CN101356649B - 高电压碳化硅半导体器件的环境坚固钝化结构 - Google Patents

高电压碳化硅半导体器件的环境坚固钝化结构 Download PDF

Info

Publication number
CN101356649B
CN101356649B CN2006800508116A CN200680050811A CN101356649B CN 101356649 B CN101356649 B CN 101356649B CN 2006800508116 A CN2006800508116 A CN 2006800508116A CN 200680050811 A CN200680050811 A CN 200680050811A CN 101356649 B CN101356649 B CN 101356649B
Authority
CN
China
Prior art keywords
silicon nitride
layer
sputter
nitride layer
passivation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2006800508116A
Other languages
English (en)
Other versions
CN101356649A (zh
Inventor
A·沃德三世
J·P·亨宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wolfspeed Inc
Original Assignee
Cree Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cree Research Inc filed Critical Cree Research Inc
Publication of CN101356649A publication Critical patent/CN101356649A/zh
Application granted granted Critical
Publication of CN101356649B publication Critical patent/CN101356649B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/045Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide passivating silicon carbide surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3143Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers
    • H01L21/3145Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers formed by deposition from a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/318Inorganic layers composed of nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/318Inorganic layers composed of nitrides
    • H01L21/3185Inorganic layers composed of nitrides of siliconnitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/405Resistive arrangements, e.g. resistive or semi-insulating field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/6606Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)
  • Bipolar Transistors (AREA)
  • Thyristors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种用于碳化硅中高电场半导体器件的改进的终止结构。该终止结构包括用于高电场工作的基于碳化硅的器件,器件中的有源区,有源区的边缘终止钝化,其中边缘终止钝化包括,位于器件的至少一些碳化硅部分上的用于满足表面状态和降低界面密度的氧化物层,位于氧化物层上用于避免氢的结合且用于减小寄生电容和最小化捕获的氮化硅的非化学计量层,以及,位于非化学计量层上用于密封非化学计量层和氧化物层的氮化硅的化学计量层。

