CN101044245B - 具有增加的琥珀酸产量的突变大肠杆菌菌株 - Google Patents
具有增加的琥珀酸产量的突变大肠杆菌菌株 Download PDFInfo
- Publication number
- CN101044245B CN101044245B CN2005800288836A CN200580028883A CN101044245B CN 101044245 B CN101044245 B CN 101044245B CN 2005800288836 A CN2005800288836 A CN 2005800288836A CN 200580028883 A CN200580028883 A CN 200580028883A CN 101044245 B CN101044245 B CN 101044245B
- Authority
- CN
- China
- Prior art keywords
- succinic acid
- bacterial strain
- acid
- glucose
- disruption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 title claims abstract description 116
- 239000001384 succinic acid Substances 0.000 title claims abstract description 55
- 238000004519 manufacturing process Methods 0.000 title description 49
- 241000588724 Escherichia coli Species 0.000 title description 16
- 241000894006 Bacteria Species 0.000 claims abstract description 13
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 41
- 239000008103 glucose Substances 0.000 claims description 41
- 230000001580 bacterial effect Effects 0.000 claims description 20
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 15
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 claims description 12
- 239000001630 malic acid Substances 0.000 claims description 12
- 101100398785 Streptococcus agalactiae serotype V (strain ATCC BAA-611 / 2603 V/R) ldhD gene Proteins 0.000 claims description 11
- 101100386830 Zymomonas mobilis subsp. mobilis (strain ATCC 31821 / ZM4 / CP4) ddh gene Proteins 0.000 claims description 11
- 101150014383 adhE gene Proteins 0.000 claims description 11
- 230000014509 gene expression Effects 0.000 claims description 11
- 101150026107 ldh1 gene Proteins 0.000 claims description 11
- 101150041530 ldha gene Proteins 0.000 claims description 11
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 claims description 10
- 235000011090 malic acid Nutrition 0.000 claims description 10
- 101150067967 iclR gene Proteins 0.000 claims description 9
- 241000194035 Lactococcus lactis Species 0.000 claims description 7
- 235000014897 Streptococcus lactis Nutrition 0.000 claims description 6
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 claims description 6
- 230000006692 glycolytic flux Effects 0.000 claims description 6
- 238000012258 culturing Methods 0.000 claims description 4
- 101150028648 citZ gene Proteins 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 3
- 239000000758 substrate Substances 0.000 claims description 3
- 101150096049 pyc gene Proteins 0.000 claims 4
- 244000063299 Bacillus subtilis Species 0.000 claims 1
- 235000014469 Bacillus subtilis Nutrition 0.000 claims 1
- 230000015556 catabolic process Effects 0.000 claims 1
- 108090000623 proteins and genes Proteins 0.000 abstract description 26
- 102000004190 Enzymes Human genes 0.000 abstract description 12
- 108090000790 Enzymes Proteins 0.000 abstract description 12
- 230000002503 metabolic effect Effects 0.000 abstract description 5
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 40
- 230000037361 pathway Effects 0.000 description 39
- HHLFWLYXYJOTON-UHFFFAOYSA-N glyoxylic acid Chemical compound OC(=O)C=O HHLFWLYXYJOTON-UHFFFAOYSA-N 0.000 description 28
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 27
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 27
- 238000000855 fermentation Methods 0.000 description 23
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 21
- 230000004151 fermentation Effects 0.000 description 19
- 108010053763 Pyruvate Carboxylase Proteins 0.000 description 16
- 102100039895 Pyruvate carboxylase, mitochondrial Human genes 0.000 description 16
- KHPXUQMNIQBQEV-UHFFFAOYSA-N oxaloacetic acid Chemical compound OC(=O)CC(=O)C(O)=O KHPXUQMNIQBQEV-UHFFFAOYSA-N 0.000 description 16
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 15
- 230000004907 flux Effects 0.000 description 15
- 230000000694 effects Effects 0.000 description 14
- 108010030844 2-methylcitrate synthase Proteins 0.000 description 12
- 108010071536 Citrate (Si)-synthase Proteins 0.000 description 12
- 102000006732 Citrate synthase Human genes 0.000 description 12
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 11
- ZSLZBFCDCINBPY-ZSJPKINUSA-N acetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ZSLZBFCDCINBPY-ZSJPKINUSA-N 0.000 description 10
- 210000004027 cell Anatomy 0.000 description 10
- 239000002207 metabolite Substances 0.000 description 10
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 10
- 239000013612 plasmid Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 102000004169 proteins and genes Human genes 0.000 description 9
- 241000180579 Arca Species 0.000 description 8
- DTBNBXWJWCWCIK-UHFFFAOYSA-N phosphoenolpyruvic acid Chemical compound OC(=O)C(=C)OP(O)(O)=O DTBNBXWJWCWCIK-UHFFFAOYSA-N 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000002779 inactivation Effects 0.000 description 7
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 7
- 239000002028 Biomass Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 150000001735 carboxylic acids Chemical class 0.000 description 6
- 238000012217 deletion Methods 0.000 description 6
- 230000037430 deletion Effects 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 5
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 235000019253 formic acid Nutrition 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 230000002018 overexpression Effects 0.000 description 5
- 230000004102 tricarboxylic acid cycle Effects 0.000 description 5
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 4
- 101100014154 Arabidopsis thaliana RACK1A gene Proteins 0.000 description 4
- 108020003285 Isocitrate lyase Proteins 0.000 description 4
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 4
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 4
- 230000003115 biocidal effect Effects 0.000 description 4
- -1 compound succinate Chemical class 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000001530 fumaric acid Substances 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 230000037353 metabolic pathway Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 4
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 3
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 3
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 3
- BAWFJGJZGIEFAR-NNYOXOHSSA-O NAD(+) Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-O 0.000 description 3
- 108091000041 Phosphoenolpyruvate Carboxylase Proteins 0.000 description 3
- 108091000080 Phosphotransferase Proteins 0.000 description 3
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 3
- 102000019259 Succinate Dehydrogenase Human genes 0.000 description 3
- 108010012901 Succinate Dehydrogenase Proteins 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 3
- SCJNCDSAIRBRIA-DOFZRALJSA-N arachidonyl-2'-chloroethylamide Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(=O)NCCCl SCJNCDSAIRBRIA-DOFZRALJSA-N 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 229960005091 chloramphenicol Drugs 0.000 description 3
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 3
- 230000002860 competitive effect Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000034659 glycolysis Effects 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 3
- 238000012269 metabolic engineering Methods 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 102000020233 phosphotransferase Human genes 0.000 description 3
- 229940076788 pyruvate Drugs 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 238000000638 solvent extraction Methods 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- 101001090713 Homo sapiens L-lactate dehydrogenase A chain Proteins 0.000 description 2
- 102100034671 L-lactate dehydrogenase A chain Human genes 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000004103 aerobic respiration Effects 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 101150117498 arcA gene Proteins 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- VHRGRCVQAFMJIZ-UHFFFAOYSA-N cadaverine Chemical compound NCCCCCN VHRGRCVQAFMJIZ-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000004133 fatty acid degradation Effects 0.000 description 2
- 108010008221 formate C-acetyltransferase Proteins 0.000 description 2
- 230000000415 inactivating effect Effects 0.000 description 2
- 239000002054 inoculum Substances 0.000 description 2
- 229960000318 kanamycin Drugs 0.000 description 2
- 229930027917 kanamycin Natural products 0.000 description 2
- 229930182823 kanamycin A Natural products 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 229940049920 malate Drugs 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- UWYHMGVUTGAWSP-JKIFEVAISA-N oxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=CC=CC=C1 UWYHMGVUTGAWSP-JKIFEVAISA-N 0.000 description 2
- 108010071189 phosphoenolpyruvate-glucose phosphotransferase Proteins 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 102100023912 40S ribosomal protein S12 Human genes 0.000 description 1
- 102000003669 Antiporters Human genes 0.000 description 1
- 108090000084 Antiporters Proteins 0.000 description 1
- 101100350224 Bacillus subtilis (strain 168) pdhB gene Proteins 0.000 description 1
- 101100026251 Caenorhabditis elegans atf-2 gene Proteins 0.000 description 1
- 102100034229 Citramalyl-CoA lyase, mitochondrial Human genes 0.000 description 1
- 101100236536 Corynebacterium glutamicum (strain ATCC 13032 / DSM 20300 / BCRC 11384 / JCM 1318 / LMG 3730 / NCIMB 10025) glcB gene Proteins 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 108020005199 Dehydrogenases Proteins 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 101001025099 Escherichia coli (strain K12) Fumarate hydratase class I, anaerobic Proteins 0.000 description 1
- 101100138524 Escherichia coli (strain K12) fruA gene Proteins 0.000 description 1
- 101100400221 Escherichia coli (strain K12) lysP gene Proteins 0.000 description 1
- 101710082056 Ethanol acetyltransferase 1 Proteins 0.000 description 1
- 102000003983 Flavoproteins Human genes 0.000 description 1
- 108010057573 Flavoproteins Proteins 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 102000012011 Isocitrate Dehydrogenase Human genes 0.000 description 1
- 108010075869 Isocitrate Dehydrogenase Proteins 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 239000006137 Luria-Bertani broth Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 102000013460 Malate Dehydrogenase Human genes 0.000 description 1
- 108010026217 Malate Dehydrogenase Proteins 0.000 description 1
- 108020004687 Malate Synthase Proteins 0.000 description 1
- 241000387879 Maurus Species 0.000 description 1
- 108020004485 Nonsense Codon Proteins 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 101100462488 Phlebiopsis gigantea p2ox gene Proteins 0.000 description 1
- 102000009097 Phosphorylases Human genes 0.000 description 1
- 108010073135 Phosphorylases Proteins 0.000 description 1
- 101100406344 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) aceF gene Proteins 0.000 description 1
- 101710104378 Putative malate oxidoreductase [NAD] Proteins 0.000 description 1
- 108010042687 Pyruvate Oxidase Proteins 0.000 description 1
- 102000018120 Recombinases Human genes 0.000 description 1
- 108010091086 Recombinases Proteins 0.000 description 1
- 241000589180 Rhizobium Species 0.000 description 1
- 241001148115 Rhizobium etli Species 0.000 description 1
- 108010015791 Streptogramin A Proteins 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 101150036393 aceB gene Proteins 0.000 description 1
- 101150001446 aceK gene Proteins 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 230000009603 aerobic growth Effects 0.000 description 1
- 230000003281 allosteric effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 101150075954 apeB gene Proteins 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 238000002306 biochemical method Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- FPPNZSSZRUTDAP-UWFZAAFLSA-N carbenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)C(C(O)=O)C1=CC=CC=C1 FPPNZSSZRUTDAP-UWFZAAFLSA-N 0.000 description 1
- 229960003669 carbenicillin Drugs 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 101150018621 cra gene Proteins 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 101150115959 fadR gene Proteins 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- CNNRFBWVTKFGRE-UHFFFAOYSA-N formic acid;2-oxopropanoic acid Chemical class OC=O.CC(=O)C(O)=O CNNRFBWVTKFGRE-UHFFFAOYSA-N 0.000 description 1
- 230000037433 frameshift Effects 0.000 description 1
- 101150025027 fruR gene Proteins 0.000 description 1
- 108010083554 fumarase C Proteins 0.000 description 1
- 238000003209 gene knockout Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 150000002303 glucose derivatives Chemical class 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000000126 in silico method Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037041 intracellular level Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 108010015942 isocitrate dehydrogenase kinase Proteins 0.000 description 1
- 239000003120 macrolide antibiotic agent Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- MHWLWQUZZRMNGJ-UHFFFAOYSA-N nalidixic acid Chemical compound C1=C(C)N=C2N(CC)C=C(C(O)=O)C(=O)C2=C1 MHWLWQUZZRMNGJ-UHFFFAOYSA-N 0.000 description 1
- 229960000210 nalidixic acid Drugs 0.000 description 1
- 229960001019 oxacillin Drugs 0.000 description 1
- 108010053796 oxaloacetate tautomerase Proteins 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 101150094986 pepC gene Proteins 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- NONJJLVGHLVQQM-JHXYUMNGSA-N phenethicillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C(C)OC1=CC=CC=C1 NONJJLVGHLVQQM-JHXYUMNGSA-N 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 101150060030 poxB gene Proteins 0.000 description 1
- 101150023641 ppc gene Proteins 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- DAIKHDNSXMZDCU-FQTGFAPKSA-N pristinamycin IIA Chemical compound C1C(=O)C[C@H](O)\C=C(/C)\C=C\CNC(=O)\C=C\[C@@H](C)[C@@H](C(C)C)OC(=O)C2=CCCN2C(=O)C2=COC1=N2 DAIKHDNSXMZDCU-FQTGFAPKSA-N 0.000 description 1
- DAIKHDNSXMZDCU-OUDXUNEISA-N pristinamycin-IIA Natural products CC(C)[C@H]1OC(=O)C2=CCCN2C(=O)c3coc(CC(=O)C[C@H](O)C=C(C)C=CCNC(=O)C=C[C@@H]1C)n3 DAIKHDNSXMZDCU-OUDXUNEISA-N 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 230000004952 protein activity Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 108010092841 ribosomal protein S12 Proteins 0.000 description 1
- 101150098466 rpsL gene Proteins 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- HHVIBTZHLRERCL-UHFFFAOYSA-N sulfonyldimethane Chemical compound CS(C)(=O)=O HHVIBTZHLRERCL-UHFFFAOYSA-N 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 150000003628 tricarboxylic acids Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P1/00—Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/02—Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/44—Polycarboxylic acids
- C12P7/46—Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Tropical Medicine & Parasitology (AREA)
- Medicinal Chemistry (AREA)
- Virology (AREA)
- Biomedical Technology (AREA)
- Mycology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明涉及细菌的突变株,该突变株缺少或包含对应几个关键代谢酶的突变基因,并且,该突变株在无氧条件下产出高产量的琥珀酸。
Description
发明领域
本发明涉及在代谢工程微生物中生产琥珀酸、苹果酸、延胡索酸和其他羧基酸类的方法。
发明背景
昂贵的特种化合品琥珀酸盐及其衍生物具有广泛的工业应用。琥珀酸作为原材料被用于食品、药物、塑料制品、化妆品和纺织品,并且被用于电镀和废气净化(waste-gasscrubbing)(61)。琥珀酸可以作为一些塑料前体的原料,如1,4-丁二醇(BDO),四氢呋喃和γ-丁内酯。而且,琥珀酸和BDO可以用作聚酯的单体。如果琥珀酸盐的成本可以被降低,它将作为用于生产其他散装化学品的中间原料而变得非常有用(47)。除了琥珀酸以外,其他4-碳二羧酸,如苹果酸和延胡索酸也具有原料潜力。
从葡萄糖、木糖、山梨糖醇和其他“绿色”可更新原料(在本案中通过发酵过程)生产琥珀酸盐、苹果酸盐和延胡索酸盐是替代从不可更新资源中提取这些酸类的较高能耗方法的一条途径。琥珀酸盐是产丙酸细菌厌氧发酵的中间体,但那些过程产生低产量和浓度。很早就已知道大肠杆菌发酵能产生酸类的混合物。可是,对于每摩尔被发酵的葡萄糖而言,只产生1.2摩尔甲酸,0.1-0.2摩尔乳酸和0.3-0.4摩尔琥珀酸。因此,以发酵方法生产羧酸的努力导致相对大量的生长底物,如葡萄糖,不能被转变成所需的产物。
人们做了许多尝试对大肠杆菌无氧中心代谢途径进行代谢工程设计,以提高琥珀酸的产量和产率(7,8,12,14,15,20,24,32,44,48)。基因工程与生产条件优化的结合也显示提高了琥珀酸的产量。一个实例是一种利用双期(dual phase)发酵生产模式生产琥珀酸的突变大肠杆菌菌株的生长,该模式包括初始的有氧生长期,随后的无氧生产期或/和利用二氧化碳、氢或两种气体的混合物来改变无氧发酵的顶部空间条件(35,49)。
特别地,通过扩增、添加或减少某一特定途径来操纵酶的水平,可以导致所需产物的高产量。已经描述了用于在无氧条件下生产琥珀酸的各种基因改进,这些改进利用了大肠杆菌混合酸发酵途径。一个实例是从大肠杆菌过表达磷酸烯醇式丙酮酸羧化酶(pepc)(34)。在另一实例中,通过过表达大肠杆菌中天然的延胡索酸还原酶(frd)延胡索酸到琥珀酸的转化被提高(17,53)。某些酶不是大肠杆菌固有的,但能潜在地促进琥珀酸的生产量。通过将埃特里根瘤菌(Rhizobium etli)中的丙酮酸羧化酶(pyc)转入到大肠杆菌中,琥珀酸的生产量得到提高(14,15,16)。其他代谢工程策略包括使琥珀酸的竞争性途径失活。当苹果酸酶在具有失活的丙酮酸甲酸裂解酶(pfl)和乳酸脱氢酶(ldh)基因的宿主中过表达时,琥珀酸成为主要的发酵产物(44,20)。在同一突变株(pfl-和ldh-)内的失活的葡萄糖磷酸转移酶体系(ptsG)也显示在大肠杆菌内产出更高的琥珀酸产出量并促进生长(8)。
假设所有的碳通量都经过天然的琥珀酸发酵途径(图1),无氧条件下来自葡萄糖的琥珀酸的最大理论产量(基于摩尔)限制在1mol/mol。发酵途径将草酰乙酸(OAA)转化为苹果酸、延胡索酸,其次是琥珀酸,该途径每产生1摩尔琥珀酸,需要2摩尔NADH。从发酵途径产出高产量琥珀酸的最大障碍是由于NADH的限制。这是因为1摩尔葡萄糖经糖酵解途径仅能提供2摩尔NADH;而,经由天然的发酵途径形成1摩尔琥珀酸需要2摩尔NADH。无氧生产琥珀酸还受到缓慢的细胞生长和产出量的限制的牵制。
通过操纵代谢途径,代谢工程具有显著提高过程产出量的潜力。特别地,通过特定途径的扩增、添加或减少来调控酶的水平,能够导致所需产物的高产量。本领域所需要的是改进的细菌菌株,和迄今所提供的菌株相比,所述改进的菌株能产出更高水平的琥珀酸和其他羧酸。
发明概述
本发明描述了具有多于两个途径的蛋白质失活以提高在无氧条件下羧酸产出量的细菌,其中,所产生的羧酸是琥珀酸、延胡索酸、苹果酸、草酰乙酸或乙醛酸。在本发明的一个实施方案中,蛋白ADHE、LDHA、ACKA、PTA、ICLR和ARCA是失活的。在本发明的另一个实施方案中,蛋白的不同组合被失活,包括ADHE、LDHA、ACKA、PTA、ICLR和ARCA。这些蛋白的失活还可以与ACEA、ACEB、ACEK、PEPC、PYC或CITZ的过表达相结合,以进一步增加琥珀酸的产量。
在本发明的一个实施方案中,建立了破坏菌株(disruption strain),其中adhE、ldhA、iclR、arcA和ack-pta基因均被破坏。在本发明的另一个实施方案中,adhE、ldhA、iclR、arcA和ack-pta基因的不同组合被破坏。突变菌株被命名为SBS330MG、SBS440MG、SBS550MG、SBS660MG和SBS990MG,提供了本发明中的一些实施方案。
此外,还描述了用突变细菌菌株生产羧酸的无氧方法,其中,所述方法包括将上述突变细菌菌株接种培养物,在无氧条件下培养所述菌株,以及从培养基分离羧酸。可以用锥形瓶、生物反应器、补料分批(fed batch)生物反应器或恒化式(chemostat)生物反应器培养细菌菌株来获得羧酸。通过在无氧条件下生产琥珀酸之前在有氧条件下培养细胞能进一步增加羧酸的产量。
此外,还显示了改变细菌中糖酵解通量来分配经由OAA-柠檬酸和OAA-苹果酸途径的羧酸。糖酵解通量的比率可以是10-40%的柠檬酸和90-60%苹果酸,更优选约30%柠檬酸和约70%苹果酸。上述细菌菌株以此种方式分配糖酵解通量。
附图简要说明
并入本说明书并构成本说明书一部分的附图举例说明了本发明,并和所说明的内容一起用来解释了本发明的原理。
图1.基因工程无氧代谢途径。NADH竞争途径:乳酸(LDH)、乙醇(ADH),以及乙酸途径(ACK-PTA)。乙醛酸旁路开放(ICLR敲除)并且来源于乳酸乳球菌(L.lactis)的异源丙酮酸羧化酶(PYC)过表达。此处所描述的基因工程菌株表示为SBS550MG。
图2.葡萄糖消耗和产物浓度。
图3.产物产量。
图4.累计琥珀酸产量。
图5.用菌株SBS550MG(pHL413)补料分批生产。实心标记对应于第一期测得的代谢物,空心标记对应于复制期测得的代谢物。当指针指示葡萄糖降到20mM时,葡萄糖以脉冲式加入。
发明的详细描述
所述的羧酸可以是盐、酸、碱或衍生物,取决于结构、pH和存在的离子。例如,词语“琥珀酸(succinate)”和“琥珀酸(succinic acid)”在这里可交替使用。琥珀酸也叫丁二酸(C4H6O4)。这里所使用的化学品包括甲酸、乙醛、乳酸、苹果酸、草酰乙酸(OAA)、磷酸烯醇式丙酮酸(PEP)和丙酮酸。包括Krebs循环(也叫柠檬酸、三羧酸或TCA循环)的细菌代谢途径能够在Lehninger的“生物化学原理(Principles of Biochemistry)”及其他生物化学教科书中找到。
术语“控制性联系(operably associated)”或“控制性相关(operably linked)”指功能上配对的核苷酸序列。
在此所定义的“降低的活性”或“失活”指与适当的对照组菌株相比,蛋白质的活性至少降低75%。优选地,达到活性降低至少80、85、90、95%,在最优选的实施方案中,活性被消除(100%)。可以通过抑制剂、突变、抑制表达或翻译等方法使蛋白失活。
在此所定义的“过表达”或“过表达的”是指与适当的对照组菌株相比,至少150%的蛋白质活性。可以通过突变所述的蛋白生成更具活性的形式,或通过清除抑制剂、加入激活剂等方式使蛋白能抵抗抑制的形式。还可以通过清除阻抑物、向细胞中加入基因的多个拷贝或正向调节内源基因等等也能够实现过表达。
所使用的术语“破坏(disruption)”和“破坏菌株”是指细胞株中天然的基因或启动子被突变、删除、阻断或负向调节,以这样的方式来降低基因的活性。通过基因敲除或除去整个基因组DNA序列,能使基因完全(100%)被破坏(reduced)。利用移码突变、终止密码提前、重要残基点突变、缺失或插入等方式,通过完全阻止活性蛋白的转录和/或翻译,能够使基因产物完全失活(100%)。
在此所用的“重组体”是指来源于或包含基因工程物质。
基因缩写如下:异柠檬酸裂解酶(aceA a.k.a.icl);苹果酸合酶(aceB);thy乙醛酸支路操纵子(aceBAK);异柠檬酸脱氢酶激酶/磷酸化酶(aceK);乙酸激酶-磷酸转乙酰基酶(ackA-pta);醇脱氢酶(adhE);对有氧呼吸调控的调节子A和B(arcAB);过氧化物敏感性(arg-lac);醇乙酰基转移酶1和2(atf1和atf2);推定的尸胺/赖氨酸反向转运体(cadR);柠檬酸合酶(citZ);脂肪酸降解调节子(fadR);延胡索酸还原酶(frd);果糖调节子(fruR);延胡索酸酶A,B,或C(fumABC);异柠檬酸脱氢酶(icd);异柠檬酸裂合酶(icl);aceBAK操纵子阻抑物(iclR);乳酸脱氢酶(ldhA);苹果酸脱氢酶(mdh);磷酸烯醇式丙酮酸羧化酶(pepC);丙酮酸甲酸裂解酶(pfl);丙酮酸氧化酶(poxB);磷酸转移酶系统基因F和G(ptsF和ptsG);丙酮酸羧化酶(pyc);鸟苷3’,5’-二焦磷酸合成酶I(relA1);核糖体蛋白S12(rpsL);以及琥珀酸脱氢酶(sdh)。Δlac(arg-lac)205(Ul69)是染色体arg-lac区缺失,该区携带一个或几个使细胞对H2O2敏感的基因(51)。PYC能从不同的物种获得,乳酸乳球菌pyc是被表达为一个实施例(AF068759)。
缩写:氨苄西林(Ap);苯唑西林(Ox);羧苄青霉素(Cn);氯霉素(Cm);卡那霉素(Km);链霉素(Sm);四环素(Tc);萘啶酮酸(Nal);红霉素(Em);氨苄西林耐药性(ApR);甲砜氯霉素/氯霉素耐药性(ThiR/CmR);大环内酯,林可酰胺和链阳性菌素A耐药性(MLSR);链霉素耐药性(SmR);卡那霉素耐药性(KmR);革兰氏阴性复制起点(ColE1);革兰氏阳性复制起点(OriII)。常见的限制酶和限制位点可以在(NEW ENGLAND www.neb.com)和(www.invitrogen.com).AMERICAN TYPE CULTURECOLLECTION TM(www.atcc.org)找到。
本发明某些实施方案中所用质粒和菌株在表1和表2中列出。MG1655是在F接合中F-λ-的自发突变缺陷,如Guyer等人所报道(18)。用P1噬菌体转导和基于λred重组酶的一步失活法来消除途径(10)。使用本文所引用的以及Sambrook(38)与Ausebel(5)描述的标准生物化学技术来构建质粒和突变大肠杆菌菌株。
表1:质粒
表2:菌株
如果合适,每次实验菌株是刚刚用质粒转染的。单一菌落在含有适当的抗生素的培养皿上被重新划线。一个单个的菌落被转入250ml摇瓶中,摇瓶中包含具有适当抗生素的LB培养基50ml,并且在37℃、以250rpm摇动有氧生长所述的单个菌落12个小时。用LB培养基清洗细胞两次,以1%的体积比接种所述的细胞于2L摇瓶内,每个摇瓶内包含400ml具有适当抗生素浓度的LB培养基,并且在37℃、以250rpm摇动有氧生长所述的细胞12个小时。通过离心收获适当量的细胞生物质(~1.4gCDW),弃上清。细胞被重新悬浮于60ml厌氧LB培养基中(LB肉汤培养基补充有20g/L的葡萄糖,1g/L的NaHCO3),并且立即接种于反应器中达到约10OD600的浓度。
发酵在完全无氧条件下进行。1L的生物反应器中有0.66L包含适当抗生素的LB培养基的初始体积。在0时间点,如前所述,反应器被接种到约10OD600。当接种物足以改变培养物浓度时,之前所述的反应器内葡萄糖和抗生素起始浓度及细胞密度是在计算了接种体的稀释作用后的浓度。在发酵期间内,用1.0MNa2CO3将pH保持在7.0,CO2以0.2L/min的恒定流速喷射经过培养物。温度和振荡分别维持在37℃和250rpm。从反应器中取出用于确定葡萄糖和产物浓度样本,用0.2μm滤器过滤,然后立即用HPLC进行分析。
实施例1:NADH竞争性途径的去除
SBS110MG中醇脱氢酶(adhE)和乳酸脱氢酶(ldhA)的活性被降低,来关注损耗NADH产出醇和乳酸而以琥珀酸为代价(39)。SBS110MG(pTrc99A)消耗了11%的起始葡萄糖,带来低的琥珀酸产量和高的乙酸产量。
实施例2:丙酮酸羧化酶的表达
来自乳酸乳球菌的异源PYC表达(质粒pHL413),通过将丙酮酸直接转化成OAA,有助于增加OAA库,OAA起着乙醛酸和发酵途径的前体的作用,如图1中所示,两者均能导致琥珀酸的产生。正如所预料,归因于活性的iclR,菌株SBS990MG比SBS330MG(pHL413)和SBS550MG(pHL413)具有更低的ICL和MS活性,然而,基础酶水平似乎足以启动乙醛酸途径。
产琥珀酸大肠杆菌中PYC的表达异源增加了从丙酮酸到OAA的通量。PYC将丙酮酸转向OAA有助于生成琥珀酸。容纳(harboring)编码来自乳酸乳球菌的异源丙酮酸羧化酶的质粒pHL413的SBS110MG,在CO2气体中培养24小时,从18.7g/L(104mM)葡萄糖生成15.6g/L(132mM)琥珀酸,每摩尔葡萄糖产出1.3摩尔琥珀酸。证明了增加OAA来增加琥珀酸产出量的有效性。
实施例3:激活乙醛酸支路
ICLR的失活通过aceBAK的操纵子的激活使乙酰辅酶A转向琥珀酸的生成,从而降低碳通量通过乙酸并继续乙酰辅酶A的循环。菌株SBS330MG(pHL413)中ACK-PTA被活化,因此,即使该途径已经被基因活化,也只有极少的碳流量被转向乙醛酸。相对于野生型对照组(数据未示出),这种菌株所显示的较高酶活性证明了乙醛酸途径的活性。具有较高的ICL和MS活性的菌株是SBS330MG(pHL413)和SBS550MG(pHL413)。这些菌株显示两倍以上的野生型菌株的活性。菌株SBS330MG是通过使adh,ldh突变体SBS110MG中的iclR基因失活而创建的中间菌株(intermediate strain)。在ldhA adhE突变体中,乙酰辅酶A转向乙醛酸途径,由此而减少了乙酸排泄。即使当该菌株中的乙醛酸途径在结构上已经被活化,乙酰辅酶A仍然被引导通过乙酸途径。
如图3所示,SBS330MG菌株中每摩尔葡萄糖产出1.1mol琥珀酸,每摩尔葡萄糖0.66mol甲酸,以及每摩尔葡萄糖0.89mol醋酸。虽然SBS330MG(pHL413)产出相当数量的琥珀酸,该菌株也产出了最高水平的甲酸和乙酸。
实施例4:有氧呼吸调节的去除
ARCA蛋白属于双成分(ARCB-ARCA)信号转导系统家族,与其同源的感觉激酶ARCB相呼应,代表整体的调节体系,负向或正向调节许多操纵子的表达,如黄素蛋白族的几个脱氢酶、末端氧化酶、三羧酸循环、乙醛酸支路的酶和用于脂肪酸降解的途径的酶。突变株SBS440MGC包含arcA的突变型,一种编码参与有氧呼吸调节的蛋白的基因。
SBS440MGC菌株中arcA的缺失产出每摩尔葡萄糖1.02mol/mol琥珀酸,每摩尔葡萄糖0.45mol/mol甲酸,以及每摩尔葡萄糖0.75mol/mol醋酸,如图3所示。ARCA的去除没有显著影响葡萄糖的消耗(图2),但少量降低了总的琥珀酸的产量(图3)。
实施例5:减少乙酸产出量
在菌株SBS990MGC中,在醇脱氢酶(adhE)和乳酸脱氢酶(ldhA)的背景下,乙酸激酶-磷酸转乙酰基酶(ackA-pta)减少,增加了琥珀酸的产出量,减少了经由乙醇和乳酸的产出对NADH的消耗。ack和pta基因缺失消除了形成乙酸的主要途径。虽然突变株SBS990MG中包含adhE、ldhA和ack-pta基因缺失,SBS990MG仍有完整的iclR。有活性的ICLR能减少ACEBAK的表达,但剩余的ACEA和ACEB酶活性可能仍然允许具有残留的乙醛酸支路活性。
SBS990MG中增加的NADH可利用率的实现,在完全无氧条件下,将琥珀酸的产量提高到每摩尔葡萄糖1.6mol/mol(图2和图3)。SBS990MG能达到高产量的琥珀酸。
实施例6:双重琥珀酸合成路线
已经利用生物信息学(in silico)研发和检验了一种具有活化乙醛酸途径的途经设计(9),并通过基因工程的大肠杆菌在体内实现(41)以增加琥珀酸产量,并且缓解了对NADH可利用率的限制。构建菌株SBS550MG(pHL413)具有双重琥珀酸合成路线,该路线将所需量的NADH转向通过传统发酵途径,并且通过平衡经由该发酵途径和乙醛酸途径(它需要更少的NADH)的碳通量,使碳向琥珀酸的转化最大化(41)。和野生型大肠杆菌菌株每摩尔琥珀酸2摩尔NADH的理论需要量相对照,重新设计的途径显示来自葡萄糖的NADH实验需要量是每摩尔琥珀酸~1.25摩尔NADH。
已经证明ldhA adhE iclR突变体中ack-pta失活是造成乙酰辅酶A引导通过乙醛酸途径的关键。乙酸途径的缺失利于以乙酰辅酶A的形式保存碳分子,而乙酰辅酶A转向生成乙醛酸和琥珀酸。乙醛酸到苹果酸,到延胡索酸,最终到琥珀酸的进一步转化,也有利于减少NADH需要量。该途径从2摩尔乙酰辅酶A和1摩尔OAA,生成2摩尔琥珀酸,只需要1摩尔NADH(41)。
对过表达PYC的菌株SBS550MG的性能进行了检测,结果如图2所示。虽然具有PYC的菌株SBS550MG在无氧条件下能相当好地生长,但在该研究中细胞经受无氧琥珀酸生产期之前,采用有氧条件以迅速积聚生物量。具有和不具有pHL531的菌株SBS550MG消耗了100%的葡萄糖,两个菌株从100mM的葡萄糖产出相似水平的琥珀酸(160mM)。在携带质粒pHL531的菌株中,观察到残余甲酸增加,乙酸水平降低,该菌株中过表达了对NADH不敏感的柠檬酸合酶。在以SBS550MG为基础的菌株的培养物中见到的乙酸水平大大低于SBS110MG(pHL413)的培养物中见到的乙酸水平。SBS550MG(pHL413,pHL531)和SBS550MG(pHL413,pDHK29)的琥珀酸产量非常相似(约每摩尔葡萄糖1.6mol/mol琥珀酸)。
尽管过表达了NADH非敏感型柠檬酸合酶,但1.6mol/mol的高琥珀酸产量保持不变,这一事实也表明天然的柠檬酸合酶体系已足以启动乙醛酸途径。此外,这些结果进一步显示双路线琥珀酸生产体系非常强健;该体系能在OAA节点处理相当多的微扰情况而不会显著改变产量。显然,在可利用的减少等价物和碳原子方面,这些细胞能够在发酵和乙醛酸途径间达到一个平衡分配,达到有效地最大化的琥珀酸产出。
以SBS660MG为基础的菌株的培养物经过24小时仅消耗25-35%的葡萄糖。SBS660MG(pHL413,pHL531)和SBS660MG(pHL413,pDHK29)菌株产出约1.7mol/mol的相似的琥珀酸产量。在所有被研究菌株中,这些产值在最高值之列(表3)。经转化的突变株SBS660MG(pHL413,pHL531)与对照组相比,没有观察到在琥珀酸、乙酸或甲酸产量方面有显著的差别(图3)。arcA缺失增加了每摩尔葡萄糖的琥珀酸产出量,但降低了葡萄糖的消耗量。
实施例7:柠檬酸合酶的表达
图1描述了大肠杆菌突变株,用丙酮酸羧化酶编码质粒pHL413和柠檬酸合酶表达质粒pHL531转染SBS550MG,SBS660MGC和SBS990MGC产生的不同代谢产物。与对照组和SBS110MG(pHL413)相比,SBS330MG(pHL413)的乙酸产量增加。这些结果表明对柠檬酸合酶可能有某些抑制作用,这种抑制作用是由较高的NADH水平造成的并且受益于较低的NAD+水平。众所周知,NADH以别构的方式抑制柠檬酸合酶(33,43),NAD+是NADH结合的微弱竞争性抑制剂(13)。在SBS330MG(pHL413)中观察到的柠檬酸合酶绝对体外活性在所有被研究菌株中是最低的。
菌株SBS550MG(pHL413+pDHK29)作为对照组,SBS550MG(pHL413+pHL531)共表达异源的PYC和柠檬酸合酶。具有和没有pHL531的菌株SBS550MG消耗了100%的葡萄糖,两种菌株从100mM葡萄糖产出相似水平的琥珀酸(160mM)。尽管事实是乙酸途径已被敲除,在发酵结束时培养物中仍能检测到低浓度乙酸。用过表达NADH非敏感型柠檬酸合酶的携带质粒pHL531的菌株观察到剩余甲酸增多和乙酸水平降低。
表3:羧酸产量A
A在24小时无氧生产期期间,产物摩尔数/葡萄糖摩尔数
与SBS660MG(pHL413,pDH29)对照菌株相比,SBS660MG(pHL413,pHL531)菌株中NADH柠檬酸合酶的表达增加了葡萄糖消耗并且增加了约40%的所产生的代谢物。SBS660MG(pHL413,pHL531)和SBS660MG(pHL413,pDHK29)菌株都产出了相似的约1.7mol/mol的琥珀酸产量。这些产值在所有被研究的菌株中位于最高值之列(表3)。SBS990MG(pHL413,pDHK29)菌株产出的琥珀酸水平与SBS550MG(pHL413,pDHK29)菌株产出的琥珀酸水平非常相似。
结果显示双路线琥珀酸生产体系非常强健的;该体系能在OAA节点处理重大的微扰而不显著地改变产量。在可利用的减少等价物和碳原子方面,工程细胞能在发酵和乙醛酸盐途径间达到一个平衡的分配,达到有效地最大化的琥珀酸产出。这些结果进一步支持当adhE,ldhA和ack-pta失活时,乙醛酸途径可能有某种程度激活的假说。
实施例8:NADH通量分析
用在成批培养条件下获得的测得的通量,来估计细胞内的通量和鉴别关键分支点通量的分流比。由不同突变所造成的在OAA节点进入乙醛酸途径和发酵途径的分支点通量的分流比变化的比较,揭示了琥珀酸产量对这些操作的敏感性。
依据质量守恒定律和细胞内中间代谢物准稳态假设(pseudo-steady state hypothesis,PSSH),构建了一个代谢矩阵。从依据图1所示代谢网络公式化的一组线性方程所得到的化学计量矩阵给出了一个维数为15X15的方矩阵,该方矩阵仅依据测得的代谢物、细胞内代谢物的PSSH平衡和NADH平衡。对NADH平衡,假定NADH的产出量和消耗应当是相等的。氧化还原平衡的推导不考虑任何被生物质同化的碳原子。除野生型外所有突变体的生物量(υ2)都被假定为零,是在生成能找到最小二乘拟合值的多种因素决定系统时的度量方法。数学表达式、化学计量矩阵和与所述网络中各种物质有关的净转化方程在表4(酶的反应)中给出。
表4:酶的反应
向量r(t)(mx1),其中m=15,16或17)表示对不同代谢物的净转化率:
rT=[r1......r8000000000]
对MG1655(pHL413),不考虑H2和生物量的平衡,因此矩阵A减少为15X15的方矩阵,通过方程1得到精确解:
υ(t)=A-1r(t) (1)
对突变株SBS110MG(pHL413)、SBS330MG(pHL413)、SBS550MG(pHL413)和SBS990MGC(pHL413),不考虑H2平衡,考虑生物量,其结果给出一个由多种因素决定的系统(m=16并且n=15),该系统利用最小二乘拟合法由下面的方程2来估算:
υ(t)=(ATA)-1Aτr(t) (2)
对分泌的代谢物浓度变化的时间拟合值被确定在t=0h和t=6h或7h之间,并且如下式(4)基于平均细胞密度:
其中,
研究发现,琥珀酸产量对在OAA节点的分流比比在PEP/PYR节点的分流比相对更为敏感。为得到最高的琥珀酸产量,最有利的分流比是在OAA的分数分配为0.32到乙醛酸,0.68到菌株SBS550MG(pHL413)和SBS990MG(pHL413)中得到的发酵途径。这两种菌株达到的琥珀酸产量分别是1.6mol/mol和1.7mol/mol。前面已显示ldhA,adhE,ack-pta突变菌株中活化的乙醛酸途径是造成在无氧下达到高琥珀酸产量的原因。与野生型相比,在无氧发酵的起点发现SBS550MG(pHL413)和SBS990MG(pHL413)中NADH和乙酰辅酶A的高细胞内水平,但这些水平很快降低,表明尽管PEP/PYR分支点下游的酶失活,这些菌株仍能处理高糖酵解通量。
菌株SBS550MG(pHL413)的糖酵解通量(υ1到υ4)相对于SBS330MG(pHL413)是增加的,但相对于野生型对照菌株是降低的。PFL通量(υ7)相对于野生型对照菌株也是降低的,造成乙酸和甲酸通量显著减少。这些糖酵解通量证明高的琥珀酸产量取决于在OAA-柠檬酸和OAA-苹果酸之间羧酸产出量的分配。通量分配平衡了NADH消耗量并且导致增加的琥珀酸产出量。在高琥珀酸产出菌株中的分配在10-40%柠檬酸来源的琥珀酸和90-60%苹果酸来源的琥珀酸产出量之间变化(见图1)。
实施例9:补料分批无氧发酵
由于更可控的环境,生物反应器形成更高的生产率。重复进行了一个批次的实验以检测在受控的条件下SBS550(pHL314)产出琥珀酸的效率(图5)。在该实验中,生物反应器起始装载LB,并补加了86mM葡萄糖。在0时间点,反应器被接种至OD值为17。当指针指示葡萄糖降到约20mM时,以脉冲形式加入葡萄糖。起始葡萄糖浓度差别和在各轮中葡萄糖添加的时间的差别,不影响菌株的性能。
如图5所示,菌株在产出琥珀酸方面非常有效。琥珀酸的产出量在每小时12mM到9mM琥珀酸之间,具有1.6mole/mole的极高效产量。该体系仅产生极少量的其他代谢物,如作为副产品的甲酸和乙酸。该体系将有望被进一步优化,把琥珀酸产量提高到1.8、1.9或2.0mole/mole,甚至更高。
所引用的文献都特意被引入作为参考。在此,为方便起见,这些文献被再次列出:
1.Alam,et al.,J.Bact.171:6213-7(1989).
2.Amann,et al.,Gene 69:301-15(1988).
3.Aristodou,et al.,Biotechnol.Prog.11:475-8(1995).
4.Aristodou,et al.Biotechnol.Bioeng.63:737-49(1999).
5.Ausebel,″Current Protocols in Molecular Biology″Greene Pub.Assoc.
6.Berrios-Rivera,et al.Metab.Eng.4:217-29(2002).
7.Bunch,et al.Microbiology 143:187-195(1997).
8.Chatterjee,et al.Appl Environ Microbiol.67:148-54(2001).
9.Cox,et al.Development of a metabolic network design and optimization frameworkincorportating implementation constraints:a succinate production case study.Metab.Eng.Submitted(2005).
10.Datsenko and Wanner.Proc Natl Acad Sci USA.97:6640-5(2000).
11.Dittrich,et al.Biotechnol.Prog.21:627-31(2005).
12.Donnelly,et al.App.Biochem.Biotech.70-72:187-98(1998).
13.Duckworth and Tong.Biochemistry 15:108-114(1976).
14.Gokarn,et al.,Biotech.Let.20:795-8(1998).
15.Gokarn,et al.,Appl.Environ.Microbiol.66:1844-50(2000).
16.Gokarn,et al.,App.Microbiol.Biotechnol.56:188-95(2001).
17.Goldberg,et al.,App.Environ.Microbiol.45:1838-47(1983).
18.Guyer,et al.Cold Spring Harbor Symp.Quant.Biol.45:135-40(1981).
19.Hahm,et al.,Appl.Microbiol.Biotechnol.42:100-7(1994).
20.Hong and Lee,Appl.Microbiol.Biotechnol.58:286-90(2002).
21.Lehninger,et al.″Principles of Biochemistry,2nd ed.″Worth Pub.,New York(1993).
22.Leonard,et al.,J.Bact.175:870-8(1993).
23.Levanon,et al.Biotechnol.Bioeng.89:556-64(2005).
24.Lin,et al.Biotechnol.Prog.20:1599-604(2004).
25.Lin,et al.Biotechnol.Bioeng.89:148-56(2005).
26.Lin,H.″Metabolic Network Design and Engineering in E.coli″Ph.D.Thesis,RiceUniversity,Dept.of Bioengineering(2005).
27.Lin,et al.J.Ind.Microbiol.Biotechnol.32:87-93(2005).
28.Lin,et al.Metab.Eng.7:116-27(2005).
29.Lin,et al.Appl.Microbiol.Biotechnol.67:515-23(2005).
30.Lin,et al.Biotechnol.Bioeng.90:775-9(2005).
31.LuIi and Strohl,Appl.Environ.Microbiol.56:1004-11(1990).
32.Mat-Jan,et al.J.Bact.171:342-8(1989).
33.Maurus,et al.Biochemistry 42:5555-65(2003).
34.Millard,et al.,.App.Environ.Microbiol.62:1808-10(1996).
35.Nghiem,et al.US Patent 5,869,301(1999).
36.Park,et al.J.Bact.181:2403-10(1999).
37.Phillips,et al.,Biotechniques.28:400-8(2000).
38.Sambrook,Fritsch,and Maniatis,″Molecular Cloning-A Laboratory Manual,2nd ed.″ColdSpring Harbor Laboratory,New York(1989).
39.San,et al.U.S.Application 20050042736.
40.Sanchez,et al.Biotechnol.Prog.21:358-65(2005a).
41.Sanchez,et al.,Metab.Eng.7:229-39(2005b).
42.Sanchez,et al.,J.Biotechnol.117:395-405(2005c).
43.Stockell et al.J.Biol.Chem.278:35435-43(2003).
44.Stols and Donnelly App.Environ.Microbiol.63:2695-701(1997).
45.Tolentino et al.,Biotech.Let.14:157-62.(1992).
46.Underwood,et al.,App.Environ.Microbiol.68:1071-81(2002).
47.Varadarajan and Miller,Biotechnol.Prog.15:845-54(1999).
48.Vemuri,et al.,Appl.Environ.Microbiol.68:1715-27(2002).
49.Vemuri,et al.J.Ind.Microbiol.Biotechnol.28:325-32(2002).
50.Voet and Voet,″Biochemistry 2nd ed.″John Wiley&Sons,New York(1995).
51.Volkert,et al.,J.Bact.176:1297-302(1994).
52.Wang,et al.,J.Biol.Chem.267:16759-62.(1992).
53.Wang,et al.App.Biochem.Biotechnol.70-72:919-28(1998).
54.Wang,et al.,App.Environ.Microbiol.66:1223-7(2000).
55.Yang,et al.Biotechnol.Bioeng.65:291-7(1999).
56.Yang,et al.,Metab.Eng.1:26-34(1999).
57.Yang,et al.,Metab.Eng.1:141-52(1999).
58.Yang,et al.,Biotechnol.Bioeng.69:150-9(2000).
59.Yang,et al.,Metab.Eng.3:115-23(2001).
60.Yanisch-Perron,et al.,Gene 33:103-19(1985).
61.Zeikus,et al.,App.Microbiol.Biotechnol.51:545-52(1999).
Claims (15)
1.一种基因工程细菌菌株,其中所述细菌包括:
a)ldhA的破坏;
b)adhE的破坏;以及
c)ack-pta的破坏。
2.如权利要求1所述的细菌菌株,其中所述细菌菌株包括iclR的破坏。
3.如权利要求1所述的细菌菌株,其中所述细菌菌株包括可操作地连接于表达构建体的pyc基因。
4.如权利要求3所述的细菌菌株,其中所述pyc来源于乳酸乳球菌。
5.如权利要求1所述的细菌菌株,其中所述细菌菌株包括可操作地连接于表达构建体的citZ基因。
6.如权利要求5所述的细菌菌株,其中所述citZ来源于枯草芽孢杆菌。
7.一种生产琥珀酸的方法,所述方法包括:
a)在无氧条件下培养权利要求1的细菌菌株;
b)提供糖底物;
c)使所述细菌代谢所述底物;以及
d)分离琥珀酸。
8.如权利要求1所述的细菌菌株,其中所述细菌菌株从每摩尔葡萄糖产出大于1.5摩尔琥珀酸。
9.如权利要求7所述的方法,其中所述细菌菌株从每摩尔葡萄糖产出大于1.5摩尔琥珀酸。
10.一种在细菌中生产琥珀酸的方法,包括:
a)在无氧条件下培养细菌,
所述细菌包括i)ldh的破坏,ii)adh的破坏,以及iii)ack-pta的破坏,并且其中,在所述细菌中,从OAA的糖酵解通量的分配比率是10-40%柠檬酸和90-60%苹果酸;以及
b)分离琥珀酸。
11.如权利要求10所述的方法,其中所述细菌还包括iclR的破坏。
12.如权利要求10所述的方法,其中所述糖酵解通量以约30%柠檬酸和约70%苹果酸的比例分配。
13.如权利要求10所述的方法,其中所述细菌从每摩尔葡萄糖产出大于1.5摩尔琥珀酸。
14.如权利要求10所述的方法,其中所述细菌包括编码pyc的表达构建体。
15.如权利要求14所述的方法,其中所述pyc来源于乳酸乳球菌。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US60492204P | 2004-08-27 | 2004-08-27 | |
US60/604,922 | 2004-08-27 | ||
PCT/US2005/030689 WO2006031424A2 (en) | 2004-08-27 | 2005-08-29 | Mutant e. coli strain with increased succinic acid production |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101044245A CN101044245A (zh) | 2007-09-26 |
CN101044245B true CN101044245B (zh) | 2012-05-02 |
Family
ID=36060505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2005800288836A Expired - Fee Related CN101044245B (zh) | 2004-08-27 | 2005-08-29 | 具有增加的琥珀酸产量的突变大肠杆菌菌株 |
Country Status (7)
Country | Link |
---|---|
US (2) | US7223567B2 (zh) |
EP (2) | EP1781797B1 (zh) |
JP (1) | JP4771437B2 (zh) |
KR (1) | KR101245428B1 (zh) |
CN (1) | CN101044245B (zh) |
BR (1) | BRPI0514734B1 (zh) |
WO (1) | WO2006031424A2 (zh) |
Families Citing this family (113)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4469568B2 (ja) | 2003-07-09 | 2010-05-26 | 三菱化学株式会社 | 有機酸の製造方法 |
US7927859B2 (en) * | 2003-08-22 | 2011-04-19 | Rice University | High molar succinate yield bacteria by increasing the intracellular NADH availability |
CN100575496C (zh) * | 2003-08-28 | 2009-12-30 | 三菱化学株式会社 | 产生琥珀酸的方法 |
JP4631706B2 (ja) * | 2003-09-30 | 2011-02-16 | 味の素株式会社 | 発酵液からのコハク酸の精製方法 |
US7244610B2 (en) * | 2003-11-14 | 2007-07-17 | Rice University | Aerobic succinate production in bacteria |
BRPI0510919A (pt) * | 2004-05-20 | 2008-05-20 | Ajinomoto Kk | bactéria produtora de ácido succìnico e processo para produzir ácido succìnico |
JP5572279B2 (ja) * | 2004-05-20 | 2014-08-13 | 味の素株式会社 | コハク酸生産菌及びコハク酸の製造方法 |
WO2006034156A2 (en) * | 2004-09-17 | 2006-03-30 | Rice University | High succinate producing bacteria |
US7569380B2 (en) * | 2004-12-22 | 2009-08-04 | Rice University | Simultaneous anaerobic production of isoamyl acetate and succinic acid |
WO2007017710A1 (en) * | 2005-08-11 | 2007-02-15 | Metabolic Explorer | Process for the preparation of aspartate and derived amino acids like lysine, threonine, isoleucine, methionine, homoserine, or valine employing a microorganism with enhanced isocitrate lyase and/or malate synthase expression |
JP2009507493A (ja) * | 2005-09-09 | 2009-02-26 | ジェノマティカ・インコーポレイテッド | 増殖連動型のコハク酸塩生成のための方法と生物 |
US20070249018A1 (en) * | 2006-02-23 | 2007-10-25 | Goutham Vemuri | Reduced overflow metabolism and methods of use |
JP5180060B2 (ja) * | 2006-02-24 | 2013-04-10 | 三菱化学株式会社 | 有機酸生産菌及び有機酸の製造法 |
KR100780324B1 (ko) | 2006-07-28 | 2007-11-29 | 한국과학기술원 | 신규 순수 숙신산 생성 변이 미생물 및 이를 이용한 숙신산제조방법 |
MX2009004659A (es) * | 2006-10-31 | 2009-05-22 | Metabolic Explorer Sa | Procedimiento para la produccion biologica de 1,3-propanodiol a partir de glicerina con un alto rendimiento. |
WO2008052596A1 (en) * | 2006-10-31 | 2008-05-08 | Metabolic Explorer | Process for the biological production of n-butanol with high yield |
JP2010515465A (ja) * | 2007-01-12 | 2010-05-13 | ザ リージェンツ オブ ザ ユニバーシティー オブ コロラド,ア ボディー コーポレート | 微生物によって生成される有機化学物質の生成に対する耐性を高めるための組成物および方法 |
US8673601B2 (en) * | 2007-01-22 | 2014-03-18 | Genomatica, Inc. | Methods and organisms for growth-coupled production of 3-hydroxypropionic acid |
EP2137315B1 (en) | 2007-03-16 | 2014-09-03 | Genomatica, Inc. | Compositions and methods for the biosynthesis of 1,4-butanediol and its precursors |
CA2688938C (en) * | 2007-03-20 | 2018-01-16 | University Of Florida Research Foundation, Inc. | Materials and methods for efficient succinate and malate production |
EP2149608A4 (en) | 2007-04-16 | 2013-02-20 | Ajinomoto Kk | PROCESS FOR PRODUCING AN ORGANIC ACID |
WO2008133161A1 (ja) | 2007-04-17 | 2008-11-06 | Ajinomoto Co., Inc. | カルボキシル基を有する酸性物質の製造法 |
JP2010187542A (ja) * | 2007-06-14 | 2010-09-02 | Ajinomoto Co Inc | 有機酸の製造方法 |
TWI525195B (zh) * | 2007-08-10 | 2016-03-11 | 奇諾麥提卡公司 | 合成烯酸及其衍生物之方法 |
US7947483B2 (en) | 2007-08-10 | 2011-05-24 | Genomatica, Inc. | Methods and organisms for the growth-coupled production of 1,4-butanediol |
US8048624B1 (en) | 2007-12-04 | 2011-11-01 | Opx Biotechnologies, Inc. | Compositions and methods for 3-hydroxypropionate bio-production from biomass |
WO2009072562A1 (ja) | 2007-12-06 | 2009-06-11 | Ajinomoto Co., Inc. | 有機酸の製造方法 |
FR2925068B1 (fr) * | 2007-12-13 | 2010-01-08 | Roquette Freres | Procedes de production d'acide succinique |
CN101918574A (zh) * | 2007-12-28 | 2010-12-15 | 罗盖特公司 | 大规模的微生物培养法 |
WO2009094485A1 (en) | 2008-01-22 | 2009-07-30 | Genomatica, Inc. | Methods and organisms for utilizing synthesis gas or other gaseous carbon sources and methanol |
DK2262901T3 (en) | 2008-03-05 | 2019-01-21 | Genomatica Inc | ORGANISMS PRODUCING PRIMARY ALCOHOL |
CN103555643B (zh) | 2008-03-27 | 2016-08-10 | 基因组股份公司 | 用于产生己二酸和其他化合物的微生物 |
BRPI0911770A2 (pt) * | 2008-04-30 | 2015-08-04 | Basf Se | Método para produzir produtos químicos finos, microorganismo recombinante, uso do mesmo, e, método para preparar um composto |
AU2009242615A1 (en) | 2008-05-01 | 2009-11-05 | Genomatica, Inc. | Microorganisms for the production of methacrylic acid |
US8129154B2 (en) * | 2008-06-17 | 2012-03-06 | Genomatica, Inc. | Microorganisms and methods for the biosynthesis of fumarate, malate, and acrylate |
US20100021978A1 (en) * | 2008-07-23 | 2010-01-28 | Genomatica, Inc. | Methods and organisms for production of 3-hydroxypropionic acid |
WO2010030711A2 (en) | 2008-09-10 | 2010-03-18 | Genomatica, Inc. | Microorganisms for the production of 1,4-butanediol |
KR101613754B1 (ko) | 2008-10-03 | 2016-04-19 | 메타볼릭 익스플로러 | 강하 막, 와이프드 막, 박막 또는 단경로 증발기를 사용한 발효 브로쓰로부터의 알콜의 정제 방법 |
US20100184173A1 (en) * | 2008-11-14 | 2010-07-22 | Genomatica, Inc. | Microorganisms for the production of methyl ethyl ketone and 2-butanol |
AU2009327490A1 (en) * | 2008-12-16 | 2011-07-28 | Genomatica, Inc. | Microorganisms and methods for conversion of syngas and other carbon sources to useful products |
RU2422526C2 (ru) | 2009-01-30 | 2011-06-27 | Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов (ФГУП ГосНИИгенетика) | СПОСОБ ПОЛУЧЕНИЯ ЯНТАРНОЙ КИСЛОТЫ С ИСПОЛЬЗОВАНИЕМ ДРОЖЖЕЙ, ПРИНАДЛЕЖАЩИХ К РОДУ Yarrowia |
FR2941959B1 (fr) * | 2009-02-12 | 2013-06-07 | Roquette Freres | Procedes de production d'acide succinique |
WO2010092155A1 (en) * | 2009-02-16 | 2010-08-19 | Basf Se | Novel microbial succinic acid producers and purification of succinic acid |
BRPI1009992A2 (pt) * | 2009-04-02 | 2020-08-18 | University Of Florida Research Foundation, Inc. | células bacterianas |
EP3318626B1 (en) | 2009-04-30 | 2020-01-15 | Genomatica, Inc. | Organisms for the production of 1,3-butanediol |
BRPI1013505A2 (pt) | 2009-04-30 | 2018-02-14 | Genomatica Inc | organismos para a produção de isopropanol, n-butanol, e isobutanol |
KR101930540B1 (ko) | 2009-05-07 | 2019-03-15 | 게노마티카 인코포레이티드 | 아디페이트, 헥사메틸렌디아민 및 6-아미노카프로산의 생합성을 위한 미생물 및 방법 |
WO2010132845A1 (en) * | 2009-05-15 | 2010-11-18 | Genomatica, Inc. | Organisms for the production of cyclohexanone |
MY195387A (en) | 2009-06-04 | 2023-01-18 | Genomatica Inc | Microorganisms for the Production of 1,4-Butanediol and Related Methods |
CN102459138A (zh) * | 2009-06-04 | 2012-05-16 | 基因组股份公司 | 分离发酵液成分的方法 |
WO2010144746A2 (en) * | 2009-06-10 | 2010-12-16 | Genomatica, Inc. | Microorganisms and methods for carbon-efficient biosynthesis of mek and 2-butanol |
EP2462221B1 (en) | 2009-08-05 | 2017-02-22 | Genomatica, Inc. | Semi-synthetic terephthalic acid via microorganisms that produce muconic acid |
KR20120068021A (ko) | 2009-09-09 | 2012-06-26 | 게노마티카 인코포레이티드 | 아이소프로판올과 1차 알콜, 다이올 및 산과의 공동 생산을 위한 미생물 및 방법 |
US8809027B1 (en) | 2009-09-27 | 2014-08-19 | Opx Biotechnologies, Inc. | Genetically modified organisms for increased microbial production of 3-hydroxypropionic acid involving an oxaloacetate alpha-decarboxylase |
MX2012003604A (es) | 2009-09-27 | 2012-09-12 | Opx Biotechnologies Inc | Metodo para producir acido 3-hidroxipropionico y otros productos. |
JP2013507145A (ja) | 2009-10-13 | 2013-03-04 | ゲノマチカ, インク. | 1,4−ブタンジオール、4−ヒドロキシブタナール、4−ヒドロキシブチリル−CoA、プトレシン及び関連化合物の生成のための微生物体並びに関連する方法 |
EP2491125A4 (en) * | 2009-10-23 | 2014-04-23 | Genomatica Inc | MICROORGANISMS FOR ANILINE PRODUCTION |
US10017793B2 (en) | 2009-11-18 | 2018-07-10 | Myriant Corporation | Metabolic evolution of Escherichia coli strains that produce organic acids |
CN102666838B (zh) | 2009-11-18 | 2018-04-10 | 麦兰特公司 | 用于高效产生化学品的工程化微生物 |
US8778656B2 (en) | 2009-11-18 | 2014-07-15 | Myriant Corporation | Organic acid production in microorganisms by combined reductive and oxidative tricaboxylic acid cylce pathways |
ES2644820T3 (es) | 2009-11-18 | 2017-11-30 | Myriant Corporation | Evolución metabólica de cepas de Escherichia coli que producen ácidos orgánicos |
WO2011063363A2 (en) * | 2009-11-20 | 2011-05-26 | Opx Biotechnologies, Inc. | Production of an organic acid and/or related chemicals |
US20120238722A1 (en) | 2009-11-24 | 2012-09-20 | Roquette Freres Sa | Process for the crystallization of succinic acid |
US8530210B2 (en) | 2009-11-25 | 2013-09-10 | Genomatica, Inc. | Microorganisms and methods for the coproduction 1,4-butanediol and gamma-butyrolactone |
CN109136161A (zh) | 2009-12-10 | 2019-01-04 | 基因组股份公司 | 合成气或其他气态碳源和甲醇转化为1,3-丁二醇的方法和有机体 |
JP2013516180A (ja) | 2009-12-31 | 2013-05-13 | ミリアント・コーポレイション | コハク酸アンモニウムを含有する発酵ブロスからのコハク酸の精製 |
WO2011083059A1 (en) * | 2010-01-06 | 2011-07-14 | Universiteit Gent | Bacterial mutants and uses thereof in protein production |
SG182686A1 (en) | 2010-01-29 | 2012-08-30 | Genomatica Inc | Microorganisms and methods for the biosynthesis of p-toluate and terephthalate |
US8048661B2 (en) * | 2010-02-23 | 2011-11-01 | Genomatica, Inc. | Microbial organisms comprising exogenous nucleic acids encoding reductive TCA pathway enzymes |
US8445244B2 (en) | 2010-02-23 | 2013-05-21 | Genomatica, Inc. | Methods for increasing product yields |
US8163459B2 (en) * | 2010-03-01 | 2012-04-24 | Xerox Corporation | Bio-based amorphous polyester resins for emulsion aggregation toners |
EP2371802A1 (en) | 2010-03-30 | 2011-10-05 | DSM IP Assets B.V. | Process for the crystallization of succinic acid |
US9023636B2 (en) | 2010-04-30 | 2015-05-05 | Genomatica, Inc. | Microorganisms and methods for the biosynthesis of propylene |
CN103080324B (zh) | 2010-05-05 | 2019-03-08 | 基因组股份公司 | 用于丁二烯生物合成的微生物和方法 |
US8795991B2 (en) | 2010-05-07 | 2014-08-05 | William Marsh Rice University | Increasing bacterial succinate productivity |
WO2011163128A1 (en) | 2010-06-21 | 2011-12-29 | William Marsh Rice University | Engineered bacteria produce succinate from sucrose |
BR112013001635A2 (pt) | 2010-07-26 | 2016-05-24 | Genomatica Inc | micro-organismo e métodos para a biossíntese de aromáticos, 2, 4-pentadienoato e 1,3-butadieno |
CA2807102C (en) | 2010-07-31 | 2018-08-21 | Myriant Corporation | Improved fermentation process for the production of organic acids |
CN101974458B (zh) * | 2010-09-30 | 2012-05-30 | 江南大学 | 一株枯草芽孢杆菌及其应用 |
CN102174458A (zh) * | 2011-03-09 | 2011-09-07 | 南京工业大学 | 一种制备重组大肠杆菌发酵生产丁二酸的方法 |
US9169486B2 (en) | 2011-06-22 | 2015-10-27 | Genomatica, Inc. | Microorganisms for producing butadiene and methods related thereto |
CN103842495B (zh) | 2011-07-22 | 2018-04-13 | 麦兰特公司 | 甘油发酵为有机酸 |
EP2753689B1 (en) * | 2011-09-07 | 2018-02-14 | William Marsh Rice University | Functionalized carboxylic acids and alcohols by reverse fatty acid oxidation |
EP2768966B1 (en) | 2011-10-17 | 2019-04-17 | William Marsh Rice University | Bacteria and method for synthesizing fatty acids |
EP2791367B1 (en) * | 2011-12-16 | 2019-04-24 | Inbiose N.V. | Mutant microorganisms to synthesize colanic acid, mannosylated and/or fucosylated oligosaccharides |
FR2987678B1 (fr) | 2012-03-02 | 2016-04-15 | Roquette Freres | Methode de mesure de la stabilite thermique d'un acide succinique cristallin destine a la fabrication de polymeres |
US11932845B2 (en) | 2012-06-04 | 2024-03-19 | Genomatica, Inc. | Microorganisms and methods for production of 4-hydroxybutyrate, 1,4-butanediol and related compounds |
US20140093925A1 (en) * | 2012-10-02 | 2014-04-03 | The Michigan Biotechnology Institute | Recombinant microorganisms for producing organic acids |
US9932611B2 (en) * | 2012-10-22 | 2018-04-03 | Genomatica, Inc. | Microorganisms and methods for enhancing the availability of reducing equivalents in the presence of methanol, and for producing succinate related thereto |
US20160060385A1 (en) | 2013-03-08 | 2016-03-03 | Dsm Ip Assets B.V. | Polyester |
US10047383B2 (en) | 2013-03-15 | 2018-08-14 | Cargill, Incorporated | Bioproduction of chemicals |
EP2976141A4 (en) | 2013-03-15 | 2016-10-05 | Cargill Inc | FLASHING FOR PRODUCTION CLEANING AND RECOVERY |
JP2016165225A (ja) | 2013-07-09 | 2016-09-15 | 味の素株式会社 | 有用物質の製造方法 |
US10337038B2 (en) | 2013-07-19 | 2019-07-02 | Cargill, Incorporated | Microorganisms and methods for the production of fatty acids and fatty acid derived products |
US11408013B2 (en) | 2013-07-19 | 2022-08-09 | Cargill, Incorporated | Microorganisms and methods for the production of fatty acids and fatty acid derived products |
CN105705647B (zh) | 2013-09-03 | 2020-03-27 | Ptt全球化学公众有限公司 | 从1,3-丙二醇制造丙烯酸、丙烯腈和1,4-丁二醇的方法 |
US9487804B2 (en) | 2014-02-13 | 2016-11-08 | William Marsh Rice University | Hydroxy- and dicarboxylic-fat synthsis by microbes |
CN104046577A (zh) * | 2014-04-01 | 2014-09-17 | 南京工业大学 | 一株产苹果酸基因工程菌及其构建及应用 |
EP2993228B1 (en) | 2014-09-02 | 2019-10-09 | Cargill, Incorporated | Production of fatty acid esters |
CN105543214B (zh) * | 2014-10-30 | 2019-01-08 | 华东理工大学 | 利用乙酸生产丁二酸的代谢工程大肠杆菌菌株构建方法和应用 |
CN104593405A (zh) * | 2014-11-24 | 2015-05-06 | 安徽大学 | 一种高产丙氨酸的枯草杆菌工程菌的构建方法 |
BR112017011767B1 (pt) | 2014-12-02 | 2020-12-08 | Dsm Ip Assets B.V. | processo para fabricação de ácido succínico a partir de um caldo de fermentação com uso de nanofiltração para purificar licor-mãe reciclado |
JP2017216881A (ja) | 2014-12-26 | 2017-12-14 | 味の素株式会社 | ジカルボン酸の製造方法 |
EP3067378A1 (en) | 2015-03-11 | 2016-09-14 | DSM IP Assets B.V. | Polyester |
US9970016B2 (en) | 2015-11-12 | 2018-05-15 | Industrial Technology Research Institute | Genetic engineered bacteria and methods for promoting production of succinic acid or lactic acid |
US10858661B2 (en) | 2017-01-10 | 2020-12-08 | University-Industry Cooperation Group Of Kyung Hee University | Use of Methylomonas sp. DH-1 strain and its transformants |
KR102028161B1 (ko) * | 2017-01-10 | 2019-10-02 | 경희대학교 산학협력단 | 형질전환 미생물을 이용한 2,3-부탄디올 생산방법 |
JP2020506702A (ja) | 2017-02-02 | 2020-03-05 | カーギル インコーポレイテッド | C6−c10脂肪酸誘導体を生成する遺伝子組み換え細胞 |
CN107881186B (zh) * | 2017-10-18 | 2021-02-02 | 华东理工大学 | 利用乙酸生产羟基丙酸的代谢工程大肠杆菌菌株的构建方法与应用 |
CN108977386A (zh) * | 2018-08-08 | 2018-12-11 | 大连大学 | 一种筛选高产低温苹果酸脱氢酶细菌菌株的方法 |
CN109251941B (zh) * | 2018-09-30 | 2020-11-06 | 江南大学 | 一种高产琥珀酸的大肠杆菌及其应用 |
CN110951660B (zh) * | 2019-12-19 | 2021-12-03 | 江南大学 | 一株固定co2产苹果酸的大肠杆菌工程菌的构建及应用 |
KR102611978B1 (ko) * | 2021-12-21 | 2023-12-11 | 이화여자대학교 산학협력단 | 숙신산 생산성이 향상된 미생물 및 이를 이용한 숙신산 생산 방법 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1202930A (zh) * | 1995-11-02 | 1998-12-23 | 芝加哥大学 | 具有增加的琥珀酸产量的突变大肠杆菌菌株 |
CN1268972A (zh) * | 1997-07-31 | 2000-10-04 | 韩国科学技术研究院 | pta 1dhA双重突变大肠杆菌SS373及由其生产琥珀酸的方法 |
US6455284B1 (en) * | 1998-04-13 | 2002-09-24 | The University Of Georgia Research Foundation, Inc. | Metabolically engineered E. coli for enhanced production of oxaloacetate-derived biochemicals |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5869301A (en) | 1995-11-02 | 1999-02-09 | Lockhead Martin Energy Research Corporation | Method for the production of dicarboxylic acids |
JP3967812B2 (ja) * | 1998-01-16 | 2007-08-29 | 三菱化学株式会社 | ピルビン酸カルボキシラーゼ遺伝子組み換え菌体による有機酸の製造法 |
US20030087381A1 (en) | 1998-04-13 | 2003-05-08 | University Of Georgia Research Foundation, Inc. | Metabolically engineered organisms for enhanced production of oxaloacetate-derived biochemicals |
US6159738A (en) | 1998-04-28 | 2000-12-12 | University Of Chicago | Method for construction of bacterial strains with increased succinic acid production |
US6743610B2 (en) | 2001-03-30 | 2004-06-01 | The University Of Chicago | Method to produce succinic acid from raw hydrolysates |
US8027821B2 (en) * | 2002-07-10 | 2011-09-27 | The Penn State Research Foundation | Method for determining gene knockouts |
US7432091B2 (en) | 2003-02-24 | 2008-10-07 | Research Institute Of Innovative Technology For The Earth | Highly efficient hydrogen production method using microorganism |
US7927859B2 (en) | 2003-08-22 | 2011-04-19 | Rice University | High molar succinate yield bacteria by increasing the intracellular NADH availability |
JP2005211041A (ja) * | 2004-02-02 | 2005-08-11 | Nippon Shokubai Co Ltd | コハク酸の製造方法 |
US7262046B2 (en) | 2004-08-09 | 2007-08-28 | Rice University | Aerobic succinate production in bacteria |
WO2006034156A2 (en) | 2004-09-17 | 2006-03-30 | Rice University | High succinate producing bacteria |
US7569380B2 (en) * | 2004-12-22 | 2009-08-04 | Rice University | Simultaneous anaerobic production of isoamyl acetate and succinic acid |
US8187842B2 (en) | 2005-06-20 | 2012-05-29 | Archer Daniels Midland Company | Altered glyoxylate shunt for improved production of aspartate-derived amino acids and chemicals |
-
2005
- 2005-08-29 WO PCT/US2005/030689 patent/WO2006031424A2/en active Application Filing
- 2005-08-29 BR BRPI0514734-4A patent/BRPI0514734B1/pt not_active IP Right Cessation
- 2005-08-29 KR KR1020077004123A patent/KR101245428B1/ko active IP Right Grant
- 2005-08-29 CN CN2005800288836A patent/CN101044245B/zh not_active Expired - Fee Related
- 2005-08-29 EP EP05809068.9A patent/EP1781797B1/en not_active Not-in-force
- 2005-08-29 EP EP16188059.6A patent/EP3130676A1/en not_active Withdrawn
- 2005-08-29 US US11/214,309 patent/US7223567B2/en active Active
- 2005-08-29 JP JP2007530238A patent/JP4771437B2/ja not_active Expired - Fee Related
-
2007
- 2007-04-05 US US11/697,295 patent/US7790416B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1202930A (zh) * | 1995-11-02 | 1998-12-23 | 芝加哥大学 | 具有增加的琥珀酸产量的突变大肠杆菌菌株 |
CN1268972A (zh) * | 1997-07-31 | 2000-10-04 | 韩国科学技术研究院 | pta 1dhA双重突变大肠杆菌SS373及由其生产琥珀酸的方法 |
US6455284B1 (en) * | 1998-04-13 | 2002-09-24 | The University Of Georgia Research Foundation, Inc. | Metabolically engineered E. coli for enhanced production of oxaloacetate-derived biochemicals |
Non-Patent Citations (2)
Title |
---|
VEMURI G.N et al..effects of growth mode and pyruvate carboxylase on succinicacid production by metabolically engineered strain of E.Coli..Applied and Enviromental Microbiology68 4.2002,68(4),1715-1727. |
VEMURI G.N et al..effects of growth mode and pyruvate carboxylase on succinicacid production by metabolically engineered strain of E.Coli..Applied and Enviromental Microbiology68 4.2002,68(4),1715-1727. * |
Also Published As
Publication number | Publication date |
---|---|
CN101044245A (zh) | 2007-09-26 |
US7790416B2 (en) | 2010-09-07 |
JP4771437B2 (ja) | 2011-09-14 |
EP1781797A2 (en) | 2007-05-09 |
KR20070053716A (ko) | 2007-05-25 |
KR101245428B1 (ko) | 2013-03-19 |
JP2008516585A (ja) | 2008-05-22 |
US20070184539A1 (en) | 2007-08-09 |
EP3130676A1 (en) | 2017-02-15 |
EP1781797B1 (en) | 2016-10-19 |
US20060046288A1 (en) | 2006-03-02 |
BRPI0514734B1 (pt) | 2018-02-06 |
EP1781797A4 (en) | 2011-10-05 |
US7223567B2 (en) | 2007-05-29 |
WO2006031424A2 (en) | 2006-03-23 |
BRPI0514734A (pt) | 2008-06-24 |
WO2006031424A3 (en) | 2006-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101044245B (zh) | 具有增加的琥珀酸产量的突变大肠杆菌菌株 | |
US7262046B2 (en) | Aerobic succinate production in bacteria | |
Jantama et al. | Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate | |
US20060073577A1 (en) | High succinate producing bacteria | |
US9932612B2 (en) | Microbial succinic acid producers and purification of succinic acid | |
Sánchez et al. | Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity | |
US8486686B2 (en) | Large scale microbial culture method | |
US20070249028A1 (en) | Aerobic Succinate Production in Bacteria | |
US8778656B2 (en) | Organic acid production in microorganisms by combined reductive and oxidative tricaboxylic acid cylce pathways | |
US8877466B2 (en) | Bacterial cells having a glyoxylate shunt for the manufacture of succinic acid | |
US8883466B2 (en) | Bacterial cells exhibiting formate dehydrogenase activity for the manufacture of succinic acid | |
EP2350299A1 (en) | Microaerobic cultures for converting glycerol to chemicals | |
MX2015004180A (es) | Microorganismos recombinantes para producir acidos organicos organicos. | |
CN113046283A (zh) | 一株通过还原tca途径生产己二酸的工程菌株及其构建方法 | |
EP4168566A1 (en) | Methods for producing biotin in genetically modified microorganisms | |
US10752925B2 (en) | Microbial production of succinate derived products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120502 Termination date: 20200829 |