration in the electrolyte is 3 ⁇ 4 1.50mol L" 1 , the concentration of H 2 S0 4 is 3mol L - the current efficiency is 99.34 %, voltage efficiency is 82.17%, energy efficiency is 81.6%.
  • the battery charge and discharge curve is shown in Figure 2. The charging time and discharge time are basically the same, and the discharge is quite flat.
  • the imidazole ion exchange membrane has a coulombic efficiency increase of 5 percentage points under the condition of equivalent energy efficiency, indicating that the vanadium permeability of the membrane is relatively low, effectively avoiding the mutual penetration of vanadium ions and improving
  • n the number of structural units of the polymer, 10 ⁇ n ⁇ 200.
  • Dissolve 3.4 g of phosphorus pentoxide in 34 g of polyphosphoric acid add to a 500 ml three-necked flask, stir at a temperature to form a clear solution, then add 6 mmol of biphenyltetramine, 6 mmol of 4, 4'-dicarboxyl
  • the diphenyl ether was stirred and heated to 200 ° C. After reacting for 20 hours, the temperature was lowered and poured into a 5% sodium hydroxide solution. After standing for 24 hours, wash well with water until the solution is neutral. Filter and dry.
  • the prepared polymer was dissolved in DMSO to prepare a 4% solution, and the solution was cast onto a glass plate and flattened with a cast film knife.
  • the film was removed from the glass plate.
  • the dry polymer film was immersed in 4 M sulfuric acid at room temperature for 5 hours to obtain a polybenzimidazole ion exchange membrane having the following structural unit having a thickness of about 35 ⁇ m.
  • represents the number of structural units of the polymer, 10 ⁇ ⁇ ⁇ 200.
  • the infrared spectrum of the polymer is shown in Fig. 3, confirming the structure of the prepared polymer.
  • the stress-strain curve of the polymer film is shown in Fig. 4.
  • the film had a tensile strength of 121.9 MPa and an elastic modulus of 3.5 GPa, showing good mechanical properties.
  • the molecular weight is higher (weight average molecular weight is about 120,000) and chemical stability is higher. This type of polymer effectively increases the solubility and processing properties of the polymer due to the introduction of ether linkages.
  • the prepared polybenzimidazole ion exchange membrane is assembled into a full vanadium redox flow energy storage battery, the activated carbon felt is a catalytic layer, the graphite plate is a bipolar plate, the effective area of the membrane is 9 cm- 2 , and the current density is 80 mA cm- 2 .
  • the concentration of vanadium ion in the electrolyte is 3 ⁇ 4 1.50mol L" 1 , the concentration of H 2 S0 4 is 3mol L - the current efficiency is 99.2%, the voltage efficiency is 80.6%, and the energy efficiency is 80.2%.
  • the charge and discharge curve of the battery is shown in Figure 5, The charging time and the discharging time were basically the same, and the discharge was quite gentle, indicating that the vanadium permeability of the film was rather low.
  • Example 3 In the same manner as in Example 3, the polybenzimidazole structure was replaced by the following structure, the weight average molecular weight was about 50,000, and the polymer solvent was changed to the base sulfonic acid, and the volatilization temperature was increased to 140 degrees.
  • n the number of structural units of the polymer, 10 ⁇ n ⁇ 200.
  • Example 4 In the same manner as in Example 4, the polybenzimidazole structure was replaced by the following structure, the weight average molecular weight: about 70,000, and the polymer solvent was changed to the base sulfonic acid, and the volatilization temperature was changed to 140 degrees.
  • n the number of structural units of the polymer, 10 ⁇ n ⁇ 200.
  • Example 4 the polybenzimidazole structure was replaced by the following structure, the polymer weight average molecular weight: about 40,000, and the polymer solvent was changed to a base sulfonic acid, and the volatilization temperature was changed to 140 degrees.
  • n the number of structural units of the polymer, 10 ⁇ n ⁇ 200.
  • Dissolve 3.4 g of phosphorus pentoxide in 34 g of polyphosphoric acid add to a 500 ml three-necked flask, stir at a temperature to form a clear solution, then add 6 mmol of biphenyltetramine, 1.2 mmol of 2,6-pyridinedicarboxylic acid. , 4.8 mmol of 4,4'-dicarboxydiphenyl ether, stir to 200 °C, react for 20 hours, cool down, and pour into a 5% sodium hydroxide solution. After standing for 24 hours, wash thoroughly with water until the solution is neutral. Filter and dry.
  • the prepared polymer was dissolved in DMSO to prepare a 4% solution, and the solution was cast onto a glass plate and flattened with a cast film knife. After drying at 80 ° C for 20 hours, the film was removed from the glass plate.
  • the dry polymer film was immersed in 4 M sulfuric acid at room temperature for 5 hours to obtain a polybenzimidazole ion exchange membrane having a thickness of about 35 ⁇ m containing a 20 wt/t pyridine structural unit, and the polymer had a weight average molecular weight of about 60,000.
  • Figure 6 is an infrared diagram of the preparation of the polymer, confirming the structure of the prepared polymer.
  • the stress-strain curve of the film is shown in Fig. 7.
  • the tensile strength of the film is 90 MPa, and the elastic modulus is
  • the polybenzimidazole ion exchange membrane is assembled into a vanadium redox flow energy storage battery, the activated carbon felt is a catalytic layer, the graphite plate is a bipolar plate, the effective area of the membrane is 9 cm- 2 , the current density is 80 mA cm- 2 , and electrolysis
  • the concentration of vanadium ion in the liquid is 1.50mol L" 1 , the concentration of H 2 S0 4 is 3mol L - the current efficiency is 99.3%, the voltage efficiency is 86.2%, and the energy efficiency is 85.6%.
  • the charge and discharge curve of the battery is shown in Figure 8.
  • the time and discharge time were basically the same, and the discharge was quite flat, indicating that the vanadium permeability of the membrane was rather low.
  • the polymer introduced a pyridyl group on the basis of maintaining good solubility, effectively The proton conductivity of the ion exchange membrane is improved, and the voltage efficiency is greatly improved in the performance of the battery, which is 5 percentage points higher than that of the polymer ion exchange membrane containing no pyridine group in the second embodiment.
  • Example 7 In the same manner as in Example 7, the polymer was replaced with a polybenzimidazole copolymer having the following structure.
  • FIG. 9 is a nuclear magnetic diagram of the preparation of the polymer, confirming the structure of the prepared polymer.
  • the thermogravimetric curve of the film is shown in Figure 10 and shows good thermal stability.
  • the polymer ion exchange membrane is assembled with a vanadium redox flow energy storage battery, the activated carbon felt is a catalytic layer, the graphite plate is a bipolar plate, the effective area of the membrane is 6 cm- 2 , the current density is 50 mA cm- 2 , and the vanadium ion in the electrolyte
  • the concentration was 1.50 mol L - H 2 S0 4 concentration was 3 mol L -
  • the assembled flow battery had a current efficiency of 97.9%, a voltage efficiency of 83.6%, and an energy efficiency of 81.9%.
  • the charge and discharge curve of the battery is shown in Fig. 11.
  • the charging time and the discharging time are basically the same, and the discharge is quite gentle, indicating that the vanadium permeability of the film is low.
  • polybenzimidazole polymer ion exchange membranes such polymer membranes have relatively low proton conductivity.
  • n the number of structural units of the polymer, 10 ⁇ n ⁇ 200.
  • Example 1 The polymer was exchanged for a copolymer of polyoxadiazole and polybenzimidazole.
  • n l
  • 0.2 g of nano-silica was dissolved in 20 ml of DMSO and added to a 250 ml Erlenmeyer flask, then 1 ml of Tween 80 was added and stirred for 1 hour to form a clear solution.
  • 2 g of the polybenzimidazole of the structure of Example 2 was added to the above solution, and the temperature was raised to 50 ° C - 100 ° C, and stirred until the solution was clarified.
  • the solution was cast onto a glass plate and flattened with a cast film knife. After drying at 80 ° C for 20 hours, the film was removed from the glass plate.
  • the dry polymer film was immersed in 4 M sulfuric acid at room temperature for 5 hours to obtain a composite ion exchange membrane having a thickness of about 35 ⁇ m.
  • the prepared composite membrane is assembled with a vanadium redox flow energy storage battery.
  • the activated carbon felt is a catalytic layer
  • the graphite plate is a bipolar plate
  • the effective area of the membrane is 9 cm- 2
  • the current density is 80 mA cm- 2
  • the vanadium ion concentration in the electrolyte The concentration of 1.50 mol L-H 2 S0 4 is 3 mol L -
  • the current efficiency is 99.3%
  • the voltage efficiency is 83.6%
  • the energy efficiency is 84.2%.
  • the charge and discharge curve of the battery is shown in Fig. 12. In the figure, the charging time and the discharging time are basically the same, and the discharge is quite gentle, indicating that the vanadium permeability of the film is rather low.
  • the prepared 10% silica polybenzimidazole composite ion exchange membrane has a significant improvement in energy efficiency phase and voltage efficiency.
  • the polybenzimidazole ion exchange membrane and the composite membrane prepared in Example 2 were immersed in a 3 M sulfuric acid solution, and the swelling ratios thereof were 29.85% and 40.19%, respectively, which increased by 10%. It shows that the introduction of silica effectively improves the acid absorption performance of the membrane, and at the same time reduces the internal resistance of the membrane in the all vanadium redox flow energy storage battery system, and improves its voltage efficiency.
  • Example 13 In the same manner as in Example 13, the inorganic particles were replaced with titanium dioxide.
  • Example 15 In the same manner as in Example 14, the inorganic particles were replaced with zirconium dioxide.
  • the polybenzimidazole was dissolved in hydrazine, hydrazine-dimethylacetamide to prepare a polymer solution having a mass fraction of 10%.
  • the obtained polymer solution was mixed with 5% Na-type Nafion® sulfonic acid type resin, and the solvent was evaporated at 60 ° C to obtain a polymer film.
  • the polymer film was placed in a vacuum oven at 160 ° C and heat treated for 3 h. The film was removed, and the heat-treated film was placed in deionized water for 100 hours to wash away residual impurities and dried.
  • the membrane treated by the above process was immersed in 5 M/L of sulfuric acid at room temperature for 48 hours.
  • the structure of the ion exchange membrane material of the present invention is characterized by an aromatic polymer containing a nitrogen heterocycle, especially a polybenzimidazole polymer; the nitrogen heterocycle in the structure can interact with an acid in the electrolyte to form a donor- The proton transport network of the receptor, thereby maintaining the proton transport properties of the membrane.
  • the preparation conditions of the ion exchange membranes are mild, and the preparation process is simple, which is advantageous for mass production.
  • the invention particularly relates to the use of such membranes in an acidic electrolyte flow energy storage battery, particularly an all-vanadium flow energy storage battery.
  • the prepared ion exchange membrane has excellent mechanical stability and thermal stability, and has excellent proton conductivity and excellent barrier vanadium ion permeability in an all-vanadium redox flow battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

芳香族聚合物离子交换膜及其复合膜在酸性电解液液流储能电池中的应用 技术领域
本发明涉及酸性电解液液流储能电池隔膜,具体地说是芳香族聚合物离子交换膜 及其复合膜在酸性电解液液流储能电池中的应用。 背景技术
含有酸性电解液的液流储能电池是一种电化学储能新技术, 具有能量转换效率 高、 系统设计灵活、 蓄电容量大、 选址自由、 可深度放电、 安全环保、 维护费用低等 优点, 是大规模高效储能技术的首选技术之一。特别是全钒液流储能电池由于安全性 高、 稳定性好、 效率高、 寿命长 (寿命 >15 年)、 成本低等优点, 被认为是液流储能 电池中最有前景和代表性的一种储能电池。
离子交换膜作为液流储能电池的关键部件之一, 既起到隔离正、 负极电解液, 又 起到为正、负极电解液提供离子传导通道的作用。因此要求离子交换膜具有良好的离 子传导性, 离子选择性和化学稳定性。 Skyllas— kazacos等对一些商业化膜进行评价 后认为, 除了一些全氟磺酸膜 (如 Flemiotu Nation等)具有足够稳定的综合性能外, 其它膜 (如 Selemion CMV、 CMS、 AMV、 DMV、 ASS、 DSV等)在酸性钒溶液中都不 够稳定 (J. Appl Electrochem, 2004, 34(2): 137) 。 但是研究发现商业化的全氟磺酸 膜虽具有较强的机械强度和化学稳定性,但在全钒液流储能电池中使用存在钒离子的 渗透率高,充放电过程中正负极有明显的水迁移现象。另外全氟磺酸膜生产工艺复杂、 制备条件苛刻、 价格昂贵, 严重制约了全钒液流储能电池的实用化和产业化。
含有氮杂环的芳香族聚合物离子交换膜由于其优良机械性能、热稳定性和化学稳 定性, 在不同领域得到了广泛关注。特别是在高温燃料电池中, 酸掺杂的氮杂环的芳 香族类聚合物膜, 表现出了良好的应用前景。 由于, 酸和氮杂环可以形成能够传递质 子的给体-受体网状结构, 该类膜普遍表现出良好的质子传导性。 但在燃料电池长期 运行过程中, 膜中掺杂的酸出现渗漏, 从而导致质子传导率降低, 进而降低了电池性 能。
由于酸性电解液液流电池处在强酸性环境中而不存在酸从膜中渗漏的问题。考虑 到该类聚合物良好的机械稳定性和化学稳定性, 该类聚合物可以运用到液流电池。 发明内容
本发明涉及一类芳香族聚合物离子交换膜及其复合膜在酸性电解液液流储能电 池中的应用, 特别是在全钒液流储能电池中的应用。该类芳香族聚合物中存在可以和 酸相互作用形成给体 -受体网状结构的氮杂环。 该网状结构可以传递质子, 保持膜的 离子传导率。 该类膜材料具有优异的热稳定性、化学稳定性和良好的离子传导性, 可 以在许多应用领域使用, 特别适合在酸性电解液液流储能电池中作为离子交换膜使 用。
本发明所述的含有氮杂环芳香族聚合物为含有氮杂环的芳香族聚合物为苯并咪 唑、 乙烯咪唑、 吡啶、 乙烯吡啶、 吡唑、 嘧啶、 噻唑、 苯并噻唑、 噁唑、 苯并噁唑、 噁二唑、 喹啉、 喹喔啉、 噻二唑、 四嘌吟中的一种或多种的均聚物或共聚物。 以下为 其中一部分聚合物的结构式:
Figure imgf000003_0001
Figure imgf000003_0004
Figure imgf000003_0002
其中, n为正整数, 10≤n≤
Figure imgf000003_0003
R2为氢原子、 d-C4的饱和烃类或 C2-C4不饱和烃类基团中的一种。
本发明所述的以上含有氮杂环的芳香族聚合物为均聚物或者共聚物。本发明以聚 苯并咪唑为例, 对结构进行详细说明:
所述聚苯并咪唑均聚物结构通式如下:
Figure imgf000004_0001
述聚苯并咪唑共聚物结构通式如下:
Figure imgf000004_0002
X 为正整数, 10≤x 2 Ri R3和 R4为以下结构中的
Figure imgf000004_0003
12和 为氢原子、 d—C4的饱和烃类或 c2-c4不饱和烃类基团中的一种。 其中, m和 n分别为不同结构单元的摩尔百分含量, 0<n<0.8, 0.2<m<l,m+n 所述的聚苯并咪唑均 结构通式如下,
Figure imgf000004_0004
!^为以下结构中的
Figure imgf000005_0001
聚合物为无规共聚物, 其中 X为正整数, 10≤x≤200; m和 n分别为不同结构单 元的摩尔百分含量, 0 <n≤0.8, 0.2≤m< l, m+n=l, 该类聚合物的重均分子量在 5000-800000之 其中 代表下述结构之一:
Figure imgf000005_0002
R2代表下述结构之一:
Figure imgf000005_0003
Figure imgf000005_0004
其中: R3和 R4分别为氢原子、 d-C4饱和烷烃基团或者 C2-C4不饱和烷烃基团中 的一种, R3和 可以是相同或不同的基团。
另外本发明所述的共聚物可以是无规共聚物也可以是嵌段共聚物。
除此之外, 本发明所述共聚物也可以是不同氮杂环结构的共聚物, 如聚噁二唑和 聚苯并咪唑的共聚物, 于以下结构。
其中 n为正整数, ,
Figure imgf000006_0001
R2为氢原子、 d—C4的饱和烃类或 C2-C4不饱和烃类基团中的一种。
本发明涉及到的含有氮杂环芳香族聚合物通过亲核缩聚反应得到 [Progress in
Polymer Science 34 (2009) 449-477]。
本发明涉及到的离子交换膜由上述结构的聚合物通过溶液铸膜的方法得到。其制 备方法,可以参照相关专利或文献报道。不同聚合物根据其溶解性应选择相应的溶剂, 将聚合物溶解, 形成的聚合物溶液直接浇铸于玻璃板或者其他平板上, 于一定温度下 干燥、挥发, 得到芳香族聚合物离子交换膜。将芳香族聚合物离子交换膜浸入浓度为 0.1-25mol/L的强酸溶液中, 浸泡时间 0.05-1000h, 溶液温度为 5-100°C, 芳香族聚合 物离子交换膜的厚度为 0.1〜200微米; 经酸掺杂后, 每个聚合物重复单元中所包含 的强酸分子数≥1。
除以上所述含氮杂环类聚合物膜材料外本发明还涉及到基于以上含氮杂环类聚 合物的复合膜材料。 包括有机一无机复合膜材料和有机一有机复合膜材料。 本发明涉及的有机一无机复合膜材料中有机相为上述的氮杂环类聚合物而无机 相为无机纳米粒子, 包括氧化硅、 氧化钛、 氧化锆等无机氧化物纳米粒子, 也包括磷 酸锆、 杂多酸等其他无机纳米粒子, 但不限于以上所述。无机粒子占芳香族聚合物质 量的 0.1〜40%, 制备获得有机 /无机复合离子交换膜; 将离子交换膜浸入浓度为 0.1-25mol/L的强酸溶液中, 浸泡时间 0.05-1000h, 溶液温度为 5-100°C, 芳香族聚合 物离子交换膜的厚度为 0.1〜200微米; 经酸掺杂后, 每个聚合物重复单元中所包含 的强酸分子数≥1。
所述有机无机复合离子交换膜, 其中有机相为聚苯并咪唑类高分子材料, 其结构 通式如下,
Figure imgf000007_0001
n为正整数, 10≤n≤200, R代表下述结构之-
Figure imgf000007_0002
Figure imgf000007_0003
其中: 和 分别为氢原子、 CrC4饱和烷烃基团或者 ¾ 4不饱和烷烃基团中的一 种, 和 可以是相同或不同的基团。
本发明所涉及的有机一无机复合膜材料可以通过普通的溶液铸膜的方法得到,无 机粒子可以通过直接共混的方法, 也可以通过原位溶胶凝胶法得到,但不限于以上两 种方法。
本发明所述有机一有机复合膜材料中除含氮杂环类聚合物外,另一种组分为含有 磺酸型聚合物材料。 例如全氟磺酸聚合物、 磺化聚砜、 磺化聚丙烯、 磺化聚醚砜、 磺 化聚芳醚砜、磺化聚芳砜、磺化聚苯醚、磺化聚醚醚酮、磺化聚芳醚酮的一种或多种。 磺酸型聚合物占芳香族聚合物质量的 0.1〜50%,制备获得有机 /有机复合离子交换膜; 将离子交换膜浸入浓度为 0.1-25mol/L的强酸溶液中, 浸泡时间 0.05-1000h, 溶液温 度为 5-100°C, 芳香族聚合物离子交换膜的厚度为 0.1〜200微米; 经酸掺杂后, 每个 聚合物重复单元中所包含的强酸分子数≥1。该类复合膜的特点在于,利用磺酸基和氮 杂环之间的相互作用, 可以有效避免离子的相互渗透, 提高膜粒子选择性。
本发明的有益效果:
1 ) 本发明使用芳香族聚合物膜作为酸性电解液液流储能电池的离子交换膜。 该 膜利用酸性电解液作为传导介质, 酸和聚合物中的氮杂环可以形成给体受体的结构, 且采用定向跳跃机理(Grotthuss hopping mechanism)传导质子 (见图 1 ) 。 在质子传 递的过程中具有极低的水迁移率和极高的离子选择透过性,极大地降低了正负极电解 液分布不均和自放电现象, 有效地延长了电解液的使用寿命; 发明所制备的离子交换 膜材料具有良好的成膜性。
2)本发明所制备的离子交换膜具有优异的热稳定性、机械稳定性和氧化稳定性。 3 ) 本发明采用的膜材料结构稳定, 成本低廉, 有利于酸性电解液液流储能电池 的长期、 稳定使用和大规模商业化开发。
4) 本发明所制备离子交换膜具有优良的离子传导性。
5 ) 本发明所制备离子交换膜具有良好的离子选择性。 可以避免液流储能电池中 两侧电介质的交叉污染。
6) 本发明所制备有机无机复合离子交换膜在酸性液流储能电池中可以有效的提 高离子传导性, 并保持其较高的离子选择性。
7) 本发明所制备的有机一有机复合离子交换膜可以有效的提高膜的机械稳定性 和化学稳定性。 附图说明
图 1、 氮杂环芳香族类聚合物的质子传输机理。
图 2、 实施例 1制备的聚合物离子交换膜的全钒液流储能电池的充放电曲线。 图 3、 实施例 2制备的聚合物的红外光谱图。
图 4、 实施例 2制备的聚合物离子交换膜的应力一应变图。
图 5、 实施例 2制备的聚合物离子交换膜的全钒液流储能电池充放电曲线。 图 6、 实施例 6制备的聚合物的红外光谱图。
图 7、 实施例 6制备的聚合物离子交换膜的应力一应变图。
图 8、 实施例 6制备聚合物离子交换膜的全钒液流储能电池的充放电曲线。 图 9、 实施例 10制备的聚合物的核磁图。
图 10 实施例 10制备的聚合物离子交换膜的热重曲线。
图 11 实施例 10制备聚合物离子交换膜的全钒液流储能电池的充放电曲线。 图 12、 实施例 13制备聚合物离子交换膜的全钒液流储能电池的充放电曲线。 具体实施方式
下面的实施例是对本发明的进一步说明, 而不是限制本发明的范围。
比较例:
利用杜邦公司生产的 Nafion 115膜,组装全钒液流储能电池,活性碳毡为催化层, 石墨板为双极板, 膜有效面积为 9cm— 2, 电流密度为 80 mA cm— 2, 电解液中钒离子浓 度为 1.50mol L— H2S04浓度为 3mol L— 电池电流效率为 94.8%,电压效率为 88.9%, 能量效率为 84.5%。
实施例 1
将 lg具有如下结构的聚苯并咪唑(重均分子量约为 50000)溶解在 Ν, Ν-二甲基 乙酰胺中, 制成质量分数为 5%的聚合物溶液。 将溶液浇铸到玻璃板上, 用铸膜刀推 平。在 80°C下干燥 20小时后,将膜从玻璃板上取下。将干态聚合物膜室温浸泡在 4M 硫酸中处理 5h。 将上述离子交换膜组装全钒液流储能电池, 活性碳毡为催化层, 石 墨板为双极板, 膜有效面积为 9cm— 2, 电流密度为 80 mA cm— 2, 电解液中钒离子浓度 ¾ 1.50mol L"1, H2S04浓度为 3mol L— 电流效率为 99.34%, 电压效率为 82.17%, 能量效率为 81.6%。 电池充放电曲线见图 2, 图中充电时间和放电时间基本相当, 放 电相当平缓。与商业化 Nafi0n l l5膜相比, 聚苯并咪唑离子交换膜在能量效率相当的 条件下, 库仑效率提高了 5个百分点。表明膜的钒渗透率相当低, 有效的避免了钒离 子的互相渗透, 提高
Figure imgf000009_0001
实施例中 n代表聚合物的结构单元数, 10≤n≤200。 实施例 2
将 3.4克五氧化二磷溶解于 34克多聚磷酸中, 加入到 500 ml的三口瓶中, 升温 搅拌形成澄清溶液后, 然后加入 6 mmol联苯四胺, 6 mmol 4, 4'-二羧基二苯醚, 搅 拌升温至 200度, 反应 20小时后, 降温, 倒入含有 5%的氢氧化钠溶液中。 在放置 24小时后,充分用水洗涤,直到溶液呈中性。过滤,烘干。将制备的聚合物溶于 DMSO 中制备 4^%的溶液, 将溶液浇铸到玻璃板上, 用铸膜刀推平。 在 80°C下干燥 20小 时后, 将膜从玻璃板上取下。 将干态聚合物膜室温浸泡在 4M硫酸中处理 5h, 得到 厚度为大约 35μηι的具有以下结构单元的聚苯并咪唑离子交换膜。
Figure imgf000009_0002
实施例中 η代表聚合物的结构单元数, 10≤η≤200。 聚合物的红外谱图见图 3, 证实了所制备聚合物的结构, 聚合物膜的应力一应变 曲线见图 4。 膜的拉伸强度为 121.9MPa, 弹性模量为 3.5 GPa, 表现出了良好的机械 性能。 与实施例 1所述结构的聚合物相比, 分子量更高 (重均分子量约为 120000 ) 化学稳定性更高。该类聚合物由于引入了醚键,有效地提高了聚合物的溶解性和加工 性能。
将制备的聚苯并咪唑离子交换膜组装全钒液流储能电池, 活性碳毡为催化层, 石 墨板为双极板, 膜有效面积为 9cm— 2, 电流密度为 80 mA cm— 2, 电解液中钒离子浓度 ¾ 1.50mol L"1, H2S04浓度为 3mol L— 电流效率为 99.2%, 电压效率为 80.6%, 能 量效率为 80.2%。 电池充放电曲线见图 5, 图中充电时间和放电时间基本相当, 放电 相当平缓, 表明膜的钒渗透率相当低。
实施例 3
同实施例 3, 将聚苯并咪唑结构换成以下结构, 重均分子量约为 50000, 而聚合 物溶剂换成基磺酸, 挥发温度提高至 140度。
Figure imgf000010_0001
实施例中 n代表聚合物的结构单元数, 10≤n≤200。 实施例 4
同实施例 4, 将聚苯并咪唑结构换成以下结构, 重均分子 :约为 70000, 而聚合 物溶剂换成基磺酸, 挥发温度换成 140度。
Figure imgf000010_0002
实施例中 n代表聚合物的结构单元数, 10≤n≤200。 实施例 5
同实施例 4, 将聚苯并咪唑结构换成以下结构, 聚合物重均分子 :约为 40000, 而聚合物溶剂换成基磺酸, 挥发温度换成 140度。
Figure imgf000010_0003
实施例中 n代表聚合物的结构单元数, 10≤n≤200。 实施例 6:
将 3.4克五氧化二磷溶解于 34克多聚磷酸中, 加入到 500 ml的三口瓶中, 升温 搅拌形成澄清溶液后,然后加入 6 mmol联苯四胺, 1.2 mmol 2, 6-吡啶二酸, 4.8 mmol 4, 4'-二羧基二苯醚, 搅拌升温至 200度, 反应 20小时后, 降温, 倒入含有 5%的氢 氧化钠溶液中。 在放置 24小时后, 充分用水洗涤, 直到溶液呈中性。 过滤, 烘干。 将制备的聚合物溶于 DMSO中制备 4^%的溶液, 将溶液浇铸到玻璃板上, 用铸膜刀 推平。 在 80°C下干燥 20小时后, 将膜从玻璃板上取下。 将干态聚合物膜室温浸泡在 4M硫酸中处理 5h, 得到厚度为大约 35μηι的含 20wt°/ t啶结构单元的聚苯并咪唑离 子交换膜, 聚合物重均分子量约为 60000。 图 6为制备聚合物的红外图, 证实了所制 备的聚合物的结构。 膜的应力应变曲线如图 7, 膜的拉伸强度为 90MPa, 弹性模量 为
Figure imgf000010_0004
其中 m和 n分别为不同结构单元的摩尔百分含 0<n<0.8, 0.2<m< 1, m+n=l; 将上述聚苯并咪唑离子交换膜组装全钒液流储能电池, 活性碳毡为催化层, 石墨 板为双极板, 膜有效面积为 9cm— 2, 电流密度为 80 mA cm— 2, 电解液中钒离子浓度为 1.50mol L"1 , H2S04浓度为 3mol L— 电流效率为 99.3%, 电压效率为 86.2%, 能量效 率为 85.6%。 电池充放电曲线见图 8, 图中充电时间和放电时间基本相当, 放电相当 平缓, 表明膜的钒渗透率相当低。 和实施例 1 ,2相比, 该聚合物在保持好的溶解性的 基础上, 引入了吡啶基团, 有效地提高了离子交换膜的质子传导性。表现在电池性能 上, 其电压效率得到了大幅度提高, 比实施例 2种不含吡啶集团的聚合物离子交换膜 提高了 5个百分点。
实施例 7
Figure imgf000011_0001
其中 m和 n分别为不同结构单元的摩尔百分含量, 0<n≤0.8, 0.2≤m< l, m+n=l ; 实施例 8
同实施例 7, 将聚合物换成具有如下结构的聚苯并咪唑共聚物。
Figure imgf000011_0002
其中 m和 n分别为不同结构单元的摩尔百分含量, 0<n≤0.8, 0.2≤m< l, m+n=l ; 实施例 9
Figure imgf000011_0003
其中 m和 n分别为不同结构单元的摩尔百分含量, 0<n≤0.8, 0.2≤m< l, m+n=l ; 实施例 10
将硫酸联胺和多聚磷酸一 1 : 10的摩尔比加入到 500 ml的三口瓶中,升温至 160 度, 恒温后, 然后按和硫酸联胺 1 : 1.2 的比例加入 4, 4'-二羧基苯甲醚, 在 160度 下反应 4小时, 降温, 倒入含有 5%的氢氧化钠溶液中。在放置 24小时后, 充分用水 洗涤, 直到溶液呈中性。 过滤, 烘干。 得到重均分子量约为 100000的聚合物。 将制 备的聚合物溶于 NMP中制备 5%的溶液, 将溶液浇铸到玻璃板上, 用铸膜刀推平。 在 80°C下干燥 20小时后, 将膜丛玻璃板上取下。 将干态聚合物膜室温浸泡在 4M硫 酸中处理 5h,得到厚度为大约 35μηι的聚噁二唑基离子交换膜。图 9为制备聚合物的 核磁图, 证实了所制备的聚合物的结构。 膜的热重曲线如图 10, 表现出了良好的热 稳定性。 该聚合物离子交换膜组装全钒液流储能电池, 活性碳毡为催化层,石墨板为双极 板,膜有效面积为 6cm— 2,电流密度为 50mA cm— 2,电解液中钒离子浓度为 1.50mol L— H2S04浓度为 3mol L— 组装的液流电池电流效率为 97.9%, 电压效率为 83.6%, 能 量效率为 81.9%。 电池充放电曲线见图 11, 图中充电时间和放电时间基本相当, 放电 相当平缓, 表明膜的钒渗透率较低。和聚苯并咪唑类聚合物离子交换膜相比, 该类聚 合物膜质子传导率相对较低。
Figure imgf000012_0001
POD-DPE
实施例中 n代表聚合物的结构单元数, 10≤n≤200。 实施例 11
同实施例 10聚合物换成聚乙烯咪唑。
实施例 12
施例 1 1, 将聚合物换成聚噁二唑和聚苯并咪唑的共聚物。
Figure imgf000012_0002
其中 m和 n分别为不同结构单元的摩尔百分含量, 0<n≤0.8, 0.2≤m< l, m+n=l ; 实施例 13
将 0.2克纳米二氧化硅溶解于 20 ml DMSO并加入到 250 ml的锥形瓶中,然后加 入 1ml吐温 80, 搅拌 1小时形成澄清溶液。 将 2克实施例 2中结构的聚苯并咪唑加 入到上述溶液中, 升温至 50°C-100°C, 搅拌至溶液澄清。将溶液浇铸到玻璃板上, 用 铸膜刀推平。 在 80°C下干燥 20小时后, 将膜从玻璃板上取下。 将干态聚合物膜室温 浸泡在 4M硫酸中处理 5h, 得到厚度为大约 35μηι的复合离子交换膜。
制备的复合膜组装全钒液流储能电池, 活性碳毡为催化层, 石墨板为双极板, 膜 有效面积为 9cm— 2,电流密度为 80 mA cm— 2,电解液中钒离子浓度为 1.50mol L— H2S04 浓度为 3mol L— 电流效率为 99.3%, 电压效率为 83.6%, 能量效率为 84.2%。 电池 充放电曲线见图 12, 图中充电时间和放电时间基本相当, 放电相当平缓, 表明膜的 钒渗透率相当低。 和实施例 2相比, 制备的含 10%二氧化硅聚苯并咪唑复合离子交 换膜能量效率相和电压效率都有显著的提高。将实施例 2所制备的聚苯并咪唑离子交 换膜和复合膜浸泡于 3M硫酸溶液中, 其溶胀率分别为 29.85%和 40.19%, 增长了 10 个百分点。 说明二氧化硅的引入, 有效地提高了膜的吸酸性能, 同时降低了膜在全钒 液流储能电池体系中的内电阻, 提高了其电压效率。
实施例 14
同实施例 13, 将无机粒子换成二氧化钛。
实施例 15 同实施例 14, 将无机粒子换成二氧化锆。
实施例 16
将聚苯并咪唑溶解在 Ν, Ν-二甲基乙酰胺中,制成质量分数为 10%的聚合物溶液。 将得到的聚合物溶液与 5%的 Na型化的 Nafion®磺酸型树脂混合均勾后在 60°C下挥发 溶剂, 得到聚合物膜。 将聚合物膜放入 160°C的真空烘箱中, 热处理 3h。 脱膜, 并将 经热处理过的膜置于去离子水中 100h以洗去残余杂质, 烘干。 将经上述过程处理过 的膜浸入 5M/L的硫酸中室温酸处理 48h。
实施例 17
用与实施例 16相同的办法, 不同的是所用的磺化树脂为磺化聚芳醚酮。
实施例 18
用与实施例 17相同的办法, 不同的是所用的磺化树脂为磺化聚芳醚砜。
用与实施例 17相同的办法, 不同的是所用的磺化树脂为磺化聚苯醚。
实施例 19
用与实施例 19相同的办法, 不同的是所用的磺化树脂为磺化聚丙烯。
本发明离子交换膜材料的结构特点为含有氮杂环的芳香族聚合物,尤其是聚苯并 咪唑类聚合物; 结构中的氮杂环可以与电解液中的酸相互作用, 形成给体-受体的质 子传输网络, 从而保持膜的质子传输性能。该类离子交换膜的制备条件温和, 制备工 艺简单, 有利于实现批量生产。本发明特别涉及该类膜在酸性电解液液流储能电池的 应用,特别是全钒液流储能电池。制备的离子交换膜具有优良机械稳定性和热稳定性, 其在全钒氧化还原液流电池中具有优良的质子传导性能和优异的阻隔钒离子渗透性

Claims

1 . 芳香族聚合物离子交换膜及其复合膜在酸性电解液液流储能电池中的应用, 其特征在于- 所述的芳香族聚合物是含有氮杂环的芳香族聚合物;
该含有氮杂环的芳香族聚合物为苯并咪唑、 乙烯咪唑、 吡啶、 乙烯吡啶、 吡唑、 嘧啶、 噻唑、 苯并噻唑、 噁唑、 苯并噁唑、 噁二唑、 喹啉、 喹喔啉、 噻二唑、 四嘌吟 中的一种或多种的均聚物或共聚物。
2. 按照权利要求 1所述的应用, 其特征在于:
芳香族聚合物离子交换膜是指由含有氮杂环的芳香族聚合物聚苯并咪唑、聚乙烯 咪唑、 聚吡啶、 聚乙烯吡啶、 聚吡唑、 聚嘧啶、 聚噻唑、 聚苯并噻唑、 聚噁唑、 聚苯 并噁唑、 聚噁二唑、 聚喹啉、 聚喹喔啉、 聚噻二唑、 聚四嘌吟中的一种或多种所形成 的离子交换膜。
3. 按照权利要求 1所述的应用, 其特征在于:
所述的芳香族聚合 下,
Figure imgf000014_0001
Figure imgf000014_0002
R2和 R5为氢原子、 d-C4的饱和烃类或 C2-C4不饱和烃类基团中的 其中 X代表聚合物结构单元数,为 10-200的正整数;
聚合物重均分子量在 5000-800000之间;而共聚物结构中:其中 m和 n分别为不 同结构单元的摩尔百分含量, 0<n≤0.8, 0.2≤m< l, m+n=l。
4. 根据权利要求 3所述的应用, 其特征在于, 所述的聚苯并咪唑均聚物为聚芳
Figure imgf000015_0001
其中 n 为正整数,
Figure imgf000015_0002
5. 根据权利要求 3所述的应用, 其特征在于, 所述的聚苯并咪唑共聚物为含吡 啶基团聚苯并咪唑类共聚离子交换膜, 结构通式如下,
聚合物为无规共聚物,其中 m和 n分别为不同结构单元的摩尔百分含量, 0<n≤0.8, 0.2≤m< l, m+n=l, 该类聚合物的重均分子量在 5000-800000之间; 其中 代表下 述结构之一:
Figure imgf000015_0004
R2代表下述 一:
Figure imgf000016_0001
Figure imgf000016_0002
其中: R3和 R4分别为氢原子、 d-C4饱和烷烃基团或者 C2-C4不饱和烷烃基团中 的一种, R3和 R4可以是相同或不同的基团。
6. 按照权利要求 1所述的应用, 其特征在于: 所述芳香族聚合物离子交换膜的 厚度为 10〜200微米; 芳香族聚合物离子交换膜成膜后, 可按如下过程进行处理, 将 芳香族聚合物离子交换膜浸入浓度为 0.1-25mol/L 的强酸溶液中, 浸泡时间 0.05-1000h, 溶液温度为 5-10(TC ;
所述强酸为硫酸、 磷酸、 硝酸或盐酸。
7. 按照权利要求 1所述的应用, 其特征在于: 所述复合膜是指于芳香族聚合物 离子交换膜中掺杂有无机粒子氧化硅、 氧化钛、 氧化锆、 磷酸锆中的一种或多种, 无 机粒子占芳香族聚合物质量的 0.1〜40%, 制备获得有机 /无机复合离子交换膜, 芳香 族聚合物离子交换膜的厚度为 0.1〜200微米;
成膜后, 可按如下过程进行处理, 将离子交换膜浸入浓度为 0.1-25mol/L的强酸 溶液中, 浸泡时间 0.05-1000h, 溶液温度为 5-100°C ;
所述强酸为硫酸、 磷酸、 硝酸或盐酸。
8. 根据权力要求 7所述的应用, 其特征在于: 所述有机无机复合离子交换膜由 无机相和有机相组成, 无机相和有机相质量比为 (2〜30): 100;
所述的有机相为聚 下,
Figure imgf000016_0003
其中 n为正整数, 10≤n≤200, R代表下述结构之
Figure imgf000017_0001
Figure imgf000017_0002
其中: 和 分别为氢原子、 d-C4饱和烷烃基团或者 C2-C4不饱和烷烃基团中的一 种, 和 可以是相同或不同的基团。
9. 按照权利要求 1所述的应用, 其特征在于: 所述复合膜是指于芳香族聚合物 离子交换膜中掺杂有磺酸型聚合物全氟磺酸聚合物、磺化聚砜、磺化聚丙烯、磺化聚 醚砜、 磺化聚芳醚砜、 磺化聚芳砜、 磺化聚苯醚、 磺化聚醚醚酮、 磺化聚芳醚酮的一 种或多种, 磺酸型聚合物占芳香族聚合物质量的 0.1〜50%, 制备获得有机 /有机复合 离子交换膜, 芳香族聚合物离子交换膜的厚度为 0.1〜200微米;
成膜后, 可按如下过程进行处理, 将离子交换膜浸入浓度为 0.1-25mol/L的强酸 溶液中, 浸泡时间 0.05-1000h, 溶液温度为 5-100°C ;
所述强酸为硫酸、 磷酸、 硝酸或盐酸。
10. 按照权利要求 1所述的应用, 其特征在于: 所述酸性电解液液流储能电池包 括全钒液流储能电池, 铁铬液流储能电池, 锌溴液流储能电池, 锌铈液流储能电池或 多硫化钠 /溴液流储能电池。
PCT/CN2010/074501 2009-10-16 2010-06-25 芳香族聚合物离子交换膜及其复合膜在酸性电解液液流储能电池中的应用 WO2011044778A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10823010.3A EP2490279B1 (en) 2009-10-16 2010-06-25 Aromatic polymer ion exchange membrane and its complex membrane and its application for acidic electrolyte flow energy storage battery
JP2012533463A JP5451892B2 (ja) 2009-10-16 2010-06-25 芳香族ポリマーイオン交換膜及びその複合膜の酸性電解液フローエネルギー貯蔵電池への応用
US13/395,991 US9276282B2 (en) 2009-10-16 2010-06-25 Aromatic polymer ion exchange membranes, its composite membrane, and its application in acidic electrolyte flow battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910187902XA CN102044648B (zh) 2009-10-16 2009-10-16 聚芳基醚苯并咪唑离子交换膜及其制备和全钒液流电池
CN200910187902.X 2009-10-16

Publications (1)

Publication Number Publication Date
WO2011044778A1 true WO2011044778A1 (zh) 2011-04-21

Family

ID=43875810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/074501 WO2011044778A1 (zh) 2009-10-16 2010-06-25 芳香族聚合物离子交换膜及其复合膜在酸性电解液液流储能电池中的应用

Country Status (5)

Country Link
US (1) US9276282B2 (zh)
EP (1) EP2490279B1 (zh)
JP (1) JP5451892B2 (zh)
CN (1) CN102044648B (zh)
WO (1) WO2011044778A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8785023B2 (en) 2008-07-07 2014-07-22 Enervault Corparation Cascade redox flow battery systems
US8906529B2 (en) 2008-07-07 2014-12-09 Enervault Corporation Redox flow battery system for distributed energy storage
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8753761B2 (en) 2012-07-27 2014-06-17 Sun Catalytix Corporation Aqueous redox flow batteries comprising metal ligand coordination compounds
US9382274B2 (en) 2012-07-27 2016-07-05 Lockheed Martin Advanced Energy Storage, Llc Aqueous redox flow batteries featuring improved cell design characteristics
US9692077B2 (en) 2012-07-27 2017-06-27 Lockheed Martin Advanced Energy Storage, Llc Aqueous redox flow batteries comprising matched ionomer membranes
US10164284B2 (en) 2012-07-27 2018-12-25 Lockheed Martin Energy, Llc Aqueous redox flow batteries featuring improved cell design characteristics
US9899694B2 (en) 2012-07-27 2018-02-20 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring high open circuit potential
US8691413B2 (en) 2012-07-27 2014-04-08 Sun Catalytix Corporation Aqueous redox flow batteries featuring improved cell design characteristics
US9559374B2 (en) 2012-07-27 2017-01-31 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring large negative half-cell potentials
US9768463B2 (en) 2012-07-27 2017-09-19 Lockheed Martin Advanced Energy Storage, Llc Aqueous redox flow batteries comprising metal ligand coordination compounds
US9865893B2 (en) * 2012-07-27 2018-01-09 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring optimal membrane systems
CN103682211B (zh) * 2012-09-06 2016-09-14 中国科学院大连化学物理研究所 一种多孔隔膜在液流储能电池中的应用
CA2888558C (en) * 2012-11-27 2021-06-15 Toray Industries, Inc. Polymer electrolyte composition, and polymer electrolyte membrane, membrane electrode assembly and polymer electrolyte fuel cell each produced using same
WO2014099874A1 (en) * 2012-12-17 2014-06-26 E. I. Du Pont De Nemours And Company Flow battery having a separator membrane comprising an ionomer
WO2015119272A1 (ja) * 2014-02-07 2015-08-13 東洋紡株式会社 レドックス電池用イオン交換膜、複合体、及びレドックス電池
US20160036060A1 (en) * 2014-07-30 2016-02-04 Concurrent Technologies Corporation Composite electrode for flow battery
RU2573836C1 (ru) * 2014-10-21 2016-01-27 ЭлДжи КЕМ, ЛТД. Способ снижения проницаемости мембраны по отношению к ионам ванадия и мембрана, полученная данным способом
US11236196B2 (en) 2014-11-18 2022-02-01 Rensselaer Polytechnic Institute Polymers and methods for their manufacture
CN107112563B (zh) 2014-11-18 2020-07-10 伦斯勒理工学院 新型聚合物及其制备方法
MX2017004888A (es) 2014-11-26 2017-07-27 Lockheed Martin Advanced Energy Storage Llc Complejos de metales de catecolatos sustituidos y baterias de flujo redox que los contienen.
CN105990594A (zh) * 2015-02-12 2016-10-05 张华民 一种酸性液流电池用电解液的制备方法
US10253051B2 (en) 2015-03-16 2019-04-09 Lockheed Martin Energy, Llc Preparation of titanium catecholate complexes in aqueous solution using titanium tetrachloride or titanium oxychloride
US10316047B2 (en) 2016-03-03 2019-06-11 Lockheed Martin Energy, Llc Processes for forming coordination complexes containing monosulfonated catecholate ligands
US10644342B2 (en) 2016-03-03 2020-05-05 Lockheed Martin Energy, Llc Coordination complexes containing monosulfonated catecholate ligands and methods for producing the same
US9938308B2 (en) 2016-04-07 2018-04-10 Lockheed Martin Energy, Llc Coordination compounds having redox non-innocent ligands and flow batteries containing the same
US10343964B2 (en) 2016-07-26 2019-07-09 Lockheed Martin Energy, Llc Processes for forming titanium catechol complexes
US10377687B2 (en) 2016-07-26 2019-08-13 Lockheed Martin Energy, Llc Processes for forming titanium catechol complexes
US10065977B2 (en) 2016-10-19 2018-09-04 Lockheed Martin Advanced Energy Storage, Llc Concerted processes for forming 1,2,4-trihydroxybenzene from hydroquinone
US10930937B2 (en) 2016-11-23 2021-02-23 Lockheed Martin Energy, Llc Flow batteries incorporating active materials containing doubly bridged aromatic groups
US10497958B2 (en) 2016-12-14 2019-12-03 Lockheed Martin Energy, Llc Coordinatively unsaturated titanium catecholate complexes and processes associated therewith
US11621433B2 (en) 2016-12-20 2023-04-04 Rensselaer Polytechnic Institute Proton exchange membrane material and methods of making the same
US10741864B2 (en) 2016-12-30 2020-08-11 Lockheed Martin Energy, Llc Aqueous methods for forming titanium catecholate complexes and associated compositions
US10320023B2 (en) 2017-02-16 2019-06-11 Lockheed Martin Energy, Llc Neat methods for forming titanium catecholate complexes and associated compositions
US20200238272A1 (en) 2017-07-06 2020-07-30 Rensselaer Polytechnic Institute Ionic functionalization of aromatic polymers for ion exchange membranes
WO2019010290A1 (en) * 2017-07-06 2019-01-10 Rensselaer Polytechnic Institute IONIC FUNCTIONALIZATION OF AROMATIC POLYMERS FOR ION EXCHANGE MEMBRANES
US11056698B2 (en) 2018-08-02 2021-07-06 Raytheon Technologies Corporation Redox flow battery with electrolyte balancing and compatibility enabling features
JP2022501463A (ja) 2018-09-14 2022-01-06 ユニバーシティー オブ サウス カロライナ 有機溶媒なしでpbiフィルムを製造するための新規な方法
WO2020056275A1 (en) 2018-09-14 2020-03-19 University Of South Carolina Polybenzimidazole (pbi) membranes for redox flow batteries
KR20210057114A (ko) 2018-09-14 2021-05-20 유니버시티 오브 싸우스 캐롤라이나 산화환원 유동 배터리용 저투과도 폴리벤즈이미다졸 (pbi) 멤브레인
US11342573B2 (en) 2019-01-11 2022-05-24 Advent Technologies Inc. Ion-imbibed membranes based on proton conducting aromatic polyether type copolymers and their application in redox flow batteries
IT201900013734A1 (it) 2019-08-01 2021-02-01 Eni Spa Membrana a scambio ionico con struttura a cerniera.
EP4037045A4 (en) * 2019-09-27 2022-12-28 Ohki Yamada SEPARATION MEMBRANE FOR REDOX FLOW BATTERY AND METHOD OF MAKING SUCH SEPARATION MEMBRANE
WO2021108446A1 (en) 2019-11-25 2021-06-03 Opus 12 Incorporated Membrane electrode assembly for cox reduction
US11777124B2 (en) 2020-03-06 2023-10-03 University Of South Carolina Proton-conducting PBI membrane processing with enhanced performance and durability
US11465139B2 (en) 2020-03-20 2022-10-11 Rensselaer Polytechnic Institute Thermally stable hydrocarbon-based anion exchange membrane and ionomers
US11271226B1 (en) 2020-12-11 2022-03-08 Raytheon Technologies Corporation Redox flow battery with improved efficiency
CN113948746A (zh) * 2021-10-12 2022-01-18 南京工业大学 一种带有有机层的金属有机骨架膜及其应用
CN114188585B (zh) * 2021-11-26 2024-02-09 大连理工大学 一种含有亲水离子筛分微孔的离子交换膜制备方法
CN114276572B (zh) * 2021-12-07 2023-05-23 常州大学 全钒液流电池用聚醚醚酮基双官能团离子交换膜及其制备方法
WO2023210781A1 (ja) * 2022-04-27 2023-11-02 旭化成株式会社 イオン交換膜、膜電極接合体、レドックスフロー電池用セル、及びレドックスフロー電池
CN115627072B (zh) * 2022-11-01 2023-10-10 河北科技大学 一种聚苯并咪唑/磺化聚亚芳基靛红复合质子交换膜的制备和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090480A1 (ja) * 2004-03-23 2005-09-29 Mitsubishi Gas Chemical Co., Inc. 固体高分子電解質、固体高分子ゲル膜、固体高分子電解質膜、および燃料電池
WO2005111103A1 (ja) * 2004-05-13 2005-11-24 Mitsubishi Gas Chemical Co., Inc. 固体高分子電解質膜および燃料電池
CN1765987A (zh) * 2005-11-10 2006-05-03 上海交通大学 改性聚苯醚基质子交换膜材料及其制备方法
CN1770503A (zh) * 2005-09-30 2006-05-10 清华大学 全钒氧化还原液流电池用质子交换复合膜及其制备方法
CN101148537A (zh) * 2007-02-08 2008-03-26 上海交通大学 一种纳米级锆盐分散的改性聚苯醚复合质子交换膜材料
WO2009065892A2 (de) * 2007-11-23 2009-05-28 Süd-Chemie AG Herstellung und verwendung neuer polyaniline zur wasserbehandlung

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3708439A (en) 1971-09-28 1973-01-02 Upjohn Co Polybenzimidazoles
ATE251806T1 (de) * 1995-05-03 2003-10-15 Pinnacle Vrb Ltd Verfahren zur herstellung eines vanadiumelektrolyten für ganzvanadium redoxzellen und -batterien mit hoher energiedichte
US5599639A (en) * 1995-08-31 1997-02-04 Hoechst Celanese Corporation Acid-modified polybenzimidazole fuel cell elements
JPH09223513A (ja) * 1996-02-19 1997-08-26 Kashimakita Kyodo Hatsuden Kk 液循環式電池
JP3729296B2 (ja) 1996-12-10 2005-12-21 株式会社トクヤマ バナジウム系レドックスフロー電池用隔膜
JP3218291B2 (ja) 1998-12-14 2001-10-15 住友電気工業株式会社 電池用隔膜
JP2000281819A (ja) * 1999-01-27 2000-10-10 Aventis Res & Technol Gmbh & Co Kg 架橋高分子膜の製造方法及び燃料電池
DE10021106A1 (de) * 2000-05-02 2001-11-08 Univ Stuttgart Polymere Membranen
US20020127474A1 (en) 2001-01-09 2002-09-12 E.C.R.-Electro-Chemical Research Ltd. Proton-selective conducting membranes
CN1292015C (zh) * 2002-10-08 2006-12-27 东洋纺织株式会社 含有磺酸基的聚亚芳基醚系化合物、含有其的组合物及其制备方法
EP1465277A1 (en) * 2003-03-19 2004-10-06 HONDA MOTOR CO., Ltd. Solid polymer electrolyte and protonconducting membrane
CN100541888C (zh) 2004-09-03 2009-09-16 东丽株式会社 高分子电解质材料、高分子电解质部件、膜电极复合体和高分子电解质型燃料电池
CN100365858C (zh) * 2005-04-05 2008-01-30 新源动力股份有限公司 一种高温燃料电池用复合质子交换膜及其制备方法
CN101213700B (zh) * 2005-06-20 2012-11-21 新南创新私人有限公司 用于氧化还原电池和电池组的改进的全氟化膜和改进的电解液
KR100717790B1 (ko) * 2005-07-29 2007-05-11 삼성에스디아이 주식회사 연료 전지용 막-전극 어셈블리 및 이를 포함하는 연료 전지시스템.
GB0608079D0 (en) * 2006-04-25 2006-05-31 Acal Energy Ltd Fuel cells
JP2008027627A (ja) * 2006-07-18 2008-02-07 Kansai Electric Power Co Inc:The レドックスフロー電池用隔膜
JP2010086935A (ja) * 2008-09-03 2010-04-15 Sharp Corp レドックスフロー電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090480A1 (ja) * 2004-03-23 2005-09-29 Mitsubishi Gas Chemical Co., Inc. 固体高分子電解質、固体高分子ゲル膜、固体高分子電解質膜、および燃料電池
WO2005111103A1 (ja) * 2004-05-13 2005-11-24 Mitsubishi Gas Chemical Co., Inc. 固体高分子電解質膜および燃料電池
CN1770503A (zh) * 2005-09-30 2006-05-10 清华大学 全钒氧化还原液流电池用质子交换复合膜及其制备方法
CN1765987A (zh) * 2005-11-10 2006-05-03 上海交通大学 改性聚苯醚基质子交换膜材料及其制备方法
CN101148537A (zh) * 2007-02-08 2008-03-26 上海交通大学 一种纳米级锆盐分散的改性聚苯醚复合质子交换膜材料
WO2009065892A2 (de) * 2007-11-23 2009-05-28 Süd-Chemie AG Herstellung und verwendung neuer polyaniline zur wasserbehandlung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. APPL ELECTROCHEM, vol. 34, no. 2, 2004, pages 137
PROGRESS IN POLYMER SCIENCE, vol. 34, 2009, pages 449 - 477

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8785023B2 (en) 2008-07-07 2014-07-22 Enervault Corparation Cascade redox flow battery systems
US8906529B2 (en) 2008-07-07 2014-12-09 Enervault Corporation Redox flow battery system for distributed energy storage
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems

Also Published As

Publication number Publication date
CN102044648B (zh) 2013-04-10
EP2490279A4 (en) 2014-04-30
JP5451892B2 (ja) 2014-03-26
EP2490279A1 (en) 2012-08-22
US9276282B2 (en) 2016-03-01
CN102044648A (zh) 2011-05-04
US20120196188A1 (en) 2012-08-02
EP2490279B1 (en) 2017-08-02
JP2013507742A (ja) 2013-03-04

Similar Documents

Publication Publication Date Title
WO2011044778A1 (zh) 芳香族聚合物离子交换膜及其复合膜在酸性电解液液流储能电池中的应用
Hooshyari et al. High temperature membranes based on PBI/sulfonated polyimide and doped-perovskite nanoparticles for PEM fuel cells
US9975995B2 (en) Ion conducting polymer comprising partially branched block copolymer and use thereof
CN102299351B (zh) 聚苯并咪唑类聚合物离子交换膜及其制备和应用
CN100473693C (zh) 聚合物电解液以及使用该聚合物电解液的燃料电池
Wang et al. Novel sulfonated poly (ether ether ketone)/oxidized g-C3N4 composite membrane for vanadium redox flow battery applications
KR20120114271A (ko) 폴리머 혼합 양성자 교환막 및 이의 제조방법
CN105131289B (zh) 一种新型磺化聚苯并咪唑共聚物、交联膜、制备方法及其应用
Quan et al. Novel sulfonated poly (ether ether ketone)/triphenylamine hybrid membrane for vanadium redox flow battery applications
CN100365858C (zh) 一种高温燃料电池用复合质子交换膜及其制备方法
CN102867930A (zh) 一种液流储能电池用复合膜及其应用
US20170331136A1 (en) Polymer electrolyte membrane
EP3252035B1 (en) Compound comprising aromatic ring, and polyelectrolyte membrane using same
CN107383404A (zh) 一种含氟支化磺化聚酰亚胺质子导电膜的制备方法
CN106009017A (zh) 一种支化磺化聚酰亚胺/二维层状材料复合质子导电膜的制备方法
CN112259769A (zh) 自具微孔聚苯并咪唑质子交换膜及制备方法和应用
CN114213688B (zh) 聚苯并咪唑型两性离子交换膜材料及其制备方法和应用
CN102120874A (zh) 含交联基团的磺化聚芳醚类聚合物离子交换膜及其应用
KR101633908B1 (ko) 레독스흐름전지용 고분자전해질 복합막, 그 제조방법 및 이를 포함하는 레독스 흐름 전지
CN103319741B (zh) 一种磺化聚酰亚胺/二氧化钛复合质子导电膜的制备方法
KR100727212B1 (ko) 수소이온 전해질막
CN107221692A (zh) 一种具有高抗氧化能力的聚苯并咪唑/磷酸多层复合高温质子交换膜及其制备方法
CN107546399B (zh) 主链与离子交换基团分离的离子交换膜及其制备和应用
KR102629899B1 (ko) 화합물, 이로부터 유래되는 단위를 포함하는 중합체, 이를 포함하는 고분자 분리막, 이를 포함하는 막 전극 집합체, 연료전지 및 레독스 플로우 전지
JP4646814B2 (ja) 燃料電池用の高分子電解質とその製造方法,および燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10823010

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13395991

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010823010

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010823010

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012533463

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE