CN101604663A - 半导体器件的阱区 - Google Patents

半导体器件的阱区 Download PDF

Info

Publication number
CN101604663A
CN101604663A CNA2009101409382A CN200910140938A CN101604663A CN 101604663 A CN101604663 A CN 101604663A CN A2009101409382 A CNA2009101409382 A CN A2009101409382A CN 200910140938 A CN200910140938 A CN 200910140938A CN 101604663 A CN101604663 A CN 101604663A
Authority
CN
China
Prior art keywords
type
subsurface
trap
wells
bias voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2009101409382A
Other languages
English (en)
Other versions
CN101604663B (zh
Inventor
詹姆斯·B·伯尔
迈克·飞尔汗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Transmeta Inc
Original Assignee
Transmeta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32654999&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN101604663(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Transmeta Inc filed Critical Transmeta Inc
Publication of CN101604663A publication Critical patent/CN101604663A/zh
Application granted granted Critical
Publication of CN101604663B publication Critical patent/CN101604663B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0646PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823493MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the wells or tubs, e.g. twin tubs, high energy well implants, buried implanted layers for lateral isolation [BILLI]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/145Applications of charge pumps; Boosted voltage circuits; Clamp circuits therefor
    • G11C5/146Substrate bias generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823892Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the wells or tubs, e.g. twin tubs, high energy well implants, buried implanted layers for lateral isolation [BILLI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0214Particular design considerations for integrated circuits for internal polarisation, e.g. I2L
    • H01L27/0218Particular design considerations for integrated circuits for internal polarisation, e.g. I2L of field effect structures
    • H01L27/0222Charge pumping, substrate bias generation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0928Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising both N- and P- wells in the substrate, e.g. twin-tub
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Element Separation (AREA)

Abstract

本发明涉及半导体器件的阱区。本发明提供对角深阱区以用于在表面阱区里发送体偏置电压给金属氧化物半导体场效应晶体管(MOSFET)。具体的,本发明提供了一种将体偏置电压发送到半导体器件中的第一传导性的表面阱的方法,所述方法包括:在所述半导体器件的表面之下和所述表面阱之下,形成具有所述第一传导性的次表面网状结构,其中所述次表面网状结构相对于所述表面阱的取向对角地取向;将所述次表面网状结构与所述表面阱电耦合,以生成传导路径;以及将所述体偏置电压施加到所述次表面网状结构。

Description

半导体器件的阱区
本申请是于2003年12月29日提交的、申请号为200380108046.5、发明名称为“半导体器件的阱区”的申请的分案申请。
技术领域
本发明关于一种金属氧化物半导体场效应晶体管(MOSFET),尤其关于发送体偏置电压到MOSFET的领域。本发明部分揭露用于在表面阱区发送体偏置电压给MOSFET的对角深阱区。
背景技术
具有形成于半导体基板上的MOSFET的半导体器件的物理布局图的产生是一项挑战性的任务。在创造该物理布局图中消耗了大量的时间与资源。然而,如果新物理布局图使用现有物理布局图的实质部分,资源的消耗可最小化,例如,如果根据新物理设计的需要利用与改良具有没有体偏置的MOSFET的现有物理布局图,具有体偏置的MOSFET的新物理布局图可以较少的费用来实现。不幸的是,改良现有物理布局图的工艺典型地要求形成一额外的体偏置电压发送层于半导体器件的表面上,既然现有物理布局图使用绝大部分(如果不是全部)可利用的表面面积,这会产生严重的问题。
发明内容
本发明提供对角深阱区以用于在表面阱区里发送体偏置电压给金属氧化物半导体场效应晶体管(MOSFET)。
根据本发明一个方面,提供一种将体偏置电压发送到半导体器件中的第一传导性的表面阱的方法,所述方法包括:在所述半导体器件的表面之下和所述表面阱之下,形成具有所述第一传导性的次表面网状结构,其中所述次表面网状结构相对于所述表面阱的取向对角地取向;将所述次表面网状结构与所述表面阱电耦合,以生成传导路径;以及将所述体偏置电压施加到所述次表面网状结构。
根据本发明另一方面,提供一种将体偏置电压发送到半导体器件中的第一传导性的表面阱的方法,所述方法包括:在所述半导体器件的表面之下和所述表面阱之下,形成多个平行的具有所述第一传导性的次表面区,其中每一平行的次表面区相对于所述表面阱的取向对角地取向;将所述平行的次表面区与所述表面阱电耦合,以生成传导路径;以及将所述体偏置电压施加到所述平行的次表面区中的至少一个。
根据本发明另一方面,提供一种将体偏置电压发送到半导体器件中的第一传导性的第一表面阱的方法,所述方法包括:在所述半导体器件的表面之下、在所述第一表面阱之下、以及在第二传导性的第二表面阱之下,形成具有所述第一传导性的次表面区,其中所述次表面区相对于所述表面阱的取向对角地取向而不将所述第二表面阱隔离;将所述次表面区与所述表面阱电耦合,以生成传导路径;以及将所述体偏置电压施加到所述次表面区。
根据本发明另一方面,提供一种将体偏置电压发送到半导体器件中的第一传导性的表面阱的方法,所述方法包括:在所述半导体器件的表面之下和所述表面阱之下,形成具有所述第一传导性的次表面层;在所述次表面层中形成间隙区,其中所述间隙区相对于所述表面阱的取向对角地取向;将所述次表面层与所述表面阱电耦合,以生成传导路径;以及将所述体偏置电压施加到所述次表面层。
根据本发明另一方面,提供一种将体偏置电压发送到半导体器件中的第一传导性的表面阱的方法,所述方法包括:在所述半导体器件的表面之下和所述表面阱之下,形成具有所述第一传导性的次表面层;在所述次表面层中形成对角线取向的间隙区,其中所述对角线取向的间隙区相对于所述表面阱的取向对角地取向;将所述次表面层与所述表面阱电耦合,以生成传导路径;以及将所述体偏置电压施加到所述次表面层。
根据本发明另一方面,提供一种将体偏置电压发送到半导体器件中的第一传导性的第一表面阱的方法,所述方法包括:在所述半导体器件的表面之下、在所述第一表面阱之下、以及在第二传导性的第二表面阱之下,形成具有所述第一传导性的次表面层;在所述次表面层中形成间隙区,其中所述间隙区相对于所述第一表面阱的取向对角地取向而不隔离所述第二表面阱;将所述次表面层与所述表面阱电耦合,以生成传导路径;以及将所述体偏置电压施加到所述次表面层。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而所附图式仅提供参考与说明用,并非用来对本发明加以限制。
图1为本发明一实施例的形成在N阱上的pFET的俯视图,其绘示pFET具有施加于其本体B端子的体偏置电压Vnw;
图2绘示本发明一实施例相对定位一N阱与一对角深N阱区于一半导体器件表面之下;
图3A为本发明实施例的多个N阱与一对角深N阱(DDNW)区的俯视图;
图3B是本发明一实施例的图3A沿箭头399的侧视图;
图4是本发明一实施例的多个N阱与形成网状构造的多个对角深N阱(DDNW)区的俯视图;
图5绘示本发明一实施例具有多个N阱与多个对角深N阱(DDNW)区形成网状构造的物理布局图。
具体实施方式
将对本发明的较佳实施例详细使用标号,其例子如下附附图所示,虽然本发明通过这些实施例进行描述,但是,可以理解的是,这些实施例不是用于限制本发明于这些实施例,相反,本发明可涵盖使用了本发明的构思且落入后附权利要求界定的本发明范围内的选择性的、变更的、与等同的实施例。而且,本发明下述详细描述中,很多特定细节的描述是为了彻底理解本发明,然而,本领域普通技术人员可意识到本发明没有这些特定的细节也可实施。
尽管本发明的下面描述将会集中在发送体偏置电压给pFET(或P型MOSFET),其在使用P型基板与N阱工艺时经由一N型掺杂的传导次表面区设置在表面N阱上,本发明一样可应用于发送体偏置电压给nFET(或N型MOSFET),其在使用N型基板与P阱工艺时经由一P型掺杂的传导次表面区设置在表面P阱上。
图1为本发明一实施例在使用P型基板与N阱工艺时设置在N阱10里的pFET 50(或P型MOSFET)的俯视图,该pFET 50具有施加于其本体B端子的体偏置电压Vnw。如图1所示,该pFET 50具有栅极G、漏极D(P型掺杂)、源极S(P型掺杂)及本体B端子。特别是,该本体B端子与N阱10耦合。该N阱具有N型掺杂。掺杂有N型掺杂剂的半导体器件区具有一种传导性,而掺杂有P型掺杂剂的半导体器件区具有另一种传导性。典型的是,在不同的半导体器件区使用不同的掺杂剂浓度。
该pFET 50体偏置以影响其性能。在没有体偏置时,源极S与本体B端子耦合在一起,而具有体偏置时,源极S与本体B端子没耦合在一起。如果具有电力调节pFET 50的门槛电压水平,体偏置能控制pFET 50的源极S与本体B端子之间的势差。
在体偏置的情况下,本体B端子接收体偏置电压Vnw。如上所述,本体B端子与N阱10连接,这样,体偏置电压Vnw施加到N阱10上。
改良现有的物理布局图,胜于产生全新的半导体器件物理布局图以支持具有体偏置电压Vnw的pFET 50,特别是,可通过使用一对角深N阱区来发送体偏置电压Vnw到N阱10而来改良现有的物理布局图,该对角深N阱可作为在N阱下面的传导次表面阱层,这可避免需要在没有很多自由表面积供额外发送的半导体器件表面上设置另一表面发送层。
特别是,与表面金属层成对比,该体偏置电压Vnw经由一个或多个对角深N阱区(其为传导次表面阱层)发送到N阱。这种方式的优点是,典型的在半导体器件的浓密充满的表面积上没有空间供额外的金属发送层的时候,由于穿过阱的发送信号通常被阱的低录放幅频响应与潜在高电阻所阻碍的事实,在半导体器件表面下的面积经常未充分使用。在本发明,胜于传输信号,对角深N阱区用于保持与配送体偏置电压Vnw。
图2绘示本发明一实施例相对定位一N阱10(也称为表面N阱)与一对角深N阱区20于一半导体器件表面70的下面。该N阱10形成于半导体器件表面70的下面且具有N型掺杂,该对角深N阱区20形成于N阱10的下面,这样,对角深N阱区20与N阱10共享一次表面传导边界25,其允许对角深N阱区20具有类似于一传导次表面发送层的功能以发送体偏置电压Vnw到N阱,即,对角深N阱区20沿次表面传导边界25接触N阱。而且,对角深N阱区20埋在半导体器件表面70的下面。该对角深N阱区20具有N型掺杂。可以理解的是,如果使用N型基板与P阱工艺,将利用P型掺杂的对角深阱具有象一传导次表面发送层的功能以发送体偏置电压到表面P阱。
该次表面传导边界25的规格与尺寸决定了N阱10与对角深N阱区20的传导路径的电阻,当次表面传导边界25的尺寸增加,N阱10与对角深N阱区20的次表面传导路径的电阻降低以形成一低电阻传导路径。
如图3A所示,其为本发明一实施例的多个N阱(如N阱1与N阱2)与一对角深N阱(DDNW)区310的俯视图。胜于为一连续平面层,该DDNW区310为一图案化层。如图3A所示,该对角深N阱区310为一条状,且位于半导体器件的N阱1与N阱2下方。该对角深N阱区310、N阱1与N阱2具有N型掺杂。而且,该对角深N阱区310的方位相对于该N阱1与N阱2在其对角线上或倾斜的。在一实施例中,该对角深N阱区310与N阱(如N阱1或N阱2)形成一个大约45度角。
可以理解的是,该对角深N阱区310可具有其它配置,且多个对角深N阱区可图案化成不同的排列。例如,另外的对角深N阱区可定位与该对角深N阱区310平行且在间隔远离该对角深N阱区310的位置上。通过转动对角深N阱区310的方位大约90度,也可形成该对角深N阱区310的转动版,而且该对角深N阱区310与其转动版可排列成X图案(或十字形图案)于N阱1与N阱2之下。
该对角深N阱区310发送体偏置电压Vnw到N阱1与N阱2,因此该pFET 370可被体偏置。这样,用于该体偏置电压Vnw的端子可形成于有自由表面积的地方,例如在N阱1、N阱2或对角深N阱区310之上。另外,通过防止形成nFET 380于其上的P型区或P阱区385的隔离,对角深N阱区310使nFET(N型MOSFET)380能以任何方式被体偏置。这样,该对角深N阱区310允许在P阱区385与形成于对角深N阱区310之下的次表面层之间形成传导路径。而且,该对角深N阱区310的位置与尺寸基于该N阱与P型区或P阱的分布状态,目标是提供低电阻传导路径。然而,该对角深N阱区310的规格与尺寸应避免将P型区或P阱与形成于对角深N阱区310之下的次表面层隔离。
图3B是本发明一实施例的图3A沿箭头399的侧视图,如图3B所示,在N阱1与该对角深N阱区310之间形成第一次表面传导边界396,而且,于N阱2与该对角深N阱区310之间形成第二次表面传导边界397。该体偏置电压Vnw经由该第一与第二表面传导边界396、397发送到N阱1与N阱2。
图4是本发明一实施例的多个N阱(如N阱I与N阱2)与形成网状构造的多个对角深N阱(DDNW)区的俯视图。于此,对角深N阱区410A、410B与对角深N阱区412A、412B、412C直交,因此,对角深N阱区410A、410B、412A、412B、412C形成次表面网状构造以发送体偏置电压Vnw到N阱1与N阱2,这样,该pFET470可被体偏置。
相对于N阱1与N阱2的方位,网状构造490处于对角线上,在一实施例中,该网状构造490相对于N阱(如N阱1与N阱2)转动大约45度。每一对角深N阱区412A、412B、412C、410A、410B呈条状,具有N型掺杂,且位于半导体器件的N阱1与N阱2之下。可以理解的是,网状构造490也可具有其它配置,例如,相邻对角深N阱区之间的间隙440A、440B可在尺寸上进行变化,而且对角深N阱区与间隙面积430的比例可以变化。
另外,通过防止形成nFET 480于其上的P型区或P阱区485的隔离,网状构造490使nFET(N型MOSFET)480能以任何方式被体偏置。在对角深N阱区之间的区495防止P阱区485的隔离,使P阱区485与形成于对角深N阱区412A、412B、412C、410A、410B之下的次表面层之间能形成一传导路径。在一实施例中,该网状构造的面积可在对角深N阱区与间隙面积430之间被等分。
如上所述,用于该体偏置电压Vnw的端子可形成于有自由空间的地方,例如在N阱1、N阱2或对角深N阱区412A、412B、412C、410A、410B之上。而且,该网状构造490的位置与尺寸基于该N阱与P型区或P阱的分布状态,目标是提供低电阻传导路径。
然而,该网状构造490的尺寸应避免将P型区或P阱485与形成于对角深N阱区之下的次表面层隔离。而且间隙面积430的尺寸设置可提供在P型区或P阱485与形成于对角深N阱区之下的次表面层之间的低电阻传导路径,间隙面积430越大,传导路径的电阻越小。另外,径向扩散与径向损耗能进一步减小间隙面积430,潜在地掐掉该在P型区或P阱485与形成于对角深N阱区之下的次表面层之间的传导路径。作为对这种情况的解决方案,在相邻对角深N阱区之间的间隙440A、440B做得足够宽以避免掐掉该在P型区或P阱485与形成于对角深N阱区之下的次表面层之间的传导路径。然而,随着对角深N阱区的数量与尺寸的提升,由于在N阱区与对角深N阱区之间有更大与更多次表面传导边界,发送体偏置电压Vnw的传导路径的电阻降低。因此,在每种设计情形,在间隙面积430与对角深N阱区之间存在一种平衡。
图5绘示本发明一实施例具有多个N阱与形成网状构造的多个对角深N阱(DDNW)区510的物理布局图。如上所述,该多个对角深N阱(DDNW)区510形成次表面网状构造,其可发送体偏置电压Vnw到N阱570,且没有将P型区或P阱580与形成于对角深N阱区510之下的次表面层隔离。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明的权利要求的保护范围。

Claims (40)

1.一种将体偏置电压发送到半导体器件中的第一传导性的表面阱的方法,所述方法包括:
在所述半导体器件的表面之下和所述表面阱之下,形成具有所述第一传导性的次表面网状结构,其中所述次表面网状结构相对于所述表面阱的取向对角地取向;
将所述次表面网状结构与所述表面阱电耦合,以生成传导路径;以及
将所述体偏置电压施加到所述次表面网状结构。
2.如权利要求1所述的方法,其中所述次表面网状结构具有N型掺杂。
3.如权利要求2所述的方法,其中所述表面阱具有N型掺杂。
4.如权利要求3所述的方法,其中每一表面阱包括P型金属氧化物半导体场效应晶体管。
5.如权利要求1所述的方法,其中所述次表面网状结构具有P型掺杂。
6.如权利要求5所述的方法,其中该表面阱具有P型掺杂。
7.如权利要求6所述的方法,其中每一表面阱包括N型金属氧化物半导体场效应晶体管。
8.一种将体偏置电压发送到半导体器件中的第一传导性的表面阱的方法,所述方法包括:
在所述半导体器件的表面之下和所述表面阱之下,形成多个平行的具有所述第一传导性的次表面区,其中每一平行的次表面区相对于所述表面阱的取向对角地取向;
将所述平行的次表面区与所述表面阱电耦合,以生成传导路径;以及
将所述体偏置电压施加到所述平行的次表面区中的至少一个。
9.如权利要求8所述的方法,其中每一平行的次表面区具有N型掺杂。
10.如权利要求9所述的方法,其中所述表面阱具有N型掺杂。
11.如权利要求10所述的方法,其中每一表面阱包括P型金属氧化物半导体场效应晶体管。
12.如权利要求8所述的方法,其中每一平行的次表面区具有P型掺杂。
13.如权利要求12所述的方法,其中该表面阱具有P型掺杂。
14.如权利要求13所述的方法,其中每一表面阱包括N型金属氧化物半导体场效应晶体管。
15.一种将体偏置电压发送到半导体器件中的第一传导性的第一表面阱的方法,所述方法包括:
在所述半导体器件的表面之下、在所述第一表面阱之下、以及在第二传导性的第二表面阱之下,形成具有所述第一传导性的次表面区,其中所述次表面区相对于所述表面阱的取向对角地取向而不将所述第二表面阱隔离;
将所述次表面区与所述表面阱电耦合,以生成传导路径;以及
将所述体偏置电压施加到所述次表面区。
16.如权利要求15所述的方法,其中所述次表面区具有N型掺杂。
17.如权利要求16所述的方法,其中所述第一表面阱具有N型掺杂,以及其中所述第二表面阱具有P型掺杂。
18.如权利要求17所述的方法,其中每一第一表面阱包括P型金属氧化物半导体场效应晶体管。
19.如权利要求15所述的方法,其中所述次表面区具有P型掺杂。
20.如权利要求19所述的方法,其中所述第一表面阱具有P型掺杂,其中所述第二表面阱具有N型掺杂,以及其中每一第一表面阱包括N型金属氧化物半导体场效应晶体管。
21.一种将体偏置电压发送到半导体器件中的第一传导性的表面阱的方法,所述方法包括:
在所述半导体器件的表面之下和所述表面阱之下,形成具有所述第一传导性的次表面层;
在所述次表面层中形成间隙区,其中所述间隙区相对于所述表面阱的取向对角地取向;
将所述次表面层与所述表面阱电耦合,以生成传导路径;以及
将所述体偏置电压施加到所述次表面层。
22.如权利要求21所述的方法,其中所述次表面层具有N型掺杂。
23.如权利要求22所述的方法,其中所述表面阱具有N型掺杂。
24.如权利要求23所述的方法,其中每一表面阱包括P型金属氧化物半导体场效应晶体管。
25.如权利要求21所述的方法,其中所述次表面层具有P型掺杂。
26.如权利要求25所述的方法,其中该表面阱具有P型掺杂。
27.如权利要求26所述的方法,其中每一表面阱包括N型金属氧化物半导体场效应晶体管。
28.一种将体偏置电压发送到半导体器件中的第一传导性的表面阱的方法,所述方法包括:
在所述半导体器件的表面之下和所述表面阱之下,形成具有所述第一传导性的次表面层;
在所述次表面层中形成对角线取向的间隙区,其中所述对角线取向的间隙区相对于所述表面阱的取向对角地取向;
将所述次表面层与所述表面阱电耦合,以生成传导路径;以及
将所述体偏置电压施加到所述次表面层。
29.如权利要求28所述的方法,其中所述次表面层具有N型掺杂。
30.如权利要求29所述的方法,其中所述表面阱具有N型掺杂。
31.如权利要求30所述的方法,其中每一表面阱包括P型金属氧化物半导体场效应晶体管。
32.如权利要求28所述的方法,其中所述次表面层具有P型掺杂。
33.如权利要求32所述的方法,其中该表面阱具有P型掺杂。
34.如权利要求33所述的方法,其中每一表面阱包括N型金属氧化物半导体场效应晶体管。
35.一种将体偏置电压发送到半导体器件中的第一传导性的第一表面阱的方法,所述方法包括:
在所述半导体器件的表面之下、在所述第一表面阱之下、以及在第二传导性的第二表面阱之下,形成具有所述第一传导性的次表面层;
在所述次表面层中形成间隙区,其中所述间隙区相对于所述第一表面阱的取向对角地取向而不隔离所述第二表面阱;
将所述次表面层与所述表面阱电耦合,以生成传导路径;以及
将所述体偏置电压施加到所述次表面层。
36.如权利要求35所述的方法,其中所述次表面层具有N型掺杂。
37.如权利要求36所述的方法,其中所述第一表面阱具有N型掺杂,以及其中所述第二表面阱具有P型掺杂。
38.如权利要求37所述的方法,其中每一第一表面阱包括P型金属氧化物半导体场效应晶体管。
39.如权利要求35所述的方法,其中所述次表面层具有P型掺杂。
40.如权利要求39所述的方法,其中所述第一表面阱具有P型掺杂,其中所述第二表面阱具有N型掺杂,以及其中每一第一表面阱包括N型金属氧化物半导体场效应晶体管。
CN2009101409382A 2002-12-31 2003-12-29 半导体器件的阱区 Expired - Fee Related CN101604663B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/334,272 US6936898B2 (en) 2002-12-31 2002-12-31 Diagonal deep well region for routing body-bias voltage for MOSFETS in surface well regions
US10/334,272 2002-12-31

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB2003801080465A Division CN100502005C (zh) 2002-12-31 2003-12-29 半导体器件的阱区

Publications (2)

Publication Number Publication Date
CN101604663A true CN101604663A (zh) 2009-12-16
CN101604663B CN101604663B (zh) 2011-08-03

Family

ID=32654999

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2009101409382A Expired - Fee Related CN101604663B (zh) 2002-12-31 2003-12-29 半导体器件的阱区
CNB2003801080465A Expired - Fee Related CN100502005C (zh) 2002-12-31 2003-12-29 半导体器件的阱区

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNB2003801080465A Expired - Fee Related CN100502005C (zh) 2002-12-31 2003-12-29 半导体器件的阱区

Country Status (5)

Country Link
US (9) US6936898B2 (zh)
JP (1) JP4688501B2 (zh)
CN (2) CN101604663B (zh)
AU (1) AU2003300399A1 (zh)
WO (1) WO2004061967A2 (zh)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7112978B1 (en) 2002-04-16 2006-09-26 Transmeta Corporation Frequency specific closed loop feedback control of integrated circuits
US7941675B2 (en) 2002-12-31 2011-05-10 Burr James B Adaptive power control
US7228242B2 (en) 2002-12-31 2007-06-05 Transmeta Corporation Adaptive power control based on pre package characterization of integrated circuits
US6936898B2 (en) 2002-12-31 2005-08-30 Transmeta Corporation Diagonal deep well region for routing body-bias voltage for MOSFETS in surface well regions
US7323367B1 (en) * 2002-12-31 2008-01-29 Transmeta Corporation Diagonal deep well region for routing body-bias voltage for MOSFETS in surface well regions
US7205758B1 (en) 2004-02-02 2007-04-17 Transmeta Corporation Systems and methods for adjusting threshold voltage
US7953990B2 (en) 2002-12-31 2011-05-31 Stewart Thomas E Adaptive power control based on post package characterization of integrated circuits
US7949864B1 (en) * 2002-12-31 2011-05-24 Vjekoslav Svilan Balanced adaptive body bias control
DE60335756D1 (de) * 2003-02-04 2011-02-24 Panasonic Corp Integrierte Halbleiterschaltung
KR100536612B1 (ko) * 2003-10-09 2005-12-14 삼성전자주식회사 소프트 에러율 내성 및 래치업 내성을 증진시키기 위한 웰구조를 갖는 반도체 장치 및 그 제조 방법
US7174528B1 (en) 2003-10-10 2007-02-06 Transmeta Corporation Method and apparatus for optimizing body bias connections in CMOS circuits using a deep n-well grid structure
US7129771B1 (en) 2003-12-23 2006-10-31 Transmeta Corporation Servo loop for well bias voltage source
US7649402B1 (en) 2003-12-23 2010-01-19 Tien-Min Chen Feedback-controlled body-bias voltage source
US7692477B1 (en) 2003-12-23 2010-04-06 Tien-Min Chen Precise control component for a substrate potential regulation circuit
US7012461B1 (en) 2003-12-23 2006-03-14 Transmeta Corporation Stabilization component for a substrate potential regulation circuit
US7816742B1 (en) 2004-09-30 2010-10-19 Koniaris Kleanthes G Systems and methods for integrated circuits comprising multiple body biasing domains
US7645673B1 (en) * 2004-02-03 2010-01-12 Michael Pelham Method for generating a deep N-well pattern for an integrated circuit design
US7759740B1 (en) * 2004-03-23 2010-07-20 Masleid Robert P Deep well regions for routing body-bias voltage to mosfets in surface well regions having separation wells of p-type between the segmented deep n wells
US7388260B1 (en) 2004-03-31 2008-06-17 Transmeta Corporation Structure for spanning gap in body-bias voltage routing structure
US7313779B1 (en) 2004-10-12 2007-12-25 Transmeta Corporation Method and system for tiling a bias design to facilitate efficient design rule checking
JP2006140448A (ja) * 2004-10-14 2006-06-01 Nec Electronics Corp 半導体装置
US7211870B2 (en) * 2004-10-14 2007-05-01 Nec Electronics Corporation Semiconductor device
JP2006120852A (ja) * 2004-10-21 2006-05-11 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
US7598573B2 (en) * 2004-11-16 2009-10-06 Robert Paul Masleid Systems and methods for voltage distribution via multiple epitaxial layers
US7667288B2 (en) * 2004-11-16 2010-02-23 Masleid Robert P Systems and methods for voltage distribution via epitaxial layers
JP2007005763A (ja) * 2005-05-26 2007-01-11 Fujitsu Ltd 半導体装置及びその製造方法及びに半導体装置の設計方法
US7661086B1 (en) 2005-06-30 2010-02-09 Scott Pitkethly Enhanced clock signal flexible distribution system and method
US7730440B2 (en) * 2005-06-30 2010-06-01 Scott Pitkethly Clock signal distribution system and method
US7217962B1 (en) * 2005-06-30 2007-05-15 Transmeta Corporation Wire mesh patterns for semiconductor devices
US7305647B1 (en) 2005-07-28 2007-12-04 Transmeta Corporation Using standard pattern tiles and custom pattern tiles to generate a semiconductor design layout having a deep well structure for routing body-bias voltage
US7462903B1 (en) * 2005-09-14 2008-12-09 Spansion Llc Methods for fabricating semiconductor devices and contacts to semiconductor devices
US7265041B2 (en) * 2005-12-19 2007-09-04 Micrel, Inc. Gate layouts for transistors
JP4777082B2 (ja) * 2006-02-13 2011-09-21 富士通セミコンダクター株式会社 半導体装置及びその製造方法
JP2007214490A (ja) * 2006-02-13 2007-08-23 Fujitsu Ltd 半導体装置及びその製造方法
JP4819548B2 (ja) * 2006-03-30 2011-11-24 富士通セミコンダクター株式会社 半導体装置
US8451951B2 (en) * 2008-08-15 2013-05-28 Ntt Docomo, Inc. Channel classification and rate adaptation for SU-MIMO systems
US8735797B2 (en) * 2009-12-08 2014-05-27 Zena Technologies, Inc. Nanowire photo-detector grown on a back-side illuminated image sensor
US8742831B2 (en) * 2009-02-23 2014-06-03 Honeywell International Inc. Method for digital programmable optimization of mixed-signal circuits
EP2246885A1 (fr) * 2009-04-27 2010-11-03 STmicroelectronics SA Structure de protection d'un circuit intégré contre des décharges électrostatiques
KR101699033B1 (ko) * 2009-11-30 2017-01-24 에스케이하이닉스 주식회사 출력 드라이버
US9064746B2 (en) * 2011-11-09 2015-06-23 Skyworks Solutions, Inc. Devices and methods related to field-effect transistor structures for radio-frequency applications
JP5875355B2 (ja) * 2011-12-12 2016-03-02 ルネサスエレクトロニクス株式会社 回路シミュレーション方法
US10658471B2 (en) 2015-12-24 2020-05-19 Intel Corporation Transition metal dichalcogenides (TMDCS) over III-nitride heteroepitaxial layers
CN115799253B (zh) 2021-05-25 2024-01-02 英诺赛科(苏州)科技有限公司 氮化物基双向切换器件及其制造方法
US11929399B2 (en) 2022-03-07 2024-03-12 Globalfoundries U.S. Inc. Deep nwell contact structures

Family Cites Families (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4150366A (en) * 1976-09-01 1979-04-17 Motorola, Inc. Trim network for monolithic circuits and use in trimming a d/a converter
US4605980A (en) * 1984-03-02 1986-08-12 Zilog, Inc. Integrated circuit high voltage protection
JPS6410656A (en) 1987-07-03 1989-01-13 Hitachi Ltd Complementary type semiconductor device
US5160816A (en) 1990-10-17 1992-11-03 Systems Development Group Two dimensional sound diffusor
US5081371A (en) * 1990-11-07 1992-01-14 U.S. Philips Corp. Integrated charge pump circuit with back bias voltage reduction
US5648288A (en) 1992-03-20 1997-07-15 Siliconix Incorporated Threshold adjustment in field effect semiconductor devices
US5397934A (en) * 1993-04-05 1995-03-14 National Semiconductor Corporation Apparatus and method for adjusting the threshold voltage of MOS transistors
US5412239A (en) 1993-05-14 1995-05-02 Siliconix Incorporated Contact geometry for improved lateral MOSFET
JP3110262B2 (ja) * 1993-11-15 2000-11-20 松下電器産業株式会社 半導体装置及び半導体装置のオペレーティング方法
US5355008A (en) 1993-11-19 1994-10-11 Micrel, Inc. Diamond shaped gate mesh for cellular MOS transistor array
KR0169157B1 (ko) * 1993-11-29 1999-02-01 기다오까 다까시 반도체 회로 및 mos-dram
JP2822881B2 (ja) * 1994-03-30 1998-11-11 日本電気株式会社 半導体集積回路装置
US5636129A (en) 1994-04-20 1997-06-03 Her; One-Hsiow A. Electrical routing through fixed sized module and variable sized channel grids
US5447786A (en) * 1994-05-25 1995-09-05 Auburn University Selective infrared line emitters
US5552333A (en) 1994-09-16 1996-09-03 Lsi Logic Corporation Method for designing low profile variable width input/output cells
US5689144A (en) * 1996-05-15 1997-11-18 Siliconix Incorporated Four-terminal power MOSFET switch having reduced threshold voltage and on-resistance
JPH1070243A (ja) * 1996-05-30 1998-03-10 Toshiba Corp 半導体集積回路装置およびその検査方法およびその検査装置
US5781034A (en) * 1996-07-11 1998-07-14 Cypress Semiconductor Corporation Reduced output swing with p-channel pullup diode connected
US5939934A (en) * 1996-12-03 1999-08-17 Stmicroelectronics, Inc. Integrated circuit passively biasing transistor effective threshold voltage and related methods
JPH10199993A (ja) * 1997-01-07 1998-07-31 Mitsubishi Electric Corp 半導体回路装置及びその製造方法、半導体回路装置製造用マスク装置
US5913122A (en) 1997-01-27 1999-06-15 Taiwan Semiconductor Manufacturing Company, Ltd. Method of making high breakdown voltage twin well device with source/drain regions widely spaced from FOX regions
KR100240872B1 (ko) * 1997-02-17 2000-01-15 윤종용 정전기 방전 보호 회로 및 그것을 구비하는 집적 회로
JP3886590B2 (ja) * 1997-03-12 2007-02-28 株式会社ルネサステクノロジ 半導体装置およびその製造方法
US6593799B2 (en) * 1997-06-20 2003-07-15 Intel Corporation Circuit including forward body bias from supply voltage and ground nodes
US6218895B1 (en) * 1997-06-20 2001-04-17 Intel Corporation Multiple well transistor circuits having forward body bias
EP0887932A1 (en) * 1997-06-24 1998-12-30 STMicroelectronics S.r.l. Control of the body voltage of a high voltage LDMOS
JP4128251B2 (ja) 1997-10-23 2008-07-30 富士通株式会社 配線密度予測方法およびセル配置装置
JP3269475B2 (ja) * 1998-02-16 2002-03-25 日本電気株式会社 半導体装置
US6091283A (en) 1998-02-24 2000-07-18 Sun Microsystems, Inc. Sub-threshold leakage tuning circuit
US6218708B1 (en) 1998-02-25 2001-04-17 Sun Microsystems, Inc. Back-biased MOS device and method
US6180998B1 (en) 1998-03-30 2001-01-30 Lsi Logic Corporation DRAM with built-in noise protection
JP3461443B2 (ja) 1998-04-07 2003-10-27 松下電器産業株式会社 半導体装置、半導体装置の設計方法、記録媒体および半導体装置の設計支援装置
US6048746A (en) 1998-06-08 2000-04-11 Sun Microsystems, Inc. Method for making die-compensated threshold tuning circuit
US6087892A (en) 1998-06-08 2000-07-11 Sun Microsystems, Inc. Target Ion/Ioff threshold tuning circuit and method
US6412102B1 (en) 1998-07-22 2002-06-25 Lsi Logic Corporation Wire routing optimization
US6169310B1 (en) * 1998-12-03 2001-01-02 National Semiconductor Corporation Electrostatic discharge protection device
JP2000216347A (ja) * 1999-01-20 2000-08-04 Toshiba Corp Cmos半導体装置
US6498592B1 (en) 1999-02-16 2002-12-24 Sarnoff Corp. Display tile structure using organic light emitting materials
US6507944B1 (en) 1999-07-30 2003-01-14 Fujitsu Limited Data processing method and apparatus, reticle mask, exposing method and apparatus, and recording medium
US6249454B1 (en) 1999-09-15 2001-06-19 Taiwan Semiconductor Manufacturing Company Split-gate flash cell for virtual ground architecture
US6405358B1 (en) 1999-10-08 2002-06-11 Agilent Technologies, Inc. Method for estimating and displaying wiring congestion
JP3822009B2 (ja) 1999-11-17 2006-09-13 株式会社東芝 自動設計方法、露光用マスクセット、半導体集積回路装置、半導体集積回路装置の製造方法、および自動設計プログラムを記録した記録媒体
JP4068781B2 (ja) 2000-02-28 2008-03-26 株式会社ルネサステクノロジ 半導体集積回路装置および半導体集積回路装置の製造方法
US6536028B1 (en) 2000-03-14 2003-03-18 Ammocore Technologies, Inc. Standard block architecture for integrated circuit design
JP3636345B2 (ja) * 2000-03-17 2005-04-06 富士電機デバイステクノロジー株式会社 半導体素子および半導体素子の製造方法
KR100363327B1 (ko) * 2000-03-23 2002-11-30 삼성전자 주식회사 퓨즈 회로 및 그것의 프로그램 상태 검출 방법
JP2001274265A (ja) * 2000-03-28 2001-10-05 Mitsubishi Electric Corp 半導体装置
JP2002064150A (ja) * 2000-06-05 2002-02-28 Mitsubishi Electric Corp 半導体装置
US6566720B2 (en) 2000-10-05 2003-05-20 United Memories, Inc. Base cell layout permitting rapid layout with minimum clock line capacitance on CMOS standard-cell and gate-array integrated circuits
US6303444B1 (en) 2000-10-19 2001-10-16 Sun Microsystems, Inc. Method for introducing an equivalent RC circuit in a MOS device using resistive wells
JP3950294B2 (ja) * 2000-11-16 2007-07-25 シャープ株式会社 半導体装置
JP2002198439A (ja) * 2000-12-26 2002-07-12 Sharp Corp 半導体装置および携帯電子機器
US6417720B1 (en) * 2000-12-28 2002-07-09 Intel Corporation High voltage sense circuit for programming of programmable devices
US6429726B1 (en) * 2001-03-27 2002-08-06 Intel Corporation Robust forward body bias generation circuit with digital trimming for DC power supply variation
JP2002289698A (ja) * 2001-03-28 2002-10-04 Sharp Corp 半導体装置及びその製造方法と携帯電子機器
US6570810B2 (en) 2001-04-20 2003-05-27 Multi Level Memory Technology Contactless flash memory with buried diffusion bit/virtual ground lines
US6605981B2 (en) * 2001-04-26 2003-08-12 International Business Machines Corporation Apparatus for biasing ultra-low voltage logic circuits
US6489224B1 (en) 2001-05-31 2002-12-03 Sun Microsystems, Inc. Method for engineering the threshold voltage of a device using buried wells
US7155698B1 (en) 2001-09-11 2006-12-26 The Regents Of The University Of California Method of locating areas in an image such as a photo mask layout that are sensitive to residual processing effects
US6621325B2 (en) 2001-09-18 2003-09-16 Xilinx, Inc. Structures and methods for selectively applying a well bias to portions of a programmable device
US6784744B2 (en) * 2001-09-27 2004-08-31 Powerq Technologies, Inc. Amplifier circuits and methods
US6845495B2 (en) 2001-12-20 2005-01-18 Lsi Logic Corporation Multidirectional router
JP3631464B2 (ja) 2001-12-27 2005-03-23 株式会社東芝 半導体装置
JP2003197792A (ja) 2001-12-28 2003-07-11 Sanyo Electric Co Ltd 半導体装置
KR100422393B1 (ko) * 2002-01-17 2004-03-11 한국전자통신연구원 격자형 표류 영역 구조를 갖는 이디모스 소자 및 그 제조방법
US6735110B1 (en) * 2002-04-17 2004-05-11 Xilinx, Inc. Memory cells enhanced for resistance to single event upset
US6724044B2 (en) * 2002-05-10 2004-04-20 General Semiconductor, Inc. MOSFET device having geometry that permits frequent body contact
US7363099B2 (en) 2002-06-07 2008-04-22 Cadence Design Systems, Inc. Integrated circuit metrology
JP4282051B2 (ja) 2002-07-22 2009-06-17 シャープ株式会社 半導体集積回路製造用マスクパターンデータ生成方法およびその検証方法
US6772859B2 (en) 2002-09-26 2004-08-10 Rpg Diffusor Systems, Inc. Embodiments of aperiodic tiling of a single asymmetric diffusive base shape
US6744081B2 (en) 2002-10-30 2004-06-01 Lsi Logic Corporation Interleaved termination ring
US7334198B2 (en) 2002-12-31 2008-02-19 Transmeta Corporation Software controlled transistor body bias
US6936898B2 (en) 2002-12-31 2005-08-30 Transmeta Corporation Diagonal deep well region for routing body-bias voltage for MOSFETS in surface well regions
US7091574B2 (en) 2003-03-13 2006-08-15 International Business Machines Corporation Voltage island circuit placement
US7003748B1 (en) 2003-06-01 2006-02-21 Cadence Design Systems, Inc. Methods and apparatus for defining Manhattan power grid structures beneficial to diagonal signal wiring
US7049699B1 (en) 2003-11-12 2006-05-23 Transmeta Corporation Low RC structures for routing body-bias voltage
US7049652B2 (en) 2003-12-10 2006-05-23 Sandisk Corporation Pillar cell flash memory technology
US7015741B2 (en) 2003-12-23 2006-03-21 Intel Corporation Adaptive body bias for clock skew compensation
US7012461B1 (en) * 2003-12-23 2006-03-14 Transmeta Corporation Stabilization component for a substrate potential regulation circuit
US7859062B1 (en) * 2004-02-02 2010-12-28 Koniaris Kleanthes G Systems and methods for integrated circuits comprising multiple body biasing domains
US7388260B1 (en) 2004-03-31 2008-06-17 Transmeta Corporation Structure for spanning gap in body-bias voltage routing structure
US7174526B2 (en) 2004-07-30 2007-02-06 Lsi Logic Corporation Accurate density calculation with density views in layout databases
US7598573B2 (en) * 2004-11-16 2009-10-06 Robert Paul Masleid Systems and methods for voltage distribution via multiple epitaxial layers
US7302661B2 (en) 2005-06-14 2007-11-27 International Business Machines Corporation Efficient electromagnetic modeling of irregular metal planes
US7788613B2 (en) 2005-07-06 2010-08-31 Fujitsu Limited Border-enhanced sliding window scheme (SWS) for determining clock timing in a mesh-based clock architecture

Also Published As

Publication number Publication date
US20040124475A1 (en) 2004-07-01
CN1732571A (zh) 2006-02-08
US20080135905A1 (en) 2008-06-12
WO2004061967A3 (en) 2004-09-16
JP4688501B2 (ja) 2011-05-25
AU2003300399A1 (en) 2004-07-29
US6936898B2 (en) 2005-08-30
US7098512B1 (en) 2006-08-29
US7332763B1 (en) 2008-02-19
US20100072575A1 (en) 2010-03-25
US20160163793A1 (en) 2016-06-09
US9251865B2 (en) 2016-02-02
US20080136499A1 (en) 2008-06-12
US20170194421A9 (en) 2017-07-06
CN101604663B (zh) 2011-08-03
US7645664B1 (en) 2010-01-12
CN100502005C (zh) 2009-06-17
JP2006512774A (ja) 2006-04-13
US7863688B2 (en) 2011-01-04
WO2004061967A2 (en) 2004-07-22
AU2003300399A8 (en) 2004-07-29
US7211478B1 (en) 2007-05-01
US8415730B2 (en) 2013-04-09

Similar Documents

Publication Publication Date Title
CN101604663B (zh) 半导体器件的阱区
CN101506974B (zh) 利用沟槽隔离形成的无闭锁垂直瞬态电压抑制二极管阵列结构
CN100490155C (zh) 半导体装置以及形成一半导体结构的方法
TWI445135B (zh) 對還原工程有加強阻擋效果之半導體晶片
JPH1092921A (ja) ダミー構造体を有する集積回路およびその形成方法
CN102456722A (zh) 半导体装置及其制造方法
CN1953149B (zh) 半导体集成电路器件及其制造方法
CN101432881B (zh) 集成电路芯片中电路模块间的噪声隔离
US20210358903A1 (en) TVS Device And Manufacturing Method Therefor
US6822290B2 (en) Truncated power enhanced drift lateral DMOS device which includes a ground strap
US20070145495A1 (en) Method of fabricating a MOSFET transistor having an anti-halo for modifying narrow width device performance
CN109830527A (zh) 半导体结构及其制造方法与半导体器件
EP0619920A1 (de) Integrierte schaltung
CN115241269A (zh) 具有改善的接通电压的静电放电(esd)器件
JPS6323335A (ja) 半導体装置及びその製造方法
US6307263B1 (en) Integrated semiconductor chip with modular dummy structures
CN106206565B (zh) 二极管与二极管串电路
US7323367B1 (en) Diagonal deep well region for routing body-bias voltage for MOSFETS in surface well regions
JPH07130898A (ja) 半導体装置およびその製造方法
US7253498B2 (en) Bipolar transistor with geometry optimized for device performance, and method of making same
CN100353540C (zh) 半导体器件的接触结构及其制造方法
JPH0348427A (ja) バイポーラ半導体装置とその製造方法
CN102549737B (zh) 半导体装置及其制造方法
CN1971911A (zh) 半导体结构
KR100219530B1 (ko) 더미 패턴 배치 방법 및 형성방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110803