Description

高电压碳化硅半导体器件的环境坚固钝化结构
技术领域
本发明涉及基于碳化硅(SiC)的半导体器件,该器件工作在高电压下从而存在或者否则产生或经历高电场。这种器件典型地包括,但不一定局限于肖特基(整流)二极管、金属氧化物半导体场效应晶体管(MOSFET);绝缘栅极双极型晶体管(IGBT);PIN二极管;双极结型晶体管(BJT)。例如(但不作为限制),基于SiC的功率器件用于(开关)电源、电机控制、功率调节、混合汽车技术、安全装备和蓄电是有利的。
背景技术
对于功率电子器件,碳化硅提供许多物理、化学和电子的优点。在物理方面,材料非常硬并且具有非常高的熔点,给予它坚固的物理特性。在化学方面,碳化硅高度抗化学侵蚀从而提供化学稳定性以及热稳定性。但是,或许最重要地,碳化硅具有极好的电子特性,包括高击穿电场、相对宽的带隙(室温下对于6H多型体为大约2.9eV)、高饱和电子漂移速度,给予它相对于高功率操作、高温操作、抗辐射以及在光谱的蓝色、紫色和紫外线区中高能量光子的吸收和发射的显著优点。
对于功率应用,碳化硅的宽带隙导致高冲击电离能。这又允许SiC经历相对高的电场,而没有电离载流子的雪崩倍增。作为比较,碳化硅的电场容量为硅的大约十倍大。
因为这些器件的有源区经历或产生这种高电场,这种器件典型地必须包括某种终止结构以减小在器件边缘的电场效应(“场拥挤”)。在常见的实例中,终止结构包括与有源区相邻的碳化硅中的注入区。因为器件的表面也必须终止,某种钝化结构典型地增加到该表面。在大多数情况下,表面钝化结构可以包括聚合物(经常地聚酰亚胺)或电介质钝化例如氧化硅、氮化硅或这些的某种组合,包括非化学计量氧化物和非化学计量氮化物(也就是,除了SiO2和Si3N4之外)。
随着能够处理较高电压从而较高电场的基于SiC的器件持续研制,意外地发现通常在低于大约1500℃的温度下抗化学侵蚀的碳化硅在与这些类型的电子功率器件相关联的高电场存在的情况下在低得多温度下将仍然氧化。特别地,在显著的瞬态电流通过器件例如在开关功率器件中,该氧化在器件中存在。如最佳理解的,这似乎是另外的常规氧化还原反应,其中在较高电场下和以相对较高的频率施加的电子的存在激励氧化发生。
碳化硅的该意外和多余氧化可以在相对适度的操作温度下发生;也就是低至125℃,而不是碳化硅将参与化学反应之前所必需的通常高得多的温度。
随着产生的多余氧化物生长,它延伸并且趋向于提升钝化层远离器件,最终退化或消除它的性能特性。
常规的氧化物钝化技术也趋向于在高电场下表现出漂移。该漂移的至少一些归因于氢的存在(作为氢离子存在),其趋向于朝向负电极漂移,导致减小器件的阻挡能力和器件的总体性能的电荷累积。氢的存在典型地由使用等离子增强化学汽相沉积(PECVD)形成钝化结构而产生,因为在PECVD中使用的氧化物前体中许多包含氢。
在这点上发现的问题已经在低至250千瓦每厘米(kV/cm)的场强处观察到,并且在500kV/cm或更高处非常明显。许多基于SiC的功率器件经历高达大约1.5兆伏每厘米(MV/cm)的电场。
因此,将充分利用碳化硅的场强特性的器件要求可以承受这种场强而没有多余的电子行为例如漂移以及没有腐蚀性氧化还原反应例如碳化硅到某种化学计量或非化学计量氧化硅的氧化的钝化结构。
发明内容
本发明是一种用于碳化硅中高电场半导体器件的改进的终止结构。该结构包括用于高电场工作的基于碳化硅的器件,所述器件中的有源区,所述有源区的边缘终止钝化(edge terminationpassivation),其中所述边缘终止钝化包括,位于器件的至少一些碳化硅部分上的用于满足表面状态和降低界面密度的氧化物层,位于所述氧化物层上用于避免氢的结合且用于减小寄生电容和最小化捕获的氮化硅的非化学计量层,以及位于非化学计量层上用于密封所述非化学计量层和所述氧化物层的氮化硅的化学计量层。
在另一种实施方案中,本发明是一种用于碳化硅中高电场半导体器件的改进终止结构,包括用于高电场工作的基于碳化硅的器件,所述器件中的有源区,所述有源区的边缘终止钝化,其中所述边缘终止钝化包括,位于与所述有源区相邻的碳化硅部分上的氧化层,用于降低所述碳化硅部分与所述氧化层之间的界面密度,位于所述氧化层上用于减小寄生电容和最小化器件捕获的第一溅射非化学计量氮化硅层,位于所述第一层上用于定位随后的钝化层进一步远离所述衬底而不密封所述结构的第二溅射非化学计量氮化硅层,位于所述第二溅射层上用于密封所述结构且用于增强钝化层的氢阻挡性质的溅射化学计量氮化硅层,以及位于所述密封层上用于阶梯覆盖和防裂的化学计量氮化硅的化学汽相淀积环境阻挡层。
本发明的前述和其它目的和优点及其实现方式将基于下面结合附随附图进行的详细描述而变得更清晰。
附图说明
图1是肖特基二极管的横截面示意图。
图2是包括根据本发明的终止结构的肖特基二极管的横截面示意图。
图3是包括本发明的钝化的金属氧化物半导体场效应晶体管(MOSFET)的横截面示意图。
图4是包括根据本发明的钝化的双极结型晶体管(BJT)的示意半单元说明。
图5是包括根据本发明的终止钝化的绝缘栅极双极型晶体管(IGBT)的横截面示意半单元表示。
图6是根据本发明的半导体闸流管的横截面示意图。
图7示出根据本发明的钝化结构的更详细实施方案。
具体实施方式
图1是概括地标记为10的肖特基二极管的横截面示意图并且说明由本发明解决的最近发现的问题。虽然肖特基二极管是相对简单(较少元件)的电子器件从而便于说明的目的,但是应当理解,本发明可以成功地结合在许多器件中而不局限于这里描述的那些。
二极管10在承载碳化硅外延层12的碳化硅衬底11上形成。整流金属接触13完成基础肖特基结构。在图1中,衬底11和外延层12示出为n型。
虽然术语“边缘”以略微任意的方式使用,对于肖特基二极管,器件的边缘在功能上由整流接触13的外围或边界限定。因此,在图1中示出的二极管中,典型地通过注入形成的相反导电型区14(也就是,与形成肖特基结的半导体的导电型相反)在外延层12的表面与接触13相邻。图1示出部分14为p型。常规钝化层示出为15并且在背景中描述的问题,也就是氧化物的多余生长,由阴影区16示出。如图1中示意说明的,氧化物部分16的连续生长将趋向于物理地、化学地和电气地退化器件的结构和性能。
图2是包括根据本发明的终止结构且概括地标记为17的肖特基二极管的横截面示意图。二极管17是具有碳化硅衬底20和碳化硅外延层21的基于碳化硅的器件。通常,但不是排它地,在碳化硅中的n型肖特基二极管中,衬底20将比外延层21稍微更严重地掺杂,如由加号和减号指示的。由适当肖特基金属形成的金属接触22与外延层21一起形成整流接触。应当理解,虽然在许多情况下示意图在这里显示单一金属层,但金属的组合可以用于这些接触。例如,接触22可以是与碳化硅的整流接触中的肖特基金属例如镍、铬、钛或铂,但是也可以为了一些其它目的例如环境保护或更方便地连接到电路而承载另外的金属涂层。
二极管17也包括碳化硅外延层21中的p型终止区23,并且这种终止区典型地以本领域技术人员充分理解的方式由离子注入形成。
二极管17包括器件有源区的边缘终止钝化部分24。边缘终止24位置与肖特基接触22相邻,并且包括位于二极管17的碳化硅部分的至少一些可用部分上用于满足表面状态和降低界面密度的氧化物层25。非化学计量氮化硅层26位于氧化物层上,用于避免氢的结合且用于减小寄生电容和最小化捕获。氮化硅的化学计量层27(Si3N4)位于非化学计量层26上,用于密封非化学计量层26和氧化物层防止环境侵蚀。
碳化硅晶片,包括具有外延层的晶片,在市场上可买到,并且特别地可以从本受让人,Cree公司,Durham NC买到。因此,衬底和外延层可以由本领域技术人员获得并使用而不需不适当的实验。在实例实施方案中,衬底20和外延层21是单晶体并且具有选自碳化硅的3C,4H,6H和15R多型的多型。
在实例实施方案中以及由于许多适当原因,终止钝化结构24中的氧化物层25典型地是热生长的氧化物。这种层也称作“热氧化”层或“氧化”层,其中术语氧化用作形容词以及动词。这种用法在本领域中是常见的并且由本领域技术人员在上下文中理解。在实例实施方案中,热氧化层25是具有大约100至500埃厚度的二氧化硅,通常是化学计量的(SiO2)。
如在背景中陈述的,使用氮化硅钝化层的问题之一在于它们结合氢。对于某些半导体宽带隙器件(例如在‘378专利申请中讨论的III族氮化物),氢的存在可以影响半导体的掺杂特性。在基于碳化硅的器件中,钝化结构中氢的存在也可以不利地引起漂移。因此,非化学计量氮化硅层26基本上是无氢的并且溅射淀积以避免氢的结合。作为比较,化学汽相淀积的氮化硅典型地包括氢,因为氢存在于CVD前体气体中。在实例实施方案中,非化学计量层26为大约1000至2000埃厚。
如专利申请中进一步陈述的,非化学计量(也就是,除了Si3N4之外)氮化硅的原子比以不同于化学计量氮化硅的折射率(在6328
Figure G2006800508116D00061
的标准波长下测量为2.02)的折射率表示。因此,非化学计量氮化硅层具有大约1.85至1.95的折射率,这表示富有氮的成分(与化学计量的相比较)。
图3是包括本发明的钝化且概括地标记为30的金属氧化物半导体场效应晶体管(MOSFET)的横截面示意图。MOSFET 30包括具有第一导电型的碳化硅衬底31以及具有相反导电型的碳化硅的外延层32。图3示出平面、台面型取向的MOSFET,但是应当理解,这是为了说明的目的示范性的而不是本发明可以结合于其中的MOSFET的方式或类型的限制。
源极区33和漏极区34由第一导电型碳化硅形成:也就是,与衬底相同的导电型。栅极接触35和栅极氧化物36限定晶体管30的栅极区,并且源极接触38和漏极接触37由适当的欧姆金属形成。
根据本发明的钝化结构可以包括在MOSFET 30中或附近的许多位置,并且在图3中,钝化标记为40;也就是,源极38、栅极35或漏极37接触中的一个或多个附近。更详细地,氧化物层在图3的左手部分中示出为41,非化学计量氮化物层为42,以及化学计量氧化物层为43。应当理解,其它部分具有与图3的左手部分中示出的相同的三部分结构。
当32的外延层为p型时,MOSFET称作具有n型源极和漏极部分33和34的p沟道MOSFET。如本领域中充分理解的,n沟道MOSFET包括n型外延层32并且源极和漏极部分33和34将是p型。
图4是包括根据本发明的钝化且概括地标记为45具有背面集电极的双极结型晶体管(BJT)的示意半单元说明。BJT 45形成在碳化硅衬底(可能地包括晶片)46以及与衬底46相邻的碳化硅漂移区47上。衬底46和漂移区47具有相同的导电型并且在图4中示出为n型,衬底46比漂移区47稍微更严重地掺杂。基极区50由相反导电型(图4中p型)形成,并且与基极集电极金属52相邻的部分51比基区50的剩余部分稍微更严重地掺杂。射极部分53和相应接触54与集电极接触(背面上)55一起完成半单元结构。
钝化与射极54、基极52或集电极52接触中的一个或多个相邻。在图4中示出的器件取向中,钝化56示出与射极接触54相邻。如在先前的实施方案中,钝化终止结构由氧化物层57、非化学计量氮化硅层60以及化学计量氮化硅层61形成。图4示出n-p-n双极结型晶体管,但是本发明也可以结合将具有在结构的相关部分中颠倒的导电型的p-n-p双极结型晶体管一起使用。
图5是包括根据本发明的终止钝化且概括地标记为63的绝缘栅极双极型晶体管(IGBT)的横截面示意半单元表示。定向晶体管63,位于器件背面上的集电极接触64与射极接触65和栅极接触66相对。如图5中所示,IGBT 63形成与具有MOSFET栅极驱动的p-n-p双极型晶体管等效的电路。栅极氧化物示出为67,各自的n型部分为70和71(漂移区),以及p型区为72和74(p型衬底)。
边缘终止钝化70与射极65、栅极66或集电极64接触中的至少一个(并且取决于取向,与每个)相邻。图5示出与射极接触65相邻的终止钝化70。图5中示出的晶体管包括n型漂移区71,但是晶体管可以配置有p型漂移区,如由本领域技术人员理解的。
图6是根据本发明概括地标记为74的半导体闸流管的横截面示意图(半单元)。在图6的取向中,四个区域(两个p型和两个n型)分别示出为n型衬底(或晶片75)、p型漂移区76、n型外延层77以及p型层80。阳极接触81制成p外延层80并且阴极接触82制成n型衬底75。金属栅极接触83限定栅极部分,其如图6中示出的,可以在一个区域84中比在n型外延层77的剩余部分中稍微更严重地掺杂。
在根据本发明的半导体闸流管中,边缘终止钝化85与阳极81、阴极82或栅极83接触中的至少一个,以及可能与每一个相邻,并且包括氧化物层86、非化学计量氮化硅层87以及化学计量密封氮化硅层90。
图7示出根据本发明的钝化结构的更详细实施方案93。该更详细的结构可以结合进刚刚描述的器件结构的任何一个或多个中。
在图7中,第一溅射非化学计量层94位于热氧化层95上,用于减小寄生电容和最小化器件捕获。第二溅射非化学计量氮化硅层96位于第一层94上,用于定位随后的钝化层进一步远离衬底97,但是不完全密封结构93。溅射的化学计量氮化硅层100位于第二溅射非化学计量层96上,用于初始地密封结构93和用于增强钝化层的氢阻挡性质。化学汽相淀积环境阻挡层101覆盖器件以提供阶梯覆盖和防裂。
略微更详细地,热氧化层95是在实例实施方案中厚度为大约100至500埃
Figure G2006800508116D00081
的化学计量二氧化硅(SiO2)。这是提供氧化物的电子益处的足够厚度(与仅氮化物钝化相对比),但是小于将引起另外的制造问题的厚度。
如这里另外陈述的,溅射的特性使得它提供基本上无氢的氮化硅层。因此,层94,96和100有利地基本上无氢。
首先溅射的两个层94和96优选地富有氮。如先前陈述的,硅或氮的比例(在非化学计量成分中)可以由折射率确定,折射率是形成的氮化硅薄膜的成分的指示。
因此,在实例实施方案中,非化学计量溅射的氮化硅层94和96的每个具有大约1.85至1.95的折射率。
碳化硅衬底经常是单晶体并且具有选自碳化硅的3C,4H,6H和15R多型的多型。
溅射的一个目的在于避免氢的存在,如这里在别处描述的,并且相应地避免与氢的存在相关联的电子问题。因此,关于图7描述的溅射层也可以理解为无氢层。换句话说,溅射是一种产生无氢钝化层的技术。但是,本发明也可以理解为无氢钝化层,而不论它的制造方法。
在附图和说明书中已经陈述了本发明的一种优选实施方案,并且虽然使用了具体的术语,它们只在一般和描述的意义上使用而不为了限制的目的,本发明的范围在权利要求中限定。

Claims (36)

1.一种用于碳化硅中高电场半导体器件的改进的终止结构,包括:
用于高电场工作的基于碳化硅的器件;
所述器件中的有源区;
所述有源区的边缘终止钝化,其中所述边缘终止钝化包括,
位于所述器件的至少一些碳化硅部分上的氧化物层,用于满足表面状态和降低界面密度,
位于所述氧化物层上的氮化硅的非化学计量层,用于避免氢的结合且用于减小寄生电容和最小化捕获,以及,
位于所述非化学计量层上的氮化硅的化学计量层,用于密封所述非化学计量层和所述氧化物层。
2.根据权利要求1的终止结构,包括碳化硅部分,其是单晶体并且具有选自下列组中的多型,该组包括碳化硅的3C,4H,6H和15R多型。
3.一种包括根据权利要求1的终止结构的半导体器件,所述器件选自下列组中,该组包括肖特基二极管、金属氧化物半导体场效应晶体管、绝缘栅极双极型晶体管、PIN二极管、双极结型晶体管以及半导体闸流管。
4.一种根据权利要求3的肖特基二极管,其中所述有源区包括:
碳化硅外延层上的肖特基金属;以及
支撑所述外延层的碳化硅衬底。
5.根据权利要求4的肖特基二极管,其中所述碳化硅外延层和所述碳化硅衬底都是n型;并且
所述肖特基金属选自下列组中,该组包括镍、铬、钛和铂。
6.一种根据权利要求3的MOSFET,包括各个源极、栅极和漏极接触;并且
所述边缘终止钝化与所述接触中的至少一个相邻。
7.一种根据权利要求6的p沟道MOSFET。
8.一种根据权利要求6的n沟道MOSFET。
9.一种根据权利要求3的双极结型晶体管,包括各个基极、射极和集电极接触,并且;
所述边缘终止钝化与所述接触中的至少一个相邻。
10.一种根据权利要求9的n-p-n双极结型晶体管。
11.一种根据权利要求9的p-n-p双极结型晶体管。
12.一种根据权利要求3的绝缘栅极双极型晶体管,包括各个基极、射极和集电极接触;并且
所述边缘终止钝化与所述接触中的至少一个相邻。
13.根据权利要求12的绝缘栅极双极型晶体管,包括n型漂移区。
14.根据权利要求12的绝缘栅极双极型晶体管,包括p型漂移区。
15.一种根据权利要求3的半导体闸流管,包括各个阳极、阴极和栅极接触;并且
所述边缘终止钝化与所述接触中的至少一个相邻。
16.一种根据权利要求3的p-i-n二极管,包括各个阳极和阴极接触;并且所述边缘终止钝化与所述阳极和阴极接触中的至少一个相邻。
17.根据权利要求1的终止结构,其中所述氧化物层是热氧化层。
18.根据权利要求17的终止结构,其中所述热氧化层是厚度为100至500埃的二氧化硅。
19.根据权利要求1的终止结构,其中所述非化学计量氮化硅层是无氢的。
20.根据权利要求1的终止结构,其中所述非化学计量氮化硅层为1000至2000埃厚。
21.根据权利要求1的终止结构,其中所述非化学计量氮化硅层具有1.85至1.95的折射率。
22.根据权利要求1的终止结构,其中所述化学计量氮化硅层是无氢的。
23.一种用于碳化硅中高电场半导体器件的改进终止结构,包括:
用于高电场工作的基于碳化硅的器件;
所述器件中的有源区;
所述有源区的边缘终止钝化,其中所述边缘终止钝化包括,
位于与所述有源区相邻的碳化硅部分上的氧化层,用于降低所述碳化硅部分与所述氧化层之间的界面密度;
位于所述氧化层上的第一溅射非化学计量氮化硅层,用于减小寄生电容和最小化器件捕获;
位于所述第一溅射非化学计量氮化硅层上的第二溅射非化学计量氮化硅层,用于定位随后的钝化层进一步远离所述衬底而不密封所述结构;
位于所述第二溅射非化学计量氮化硅层上的溅射化学计量氮化硅层,用于密封所述结构且用于增强钝化层的氢阻挡性质;以及
化学计量氮化硅的化学汽相淀积环境阻挡层,用于所述溅射化学计量氮化硅层上的阶梯覆盖和防裂。
24.根据权利要求23的钝化半导体结构,其中所述氧化层是热氧化层。
25.根据权利要求23的钝化半导体结构,其中所述热氧化层是厚度为100至500埃的二氧化硅。
26.根据权利要求23的钝化半导体结构,其中所述第一溅射非化学计量氮化硅层是无氢的。
27.根据权利要求23的钝化半导体结构,其中所述第一溅射非化学计量氮化硅层为1000至2000埃厚。
28.根据权利要求23的钝化半导体结构,其中所述第一溅射非化学计量氮化硅层具有1.85至1.95的折射率。
29.根据权利要求23的钝化半导体结构,其中所述第二溅射非化学计量氮化硅层是无氢的。
30.根据权利要求23的钝化半导体结构,其中所述第二溅射非化学计量氮化硅层为1000至3000埃厚。
31.根据权利要求23的钝化半导体结构,其中所述第二溅射非化学计量氮化硅层具有1.85至1.95的折射率。
32.根据权利要求23的钝化半导体结构,其中所述溅射化学计量氮化硅层为1000至3000埃厚。
33.根据权利要求23的钝化半导体结构,其中所述溅射化学计量氮化硅层是无氢的。
34.根据权利要求23的钝化半导体结构,其中所述环境阻挡层为2000至5000埃。
35.根据权利要求23的钝化半导体结构,其中所述环境阻挡层和所述溅射化学计量氮化硅层都包含Si3N4
36.根据权利要求23的钝化半导体结构,其中所述碳化硅衬底是具有选自下列组中的多型的单晶体,该组包括碳化硅的3C,4H,6H和15R多型。
CN2006800508116A 2006-01-10 2006-12-21 高电压碳化硅半导体器件的环境坚固钝化结构 Active CN101356649B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/328,550 2006-01-10
US11/328,550 US7598576B2 (en) 2005-06-29 2006-01-10 Environmentally robust passivation structures for high-voltage silicon carbide semiconductor devices
PCT/US2006/048817 WO2007081528A2 (en) 2006-01-10 2006-12-21 Environmentally robust passivation structures for high-voltage silicon carbide semiconductor devices

Publications (2)

Publication Number Publication Date
CN101356649A CN101356649A (zh) 2009-01-28
CN101356649B true CN101356649B (zh) 2010-04-14

Family

ID=38117229

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800508116A Active CN101356649B (zh) 2006-01-10 2006-12-21 高电压碳化硅半导体器件的环境坚固钝化结构

Country Status (8)

Country Link
US (2) US7598576B2 (zh)
EP (1) EP1972013B1 (zh)
JP (1) JP5254037B2 (zh)
KR (1) KR101012713B1 (zh)
CN (1) CN101356649B (zh)
AT (1) ATE470955T1 (zh)
DE (1) DE602006014871D1 (zh)
WO (1) WO2007081528A2 (zh)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7855401B2 (en) * 2005-06-29 2010-12-21 Cree, Inc. Passivation of wide band-gap based semiconductor devices with hydrogen-free sputtered nitrides
US7525122B2 (en) * 2005-06-29 2009-04-28 Cree, Inc. Passivation of wide band-gap based semiconductor devices with hydrogen-free sputtered nitrides
EP1746661A1 (en) * 2005-07-22 2007-01-24 ABB Technology AG Power semiconductor device
US8178843B2 (en) * 2005-12-01 2012-05-15 Bae Systems Information And Electronic Systems Integration Inc. Polycrystalline heterostructure infrared detector
JP5294238B2 (ja) * 2007-08-28 2013-09-18 独立行政法人物質・材料研究機構 電子素子
JP5446161B2 (ja) * 2007-08-31 2014-03-19 住友電気工業株式会社 ショットキーバリアダイオードおよびその製造方法
JP5541842B2 (ja) * 2008-03-18 2014-07-09 新電元工業株式会社 炭化珪素ショットキダイオード
JP5445899B2 (ja) * 2008-08-26 2014-03-19 住友電気工業株式会社 ショットキーバリアダイオード
US7800196B2 (en) * 2008-09-30 2010-09-21 Northrop Grumman Systems Corporation Semiconductor structure with an electric field stop layer for improved edge termination capability
EP2448378A1 (en) 2010-10-26 2012-05-02 ATOTECH Deutschland GmbH Composite build-up materials for embedding of active components
US20130334501A1 (en) * 2011-09-15 2013-12-19 The Regents Of The University Of California Field-Effect P-N Junction
KR101279199B1 (ko) * 2011-09-21 2013-06-26 주식회사 케이이씨 반도체 소자 및 이의 제조 방법
US9812338B2 (en) 2013-03-14 2017-11-07 Cree, Inc. Encapsulation of advanced devices using novel PECVD and ALD schemes
US8994073B2 (en) 2012-10-04 2015-03-31 Cree, Inc. Hydrogen mitigation schemes in the passivation of advanced devices
US9991399B2 (en) 2012-10-04 2018-06-05 Cree, Inc. Passivation structure for semiconductor devices
JP2014138111A (ja) * 2013-01-17 2014-07-28 Fujitsu Ltd 半導体装置及びその製造方法、電源装置、高周波増幅器
JP6069059B2 (ja) * 2013-03-22 2017-01-25 住友電気工業株式会社 炭化珪素半導体装置
US9425153B2 (en) 2013-04-04 2016-08-23 Monolith Semiconductor Inc. Semiconductor devices comprising getter layers and methods of making and using the same
GB2516425B (en) * 2013-07-17 2015-12-30 Gurulogic Microsystems Oy Encoder and decoder, and method of operation
US9590048B2 (en) 2013-10-31 2017-03-07 Infineon Technologies Austria Ag Electronic device
US9123791B2 (en) 2014-01-09 2015-09-01 Infineon Technologies Austria Ag Semiconductor device and method
US20150255362A1 (en) * 2014-03-07 2015-09-10 Infineon Technologies Ag Semiconductor Device with a Passivation Layer and Method for Producing Thereof
US9401708B2 (en) 2014-05-20 2016-07-26 General Electric Company Gate drive unit and method for controlling a gate drive unit
JP2016081981A (ja) * 2014-10-14 2016-05-16 株式会社日立製作所 半導体装置及びその製造方法
JP2017017145A (ja) * 2015-06-30 2017-01-19 株式会社東芝 半導体装置
CN105185820B (zh) * 2015-08-18 2017-12-12 华中科技大学 一种基于碳化硅的半导体断路开关及其制备方法
JP6300773B2 (ja) 2015-10-23 2018-03-28 三菱電機株式会社 半導体圧力センサ
WO2017076659A1 (en) * 2015-11-05 2017-05-11 Abb Schweiz Ag Power semiconductor device and method for producing a power semiconductor device
CN106409663A (zh) * 2016-06-20 2017-02-15 中国工程物理研究院电子工程研究所 一种制备高阻断电压碳化硅功率器件的方法
EP3267187B1 (en) * 2016-07-08 2020-04-15 Volvo Car Corporation Silicon carbide based field effect gas sensor for high temperature applications
KR102419085B1 (ko) * 2016-09-26 2022-07-07 한국전기연구원 전력 반도체 소자
US9998109B1 (en) * 2017-05-15 2018-06-12 Cree, Inc. Power module with improved reliability
JP2019145616A (ja) 2018-02-19 2019-08-29 株式会社東芝 半導体装置
DE102018121897A1 (de) * 2018-09-07 2020-03-12 Infineon Technologies Ag Halbleitervorrichtung mit einem silizium und stickstoff enthaltenden bereich und herstellungsverfahren
DE102019131238A1 (de) 2018-12-06 2020-06-10 Infineon Technologies Ag Passivierungsstruktur enthaltende halbleitervorrichtung und herstellungsverfahren
CN110752256B (zh) * 2019-10-22 2021-04-06 深圳第三代半导体研究院 一种碳化硅肖特基钳位晶体管及其制备方法
FR3107988B1 (fr) * 2020-03-05 2023-11-10 St Microelectronics Tours Sas Formation d'un thyristor, triac ou diode de suppression de tensions transitoires
CN112309840A (zh) * 2020-09-27 2021-02-02 东莞南方半导体科技有限公司 一种碳化硅功率器件终端区表面钝化方法
TWI822438B (zh) * 2022-11-02 2023-11-11 台亞半導體股份有限公司 碳化矽檢光閘流體與製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332697A (en) * 1989-05-31 1994-07-26 Smith Rosemary L Formation of silicon nitride by nitridation of porous silicon
CN1308774A (zh) * 1998-07-09 2001-08-15 克里公司 碳化硅水平沟道缓冲栅极半导体器件
CN1679149A (zh) * 2002-08-30 2005-10-05 克里公司 SiO2/SiC 结构中界面态的氮钝化

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2268355B1 (zh) * 1974-04-16 1978-01-20 Thomson Csf
US3895127A (en) * 1974-04-19 1975-07-15 Rca Corp Method of selectively depositing glass on semiconductor devices
US4551353A (en) * 1981-12-30 1985-11-05 Unitrode Corporation Method for reducing leakage currents in semiconductor devices
JPS61170067A (ja) * 1985-01-23 1986-07-31 Nec Corp 半導体装置
US4717641A (en) * 1986-01-16 1988-01-05 Motorola Inc. Method for passivating a semiconductor junction
US4799100A (en) * 1987-02-17 1989-01-17 Siliconix Incorporated Method and apparatus for increasing breakdown of a planar junction
JPH02187030A (ja) * 1989-01-13 1990-07-23 Kawasaki Steel Corp 半導体装置への保護膜の形成方法
JPH04186675A (ja) * 1990-11-16 1992-07-03 Matsushita Electron Corp 半導体装置
IE920778A1 (en) 1991-03-12 1992-09-23 Du Pont Method for specific binding assays using a releasable ligand
US5629531A (en) * 1992-06-05 1997-05-13 Cree Research, Inc. Method of obtaining high quality silicon dioxide passivation on silicon carbide and resulting passivated structures
US5430324A (en) * 1992-07-23 1995-07-04 Siliconix, Incorporated High voltage transistor having edge termination utilizing trench technology
SE9500013D0 (sv) * 1995-01-03 1995-01-03 Abb Research Ltd Semiconductor device having a passivation layer
US5972801A (en) * 1995-11-08 1999-10-26 Cree Research, Inc. Process for reducing defects in oxide layers on silicon carbide
JP3183190B2 (ja) * 1995-12-14 2001-07-03 株式会社デンソー 半導体装置の製造方法
DE19722859C1 (de) * 1997-05-31 1998-10-15 Dresden Ev Inst Festkoerper Oberflächenwellenresonator
US6316820B1 (en) * 1997-07-25 2001-11-13 Hughes Electronics Corporation Passivation layer and process for semiconductor devices
US6825501B2 (en) * 1997-08-29 2004-11-30 Cree, Inc. Robust Group III light emitting diode for high reliability in standard packaging applications
JP2974003B2 (ja) * 1998-04-22 1999-11-08 富士電機株式会社 半導体装置およびその製造方法
US6303969B1 (en) * 1998-05-01 2001-10-16 Allen Tan Schottky diode with dielectric trench
TW471049B (en) 1998-05-22 2002-01-01 United Microelectronics Corp Metal gate structure and manufacturing method for metal oxide semiconductor
US6972436B2 (en) 1998-08-28 2005-12-06 Cree, Inc. High voltage, high temperature capacitor and interconnection structures
US6246076B1 (en) * 1998-08-28 2001-06-12 Cree, Inc. Layered dielectric on silicon carbide semiconductor structures
JP4361625B2 (ja) * 1998-10-05 2009-11-11 東京エレクトロン株式会社 半導体装置及びその製造方法
US6242784B1 (en) * 1999-06-28 2001-06-05 Intersil Corporation Edge termination for silicon power devices
TW474024B (en) 1999-08-16 2002-01-21 Cornell Res Foundation Inc Passivation of GaN based FETs
US6903373B1 (en) 1999-11-23 2005-06-07 Agere Systems Inc. SiC MOSFET for use as a power switch and a method of manufacturing the same
US6373076B1 (en) * 1999-12-07 2002-04-16 Philips Electronics North America Corporation Passivated silicon carbide devices with low leakage current and method of fabricating
US6586781B2 (en) * 2000-02-04 2003-07-01 Cree Lighting Company Group III nitride based FETs and HEMTs with reduced trapping and method for producing the same
US6939756B1 (en) * 2000-03-24 2005-09-06 Vanderbilt University Inclusion of nitrogen at the silicon dioxide-silicon carbide interace for passivation of interface defects
US6630413B2 (en) 2000-04-28 2003-10-07 Asm Japan K.K. CVD syntheses of silicon nitride materials
US6686616B1 (en) * 2000-05-10 2004-02-03 Cree, Inc. Silicon carbide metal-semiconductor field effect transistors
JP2001352056A (ja) * 2000-06-08 2001-12-21 Fuji Electric Co Ltd 半導体装置
US6396090B1 (en) * 2000-09-22 2002-05-28 Industrial Technology Research Institute Trench MOS device and termination structure
US6767843B2 (en) * 2000-10-03 2004-07-27 Cree, Inc. Method of N2O growth of an oxide layer on a silicon carbide layer
US6610366B2 (en) * 2000-10-03 2003-08-26 Cree, Inc. Method of N2O annealing an oxide layer on a silicon carbide layer
JP2002134504A (ja) * 2000-10-30 2002-05-10 Fuji Electric Co Ltd 半導体装置およびその製造方法
US6573128B1 (en) * 2000-11-28 2003-06-03 Cree, Inc. Epitaxial edge termination for silicon carbide Schottky devices and methods of fabricating silicon carbide devices incorporating same
JP4011848B2 (ja) * 2000-12-12 2007-11-21 関西電力株式会社 高耐電圧半導体装置
US6528373B2 (en) * 2001-02-12 2003-03-04 Cree, Inc. Layered dielectric on silicon carbide semiconductor structures
JP4852792B2 (ja) * 2001-03-30 2012-01-11 株式会社デンソー 半導体装置の製造方法
US6849882B2 (en) 2001-05-11 2005-02-01 Cree Inc. Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer
US6797586B2 (en) 2001-06-28 2004-09-28 Koninklijke Philips Electronics N.V. Silicon carbide schottky barrier diode and method of making
CN1557024B (zh) 2001-07-24 2010-04-07 美商克立股份有限公司 绝缘栅铝镓氮化物/氮化钾高电子迁移率晶体管(hemt)
US6956239B2 (en) * 2002-11-26 2005-10-18 Cree, Inc. Transistors having buried p-type layers beneath the source region
US6747338B1 (en) * 2002-11-27 2004-06-08 Analog Devices, Inc. Composite dielectric with improved etch selectivity for high voltage MEMS structures
WO2005004198A2 (en) * 2003-06-13 2005-01-13 North Carolina State University Complex oxides for use in semiconductor devices and related methods
US7053425B2 (en) * 2003-11-12 2006-05-30 General Electric Company Gas sensor device
DE10358985B3 (de) * 2003-12-16 2005-05-19 Infineon Technologies Ag Halbleiterbauelement mit einem pn-Übergang und einer auf einer Oberfläche aufgebrachten Passivierungsschicht
US7045404B2 (en) 2004-01-16 2006-05-16 Cree, Inc. Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof
DE102004012884B4 (de) * 2004-03-16 2011-07-21 IXYS Semiconductor GmbH, 68623 Leistungs-Halbleiterbauelement in Planartechnik
JP2005286135A (ja) * 2004-03-30 2005-10-13 Eudyna Devices Inc 半導体装置および半導体装置の製造方法
US7550783B2 (en) * 2004-05-11 2009-06-23 Cree, Inc. Wide bandgap HEMTs with source connected field plates
US7332795B2 (en) * 2004-05-22 2008-02-19 Cree, Inc. Dielectric passivation for semiconductor devices
US7297995B2 (en) * 2004-08-24 2007-11-20 Micron Technology, Inc. Transparent metal shielded isolation for image sensors
US7345309B2 (en) * 2004-08-31 2008-03-18 Lockheed Martin Corporation SiC metal semiconductor field-effect transistor
US20060118892A1 (en) * 2004-12-02 2006-06-08 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and Structures to Produce a Strain-Inducing Layer in a Semiconductor Device
US20060145190A1 (en) * 2004-12-31 2006-07-06 Salzman David B Surface passivation for III-V compound semiconductors
US7525122B2 (en) * 2005-06-29 2009-04-28 Cree, Inc. Passivation of wide band-gap based semiconductor devices with hydrogen-free sputtered nitrides

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332697A (en) * 1989-05-31 1994-07-26 Smith Rosemary L Formation of silicon nitride by nitridation of porous silicon
CN1308774A (zh) * 1998-07-09 2001-08-15 克里公司 碳化硅水平沟道缓冲栅极半导体器件
CN1679149A (zh) * 2002-08-30 2005-10-05 克里公司 SiO2/SiC 结构中界面态的氮钝化

Also Published As

Publication number Publication date
KR101012713B1 (ko) 2011-02-09
US20070001176A1 (en) 2007-01-04
JP5254037B2 (ja) 2013-08-07
EP1972013B1 (en) 2010-06-09
KR20080075224A (ko) 2008-08-14
WO2007081528A3 (en) 2007-09-20
WO2007081528A2 (en) 2007-07-19
US7696584B2 (en) 2010-04-13
JP2009522823A (ja) 2009-06-11
EP1972013A2 (en) 2008-09-24
US7598576B2 (en) 2009-10-06
DE602006014871D1 (de) 2010-07-22
ATE470955T1 (de) 2010-06-15
CN101356649A (zh) 2009-01-28
WO2007081528A8 (en) 2008-10-02
US20070018272A1 (en) 2007-01-25

Similar Documents

Publication Publication Date Title
CN101356649B (zh) 高电压碳化硅半导体器件的环境坚固钝化结构
US9349847B2 (en) Semiconductor device and power converter
CN109841616B (zh) 碳化硅半导体装置及碳化硅半导体装置的制造方法
CN111403486B (zh) 一种沟槽型mosfet结构及其制作方法
CN102201433A (zh) 半导体装置及其制造方法
CN116387362A (zh) 一种集成HJD的SiC UMOSFET器件及其制备方法
Zhang et al. A high current gain 4H-SiC NPN power bipolar junction transistor
CN103928309B (zh) N沟道碳化硅绝缘栅双极型晶体管的制备方法
CN102376777A (zh) 具有低正向压降的结势垒型肖特基
Zhang et al. 4H-SiC power bipolar junction transistor with a very low specific ON-resistance of 2.9 m/spl Omega//spl middot/cm 2
CN115799344A (zh) 一种碳化硅jfet元胞结构及其制作方法
CN113421927B (zh) 一种逆导SiC MOSFET器件及其制造方法
Iwamuro SiC power device design and fabrication
JP7345354B2 (ja) 半導体装置
JP6648852B1 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
CN103928321A (zh) 碳化硅绝缘栅双极型晶体管的制备方法
CN104078493A (zh) 半导体装置
CN109192780A (zh) 一种横向mosfet器件及其制备方法
US9048103B2 (en) Method for producing semiconductor device
KR101983166B1 (ko) 반도체 소자 및 반도체 소자의 제조 방법
CN114203797B (zh) 基于异质结的超结氧化镓晶体管及其制作方法与应用
CN109065638A (zh) 一种功率二极管器件
CN103928322A (zh) 穿通型碳化硅绝缘栅双极型晶体管的制备方法
Wang et al. 4H-SiC Trench Gate Lateral MOSFET With Dual Source Trenches for Improved Performance and Reliability
CN108063166A (zh) 一种沟槽结构肖特基半导体装置及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant