BR112020012402A2 - controle de temperatura do atuador de extremidade ultrassônico e sistema de controle para o mesmo - Google Patents

controle de temperatura do atuador de extremidade ultrassônico e sistema de controle para o mesmo Download PDF

Info

Publication number
BR112020012402A2
BR112020012402A2 BR112020012402-8A BR112020012402A BR112020012402A2 BR 112020012402 A2 BR112020012402 A2 BR 112020012402A2 BR 112020012402 A BR112020012402 A BR 112020012402A BR 112020012402 A2 BR112020012402 A2 BR 112020012402A2
Authority
BR
Brazil
Prior art keywords
ultrasonic
surgical
control circuit
resonance frequency
generator
Prior art date
Application number
BR112020012402-8A
Other languages
English (en)
Inventor
Cameron R. Nott
Jacob S. Gee
Frederick E. Shelton Iv
David C. Yates
Fergus P. Quigley
Amrita Singh Sawhney
Stephen M. Leuck
Brian D. Black
Eric M. Roberson
Patrick J. Scoggins
Craig N. Faller
Madeleine C. Jayme
Original Assignee
Ethicon Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ethicon Llc filed Critical Ethicon Llc
Publication of BR112020012402A2 publication Critical patent/BR112020012402A2/pt

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B17/320092Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00026Conductivity or impedance, e.g. of tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00026Conductivity or impedance, e.g. of tissue
    • A61B2017/0003Conductivity or impedance, e.g. of tissue of parts of the instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00075Motion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00084Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00106Sensing or detecting at the treatment site ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00115Electrical control of surgical instruments with audible or visual output
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00199Electrical control of surgical instruments with a console, e.g. a control panel with a display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00221Electrical control of surgical instruments with wireless transmission of data, e.g. by infrared radiation or radiowaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00398Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like using powered actuators, e.g. stepper motors, solenoids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/0046Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable
    • A61B2017/00464Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable for use with different instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07285Stapler heads characterised by its cutter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320072Working tips with special features, e.g. extending parts
    • A61B2017/320074Working tips with special features, e.g. extending parts blade
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00994Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combining two or more different kinds of non-mechanical energy or combining one or more non-mechanical energies with ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • A61B2090/066Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring torque
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0807Indication means
    • A61B2090/0809Indication of cracks or breakages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0807Indication means
    • A61B2090/0811Indication means for the position of a particular part of an instrument with respect to the rest of the instrument, e.g. position of the anvil of a stapling instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/005Auxiliary appliance with suction drainage system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/007Auxiliary appliance with irrigation system

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Otolaryngology (AREA)
  • Plasma & Fusion (AREA)
  • Gynecology & Obstetrics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pathology (AREA)
  • Robotics (AREA)
  • Surgical Instruments (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

A presente invenção revela um gerador, um dispositivo ultrassônico, e um método de determinação de uma temperatura de uma lâmina ultrassônica. Um circuito de controle acoplado a uma memória determina uma frequência de ressonância real de um sistema eletromecânico ultrassônico que compreende um transdutor ultrassônico acoplado a uma lâmina ultrassônica por um guia de ondas ultrassônico. A frequência de ressonância real é correlacionada a uma temperatura real da lâmina ultrassônica. O circuito de controle recupera da memória uma frequência de ressonância de referência do sistema eletromecânico ultrassônico. A frequência de ressonância de referência é correlacionada a uma temperatura de referência da lâmina ultrassônica. O circuito de controle então infere a temperatura da lâmina ultrassônica com base na diferença entre a frequência de ressonância real e a frequência de ressonância de referência.

Description

Relatório Descritivo da Patente de Invenção para "CONTROLE DE TEMPERATURA DO ATUADOR DE EXTREMIDADE ULTRASSÔNICO E SISTEMA DE CONTROLE PARA O MESMO".
REFERÊNCIA REMISSIVA A PEDIDOS DE DEPÓSITO CORRELATOS
[001] O presente pedido reivindica a prioridade sob 35 U.S.C.§ 119(e) ao pedido de patente provisório n° 62/721.995, intitulado
CONTROLLING AN ULTRASONIC SURGICAL INSTRUMENT ACCORDING TO TISSUE LOCATION, formulado em 23 de agosto de 2018, cuja descrição está aqui incorporada a título de referência, em sua totalidade.
[002] O presente pedido reivindica a prioridade sob 35 U.S.C.§ 119(e) ao pedido de patente provisório n° 62/721.998, intitulada SITUATIONAL AWARENESS OF ELECTROSURGICAL SYSTEMS, depositado em 23 de agosto de 2018, cuja descrição está aqui incorporada a título de referência, em sua totalidade.
[003] O presente pedido reivindica a prioridade sob 35 U.S.C.§ 119(e) ao pedido de patente provisório n° 62/721.999, intitulado
INTERRUPTION OF ENERGY DUE TO INADVERTENT CAPACITIVE COUPLING, depositado em 23 de agosto de 2018, cuja descrição está aqui incorporada a título de referência, em sua totalidade.
[004] O presente pedido reivindica a prioridade sob 35 U.S.C.§ 119(e) ao pedido de patente provisório n° 62/721.994, intitulado
BIPOLAR COMBINATION DEVICE THAT AUTOMATICALLY ADJUSTS PRESSURE BASED ON ENERGY MODALITY, depositado em 23 de agosto de 2018, cuja descrição está aqui incorporada a título de referência, em sua totalidade.
[005] O presente pedido reivindica a prioridade sob 35 U.S.C.§ 119(e) ao pedido de patente provisório n° 62/721.996, intitulado RADIO
FREQUENCY ENERGY DEVICE FOR DELIVERING COMBINED
ELECTRICAL SIGNAL, depositado em 23 de agosto de 2018, cuja descrição está aqui incorporada a título de referência em sua totalidade.
[006] O presente pedido reivindica a prioridade sob 35 U.S.C.§ 119(e) ao pedido de patente provisório n° 62/692.747, intitulado SMART ACTIVATION OF AN ENERGY DEVICE BY ANOTHER DEVICE, depositado em 30 de junho de 2018, ao pedido de patente provisório para n° 62/692.748, intitulado SMART ENERGY ARCHITECTURE, depositado em 30 de junho de 2018 e ao pedido de patente provisório para n° 62/692.768, intitulado SMART ENERGY DEVICES, depositado em 30 de junho de 2018, estando a descrição de cada um dos quais aqui incorporada a título de referência, em sua totalidade.
[007] Este pedido também reivindica o benefício de prioridade sob 35 U.S.C.§ 119(e) para o Pedido de Patente Provisório U.S. n° de série 62/640.417, intitulado TEMPERATURE CONTROL IN ULTRASONIC DEVICE AND CONTROL SYSTEM THEREFOR, depositado em 8 de março de 2018, e ao Pedido de Patente Provisório U.S. n° de série 62/640.415, intitulado ESTIMATING STATE OF ULTRASONIC END EFFECTOR AND CONTROL SYSTEM THEREFOR depositado em 8 de março de 2018, estando a descrição de cada um dos quais aqui incorporada a título de referência, em sua totalidade.
[008] Este pedido também reivindica o benefício de prioridade sob 35 U.S.C.§ 119 (e) para o Pedido de Patente Provisório U.S. n° 62/650.898 depositado em 30 de março de 2018, intitulado
CAPACITIVE COUPLED RETURN PATH PAD WITH SEPARABLE ARRAY ELEMENTS, para o Pedido de Patente Provisório U.S. n° de série 62/650.887, intitulado SURGICAL SYSTEMS WITH OPTIMIZED SENSING CAPABILITIES, depositado em 30 de março de 2018, ao pedido de patente provisório n° de série 62/650.882, intitulado SMOKE EVACUATION MODULE FOR INTERACTIVE SURGICAL PLATFORM, depositado em 30 de março de 2018, e ao pedido de patente provisório n° de série 62/650.877, intitulado SURGICAL SMOKE EVACUATION SENSING AND CONTROLS, depositado em 30 de março de 2018, estando a descrição de cada um dos quais aqui incorporada a título de referência, em sua totalidade.
[009] O presente pedido reivindica a prioridade sob 35 U.S.C.§ 119(e) ao Pedido de Patente Provisório U.S. n° de série 62/611.341, intitulado INTERACTIVE SURGICAL PLATFORM, depositado em 28 de dezembro de 2017, ao Pedido de Patente Provisório U.S. n° de série 62/611.340, intitulado CLOUD-BASED MEDICAL ANALYTICS, depositado em 28 de dezembro de 2017, e ao Pedido de Patente Provisório U.S. n° de série 62/611.339, intitulado ROBOT ASSISTED SURGICAL PLATFORM, depositado em 28 de dezembro de 2017, estando a descrição de cada um dos quais aqui incorporada a título de referência, em sua totalidade.
ANTECEDENTES DA INVENÇÃO
[0010] Em um ambiente cirúrgico, os dispositivos de energia inteligente podem ser necessários em um ambiente de arquitetura de energia inteligente. Os dispositivos cirúrgicos ultrassônicos, como bisturis ultrassônicos, estão encontrando aplicações cada vez mais amplamente difundida em procedimentos cirúrgicos, em razão de suas características de desempenho exclusivas. Dependendo de configurações e parâmetros operacionais específicos do dispositivo, os dispositivos cirúrgicos ultrassônicos podem oferecer, de maneira substancialmente simultânea, transecção de tecidos e homeostase por coagulação, desejavelmente minimizando o trauma do paciente. Um dispositivo cirúrgico ultrassônico pode compreender uma empunhadura contendo um transdutor ultrassônico, e um instrumento acoplado ao transdutor ultrassônico tendo um atuador de extremidade montado distalmente (por exemplo, uma ponta de lâmina) para cortar e vedar o tecido. Em alguns casos, o instrumento pode estar permanentemente fixado à peça de mão. Em outros casos, o instrumento pode ser separável da empunhadura, como no caso de um instrumento descartável ou um instrumento intercambiável. O atuador de extremidade transmite energia ultrassônica aos tecidos colocados em contato com o mesmo, para realizar a ação de corte e cauterização. Os dispositivos cirúrgicos ultrassônicos dessa natureza podem ser configurados para uso em procedimentos cirúrgicos abertos, laparoscópicos ou endoscópicos, inclusive procedimentos roboticamente assistidos.
[0011] A energia ultrassônica corta e coagula os tecidos com o uso de temperaturas mais baixas que aquelas usadas em procedimentos eletrocirúrgicos e pode ser transmitida ao atuador de extremidade por um gerador ultrassônico em comunicação com a empunhadura. Vibrando em altas frequências (por exemplo, 55.500 ciclos por segundo), a lâmina ultrassônica desnatura a proteína presente nos tecidos para formar um coágulo pegajoso. A pressão exercida sobre os tecidos pela superfície da lâmina achata os vasos sanguíneos e possibilita que o coágulo forme um selo hemostático. Um cirurgião pode controlar a velocidade de corte e coagulação por meio da força aplicada aos tecidos pelo atuador de extremidade, do tempo durante o qual a força é aplicada e do nível de excursão selecionado para o atuador de extremidade.
[0012] O transdutor ultrassônico pode ser modelado como um circuito equivalente que compreende uma primeira ramificação que tem uma capacitância estática e uma segunda ramificação " de movimento" que tem uma indutância, resistência e capacitância conectadas em série que definem as propriedades eletromecânicas de um ressonador. Os geradores ultrassônicos conhecidos podem incluir um indutor de sintonia para cancelar a capacitância estática a uma frequência de ressonância de modo que substancialmente toda a corrente do sinal de acionamento do gerador flua para a ramificação de movimento. Consequentemente, mediante o uso de um indutor de sintonia, a corrente do sinal de acionamento do gerador representa a corrente da ramificação de movimento, e o gerador é dessa forma capaz de controlar seu sinal de acionamento para manter a frequência de ressonância do transdutor ultrassônico. O indutor de sintonia pode também transformar a plotagem da impedância de fase do transdutor ultrassônico para otimizar as capacidades de travamento de frequência do gerador. Entretanto, o indutor de sintonia precisa ser combinado com a capacitância estática específica de um transdutor ultrassônico na frequência de ressonância operacional. Em outras palavras, um transdutor ultrassônico diferente tendo uma capacitância estática diferente precisa de um indutor de sintonia.
[0013] Adicionalmente, em algumas arquiteturas de gerador ultrassônico, o sinal de acionamento do gerador apresenta distorção harmônica assimétrica que complica as medições de magnitude e fase da impedância. Por exemplo, a exatidão das medições de fase da impedância pode ser reduzida devido à distorção harmônica nos sinais de corrente e tensão.
[0014] Além disso, a interferência eletromagnética em ambientes ruidosos diminui a capacidade do gerador de manter o travamento na frequência de ressonância do transdutor ultrassônico, aumentando a probabilidade de entradas inválidas do algoritmo de controle.
[0015] Os dispositivos eletrocirúrgicos para aplicação de energia elétrica a tecidos de modo a tratar e/ou destruir os ditos tecidos estão também encontrando aplicações cada vez mais amplamente disseminadas em procedimentos cirúrgicos. Um dispositivo eletrocirúrgico pode compreender uma empunhadura e um instrumento que tem um atuador de extremidade distalmente montado (por exemplo, um ou mais eletrodos). O atuador de extremidade pode ser posicionado contra o tecido, de modo que a corrente elétrica seja introduzida no tecido. Os dispositivos eletrocirúrgicos podem ser configurados para funcionamento bipolar ou monopolar. Durante o funcionamento bipolar, a corrente é introduzida no tecido e retornada a partir do mesmo pelos eletrodos ativos e de retorno, respectivamente, do atuador de extremidade. Durante o funcionamento monopolar, uma corrente é introduzida no tecido por um eletrodo ativo do atuador de extremidade e retornada através de um eletrodo de retorno (por exemplo, uma placa de aterramento) separadamente situada no corpo do paciente. O calor gerado pela corrente que flui através do tecido pode formar selagens hemostáticas no interior do tecido e/ou entre tecidos e, dessa forma, pode ser particularmente útil para cauterização de vasos sanguíneos, por exemplo. O atuador de extremidade de um dispositivo eletrocirúrgico pode também compreender um membro de corte que é capaz de mover- se em relação ao tecido e aos eletrodos, para transeccionar o tecido.
[0016] A energia elétrica aplicada por um dispositivo eletrocirúrgico pode ser transmitida ao instrumento por um gerador em comunicação com a empunhadura. A energia elétrica pode estar sob a forma de energia de radiofrequência (RF). A energia de RF é uma forma de energia elétrica que pode estar na faixa de frequência de 300 kHz a 1 MHz, conforme descrito em EN60601-2-2:2009+A11:2011, Definição
201.3.218 - ALTA FREQUÊNCIA. Por exemplo, a frequência em aplicações de RF monopolar pode ser tipicamente restrita a menos do que 5 MHz. Entretanto, em aplicações de RF bipolar, a frequência pode se quase qualquer uma. Frequências acima de 200 kHz são tipicamente usadas para aplicações monopolares a fim de evitar o estímulo indesejado dos nervos e músculos que resultaria do uso de uma corrente de frequência baixa. Frequências inferiores podem ser usadas para técnicas bipolares se uma análise de risco mostrar que a possibilidade de estímulo neuromuscular foi mitigada até um nível aceitável. Normalmente, frequências acima de 5 MHz não são usadas, a fim de minimizar problemas associados correntes de dispersão de alta frequência. É geralmente aceito que 10 mA é o limiar inferior dos efeitos térmicos em tecido.
[0017] Durante esta operação, um dispositivo eletrocirúrgico pode transmitir energia de RF em baixa frequência através do tecido, o que causa atrito, ou agitação iônica, ou seja, aquecimento resistivo, o que, portanto, aumenta a temperatura do tecido. Devido ao fato de que um limite preciso pode ser criado entre o tecido afetado e o tecido circundante, os cirurgiões podem operar com um alto nível de precisão e controle, sem sacrificar o tecido adjacente não alvo. As baixas temperaturas de operação da energia de RF podem ser úteis para remoção, encolhimento ou escultura de tecidos moles enquanto, simultaneamente, cauterizam os vasos sanguíneos. A energia de RF pode funcionar particularmente bem no tecido conjuntivo, que compreende principalmente colágeno e encolhe quando entra em contato com calor.
[0018] Devido a suas necessidades únicas de sinal de acionamento, detecção e retroinformação, dispositivos ultrassônicos e eletrocirúrgicos geralmente exigem diferentes geradores. Adicionalmente, nos casos em que o instrumento é descartável ou intercambiável com uma empunhadura, os geradores ultrassônicos e eletrocirúrgicos estão limitados em sua capacidade de reconhecer a configuração do instrumento específico sendo usado e de otimizar processos de controle e diagnóstico em conformidade. Além disso, o acoplamento capacitivo entre os circuitos não isolados e isolados, de paciente, do gerador, especialmente nos casos em que tensões e frequências mais altas são usadas, pode resultar na exposição de um paciente a níveis inaceitáveis de corrente de fuga.
[0019] Além disso, devido a suas necessidades únicas de sinal de acionamento, detecção e retroinformação, os dispositivos ultrassônicos e eletrocirúrgicos geralmente exigem diferentes interface de usuário para os diferentes geradores. Em tais dispositivos ultrassônicos e eletrocirúrgicos convencionais, uma interface de usuário é configurada para uso com um instrumento ultrassônico ao passo que uma interface de usuário diferente pode ser configurada para uso com um instrumento eletrocirúrgico. Tais interfaces de usuário incluem interfaces de usuário ativadas pela mão e/ou pé, como chaves ativadas pela mão e/ou chaves ativadas pelo pé. Quando vários aspectos de geradores combinados para uso tanto com instrumentos ultrassônicos como com instrumentos eletrocirúrgicos são contemplados na subsequente descrição, interfaces de usuário adicionais que são configuradas para operar com geradores de instrumentos ultrassônicos tanto quanto eletrocirúrgicos também são contempladas.
[0020] Interfaces de usuário adicionais para fornecer retroinformação, se ao usuário ou a outra máquina, são contemplados na subsequente descrição para fornecer retroinformação que indica um modo de operação ou status de um instrumento ultrassônico e/ou eletrocirúrgico. Fornecer retroinformação ao usuário e/ou à máquina para operar um instrumento ultrassônico e/ou eletrocirúrgico em combinação exigirá fornecer retroinformação sensorial a um usuário e retroinformação elétrica/mecânica/eletromecânica a uma máquina. Os dispositivos de retroinformação que incorporam dispositivos de retroinformação visual (por exemplo, uma tela de exibição de LCD, indicadores de LED), dispositivos de retroinformação de áudio (por exemplo, um alto-falante, uma campainha) ou dispositivos de retroinformação tátil (por exemplo, atuadores hápticos) para uso em instrumentos ultrassônicos e/ou eletrocirúrgicos combinados são contemplados na subsequente descrição.
[0021] Outros instrumentos cirúrgicos elétricos incluem, sem limitação, eletroporação irreversível e/ou reversível, e/ou tecnologias de micro-ondas, entre outras. Consequentemente, as técnicas aqui descritas são aplicáveis a RF ultrassônica, bipolar ou monopolar, (eletrocirúrgica), eletroporação irreversível e/ou reversível e/ou instrumentos cirúrgicos baseados em micro-ondas, entre outros.
SUMÁRIO DA INVENÇÃO
[0022] Em um aspecto geral, é fornecido um método para determinar uma temperatura de uma lâmina ultrassônica. Sendo que o método compreende: determinar, por um circuito de controle acoplado a uma memória, uma frequência de ressonância real de um sistema eletromecânico ultrassônico que compreende um transdutor ultrassônico acoplado a uma lâmina ultrassônica por meio de um guia de ondas ultrassônico, sendo que a frequência de ressonância real está correlacionada a uma temperatura real da lâmina ultrassônica; recuperar, a partir da memória pelo circuito de controle, uma frequência de ressonância de referência do sistema eletromecânico ultrassônico, sendo que a frequência de ressonância de referência está correlacionada a uma temperatura de referência da lâmina ultrassônica; e inferir, pelo circuito de controle, a temperatura da lâmina ultrassônica com base na diferença entre a frequência de ressonância real e a frequência de ressonância de referência.
[0023] Em um outro aspecto, um gerador para determinar a temperatura de uma lâmina ultrassônica é fornecido. Sendo que o gerador compreende: um circuito de controle acoplado a uma memória, sendo o circuito de controle configurado para: determinar uma frequência de ressonância real de um sistema eletromecânico ultrassônico compreendendo um transdutor ultrassônico acoplado a uma lâmina ultrassônica por meio de um guia de ondas ultrassônico, sendo que a frequência de ressonância real está correlacionada a uma temperatura real da lâmina ultrassônica; recuperar da memória uma frequência de ressonância de referência do sistema eletromecânico ultrassônico, sendo que a frequência de ressonância de referência está correlacionada a uma temperatura de referência da lâmina ultrassônica; e inferir a temperatura da lâmina ultrassônica com base na diferença entre a frequência de ressonância real e a frequência de ressonância de referência.
[0024] Em ainda um outro aspecto, um dispositivo ultrassônico para determinar uma temperatura de uma lâmina ultrassônica é fornecida. Sendo que o dispositivo ultrassônico compreende: um circuito de controle acoplado a uma memória, sendo o circuito de controle configurado para: determinar uma frequência de ressonância real de um sistema eletromecânico ultrassônico compreendendo um transdutor ultrassônico acoplado a uma lâmina ultrassônica por meio de um guia de ondas ultrassônico, sendo que a frequência de ressonância real é correlacionada a uma temperatura real da lâmina ultrassônica; recuperar da memória uma frequência de ressonância de referência do sistema eletromecânico ultrassônico, sendo que a frequência de ressonância de referência está correlacionada a uma temperatura de referência da lâmina ultrassônica; e inferir a temperatura da lâmina ultrassônica com base na diferença entre a frequência de ressonância real e a frequência de ressonância de referência.
FIGURAS
[0025] Os recursos de vários aspectos são apresentados com particularidade nas reivindicações em anexo. Os vários aspectos, no entanto, no que se refere tanto à organização quanto aos métodos de operação, juntamente com objetos e vantagens adicionais dos mesmos, podem ser melhor compreendidos em referência à descrição apresentada a seguir, considerada em conjunto com os desenhos em anexo, como a seguir.
[0026] A Figura 1 é um diagrama de blocos de um sistema cirúrgico interativo implementado por computador, de acordo com ao menos um aspecto da presente descrição.
[0027] A Figura 2 é um sistema cirúrgico sendo usado para executar um procedimento cirúrgico em uma sala de operação, de acordo com ao menos um aspecto da presente descrição.
[0028] A Figura 3 é um controlador cirúrgico central emparelhado com um sistema de visualização, um sistema robótico, e um instrumento inteligente, de acordo com ao menos um aspecto da presente descrição.
[0029] A Figura 4 é uma vista em perspectiva parcial de um invólucro do controlador cirúrgico central, e de um módulo gerador em combinação recebido de maneira deslizante em um invólucro do controlador cirúrgico central, de acordo com ao menos um aspecto da presente descrição.
[0030] A Figura 5 é uma vista em perspectiva de um módulo gerador em combinação com contatos bipolares, ultrassônicos e monopolares e um componente de evacuação de fumaça, de acordo com ao menos um aspecto da presente descrição.
[0031] A Figura 6 ilustra diferentes conectores de barramento de potência para uma pluralidade de portas de acoplamento lateral de um gabinete modular lateral configurado para receber uma pluralidade de módulos, de acordo com ao menos um aspecto da presente descrição.
[0032] A Figura 7 ilustra um alojamento modular vertical configurado para receber uma pluralidade de módulos, de acordo com ao menos um aspecto da presente descrição.
[0033] A Figura 8 ilustra uma rede de dados cirúrgicos que compreende um controlador de comunicação modular central configurado para conectar dispositivos modulares localizados em uma ou mais salas de cirurgia de uma instalação de serviços de saúde, ou qualquer ambiente em uma instalação de serviços públicos especialmente equipada para operações cirúrgicas, à nuvem, de acordo com ao menos um aspecto da presente descrição.
[0034] A Figura 9 ilustra um sistema cirúrgico interativo implementado por computador, de acordo com ao menos um aspecto da presente descrição.
[0035] A Figura 10 ilustra um controlador cirúrgico central que compreende uma pluralidade de módulos acoplados à torre de controle modular, de acordo com ao menos um aspecto da presente descrição.
[0036] A Figura 11 ilustra um aspecto de um dispositivo controlador central de rede de barramento em série universal (USB), de acordo com ao menos um aspecto da presente descrição.
[0037] A Figura 12 ilustra um diagrama lógico de um sistema de controle de um instrumento ou ferramenta cirúrgica, de acordo com ao menos um aspecto da presente descrição.
[0038] A Figura 13 ilustra um circuito de controle configurado para controlar aspectos do instrumento ou ferramenta cirúrgica, de acordo com ao menos um aspecto da presente descrição.
[0039] A Figura 14 ilustra um circuito lógico combinacional configurado para controlar aspectos do instrumento ou ferramenta cirúrgica, de acordo com ao menos um aspecto da presente descrição.
[0040] A Figura 15 ilustra um circuito lógico sequencial configurado para controlar aspectos do instrumento ou ferramenta cirúrgica, de acordo com ao menos um aspecto da presente descrição.
[0041] A Figura 16 ilustra um instrumento ou ferramenta cirúrgica que compreende uma pluralidade de motores que podem ser ativados para executar várias funções, de acordo com ao menos um aspecto da presente descrição.
[0042] A Figura 17 é um diagrama esquemático de um instrumento cirúrgico robótico configurado para operar uma ferramenta cirúrgica descrita no mesmo, de acordo com ao menos um aspecto da presente descrição.
[0043] A Figura 18 ilustra um diagrama de blocos de um instrumento cirúrgico programado para controlar a translação distal do membro de deslocamento, de acordo com um aspecto da presente descrição.
[0044] A Figura 19 é um diagrama esquemático de um instrumento cirúrgico configurada para controlar várias funções, de acordo com ao menos um aspecto da presente descrição.
[0045] A Figura 20 é um sistema configurado para executar algoritmos de controle de lâmina ultrassônica adaptáveis em uma rede de dados cirúrgicos que compreende um controlador de comunicação modular central, de acordo com ao menos um aspecto da presente descrição.
[0046] A Figura 21 representa um exemplo de um gerador, de acordo com ao menos um aspecto da presente descrição.
[0047] A Figura 22 é um sistema cirúrgico que compreende um gerador e vários instrumentos cirúrgicos usáveis com o mesmo, de acordo com ao menos um aspecto da presente descrição.
[0048] A Figura 23 é uma vista de um atuador de extremidade, de acordo com ao menos um aspecto da presente descrição.
[0049] A Figura 24 é um diagrama do sistema cirúrgico da Figura 22, de acordo com ao menos um aspecto da presente descrição.
[0050] A Figura 25 é um modelo que ilustra a corrente de ramificação de Movimento, de acordo com ao menos um aspecto da presente descrição.
[0051] A Figura 26 ilustra uma vista estrutural de uma arquitetura de gerador, de acordo com ao menos um aspecto da presente descrição.
[0052] As Figuras 27A a 27C ilustram vistas funcionais de uma arquitetura de gerador, de acordo com ao menos um aspecto da presente descrição.
[0053] As Figuras 28A a 28B são aspectos estruturais e funcionais de um gerador, de acordo com ao menos um aspecto da presente descrição.
[0054] A Figura 29 é um diagrama esquemático de um aspecto de um circuito de acionamento ultrassônico.
[0055] A Figura 30 é um diagrama esquemático do transformador acoplado ao circuito de acionamento ultrassônico mostrado na Figura 29, de acordo com ao menos um aspecto da presente descrição.
[0056] A Figura 31 é um diagrama esquemático do transformador mostrado na Figura 30 acoplado a um circuito de teste, de acordo com ao menos um aspecto da presente descrição.
[0057] A Figura 32 é um diagrama esquemático de um circuito de controle, de acordo com ao menos um aspecto da presente descrição.
[0058] A Figura 33 mostra um diagrama de circuito de bloco simplificado que ilustra um outro circuito elétrico contido no interior de um instrumento cirúrgico ultrassônico modular, de acordo com ao menos um aspecto da presente descrição.
[0059] A Figura 34 ilustra um circuito gerador dividido em múltiplos estágios, de acordo com ao menos um aspecto da presente descrição.
[0060] A Figura 35 ilustra um circuito gerador dividido em múltiplos estágios sendo que o circuito de primeiro estágio é comum ao circuito de segundo estágio, de acordo com ao menos um aspecto da presente descrição.
[0061] A Figura 36 é um diagrama esquemático de um aspecto de um circuito de acionamento configurado para acionar uma corrente de alta frequência (RF), de acordo com ao menos um aspecto da presente descrição.
[0062] A Figura 37 é um diagrama esquemático do transformador acoplado ao circuito de acionamento de RF mostrado na Figura 34, de acordo com ao menos um aspecto da presente descrição.
[0063] A Figura 38 é um diagrama esquemático de um circuito que compreende fontes de alimentação separadas para circuitos de acionamento/energia de alta potência e circuitos de baixa potência, de acordo com um aspecto da presente descrição.
[0064] A Figura 39 ilustra um circuito de controle que permite um sistema gerador duplo alterne entre as modalidades de energia do gerador de RF e do gerador ultrassônico para um instrumento cirúrgico.
[0065] A Figura 40 ilustra um diagrama de um aspecto de um instrumento cirúrgico que compreende um sistema de retroinformação para uso com um instrumento cirúrgico, de acordo com um aspecto da presente descrição.
[0066] A Figura 41 ilustra um aspecto de uma arquitetura fundamental para um circuito de síntese digital direta como um circuito de síntese direta digital (DDS – “direct digital synthesis”) configurado para gerar uma pluralidade de formas de onda para a forma de onda de sinal elétrico para uso em quaisquer dos instrumentos cirúrgicos, de acordo com ao menos um aspecto da presente descrição.
[0067] A Figura 42 ilustra um aspecto do circuito de síntese direta digital (DDS) configurado para gerar uma pluralidade de formas de onda para a forma de onda de sinal elétrico para uso em instrumento cirúrgico, de acordo com ao menos um aspecto da presente descrição.
[0068] A Figura 43 ilustra um ciclo de uma forma de onda de sinal elétrico digital de tempo discreto, de acordo com ao menos um aspecto da presente descrição, de uma forma de onda analógica (mostrada sobreposta sobre uma forma de onda de sinal elétrico digital de tempo discreto para propósitos de comparação), de acordo com ao menos um aspecto da presente descrição.
[0069] A Figura 44 é um diagrama de um sistema de controle configurado para fornecer fechamento progressivo de um membro de fechamento conforme este avança distalmente para fechar o braço de aperto para aplicar uma carga de força de fechamento a uma taxa desejada de acordo com um aspecto da presente descrição.
[0070] A Figura 45 ilustra um sistema de controle de retroinformação do controlador proporcional, integral, derivativo (PID), de acordo com um aspecto da presente descrição.
[0071] A Figura 46 é uma vista explodida em elevação do instrumento cirúrgico ultrassônico de mão modular que mostra a metade esquerda do compartimento removida de um conjunto de empunhadura que expõe um identificador de dispositivo acoplado de forma comunicativa ao conjunto de empunhara terminal de múltiplos condutores, de acordo com um aspecto da presente descrição.
[0072] A Figura 47 é uma vista em detalhe de uma porção de gatilho e chave do instrumento cirúrgico ultrassônico mostrado na Figura 46, de acordo com ao menos um aspecto da presente descrição.
[0073] A Figura 48 é uma vista em perspectiva ampliada fragmentada de um atuador de extremidade a partir de uma extremidade distal com um membro de garra em uma posição aberta, de acordo com ao menos um aspecto da presente descrição.
[0074] A Figura 49 é um diagrama de sistema de um circuito segmentado que compreende uma pluralidade de segmentos de circuito operados independentemente, de acordo com ao menos um aspecto da presente descrição.
[0075] A Figura 50 é um diagrama de circuito de vários componentes de um instrumento cirúrgico com funções de controle de motor, de acordo com ao menos um aspecto da presente descrição.
[0076] A Figura 51 ilustra um aspecto de um atuador de extremidade que compreende sensores de dados de RF localizados no membro de garra, de acordo com ao menos um aspecto da presente descrição.
[0077] A Figura 52 ilustra um aspecto do circuito flexível mostrado na Figura 51, em que os sensores podem ser montados no ou formados integralmente com o mesmo, de acordo com ao menos um aspecto da presente descrição.
[0078] A Figura 53 é um sistema alternativo para controlar a frequência de um sistema eletromecânico ultrassônico e detectar a impedância do mesmo, de acordo com ao menos um aspecto da presente descrição.
[0079] As Figuras 54A a 54B são espectros de impedância complexos do mesmo dispositivo ultrassônico com uma lâmina ultrassônica fria (azul) e quente (vermelho), de acordo com ao menos um aspecto da presente descrição, onde
[0080] A Figura 54A é uma representação gráfica do ângulo de fase da impedância como uma função da frequência de ressonância do mesmo dispositivo ultrassônico com uma lâmina ultrassônica fria (azul) e quente (vermelho); e
[0081] A Figura 54B é uma representação gráfica da magnitude de impedância como uma função da frequência de ressonância do mesmo dispositivo ultrassônico com uma lâmina ultrassônica fria (azul) e quente (vermelho).
[0082] A Figura 55 é um diagrama de um filtro Kalman para melhorar o estimador de temperatura e o modelo de espaço de estado com base em impedância de um transdutor ultrassônico medida em uma variedade de frequências, de acordo com ao menos um aspecto da presente descrição.
[0083] A Figura 56 são três distribuições de probabilidade empregadas por um estimador de estado do filtro de Kalman mostrado na Figura 55 para maximizar as estimativas, de acordo com ao menos um aspecto da presente descrição.
[0084] A Figura 57A é uma representação gráfica da temperatura em função do tempo de um dispositivo ultrassônico com nenhum controle de temperatura não atinge uma temperatura máxima de 490°C.
[0085] A Figura 57B é uma representação gráfica da temperatura em função do tempo de um dispositivo ultrassônico em que o controle de temperatura atinge uma temperatura máxima de 320°C, de acordo com ao menos um aspecto da presente descrição.
[0086] As Figuras 58A a 58B são representações gráficas do controle de retroinformação para ajustar a energia ultrassônica aplicada a um transdutor ultrassônico quando uma queda repentina na temperatura de uma lâmina ultrassônica é detectada, onde
[0087] A Figura 58A é uma representação gráfica da energia ultrassônica como uma função do tempo; e
[0088] A Figura 58B é um gráfico de temperatura da lâmina ultrassônica como uma função do tempo, de acordo com ao menos um aspecto da presente descrição.
[0089] A Figura 59 é um diagrama de fluxo lógico de um processo que representa um programa de controle ou uma configuração lógica para controlar a temperatura de uma lâmina ultrassônica, de acordo com ao menos um aspecto da presente descrição.
[0090] A Figura 60 é uma representação gráfica da temperatura da lâmina ultrassônica como uma função do tempo durante o disparo de um vaso, de acordo com ao menos um aspecto da presente descrição.
[0091] A Figura 61 é um diagrama de fluxo lógico de um processo que representa um programa de controle ou uma configuração lógica para controlar a temperatura de uma lâmina ultrassônica entre dois pontos de ajuste de temperatura, de acordo com ao menos um aspecto da presente descrição.
[0092] A Figura 62 é um diagrama de fluxo lógico de um processo que representa um programa de controle ou uma configuração lógica para determinar a temperatura inicial de uma lâmina ultrassônica, de acordo com ao menos um aspecto da presente descrição.
[0093] A Figura 63 é um diagrama de fluxo lógico de um processo que representa um programa de controle ou uma configuração lógica para determinar quando uma lâmina ultrassônica está se aproximando da instabilidade e então ajustar a potência aplicada ao transdutor ultrassônico para impedir a instabilidade do transdutor ultrassônico, de acordo com ao menos um aspecto da presente descrição.
[0094] A Figura 64 é um diagrama de fluxo lógico de um processo que representa um programa de controle ou uma configuração lógica para fornecer vedação ultrassônica com controle de temperatura, de acordo com ao menos um aspecto da presente descrição.
[0095] A Figura 65 são representações gráficas da corrente do transdutor ultrassônico e da temperatura da lâmina ultrassônica como uma função do tempo, de acordo com ao menos um aspecto da presente descrição.
[0096] A Figura 66 é uma representação gráfica da relação entre a frequência inicial e a alteração na frequência necessária para se obter uma temperatura de aproximadamente 340°C, de acordo com ao menos um aspecto da presente descrição.
[0097] A Figura 67 ilustra um sistema para controle de retroinformação que compreende um gerador ultrassônico para regular o ponto de ajuste da corrente elétrica (i) aplicada a um transdutor ultrassônico de um sistema ultrassônico eletromecânico para evitar que a frequência (f) do transdutor ultrassônico diminua abaixo de um limite predeterminado, de acordo com ao menos um aspecto da presente descrição.
[0098] A Figura 68 é um diagrama de fluxo lógico de um processo que representa um programa de controle ou uma configuração lógica de um processo de gerenciamento térmico controlado para proteger um bloco do atuador de extremidade, de acordo com ao menos um aspecto da presente descrição.
[0099] A Figura 69 é uma representação gráfica da temperatura em função do tempo comparando a temperatura desejada de uma lâmina ultrassônica com uma lâmina ultrassônica inteligente e uma lâmina ultrassônica convencional, de acordo com ao menos um aspecto da presente descrição.
[00100] A Figura 70 é uma linha de tempo que presenta a percepção situacional de um controlador cirúrgico central, de acordo com ao menos um aspecto da presente descrição.
DESCRIÇÃO
[00101] O requerente do presente pedido detém os seguintes Pedidos de Patente U.S. nos, depositados em 28 de agosto de 2018, estando a descrição de cada um dos quais aqui incorporada a título de referência em sua totalidade: • Pedido de Patente U.S., n° da súmula END8536USNP2/180107-2, intitulado ESTIMATING STATE OF
ULTRASONIC END EFFECTOR AND CONTROL SYSTEM THEREFOR; • Pedido de Patente U.S., n° da súmula END8561USNP1/180144-1, intitulado RADIO FREQUENCY ENERGY DEVICE FOR DELIVERING COMBINED ELECTRICAL SIGNALS; • Pedido de Patente U.S., n° da súmula END8563USNP1/180139-1, intitulado CONTROLLING AN
ULTRASONIC SURGICAL INSTRUMENT ACCORDING TO TISSUE LOCATION; • Pedido de Patente U.S., n° da súmula END8563USNP2/180139-2, intitulado CONTROLLING ACTIVATION
OF AN ULTRASONIC SURGICAL INSTRUMENT ACCORDING TO THE PRESENCE OF TISSUE;
• Pedido de Patente U.S., n° da súmula END8563USNP3/180139-3, intitulado DETERMINING TISSUE COMPOSITION VIA AN ULTRASONIC SYSTEM; • Pedido de Patente U.S., n° da súmula END8563USNP4/180139-4, intitulado DETERMINING THE STATE OF
AN ULTRASONIC ELECTROMECHANICAL SYSTEM ACCORDING TO FREQUENCY SHIFT; • Pedido de Patente U.S., n° da súmula END8563USNP5/180139-5, intitulado DETERMINING THE STATE OF AN ULTRASONIC END EFFECTOR; • Pedido de Patente U.S., n° da súmula END8564USNP1/180140-1, intitulado SITUATIONAL AWARENESS OF ELECTROSURGICAL SYSTEMS; • Pedido de Patente U.S., n° da súmula END8564USNP2/180140-2, intitulado MECHANISMS FOR
CONTROLLING DIFFERENT ELECTROMECHANICAL SYSTEMS OF AN ELECTROSURGICAL INSTRUMENT; • Pedido de Patente U.S., n° da súmula END8564USNP3/180140-3, intitulado DETECTION OF END EFFECTOR IMMERSION IN LIQUID; • Pedido de Patente U.S., n° da súmula END8565USNP1/180142-1, intitulado INTERRUPTION OF ENERGY DUE TO INADVERTENT CAPACITIVE COUPLING; • Pedido de Patente U.S., n° da súmula END8565USNP2/180142-2, intitulado INCREASING RADIO FREQUENCY TO CREATE PAD-LESS MONOPOLAR LOOP; • Pedido de Patente U.S., n° da súmula END8566USNP1/180143-1, intitulado BIPOLAR COMBINATION
DEVICE THAT AUTOMATICALLY ADJUSTS PRESSURE BASED ON ENERGY MODALITY; e
• Pedido de Patente U.S., n° da súmula END8573USNP1/180145-1, intitulado ACTIVATION OF ENERGY DEVICES.
[00102] O requerente do presente pedido detém os seguintes Pedidos de Patente U.S. nos, depositados em 23 de agosto de 2018, estando a descrição de cada um dos quais aqui incorporada a título de referência em sua totalidade: • Pedido de Patente Provisório U.S. n° 62/721.995, intitulado
CONTROLLING AN ULTRASONIC SURGICAL INSTRUMENT ACCORDING TO TISSUE LOCATION; • Pedido de Patente Provisório U.S. n° 62/721.998, intitulado SITUATIONAL AWARENESS OF ELECTROSURGICAL SYSTEMS; • Pedido de Patente Provisório U.S. n° 62/721.999, intitulado
INTERRUPTION OF ENERGY DUE TO INADVERTENT CAPACITIVE COUPLING; • Pedido de Patente Provisório U.S. n° 62/721.994, intitulado
BIPOLAR COMBINATION DEVICE THAT AUTOMATICALLY ADJUSTS PRESSURE BASED ON ENERGY MODALITY; e • Pedido de Patente Provisório U.S. n° 62/721.996, intitulado
RADIO FREQUENCY ENERGY DEVICE FOR DELIVERING COMBINED ELECTRICAL SIGNALS.
[00103] O requerente do presente pedido detém os seguintes pedidos de patente US, depositados em 30 de junho de 2018, estando a descrição de cada um dos quais aqui incorporada a título de referência em sua totalidade: • Pedido de Patente Provisório U.S. n° 62/692.747, intitulado
SMART ACTIVATION OF AN ENERGY DEVICE BY ANOTHER DEVICE; • Pedido de Patente Provisório U.S. n° 62/692.748, intitulado SMART ENERGY ARCHITECTURE; e
• Pedido de Patente Provisório U.S. n° 62/692.768, intitulado SMART ENERGY DEVICES.
[00104] O requerente do presente pedido detém os seguintes pedidos de patente US, depositados em 29 de junho de 2018, estando a descrição de cada um dos quais aqui incorporada a título de referência em sua totalidade: • Pedido de Patente U.S. n° de série 16/024.090, intitulado
CAPACITIVE COUPLED RETURN PATH PAD WITH SEPARABLE ARRAY ELEMENTS; • Pedido de Patente U.S. n° de série 16/024.057, intitulado
CONTROLLING A SURGICAL INSTRUMENT ACCORDING TO SENSED CLOSURE PARAMETERS; • Pedido de Patente U.S. n° de série 16/024.067, intitulado
SYSTEMS FOR ADJUSTING END EFFECTOR PARAMETERS BASED ON PERIOPERATIVE INFORMATION; • Pedido de Patente U.S. n° de série 16/024.075, intitulado SAFETY SYSTEMS FOR SMART POWERED SURGICAL STAPLING; • Pedido de Patente U.S. n° de série 16/024.083, intitulado SAFETY SYSTEMS FOR SMART POWERED SURGICAL STAPLING; • Pedido de Patente U.S. n° de série 16/024.094, intitulado
SURGICAL SYSTEMS FOR DETECTING END EFFECTOR TISSUE DISTRIBUTION IRREGULARITIES; • Pedido de Patente U.S. n° de série 16/024.138, intitulado
SYSTEMS FOR DETECTING PROXIMITY OF SURGICAL END EFFECTOR TO CANCEROUS TISSUE; • Pedido de Patente U.S. n° de série 16/024.150, intitulado SURGICAL INSTRUMENT CARTRIDGE SENSOR ASSEMBLIES; • Pedido de Patente U.S. n° de série 16/024.160, intitulado VARIABLE OUTPUT CARTRIDGE SENSOR ASSEMBLY;
• Pedido de Patente U.S. n° de série 16/024.124, intitulado SURGICAL INSTRUMENT HAVING A FLEXIBLE ELECTRODE; • Pedido de Patente U.S. n° de série 16/024.132, intitulado SURGICAL INSTRUMENT HAVING A FLEXIBLE CIRCUIT; • Pedido de Patente U.S. n° de série 16/024.141, intitulado SURGICAL INSTRUMENT WITH A TISSUE MARKING ASSEMBLY; • Pedido de Patente U.S. n° de série 16/024.162, intitulado
SURGICAL SYSTEMS WITH PRIORITIZED DATA TRANSMISSION CAPABILITIES; • Pedido de Patente U.S. n° de série 16/024.066, intitulado SURGICAL EVACUATION SENSING AND MOTOR CONTROL; • Pedido de Patente U.S. n° de série 16/024.096, intitulado SURGICAL EVACUATION SENSOR ARRANGEMENTS; • Pedido de Patente U.S. n° de série 16/024.116, intitulado SURGICAL EVACUATION FLOW PATHS; • Pedido de Patente U.S. n° de série 16/024.149, intitulado SURGICAL EVACUATION SENSING AND GENERATOR CONTROL; • Pedido de Patente U.S. n° de série 16/024.180, intitulado SURGICAL EVACUATION SENSING AND DISPLAY; • Pedido de Patente U.S. n° de série 16/024.245, intitulado
COMMUNICATION OF SMOKE EVACUATION SYSTEM
PARAMETERS TO HUB OR CLOUD IN SMOKE EVACUATION MODULE FOR INTERACTIVE SURGICAL PLATFORM; • Pedido de Patente U.S. n° de série 16/024.258, intitulado
SMOKE EVACUATION SYSTEM INCLUDING A SEGMENTED CONTROL CIRCUIT FOR INTERACTIVE SURGICAL PLATFORM; • Pedido de Patente U.S. n° de série 16/024.265, intitulado
SURGICAL EVACUATION SYSTEM WITH A COMMUNICATION
CIRCUIT FOR COMMUNICATION BETWEEN A FILTER AND A SMOKE EVACUATION DEVICE; e
• Pedido de Patente U.S. n° de série 16/024.273, intitulado DUAL IN-SERIES LARGE AND SMALL DROPLET FILTERS.
[00105] O requerente do presente pedido detém os seguintes pedidos de patente provisórios US, depositados em 28 de junho de 2018, estando a descrição de cada um dos quais aqui incorporada a título de referência em sua totalidade: • Pedido de Patente Provisório U.S. n° de série 62/691.228, intitulado A METHOD OF USING REINFORCED FLEX CIRCUITS WITH MULTIPLE SENSORS WITH ELECTROSURGICAL DEVICES; • Pedido de Patente Provisório U.S. n° de série 62/691.227, intitulado CONTROLLING A SURGICAL INSTRUMENT ACCORDING TO SENSED CLOSURE PARAMETERS; • Pedido de Patente Provisório U.S. n° de série 62/691.230, intitulado SURGICAL INSTRUMENT HAVING A FLEXIBLE ELECTRODE; • Pedido de Patente Provisório U.S. n° de série 62/691.219, intitulado SURGICAL EVACUATION SENSING AND MOTOR CONTROL; • Pedido de Patente Provisório U.S. n° de série 62/691.257, intitulado COMMUNICATION OF SMOKE EVACUATION SYSTEM
PARAMETERS TO HUB OR CLOUD IN SMOKE EVACUATION MODULE FOR INTERACTIVE SURGICAL PLATFORM; • Pedido de Patente Provisório U.S. n° de série 62/691.262, intitulado SURGICAL EVACUATION SYSTEM WITH A
COMMUNICATION CIRCUIT FOR COMMUNICATION BETWEEN A FILTER AND A SMOKE EVACUATION DEVICE; e • Pedido de Patente Provisório U.S. n° de série 62/691.251, intitulado DUAL IN-SERIES LARGE AND SMALL DROPLET FILTERS.
[00106] O requerente do presente pedido detém os seguintes pedidos de patente provisórios US, depositados em 19 de abril de 2018,
estando a descrição de cada um dos quais aqui incorporada a título de referência em sua totalidade: • Pedido de Patente Provisório U.S. n° de série 62/659.900, intitulado METHOD OF HUB COMMUNICATION.
[00107] O requerente do presente pedido detém os seguintes Pedidos de Patente U.S. provisórios, depositados em 30 de março de 2018, estando a descrição de cada um dos quais aqui incorporada a título de referência em sua totalidade: • Pedido de Patente Provisório U.S. n° 62/650.898 depositado em 30 de março de 2018, intitulado CAPACITIVE COUPLED RETURN PATH PAD WITH SEPARABLE ARRAY ELEMENTS; • Pedido de Patente Provisório U.S. n° de série 62/650.887, intitulado SURGICAL SYSTEMS WITH OPTIMIZED SENSING CAPABILITIES; • Pedido de Patente Provisório U.S. n° de série 62/650.882, intitulado SMOKE EVACUATION MODULE FOR INTERACTIVE SURGICAL PLATFORM; e • Pedido de Patente Provisório U.S. n° de série 62/650.877, intitulado SURGICAL SMOKE EVACUATION SENSING AND CONTROLS.
[00108] O requerente do presente pedido detém os seguintes pedidos de patente US, depositados em 29 de março de 2018, estando a descrição de cada um dos quais aqui incorporada a título de referência em sua totalidade: • Pedido de Patente U.S. n° de série 15/940.641, intitulado
INTERACTIVE SURGICAL SYSTEMS WITH ENCRYPTED COMMUNICATION CAPABILITIES; • Pedido de Patente U.S. n° de série 15/940.648, intitulado
INTERACTIVE SURGICAL SYSTEMS WITH CONDITION HANDLING OF DEVICES AND DATA CAPABILITIES;
• Pedido de Patente U.S. n° de série 15/940.656, intitulado
SURGICAL HUB COORDINATION OF CONTROL AND COMMUNICATION OF OPERATING ROOM DEVICES; • Pedido de Patente U.S. n° de série 15/940.666, intitulado
SPATIAL AWARENESS OF SURGICAL HUBS IN OPERATING ROOMS; • Pedido de Patente U.S. n° de série 15/940.670, intitulado
COOPERATIVE UTILIZATION OF DATA DERIVED FROM SECONDARY SOURCES BY INTELLIGENT SURGICAL HUBS; • Pedido de Patente U.S. n° de série 15/940.677, intitulado SURGICAL HUB CONTROL ARRANGEMENTS; • Pedido de Patente U.S. n° de série 15/940.632, intitulado
DATA STRIPPING METHOD TO INTERROGATE PATIENT RECORDS AND CREATE ANONYMIZED RECORD; • Pedido de Patente U.S. n° de série 15/940.640, intitulado
COMMUNICATION HUB AND STORAGE DEVICE FOR STORING
PARAMETERS AND STATUS OF A SURGICAL DEVICE TO BE SHARED WITH CLOUD BASED ANALYTICS SYSTEMS; • Pedido de Patente U.S. n° de série 15/940.645, intitulado
SELF DESCRIBING DATA PACKETS GENERATED AT AN ISSUING INSTRUMENT; • Pedido de Patente U.S. n° de série 15/940.649, intitulado
DATA PAIRING TO INTERCONNECT A DEVICE MEASURED PARAMETER WITH AN OUTCOME; • Pedido de Patente U.S. n° de série 15/940.654, intitulado SURGICAL HUB SITUATIONAL AWARENESS; • Pedido de Patente U.S. n° de série 15/940.663, intitulado SURGICAL SYSTEM DISTRIBUTED PROCESSING; • Pedido de Patente U.S. n° de série 15/940.668, intitulado AGGREGATION AND REPORTING OF SURGICAL HUB DATA;
• Pedido de Patente U.S. n° de série 15/940.671, intitulado
SURGICAL HUB SPATIAL AWARENESS TO DETERMINE DEVICES IN OPERATING THEATER; • Pedido de Patente U.S. n° de série 15/940.686, intitulado
DISPLAY OF ALIGNMENT OF STAPLE CARTRIDGE TO PRIOR LINEAR STAPLE LINE; • Pedido de Patente U.S. n° de série 15/940.700, intitulado STERILE FIELD INTERACTIVE CONTROL DISPLAYS; • Pedido de Patente U.S. n° de série 15/940.629, intitulado COMPUTER IMPLEMENTED INTERACTIVE SURGICAL SYSTEMS; • Pedido de Patente U.S. n° de série 15/940.704, intitulado USE OF LASER LIGHT AND RED-GREEN-BLUE COLORATION TO DETERMINE PROPERTIES OF BACK SCATTERED LIGHT; • Pedido de Patente U.S. n° de série 15/940.722, intitulado
CHARACTERIZATION OF TISSUE IRREGULARITIES THROUGH THE USE OF MONO-CHROMATIC LIGHT REFRACTIVITY; e • Pedido de Patente U.S. n° de série 15/940.742, intitulado DUAL CMOS ARRAY IMAGING. • Pedido de Patente U.S. n° de série 15/940.636, intitulado
ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL DEVICES; • Pedido de Patente U.S. n° de série 15/940.653, intitulado ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL HUBS; • Pedido de Patente U.S. n° de série 15/940.660, intitulado CLOUD-BASED MEDICAL ANALYTICS FOR CUSTOMIZATION AND RECOMMENDATIONS TO A USER; • Pedido de Patente U.S. n° de série 15/940.679, intitulado CLOUD-BASED MEDICAL ANALYTICS FOR LINKING OF LOCAL
USAGE TRENDS WITH THE RESOURCE ACQUISITION BEHAVIORS OF LARGER DATA SET;
• Pedido de Patente U.S. n° de série 15/940.694, intitulado CLOUD-BASED MEDICAL ANALYTICS FOR MEDICAL FACILITY SEGMENTED INDIVIDUALIZATION OF INSTRUMENT FUNCTION; • Pedido de Patente U.S. n° de série 15/940.634, intitulado CLOUD-BASED MEDICAL ANALYTICS FOR SECURITY AND AUTHENTICATION TRENDS AND REACTIVE MEASURES; • Pedido de Patente U.S. n° de série 15/940.706, intitulado
DATA HANDLING AND PRIORITIZATION IN A CLOUD ANALYTICS NETWORK; e • Pedido de Patente U.S. n° de série 15/940.675, intitulado CLOUD INTERFACE FOR COUPLED SURGICAL DEVICES. • Pedido de Patente U.S. n° de série 15/940.627, intitulado DRIVE ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS; • Pedido de Patente U.S. n° de série 15/940.637, intitulado COMMUNICATION ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS; • Pedido de Patente U.S. n° de série 15/940.642, intitulado CONTROLS FOR ROBOT-ASSISTED SURGICAL PLATFORMS; • Pedido de Patente U.S. n° de série 15/940.676, intitulado AUTOMATIC TOOL ADJUSTMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS; • Pedido de Patente U.S. n° de série 15/940.680, intitulado CONTROLLERS FOR ROBOT-ASSISTED SURGICAL PLATFORMS; • Pedido de Patente U.S. n° de série 15/940.683, intitulado COOPERATIVE SURGICAL ACTIONS FOR ROBOT-ASSISTED SURGICAL PLATFORMS; • Pedido de Patente U.S. n° de série 15/940.690, intitulado DISPLAY ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS; e
• Pedido de Patente U.S. n° de série 15/940.711, intitulado SENSING ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS.
[00109] O requerente do presente pedido detém os seguintes Pedidos de Patente U.S. provisórios, depositados em 28 de março de 2018, estando a descrição de cada um dos quais aqui incorporada a título de referência em sua totalidade: • Pedido de Patente Provisório U.S. n° de série 62/649.302, intitulado INTERACTIVE SURGICAL SYSTEMS WITH ENCRYPTED COMMUNICATION CAPABILITIES; • Pedido de Patente Provisório U.S. n° de série 62/649.294, intitulado DATA STRIPPING METHOD TO INTERROGATE PATIENT RECORDS AND CREATE ANONYMIZED RECORD; • Pedido de Patente Provisório U.S. n° de série 62/649.300, intitulado SURGICAL HUB SITUATIONAL AWARENESS; • Pedido de Patente Provisório U.S. n° de série 62/649.309, intitulado SURGICAL HUB SPATIAL AWARENESS TO DETERMINE DEVICES IN OPERATING THEATER; • Pedido de Patente Provisório U.S. n° de série 62/649.310, intitulado COMPUTER IMPLEMENTED INTERACTIVE SURGICAL SYSTEMS; • Pedido de Patente Provisório U.S. n° de série 62/649.291, intitulado USE OF LASER LIGHT AND RED-GREEN-BLUE
COLORATION TO DETERMINE PROPERTIES OF BACK SCATTERED LIGHT; • Pedido de Patente Provisório U.S. n° de série 62/649.296, intitulado ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL DEVICES;
• Pedido de Patente Provisório U.S. n° de série 62/649.333, intitulado CLOUD-BASED MEDICAL ANALYTICS FOR CUSTOMIZATION AND RECOMMENDATIONS TO A USER; • Pedido de Patente Provisório U.S. n° de série 62/649.327, intitulado CLOUD-BASED MEDICAL ANALYTICS FOR SECURITY AND AUTHENTICATION TRENDS AND REACTIVE MEASURES; • Pedido de Patente Provisório U.S. n° de série 62/649.315, intitulado DATA HANDLING AND PRIORITIZATION IN A CLOUD ANALYTICS NETWORK; • Pedido de Patente Provisório U.S. n° de série 62/649.313, intitulado CLOUD INTERFACE FOR COUPLED SURGICAL DEVICES; • Pedido de Patente Provisório U.S. n° de série 62/649.320, intitulado DRIVE ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS; • Pedido de Patente Provisório U.S. n° de série 62/649.307, intitulado AUTOMATIC TOOL ADJUSTMENTS FOR ROBOT- ASSISTED SURGICAL PLATFORMS; e • Pedido de Patente Provisório U.S. n° de série 62/649.323, intitulado SENSING ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS.
[00110] O requerente do presente pedido detém os seguintes Pedidos de Patente U.S. provisórios, depositados em 8 de março de 2018, estando a descrição de cada um dos quais aqui incorporada a título de referência em sua totalidade: • Pedido de Patente Provisório U.S. n° de série 62/640.417, intitulado TEMPERATURE CONTROL IN ULTRASONIC DEVICE AND CONTROL SYSTEM THEREFOR; e • Pedido de Patente Provisório U.S. n° de série 62/640.415, intitulado ESTIMATING STATE OF ULTRASONIC END EFFECTOR AND CONTROL SYSTEM THEREFOR.
[00111] O requerente do presente pedido detém os seguintes Pedidos de Patente U.S. provisórios, depositados em 28 de dezembro de 2017, estando a descrição de cada um dos quais aqui incorporada a título de referência em sua totalidade: • Pedido de Patente Provisório U.S. n° de série 62/611.341, intitulado INTERACTIVE SURGICAL PLATFORM; • Pedido de Patente Provisório U.S. n° de série 62/611.340, intitulado CLOUD-BASED MEDICAL ANALYTICS; e • Pedido de Patente Provisório U.S. n° de série 62/611.339, intitulado ROBOT ASSISTED SURGICAL PLATFORM.
[00112] Antes de explicar com detalhes os vários aspectos dos instrumentos cirúrgicos e geradores, deve-se observar que os exemplos ilustrativos não estão limitados, em termos de aplicação ou uso, aos detalhes de construção e disposição de partes ilustradas nos desenhos e na descrição em anexo. Os exemplos ilustrativos podem ser implementados ou incorporados em outros aspectos, variações e modificações, e podem ser praticados ou executados de várias maneiras. Além disso, exceto onde indicado em contrário, os termos e expressões usados na presente invenção foram escolhidos com o propósito de descrever os exemplos ilustrativos para a conveniência do leitor e não para o propósito de limitar a mesma. Além disso, deve-se entender que um ou mais dentre os aspectos, expressões de aspectos, e/ou exemplos descritos a seguir podem ser combinados com qualquer um ou mais dentre os outros aspectos, expressões de aspectos e/ou exemplos descritos a seguir.
[00113] Vários aspectos são direcionados a dispositivos cirúrgicos ultrassônicos aprimorados, dispositivos eletrocirúrgicos e geradores para uso com os mesmos. Os aspectos dos dispositivos cirúrgicos ultrassônicos podem ser configurados para transeccionar e/ou coagular o tecido durante procedimentos cirúrgicos, por exemplo. Os aspectos dos dispositivos eletrocirúrgicos podem ser configurados para transeccionar, coagular, escalonar, soldar e/ou dessecar o tecido durante procedimentos cirúrgicos, por exemplo.
[00114] Com referência à Figura 1, um sistema cirúrgico interativo implementado por computador 100 inclui um ou mais sistemas cirúrgicos 102 e um sistema baseado em nuvem (por exemplo, a nuvem 104 que pode incluir um servidor remoto 113 acoplado a um dispositivo de armazenamento 105). Cada sistema cirúrgico 102 inclui ao menos um controlador cirúrgico central 106 em comunicação com a nuvem 104 que pode incluir um servidor remoto 113. Em um exemplo, conforme ilustrado na Figura 1, o sistema cirúrgico 102 inclui um sistema de visualização 108, um sistema robótico 110, um instrumento cirúrgico de mão e inteligente 112, que são configuradas para se comunicarem um com o outro e/ou o controlador central 106. Em alguns aspectos, um sistema cirúrgico 102 pode incluir um número de controladores centrais M 106, um número N de sistemas de visualização 108, um número O de sistemas robóticos 110, e um número P de instrumentos cirúrgicos inteligentes, de mão 112, onde M, N, O, e P são números inteiros maiores ou iguais a um.
[00115] A Figura 3 representa um exemplo de um sistema cirúrgico 102 sendo usado para executar um procedimento cirúrgico em um paciente que está deitado em uma mesa de operação 114 em uma sala de operação cirúrgica 116. Um sistema robótico 110 é usado no procedimento cirúrgico como uma parte do sistema cirúrgico 102. O sistema robótico 110 inclui um console do cirurgião 118, um carro do paciente 120 (robô cirúrgico), e um controlador robótico cirúrgico central
122. O carro do paciente 120 pode manipular ao menos uma ferramenta cirúrgica acoplada de maneira removível 117 através de uma incisão minimamente invasiva no corpo do paciente enquanto o cirurgião vê o local cirúrgico através do console do cirurgião 118. Uma imagem do local cirúrgico pode ser obtida por um dispositivo de imageamento médico 124, que pode ser manipulado por carro do paciente 120 para orientar o dispositivo de imageamento 124. O controlador robótico central 122 pode ser usado para processar as imagens do local cirúrgico para exibição subsequente para o cirurgião através do console do cirurgião 118.
[00116] Outros tipos de sistemas robóticos podem ser prontamente adaptados para uso com o sistema cirúrgico 102. Vários exemplos de sistemas robóticos e instrumentos cirúrgicos que são adequados para uso com a presente descrição são descritos no pedido de patente provisório n° de série 62/611.339, intitulado ROBOT ASSISTED SURGICAL PLATFORM, depositado em 28 de dezembro de 2017, cuja descrição está aqui incorporada a título de referência em sua totalidade.
[00117] Vários exemplos de análise com base em nuvem que são realizados pela nuvem 104, e são adequados para uso com a presente descrição, são descritos no Pedido de Patente Provisório U.S. n° de série 62/611.340, intitulado CLOUD-BASED MEDICAL ANALYTICS, depositado em 28 de dezembro de 2017, cuja descrição está aqui incorporada a título de referência, em sua totalidade.
[00118] Em vários aspectos, o dispositivo de imageamento 124 inclui ao menos um sensor de Imagem e um ou mais componentes ópticos. Os sensores de imagem adequados incluem, mas não se limitam a, sensores de dispositivo acoplado a carga (CCD) e sensores semicondutores de óxido metálico complementares (CMOS).
[00119] Os componentes ópticos do dispositivo de imageamento 124 podem incluir uma ou mais fontes de iluminação e/ou uma ou mais lentes. A uma ou mais fontes de iluminação podem ser direcionadas para iluminar porções do campo cirúrgico. O um ou mais sensores de imagem podem receber luz refletida ou refratada do campo cirúrgico,
incluindo a luz refletida ou refratada do tecido e/ou instrumentos cirúrgicos.
[00120] A uma ou mais fontes de iluminação podem ser configuradas para irradiar energia eletromagnética no espectro visível, bem como no espectro invisível. O espectro visível, por vezes chamado de o espectro óptico ou espectro luminoso, é aquela porção do espectro eletromagnético que é visível a (isto é, pode ser detectada por) o olho humano e pode ser chamada de luz visível ou simplesmente luz. Um olho humano típico responderá s comprimentos de onda no ar que são de cerca de 380 nm a cerca de 750 nm.
[00121] O espectro invisível (isto é, o espectro não luminoso) é aquela porção do espectro eletromagnético situada abaixo e acima do espectro visível (isto é, comprimentos de onda abaixo de cerca de 380 nm e acima de cerca de 750 nm). O espectro invisível não é detectável pelo olho humano. Os comprimentos de onda maiores que cerca de 750 nm são mais longos que o espectro vermelho visível, e eles se tornam invisíveis infravermelho (IR), micro-ondas, rádio e radiação eletromagnética. Os comprimentos de onda menores que cerca de 380 nm são mais curtos que o espectro ultravioleta, e eles se tornam ultravioleta invisíveis, raio x, e radiação eletromagnética de raios gama.
[00122] Em vários aspectos, o dispositivo de imageamento 124 é configurado para uso em um procedimento minimamente invasivo. Exemplos de dispositivos de imageamento adequados para uso com a presente descrição incluem, mas não se limitam a, um artroscópio, angioscópio, broncoscópio, coledocoscópio, colonoscópio, citoscópio, duodenoscópio, enteroscópio, esofagastro-duodenoscópio (gastroscópio), endoscópio, laringoscópio, nasofaringo-neproscópio, sigmoidoscópio, toracoscópio, e ureteroscópio.
[00123] Em um aspecto, o dispositivo de imageamento emprega monitoramento de múltiplos espectros para discriminar topografia e estruturas subjacentes. Uma imagem multi-espectral é uma que captura dados de imagem dentro de faixas de comprimento de onda ao longo do espectro eletromagnético. Os comprimentos de onda podem ser separados por filtros ou mediante o uso de instrumentos que são sensíveis a comprimentos de onda específicos, incluindo a luz de frequências além da faixa de luz visível, por exemplo, IR e luz ultravioleta. As imagens espectrais podem permitir a extração de informações adicionais que o olho humano não consegue capturar com seus receptores para as cores vermelho, verde, e azul. O uso de imageamento multiespectral é descrito em maiores detalhes sob o título "Advanced Imaging Acquisition Module" no Pedido de Patente Provisório U.S. n° de série 62/611.341, intitulado INTERACTIVE SURGICAL PLATFORM, depositado em 28 de dezembro de 2017, cuja descrição está aqui incorporada a título de referência em sua totalidade. O monitoramento multiespectral pode ser uma ferramenta útil para a relocalização de um campo cirúrgico após uma tarefa cirúrgica ser concluída para executar um ou mais dos testes anteriormente descritos no tecido tratado.
[00124] É axiomático que a esterilização estrita da sala de operação e do equipamento cirúrgico seja necessária durante qualquer cirurgia. A higiene rigorosa e as condições de esterilização necessárias em uma "sala cirúrgica", isto é, uma sala de operação ou tratamento, justificam a mais alta esterilização possível de todos os dispositivos e equipamentos médicos. Parte desse processo de esterilização é a necessidade de esterilizar qualquer coisa que entra em contato com o paciente ou penetra no campo estéril, incluindo o dispositivo de imageamento 124 e seus conectores e componentes. Será entendido que o campo estéril pode ser considerado uma área especificada, como dentro de uma bandeja ou sobre uma toalha estéril, que é considerado livre de micro-organismos, ou o campo estéril pode ser considerado uma área, imediatamente ao redor de um paciente, que foi preparado para a realização de um procedimento cirúrgico. O campo estéril pode incluir os membros da equipe de escovação, que estão adequadamente vestidos, e todos os móveis e acessórios na área.
[00125] Em vários aspectos, o sistema de visualização 108 inclui um ou mais sensores de imageamento, uma ou mais unidades de processamento de imagem, uma ou mais matrizes de armazenamento e uma ou mais telas que são estrategicamente dispostas em relação ao campo estéril, conforme ilustrado na Figura 2. Em um aspecto, o sistema de visualização 108 inclui uma interface para HL7, PACS e EMR. Vários componentes do sistema de visualização 108 são descritos sob o título "Advanced Imaging Acquisition Module" no Pedido de Patente Provisório U.S. n° de série 62/611.341, intitulado INTERACTIVE SURGICAL PLATFORM, depositado em 28 de dezembro de 2017, cuja descrição está aqui incorporada a título de referência em sua totalidade.
[00126] Conforme ilustrado na Figura 2, uma tela primária 119 é posicionada no campo estéril para ser visível para o operador na mesa de operação 114. Além disso, uma torre de visualização 111 é posicionada fora do campo estéril. A torre de visualização 111 inclui uma primeira tela não estéril 107 e uma segunda tela não estéril 109, que são opostas uma à outra. O sistema de visualização 108, guiado pelo controlador central 106, é configurado para utilizar as telas 107, 109, e 119 para coordenar o fluxo de informações para os operadores dentro e fora do campo estéril. Por exemplo, o controlador central 106 pode fazer com que o sistema de visualização 108 mostre um instantâneo de um sítio cirúrgico, conforme registrado por um dispositivo de imageamento 124, em uma tela não estéril 107 ou 109, enquanto se mantém uma transmissão ao vivo do sítio cirúrgico na tela principal 119. O instantâneo na tela não estéril 107 ou 109 pode permitir que um operador não estéril execute uma etapa diagnóstica relevante para o procedimento cirúrgico, por exemplo.
[00127] Em um aspecto, o controlador central 106 é também configurado para rotear uma entrada ou retroinformação diagnóstica por um operador não estéril na torre de visualização 111 para a tela primária 119 dentro do campo estéril, onde ele pode ser visto por um operador estéril na mesa de operação. Em um exemplo, a entrada pode estar sob a forma de uma modificação do instantâneo mostrado na tela não estéril 107 ou 109, que pode ser roteada para a tela principal 119 pelo controlador central 106.
[00128] Com referência à Figura 2, um instrumento cirúrgico 112 está sendo usado no procedimento cirúrgico como parte do sistema cirúrgico
102. O controlador central 106 é também configurado para coordenar o fluxo de informações para uma tela do instrumento cirúrgico 112. Por exemplo, no Pedido de Patente Provisório U.S. n° de série 62/611.341, intitulado INTERACTIVE SURGICAL PLATFORM, depositado em 28 de dezembro de 2017, cuja descrição está aqui incorporada a título de referência em sua totalidade. Uma entrada ou retroinformação diagnóstica inserida por um operador não estéril na torre de visualização 111 pode ser roteada pelo controlador central 106 para a tela do instrumento cirúrgico 115 no campo estéril, onde pode ser vista pelo operador do instrumento cirúrgico 112. Instrumentos cirúrgicos exemplificadores que são adequados para uso com o sistema cirúrgico 102 são descritos sob o título "Surgical Instrument Hardware" e no pedido de patente provisório n° de série 62/611.341, intitulado INTERACTIVE SURGICAL PLATFORM, depositado em 28 de dezembro de 2017, cuja descrição está aqui incorporada a título de referência em sua totalidade, por exemplo.
[00129] Agora com referência à Figura 3, um controlador central 106 é mostrado em comunicação com um sistema de visualização 108, um sistema robótico 110 e um instrumento cirúrgico inteligente de mão 112. O controlador central 106 inclui uma tela do controlador central 135, um módulo de imageamento 138, um módulo gerador 140, um módulo de comunicação 130, um módulo processador 132 e uma matriz de armazenamento 134. Em certos aspectos, conforme ilustrado na Figura 3, o controlador central 106 inclui adicionalmente um módulo de evacuação de fumaça 126 e/ou um módulo de sucção/irrigação 128.
[00130] Durante um procedimento cirúrgico, a aplicação de energia ao tecido, para vedação e/ou corte, está geralmente associada à evacuação de fumaça, sucção de excesso de fluido e/ou irrigação do tecido. O fluido, a potência, e/ou as linhas de dados de diferentes fontes são frequentemente entrelaçadas durante o procedimento cirúrgico. Um tempo valioso pode ser perdido para abordar esta questão durante um procedimento cirúrgico. Para desembaraçar as linhas pode ser necessário desconectar as linhas de seus respectivos módulos, o que pode exigir a reinicialização dos módulos. O invólucro modular do controlador central 136 oferece um ambiente unificado para gerenciar a potência, os dados e as linhas de fluido, o que reduz a frequência de entrelaçamento entre tais linhas.
[00131] Os aspectos da presente descrição apresentam um controlador cirúrgico central para uso em um procedimento cirúrgico que envolve a aplicação de energia ao tecido em um sítio cirúrgico. O controlador cirúrgico central inclui um invólucro do controlador central e um módulo gerador de combinação recebido de maneira deslizante em uma estação de acoplamento do invólucro do controlador cirúrgico central. A estação de acoplamento inclui dados e contatos de potência. O módulo gerador combinado inclui dois ou mais dentre um componente gerador de energia ultrassônica, um componente gerador de energia RF bipolar, e um componente gerador de energia RF monopolar que são alojados em uma única unidade. Em um aspecto, o módulo gerador combinado inclui também um componente de evacuação de fumaça, ao menos um cabo para aplicação de energia para conectar o módulo gerador combinado a um instrumento cirúrgico, ao menos um componente de evacuação de fumaça configurado para evacuar fumaça, fluido, e/ou os particulados gerados pela aplicação de energia terapêutica ao tecido, e uma linha de fluido que se estende do sítio cirúrgico remoto até o componente de evacuação de fumaça.
[00132] Em um aspecto, a linha de fluido é uma primeira linha de fluido e uma segunda linha de fluido se estende do sítio cirúrgico remoto até um módulo de sucção e irrigação recebido de maneira deslizante no invólucro do controlador cirúrgico central. Em um aspecto, o invólucro do controlador central compreende uma interface de fluidos.
[00133] Certos procedimentos cirúrgicos podem exigir a aplicação de mais de um tipo de energia ao tecido. Um tipo de energia pode ser mais benéfico para cortar o tecido, enquanto um outro tipo de energia diferente pode ser mais benéfico para vedar o tecido. Por exemplo, um gerador bipolar pode ser usado para vedar o tecido enquanto um gerador ultrassônico pode ser usado para cortar o tecido vedado. Aspectos da presente descrição apresentam uma solução em que um invólucro modular do controlador central 136 é configurado para acomodar diferentes geradores e facilitar uma comunicação interativa entre os mesmos. Uma das vantagens do invólucro modular central 136 é permitir a rápida remoção e/ou substituição de vários módulos.
[00134] Aspectos da presente descrição apresentam um invólucro cirúrgico modular para uso em um procedimento cirúrgico que envolve aplicação de energia ao tecido. O gabinete cirúrgico modular inclui um primeiro módulo gerador de energia, configurado para gerar uma primeira energia para aplicação ao tecido, e uma primeira estação de acoplamento que compreende uma primeira porta de acoplamento que inclui primeiros contatos de dados e contatos de energia, sendo que o primeiro módulo gerador de energia é móvel de maneira deslizante em um engate elétrico com a potência e os contatos de dados e sendo que o primeiro módulo gerador de energia é móvel de maneira deslizante para fora do engate elétrico com os primeiros contatos de potência e dados.
[00135] Além do exposto acima, o invólucro cirúrgico modular também inclui um segundo módulo gerador de energia configurado para gerar uma segunda energia, diferente da primeira energia, para aplicação ao tecido, e uma segunda estação de acoplamento que compreende uma segunda porta de acoplamento que inclui segundos dados e contatos de potência sendo que o segundo módulo gerador de energia é móvel de maneira deslizante em um engate elétrico com a energia e os contatos de dados, e sendo que o segundo módulo gerador de energia é móvel de maneira deslizante para fora do engate elétrico com os segundos contatos de potência e dados.
[00136] Além disso, o gabinete cirúrgico modular também inclui um barramento de comunicação entre a primeira porta de acoplamento e a segunda porta de acoplamento, configurado para facilitar a comunicação entre o primeiro módulo gerador de energia e o segundo módulo gerador de energia.
[00137] Com referência às Figuras 3 a 7, aspectos da presente descrição são apresentados para um invólucro modula do controlador central 136 que permite a integração modular de um módulo gerador 140, um módulo de evacuação de fumaça 126, e um módulo de sucção/irrigação 128. O invólucro modular central 136 facilita ainda mais a comunicação interativa entre os módulos 140, 126, 128. Conforme ilustrado na Figura 5, o módulo gerador 140 pode ser um módulo gerador com componentes monopolares, bipolares e ultrassônicos integrados, suportados em uma única unidade de gabinete 139 inserível de maneira deslizante no invólucro modular central 136. Conforme ilustrado na Figura 5, o módulo gerador 140 pode ser configurado para se conectar a um dispositivo monopolar 146, um dispositivo bipolar 147 e um dispositivo ultrassônico 148. Alternativamente, o módulo gerador 140 pode compreender uma série de módulos geradores monopolares, bipolares e/ou ultrassônicos que interagem através do invólucro modular central 136. O invólucro modular central 136 pode ser configurado para facilitar a inserção de múltiplos geradores e a comunicação interativa entre os geradores ancorados no invólucro modular central 136 de modo que os geradores atuariam como um único gerador.
[00138] Em um aspecto, o invólucro modular central 136 compreende uma potência modular e uma placa posterior de comunicação 149 com cabeçotes de comunicação externos e sem fio para permitir a fixação removível dos módulos 140, 126, 128 e comunicação interativa entre os mesmos.
[00139] Em um aspecto, o invólucro modular central 136 inclui estações de acoplamento, ou gavetas, 151, aqui também chamadas de gavetas, que são configuradas para receber de maneira deslizante os módulos 140, 126, 128. A Figura 4 ilustra uma vista em perspectiva parcial de um invólucro cirúrgico do controlador central 136, e um módulo gerador combinado 145 recebidos de maneira deslizante em uma estação de acoplamento 151 do invólucro do controlador cirúrgico central 136. Uma porta de acoplamento 152 com poder e contatos de dados em um lado posterior do módulo gerador combinado 145 é configurado para engatar uma porta de acoplamento correspondente 150 com o poder e contatos de dados de uma estação de acoplamento correspondente 151 do invólucro modular do controlador central 136 conforme o módulo gerador combinado 145 é deslizado para a posição na estação de acoplamento correspondente 151 do invólucro modular do controlador central 136. Em um aspecto, o módulo gerador combinado 145 inclui um módulo bipolar, ultrassônico e monopolar e um módulo de evacuação de fumaça integrado em uma única unidade de compartimento 139, conforme ilustrado na Figura 5.
[00140] Em vários aspectos, o módulo de evacuação de fumaça 126 inclui uma linha de fluidos 154 que transporta fumaça capturada/coletada de fluido para longe de um sítio cirúrgico e para, por exemplo, o módulo de evacuação de fumaça 126. A sucção a vácuo que se origina do módulo de evacuação de fumaça 126 pode puxar a fumaça para dentro de uma abertura de um conduto de utilidade no sítio cirúrgico. O conduto de utilidade, acoplado à linha de fluido, pode estar sob a forma de um tubo flexível que termina no módulo de evacuação de fumaça 126. O conduto de utilidade e a linha de fluido definem uma trajetória de fluido que se estende em direção ao módulo de evacuação de fumaça 126 que é recebido no invólucro do controlador central 136.
[00141] Em vários aspectos, o módulo de sucção/irrigação 128 é acoplado a uma ferramenta cirúrgica compreendendo uma linha de aspiração de fluido e uma linha de sucção de fluido. Em um exemplo, as linhas de fluido de aspiração e sucção estão sob a forma de tubos flexíveis que se estendem do sítio cirúrgico em direção ao módulo de sucção/irrigação 128. Um ou mais sistemas de acionamento podem ser configurados para fazer com que a irrigação e aspiração de fluidos para e a partir do sítio cirúrgico.
[00142] Em um aspecto, a ferramenta cirúrgica inclui um eixo de acionamento que tem um atuador de extremidade em uma extremidade distal do mesmo e ao menos um tratamento de energia associado com o atuador de extremidade, um tubo de aspiração, e um tubo de irrigação. O tubo de aspiração pode ter uma porta de entrada em uma extremidade distal do mesmo e o tubo de aspiração se estende através do eixo de acionamento. De modo similar, um tubo de irrigação pode se estender através do eixo de acionamento e pode ter uma porta de entrada próxima ao implemento de aplicação de energia. O implemento de aplicação de energia é configurado para fornecer energia ultrassônica e/ou de RF ao sítio cirúrgico e é acoplado ao módulo gerador 140 por um cabo que se estende inicialmente através do eixo de acionamento.
[00143] O tubo de irrigação pode estar em comunicação fluida com uma fonte de fluido, e o tubo de aspiração pode estar em comunicação fluida com uma fonte de vácuo. A fonte de fluido e/ou a fonte de vácuo pode ser alojadas no módulo de sucção/irrigação 128. Em um exemplo, a fonte de fluido e/ou a fonte de vácuo pode ser alojada no invólucro do controlador central 136 separadamente do módulo de sucção/irrigação
128. Em tal exemplo, uma interface de fluido pode ser configurada para conectar o módulo de sucção/irrigação 128 à fonte de fluido e/ou à fonte de vácuo.
[00144] Em um aspecto, os módulos 140, 126, 128 e/ou suas estações de acoplamento correspondentes no invólucro modular central 136 podem incluir recursos de alinhamento que são configurados para alinhar as portas de acoplamento dos módulos em engate com suas contrapartes nas estações de acoplamento do invólucro modular central
136. Por exemplo, conforme ilustrado na Figura 4, o módulo gerador combinado 145 inclui bráquetes laterais 155 que são configurados para engatar de maneira deslizante os bráquetes correspondentes 156 da estação de acoplamento correspondente 151 do invólucro modular central 136. Os bráquetes cooperam para guiar os contatos da porta de acoplamento do módulo gerador combinado 145 em um engate elétrico com os contatos da porta de acoplamento do invólucro modular central
136.
[00145] Em alguns aspectos, as gavetas 151 do invólucro modular central 136 têm o mesmo, ou substancialmente o mesmo tamanho, e os módulos são ajustados em tamanho para serem recebidos nas gavetas
151. Por exemplo, o bráquetes laterais 155 e/ou 156 podem ser maiores ou menores dependendo do tamanho do módulo. Em outros aspectos, as gavetas 151 são diferentes em tamanho e são cada uma projetada para acomodar um módulo específico.
[00146] Além disso, os contatos de um módulo específico podem ser chaveados para engate com os contatos de uma gaveta específica para evitar a inserção de um módulo em uma gaveta com desemparelhamento de contatos.
[00147] Conforme ilustrado na Figura 4, a porta de acoplamento 150 de uma gaveta 151 pode ser acoplada à porta de acoplamento 150 de uma outra gaveta 151 através de um link de comunicação 157 para facilitar uma comunicação interativa entre os módulos alojados no invólucro modular central 136. As portas de acoplamento 150 do invólucro modular central 136 podem, alternativa ou adicionalmente, facilitar uma comunicação interativa sem fio entre os módulos alojados no invólucro modular central 136. Qualquer comunicação sem fio adequada pode ser usada, como, por exemplo, Air Titan Bluetooth.
[00148] A Figura 6 ilustra conectores de barramento de energia individuais para uma pluralidade de portas de acoplamento laterais de um compartimento modular lateral 160 configurado para receber uma pluralidade de módulos de um controlador cirúrgico central 206. O compartimento modular lateral 160 é configurado para receber e interconectar lateralmente os módulos 161. Os módulos 161 são inseridos de maneira deslizante nas estações de acoplamento 162 do compartimento modular lateral 160, o qual inclui uma placa posterior para interconexão dos módulos 161. Conforme ilustrado na Figura 6, os módulos 161 são dispostos lateralmente no gabinete modular lateral
160. Alternativamente, os módulos 161 podem ser dispostos verticalmente em um gabinete modular lateral.
[00149] A Figura 7 ilustra um gabinete modular vertical 164 configurado para receber uma pluralidade de módulos 165 do controlador cirúrgico central 106. Os módulos 165 são inseridos de maneira deslizante em estações de acoplamento, ou gavetas, 167 do gabinete modular vertical 164, o qual inclui um painel traseiro para interconexão dos módulos 165. Embora as gavetas 167 do gabinete modular vertical 164 sejam dispostas verticalmente, em certos casos, um gabinete modular vertical 164 pode incluir gavetas que são dispostas lateralmente. Além disso, os módulos 165 podem interagir um com o outro através das portas de acoplamento do gabinete modular vertical
164. No exemplo da Figura 7, uma tela 177 é fornecida para mostrar os dados relevantes para a operação dos módulos 165. Além disso, o compartimento modular vertical 164 inclui um módulo mestre 178 que aloja uma pluralidade de submódulos que são recebidos de maneira deslizante no módulo mestre 178.
[00150] Em vários aspectos, o módulo de imageamento 138 compreende um processador de vídeo integrado e uma fonte de luz modular e é adaptado para uso com vários dispositivos de imageamento. Em um aspecto, o dispositivo de imageamento é compreendido de um compartimento modular que pode ser montado com um módulo de fonte de luz e um módulo de câmera. O compartimento pode ser um compartimento descartável. Em ao menos um exemplo, o compartimento descartável é acoplado de modo removível a um controlador reutilizável, um módulo de fonte de luz, e um módulo de câmera. O módulo de fonte de luz e/ou o módulo de câmera podem ser escolhidos de forma seletiva dependendo do tipo de procedimento cirúrgico. Em um aspecto, o módulo de câmera compreende um sensor CCD. Em um outro aspecto, o módulo de câmera compreende um sensor CMOS. Em um outro aspecto, o módulo de câmera é configurado para imageamento do feixe escaneado. De modo semelhante, o módulo de fonte de luz pode ser configurado para fornecer uma luz branca ou uma luz diferente, dependendo do procedimento cirúrgico.
[00151] Durante um procedimento cirúrgico, a remoção de um dispositivo cirúrgico do campo cirúrgico e a sua substituição por um outro dispositivo cirúrgico que inclui uma câmera Diferentes ou outra fonte luminosa pode ser ineficiente. Perder de vista temporariamente do campo cirúrgico pode levar a consequências indesejáveis. O módulo de dispositivo de imageamento da presente descrição é configurado para permitir a substituição de um módulo de fonte de luz ou um módulo de câmera "midstream" durante um procedimento cirúrgico, sem a necessidade de remover o dispositivo de imageamento do campo cirúrgico.
[00152] Em um aspecto, o dispositivo de imageamento compreende um compartimento tubular que inclui uma pluralidade de canais. Um primeiro canal é configurado para receber de maneira deslizante o módulo da Câmera, que pode ser configurado para um encaixe do tipo snap-fit (encaixe por pressão) com o primeiro canal. Um segundo canal é configurado para receber de maneira deslizante o módulo da câmera, que pode ser configurado para um encaixe do tipo snap-fit (encaixe por pressão) com o primeiro canal. Em outro exemplo, o módulo de câmera e/ou o módulo de fonte de luz pode ser girado para uma posição final dentro de seus respectivos canais. Um engate rosqueado pode ser usado em vez do encaixe por pressão.
[00153] Em vários exemplos, múltiplos dispositivos de imageamento são colocados em diferentes posições no campo cirúrgico para fornecer múltiplas vistas. O módulo de imageamento 138 pode ser configurado para comutar entre os dispositivos de imageamento para fornecer uma vista ideal. Em vários aspectos, o módulo de imageamento 138 pode ser configurado para integrar as imagens dos diferentes dispositivos de imageamento.
[00154] Vários processadores de imagens e dispositivos de imageamento adequados para uso com a presente descrição são descritos na Patente U.S. n° 7.995.045 intitulada COMBINED SBI AND CONVENTIONAL IMAGE PROCESSOR, concedida em 9 de agosto de 2011 que está aqui incorporado a título de referência em sua totalidade. Além disso, a Patente U.S. n° 7.982.776, intitulada SBI MOTION ARTIFACT REMOVAL APPARATUS AND METHOD, concedida em 19 de julho de 2011, que está aqui incorporada a título de referência em sua totalidade, descreve vários sistemas para remover artefatos de movimento dos dados de imagem. Tais sistemas podem ser integrados com o módulo de imageamento 138. Além desses, a publicação do Pedido de Patente U.S. n° 2011/0306840, intitulada CONTROLLABLE
MAGNETIC SOURCE TO FIXTURE INTRACORPOREAL APPARATUS, publicada em 15 de dezembro de 2011, e a publicação do Pedido de Patente U.S. n° 2014/0243597, intitulada SYSTEM FOR PERFORMING A MINIMALLY INVASIVE SURGICAL PROCEDURE, publicada em 28 de agosto de 2014, que estão, cada um das quais, aqui incorporadas a título de referência em sua totalidade.
[00155] A Figura 8 ilustra uma rede de dados cirúrgicos 201 que compreende um controlador central de comunicação modular 203 configurado para conectar dispositivos modulares localizados em uma ou mais salas cirúrgicas de uma instalação de serviços de saúde, ou qualquer ambiente em uma instalação de serviços públicos especialmente equipada para operações cirúrgicas, a um sistema baseado em nuvem (por exemplo, a nuvem 204 que pode incluir um servidor remoto 213 acoplado a um dispositivo de armazenamento 205). Em um aspecto, o controlador de comunicação modular central 203 compreende um controlador de rede central 207 e/ou uma chave de rede 209 em comunicação com um roteador de rede. O controlador de comunicação modular central 203 também pode ser acoplado a um sistema de computador local 210 para fornecer processamento de computador local e manipulação de dados. A rede de dados cirúrgicos 201 pode ser configurada como uma rede passiva, inteligente, ou de comutação. Uma rede de dados cirúrgicos passiva serve como um conduto para os dados, permitindo que os dados sejam transmitidos de um dispositivo (ou segmento) para um outro e para os recursos de computação em nuvem. Uma rede de dados cirúrgico inteligente inclui recursos para permitir que o tráfego passe através da rede de dados cirúrgicos a serem monitorados e para configurar cada porta no controlador de rede central 207 ou chave de rede 209. Uma rede de dados cirúrgicos inteligente pode ser chamada de um controlador central ou chave controlável. Um controlador central de chaveamento lê o endereço de destino de cada pacote e então encaminha o pacote para a porta correta.
[00156] Os dispositivos modulares 1a a 1n localizados na sala de operação podem ser acoplados ao controlador de comunicação modular central 203. O controlador de rede central 207 e/ou a chave de rede 209 podem ser acoplados a um roteador de rede 211 para conectar os dispositivos 1a a 1n à nuvem 204 ou ao sistema de computador local
210. Os dados associados aos dispositivos 1a a 1n podem ser transferidos para computadores baseados em nuvem através do roteador para processamento e manipulação remota dos dados. Os dados associados aos dispositivos 1a a 1n podem também ser transferidos para o sistema de computador local 210 para processamento e manipulação dos dados locais. Os dispositivos modulares 2a a 2 m situados na mesma sala de operação também podem ser acoplados a uma chave de rede 209. A chave de rede 209 pode ser acoplada ao controlador de rede central 207 e/ou ao roteador de rede 211 para conectar os dispositivos 2a a 2 m à nuvem 204. Os dados associados aos dispositivos 2a a 2n podem ser transferidos para a nuvem 204 através do roteador de rede 211 para o processamento e manipulação dos dados. Os dados associados aos dispositivos 2a a 2 m podem também ser transferidos para o sistema de computador local 210 para processamento e manipulação dos dados locais.
[00157] Será entendido que a rede de dados cirúrgicos 201 pode ser expandida pela interconexão dos múltiplos controladores de rede centrais 207 e/ou das múltiplas chaves de rede 209 com múltiplos roteadores de rede 211. O controlador de comunicação modular central 203 pode estar contido em uma torra de controle modular configurada para receber múltiplos dispositivos 1a a 1n/2a a 2m. O sistema de computador local 210 também pode estar contido em uma torre de controle modular. O controlador de comunicação modular central 203 é conectado a uma tela 212 para mostrar as imagens obtidas por alguns dos dispositivos 1a a 1n/2a a 2m, por exemplo, durante os procedimentos cirúrgicos. Em vários aspectos, os dispositivos 1a a 1n/2a a 2m podem incluir, por exemplo, vários módulos como um módulo de imageamento 138 acoplado a um endoscópio, um módulo gerador 140 acoplado a um dispositivo cirúrgico com base em energia, um módulo de evacuação de fumaça 126, um módulo de sucção/irrigação 128, um módulo de comunicação 130, um módulo de processador 132, uma matriz de armazenamento 134, um dispositivo cirúrgico acoplado a uma tela, e/ou um módulo de sensor sem contato, entre outros dispositivos modulares que podem ser conectados ao controlador de comunicação modular central 203 da rede de dados cirúrgicos 201.
[00158] Em um aspecto, a rede de dados cirúrgicos 201 pode compreender uma combinação de controladores de rede centrais, chaves de rede, e roteadores de rede que conectam os dispositivos 1a a 1n/2a a 2m à nuvem. Qualquer um dos ou todos os dispositivos 1a a 1n/2a a 2m acoplados ao controlador de rede central ou chave de rede podem coletar dados em tempo real e transferir os dados para computadores em nuvem para processamento e manipulação de dados. Será entendido que a computação em nuvem depende do compartilhamento dos recursos de computação em vez de ter servidores locais ou dispositivos pessoais para lidar com aplicações de software. A palavra "nuvem" pode ser usada como uma metáfora para "a Internet", embora o termo não seja limitado como tal. Consequentemente, o termo "computação na nuvem" pode ser usado aqui para se referir a "um tipo de computação baseada na Internet", em que diferentes serviços — como servidores, armazenamento, e aplicativos — são aplicados ao controlador de comunicação modular central 203 e/ou ao sistema de computador 210 localizados na sala cirúrgica (por exemplo, um sala ou espaço fixo, móvel, temporário, ou campo de operação) e aos dispositivos conectados ao controlador de comunicação modular central 203 e/ou ao sistema de computador 210 através da Internet. A infraestrutura de nuvem pode ser mantida por um fornecedor de serviços em nuvem. Neste contexto, o fornecedor de serviços em nuvem pode ser a entidade que coordena o uso e controle dos dispositivos 1a a 1n/2a a 2m localizados em uma ou mais salas de operação. Os serviços de computação em nuvem podem realizar um grande número de cálculos com base nos dados coletados por instrumentos cirúrgicos inteligentes, robôs, e outros dispositivos computadorizados localizados na sala de operação. O hardware do controlador central permite que múltiplos dispositivos ou conexões sejam conectados a um computador que se comunica com os recursos de computação e armazenamento em nuvem.
[00159] A aplicação de técnicas de processamento de dados de computador em nuvem nos dados coletados pelos dispositivos 1a a
1n/2a a 2m, a rede de dados cirúrgicos fornece melhor resultados cirúrgicos, custos reduzidos, e melhor satisfação do paciente.
Ao menos alguns dos dispositivos 1a a 1n/2a a 2m podem ser usados para visualizar os estados do tecido para avaliar a ocorrência de vazamentos ou perfusão de tecido vedado após um procedimento de vedação e corte do tecido.
Ao menos alguns dos dispositivos 1a a 1n/2a a 2m podem ser usados para identificar a patologia, como os efeitos de doenças, com o uso da computação baseada em nuvem para examinar dados incluindo imagens de amostras de tecido corporal para fins de diagnóstico.
Isso inclui confirmação da localização e margem do tecido e fenótipos.
Ao menos alguns dos dispositivos 1a a 1n/2a a 2m pode ser usado para identificar estruturas anatômicas do corpo com o uso de uma variedade de sensores integrados com dispositivos de imageamento e técnicas como a sobreposição de imagens capturadas por múltiplos dispositivos de imageamento.
Os dados colhidos pelos dispositivos 1a a 1n/2a a 2m, incluindo os dados de imagem, podem ser transferidos para a nuvem 204 ou o sistema de computador local 210 ou ambos para processamento e manipulação de dados incluindo processamento e manipulação de imagem.
Os dados podem ser analisados para melhorar os resultados do procedimento cirúrgico por determinação de se tratamento adicional, como aplicação de intervenção endoscópica, tecnologias emergentes, uma radiação direcionada, intervenção direcionada, robóticas precisas a sítios e condições específicas de tecido, podem ser seguidas.
Essa análise de dados pode usar adicionalmente processamento analítico dos resultados, e com o uso de abordagens padronizadas podem fornecer retroinformação padronizado benéfico tanto para confirmar tratamentos cirúrgicos e o comportamento do cirurgião ou sugerir modificações aos tratamentos cirúrgicos e o comportamento do cirurgião.
[00160] Em uma implementação, os dispositivos da sala de operação 1a a 1n podem ser conectados ao controlador de comunicação modular central 203 através de um canal com fio ou um canal sem fio dependendo da configuração dos dispositivos 1a a 1n em um controlador de rede central. O controlador de rede central 207 pode ser implementado, em um aspecto, como um dispositivo de transmissão de rede local que atua sobre a camada física do modelo OSI ("open system interconnection", interconexão de sistemas abertos). O controlador de rede central fornece conectividade aos dispositivos 1a a 1n localizados na mesma rede da sala de operação. O controlador de rede central 207 coleta dados sob a forma de pacotes e os envia para o roteador em modo half - duplex. O controlador de rede central 207 não armazena qualquer controle de acesso de mídia/protocolo da Internet (MAC/IP) para transferir os dados do dispositivo. Apenas um dos dispositivos 1a a 1n por vez pode enviar dados através do controlador de rede central
207. O controlador de rede central 207 não tem tabelas de roteamento ou inteligência acerca de onde enviar informações e transmite todos os dados da rede através de cada conexão e a um servidor remoto 213 (Figura 9) na nuvem 204. O controlador de rede central 207 pode detectar erros básicos de rede, como colisões, mas ter todas as informações transmitidas para múltiplas portas de entrada pode ser um risco de segurança e provocar estrangulamentos.
[00161] Em uma outra implementação, os dispositivos de sala de operação 2a a 2 m podem ser conectados a uma chave de rede 209 através de um canal com ou sem fio. A chave de rede 209 funciona na camada de conexão de dados do modelo OSI. A chave de rede 209 é um dispositivo multicast para conectar os dispositivos 2a a 2m localizados no mesmo centro de operação à rede. A chave de rede 209 envia dados sob a forma de quadros para o roteador de rede 211 e funciona em modo duplex completo. Múltiplos dispositivos 2a a 2m podem enviar dados ao mesmo tempo através da chave de rede 209. A chave de rede 209 armazena e usa endereços MAC dos dispositivos 2a a 2m para transferir dados.
[00162] O controlador de rede central 207 e/ou a chave de rede 209 são acoplados ao roteador de rede 211 para uma conexão com a nuvem
204. O roteador de rede 211 funciona na camada de rede do modelo OSI. O roteador de rede 211 cria uma rota para transmitir pacotes de dados recebidos do controlador de rede central 207 e/ou da chave de rede 211 para um computador com recursos em nuvem para futuro processamento e manipulação dos dados coletados por qualquer um dentre ou todos os dispositivos 1a a 1n/ 2a a 2m. O roteador de rede 211 pode ser usado para conectar duas ou mais redes diferentes situadas em locais diferentes, como, por exemplo, diferentes salas de operação da mesma instalação de serviços de saúde ou diferentes redes localizadas em diferentes salas de operação das diferentes instalações de serviços de saúde. O roteador de rede 211 envia dados sob a forma de pacotes para a nuvem 204 e funciona em modo duplex completo. Múltiplos dispositivos podem enviar dados ao mesmo tempo. O roteador de rede 211 usa endereços IP para transferir dados.
[00163] Em um exemplo, o controlador de rede central 207 pode ser implementado como um controlador central USB, o que permite que múltiplos dispositivos USB sejam conectados a um computador hospedeiro. O controlador central USB pode expandir uma única porta USB em vários níveis de modo que há mais portas disponíveis para conectar os dispositivos ao computador hospedeiro do sistema. O controlador de rede central 207 pode incluir recursos com fio ou sem fio para receber informações sobre um canal com fio ou um canal sem fio. Em um aspecto, um protocolo sem fio de comunicação de rádio sem fio, de banda larga e de curto alcance USB sem fio pode ser usado para comunicação entre os dispositivos 1a a 1n e os dispositivos 2a a 2m situados na sala de operação.
[00164] Em outros exemplos, os dispositivos da sala de operação 1a a 1n/2a a 2m pode se comunicar com ao controlador de comunicação modular central 203 através de tecnologia Bluetooth sem fio padrão para troca de dados ao longo de curtas distâncias (com o uso de ondas de rádio UHF de comprimento de onda curta na banda ISM de 2,4 a 2,485 GHz) de dispositivos fixos e móveis e construir redes de área pessoal (PANs, "personal area networks"). Em outros aspectos, os dispositivos da sala de operação 1a a 1n/2a a 2m podem se comunicar com o controlador de comunicação modular central 203 através de um número de padrões ou protocolos de comunicação sem fio e com fio, incluindo, mas não se limitando a, Wi-Fi (família IEEE 802.11), WiMAX (família IEEE 802.16), IEEE 802.20, evolução de longo prazo (LTE, "long-term evolution"), e Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, e derivados de Ethernet dos mesmos, bem como quaisquer outros protocolos sem fio e com fio que são designados como 3G, 4G, 5G, e além. O módulo de computação pode incluir uma pluralidade de módulos de comunicação. Por exemplo, um primeiro módulo de comunicação pode ser dedicado a comunicações sem fio de curto alcance como Wi-Fi e Bluetooth, e um segundo módulo de comunicação pode ser dedicado a comunicações sem fio de alcance mais longo como GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, e outros.
[00165] O controlador de comunicação modular central 203 pode servir como uma conexão central para um ou todos os dispositivos de sala de operação 1a a 1n/2a a 2m e lida com um tipo de dados conhecido como quadros. Os quadros transportam os dados gerados pelos dispositivos 1a a 1n/2a a 2m. Quando um quadro é recebido pelo controlador de comunicação modular central 203, ele é amplificado e transmitido para o roteador de rede 211, que transfere os dados para os recursos de computação em nuvem com o uso de uma série de padrões ou protocolos de comunicação sem fio ou com fio, conforme descrito na presente invenção.
[00166] O controlador de comunicação modular central 203 pode ser usado como um dispositivo independente ou ser conectado a controladores de rede centrais compatíveis e chaves de rede para formar uma rede maior. O controlador de comunicação modular central 203 é, em geral, fácil de instalar, configurar e manter, fazendo dele uma boa opção para a rede dos dispositivos 1a a 1n/2a a 2m da sala de operação.
[00167] A Figura 9 ilustra um sistema cirúrgico interativo, implementado por computador 200. O sistema cirúrgico interativo implementado por computador 200 é similar em muitos aspectos ao sistema cirúrgico interativo, implementado por computador 100. Por exemplo, o sistema cirúrgico, interativo, implementado por computador 200 inclui um ou mais sistemas cirúrgicos 202, que são similares em muitos aspectos aos sistemas cirúrgicos 102. Cada sistema cirúrgico 202 inclui ao menos um controlador cirúrgico central 206 em comunicação com uma nuvem 204 que pode incluir um servidor remoto
213. Em um aspecto, o sistema cirúrgico interativo implementado por computador 200 compreende uma torre de controle modular 236 conectada a múltiplos dispositivos de sala de operação como, por exemplo, instrumentos cirúrgicos inteligentes, robôs e outros dispositivos computadorizados localizados na sala de operações. Conforme mostrado na Figura 10, a torre de controle modular 236 compreende um controlador de comunicação modular central 203 acoplado a um sistema de computador 210. Conforme ilustrado no exemplo da Figura 9, a torre de controle modular 236 é acoplada a um módulo de imageamento 238 que é acoplado a um endoscópio 239, um módulo gerador 240 que é acoplado a um dispositivo de energia 241, um módulo de evacuação de fumaça 226, um módulo de sucção/irrigação 228, um módulo de comunicação 230, um módulo de processador 232, uma matriz de armazenamento 234, um dispositivo/instrumento inteligente 235 opcionalmente acoplado a uma tela 237, e um módulo de sensor sem contato 242. Os dispositivos da sala de operação estão acoplados aos recursos de computação em nuvem e ao armazenamento de dados através da torre de controle modular 236. O controlador de robô central 222 também pode ser conectado à torre de controle modular 236 e aos recursos de computação em nuvem. Os dispositivos/Instrumentos 235, sistemas de visualização 208, entre outros, podem ser acoplados à torre de controle modular 236 por meio de padrões ou protocoles de comunicação com fio ou sem fio, conforme descrito na presente invenção. A torre de controle modular 236 pode ser acoplada a uma tela do controlador central 215 (por exemplo, monitor, tela) para mostrar e sobrepor imagens recebidas do módulo de imageamento, tela do dispositivo/instrumento e/ou outros sistemas de visualização 208. A tela do controlador central também pode mostrar os dados recebidos dos dispositivos conectados à torre de controle modular em conjunto com imagens e imagens sobrepostas.
[00168] A Figura 10 ilustra um controlador cirúrgico central 206 que compreende uma pluralidade de módulos acoplados à torre de controle modular 236. A torre de controle modular 236 compreende um controlador de comunicação modular central 203, por exemplo, um dispositivo conectividade de rede, e um sistema de computador 210 para fornecer processamento, visualização, e da imageamento locais, por exemplo. Conforme mostrado na Figura 10, o controlador de comunicação modular central 203 pode ser conectado em um configuração em camadas para expandir o número de módulos (por exemplo, dispositivos) que podem ser conectados ao controlador de comunicação modular central 203 e transferir dados associados com os módulos ao sistema de computador 210, recursos de computação em nuvem, ou ambos. Conforme mostrado na Figura 10, cada um dos controladores centrais/chaves de rede no controlador de comunicação modular central 203 inclui três portas a jusante e uma porta a montante. O controlador central/chave de rede a montante é conectado a um processador para fornecer uma conexão de comunicação com a recursos de computação em nuvem e uma tela local 217. A comunicação com a nuvem 204 pode ser feita através de um canal de comunicação com fio ou sem fio.
[00169] O controlador cirúrgico central 206 emprega um módulo de sensor sem contato 242 para medir as dimensões da sala de operação e gerar um mapa da sala cirúrgica com o uso de dispositivos de medição sem contato do tipo laser ou ultrassônico. Um módulo de sensor sem contato baseado em ultrassom escaneia a sala de operação mediante a transmissão de uma explosão de ultrassom e recebimento do eco quando esta salta fora do perímetro das paredes de uma sala de operação, conforme descrito sob o título "Surgical Hub Spatial Awareness Within an Operating Room" no Pedido de Patente Provisório U.S. n° de série 62/611.341, intitulado INTERACTIVE SURGICAL PLATFORM, depositado em 28 de dezembro 2017, que está aqui incorporado a título de referência em sua totalidade, no qual o módulo de sensor é configurado para determinar o tamanho da sala de operação e ajustar os limites da distância de emparelhamento com Bluetooth. Um módulo de sensor sem contato baseado em laser escaneia a sala de operação transmitindo pulsos de luz laser, recebendo pulsos de luz laser que saltam das paredes do perímetro da sala de operação, e comparando a fase do pulso transmitido ao pulso recebido para determinar o tamanho da sala de operação e para ajustar os limites de distância de emparelhamento com Bluetooth, por exemplo.
[00170] O sistema de computador 210 compreende um processador 244 e uma interface de rede 245. O processador 244 é acoplado a um módulo de comunicação 247, armazenamento 248, memória 249, memória não volátil 250, e interface de entrada/ saída 251 através de um barramento de sistema. O barramento do sistema pode ser qualquer um dos vários tipos de estruturas de barramento, incluindo o barramento de memória ou controlador de memória, um barramento periférico ou barramento externo, e/ou barramento local que usa qualquer variedade de arquiteturas de barramento disponíveis incluindo, mas não se limitando a, barramento de 9 bits, arquitetura de padrão industrial (ISA), Micro-Charmel Architecture (MSA), ISA estendida (EISA), Eletrônica de drives inteligentes (IDE), barramento local VESA (VLB), Interconexão de componentes periféricos (PCI), USB, porta gráfica acelerada (AGP), barramento de PCMCIA (Associação internacional de cartões de memória para computadores pessoais, "Personal Computer Memory Card International Association"), Interface de sistemas para pequenos computadores (SCSI), ou qualquer outro barramento proprietário.
[00171] O processador 244 pode ser qualquer processador de núcleo único ou de múltiplos núcleos, como aqueles conhecidos sob o nome comercial de ARM Cortex disponível junto à Texas Instruments. Em um aspecto, o processador pode ser um processador Core Cortex-M4F LM4F230H5QR ARM, disponível junto à Texas Instruments, por exemplo, que compreende uma memória integrada de memória flash de ciclo único de 256 KB, ou outra memória não volátil, até 40 MHz, um buffer de busca antecipada para otimizar o desempenho acima de 40 MHz, uma memória de acesso aleatório seriada de ciclo único de 32 KB (SRAM), uma memória só de leitura interna (ROM) carregada com o programa StellarisWare®, memória só de leitura programável e apagável eletricamente (EEPROM) de 2 KB, um ou mais módulos de modulação por largura de pulso (PWM), uma ou mais análogos de entradas de codificador de quadratura (QEI), um ou mais conversores analógico para digital (ADC) de 12 bits com 12 canais de entrada analógica, detalhes dos quais estão disponíveis para a folha de dados do produto.
[00172] Em um aspecto, o processador 244 pode compreender um controlador de segurança que compreende duas famílias com base em controlador, como TMS570 e RM4x, conhecidas sob o nome comercial de Hercules ARM Cortex R4, também pela Texas Instruments. O controlador de segurança pode ser configurado especificamente para as aplicações críticas de segurança IEC 61508 e ISO 26262, dentre outras, para fornecer recursos avançados de segurança integrada enquanto fornece desempenho, conectividade e opções de memória escalonáveis.
[00173] A memória de sistema inclui memória volátil e memória não volátil. O sistema básico de entrada/saída (BIOS), contendo as rotinas básicas para transferir informações entre elementos dentro do sistema de computador, como durante a partida, é armazenado em memória não volátil. Por exemplo, a memória não volátil pode incluir ROM, ROM programável (PROM), ROM eletricamente programável (EPROM), EEPROM ou memória flash. A memória volátil inclui memória de acesso aleatório (RAM), que atua como memória cache externo. Além disso, a RAM está disponível em muitas formas como SRAM, RAM dinâmica (DRAM), DRAM síncrona (SDRAM), SDRAM taxa de dados dobrada (DDR SDRAM), SDRAM aperfeiçoada (ESDRAM), Synchlink DRAM (SLDRAM), e RAM direta Rambus RAM (DRRAM).
[00174] O sistema de computador 210 inclui também mídia de armazenamento de computador removível/não removível, volátil/não volátil, como, por exemplo, armazenamento de disco. O armazenamento de disco inclui, mas não se limita a, dispositivos como uma unidade de disco magnético, unidade de disco flexível, acionador de fita, acionador Jaz, acionador Zip, acionador LS-60, cartão de memória flash ou memória stick (pen-drive). Além disso, o disco de armazenamento pode incluir mídias de armazenamento separadamente ou em combinação com outras mídias de armazenamento incluindo, mas não se limitam a, uma unidade de disco óptico como um dispositivo ROM de disco compacto (CD-ROM) unidade de disco compacto gravável (CD-R Drive), unidade de disco compacto regravável (CD-RW drive), ou uma unidade ROM de disco digital versátil (DVD-ROM). Para facilitar a conexão dos dispositivos de armazenamento de disco com o barramento de sistema, uma interface removível ou não removível pode ser usada.
[00175] É para ser entendido que o sistema de computador 210 inclui um software que age como intermediário entre os usuários e os recursos básicos do computador descritos em um ambiente operacional adequado. Tal software inclui um sistema operacional. O sistema operacional, que pode ser armazenado no armazenamento de disco, atua para controlar e alocar recursos do sistema de computador. As aplicações de sistemas se beneficiam dos recursos de gerenciamento pelo sistema operacional através de módulos de programa e ´dados de programa armazenadas na memória do sistema ou no disco de armazenamento. É para ser entendido que vários componentes descritos na presente invenção podem ser implementados com vários sistemas operacionais ou combinações de sistemas operacionais.
[00176] Um usuário insere comandos ou informações no sistema de computador 210 através do(s) dispositivo(s) de entrada acoplado(s) à interface I/O 251. Os dispositivos de entrada incluem, mas não se limitam a, um dispositivo apontador como um mouse, trackball, stylus, touchpad, teclado, microfone, joystick, bloco de jogo, placa de satélite,
escâner, cartão sintonizador de TV, câmera digital, câmera de vídeo digital, câmera de web, e similares. Esses e outros dispositivos de entrada se conectam ao processador através do barramento de sistema através da(s) porta(s) de interface. As portas de interface incluem, por exemplo, uma porta em série, uma porta paralela, uma porta de jogo e um USB. Os dispositivos de saída usam alguns dos mesmos tipos de portas que os dispositivos de entrada. Dessa forma, por exemplo, uma porta USB pode ser usada para fornecer entrada ao sistema de computador e para fornecer informações do sistema de computador para um dispositivo de saída. Um adaptador de saída é fornecido para ilustrar que existem alguns dispositivos de saída como monitores, telas, alto-falantes, e impressoras, entre outros dispositivos de saída, que precisam de adaptadores especiais. Os adaptadores de saída incluem, a título de Ilustração e não de limitação, cartões de vídeo e som que fornecem um meio de conexão entre o dispositivo de saída e o barramento de sistema. Deve ser observado que outros dispositivos e/ou sistemas de dispositivos, como computadores remotos, fornecem capacidades de entrada e de saída.
[00177] O sistema de computador 210 pode operar em um ambiente em rede com o uso de conexões lógicas com um ou mais computadores remotos, como os computadores em nuvem, ou os computadores locais. Os computadores remotos em nuvem podem ser um computador pessoal, servidor, roteador, computador pessoal de rede, estação de trabalho, aparelho baseado em microprocessador, dispositivo de pares, ou outro nó de rede comum, e similares, e tipicamente incluem muitos ou todos os elementos descritos em relação ao sistema de computador. Para fins de brevidade, apenas um dispositivo de armazenamento de memória é ilustrado com o computador remoto. Os computadores remotos são logicamente conectados ao sistema de computador através de uma interface de rede e então fisicamente conectados através de uma conexão de comunicação. A interface de rede abrange redes de comunicação como redes de áreas locais (LANs) e redes de áreas amplas (WANs). As tecnologias LAN incluem interface de dados distribuída por fibra (FDDI), interface de dados distribuídos por cobre (CDDI), Ethernet/IEEE 802,3, anel de Token/IEEE 802,5 e similares. As tecnologias WAN incluem, mas não se limitam a, links de ponto a ponto, redes de comutação de circuito como redes digitais de serviços integrados (ISDN) e variações nos mesmos, redes de comutação de pacotes e linhas digitas de assinante (DSL).
[00178] Em vários aspectos, o sistema de computador 210 da Figura 10, o módulo de imageamento 238 e/ou sistema de visualização 208, e/ou o módulo de processador 232 das Figuras 9 a 10, pode compreender um processador de imagem, motor de processamento de imagem, processador de mídia, ou qualquer especializada processador de sinal digital (DSP) usado para o processamento de imagens digitais. O processador de imagem pode empregar computação paralela com tecnologias de instrução única de múltiplos dados (SIMD) ou de múltiplas instruções de múltiplos dados (MIMD) para aumentar a velocidade e a eficiência. O motor de processamento de imagem digital pode executar uma série de tarefas. O processador de imagem pode ser um sistema em um circuito integrado com arquitetura de processador de múltiplos núcleos.
[00179] As conexões de comunicação referem-se ao hardware/software usado para conectar a interface de rede ao barramento. Embora a conexão de comunicação seja mostrada para clareza ilustrativa dentro do sistema de computador, ela também pode ser externa ao sistema de computador 210. O hardware/software necessário para a ligação à interface de rede inclui, apenas para fins ilustrativos, tecnologias internas e externas como modems, incluindo modems de série de telefone regulares, modems de cabo e modems DSL, adaptadores de ISDN e cartões Ethernet.
[00180] A Figura 11 ilustra um diagrama de blocos funcionais de um aspecto de um dispositivo controlador de rede central USB 300, de acordo com ao menos um aspecto da presente descrição. No aspecto ilustrado, o dispositivo controlador de rede central USB 300 usa um controlador central de circuito integrado TUSB2036 disponível junto à Texas Instrumentos. O controlador de rede central USB 300 é um dispositivo CMOS que fornece uma porta de transceptor USB a montante 302 e até três portas de transceptor USB a jusante 304, 306, 308 em conformidade com a especificação USB 2,0. A porta de transceptor USB a montante 302 é uma porta-raiz de dados diferenciais que compreende um entrada de dados diferenciais "menos" (DM0) emparelhada com uma entrada de dados diferenciais "mais" (DP0). As três portas do transceptor USB a jusante 304, 306, 308 são portas de dados diferenciais, sendo que cada porta inclui saídas de dados diferenciais "mais" (DP1-DP3) emparelhadas com saídas de dados diferenciais "menos" (DM1-DM3).
[00181] O dispositivo controlador de rede central USB 300 é implementado com uma máquina de estado digital em vez de um microcontrolador, e nenhuma programação de firmware é necessária. Os transceptores USB totalmente compatíveis são integrados no circuito para a porta do transceptor USB a montante 302 e todas as portas de transceptor USB a jusante 304, 306, 308. As portas de transceptor USB a jusante 304, 306, 308 suportam tanto os dispositivos de velocidade total como de baixa velocidade configurando automaticamente a taxa de varredura de acordo com a velocidade do dispositivo fixado às portas. O dispositivo controlador de rede central USB 300 pode ser configurado em modo alimentado por barramento ou autoalimentado e inclui uma lógica de energia central 312 para gerenciar a potência.
[00182] O dispositivo controlador de rede central USB 300 inclui um motor de interface em série 310 (SIE). O SIE 310 é a extremidade frontal do hardware do controlador de rede central USB 300 e lida com a maior parte do protocolo descrito no capítulo 8 da especificação USB. O SIE 310 tipicamente compreende a sinalização até o nível da transação. As funções que ele lida poderiam incluir: reconhecimento de pacote, sequenciamento de transação, SOP, EOP, RESET, e RESUME a detecção/geração de sinais, separação de relógio/dados, codificação/descodificação de dados não retorno a zero invertido (NRZI), geração e verificação de CRC (token e dados), geração e verificação/descodificação de pacote ID (PID), e/ou conversão série- paralelo/paralelo-série. O 310 recebe uma entrada de relógio 314 e é acoplado a um circuito lógica suspender/retomar e temporizador de quadro 316 e um circuito de repetição do controlador central 318 para controlar a comunicação entre a porta do transceptor USB a montante 302 e as portas do transceptor USB a jusante 304, 306, 308 através dos circuitos lógicos das portas 320, 322, 324. O SIE 310 é acoplado a um decodificador de comando 326 através da interface lógica para controlar os comandos de uma EEPROM em série através de uma interface de EEPROM em série 330.
[00183] Em vários aspectos, o controlador de rede central USB 300 pode conectar 127 as funções configuradas em até seis camadas (níveis) lógicas a um único computador. Além disso, o controlador de rede central USB 300 pode conectar todos os periféricos com o uso de um cabo de quatro fios padronizado que fornece tanto comunicação como distribuição de potência. As configurações de potência são modos alimentados por barramento e autoalimentados. O controlador de rede central USB 300 pode ser configurado para suportar quatro modos de gerenciamento de potência: um controlador central alimentado por barramento, com gerenciamento de potência de porta individual ou gerenciamento de energia de portas agrupadas, e o controlador central autoalimentado, com gerenciamento de energia de porta individual ou gerenciamento de energia de portas agrupadas. Em um aspecto, com o uso de um cabo USB, o controlador de rede central USB 300, a porta de transceptor USB a montante 302 é plugada em um controlador de hospedeiro USB, e as portas de transceptor USB a jusante 304, 306, 308 são expostas para conectar dispositivos USB compatíveis, e assim por diante. Hardware do instrumento cirúrgico
[00184] A Figura 12 ilustra um diagrama lógico de um módulo de um sistema de controle 470 de um instrumento ou ferramenta cirúrgica, de acordo com um ou mais aspectos da presente descrição. O sistema 470 compreende um circuito de controle. O circuito de controle inclui um microcontrolador 461 que compreende um processador 462 e uma memória 468. Um ou mais dos sensores 472, 474, 476, por exemplo, fornecem retroinformação em tempo real para o processador 462. Um motor 482, acionado por um acionador do motor 492, acopla operacionalmente um membro de deslocamento longitudinalmente móvel para acionar um braço de aperto do membro de fechamento. Um sistema de rastreamento 480 é configurado para determinar a posição do membro de deslocamento longitudinalmente móvel. As informações de posição são fornecidas para o processador 462, que pode ser programado ou configurado para determinar a posição do membro de acionamento longitudinalmente móvel bem como a posição do membro de fechamento. Motores adicionais podem ser fornecidos na interface do acionador de ferramenta para controlar a trajetória de fechamento do tubo, a rotação do eixo de acionamento, a articulação, ou o fechamento do braço de aperto, ou uma combinação dos mesmos. Uma tela 473 exibe uma variedade de condições de operação dos instrumentos e pode incluir funcionalidade de tela sensível ao toque para entrada de dados. As informações mostradas na tela 473 podem ser sobrepostas com imagens capturadas através de módulos de imageamento endoscópicos.
[00185] Em um aspecto, o microcontrolador 461 pode ser qualquer processador de núcleo único ou de múltiplos núcleos, como aqueles conhecidos sob o nome comercial de ARM Cortex disponível junto à Texas Instruments. Em um aspecto, o microcontrolador principal 461 pode ser um processador LM4F230H5QR ARM Cortex-M4F, disponível junto à Texas Instruments, por exemplo, que compreende uma memória integrada de memória flash de ciclo único de 256 KB, ou outra memória não volátil, até 40 MHz, um buffer de busca antecipada para otimizar o desempenho acima de 40 MHz, uma memória de acesso aleatório em série de ciclo único de 32 KB (SRAM), uma memória só de leitura interna (ROM) carregada com o programa StellarisWare®, memória programável e apagável eletricamente só de leitura (EEPROM) de 2 KB, um ou mais módulos de modulação por largura de pulso (PWM), uma ou mais análogos de entradas de codificador de quadratura (QEI), e/ou um ou mais conversores analógico para digital (ADC) de 12 bits com 12 canais de entrada analógica, detalhes dos quais estão disponíveis para a folha de dados do produto.
[00186] Em um aspecto, o microcontrolador 461 pode compreender um controlador de segurança que compreende duas famílias à base de controladores, como TMS570 e RM4x conhecidas sob o nome comercial de Hercules ARM Cortex R4, também disponíveis pela Texas Instruments. O controlador de segurança pode ser configurado especificamente para as aplicações críticas de segurança IEC 61508 e ISO 26262, dentre outras, para fornecer recursos avançados de segurança integrada enquanto fornece desempenho, conectividade e opções de memória escalonáveis.
[00187] O microcontrolador 461 pode ser programado para realizar várias funções tais como o controle preciso da velocidade e posição do bisturi, dos sistemas de articulação, do braço de aperto, ou uma combinação dos mesmos. Em um aspecto, o microcontrolador 461 inclui um processador 462 e uma memória 468. O motor elétrico 482 pode ser um motor de corrente contínua (CC) escovado com uma caixa de câmbio e conexões mecânicas com um sistema de articulação ou bisturi. Em um aspecto, um acionador de motor 492 pode ser um A3941 disponível junto à Allegro Microsystems, Inc. Outros acionadores de motor podem ser prontamente substituídos para uso no sistema de rastreamento 480 que compreende um sistema de posicionamento absoluto. Uma descrição detalhada de um sistema de posicionamento absoluto é feita na publicação de Pedido de Patente U.S. n° 2017/0296213, intitulada SYSTEMS AND METHODS FOR
CONTROLLING A SURGICAL STAPLING AND CUTTING INSTRUMENT, publicada em 19 de outubro de 2017, que está aqui incorporado a título de referência em sua totalidade.
[00188] O microcontrolador 461 pode ser programado para fornecer controle preciso da velocidade e da posição dos membros de deslocamento e sistemas de articulação. O microcontrolador 461 pode ser configurado para computar uma resposta no software do microcontrolador 461. A resposta computada é comparada a uma resposta medida do sistema real para se obter uma resposta "observada", que é usada para as decisões reais baseadas na realimentação. A resposta observada é um valor favorável e ajustado, que equilibra a natureza uniforme e contínua da resposta simulada com a resposta medida, o que pode detectar influências externas no sistema.
[00189] Em um aspecto, o motor 482 pode ser controlado pelo acionador de motor 492 e pode ser usado pelo sistema de disparo do instrumento ou ferramenta cirúrgica. Em várias formas, o motor 482 pode ser um motor de acionamento de corrente contínua (CC) escovado, com uma velocidade de rotação máxima de aproximadamente 25.000 RPM, por exemplo. Em outras disposições, o motor 482 pode incluir um motor sem escovas, um motor sem fio, um motor síncrono, um motor de passo ou qualquer outro motor elétrico adequado. O acionador de motor 492 pode compreender um acionador de ponte H que compreende transístores de efeito de campo (FETs), por exemplo. O motor 482 pode ser alimentado por um conjunto de alimentação montado de modo liberável no conjunto de empunhadura ou compartimento da ferramenta para fornecer poder de controle para o instrumento ou ferramenta cirúrgica. O conjunto de alimentação pode compreender uma bateria que pode incluir várias células de bateria conectadas em série, as quais podem ser usadas como a fonte de energia para energizar o instrumento ou ferramenta cirúrgica. Em determinadas circunstâncias, as células de bateria do conjunto de alimentação pode ser células de bateria substituíveis e/ou recarregáveis. Em ao menos um exemplo, as células de bateria podem ser baterias de íons de lítio que podem ser acopláveis e separáveis do conjunto de alimentação.
[00190] O acionador de motor 492 pode ser um A3941, disponível junto à Allegro Microsystems, Inc. O acionador 492 A3941 é um controlador de ponte inteira para uso com transístores de efeito de campo de óxido de metal semicondutor (MOSFET) de potência externa, de canal N, especificamente projetados para cargas indutivas, como motores de corrente contínua escovados. O acionador 492 compreende um regulador de bomba de carga único que fornece acionamento de porta completo (>10 V) para baterias com tensão até 7 V e permite que o A3941 opere com um acionamento de porta reduzido, até 5,5 V. Um capacitor de comando de entrada pode ser empregado para fornecer a tensão ultrapassante à fornecida pela bateria necessária para os MOSFETs de canal N. Uma bomba de carga interna para o acionamento do lado de cima permite a operação em corrente contínua (100% ciclo de trabalho). A ponte inteira pode ser acionada nos modos de queda rápida ou lenta usando diodos ou retificação sincronizada. No modo de queda lenta, a recirculação da corrente pode se dar por meio dos FETs superior e inferior. Os FETs de energia são protegidos do efeito shoot- through por meio de resistores com tempo morto programável. Os diagnósticos integrados fornecem indicação de subtensão, sobretemperatura e falhas na ponte de energia, podendo ser configurado para proteger os MOSFETs de potência na maioria das condições de curto-circuito. Outros acionadores de motor podem ser prontamente substituídos para uso no sistema de rastreamento 480 compreendendo um sistema de posicionamento absoluto.
[00191] O sistema de rastreamento 480 compreende uma disposição de circuito de acionamento de motor controlado que compreende um sensor de posição 472 de acordo com um aspecto da presente descrição. O sensor de posição 472 para um sistema de posicionamento absoluto fornece um sinal de posição único que corresponde à localização de um membro de deslocamento. Em um aspecto, o membro de deslocamento representa um membro de acionamento longitudinalmente móvel que compreende uma cremalheira de dentes de acionamento para engate engrenado com uma engrenagem de acionamento correspondente de um conjunto redutor de engrenagem. Em outros aspectos, o membro de deslocamento representa o membro de disparo, que pode ser adaptado e configurado para incluir uma cremalheira de dentes de acionamento. Em ainda um outro aspecto, o membro de deslocamento representa um membro de deslocamento longitudinal para abrir e fechar um braço de aperto, o qual pode ser adaptado e configurado para incluir uma cremalheira de dentes de acionamento. Em outros aspectos, o membro de deslocamento representa um membro de fechamento do braço de aperto configurado para fechar e abrir um braço de aperto de um dispositivo de grampeador, ultrassônico, ou eletrocirúrgico, ou combinações dos mesmos. Consequentemente, como usado na presente invenção, o termo membro de deslocamento é usado genericamente para se referir a qualquer membro móvel do instrumento ou ferramenta cirúrgica como o membro de acionamento, o braço de aperto, ou qualquer elemento que possa ser deslocado. Consequentemente, o sistema de posicionamento absoluto pode, com efeito, rastrear o deslocamento do braço de aperto por rastrear o deslocamento linear do membro de acionamento móvel longitudinalmente.
[00192] Em outros aspectos, o sistema de posicionamento absoluto pode ser configurado para rastrear a posição de um braço de aperto no processo de abertura ou fechamento. Em vários outros aspectos, o membro de deslocamento pode ser acoplado a qualquer sensor de posição 472 adequado para medir o deslocamento linear. Dessa forma, o membro de acionamento longitudinalmente móvel, ou o braço de aperto, ou combinações dos mesmos, pode ser acoplado a qualquer sensor de deslocamento linear. Os sensores de deslocamento linear podem incluir sensores de deslocamento de contato ou sem contato. Sensores de deslocamento linear podem compreender Transformadores Lineares Diferenciais Variáveis (LVDT), Transdutores Diferenciais de Relutância Variável (DVRT), um potenciômetro, um sistema de detecção magnético que compreende um magneto móvel e uma série linearmente disposta em Sensores de Efeito Hall, um sistema de detecção magnético que compreende um magneto fixo e uma série de móveis, dispostos linearmente em Sensores de Efeito Hall, um sistema de detecção óptico móvel que compreende uma fonte de luz móvel e uma série de fotodiodos ou fotodetectores linearmente dispostos, um sistema de detecção óptico que compreende uma fonte de luz fixa e uma série móvel de fotodiodos ou fotodetectores linearmente dispostos, ou qualquer combinação dos mesmos.
[00193] O motor elétrico 482 pode incluir um eixo de acionamento giratório, que faz interface de modo operacional com um conjunto de engrenagem, que está montado em engate de acoplamento com um conjunto ou cremalheira de dentes de acionamento no membro de acionamento. Um elemento sensor pode ser operacionalmente acoplado a um conjunto de engrenagem de modo que uma única revolução do elemento sensor de posição 472 corresponda à alguma translação longitudinal linear do membro de deslocamento. Uma disposição de engrenagens e sensores pode ser conectada ao atuador linear por meio de uma disposição de cremalheira e pinhão, ou de um atuador giratório, por meio de uma roda dentada ou outra conexão. Uma fonte de alimentação fornece energia para o sistema de posicionamento absoluto e um indicador de saída pode mostrar a saída do sistema de posicionamento absoluto. O membro de acionamento representa o membro de acionamento longitudinalmente móvel que compreende uma cremalheira de dentes de acionamento formada na mesma para engate engrenado com uma engrenagem de acionamento correspondente do conjunto redutor de engrenagem. O membro de deslocamento representa o membro de disparo longitudinalmente móvel para abrir e fechar um braço de aperto.
[00194] Uma única revolução do elemento sensor associada ao sensor de posição 472 é equivalente a um deslocamento linear longitudinal de d1 do membro do deslocamento, onde d1 representa a distância linear longitudinal pela qual o membro de deslocamento se move do ponto "a" ao ponto "b" depois de uma única revolução do elemento sensor acoplado ao membro de deslocamento. A disposição do sensor pode ser conectada por meio de uma redução de engrenagem que resulta no sensor de posição 472 completando uma ou mais revoluções para o curso completo do membro de deslocamento. O sensor de posição 472 pode completar múltiplas revoluções para o curso completo do membro de deslocamento.
[00195] Uma série de chaves, onde n é um número inteiro maior que um, pode ser empregada sozinha ou em combinação com uma redução de engrenagem para fornecer um sinal de posição única para mais de uma revolução do sensor de posição 472. O estado das chaves é transmitido de volta ao microcontrolador 461 que aplica uma lógica para determinar um sinal de posição única correspondente ao deslocamento linear longitudinal de d1 + d2 + … dn do membro de deslocamento. A saída do sensor de posição 472 é fornecida ao microcontrolador 461. Em várias modalidades, o sensor de posição 472 da disposição de sensor pode compreender um sensor magnético, um sensor giratório analógico, como um potenciômetro, ou uma série de elementos de efeito Hall analógicos, que emitem uma combinação única de posição de sinais ou valores.
[00196] O sensor de posição 472 pode compreender qualquer número de elementos de detecção magnética, como, por exemplo, sensores magnéticos classificados de acordo com se eles medem o campo magnético total ou os componentes vetoriais do campo magnético. As técnicas usadas para produzir ambos os tipos de sensores magnéticos abrangem muitos aspectos da física e da eletrônica. As tecnologias usadas para a detecção de campo magnético incluem fluxômetro, fluxo saturado, bombeamento óptico, precessão nuclear, SQUID, efeito Hall, magnetorresistência anisotrópica, magnetorresistência gigante, junções túnel magnéticas, magnetoimpedância gigante, compostos magnetostritivos/piesoelétricos, magnetodiodo, transístor magnético, fibra óptica, magneto-óptica e sensores magnéticos baseados em sistemas microeletromecânicos, dentre outros.
[00197] Em um aspecto, o sensor de posição 472 para o sistema de rastreamento 480 que compreende um sistema de posicionamento absoluto compreende um sistema de posicionamento absoluto giratório magnético. O sensor de posição 472 pode ser implementado como um sensor de posição giratório magnético, de circuito integrado único, AS5055EQFT, disponível junto à Austria Microsystems, AG. O sensor de posição 472 fazer interface com o microcontrolador 461 para fornecer um sistema de posicionamento absoluto. O sensor de posição 472 é um componente de baixa tensão e baixa potência e inclui quatro elementos de efeito em uma área do sensor de posição 472 localizada acima de um imã. Um ADC de alta resolução e um controlador inteligente de gerenciamento de potência são também fornecidos no circuito integrado. Um processador CORDIC (computador digital para rotação de coordenadas), também conhecido como o método dígito por dígito e algoritmo de Volder, é fornecido para implementar um algoritmo simples e eficiente para calcular funções hiperbólicas e trigonométricas que exigem apenas operações de adição, subtração, deslocamento de bits e tabela de pesquisa. A posição do ângulo, os bits de alarme e as informações de campo magnético são transmitidos através de uma interface de comunicação em série padrão, como uma interface periférica em série (SPI), para o microcontrolador 461. O sensor de posição 472 fornece 12 ou 14 bits de resolução. O sensor de posição 472 pode ser um circuito integrado AS5055 fornecido em uma pequena embalagem QFN de 16 pinos cuja medida corresponde a 4x4x0,85 mm.
[00198] O sistema de rastreamento 480 que compreende um sistema de posicionamento absoluto pode compreender e/ou ser programado para implementar um controlador de feedback, como um PID, feedback de estado, e controlador adaptável. Uma fonte de alimentação converte o sinal do controlador de feedback em uma entrada física para o sistema, nesse caso a tensão. Outros exemplos incluem uma PWM de tensão, corrente e força. Outros sensores podem ser providenciados a fim de medir os parâmetros do sistema físico além da posição medida pelo sensor de posição 472. Em alguns aspectos, os outros sensores podem incluir disposições de sensor conforme aquelas descritas na Patente U.S. n° 9.345.481 intitulada STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, concedida em 24 de maio de 2016, que está incorporada por referência em sua totalidade neste documento; o Pedido de Patente U.S. n° de série 2014/0263552, intitulado STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, publicado em 18 de setembro de 2014, está incorporado por referência em sua totalidade neste documento; e o Pedido de Patente U.S. n° de série 15/628.175, intitulado TECHNIQUES FOR ADAPTIVE
CONTROL OF MOTOR VELOCITY OF A SURGICAL STAPLING AND CUTTING INSTRUMENT, submetido em 20 de junho de 2017, está incorporado por referência em sua totalidade neste documento. Em um sistema de processamento de sinal digital, um sistema de posicionamento absoluto é acoplado a um sistema de captura de dados digitais onde a saída do sistema de posicionamento absoluto terá uma resolução e frequência de amostragem finitas. O sistema de posicionamento absoluto pode compreender um circuito de comparação e combinação para combinar uma resposta computada com uma resposta medida através do uso de algoritmos, como uma média ponderada e um laço de controle teórico, que acionam a resposta calculada em direção à resposta medida. A resposta computada sistema físico considera as propriedades como massa, inércia, atrito viscoso, resistência à indutância, etc., para prever pelo conhecimento da entrada quais serão os estados e saídas do sistema físico.
[00199] O sistema de posicionamento absoluto fornece um posicionamento absoluto do membro deslocado sobre a ativação do instrumento sem que seja preciso recolher ou avançar o membro de acionamento longitudinalmente móvel para a posição de reinício (zero ou inicial), como pode ser requerido pelos codificadores convencionais giratórios que meramente contam o número de passos progressivos ou regressivos que o motor 482 percorreu para inferir a posição de um atuador dispositivo, barra de acionamento, bisturi, e congêneres.
[00200] Um sensor 474, como, por exemplo, um medidor de esforço ou um medidor de microesforço, está configurado para medir um ou mais parâmetros do atuador de extremidade, como, por exemplo, a amplitude do esforço exercido sobre a bigorna durante uma operação de preensão, que pode ser indicativa em relação à compressão do tecido. O esforço medido é convertido em um sinal digital e fornecido ao processador 462. Alternativamente, ou em adição ao sensor 474, um sensor 476, como, por exemplo, um sensor de carga, pode medir a força de fechamento aplicada pelo sistema de acionamento de fechamento à bigorna em um grampeador ou um braço de aperto em um instrumento eletrocirúrgico ou ultrassônico. O sensor 476, como, por exemplo, um sensor de carga, pode medir a força de disparo aplicada a um membro de fechamento acoplado a um braço de aperto do instrumento ou ferramenta cirúrgica ou a força aplicada por meio de um braço de aperto ao tecido localizado nas garras de um instrumento eletrocirúrgico ou ultrassônico. Alternativamente, um sensor de corrente 478 pode ser utilizado para medir a corrente drenada pelo motor 482. O membro de deslocamento também pode ser configurado para engatar um braço de aperto para abrir ou fechar o braço de aperto. O sensor de força pode ser configurado para medir a força de preensão sobre o tecido. A força necessária para avançar o membro de deslocamento pode corresponder à corrente drenada pelo motor 482, por exemplo. A força medida é convertida em um sinal digital e fornecida ao processador 462.
[00201] Em uma forma, um sensor medidor de esforço 474 pode ser usado para medir a força aplicada ao tecido pelo atuador de extremidade. Um medidor de esforço pode ser acoplado ao atuador de extremidade para medir a força aplicada ao tecido que está sendo tratado pelo atuador de extremidade. Um sistema para medir forças aplicadas ao tecido preso pelo atuador de extremidade compreende um sensor medidor de esforço 474, como, por exemplo, um medidor de microesforço, que é configurado para medir um ou mais parâmetros do atuador de extremidade, por exemplo. Em um aspecto, o sensor de medidor de esforço 474 pode medir a amplitude ou a magnitude do esforço exercido sobre um membro de garra de um atuador de extremidade durante uma operação de preensão, que pode ser indicativa da compressão do tecido. O esforço medido é convertido em um sinal digital e fornecido ao processador 462 de um microcontrolador
461. Um sensor de carga 476 pode medir a força usada para operar o elemento de faca, por exemplo, para cortar o tecido capturado entre a bigorna e o cartucho de grampos. Um sensor de carga 476 pode medir a força usada para operar o elemento de braço de aperto, por exemplo, para capturar o tecido entre o braço de aperto e uma lâmina ultrassônica ou para capturar o tecido entre o braço de aperto e uma garra de um instrumento eletrocirúrgico. Um sensor de campo magnético pode ser usado para medir a espessura do tecido capturado. A medição do sensor de campo magnético também pode ser convertida em um sinal digital e fornecida ao processador 462.
[00202] As medições da compressão do tecido, da espessura do tecido e/ou da força necessária para fechar o atuador de extremidade no tecido, conforme respectivamente medido pelos sensores 474, 476, podem ser usadas pelo microcontrolador 461 para caracterizar a posição selecionada do membro de disparo e/ou o valor correspondente da velocidade do membro de disparo. Em um caso, uma memória 468 pode armazenar uma técnica, uma equação e/ou uma tabela de consulta que pode ser usada pelo microcontrolador 461 na avaliação.
[00203] O sistema de controle 470 do instrumento ou ferramenta cirúrgica também pode compreender circuitos de comunicação com fio ou sem fio para comunicação com o controlador de comunicação de modular central mostrado nas Figuras 8 a 11.
[00204] A Figura 13 ilustra um circuito de controle 500 configurado para controlar aspectos do instrumento ou ferramenta cirúrgica de acordo com um aspecto da presente descrição. O circuito de controle 500 pode ser configurado para implementar vários processos aqui descritos. O circuito de controle 500 pode compreender um microcontrolador que compreende um ou mais processadores 502 (por exemplo, microprocessador, microcontrolador) acoplado a ao menos um circuito de memória 504. O circuito de memória 504 armazena instruções executáveis em máquina que, quando executadas pelo processador 502, fazem com que o processador 502 execute instruções de máquina para implementar vários dos processos aqui descritos. O processador 502 pode ser qualquer um dentre inúmeros processadores de apenas um núcleo ou multinúcleo conhecidos na técnica. O circuito de memória 504 pode compreender mídia de armazenamento volátil e não volátil. O processador 502 pode incluir uma unidade de processamento de instruções 506 e uma unidade aritmética 508. A unidade de processamento de instrução pode ser configurada para receber instruções a partir do circuito de memória 504 da presente descrição.
[00205] A Figura 14 ilustra um circuito lógico combinacional 510 configurado para controlar aspectos do instrumento ou ferramenta cirúrgica de acordo com um aspecto da presente descrição. O circuito lógico combinacional 510 pode ser configurado para implementar vários processos aqui descritos. O circuito lógico combinacional 510 pode compreender uma máquina de estado finito que compreende uma lógica combinacional 512 configurada para receber dados associados ao instrumento ou ferramenta cirúrgica em uma entrada 514, processar os dados pela lógica combinacional 512 e fornecer uma saída 516.
[00206] A Figura 15 ilustra um circuito lógico sequencial 520 configurado para controlar aspectos do instrumento ou ferramenta cirúrgica de acordo com um aspecto da presente descrição. O circuito lógico sequencial 520 ou a lógica combinacional 522 pode ser configurado para implementar o processo aqui descrito. O circuito lógico sequencial 520 pode compreender uma máquina de estados finitos. O circuito lógico sequencial 520 pode compreender uma lógica combinacional 522, ao menos um circuito de memória 524, um relógio 529 e, por exemplo. O ao menos um circuito de memória 524 pode armazenar um estado atual da máquina de estados finitos. Em certos casos, o circuito lógico sequencial 520 pode ser síncrono ou assíncrono. A lógica combinacional 522 é configurada para receber dados associados ao instrumento ou ferramenta cirúrgica de uma entrada 526, processar os dados pela lógica combinacional 522, e fornecer uma saída 528. Em outros aspectos, o circuito pode compreender uma combinação de um processador (por exemplo, processador 502, Figura 13) e uma máquina de estados finitos para implementar vários processos da presente invenção. Em outros aspectos, a máquina de estados finitos pode compreender uma combinação de um circuito lógico combinacional (por exemplo, um circuito lógico combinacional 510, Figura 14) e o circuito lógico sequencial 520.
[00207] A Figura 16 ilustra um instrumento ou ferramenta cirúrgica que compreende uma pluralidade de motores que podem ser ativados para executar várias funções. Em certos casos, um primeiro motor pode ser ativado para executar uma primeira função, um segundo motor pode ser ativado para executar uma segunda função, um terceiro motor pode ser ativado para executar uma terceira função, um quarto motor pode ser ativado para executar uma quarta função, e assim por diante. Em certos casos, a pluralidade de motores do instrumento cirúrgico robótico 600 pode ser individualmente ativada para causar movimentos de disparo, fechamento, e/ou articulação no atuador de extremidade. Os movimentos de disparo, fechamento e/ou articulação podem ser transmitidos ao atuador de extremidade através de um conjunto de eixo de acionamento, por exemplo.
[00208] Em certos casos, o sistema de instrumento ou ferramenta cirúrgica pode incluir um motor de disparo 602. O motor de disparo 602 pode ser operacionalmente acoplado a um conjunto de acionamento do motor de disparo 604, o qual pode ser configurado para transmitir movimentos de disparo, gerados pelo motor 602 ao atuador de extremidade, particularmente para deslocar o membro de fechamento do braço de aperto. O membro de fechamento pode ser retraído mediante reversão da direção do motor 602, o que também faz com que o braço de aperto se abra.
[00209] Em certos casos, o instrumento ou ferramenta cirúrgica pode incluir um motor de fechamento 603. O motor de fechamento 603 pode ser operacionalmente acoplado a um conjunto de acionamento do motor de fechamento 605 que pode ser configurado para transmitir movimentos de fechamento, gerados pelo motor 603 ao atuador de extremidade, particularmente para deslocar um tubo de fechamento para fechar a bigorna e comprimir o tecido entre a bigorna e o cartucho de grampos. O motor de fechamento 603 pode ser operacionalmente acoplado a um conjunto de acionamento do motor de fechamento 605 que pode ser configurado para transmitir movimentos de fechamento, gerados pelo motor 603 ao atuador de extremidade, particularmente para deslocar um tubo de fechamento para fechar o braço de aperto e comprimir o tecido entre o braço de aperto e uma lâmina ultrassônica ou o braço de aperto ou o membro de garra de um dispositivo eletrocirúrgico. Os movimentos de fechamento podem fazer com que o atuador de extremidade transicione de uma configuração aberta para uma configuração aproximada para capturar o tecido, por exemplo. O atuador de extremidade pode ser transicionado para uma posição aberta invertendo-se a direção do motor 603.
[00210] Em certos casos, o instrumento ou ferramenta cirúrgica pode incluir um ou mais motores de articulação 606a, 606b, por exemplo. Os motores 606a, 606b podem ser operacionalmente acoplados aos conjuntos de acionamento do motor de articulação 608a, 608b, que podem ser configurados para transmitir movimentos de articulação gerados pelos motores 606a, 606b ao atuador de extremidade. Em certos casos, os movimentos de articulação podem fazer com que o atuador de extremidade seja articulado em relação ao conjunto de eixo de acionamento, por exemplo.
[00211] Conforme descrito acima, o instrumento ou ferramenta cirúrgica pode incluir uma pluralidade de motores que podem ser configurados para executar várias funções independentes. Em certos casos, a pluralidade de motores do instrumento ou ferramenta cirúrgica pode ser ativada individualmente ou separadamente para executar uma ou mais funções, enquanto outros motores permanecem inativos. Por exemplo, os motores de articulação 606a, 606b podem ser ativados para fazer com que o atuador de extremidade seja articulado, enquanto o motor de disparo 602 permanece inativo. Alternativamente, o motor de disparo 602 pode ser ativado para disparar a pluralidade de grampos, e/ou avançar o gume cortante, enquanto o motor de articulação 606 permanece inativo. Além disso, o motor de fechamento 603 pode ser ativado simultaneamente com o motor de disparo 602 para fazer com que o tubo de fechamento ou membro de fechamento avance distalmente conforme descrito em mais detalhes mais adiante neste documento.
[00212] Em certos casos, o instrumento ou ferramenta cirúrgica pode incluir um módulo de controle comum 610 que pode ser usado com uma pluralidade de motores do instrumento ou ferramenta cirúrgica. Em certos casos, o módulo de controle comum 610 pode acomodar um dentre a pluralidade de motores de cada vez. Por exemplo, o módulo de controle comum 610 pode ser acoplável à e separável da pluralidade de motores do instrumento cirúrgico robótico individualmente. Em certos casos, uma pluralidade dos motores do instrumento ou ferramenta cirúrgica pode compartilhar um ou mais módulos de controle comuns, como o módulo de controle comum 610. Em certos casos, uma pluralidade de motores do instrumento ou ferramenta cirúrgica pode ser individualmente e seletivamente engatada ao módulo de controle comum 610. Em certos casos, o módulo de controle comum 610 pode ser seletivamente chaveado entre fazer interface com um dentre uma pluralidade de motores do instrumento ou ferramenta cirúrgica para fazer interface com um outro dentre a pluralidade de motores do instrumento ou ferramenta cirúrgica.
[00213] Em ao menos um exemplo, o módulo de controle comum 610 pode ser seletivamente chaveado entre o engate operacional com os motores de articulação 606a, 606B, e o engate operacional com o motor de disparo 602 ou o motor de fechamento 603. Em ao menos um exemplo, conforme ilustrado na Figura 16, uma chave 614 pode ser movida ou transicionada entre uma pluralidade de posições e/ou estados. Na primeira posição 616, a chave 614 pode acoplar eletricamente o módulo de controle comum 610 ao motor de disparo 602; em uma segunda posição 617, a chave 614 pode acoplar eletricamente o módulo de controle 610 ao motor de fechamento 603;
em uma terceira posição 618a, a chave 614 pode acoplar eletricamente o módulo de controle comum 610 ao primeiro motor de articulação 606a; e em uma quarta posição 618b, a chave 614 pode acoplar eletricamente o módulo de controle comum 610 ao segundo motor de articulação 606b, por exemplo. Em certos casos, módulos de controle comum 610 separados podem ser acoplados eletricamente ao motor de disparo 602, ao motor de fechamento 603, e aos motores de articulação 606a, 606b ao mesmo tempo. Em certos casos, a chave 614 pode ser uma chave mecânica, uma chave eletromecânica, uma chave em estado sólido ou qualquer mecanismo de chaveamento adequado.
[00214] Cada um dentre os motores 602, 603, 606a, 606b pode compreender um sensor de torque para medir o torque de saída no eixo de acionamento do motor. A força em um atuador de extremidade pode ser detectada de qualquer maneira convencional, como por meio de sensores de força nos lados exteriores das garras ou por um sensor de torque do motor que aciona as garras.
[00215] Em vários casos, conforme ilustrado na Figura 16, o módulo de controle comum 610 pode compreender um acionador de motor 626 que pode compreender um ou mais FETs H-Bridge. O acionador do motor 626 pode modular a energia transmitida a partir de uma fonte de alimentação 628 a um motor acoplado ao módulo de controle comum 610, com base em uma entrada proveniente de um microcontrolador 620 (o "controlador"), por exemplo. Em certos casos, o microcontrolador 620 pode ser usado para determinar a corrente drenada pelo motor, por exemplo, enquanto o motor está acoplado ao módulo de controle comum 610, conforme descrito acima.
[00216] Em certos exemplos, o microcontrolador 620 pode incluir um microprocessador 622 (o "processador") e uma ou mais mídias legíveis por computador não transitórias ou unidades de memória 624 (a "memória"). Em certos casos, a memória 624 pode armazenar várias instruções de programa que, quando executadas, podem fazer com que o processador 622 execute uma pluralidade de funções e/ou cálculos aqui descritos. Em certos casos, uma ou mais dentre as unidades de memória 624 podem ser acopladas ao processador 622, por exemplo. Em vários aspectos, o microcontrolador 620 pode se comunicar através de um canal com fio ou sem fio, ou combinações dos mesmos.
[00217] Em certos casos, a fonte de alimentação 628 pode ser usada para fornecer energia ao microcontrolador 620, por exemplo. Em certos casos, a fonte de energia 628 pode compreender uma bateria (ou "pacote de bateria" ou "fonte de energia"), como uma bateria de íons de Li, por exemplo. Em certos casos, o pacote de bateria pode ser configurado para ser montado de modo liberável à empunhadura para fornecer energia ao instrumento cirúrgico 600. Várias células de bateria conectadas em série podem ser usadas como a fonte de alimentação
628. Em certos casos, a fonte de energia 628 pode ser substituível e/ou recarregável, por exemplo.
[00218] Em vários casos, o processador 622 pode controlar o acionador do motor 626 para controlar a posição, a direção de rotação e/ou a velocidade de um motor que está acoplado ao módulo de controle comum 610. Em certos casos, o processador 622 pode sinalizar ao acionador do motor 626 para parar e/ou desativar um motor que esteja acoplado ao módulo de controle comum 610. Deve-se compreender que o termo "processador", conforme usado aqui, inclui qualquer microprocessador, microcontrolador ou outro dispositivo de computação básica adequado que incorpora as funções de uma unidade de processamento central de computador (CPU) em um circuito integrado ou, no máximo, alguns circuitos integrados. O processador 622 é um dispositivo programável multiuso que aceita dados digitais como entrada, as processa de acordo com instruções armazenadas na sua memória, e fornece resultados como saída. Este é um exemplo de lógica digital sequencial, já que ele tem memória interna. Os processadores operam em números e símbolos representados no sistema binário de numerais.
[00219] Em um exemplo, o processador 622 pode ser qualquer processador de núcleo único ou de múltiplos núcleos, como aqueles conhecidos pelo nome comercial de ARM Cortex da Texas Instruments. Em certos casos, o microcontrolador 620 pode ser um LM 4F230H5QR, disponível junto à Texas Instruments, por exemplo. Em ao menos um exemplo, o LM4F230H5QR da Texas Instruments é um núcleo processador ARM Cortex-M4F que compreende uma memória integrada do tipo flash de ciclo único de 256 KB, ou outra memória não volátil, até 40 MHz, um buffer de busca antecipada para otimizar o desempenho acima de 40 MHz, uma SRAM de ciclo único de 32 KB, uma ROM interna carregada com o software StellarisWare®, EEPROM de 2 KB, um ou mais módulos de PWM, um ou mais análogos de QEI, um ou mais ADCs de 12 bits com 12 canais de entrada analógica, dentre outros recursos que são prontamente disponíveis para a folha de dados do produto. Outros microcontroladores podem ser prontamente substituídos para uso com o módulo 4410. Consequentemente, a presente descrição não deve ser limitada nesse contexto.
[00220] Em certos casos, a memória 624 pode incluir instruções de programa para controlar cada um dos motores do instrumento cirúrgico 600 que são acopláveis ao módulo de controle comum 610. Por exemplo, a memória 624 pode incluir instruções de programa para controlar o motor de disparo 602, o motor de fechamento 603 e os motores de articulação 606a, 606b. Tais instruções de programa podem fazer com que o processador 622 controle as funções de disparo, fechamento e articulação de acordo com as entradas a partir dos algoritmos ou programas de controle do instrumento ou ferramenta cirúrgica.
[00221] Em certos casos, um ou mais mecanismos e/ou sensores como, por exemplo, os sensores 630, podem ser empregados para alertar o processador 622 quanto às instruções de programa que devem ser usadas em uma configuração específica. Por exemplo, os sensores 630 podem alertar o processador 622 para usar as instruções de programa associadas ao disparo, fechamento e articulação do atuador de extremidade. Em certos casos, os sensores 630 podem compreender sensores de posição que podem ser empregados para detectar a posição da chave 614, por exemplo. Consequentemente, o processador 622 pode usar as instruções de programa associadas ao disparo do membro de fechamento acoplado ao braço de aperto do atuador de extremidade mediante detecção, através dos sensores 630, por exemplo, que a chave 614 está na primeira posição 616; o processador 622 pode usar as instruções de programa associadas ao fechamento da bigorna mediante detecção através dos sensores 630, por exemplo, de que a chave 614 está na segunda posição 617; e o processador 622 pode usar as instruções de programa associadas com a articulação do atuador de extremidade mediante detecção através dos sensores 630, por exemplo, que a chave 614 está na terceira ou quarta posição 618a, 618b.
[00222] A Figura 17 é um diagrama esquemático de um instrumento cirúrgico robótico 700 configurado para operar uma ferramenta cirúrgica descrita neste documento, de acordo com um aspecto dessa descrição. O instrumento cirúrgico robótico 700 pode ser programado ou configurado para controlar a translação distal/proximal de um membro de deslocamento, o deslocamento distal/proximal de um tubo de fechamento, a rotação do eixo de acionamento, e articulação, quer com um único tipo ou múltiplos enlaces de acionamento de articulação. Em um aspecto, o instrumento cirúrgico 700 pode ser programado ou configurado para controlar individualmente um membro de disparo, um membro de fechamento, um membro de eixo de acionamento, ou um ou mais membros de articulação, ou combinações dos mesmos. O instrumento cirúrgico 700 compreende um circuito de controle 710 configurado para controlar membros de disparo acionados por motor, membros de fechamento, membros de eixo de acionamento, ou um ou mais membros de articulação, ou combinações dos mesmos.
[00223] Em um aspecto, o instrumento cirúrgico robótico 700 compreende um circuito de controle 710 configurado para controlar um braço de aperto 716 e um membro de fechamento 714, uma porção de um atuador de extremidade 702, uma lâmina ultrassônica 718 acoplada a um transdutor ultrassônico 719 excitado por um gerador ultrassônico 721, um eixo de acionamento 740, e um ou mais membros de articulação 742a, 742b através de uma pluralidade de motores 704a a 704e. Um sensor de posição 734 pode ser configurado para fornecer retroinformação sobre a posição do membro de fechamento 714 ao circuito de controle 710. Outros sensores 738 podem ser configurados para fornecer retroinformação ao circuito de controle 710. Um temporizador/contador 731 fornece informações de temporização e contagem ao circuito de controle 710. Uma fonte de energia 712 pode ser fornecida para operar os motores 704a a 704e e um sensor de corrente 736 fornece retroinformação de corrente do motor ao circuito de controle 710. Os motores 704a a 704e podem ser operados individualmente pelo circuito de controle 710 em um controle de retroinformação de circuito aberto ou circuito fechado.
[00224] Em um aspecto, o circuito de controle 710 pode compreender um ou mais microcontroladores, microprocessadores ou outros processadores adequados para executar instruções que fazem com que o processador ou processadores executem uma ou mais tarefas. Em um aspecto, um temporizador/contador 731 fornece um sinal de saída, como o tempo decorrido ou uma contagem digital, ao circuito de controle 710 para correlacionar a posição do membro de fechamento 714 conforme determinado pelo sensor de posição 734 com a saída do temporizador/contador 731 de modo que o circuito de controle 710 possa determinar a posição do membro de fechamento 714 em um momento específico (t) em relação a uma posição inicial ou o tempo (t) quando o membro de fechamento 714 está em uma posição específica em relação a uma posição inicial. O temporizador/contador 731 pode ser configurado para medir o tempo decorrido, contar eventos externos, ou medir eventos eternos.
[00225] Em um aspecto, o circuito de controle 710 pode ser programado para controlar funções do atuador de extremidade 702 com base em uma ou mais condições do tecido. O circuito de controle 710 pode ser programado para detectar direta ou indiretamente as condições do tecido, como espessura, conforme descrito aqui. O circuito de controle 710 pode ser programado para selecionar um programa de controle de disparo ou programa de controle de fechamento com base nas condições do tecido. Um programa de controle de disparo pode descrever o movimento distal do membro de deslocamento. Diferentes programas de controle de disparo podem ser selecionados para melhor tratar as diferentes condições do tecido. Por exemplo, quando um tecido mais espesso está presente, o circuito de controle 710 pode ser programado para transladar o membro de deslocamento a uma velocidade inferior e/ou com potência mais baixa. Quando um o tecido mais fino está presente, o circuito de controle 710 pode ser programado para transladar o membro de deslocamento a uma velocidade mais alta e/ou com maior potência. Um programa de controle de fechamento pode controlar a força de fechamento aplicada ao tecido pelo braço de aperto
716. Outros programas de controle controlam a rotação do eixo de acionamento 740 e dos membros de articulação 742a, 742b.
[00226] Em um aspecto, o circuito de controle de motor 710 pode gerar sinais de ponto de ajuste do motor. Os sinais de ponto de ajuste do motor podem ser fornecidos para vários controladores de motor 708a a 708e. Os controladores de motor 708a a 708e podem compreender um ou mais circuitos configurados para fornecer sinais de acionamento do motor para os motores 704a a 704e de modo a acionar os motores 704a a 704e, conforme descrito aqui. Em alguns exemplos, os motores 704a a 704e podem ser motores elétricos CC com escovas. Por exemplo, a velocidade dos motores 704a a 704e pode ser proporcional aos respectivos sinais de acionamento do motor. Em alguns exemplos, os motores 704a a 704e podem ser motores elétricos CC sem escovas, e os respectivos sinais de acionamento do motor podem compreender um sinal PWM fornecido para um ou mais enrolamentos de estator dos motores 704a a 704e. Além disso, em alguns exemplos, os controladores de motor 708a a 708e podem ser omitidos e o circuito de controle 710 pode gerar diretamente os sinais de acionamento do motor.
[00227] Em um aspecto, o circuito de controle 710 pode operar inicialmente cada um dentre os motores 704a a 704e em uma configuração de circuito aberto para uma primeira porção de circuito aberto do curso do membro de deslocamento. Com base na resposta do instrumento cirúrgico robótico 700 durante a porção de circuito aberto do curso, o circuito de controle 710 pode selecionar um programa de controle de disparo em uma configuração de circuito fechado. A resposta do instrumento pode incluir uma tradução da distância do membro de deslocamento durante a porção de circuito aberto, um tempo decorrido durante a porção de circuito aberto, a energia fornecida a um dos motores 704a a 704e durante a porção de circuito aberto, uma soma de larguras de pulso de um sinal de acionamento de motor, etc. Após a porção de circuito aberto, o circuito de controle 710 pode implementar o programa de controle de disparo selecionado para uma segunda porção do curso do membro de deslocamento. Por exemplo, durante uma porção do curso de circuito fechado, o circuito de controle 710 pode modular um dos motores 704a a 704e com base na translação dos dados que descrevem uma posição do membro de deslocamento em circuito fechado para transladar o membro de deslocamento a uma velocidade constante.
[00228] Em um aspecto, os motores 704a a 704e podem receber energia de uma fonte de energia 712. A fonte de energia 712 pode ser uma fonte de energia CC acionada por uma fonte de alimentação de corrente principal alternada, uma bateria, um super capacitor, ou qualquer outra fonte de energia adequada. Os motores 704a a 704e podem ser mecanicamente acoplados a elementos mecânicos individuais móveis como o membro de fechamento 714, o braço de aperto 716, eixo de acionamento 740, articulação 742a, e a articulação 742b, através das respectivas transmissões 706a a 706e. As transmissões 706a a 706e podem incluir uma ou mais engrenagens ou outros componentes de ligação para acoplar os motores 704a a 704e aos elementos mecânicos móveis. Um sensor de posição 734 pode detectar uma posição do membro de fechamento 714. O sensor de posição 734 pode ser ou pode incluir qualquer tipo de sensor que seja capaz de gerar dados de posição que indicar uma posição do membro de fechamento 714. Em alguns exemplos, o sensor de posição 734 pode incluir um codificador configurado para fornecer uma série de pulsos ao circuito de controle 710 conforme o membro de fechamento 714 translade distalmente e proximalmente. O circuito de controle 710 pode rastrear os pulsos para determinar a posição do membro de fechamento
714. Outros sensores de posição adequados podem ser usados, incluindo, por exemplo, um sensor de proximidade. Outros tipos de sensores de posição podem fornecer outros sinais que indiquem o movimento do membro de fechamento 714. Além disso, em alguns exemplos, o sensor de posição 734 pode ser omitido. Quando qualquer dos motores 704a a 704e seja um motor de passo, o circuito de controle 710 pode rastrear a posição do membro de fechamento 714 ao agregar o número e a direção das etapas que o motor 704 foi instruído a executar. O sensor de posição 734 pode estar situado no atuador de extremidade 702 ou em qualquer outra porção do instrumento. As saídas de cada um dos motores 704a a 704e incluem um sensor de torque 744a a 744e para detectar força e possuem um codificador para detectar a rotação do eixo de acionamento.
[00229] Em um aspecto, o circuito de controle 710 é configurado para acionar um membro de disparo como a porção do membro de fechamento 714 do atuador de extremidade 702. O circuito de controle 710 fornece um ponto de ajuste do motor para um controle do motor 708a, o qual fornece um sinal de acionamento para o motor 704a. O eixo de acionamento de saída do motor 704a é acoplado a um sensor de torque 744a. O sensor de torque 744a é acoplado a uma transmissão 706a que é acoplada ao membro de fechamento 714. A transmissão 706a compreende elementos mecânicos móveis como elementos rotativos e um membro de disparo para controlar distalmente e proximalmente o movimento do membro de fechamento 714 ao longo de um eixo geométrico longitudinal do atuador de extremidade 702. Em um aspecto, o motor 704a pode ser acoplado ao conjunto de engrenagem de faca, que inclui um conjunto de redução de engrenagem de faca que inclui uma primeira engrenagem de acionamento de faca e uma segunda engrenagem de acionamento de faca. Um sensor de torque 744a fornece um sinal de retroinformação da força de disparo para o circuito de controle 710. O sinal de força de disparo representa a força necessária para disparar ou deslocar o membro de fechamento
714. Um sensor de posição 734 pode ser configurado para fornecer a posição do membro de fechamento 714 ao longo do curso de disparo ou da posição do membro de disparo como um sinal de retroinformação ao circuito de controle 710. O atuador de extremidade 702 pode incluir sensores adicionais 738 configurados para fornecer sinais de retroinformação para o circuito de controle 710. Quando pronto para uso, o circuito de controle 710 pode fornecer um sinal de disparo ao controle do motor 708a. Em resposta ao sinal de disparo, o motor 704a pode acionar o membro de disparo distalmente ao longo do eixo geométrico longitudinal do atuador de extremidade 702 a partir de uma posição proximal inicial do curso para uma posição distal terminal do curso em relação à posição inicial de curso. Conforme o membro de fechamento 714 translada distalmente, o braço de aperto 716 se fecha em direção à lâmina ultrassônica 718.
[00230] Em um aspecto, o circuito de controle 710 é configurado para acionar um membro de fechamento como a porção do braço de aperto 716 do atuador de extremidade 702. O circuito de controle 710 fornece um ponto de ajuste do motor para um controle do motor 708b, que fornece um sinal de acionamento para o motor 704b. O eixo de acionamento de saída do motor 704b é acoplado a um sensor de torque 744b. O sensor de torque 744b é acoplado a uma transmissão 706b que é acoplada ao braço de aperto 716. A transmissão 706b compreende elementos mecânicos móveis como elementos rotativos e um membro de fechamento para controlar o movimento do braço de aperto 716 a partir das posições aberta e fechada. Em um aspecto, o motor 704b é acoplado a um conjunto de engrenagem de fechamento, que inclui um conjunto de engrenagem de redução de fechamento que é suportado em engate engrenado com a roda dentada de fechamento. O sensor de torque 744b fornece um sinal de retroinformação de força de fechamento para o circuito de controle 710. O sinal de retroinformação da força de fechamento representa a força de fechamento aplicada ao braço de aperto 716. O sensor de posição 734 pode ser configurado para fornecer a posição do membro de fechamento como um sinal de retroinformação para o circuito de controle 710. Sensores adicionais 738 no atuador de extremidade 702 podem fornecer o sinal de retroinformação de força de fechamento para o circuito de controle 710. O braço de aperto articulável 716 é posicionada oposta à lâmina ultrassônica 718. Quando pronto para uso, o circuito de controle 710 pode fornecer um sinal de fechamento ao controle do motor 708b. Em resposta ao sinal de fechamento, o motor 704b avança um membro de fechamento para prender o tecido entre o braço de aperto 716 e a lâmina ultrassônica 718.
[00231] Em um aspecto, o circuito de controle 710 é configurado para girar um membro de eixo de acionamento, como o eixo de acionamento 740, para girar o atuador de extremidade 702. O circuito de controle 710 fornece um ponto de ajuste do motor para um controle do motor 708c, que fornece um sinal de acionamento para o motor 704c. O eixo de acionamento de saída do motor 704c é acoplado a um sensor de torque 744c. O sensor de torque 744c é acoplado a uma transmissão 706c que é acoplada ao eixo 740. A transmissão 706c compreende elementos mecânicos móveis, como elementos rotativos, para controlar a rotação do eixo de acionamento 740 no sentido horário ou no sentido anti- horário até e acima de 360°. Em um aspecto, o motor 704c é acoplado ao conjunto de transmissão giratório, que inclui um segmento de engrenagem de tubo que é formado sobre (ou fixado a) a extremidade proximal do tubo de fechamento proximal para engate operável por um conjunto de engrenagem rotacional que é suportado operacionalmente na placa de montagem de ferramenta. O sensor de torque 744c fornece um sinal de retroinformação de força de rotação para o circuito de controle 710. O sinal de retroinformação da força de rotação representa a força de rotação aplicada ao eixo de acionamento 740. O sensor de posição 734 pode ser configurado para fornecer a posição do membro de fechamento como um sinal de retroinformação para o circuito de controle 710. Sensores adicionais 738, como um codificador de eixo de acionamento, podem fornecer a posição rotacional do eixo de acionamento 740 para o circuito de controle 710.
[00232] Em um aspecto, o circuito de controle 710 é configurado para articular o atuador de extremidade 702. O circuito de controle 710 fornece um ponto de ajuste do motor para um controle do motor 708d, que fornece um sinal de acionamento para o motor 704d. O eixo de acionamento de saída do motor 704d é acoplado a um sensor de torque 744d. O sensor de torque 744d é acoplado a uma transmissão 706d que é acoplada a um membro de articulação 742a. A transmissão 706d compreende elementos mecânicos móveis, como elementos de articulação, para controlar a articulação do atuador de extremidade 702 ± 65°. Em um aspecto, o motor 704d é acoplada a uma porca de articulação, que é assentada de modo giratório sobre a porção de extremidade proximal da porção de coluna distal e é acionada de modo giratória na mesma por um conjunto de engrenagem de articulação. O sensor de torque 744d fornece um sinal de retroinformação da força de articulação para o circuito de controle 710. O sinal de retroinformação da força de articulação representa a força de articulação aplicada ao atuador de extremidade 702. Os sensores 738, como um codificador de articulação, pode fornecer a posição de articulação do atuador de extremidade 702 para o circuito de controle 710.
[00233] Em um outro aspecto, a função de articulação do sistema cirúrgico robótico 700 pode compreender dois membros de articulação, ou ligações, 742a, 742b. Esses membros de articulação 742a, 742b são acionados por discos separados na interface do robô (a cremalheira), que são acionados pelos dois motores 708d, 708e. Quando o motor de disparo separado 704a é fornecido, cada ligação de articulação 742a, 742b pode ser antagonicamente acionada em relação à outra ligação para fornecer um movimento de retenção resistivo e uma carga à cabeça quando ela não está se movendo e para fornecer um movimento de articulação quando a cabeça é articulada. Os membros de articulação 742a, 742b se fixam à cabeça em um raio fixo quando a cabeça é girada. Consequentemente, a vantagem mecânica do link de empurrar e puxar se altera quando a cabeça é girada. Esta alteração na vantagem mecânica pode ser mais pronunciada com outros sistemas de acionamento da ligação de articulação.
[00234] Em um aspecto, o um ou mais motores 704a a 704e podem compreender um motor CC escovado com uma caixa de câmbio e ligações mecânicas a um membro de disparo, membro de fechamento ou membro de articulação. Um outro exemplo inclui motores elétricos 704a a 704e que operam os elementos mecânicos móveis como o membro de deslocamento, as ligações de articulação, o tubo de fechamento e o eixo de acionamento. Uma influência externa é uma influência desmedida e imprevisível de coisas como tecido, corpos circundantes, e atrito no sistema físico. Essa influência externa pode ser chamada de arrasto, que age em oposição a um dos motores elétricos 704a a 704e. A influência externa, como o arrasto, pode fazer com que o funcionamento do sistema físico se desvie de uma operação desejada do sistema físico.
[00235] Em um aspecto, o sensor de posição 734 pode ser implementado como um sistema de posicionamento absoluto. Em um aspecto, o sensor de posição 734 pode compreender um sistema de posicionamento magnético giratório absoluto implementado como um sensor de posição magnético giratório de circuito integrado único, AS5055EQFT, disponível junto à Austria Microsystems, AG. O sensor de posição 734 pode fazer interface com o circuito de controle 710 para fornecer um sistema de posicionamento absoluto. A posição pode incluir elementos de efeito Hall múltiplos localizados acima de um magneto e acoplado a um processador CORDIC, também conhecido como o método dígito por dígito e algoritmo de Volder, que é fornecido para implementar um algoritmo simples e eficiente para calcular funções hiperbólicas e trigonométricas que exigem apenas operações de adição, subtração, deslocamento de bits e tabela de pesquisa.
[00236] Em um aspecto, o circuito de controle 710 pode estar em comunicação com um ou mais sensores 738. Os sensores 738 podem ser posicionados no atuador de extremidade 702 e adaptados para funcionar com o instrumento cirúrgico robótico 700 para medir a vários parâmetros derivados como a distância de vão em relação ao tempo, a compressão do tecido em relação ao tempo, e deformação da bigorna em relação ao tempo. Os sensores 738 podem compreender um sensor magnético, um sensor de campo magnético, um medidor de esforço, uma célula de carga, um sensor de pressão, um sensor de força, um sensor de torque, um sensor indutivo como um sensor de corrente parasita, um sensor resistivo, um sensor capacitivo, um sensor óptico e/ou qualquer outro sensor adequado para medir um ou mais parâmetros do atuador de extremidade 702. Os sensores 738 podem incluir um ou mais sensores. Os sensores 738 podem estar localizados no braço de aperto 716 para determinar a localização de tecido com o uso de eletrodos segmentados. Os sensores de torque 744a a 744e podem ser configurados para detectar força como força de disparo, força de fechamento, e/ou força de articulação, entre outros. Consequentemente, o circuito de controle 710 pode detectar (1) a carga de fechamento experimentada pelo tubo de fechamento distal e sua posição, (2) o membro de disparo na cremalheira e sua posição, (3) qual porção da lâmina ultrassônica 718 tem tecido na mesma, e (4) a carga e a posição em ambas as hastes de articulação.
[00237] Em um aspecto, o um ou mais sensores 738 podem compreender um medidor de esforço como, por exemplo, um medidor de microesforço, configurado para medir a magnitude do esforço na bigorna 716 durante uma condição pinçada. O medidor de tensão fornece um sinal elétrico cuja amplitude varia com a magnitude da tensão. Os sensores 738 podem compreender um sensor de pressão configurado para detectar uma pressão gerada pela presença de tecido comprimido entre o braço de aperto 716 e a lâmina ultrassônica 718. Os sensores 738 podem ser configurados para detectar a impedância de uma seção de tecido situada entre o braço de aperto 716 e a lâmina ultrassônica 718 que é indicativa da espessura e/ou da completude do tecido situado entre os mesmos.
[00238] Em um aspecto, os sensores 738 podem ser implementadas como uma ou mais chaves de limite, dispositivos eletromecânicos, chaves de estado sólido, dispositivos de efeito Hall, dispositivos magneto-resistivos (MR) dispositivos magneto-resistivos gigantes (GMR), magnetômetros, entre outros. Em outras implementações, os sensores 738 podem ser implementados como chaves de estado sólido que operam sob a influência da luz, como os sensores ópticos, sensores de infravermelho, sensores de ultravioleta, dentre outros. Além disso, as chaves podem ser dispositivos de estado sólido como transístores (por exemplo, FET, FET de junção, MOSFET, bipolar, e similares). Em outras implementações, os sensores 738 podem incluir chaves elétricas sem condutor, chaves ultrassônicas, acelerômetros e sensores de inércia, entre outros.
[00239] Em um aspecto, os sensores 738 podem ser configurados para medir as forças exercidas sobre o braço de aperto 716 pelo sistema de acionamento de fechamento. Por exemplo, um ou mais sensores 738 podem estar em um ponto de interação entre o tubo de fechamento e o braço de pinça 716 para detectar as forças de fechamento aplicadas pelo tubo de fechamento ao braço de aperto 716. As forças exercidas sobre o braço de aperto 716 podem ser representativas da compressão do tecido experimentada pela seção de tecido capturado entre o braço de aperto 716 e a lâmina ultrassônica 718. O um ou mais sensores 738 podem ser posicionados em vários pontos de interação ao longo do sistema de acionamento de fechamento para detectar as forças de fechamento aplicadas ao braço de aperto 716 pelo sistema de acionamento de fechamento. O um ou mais sensores 738 podem ser amostrados em tempo real durante uma operação de preensão pelo processador do circuito de controle 710. O circuito de controle 710 recebe medições de amostra em tempo real para fornecer e analisar informações baseadas em tempo e avaliar, em tempo real, as forças de fechamento aplicadas ao braço de aperto 716.
[00240] Em um aspecto, um sensor de corrente 736 pode ser usado para medir a corrente drenada por cada um dos motores 704a a 704e. A força necessária para avançar qualquer dos elementos mecânicos móveis como o membro de fechamento 714 corresponde à corrente drenada por um dos motores 704a a 704e. A força é convertida em um sinal digital e fornecida ao circuito de controle 710. O circuito de controle 710 pode ser configurado para simular a resposta do sistema real do instrumento no software do controlador. Um membro de deslocamento pode ser atuado para mover o membro de fechamento 714 no atuador de extremidade 702 em ou próximo a uma velocidade alvo. O instrumento cirúrgico robótico 700 pode incluir um controlador de retroinformação, que pode ser um ou qualquer dos controladores de retroinformação, incluindo, mas não se limitando a, um controlador PID, retroinformação de estado, quadrático linear (LQR) e/ou um controlador adaptável, por exemplo. O instrumento cirúrgico robótico 700 pode incluir uma fonte de energia para converter o sinal do controlador de retroinformação em uma entrada física como tensão do estojo, tensão PWM, tensão modulada por frequência, corrente, torque e/ou força, por exemplo. Detalhes adicionais são descritos no Pedido de Patente U.S.
n° de série 15/636.829, intitulado CLOSED LOOP VELOCITY CONTROL TECHNIQUES FOR ROBOTIC SURGICAL INSTRUMENT, depositado em 29 de junho de 2017, que está aqui incorporado a título de referência em sua totalidade.
[00241] A Figura 18 ilustra um diagrama esquemático de um instrumento cirúrgico 750 configurado para controlar a translação distal do membro de deslocamento de acordo com um aspecto da presente descrição. Em um aspecto, o instrumento cirúrgico 750 é programado para controlar a translação distal do membro de deslocamento como o membro de fechamento 764. O instrumento cirúrgico 750 compreende um atuador de extremidade 752 que pode compreender um braço de aperto 766, um membro de fechamento 764 e uma lâmina ultrassônica 768 acoplada a um transdutor ultrassônico 769 acionado por um gerador ultrassônico 771.
[00242] A posição, movimento, deslocamento, e/ou a translação de um membro de deslocamento linear, como o membro de fechamento 764, podem ser medidas por um sistema de posicionamento absoluto, disposição de sensor, e um sensor de posição 784. Devido ao membro de fechamento 764 ser acoplado a um membro de acionamento longitudinalmente móvel, a posição do membro de fechamento 764 pode ser determinada mediante a medição da posição do membro de acionamento longitudinalmente móvel empregando o sensor de posição
784. Consequentemente, na descrição a seguir, a posição, deslocamento e/ou a translação do membro de fechamento 764 podem ser obtidas pelo sensor de posição 784, conforme descrito na presente invenção. Um circuito de controle 760 pode ser programado para controlar a translação do membro de deslocamento, como o membro de fechamento 764. O circuito de controle 760, em alguns exemplos, pode compreender um ou mais microcontroladores, microprocessadores, ou outros processadores adequados para executar instruções que fazem com que o processador ou processadores controlem o membro de deslocamento, por exemplo, o membro de fechamento 764, da maneira descrita. Em um aspecto, um temporizador/contador 781 fornece um sinal de saída, como o tempo decorrido ou uma contagem digital, ao circuito de controle 760 para correlacionar a posição do membro de fechamento 764 conforme determinado pelo sensor de posição 784 com a saída do temporizador/contador 781 de modo que o circuito de controle 760 possa determinar a posição do membro de fechamento 764 em um momento específico (t) em relação a uma posição inicial. O temporizador/contador 781 pode ser configurado para medir o tempo decorrido, contar eventos externos, ou medir eventos eternos.
[00243] O circuito de controle 760 pode gerar um sinal de ponto de ajuste do motor 772. O sinal do ponto de ajuste do motor 772 pode ser fornecido a um controlador do motor 758. O controlador do motor 758 pode compreender um ou mais circuitos configurados para fornecer um sinal de acionamento do motor 774 ao motor 754 para acionar o motor 754, conforme descrito na presente invenção. Em alguns exemplos, o motor 754 pode ser um motor CC com motor elétrico CC escovado. Por exemplo, a velocidade do motor 754 pode ser proporcional ao sinal de acionamento do motor 774. Em alguns exemplos, o motor 754 pode ser um motor elétrico CC sem escovas e o sinal de acionamento do motor 774 pode compreender um sinal PWM fornecido para um ou mais enrolamentos de estator do motor 754. Além disso, em alguns exemplos, o controlador do motor 758 pode ser omitido, e o circuito de controle 760 pode gerar o sinal de acionamento de motor 774 diretamente.
[00244] O motor 754 pode receber energia de uma fonte de energia
762. A fonte de energia 762 pode ser ou incluir uma bateria, um super capacitor, ou qualquer outra fonte de energia adequada. O motor 754 pode ser mecanicamente acoplado ao membro de fechamento 764 por meio de uma transmissão 756. A transmissão 756 pode incluir uma ou mais engrenagens ou outros componentes de ligação para acoplar o motor 754 ao membro de fechamento 764. Um sensor de posição 784 pode detectar uma posição do membro de fechamento 764. O sensor de posição 784 pode ser ou pode incluir qualquer tipo de sensor que seja capaz de gerar dados de posição que indicar uma posição do membro de fechamento 764. Em alguns exemplos, o sensor de posição 784 pode incluir um codificador configurado para fornecer uma série de pulsos ao circuito de controle 760 conforme o membro de fechamento 764 translade distalmente e proximalmente. O circuito de controle 760 pode rastrear os pulsos para determinar a posição do membro de fechamento 764. Outros sensores de posição adequados podem ser usados, incluindo, por exemplo, um sensor de proximidade. Outros tipos de sensores de posição podem fornecer outros sinais que indiquem o movimento do membro de fechamento 764. Além disso, em alguns exemplos, o sensor de posição 784 pode ser omitido. Quando o motor 754 é um motor de passo, o circuito de controle 760 pode rastrear a posição do membro de fechamento 764 ao agregar o número e a orientação das etapas que o motor 754 foi instruído a executar. O sensor de posição 784 pode estar situado no atuador de extremidade 752 ou em qualquer outra porção do instrumento.
[00245] O circuito de controle 760 pode estar em comunicação com um ou mais sensores 788. Os sensores 788 podem ser posicionados no atuador de extremidade 752 e adaptados para funcionar com o instrumento cirúrgico 750 para medir os vários parâmetros derivados, como distância de vão em relação ao tempo, compressão do tecido em relação ao tempo e tensão da bigorna em relação ao tempo. Os sensores 788 podem compreender um sensor magnético, um sensor de campo magnético, um medidor de esforço, um sensor de pressão, um sensor de força, um sensor indutivo como um sensor de correntes parasitas, um sensor resistivo, um sensor capacitivo, um sensor óptico e/ou quaisquer outros sensores adequados para medição de um ou mais parâmetros do atuador de extremidade 752. Os sensores 788 podem incluir um ou mais sensores.
[00246] O um ou mais sensores 788 podem compreender um medidor de esforço como, por exemplo, um medidor de microesforço, configurado para medir a magnitude do esforço na bigorna 766 durante uma condição apertada. O medidor de tensão fornece um sinal elétrico cuja amplitude varia com a magnitude da tensão. Os sensores 788 podem compreender um sensor de pressão configurado para detectar uma pressão gerada pela presença de tecido comprimido entre o braço de aperto 766 e a lâmina ultrassônica 768. Os sensores 788 podem ser configurados para detectar a impedância de uma seção de tecido situada entre o braço de aperto 766 e a lâmina ultrassônica 768 que é indicativa da espessura e/ou da completude do tecido situado entre os mesmos.
[00247] Os sensores 788 podem ser configurados para medir as forças exercidas sobre o braço de aperto 766 pelo sistema de acionamento de fechamento. Por exemplo, um ou mais sensores 788 podem estar em um ponto de interação entre o tubo de fechamento e o braço de pinça 766 para detectar as forças de fechamento aplicadas por um tubo de fechamento ao braço de aperto 766. As forças exercidas sobre o braço de aperto 766 podem ser representativas da compressão do tecido experimentada pela seção de tecido capturado entre o braço de aperto 766 e a lâmina ultrassônica 768. O um ou mais sensores 788 podem ser posicionados em vários pontos de interação ao longo do sistema de acionamento de fechamento para detectar as forças de fechamento aplicadas ao braço de aperto 766 pelo sistema de acionamento de fechamento. O um ou mais sensores 788 podem ser amostrados em tempo real durante uma operação de preensão por um processador do circuito de controle 760. O circuito de controle 760 recebe medições de amostra em tempo real para fornecer e analisar informações baseadas em tempo e avaliar, em tempo real, as forças de fechamento aplicadas ao braço de aperto 766.
[00248] Um sensor de corrente 786 pode ser empregado para medir a corrente drenada pelo motor 754. A força necessária para avançar o membro de fechamento 764 corresponde à corrente drenada pelo motor
754. A força é convertida em um sinal digital e fornecida ao circuito de controle 760.
[00249] O circuito de controle 760 pode ser configurado para simular a resposta do sistema real do instrumento no software do controlador. Um membro de deslocamento pode ser atuado para mover um membro de fechamento 764 no atuador de extremidade 752 em ou próximo a uma velocidade alvo. O instrumento cirúrgico 750 pode incluir um controlador de retroinformação, que pode ser um ou qualquer dos controladores de retroinformação, incluindo, mas não se limitando a, um controlador PID, retroinformação de estado, LQR, e/ou um controlador adaptável, por exemplo. O instrumento cirúrgico 750 pode incluir uma fonte de energia para converter o sinal do controlador de retroinformação em uma entrada física como tensão do estojo, tensão PWM, tensão modulada por frequência, corrente, torque e/ou força, por exemplo.
[00250] O sistema de acionamento real do instrumento cirúrgico 750 é configurado para acionar o membro de deslocamento, o membro de corte ou o membro de fechamento 764, por um motor CC escovado com caixa de câmbio e ligações mecânicas a um sistema de articulação e/ou faca. Um outro exemplo é o motor elétrico 754 que opera o membro de deslocamento e o acionador de articulação, por exemplo, de um conjunto de eixo de acionamento intercambiável. Uma influência externa é uma influência desmedida e imprevisível de coisas como tecido, corpos circundantes, e atrito no sistema físico. Essa influência externa pode ser chamada de arrasto, que age em oposição ao motor elétrico 754. A influência externa, como o arrasto, pode fazer com que o funcionamento do sistema físico se desvie de uma operação desejada do sistema físico.
[00251] Vários aspectos exemplificadores são direcionados a um instrumento cirúrgico 750 que compreende um atuador de extremidade 752 com implementos cirúrgicos de vedação e de corte acionados por motor. Por exemplo, um motor 754 pode acionar um membro de deslocamento distal e proximalmente ao longo de um eixo geométrico longitudinal do atuador de extremidade 752. O atuador de extremidade 752 pode compreender um braço de aperto articulável 766 e, quando configurado para o uso, uma lâmina ultrassônica 768 posicionada do lado oposto do braço de aperto 766. Um clínico pode segurar o tecido entre o braço de aperto 766 e a lâmina ultrassônica 768, conforme descrito na presente invenção. Quando pronto para usar o instrumento 750, o médico pode fornecer um sinal de disparo, por exemplo, pressionando um gatilho do instrumento 750. Em resposta ao sinal de disparo, o motor 754 pode acionar o membro de deslocamento distalmente ao longo do eixo geométrico longitudinal do atuador de extremidade 752 a partir de uma posição proximal de início de curso para uma posição de fim de curso distal da posição de início de curso. À medida que o membro de deslocamento se desloca distalmente, o membro de fechamento 764 com um membro de corte posicionado em uma extremidade distal, pode cortar o tecido entre a lâmina ultrassônica 768 e o braço de aperto 766.
[00252] Em vários exemplos, o instrumento cirúrgico 750 pode compreender um circuito de controle 760 programado para controlar a translação distal do membro de deslocamento, como o membro de fechamento 764, por exemplo, com base em uma ou mais condições do tecido. O circuito de controle 760 pode ser programado para detectar direta ou indiretamente as condições do tecido, como espessura, conforme descrito aqui. O circuito de controle 760 pode ser programado para selecionar um programa de controle com base nas condições do tecido. Um programa de controle pode descrever o movimento distal do membro de deslocamento. Diferentes programas de controle podem ser selecionados para tratar, melhor as diferentes condições de tecido. Por exemplo, quando um tecido mais espesso está presente, o circuito de controle 760 pode ser programado para transladar o membro de deslocamento a uma velocidade inferior e/ou com potência mais baixa. Quando um o tecido mais fino está presente, o circuito de controle 760 pode ser programado para transladar o membro de deslocamento a uma velocidade mais alta e/ou com maior potência.
[00253] Em alguns exemplos, o circuito de controle 760 pode, inicialmente, operar o motor 754 em uma configuração de circuito aberto para uma primeira porção de circuito aberto de um curso do membro de deslocamento. Com base em uma resposta do instrumento 750 durante a porção de circuito aberto do curso, o circuito de controle 760 pode selecionar um programa de controle de disparo. A resposta do instrumento pode incluir uma distância de translação do membro de deslocamento durante a porção de circuito aberto, um tempo decorrido durante a porção de circuito aberto, a energia fornecida ao motor 754 durante a porção de circuito aberto, uma soma de larguras de pulso de um sinal de acionamento de motor, etc. Após a porção de circuito aberto, o circuito de controle 760 pode implementar o programa de controle de disparo selecionado para uma segunda porção do curso do membro de deslocamento. Por exemplo, durante a porção de circuito fechado do curso, o circuito de controle 760 pode modular o motor 754 com base nos dados de translação que descrevem uma posição do membro de deslocamento em uma maneira de circuito fechado para transladar o membro de deslocamento em uma velocidade constante. Detalhes adicionais são descritos no Pedido de Patente U.S. n° de série 15/720.852, intitulado SYSTEM AND METHODS FOR CONTROLLING A DISPLAY OF A SURGICAL INSTRUMENT, depositado em 29 de setembro de 2017, que está aqui incorporado a título de referência em sua totalidade.
[00254] A Figura 19 é um diagrama esquemático de um instrumento cirúrgico 790 configurado para controlar várias funções de acordo com um aspecto da presente descrição. Em um aspecto, o instrumento cirúrgico 790 é programado para controlar a translação distal de um membro de deslocamento como o membro de fechamento 764. O instrumento cirúrgico 790 compreende um atuador de extremidade 792 que pode compreender um braço de aperto 766, um membro de fechamento 764, e uma lâmina ultrassônica 768 que podem ser intercambiados com ou funcionar em conjunto com um ou mais eletrodos de RF 796 (mostrado em linha tracejada). A lâmina ultrassônica 768 é acoplada a um transdutor ultrassônico 769 acionado por um gerador ultrassônico 771.
[00255] Em um aspecto, os sensores 788 podem ser implementados como uma chave limite, dispositivo eletromecânico, chaves de estado sólido, dispositivos de efeito Hall, dispositivos de RM, dispositivos GMR, magnetômetros, entre outros. Em outras implementações, os sensores 638 podem ser chaves de estado sólido que operam sob a influência da luz, como os sensores ópticos, sensores de infravermelho, sensores de ultravioleta, dentre outros. Além disso, as chaves podem ser dispositivos de estado sólido como transístores (por exemplo, FET, FET de junção, MOSFET, bipolar, e similares). Em outras implementações, os sensores 788 podem incluir chaves elétricas sem condutor, chaves ultrassônicas, acelerômetros e sensores de inércia, entre outros.
[00256] Em um aspecto, o sensor de posição 784 pode ser implementado como um sistema de posicionamento absoluto, que compreende um sistema de posicionamento absoluto magnético giratório implementado como um sensor de posição magnético giratório, de circuito integrado único, AS5055EQFT, disponível junto à Austria Microsystems, AG. O sensor de posição 784 pode fazer interface com o circuito de controle 760 para fornecer um sistema de posicionamento absoluto. A posição pode incluir elementos de efeito Hall múltiplos localizados acima de um magneto e acoplado a um processador CORDIC, também conhecido como o método dígito por dígito e algoritmo de Volder, que é fornecido para implementar um algoritmo simples e eficiente para calcular funções hiperbólicas e trigonométricas que exigem apenas operações de adição, subtração, deslocamento de bits e tabela de pesquisa.
[00257] Em alguns exemplos, o sensor de posição 784 pode ser omitido. Quando o motor 754 é um motor de passo, o circuito de controle 760 pode rastrear a posição do membro de fechamento 764 ao agregar o número e a orientação das etapas que o motor foi instruído a executar. O sensor de posição 784 pode estar situado no atuador de extremidade 792 ou em qualquer outra porção do instrumento.
[00258] O circuito de controle 760 pode estar em comunicação com um ou mais sensores 788. Os sensores 788 podem ser posicionados no atuador de extremidade 792 e adaptados para funcionar com o instrumento cirúrgico 790 para medir os vários parâmetros derivados, como distância de vão em relação ao tempo, compressão do tecido em relação ao tempo e tensão da bigorna em relação ao tempo. Os sensores 788 podem compreender um sensor magnético, um sensor de campo magnético, um medidor de esforço, um sensor de pressão, um sensor de força, um sensor indutivo como um sensor de correntes parasitas, um sensor resistivo, um sensor capacitivo, um sensor óptico e/ou quaisquer outros sensores adequados para medição de um ou mais parâmetros do atuador de extremidade 792. Os sensores 788 podem incluir um ou mais sensores.
[00259] Uma fonte de energia de RF 794 é acoplada ao atuador de extremidade 792 e é aplicada ao eletrodo de RF 796 quando o eletrodo de RF 796 é fornecido no atuador de extremidade 792 no lugar da lâmina ultrassônica 768 ou para funcionar em conjunto com a lâmina ultrassônica 768. Por exemplo, a lâmina ultrassônica é produzida a partir de metal eletricamente condutivo e pode ser empregada como a trajetória de retorno para a corrente eletrocirúrgica de RF. O circuito de controle 760 controla o fornecimento da energia de RF ao eletrodo de RF 796.
[00260] Detalhes adicionais são descritos no Pedido de Patente U.S. n° de série 15/636.096, intitulado SURGICAL SYSTEM COUPLABLE WITH STAPLE CARTRIDGE AND RADIO FREQUENCY CARTRIDGE, AND METHOD OF USING SAME, depositado em 28 de junho de 2017, que está aqui incorporado a título de referência em sua totalidade. Algoritmos de controle de lâmina ultrassônica adaptáveis
[00261] Em vários aspectos, os dispositivos de energia ultrassônica inteligentes podem compreender algoritmos adaptáveis para controlar a operação da lâmina ultrassônica. Em um aspecto, os algoritmos de controle da lâmina ultrassônica adaptáveis são configurados para identificar o tipo de tecido e ajustar os parâmetros do dispositivo. Em um aspecto, os algoritmos de controle da lâmina ultrassônica são configurados para parametrizar o tipo de tecido. Um algoritmo para detectar a razão colágeno/razão de tecido para ajustar a amplitude da ponta distal da lâmina ultrassônica é descrito na seção a seguir da presente descrição. Vários aspectos dos dispositivos ultrassônicos inteligentes são aqui descritos em conexão com as Figuras 1 a 94, por exemplo. Consequentemente, a descrição a seguir dos algoritmos de controle da lâmina ultrassônica adaptáveis deve ser lida em conjunto com as Figuras 1 a 94 e a descrição associada aos mesmos. Identificação do tipo de tecido e ajustes dos parâmetros do dispositivo
[00262] Em certos procedimentos cirúrgicos seria desejável usar algoritmos de controle da lâmina ultrassônica adaptáveis. Em um aspecto, os algoritmos de controle da lâmina ultrassônica adaptáveis podem ser usados para ajustar os parâmetros do dispositivo ultrassônico com base no tipo de tecido em contato com a lâmina ultrassônica. Em um aspecto, os parâmetros do dispositivo ultrassônico podem ser ajustados com base na localização do tecido dentro das garras do atuador de extremidade ultrassônico, por exemplo, a localização do tecido entre o braço de aperto e a lâmina ultrassônica. A impedância do transdutor ultrassônico pode ser usada para diferenciar a porcentagem do tecido que está situado na extremidade distal ou proximal do atuador de extremidade. As reações do dispositivo ultrassônico podem ser com base no tipo de tecido ou na compressibilidade do tecido. Em um outro aspecto, os parâmetros do dispositivo ultrassônico podem ser ajustados com base no tipo de tecido identificado ou na parametrização. Por exemplo, a amplitude do deslocamento mecânico da ponta distal da lâmina ultrassônica pode ser ajustada com base na razão entre colágeno e elastina no tecido detectada durante o procedimento de identificação de tecido. A razão entre colágeno e elastina do tecido pode ser detectada com o uso de uma variedade de técnicas incluindo reflectância e emissividade de superfície no infravermelho (IR) reflectância. A força aplicada ao tecido pelo braço de aperto e/ou o curso do braço de aperto para produzir vão e compressão. A continuidade elétrica através de uma garra equipada com eletrodos pode ser usada para determinar a porcentagem da garra que é coberta com tecido.
[00263] A Figura 20 é um sistema 800 configurado para executar algoritmos de controle de lâmina ultrassônica adaptáveis em uma rede de dados cirúrgicos que compreende um controlador de comunicação modular central, de acordo com ao menos um aspecto da presente descrição. Em um aspecto, o módulo gerador 240 é configurado para executar os algoritmos de controle da lâmina ultrassônica adaptáveis 802, conforme descrito aqui com referência às Figuras 53 a 105. Em um aspecto, o dispositivo/instrumento 235 é configurado para executar os algoritmos de controle da lâmina ultrassônica adaptáveis 804, conforme descrito aqui com referência às Figuras 53 a 105. Em um outro aspecto, tanto o dispositivo/instrumento 235 e o dispositivo/instrumento 235 são configurados para executar os algoritmos de controle da lâmina ultrassônica adaptáveis 802, 804 conforme descrito na presente invenção com referência às Figuras 53 a 105.
[00264] O módulo gerador 240 pode compreender um estágio isolado de paciente em comunicação com um estágio não isolado por meio de um transformador de potência. Um enrolamento secundário do transformador de potência está contido no estágio isolado e pode compreender uma configuração com derivação (por exemplo, uma configuração com derivação central ou com derivação não central) para definir as saídas de sinal de acionamento, de modo a entregar sinais de acionamento a diferentes instrumentos cirúrgicos, como um dispositivo cirúrgico ultrassônico e um instrumento eletrocirúrgico de RF, e um instrumento cirúrgico multifuncional que inclui modos de energia ultrassônica e de RF que podem ser liberados sozinhos ou simultaneamente. Em particular, as saídas do sinal de acionamento podem emitir um sinal de acionamento ultrassônico (por exemplo, um sinal de acionamento quadrado médio da raiz (RMS) de 420V para um instrumento cirúrgico ultrassônico 241, e as saídas do sinal de acionamento podem emitir um sinal de acionamento eletrocirúrgico de
RF (por exemplo, um sinal de acionamento eletrocirúrgico de 100V) para um instrumento eletrocirúrgico de RF 241. Aspectos do módulo gerador 240 são aqui descritos com referência às Figuras 21 a 28B.
[00265] O módulo gerador 240 ou o dispositivo/instrumento 235 ou ambos são acoplados à torre de controle modular 236 conectada a múltiplos dispositivos de sala de operação como, por exemplo, Instrumentos cirúrgicos inteligentes, robôs, e outros dispositivos computadorizados localizados na sala de operação, conforme descrito com referência às Figuras 8 a 11, por exemplo. Hardware do gerador
[00266] A Figura 21 ilustra um exemplo de um gerador 900, que é uma forma de um gerador configurado para se acoplar a um instrumento ultrassônico e configurado adicionalmente para executar algoritmos de controle da lâmina ultrassônica adaptáveis em uma rede de dados cirúrgicos compreendendo um controlador de comunicação modular central conforme mostrado na Figura 20. O gerador 900 é configurado para fornecer múltiplas modalidades de energia a um instrumento cirúrgico. O gerador 900 fornece sinais ultrassônicos e de RF para fornecer energia a um instrumento cirúrgico, independentemente ou simultaneamente. Os sinais ultrassônicos e de RF podem ser fornecidos sozinhos ou em combinação e podem ser fornecidos simultaneamente. Conforme indicado acima, ao menos uma saída de gerador pode fornecer múltiplas modalidades de energia (por exemplo, ultrassônica, bipolar ou monopolar de RF, de eletroporação irreversível e/ou reversível, e/ou energia de micro-ondas, entre outras) através de uma única porta, e esses sinais podem ser fornecidos separadamente ou simultaneamente ao atuador de extremidade para tratar tecido. O gerador 900 compreende um processador 902 acoplado a um gerador de forma de onda 904. O processador 902 e o gerador de forma de onda 904 são configurados para gerar diversas formas de onda de sinal com base em informações armazenadas em uma memória acoplada ao processador 902, não mostrada a título de clareza da descrição. As informações digitais associadas com uma forma de onda são fornecidas ao gerador de forma de onda 904 que inclui um ou mais circuitos DAC para converter a entrada digital em uma saída analógica. A saída analógica é alimentada a um amplificador 1106 para condicionamento e amplificação de sinal. A saída condicionada e amplificada do amplificador 906 é acoplada a um transformador de potência 908. Os sinais são acoplados através do transformador de potência 908 ao lado secundário, que fica no lado de isolamento do paciente.. Um primeiro sinal de uma primeira modalidade de energia é fornecido ao instrumento cirúrgico entre os terminais identificados como ENERGIA1 e RETORNO. Um segundo sinal de uma segunda modalidade de energia é acoplado por um capacitor 910 e é fornecido ao instrumento cirúrgico entre os terminais identificados como ENERGIA2 e RETORNO. Será reconhecido que mais do que duas modalidades de energia podem ser emitidas e, portanto, o subscrito "n" pode ser usado para designar que até n terminais ENERGIAn podem ser fornecidos, em que n é um número inteiro positivo maior que 1. Também será reconhecido que até "n" trajetórias de retorno, RETORNOn podem ser fornecidas sem que se afaste do escopo da presente descrição.
[00267] Um segundo circuito de detecção de tensão 912 é acoplado através dos terminais identificados como ENERGIA1 e a trajetória de RETORNO para medir a tensão de saída entre eles. Um segundo circuito de detecção de tensão 924 é acoplado através dos terminais identificados como ENERGIA2 e a trajetória de RETORNO para medir a tensão de saída entre eles. Um circuito de detecção de corrente 914 está disposto em série com a perna RETORNO do lado secundário do transformador de potência 908 conforme mostrado para medir a corrente de saída para qualquer modalidade de energia. Se diferentes trajetórias de retorno são fornecidas para cada modalidade de energia, então um circuito de detecção de corrente separado seria fornecido em cada perna de retorno. As saídas do primeiro e segundo circuitos de detecção de tensão 912, 924 são fornecidas aos respectivos transformadores de isolamento 916, 922 e a saída do circuito de detecção de corrente 914 é fornecida a outro transformador de isolamento 918. As saídas dos transformadores de isolamento 916, 928, 922 no lado primário do transformador de potência 908 (lado não isolado do paciente) são fornecidas a um ou mais circuitos ADC 926. A saída digitalizada do circuito ADC 926 é fornecida para o processador 902 para processamento adicional e computação. As tensões de saída e as informações de realimentação de corrente de saída podem ser empregadas para ajustar a tensão de saída e a corrente fornecida para o instrumento cirúrgico, e para computar a impedância de saída, entre outros parâmetros. As comunicações de entrada/saída entre o processador 902 e os circuitos isolados do paciente são fornecidas através de um circuito de interface 920. Os sensores podem também estar em comunicação elétrica com o processador 902 por meio do circuito de interface 920.
[00268] Em um aspecto, a impedância pode ser determinada pelo processador 902 dividindo-se a saída do primeiro circuito de detecção de tensão 912 acoplado aos terminais identificados como ENERGIA1/RETORNO ou do segundo circuito de detecção de tensão 924 acoplado aos terminais identificados como ENERGIA2/RETORNO, pela saída do circuito de detecção de corrente 914 disposto em série com a perna de RETORNO do lado secundário do transformador de potência 908. As saídas do primeiro e segundo circuitos de detecção de tensão 912, 924 são fornecidas para separar os isolamentos transformadores 916, 922 e a saída do circuito de detecção de corrente 914 é fornecida para um outro transformador de isolamento 916. As medições de detecção de tensão e corrente digitalizados do circuito ADC 926 são fornecidas ao processador 902 para computar a impedância. Como um exemplo, a primeira modalidade de energia ENERGIA1 pode ser a energia ultrassônica e a segunda modalidade de energia ENERGIA2 pode ser a energia de RF. No entanto, além das modalidades de energia de RF ultrassônica e bipolar ou monopolar, outras modalidades de energia incluem eletroporação irreversível e/ou reversível e/ou energia de micro-ondas, entre outras. Além disso, embora o exemplo ilustrado na Figura 21 mostra uma única trajetória de retorno RETORNO que pode ser fornecida para duas ou mais modalidades de energia, em outros aspectos, várias trajetórias de retorno RETORNOn podem ser fornecidas para cada modalidade de energia ENERGIAn. Assim, como aqui descrito, a impedância do transdutor ultrassônico pode ser medida dividindo a saída do primeiro circuito de detecção de tensão 912 pelo circuito de detecção de corrente 914 e a impedância de tecido pode ser medida dividindo a saída do segundo circuito de detecção de tensão 924 pelo circuito de detecção de corrente 914.
[00269] Conforme mostrado na Figura 21, o gerador 900 compreendendo ao menos uma porta de saída pode incluir um transformador de potência 908 com uma única saída e com múltiplas derivações para fornecer potência sob a forma de uma ou mais modalidades de energia, como ultrassônica, RF bipolar ou monopolar, eletroporação irreversível e/ou reversível, e/ou energia de micro-ondas, entre outros, por exemplo ao atuador de extremidade dependendo do tipo de tratamento de tecido sendo executado. Por exemplo, o gerador 900 pode fornecer energia com maior tensão e menor corrente para conduzir um transdutor ultrassônico, com menor tensão e maior corrente para conduzir eletrodos de RF para vedar o tecido ou com uma forma de onda de coagulação para coagulação pontual usando eletrodos eletrocirúrgicos RF monopolar ou bipolar. A forma de onda de saída do gerador 900 pode ser orientada, chaveada ou filtrada para fornecer a frequência ao atuador de extremidade do instrumento cirúrgico. A conexão de um transdutor ultrassônico à saída do gerador 900 seria de preferência localizada entre a saída identificada como ENERGIA1 e RETORNO, conforme mostrado na Figura 21. Em um exemplo, uma conexão de eletrodos bipolares de RF à saída do gerador 900 estaria preferencialmente situada entre a saída identificada como ENERGIA2 e o RETORNO. No caso de saída monopolar, as conexões preferenciais seriam eletrodo ativo (por exemplo, feixe luminoso ou outra sonda) para a saída ENERGIA2 e um bloco de retorno adequado conectada à saída RETORNO.
[00270] Detalhes adicionais são descritos na publicação de Pedido de Patente U.S. n° 2017/0086914 intitulada TECHNIQUES FOR
OPERATING GENERATOR FOR DIGITALLY GENERATING
ELECTRICAL SIGNAL WAVEFORMS AND SURGICAL INSTRUMENTS, que foi publicada em 30 de março de 2017, que está aqui incorporado a título de referência em sua totalidade.
[00271] Conforme usado ao longo desta descrição, o termo "sem fio" e seus derivados podem ser usados para descrever circuitos, dispositivos, sistemas, métodos, técnicas, canais de comunicação etc., que podem comunicar dados através do uso de radiação eletromagnética modulada através de um meio não sólido. O termo não implica que os dispositivos associados não contêm quaisquer fios, embora em alguns aspectos eles podem não ter. O módulo de comunicação pode implementar qualquer de uma série de padrões ou protocolos de comunicação sem fio e com fio, incluindo, mas não se limitando a, Wi-Fi (família IEEE 802.11), WiMAX (família IEEE 802.16), IEEE 802.20, evolução de longo prazo (LTE, "long-term evolution"), Ev- DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA,
DECT, Bluetooth, derivados de Ethernet dos mesmos, bem como quaisquer outros protocolos sem fio e com fio que são designados como 3G, 4G, 5G, e além. O módulo de computação pode incluir uma pluralidade de módulos de comunicação. Por exemplo, um primeiro módulo de comunicação pode ser dedicado a comunicações sem fio de curto alcance como Wi-Fi e Bluetooth, e um segundo módulo de comunicação pode ser dedicado a comunicações sem fio de alcance mais longo como GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, e outros.
[00272] Como usado na presente invenção um processador ou unidade de processamento é um circuito eletrônico que executa operações em alguma fonte de dados externa, geralmente a memória ou algum outro fluxo de dados. O termo é usado na presente invenção para se referir ao processador central (unidade de processamento central) em um sistema ou sistemas de computador (especificamente sistemas em um chip (SoCs)) que combinam vários "processadores" especializados.
[00273] Como usado aqui, um sistema em um chip ou sistema no chip (SoC ou SOC) é um circuito integrado (também conhecido como um "IC" ou "chip") que integra todos os componentes de um computador ou outros sistemas eletrônicos. Pode conter funções digitais, analógicas, misturadas e frequentemente de radiofrequência — todos sobre um único substrato. Um SoC integra um microcontrolador (ou microprocessador) com periféricos avançados como unidade de processamento gráfico (GPU), módulo i-Fi, ou coprocessador. Um SoC pode ou não conter memória interna.
[00274] Como usado aqui, um microcontrolador ou controlador é um sistema que integra um microprocessador com circuitos periféricos e memória. Um microcontrolador (ou MCU para unidade do microcontrolador) pode ser implementado como um computador pequeno em um único circuito Integrado. Pode ser similar a um SoC; um SoC pode incluir um microcontrolador como um de seus componentes. Um microcontrolador pode conter uma ou mais unidades de processamento de núcleo (CPUs) juntamente com memória e periféricos de entrada/saída programáveis. A memória do programa na forma de RAM ferroelétrica, NOR flash ou ROM OTP também é muitas vezes incluída no chip, bem como uma pequena quantidade de RAM. Os microcontroladores podem ser usados para aplicações integradas, em contraste com os microprocessadores usados em computadores pessoais ou outras aplicações de propósitos gerais que consiste em vários circuitos integrados distintos.
[00275] Como usado na presente invenção, o termo controlador ou microcontrolador pode ser um dispositivo de chip ou IC (circuito integrado) independente que faz interface com um dispositivo periférico. Essa pode ser uma ligação entre duas partes de um computador ou um controlador em um dispositivo externo que gerencia a operação de (e conexão com) daquele dispositivo.
[00276] Qualquer dos processadores ou microcontrolador na presente invenção pode ser qualquer implementado por qualquer processador de núcleo único ou de múltiplos núcleos, como aqueles conhecidos sob o nome comercial de ARM Cortex pela Texas Instruments. Em um aspecto, o processador pode ser um processador Core Cortex-M4F LM4F230H5QR ARM, disponível junto à Texas Instruments, por exemplo, que compreende uma memória integrada de memória flash de ciclo único de 256 KB, ou outra memória não volátil, até 40 MHz, um buffer de busca antecipada para otimizar o desempenho acima de 40 MHz, uma memória de acesso aleatório seriada de ciclo único de 32 KB (SRAM), uma memória só de leitura interna (ROM) carregada com o programa StellarisWare®, memória só de leitura programável e apagável eletricamente (EEPROM) de 2 KB, um ou mais módulos de modulação por largura de pulso (PWM), uma ou mais análogos de entradas de codificador de quadratura (QEI), um ou mais conversores analógico para digital (ADC) de 12 bits com 12 canais de entrada analógica, detalhes dos quais estão disponíveis para a folha de dados do produto.
[00277] Em um aspecto, o processador pode compreender um controlador de segurança que compreende duas famílias com base em controlador, como TMS570 e RM4x, conhecidas sob o nome comercial de Hercules ARM Cortex R4, também pela Texas Instruments. O controlador de segurança pode ser configurado especificamente para as aplicações críticas de segurança IEC 61508 e ISO 26262, dentre outras, para fornecer recursos avançados de segurança integrada enquanto fornece desempenho, conectividade e opções de memória escalonáveis.
[00278] Os dispositivos modulares incluem os módulos (conforme descrito em conexão com Figuras 3 e 9, por exemplo) que são recebíveis dentro de um controlador cirúrgico central e os dispositivos ou instrumentos cirúrgicos que podem ser conectados aos vários módulos a fim de conectar ou emparelhar com o controlador cirúrgico central correspondente. Os dispositivos modulares incluem, por exemplo, instrumentos cirúrgicos inteligentes, dispositivos de imageamento médicos, dispositivos de sucção/irrigação, evacuadores de fumaça, geradores de energia, ventiladores, insufladores e exibições. Os dispositivos modulares aqui descritos podem ser controlados por algoritmos de controle. Os algoritmos de controle podem ser executados no dispositivo modular em si, no controlador cirúrgico central ao qual o dispositivo modular específico está emparelhado, ou tanto no dispositivo modular quanto no controlador cirúrgico central (por exemplo, cirúrgico (por exemplo, através de uma arquitetura de computação distribuída). Em algumas exemplificações,
os algoritmos de controle dos dispositivos modulares controlam os dispositivos com base nos dados detectados pelo próprio dispositivo modular (isto é, por sensores em, sobre ou conectados ao dispositivo modular). Esses dados podem ser relacionados ao paciente sendo operado (por exemplo, propriedades de tecido ou pressão de insuflação) ou ao dispositivo modular em si (por exemplo, a taxa na qual uma faca está sendo avançada, a corrente do motor, ou os níveis de energia). Por exemplo, um algoritmo de controle para um instrumento de grampeamento e corte cirúrgico pode controlar a taxa na qual o motor do instrumento aciona sua faca através do tecido de acordo com a resistência encontrada pela faca à medida que avança.
[00279] A Figura 22 ilustra uma forma de um sistema cirúrgico 1000 que compreende um gerador 1100 e vários instrumentos cirúrgicos 1104, 1106 e 1108 usáveis com este, sendo que o instrumento cirúrgico 1104 é um instrumento cirúrgico ultrassônico, o instrumento cirúrgico 1106 é um instrumento eletrocirúrgico de RF, e o instrumento cirúrgico multifuncional 1108 é uma combinação de instrumento eletrocirúrgico ultrassônico/ RF. O gerador 1100 é configurável para uso com uma variedade de instrumentos cirúrgicos. De acordo com várias formas, o gerador 1100 pode ser configurável para uso com instrumentos cirúrgicos diferentes de diferentes tipos, incluindo, por exemplo, o instrumento cirúrgico ultrassônico 1104, os instrumentos eletrocirúrgicos de RF 1106 e o instrumento cirúrgico multifuncional 1108 que integra energias ultrassônicas e de RF fornecidas simultaneamente a partir do gerador 1100. Embora na forma da Figura 22 o gerador 1100 seja mostrado separado dos instrumentos cirúrgicos 1104, 1106, 1108 em uma forma, o gerador 1100 pode ser formado integralmente com quaisquer dos instrumentos cirúrgicos 1104, 1106 e 1108 para formar um sistema cirúrgico unitário. O gerador 1100 compreende um dispositivo de entrada 1110 situado em um painel frontal do console do gerador 1100. O dispositivo de entrada 1110 pode compreender qualquer dispositivo adequado que gere sinais adequados para programação do funcionamento do gerador 1100. O gerador 1100 pode ser configurado para comunicação com fio ou sem fio.
[00280] O gerador 1100 é configurado para acionar múltiplos instrumentos cirúrgicos 1104, 1106, 1108. O primeiro instrumento cirúrgico é um instrumento cirúrgico ultrassônico 1104 e compreende uma empunhadura 1105 (HP), um transdutor ultrassônico 1120, um eixo de acionamento 1126 e um atuador de extremidade 1122. O atuador de extremidade 1122 compreende uma lâmina ultrassônica 1128 acoplada acusticamente ao transdutor ultrassônico 1120 e um braço de aperto
1140. A empunhadura 1105 compreende um gatilho 1143 para operar o braço de aperto 1140 e uma combinação de botões de alternância 1134a, 1134b, 1134c para energizar e acionar a lâmina ultrassônica 1128 ou outra função. Os botões de alternância 1134a, 1134b, 1134c podem ser configurados para energizar o transdutor ultrassônico 1120 com o gerador 1100.
[00281] O gerador 1100 é também configurado para acionar um segundo instrumento cirúrgico 1106. O segundo instrumento cirúrgico 1106 é um instrumento eletrocirúrgico de RF e compreende uma empunhadura 1107 (HP), um eixo de acionamento 1127 e um atuador de extremidade 1124. O atuador de extremidade 1124 compreende eletrodos nos braços de aperto 1142a e 1142b e retorno através da porção de condutor elétrico do eixo de acionamento 1127. Os eletrodos são acoplados à fonte de energia bipolar dentro do gerador 1100 e energizadas pela mesma. A empunhadura 1107 compreende um gatilho 1145 para operar os braços de aperto 1142a, 1142b e um botão de energia 1135 para atuar uma chave de energia para energizar os eletrodos no atuador de extremidade 1124.
[00282] O gerador 1100 é também configurado para acionar um instrumento cirúrgico multifuncional 1108. O instrumento cirúrgico multifuncional 1108 compreende uma empunhadura 1109 (HP), um eixo de acionamento 1129 e um atuador de extremidade 1125. O atuador de extremidade 1125 compreende uma lâmina ultrassônica 1149 e um braço de aperto 1146. A lâmina ultrassônica 1149 é acoplada acusticamente ao transdutor ultrassônico 1120. A empunhadura 1109 compreende um gatilho 1147 para operar o braço de aperto 1146 e uma combinação de botões de alternância 1137a, 1137b, 1137c para energizar e acionar a lâmina ultrassônica 1149 ou outra função. Os botões de alternância 1137a, 1137b, 1137c podem ser configurados para energizar o transdutor ultrassônico 1120 com o gerador 1100 e energizar a lâmina ultrassônica 1149 com a fonte de energia bipolar também contida dentro do gerador 1100.
[00283] O gerador 1100 é configurável para uso com uma variedade de instrumentos cirúrgicos. De acordo com várias formas, o gerador 1100 pode ser configurável para uso com instrumentos cirúrgicos diferentes de diferentes tipos, incluindo, por exemplo, o instrumento cirúrgico ultrassônico 1104, o instrumento cirúrgico de RF 1106 e o instrumento cirúrgico multifuncional 1108 que integra energias ultrassônicas e de RF fornecidas simultaneamente a partir do gerador
1100. Embora na forma da Figura 22 o gerador 1100 seja mostrado separado dos instrumentos cirúrgicos 1104, 1106, 1108 em uma outra forma, o gerador 1100 pode ser formado integralmente com qualquer um dos instrumentos cirúrgicos 1104, 1106, 1108 para formar um sistema cirúrgico unitário. Conforme discutido acima, o gerador 1100 compreende um dispositivo de entrada 1110 situado em um painel frontal do console do gerador 1100. O dispositivo de entrada 1110 pode compreender qualquer dispositivo adequado que gere sinais adequados para programação do funcionamento do gerador 1100. O gerador 1100 pode também compreender um ou mais dispositivos de saída 1112. Outros aspectos de geradores para gerar digitalmente formas de onda de sinal elétrico e instrumentos cirúrgicos são descritos na publicação de patente US-2017-0086914-A1, que está aqui incorporada a título de referência, em sua totalidade.
[00284] A Figura 23 é um atuador de extremidade 1122 do dispositivo ultrassônico exemplificador 1104, de acordo com ao menos um aspecto da presente descrição. O atuador de extremidade 1122 pode compreender uma lâmina 1128 que pode ser acoplado ao transdutor ultrassônico 1120 através de um guia de Ondas. Quando acionada pelo transdutor ultrassônico 1120, a lâmina 1128 pode vibrar e, quando colocada em contato com tecidos, pode cortar e/ou coagular os mesmos, conforme descrito na presente invenção. De acordo com vários aspectos, e conforme ilustrado na Figura 23, o atuador de extremidade 1122 pode compreender também um braço de aperto 1140 que pode ser configurado para ação cooperativa com a lâmina 1128 do atuador de extremidade 1122. Com a lâmina 1128, o braço de aperto 1140 pode compreender um conjunto de garras. O braço de aperto 1140 pode ser conectado de forma articulada em uma extremidade distal de um eixo de acionamento 1126 da porção instrumental 1104. O braço de aperto 1140 pode incluir um bloco de tecido do braço de aperto 1163, o qual pode ser formado de Teflon® ou outro material de baixo atrito adequado. O bloco 1163 pode ser montado para cooperação com a lâmina 1128, com movimento pivotante do braço de aperto 1140 que posiciona o bloco de aperto 1163 em uma relação substancialmente paralela a, e em contato com, a lâmina 1128. Para essa construção, uma porção tecidual a ser apertada pode ficar presa entre o bloco para tecido 1163 e a lâmina 1128. O bloco de tecido 1163 pode ser dotado de uma configuração semelhante a dente de serra incluindo uma pluralidade de dentes de preensão 1161 axialmente espaçados e que se estendem proximalmente para melhorar a preensão do tecido em cooperação com a lâmina 1128. O braço de aperto 1140 pode fazer a transição da posição aberta mostrada na Figura 23 para uma posição fechada (com o braço de aperto 1140 em contato com ou próximo à lâmina 1128) de qualquer maneira adequada. Por exemplo, a empunhadura 1105 pode compreender um gatilho de fechamento de garra. Quando acionado por um clínico, o gatilho de fechamento de garra pode girar braço de aperto 1140 de qualquer maneira adequada.
[00285] O gerador 1100 pode ser ativado para fornecer o sinal de acionamento ao transdutor ultrassônico 1120 de qualquer maneira adequada. Por exemplo, o gerador 1100 pode compreender uma chave de pedal 1430 (Figura 24) acoplada ao gerador 1100 por meio de um cabo de chave de pedal 1432. Um clínico pode ativar o transdutor ultrassônico 1120 e, desse modo, o transdutor ultrassônico 1120 e a lâmina 1128, pressionando a chave de pedal 1430. Além disso, ou em vez da chave de pedal 1430, alguns aspectos do dispositivo ultrassônico 1104 podem utilizar uma ou mais chaves posicionadas na empunhadura 1105 que, quando ativadas, podem fazer com que o gerador 1100 ative o transdutor ultrassônico 1120. Em um aspecto, por exemplo, as uma ou mais chaves podem compreender um par de botões de alternância 1134a, 1134b, 1134c (Figura 22), por exemplo, para determinar um modo de operação do dispositivo 1104. Quando o botão de alternância 1134a é pressionado, por exemplo, o gerador ultrassônico 1100 pode fornecer um sinal de acionamento máximo ao transdutor 1120, fazendo com que o mesmo produza um máximo de saída de energia ultrassônica. Pressionar o botão de alternância 1134b pode fazer com que o gerador ultrassônico 1100 forneça um sinal de acionamento selecionável pelo usuário ao transdutor ultrassônico 1120, fazendo com que este produza menos que a máxima saída de energia ultrassônica. O dispositivo 1104 adicional ou alternativamente pode compreender uma segunda chave para, por exemplo, indicar uma posição de um gatilho de fechamento de garra para operar as garras através do braço de aperto 1140 do atuador de extremidade 1122. Além disso, em alguns aspectos, o gerador ultrassônico 1100 pode ser ativado com base na posição do gatilho de fechamento da garra, (por exemplo, conforme o clínico pressiona o gatilho de fechamento da garra para fechar através do braço de aperto 1140, pode ser aplicada uma energia ultrassônica).
[00286] Adicional ou alternativamente, as uma ou mais chaves podem compreender um botão de alternância 1134c que, quando pressionado, faz com que o gerador 1100 forneça uma saída em pulsos (Figura 22). Os pulsos podem ser fornecidos a qualquer frequência e agrupamento adequados, por exemplo. Em certos aspectos, o nível de potência dos pulsos pode consistir nos níveis de potência associados aos botões de alternância 1134a, 1134b (máximo, menos que máximo), por exemplo.
[00287] Será reconhecido que um dispositivo 1104 pode compreender qualquer combinação dos botões de alternância 1134a, 1134b, 1134c (Figura 22). Por exemplo, o dispositivo 1104 poderia ser configurado de modo a ter apenas dois botões de alternância: um botão de alternância 1134a para produzir um máximo de saída de energia ultrassônica e um botão de alternância 1134c para produzir uma saída pulsada, seja no nível de potência máximo ou menor que o máximo. Desse modo, a configuração de saída do sinal de acionamento do gerador 1100 poderia ser cinco sinais contínuos, ou qualquer número discreto de sinais pulsados individuais (1, 2, 3, 4 ou 5). Em certos aspetos, a configuração específica de sinal de acionamento pode ser controlada com base, por exemplo, nas configurações de EEPROM no gerador 1100 e/ou seleções do nível de potência pelo usuário.
[00288] Em certos aspectos, uma chave de duas posições pode ser oferecida como alternativa a um botão de alternância 1134c (Figura 22).
Por exemplo, um dispositivo 1104 pode incluir um botão de alternância 1134a para produzir uma saída contínua em um nível de potência máximo e um botão de alternância de duas posições 1134b. Em uma primeira posição predeterminada, o botão de alternância 1134b pode produzir uma saída contínua em um nível de potência menor que o máximo, e em uma segunda posição de detenção, o botão de alternância 1134b pode produzir uma saída em pulsos (por exemplo, em um nível de potência máximo ou menor que o máximo, dependendo da configuração da EEPROM).
[00289] Em alguns aspectos, o atuador de extremidade eletrocirúrgico de RF 1124, 1125 (Figura 22) pode compreender também um par de eletrodos. Os eletrodos podem estar em comunicação com o gerador 1100, por exemplo, através de um cabo. Os eletrodos podem ser usados, por exemplo, para medir uma impedância de uma porção tecidual presente entre o braço de aperto 1142a, 1146 e a lâmina 1142b, 1149. O gerador 1100 pode fornecer um sinal (por exemplo, um sinal não terapêutico) aos eletrodos. A impedância da porção de tecido pode ser encontrada, por exemplo, pelo monitoramento da corrente, tensão, etc. do sinal.
[00290] Em vários aspectos, o gerador 1100 pode compreender vários elementos funcionais separados, como módulos e/ou blocos, conforme mostrado na Figura 24, um diagrama do sistema cirúrgico 1000 da Figura 22. Diferentes módulos ou elementos funcionais podem ser configurados para acionar diferentes tipos de dispositivos cirúrgicos 1104, 1106, 1108. Por exemplo, um módulo gerador ultrassônico pode acionar um dispositivo ultrassônico, como o instrumento ultrassônico
1104. Um módulo gerador para eletrocirurgia/RF pode acionar o dispositivo eletrocirúrgico 1106. Os módulos podem gerar os respectivos sinais de acionamento para acionar os dispositivos cirúrgicos 1104, 1106, 1108. Em vários aspectos, cada um dentre o módulo gerador ultrassônico e/ou o módulo gerador para eletrocirurgia/RF pode ser formado integralmente com o gerador 1100. Alternativamente, um ou mais dos módulos podem ser fornecidos como um módulo de circuito separado eletricamente acoplado ao gerador
1100. (Os módulos são mostrados em linha tracejada para ilustrar essa opção.) Além disso, em alguns aspectos o módulo gerador para eletrocirurgia/RF pode ser formado integralmente com o módulo gerador ultrassônico, ou vice-versa.
[00291] De acordo com os aspectos descritos, o módulo gerador ultrassônico pode produzir um ou mais sinais de acionamento com tensões, correntes e frequências específicas (por exemplo, 55.500 ciclos por segundo, ou Hz). Os um ou mais sinais de acionamento podem ser fornecidos ao dispositivo ultrassônico 1104 e especificamente ao transdutor 1120, o qual pode operar, por exemplo, conforme descrito acima. Em um aspecto, o gerador 1100 pode ser configurado para produzir um sinal de acionamento de uma tensão, corrente e/ou sinal de saída de frequência específicos que podem ser executados com alta resolução, exatidão e repetitividade.
[00292] De acordo com os aspectos descritos, o módulo gerador para eletrocirurgia/RF pode gerar um ou mais sinais de acionamento com potência de saída suficiente para realizar eletrocirurgia bipolar com o uso de energia de radiofrequência (RF). Em aplicações de eletrocirurgia bipolar, o sinal de acionamento pode ser fornecido, por exemplo, aos eletrodos do dispositivo eletrocirúrgico 1106, por exemplo, conforme descrito acima. Consequentemente, o gerador 1100 pode ser configurado para propósitos terapêuticos mediante a aplicação, ao tecido, de energia elétrica suficiente para tratamento do dito tecido (por exemplo, coagulação, cauterização, soldagem de tecidos, etc.).
[00293] O gerador 1100 pode compreender um dispositivo de entrada 2150 (Figura 27B) situado, por exemplo, sobre um painel frontal do console do gerador 1100. O dispositivo de entrada 2150 pode compreender qualquer dispositivo adequado que gere sinais adequados para programação do funcionamento do gerador 1100. Em operação, o usuário pode programar ou, de outro modo, controlar a operação do gerador 1100 com o uso do dispositivo de entrada 2150. O dispositivo de entrada 2150 pode compreender qualquer dispositivo adequado que gere sinais que possam ser usados pelo gerador (por exemplo, por um ou mais processadores contidos no gerador) para controlar o funcionamento do gerador 1100 (por exemplo, o funcionamento do módulo gerador ultrassônico e/ou do módulo gerador para eletrocirurgia/RF). Em vários aspectos, o dispositivo de entrada 2150 inclui um ou mais dentre botões, chaves, controles giratórios, teclado, teclado numérico, monitor com tela sensível ao toque, dispositivo apontador e conexão remota a um computador de uso geral ou dedicado. Em outros aspectos, dispositivo de entrada 2150 pode compreender uma interface de usuário adequada, como uma ou mais telas de interface de usuário mostradas em um monitor com tela sensível ao toque, por exemplo. Consequentemente, por meio do dispositivo de entrada 2150, o usuário pode ajustar ou programar vários parâmetros operacionais do gerador, como corrente (I), tensão (V), frequência (f) e/ou período (T) de um ou mais sinais de acionamento gerados pelo módulo gerador ultrassônico e/ou pelo módulo gerador para eletrocirurgia/RF.
[00294] O gerador 1100 pode compreender um dispositivo de saída 2140 (Figura 27B) situado, por exemplo, sobre um painel frontal do console do gerador 1100. O dispositivo de saída 2140 inclui um ou mais dispositivos para fornecer ao usuário uma retroinformação sensorial. Esses dispositivos podem compreender, por exemplo, dispositivos de retroinformação visual (por exemplo, um monitor com tela de LCD, indicadores em LED), dispositivos de retroinformação auditiva (por exemplo, um alto-falante, uma campainha) ou dispositivos de retroinformação tátil (por exemplo, atuadores hápticos).
[00295] Embora certos módulos e/ou blocos do gerador 1100 possam ser descritos a título de exemplo, deve-se considerar que pode- se usar um número maior ou menor de módulos e/ou blocos e, ainda assim, estar no escopo dos aspectos. Adicionalmente, embora vários aspectos possam ser descritos em termos de módulos e/ou blocos para facilitar a descrição, estes módulos e/ou blocos podem ser implementados por um ou mais componentes de hardware, por exemplo, processadores, processadores de sinal digital (DSPs), dispositivos de lógica programável (PLDs), circuitos integrados específicos da aplicação (ASICs), circuitos, registros e/ou componentes de software, por exemplo, programas, sub-rotinas, lógicas e/ou combinações de componentes de hardware e software.
[00296] Em um aspecto, o módulo de acionamento do gerador ultrassônico e o módulo de acionamento para eletrocirurgia/RF 1110 (Figura 22) podem compreender uma ou mais aplicações integradas, implementadas como firmware, software, hardware ou qualquer combinação dos mesmos. Os módulos podem compreender vários módulos executáveis, como software, programas, dados, acionadores e interfaces de programa de aplicativos (API, de "application program interfaces"), entre outros. O firmware pode estar armazenado em memória não volátil (NVM, de "non-volatile memory"), como em memória só de leitura (ROM) com máscara de bits, ou memória flash. Em várias implementações, o armazenamento do firmware na ROM pode preservar a memória flash. A NVM pode compreender outros tipos de memória incluindo, por exemplo, ROM programável (PROM, de "programmable ROM"), ROM programável apagável (EPROM, de "erasable programmable ROM"), ROM programável eletricamente apagável (EEPROM, de "electrically erasable programmable ROM"), ou battery backed random-memória de acesso aleatório (RAM, de "random-access memory") como RAM dinâmica (DRAM, de "dynamic RAM"), DRAM com dupla taxa de dados (DDRAM, de "Double-Data- Rate DRAM"), e/ou DRAM síncrona (SDRAM, de "synchronous DRAM").
[00297] Em um aspecto, os módulos compreendem um componente de hardware implementado como um processador para execução de instruções de programa para monitoramento de várias características mensuráveis dos dispositivos 1104, 1106, 1108 e gerando um sinal ou sinais de acionamento de saída correspondente para a operação dos dispositivos 1104, 1106, 1108. Em aspectos nos quais o gerador 1100 é usado em conjunto com o dispositivo 1104, o sinal de acionamento pode acionar o transdutor ultrassônico 1120 nos modos cirúrgicos de corte e/ou coagulação. As características elétricas do dispositivo 1104 e/ou do tecido podem ser medidas e usadas para controlar os aspectos operacionais do gerador 1100 e/ou serem fornecidas como retroinformação ao usuário. Em aspectos nos quais o gerador 1100 é usado em conjunto com o dispositivo 1106, o sinal de acionamento pode fornecer energia elétrica (por exemplo, energia de RF) ao atuador de extremidade 1124 nos modos de corte, coagulação e/ou dessecação. As características elétricas do dispositivo 1106 e/ou do tecido podem ser medidas e usadas para controlar os aspectos operacionais do gerador 1100 e/ou serem fornecidas como retroinformação ao usuário. Em vários aspectos, conforme anteriormente discutido, os componentes de hardware podem ser implementados como PSD, PLD, ASIC, circuitos e/ou registros. Em um aspecto, o processador pode ser configurado para armazenar e executar instruções de programa de software para computador, de modo a gerar os sinais de saída de função de passo para acionamento de vários componentes dos dispositivos 1104, 1106, 1108, como o transdutor ultrassônico 1120 e os atuadores de extremidade 1122, 1124, 1125.
[00298] Um sistema ultrassônico eletromecânico inclui um transdutor ultrassônico, um guia de onda, e uma lâmina ultrassônica. O sistema ultrassônico eletromecânico tem uma frequência de ressonância inicial definida pelas propriedades físicas do transdutor ultrassônico, o guia de ondas, e a lâmina ultrassônica. O transdutor ultrassônico é excitado por um sinal de tensão Vg(t) e corrente Ig(t) alternada igual à frequência de ressonância do sistema ultrassônico eletromecânico. Quando o sistema ultrassônico eletromecânico está em ressonância, a diferença de fase entre os sinais de tensão Vg(t) e corrente Ig(t) é zero. Dito de outra forma, na ressonância a impedância indutiva é igual à impedância capacitiva. Conforme a lâmina ultrassônica aquece, a conformidade da lâmina ultrassônica (modelada como uma capacitância equivalente) faz com que a frequência de ressonância do sistema ultrassônico eletromecânico se desloque. Dessa forma, a impedância indutiva já não é igual à impedância capacitiva causando uma diferença entre a frequência de acionamento e a frequência de ressonância do sistema ultrassônico eletromecânico. O sistema está agora operando "fora de ressonância". A diferença entre a frequência de acionamento e a frequência de ressonância é manifestada como uma diferença de fase entre os sinais de tensão Vg(t) e corrente Ig(t) aplicados ao transdutor ultrassônico. Os circuitos eletrônicos do gerador podem facilmente monitorar a diferença de fase entre os sinais de tensão Vg(t) e corrente Ig(t) e podem continuamente ajustar a frequência de acionamento até que a diferença de fase é mais uma vez igual a zero. Nesse ponto, a nova frequência de acionamento é igual à frequência de ressonância do novo sistema ultrassônico eletromecânico. A mudança na fase e/ou frequência pode ser usada como uma medição indireta da temperatura da lâmina ultrassônica.
[00299] Conforme mostrado na Figura 25, as propriedades eletromecânicas do transdutor ultrassônico podem ser modeladas como um circuito equivalente que compreende uma primeira ramificação que tem uma capacitância estática e uma segunda ramificação "de movimento" que tem uma indutância, resistência e capacitância conectadas em série que definem as propriedades eletromecânicas de um ressonador. Os geradores ultrassônicos conhecidos podem incluir um indutor de sintonia para cancelar a capacitância estática a uma frequência de ressonância de modo que substancialmente toda a corrente do sinal de acionamento do gerador flua para a ramificação de movimento. Consequentemente, mediante o uso de um indutor de sintonia, a corrente do sinal de acionamento do gerador representa a corrente da ramificação de movimento, e o gerador é dessa forma capaz de controlar seu sinal de acionamento para manter a frequência de ressonância do transdutor ultrassônico. O indutor de sintonia pode também transformar a plotagem da impedância de fase do transdutor ultrassônico para otimizar as capacidades de travamento de frequência do gerador. Entretanto, o indutor de sintonia precisa ser combinado com a capacitância estática específica de um transdutor ultrassônico na frequência de ressonância operacional. Em outras palavras, um transdutor ultrassônico diferente tendo uma capacitância estática diferente precisa de um indutor de sintonia.
[00300] A Figura 25 ilustra um circuito equivalente 1500 de um transdutor ultrassônico, como o transdutor ultrassônico 1120, de acordo com um aspecto. O circuito 1500 compreende uma primeira ramificação "de movimento" tendo, conectadas em série, indutância Ls, resistência Rs e capacitância Cs que definem as propriedades eletromecânicas do ressonador, e uma segunda ramificação capacitiva tendo uma capacitância estática C0. A corrente de acionamento Ig(t) pode ser recebida de um gerador a uma tensão de acionamento Vg(t), com a corrente de movimento Im(t) fluindo através da primeira ramificação e a corrente Ig(t)−Im(t) que flui através da ramificação capacitiva. O controle das propriedades eletromecânicas do transdutor ultrassônico pode ser obtido controlando-se adequadamente Ig(t) e Vg(t). Conforme explicado acima, as arquiteturas de gerador convencionais podem incluir um indutor de sintonia Lt (mostrado em linha tracejada na Figura 25) para cancelar, em um circuito de ressonância paralelo, a capacitância estática C0 em uma frequência de ressonância, de modo que substancialmente toda a saída de corrente do gerador Ig(t) flua através da ramificação de movimento. Desse modo, o controle da corrente da ramificação de movimento Im(t) é obtido mediante o controle da saída de corrente do gerador Ig(t). O indutor de sintonia Lt é específico para a capacitância estática C0 de um transdutor ultrassônico, porém, e um transdutor ultrassônico diferente tendo uma capacitância estática diferente exige um indutor de sintonia diferente Lt. Além disso, como o indutor de sintonia Lt correlaciona-se ao valor nominal da capacitância estática C0 em uma única frequência de ressonância, o controle acurado da corrente de ramificação de movimento Im(t) é garantido apenas naquela frequência. Conforme a frequência se desloca para baixo com a temperatura do transdutor, o controle exato da corrente da ramificação de movimento fica comprometido.
[00301] As formas do gerador 1100 podem não contar com um indutor de sintonia Lt para monitorar a corrente de ramificação de movimento Im(t). Em vez disso, o gerador 1100 pode usar o valor medido da capacitância estática C0 entre aplicações de potência para um dispositivo cirúrgico ultrassônico 1104 específico (juntamente com dados de retroinformação de tensão do sinal de acionamento e de corrente) para determinar os valores da corrente de ramificação de movimento Im(t) em uma base dinâmica e contínua (por exemplo, em tempo real). Essas formas do gerador 1100 são, portanto, capazes de fornecer sintonia virtual para simular um sistema que é sintonizado ou ressonante com qualquer valor de capacitância estática C0 em qualquer frequência, e não apenas em uma única frequência de ressonância imposta por um valor nominal da capacitância estática C0.
[00302] A Figura 26 é um diagrama de blocos simplificado de um aspecto do gerador 1100, para fornecer a sintonia sem indutor, conforme descrito acima, entre outros benefícios. As Figuras 27A a 27C ilustram uma arquitetura do gerador 1100 da Figura 26, de acordo com um aspecto. Com referência à Figura 26, o gerador 1100 pode compreender um estágio isolado do paciente 1520 em comunicação com um estágio não isolado 1540 por meio de um transformador de potência 1560. Um enrolamento secundário 1580 do transformador de potência 1560 está contido no estágio isolado 1520 e pode compreender uma configuração com derivação (por exemplo, uma configuração com derivação central ou com derivação não central) para definir as saídas de sinal de acionamento 1600a, 1600b, 1600c, de modo a fornecer sinais de acionamento de saída a diferentes dispositivos cirúrgicos, como um dispositivo cirúrgico ultrassônico 1104 e um dispositivo eletrocirúrgico 1106. Em particular, as saídas de sinal de acionamento 1600a, 1600b e 1600c podem fornecer um sinal de acionamento (por exemplo, um sinal de acionamento a 420V RMS) a um instrumento ultrassônico 1104, e as saídas de sinal de acionamento 1600a, 1600b e 1600c podem fornecer um sinal de acionamento (por exemplo, um sinal de acionamento a 100V RMS) a um dispositivo eletrocirúrgico 1106, com a saída 1600b correspondendo à derivação central do transformador de potência 1560. O estágio não isolado 1540 pode compreender um amplificador de potência 1620 que tem uma saída conectada a um enrolamento primário 1640 do transformador de potência 1560. Em certos aspectos, o amplificador de potência 1620 pode compreender um amplificador do tipo push-pull, por exemplo. O estágio não isolado 1540 pode compreender, ainda, um dispositivo lógico programável 1660 para fornecer uma saída digital a um conversor de digital para analógico (DAC) 1680 que, por sua vez, fornece um sinal analógico correspondente a uma entrada do amplificador de potência
1620. Em certos aspectos, o dispositivo lógico programável 1660 pode compreender um arranjo de portas programável em campo (FPGA), por exemplo. O dispositivo lógico programável 1660, pelo fato de controlar a entrada do amplificador de potência 1620 através do DAC 1680 pode, portanto, controlar qualquer dentre um certo número de parâmetros (por exemplo, frequência, formato de onda, amplitude do formato de onda) de sinais de acionamento aparecendo nas saídas de sinal de acionamento 1600a, 1600b e 1600c. Em certos aspectos e conforme discutido abaixo, o dispositivo lógico programável 1660, em conjunto com um processador (por exemplo, o processador 1740 discutido abaixo), pode implementar um certo número de algoritmos de controle baseados em processamento de sinal digital (DSP) e/ou outros algoritmos de controle para parâmetros de controle dos sinais de acionamento fornecidos pelo gerador 1100.
[00303] A potência pode ser fornecida a um trilho de alimentação do amplificador de potência 1620 por um regulador de modo de chave
1700. Em certos aspectos, o regulador de modo de chave 1700 pode compreender um regulador ajustável de antagônico, por exemplo. Conforme discutido acima, o estágio não isolado 1540 pode compreender, ainda, um processador 1740 que, em um aspecto pode compreender um processador DSP como um ADSP-21469 SHARC DSP, disponível junto à Analog Devices, Norwood, Mass., EUA, por exemplo. Em certos aspectos, o processador 1740 pode controlar a operação do conversor de potência de modo de chave 1700 responsivo a dados de retroinformação da tensão recebidos do amplificador de potência 1620 pelo processador 1740 por meio de um conversor analógico-para-digital (DAC) 1760. Em um aspecto, por exemplo, o processador 1740 pode receber como entrada, através do ADC 1760, o envelope de formato de onda de um sinal (por exemplo, um sinal de RF) sendo amplificado pelo amplificador de potência 1620. O processador 1740 pode então controlar o regulador de modo de chave 1700 (por exemplo, através de uma saída modulada de largura de pulso (PWM, de "pulse-width modulated") de modo que a tensão de trilho provida ao amplificador de potência 1620 siga o envelope forma de onda do sinal amplificado. Modulando-se dinamicamente a tensão do trilho do amplificador de potência 1620 com base no envelope de forma de onda, a eficiência do amplificador de potência 1620 pode ser significativamente aprimorada em relação um esquema de amplificador com tensão de trilho fixa. O processador 1740 pode ser configurado para comunicação com fio ou sem fio.
[00304] Em certos aspectos e conforme discutido em detalhes adicionais em conexão com as Figuras 28A a 28B, o dispositivo lógico programável 1660, em conjunto com o processador 1740, pode implementar um esquema de controle com sintetizador digital direto (DDS) para controlar o formato de onda, a frequência e/ou a amplitude do fornecimento de sinais de acionamento pelo gerador 1100. Em um aspecto, por exemplo, o dispositivo lógico programável 1660 pode implementar um algoritmo de controle de DDS 2680 (Figura 28A) mediante a recuperação de amostras de formato de onda armazenado em uma tabela de pesquisa (LUT) atualizada dinamicamente, como uma RAM LUT que pode ser integrada em um FPGA. Esse algoritmo de controle é particularmente útil para aplicações ultrassônicas nas quais um transdutor ultrassônico, como o transdutor ultrassônico 1120, pode ser acionado por uma corrente senoidal limpa em sua frequência de ressonância. como outras frequências podem excitar ressonâncias parasíticas, minimizar ou reduzir a distorção total da corrente da ramificação de movimento pode correspondentemente minimizar ou reduzir os efeitos indesejáveis da ressonância. Como o formato de onda de uma saída de sinal de acionamento pelo gerador 1100 sofre o impacto de várias fontes de distorção presentes no circuito de acionamento de saída (por exemplo, o transformador de potência 1560, o amplificador de potência 1620), dados de retroinformação sobre tensão e corrente com base no sinal de acionamento podem ser fornecidos a um algoritmo, como um algoritmo para controle de erros implementado pelo processador 1740, que compensa a distorção mediante a adequada pré-distorção ou modificação das amostras de formato de onda armazenadas na LUT de maneira dinâmica e contínua (por exemplo, em tempo real). Em um aspecto, a quantidade ou o grau de pré-distorção aplicada às amostras da LUT pode ser baseada no erro entre uma corrente da ramificação de movimento computadorizada e um forma de onda de corrente desejado, sendo que o erro é determinado em uma base de amostra por amostra. Dessa maneira, as amostras da LUT pré-distorcidas, quando processadas através do circuito de acionamento, podem resultar em um sinal de acionamento da ramificação de movimento que tem a forma de onda desejada (por exemplo, senoidal) para acionar de maneira ótima o transdutor ultrassônico. Em tais aspectos, as amostras de forma de onda de LUT não irão, portanto, representar a forma de onda desejada do sinal de acionamento, mas sim a forma de onda que é necessária para produzir, por fim, a forma de onda desejado do sinal de acionamento da ramificação de movimento, quando são levados em conta os efeitos de distorção.
[00305] O estágio não isolado 1540 pode compreender adicionalmente um ADC 1780 e um ADC 1800 acoplados à saída do transformador de potência 1560 por meio dos respectivos transformadores de isolamento, 1820 e 1840, para respectivamente amostrar a tensão e a corrente de sinais de acionamento emitidos pelo gerador 1100. Em certos aspectos, os ADCs 1780 e 1800 podem ser configurados para amostragem em altas velocidades (por exemplo, 80 Msps) para possibilitar a sobreamostragem dos sinais de acionamento. Em um aspecto, por exemplo, a velocidade de amostragem dos ADCs 1780 e 1800 pode possibilitar uma sobreamostragem de aproximadamente 200X (dependendo da frequência de acionamento) dos sinais de acionamento. Em certos aspectos, as operações de amostragem dos ADCs 1780, 1800 podem ser realizadas por um único ADC recebendo tensão de entrada e sinais de corrente por meio de um multiplexador bidirecional. O uso de amostragem em alta velocidade nos aspectos do gerador 1100 pode possibilitar, entre outras coisas, cálculo da corrente complexa que flui através da ramificação de movimento (que pode ser utilizada em certos aspectos para implementar o controle de formato de onda baseado em DDS descrito acima), filtragem digital acurada dos sinais amostrados, e cálculo do consumo real de energia com um alto grau de precisão. A saída dos dados de retroinformação sobre tensão e corrente pelos ADCs 1780 e 1800 pode ser recebida e processada (por exemplo, buffering do tipo FIFO, multiplexação) pelo dispositivo lógico programável 1660 e armazenada em memória de dados para subsequente recuperação, por exemplo, pelo processador
1740. Conforme observado acima, os dados de retroinformação sobre tensão e corrente podem ser usados como entrada para um algoritmo para pré-distorção ou modificação de amostras de formato de onda na LUT, de maneira dinâmica e contínua. Em certos aspectos, isso pode requerer que cada par de dados de retroinformação sobre tensão e corrente armazenado seja indexado com base em, ou de outro modo associado a, uma correspondente amostra da LUT que foi fornecida pelo dispositivo lógico programável 1660 quando o par de dados de retroinformação sobre tensão e corrente foi capturado. A sincronização das amostras da LUT com os dados de retroinformação sobre tensão e corrente dessa maneira contribui para a correta temporização e estabilidade do algoritmo de pré-distorção.
[00306] Em certos aspectos, os dados de retroinformação sobre tensão e corrente podem ser utilizados para controlar a frequência e/ou a amplitude (por exemplo, amplitude de corrente) dos sinais de acionamento. Em um aspecto, por exemplo, os dados de retroinformação de tensão e corrente podem ser usados para determinar a fase da impedância, por exemplo, a diferença de fase entre os sinais de acionamento de tensão e corrente. A frequência do sinal de acionamento pode, então, ser controlada para minimizar ou reduzir a diferença entre a fase da impedância determinada e um ponto de ajuste da fase da impedância (por exemplo, 0°), minimizando ou reduzindo assim os efeitos da distorção harmônica e, correspondentemente, acentuando a acurácia da medição de fase da impedância. A determinação da impedância de fase e um sinal de controle da frequência podem ser implementados no processador 1740, por exemplo, com o sinal de controle da frequência sendo fornecido como entrada a um algoritmo de controle de DDS implementado pelo dispositivo lógico programável 1660.
[00307] A fase da impedância pode ser determinada através da análise de Fourier. Em um aspecto, a diferença de fase entre os sinais de acionamento da tensão do gerado Vg(t) e da corrente do gerados Ig(t) pode ser determinada com o uso da transformada rápida de Fourier (FFT) ou da transformada discreta de Fourier (DFT) conforme exposto a seguir:
[00308] A avaliação da transformada de Fourier na frequência do sinusoide produz:
[00309] Outras abordagens incluem estimativa ponderada de quadrados mínimos, filtragem Kalman e técnicas baseadas em espaço e vetor. Virtualmente todo o processamento em uma técnica de FFT ou DFT pode ser realizado no domínio digital com o auxílio do ADC de alta velocidade de dois canais, 1780, 1800, por exemplo. Em uma técnica, as amostras de sinais digitais dos sinais de tensão e corrente são transformadas de Fourier com uma FFT ou uma DFT. O ângulo de fase φ em qualquer ponto no tempo pode ser calculado por: onde φ é o ângulo de fase, f é a frequência, t é o tempo, e φ0 é a fase no t = 0.
[00310] Uma outra técnica para determinar a diferença de fase entre os sinais de tensão Vg(t) e corrente Ig(t) é o método de passagem por zero ("zero-crossing") e produz resultados altamente acurados. Para sinais de tensão Vg(t) e corrente Ig(t) tendo a mesma, cada passagem por zero de negativo para positivo do sinal de tensão Vg(t) aciona o início de um pulso, enquanto cada passagem por zero de negativo para positivo do sinal de corrente Ig(t) aciona o final do pulso. O resultado é um trem de pulsos com uma largura de pulso proporcional ao ângulo de fase entre o sinal de tensão e o sinal de corrente. Em um aspecto, o trem de pulsos pode ser passado através de um filtro de média para produzir uma medida da diferença de fase. Além disso, se as passagens por zero de positivo para negativo também forem usadas de uma maneira similar, e a média dos resultados calculada, quaisquer efeitos de componentes DC e harmônicos podem ser reduzidos. Em uma implementação, os sinais analógicos de tensão Vg(t) e corrente Ig(t) são convertidos em sinais digitais que são altos se o sinal analógico for positivo e baixos se o sinal analógico for negativo. As estimativas de fase de alta acurácia exigem transições bruscas entre altas e baixas. Em um aspecto, um disparador Schmitt juntamente com uma rede de estabilização RC podem ser usados para converter os sinais analógicos em sinais digitais. Em outros aspectos, um circuito flip-flop RS disparado pela borda e auxiliares pode ser usado. Em ainda um outro aspecto, a técnica de passagem por zero pode usar uma porta eXclusiva (XOR).
[00311] Outras técnicas para determinação da diferença de fase entre os sinais de tensão e corrente incluem figuras Lissajous e monitoramento da imagem; métodos como o método de três voltímetros, o método "crossed-coil", os métodos de voltímetro vetorial e impedância vetorial; e o uso de instrumentos de fase padrões, malha de captura de fase ("phase-locked loops") e outras técnicas conforme descrito em Phase Measurement, Peter O’Shea, 2000 CRC Press LLC, <http://www.engnetbase.com>, que está aqui incorporado a título de referência.
[00312] Em outro aspecto, por exemplo, os dados de retroinformação da corrente podem ser monitorados de modo a manter a amplitude de corrente do sinal de acionamento em um ponto de ajuste da amplitude de corrente. O ponto de ajuste da amplitude de corrente pode ser especificado diretamente ou determinado indiretamente com base nos pontos de ajuste especificados para amplitude de tensão e potência. Em certos aspectos, o controle da amplitude de corrente pode ser implementado pelo algoritmo de controle, como um algoritmo de controle proporcional-integral-derivado (PID), no processador 1740. As variáveis controladas pelo algoritmo de controle para controlar adequadamente a amplitude de corrente do sinal de acionamento podem incluir, por exemplo, a alteração de escala das amostras de formato de onda da LUT armazenada no dispositivo lógico programável 1660 e/ou a tensão de saída em escala total do DAC 1680 (que fornece a entrada ao amplificador de potência 1620) por meio de um a DAC
1860.
[00313] O estágio não isolado 1540 pode conter, ainda, um processador 1900 para proporcionar, entre outras coisas, a funcionalidade da interface de usuário (UI). Em um aspecto, o processador 1900 pode compreender um processador Atmel AT91 SAM9263 com um núcleo ARM 926EJ-S, disponível junto à Atmel Corporation, de San Jose, Califórnia, EUA, por exemplo. Exemplos de funcionalidade de UI suportados pelo processador 1900 podem incluir retroinformação audível e visual do usuário, comunicação com dispositivos periféricos (por exemplo, através de uma interface de barramento serial universal (USB)), comunicação com a chave de pedal 1430, comunicação com um dispositivo de entrada de dados 2150 (por exemplo, uma tela sensível ao toque) e comunicação com um dispositivo de saída 2140 (por exemplo, um alto-falante). O processador 1900 pode comunicar-se com o processador 1740 e o dispositivo lógico programável (por exemplo, via barramentos de interface serial para periféricos (SPI)). Embora o processador 1900 possa primariamente suportar funcionalidade de UI, o mesmo pode também coordenar-se com o processador 1740 para implementar mitigação de riscos em certos aspectos. Por exemplo, o processador 1900 pode ser programado para monitorar vários aspectos das entradas pelo usuário e/ou outras entradas (por exemplo, entradas de tela sensível ao toque 2150, entradas de chave a pedal 1430, entradas do sensor de temperatura 2160) e pode desabilitar a saída de acionamento do gerador 1100 quando uma condição de erro é detectada.
[00314] Em certos aspectos, tanto o processador 1740 (Figura 26, 27A) como o processador 1900 (Figura 26, 27B) podem determinar e monitorar o estado operacional do gerador 1100. Para o processador 1740, o estado operacional do gerador 1100 pode determinar, por exemplo, quais processos de controle e/ou diagnóstico são implementados pelo processador 1740. Para o processador 1900, o estado operacional do gerador 1100 pode determinar, por exemplo, quais elementos de uma interface de usuário (por exemplo, telas de monitor, sons) são apresentados a um usuário. Os processadores 1740 e 1900 podem manter independentemente o estado operacional atual do gerador 1100, bem como reconhecer e avaliar possíveis transições para fora do estado operacional atual. O processador 1740 pode funcionar como o mestre nessa relação, e pode determinar quando devem ocorrer as transições entre estados operacionais. O processador 1900 pode estar ciente das transições válidas entre estados operacionais, e pode confirmar se uma determinada transição é adequada. Por exemplo, quando o processador 1740 instrui o processador 1900 a transicionar para um estado específico, o processador 1900 pode verificar que a transição solicitada é válida. Caso uma transição solicitada entre estados seja determinada como inválida pelo processador 1900, o processador 1900 pode fazer com que o gerador 1100 entre em um modo de falha.
[00315] O estágio não isolado 1540 pode compreender, ainda, um controlador 1960 (Figuras 26, 27B) para monitorar os dispositivos de entrada 2150 (por exemplo, um sensor de toque capacitivo usado para ligar e desligar o gerador 1100, uma tela capacitiva sensível ao toque). Em certos aspectos, o controlador 1960 pode compreender ao menos um processador e/ou outro dispositivo controlador em comunicação com o processador 1900. Em um aspecto, por exemplo, o controlador 1960 pode compreender um processador (por exemplo, um controlador Mega168 de 8 bits disponível junto à Atmel) configurado para monitorar as entradas fornecidas pelo usuário através de um ou mais sensores de toque capacitivos. Em um aspecto, o controlador 1960 pode compreender um controlador de tela sensível ao toque (por exemplo, um controlador de tela sensível ao toque QT5480 disponível junto à Atmel) para controlar e gerenciar a captura de dados de toque a partir de uma tela capacitiva sensível ao toque.
[00316] Em certos aspectos, quando o gerador 1100 está em um estado "desligado", o controlador 1960 pode continuar a receber energia operacional (por exemplo, através de uma linha de uma fonte de alimentação do gerador 1100, como a fonte de alimentação 2110 (Figura 26) discutida abaixo). Dessa maneira, o controlador 1960 pode continuar a monitorar um dispositivo de entrada 2150 (por exemplo, um sensor de toque capacitivo situado sobre um painel frontal do gerador 1100) para ligar e desligar o gerador 1100. Quando o gerador 1100 está no estado desligado, o controlador 1960 pode despertar a fonte de alimentação (por exemplo, possibilitar o funcionamento de um ou mais conversores de tensão CC/CC 2130 (Figura 26) da fonte de alimentação 2110), se for detectada a ativação do dispositivo de entrada "liga/desliga" 2150 por um usuário. O controlador 1960 pode, portanto, iniciar uma sequência para fazer a transição do gerador 1100 para um estado "ligado". Por outro lado, o controlador 1960 pode iniciar uma sequência para fazer a transição do gerador 1100 para o estado desligado se for detectada a ativação do dispositivo de entrada "liga/desliga" 2150, quando o gerador 1100 estiver no estado ligado. Em certos aspectos, por exemplo, o controlador 1960 pode relatar a ativação do dispositivo de entrada "liga/desliga" 2150 ao processador 1900 que, por sua vez, implementa a sequência de processo necessária para transicionar o gerador 1100 ao estado desligado. Nesses aspectos, o controlador 1960 pode não ter qualquer capacidade independente para causar a remoção da potência do gerador 1100, após seu estado ligado ter sido estabelecido.
[00317] Em certos aspectos, o controlador 1960 pode fazer com que o gerador 1100 ofereça retroinformação audível ou outra retroinformação sensorial para alertar o usuário de que foi iniciada uma sequência de ligar ou desligar. Esse tipo de alerta pode ser fornecido no início de uma sequência de ligar ou desligar, e antes do início de outros processos associados à sequência.
[00318] Em certos aspectos, o estágio isolado 1520 pode compreender um circuito de interface de instrumento 1980 para, por exemplo, oferecer uma interface de comunicação entre um circuito de controle de um dispositivo cirúrgico (por exemplo, um circuito de controle que compreende chaves de cabo) e componentes do estágio não isolado 1540, como o dispositivo lógico programável 1660, o processador 1740 e/ou o processador 1900. O circuito de interface de instrumento 1980 pode trocar informações com componentes do estágio não isolado 1540 por meio de um link de comunicação que mantém um grau adequado de isolamento elétrico entre os estágios 1520 e 1540 como, por exemplo, um link de comunicação baseado em infravermelho (IR, de "infrared"). A potência pode ser fornecida ao circuito de interface do instrumento 1980 com o uso de, por exemplo, um regulador de tensão de baixa queda alimentado por um transformador de isolamento acionado a partir do estágio não isolado 1540.
[00319] Em um aspecto, o circuito de interface de instrumento 1980 pode compreender um dispositivo lógico programável 2000 (por exemplo, um FPGA) em comunicação com um circuito condicionador de sinal 2020 (Figura 26 e Figura 27C). O circuito condicionador de sinal 2020 pode ser configurado para receber um sinal periódico do dispositivo lógico programável 2000 (por exemplo, uma onda quadrada de 2 kHz) para gerar um sinal de interrogação que tem uma frequência idêntica. O sinal de interrogação pode ser gerado, por exemplo, usando- se uma fonte de corrente bipolar alimentada por um amplificador diferencial. O sinal de interrogação pode ser comunicado a um circuito de controle do dispositivo cirúrgico (por exemplo, mediante o uso de um par condutor em um fio que conecta o gerador 1100 ao dispositivo cirúrgico) e monitorado para determinar um estado ou configuração do circuito de controle. O circuito de controle pode compreender inúmeras chaves, resistores e/ou diodos para modificar uma ou mais características (por exemplo, amplitude, retificação) do sinal de interrogação de modo que um estado ou configuração do circuito de controle seja discernível, de modo inequívoco, com base nessa uma ou mais características. Em um aspecto, por exemplo, o circuito condicionador de sinal 2020 pode compreender um ADC para geração de amostras de um sinal de tensão aparecendo nas entradas do circuito de controle, resultando da passagem do sinal de interrogação através do mesmo. O dispositivo lógico programável 2000 (ou um componente do estágio não isolado 1540) pode, então, determinar o estado ou a configuração do circuito de controle com base nas amostras de ADC.
[00320] Em um aspecto, o circuito de interface de instrumento 1980 podem compreender uma primeira interface de circuito de dados 2040 para possibilitar a troca de informações entre o dispositivo lógico programável 2000 (ou outro elemento do circuito de interface de instrumento 1980) e um primeiro circuito de dados disposto em, ou de outro modo associado a, um dispositivo cirúrgico. Em certos aspectos, por exemplo, um primeiro circuito de dados 2060 pode estar disposto em um fio integralmente fixado a uma empunhadura do dispositivo cirúrgico, ou em um adaptador para fazer a interface entre um tipo ou modelo específico de dispositivo cirúrgico e o gerador 1100. Em certos aspectos, o primeiro circuito de dados pode compreender um dispositivo de armazenamento não volátil, como um dispositivo de memória só de leitura programável eletricamente apagável (EEPROM). Em certos aspectos e novamente com referência à Figura 26, a primeira interface de circuito de dados 2040 pode ser implementada separadamente do dispositivo lógico programável 2000 e compreende um conjunto de circuitos adequado (por exemplo, dispositivos lógicos distintos, um processador) para possibilitar a comunicação entre o dispositivo lógico programável 2000 e o primeiro circuito de dados. Em outros aspectos, a primeira interface de circuito de dados 2040 pode ser integral ao dispositivo lógico programável 2000.
[00321] Em certos aspectos, o primeiro circuito de dados 2060 pode armazenar informações relacionadas ao dispositivo cirúrgico específico com o qual está associado. Essas informações podem incluir, por exemplo, um número de modelo, um número serial, um número de operações nas quais o dispositivo cirúrgico foi usado, e/ou quaisquer outros tipos de informações. Essas informações podem ser lidas pelo circuito de interface do instrumento 1980 (por exemplo, pelo dispositivo lógico programável 2000), transferidas para um componente do estágio não isolado 1540 (por exemplo, para o dispositivo lógico programável 1660, processador 1740 e/ou processador 1900) para apresentação a um usuário por meio de um dispositivo de saída 2140 e/ou para controlar uma função ou operação do gerador 1100. Adicionalmente, qualquer tipo de informação pode ser comunicada para o primeiro circuito de dados 2060 para armazenamento no mesmo através da primeira interface do circuito de dados 2040 (por exemplo, usando-se o dispositivo lógico programável 2000). Essas informações podem compreender, por exemplo, um número atualizado de operações nas quais o dispositivo cirúrgico foi usado e/ou a datas e/ou horários de seu uso.
[00322] Conforme discutido anteriormente, um instrumento cirúrgico pode ser removível de uma empunhadura (por exemplo, o instrumento 1106 pode ser removível da empunhadura 1107) para promover a intercambiabilidade e/ou a descartabilidade do instrumento. Nesses casos, geradores conhecidos podem ser limitados em sua capacidade para reconhecer configurações de instrumento específicas sendo usadas, bem como para otimizar os processos de controle e diagnóstico conforme necessário. A adição de circuitos de dados legíveis a instrumentos de dispositivo cirúrgico para resolver essa questão é problemática de um ponto de vista de compatibilidade, porém. Por exemplo, pode ser pouco prático projetar um dispositivo cirúrgico para que permaneça compatível com versões anteriores de geradores desprovidos da indispensável funcionalidade de leitura de dados devido a, por exemplo, diferentes esquemas de sinalização, complexidade do design e custo. Outros aspectos dos instrumentos contemplam essas preocupações mediante o uso de circuitos de dados que podem ser implementados em instrumentos cirúrgicos existentes, economicamente e com mínimas alterações de design para preservar a compatibilidade dos dispositivos cirúrgicos com as plataformas de gerador atuais.
[00323] Adicionalmente, aspectos do gerador 1100 podem possibilitar comunicação com circuitos de dados baseados em instrumento. Por exemplo, o gerador 1100 pode ser configurado para se comunicar com um segundo circuito de dados (por exemplo, um circuito de dados) contidos em um instrumento (por exemplo, instrumento 1104, 1106, ou 1108) de um dispositivo cirúrgico. O circuito de interface de instrumento 1980 pode compreender uma segunda interface de circuito de dados 2100 para possibilitar essa comunicação. Em um aspecto, a segunda interface de circuito de dados 2100 pode compreender uma interface digital tri-estado, embora também possam ser utilizadas outras interfaces. Em certos aspectos, o segundo circuito de dados pode ser geralmente qualquer circuito para transmissão e/ou recepção de dados. Em um aspecto, por exemplo, o segundo circuito de dados pode armazenar informações relacionadas ao instrumento cirúrgico específico com o qual está associado. Essas informações podem incluir, por exemplo, um número de modelo, um número de série, um número de operações nas quais o instrumento cirúrgico foi usado, e/ou quaisquer outros tipos de informações. Adicional ou alternativamente, qualquer tipo de informação pode ser comunicado ao segundo circuito de dados para armazenamento no mesmo através da segunda interface de circuito de dados 2100 (por exemplo, usando-se o dispositivo lógico programável 2000). Essas informações podem compreender, por exemplo, um número atualizado de operações nas quais o instrumento cirúrgico foi usado e/ou a datas e/ou horários de seu uso. Em certos aspectos, o segundo circuito de dados pode transmitir dados capturados por um ou mais sensores (por exemplo, um sensor de temperatura baseado em instrumento). Em certos aspectos, o segundo circuito de dados pode receber dados do gerador 1100 e fornecer uma indicação ao usuário (por exemplo, uma indicação por LED ou outra indicação visível) com base nos dados recebidos.
[00324] Em certos aspectos, o segundo circuito de dados e a segunda interface de circuito de dados 2100 podem ser configurados de modo que a comunicação entre o dispositivo lógico programável 2000 e o segundo circuito de dados possa ser obtida sem a necessidade de proporcionar condutores adicionais para esse propósito (por exemplo, condutores dedicados de um fio conectando um cabo ao gerador 1100). Em um aspecto, por exemplo, as informações podem ser comunicadas de e para o segundo circuito de dados com o uso de um esquema de comunicação por barramento de um fio, implementado na fiação existente, como um dos condutores utilizados transmitindo sinais de interrogação a partir do circuito condicionador de sinal 2020 para um circuito de controle em um cabo. Dessa maneira, são minimizadas ou reduzidas as alterações ou modificações ao design do dispositivo cirúrgico que possam, de outro modo, ser necessárias. Além disso, devido ao fato de que diferentes tipos de comunicações podem ser implementados em um canal físico comum (com ou sem separação de banda de frequência), a presença de um segundo circuito de dados pode ser "invisível" a geradores que não têm a indispensável funcionalidade de leitura de dados, o que, portanto, permite a retrocompatibilidade do instrumento de dispositivo cirúrgico.
[00325] Em certos aspectos, o estágio isolado 1520 pode compreender ao menos um capacitor de bloqueio 2960-1 (Figura 27C) conectado à saída do sinal de acionamento 1600b, para impedir a passagem de corrente contínua para um paciente. Um único capacitor de bloqueio pode ser necessário para estar de acordo com os regulamentos e padrões médicos, por exemplo. Embora falhas em designs com um só capacitor sejam relativamente incomuns, esse tipo de falha pode, ainda assim, ter consequências negativas. Em um aspecto, um segundo capacitor de bloqueio 2960-2 pode ser colocado em série com o capacitor de bloqueio 2960-1, com fuga de corrente de um ponto entre os capacitores de bloqueio 2960-1 e 2960-2 sendo monitorados por, por exemplo, um ADC 2980 para amostragem de uma tensão induzida pela corrente de fuga. As amostras podem ser recebidas pelo dispositivo lógico programável 2000, por exemplo. Com base nas alterações da corrente de fuga (conforme indicado pelas amostras de tensão no aspecto da Figura 26), o gerador 1100 pode determinar quando ao menos um dentre os capacitores de bloqueio 2960-1 e 2960-2 falhou. Consequentemente, o aspecto da Figura 26 pode fornecer um benefício em relação a designs com somente um capacitor, tendo um único ponto de falha.
[00326] Em certos aspectos, o estágio não isolado 1540 pode compreender uma fonte de alimentação 2110 para saída de energia em CC com tensão e corrente adequadas. A fonte de alimentação pode compreender, por exemplo, uma fonte de alimentação de 400 W para fornecer uma tensão do sistema de 48 VDC. Conforme discutido acima, a fonte de alimentação 2110 pode compreender adicionalmente um ou mais conversores de tensão CC/CC 2130 para receber a saída da fonte de alimentação para gerar saídas de CC nas tensões e correntes exigidas pelos vários componentes do gerador 1100. Conforme discutido acima em relação ao controlador 1960, um ou mais dentre os conversores de tensão CC/CC 2130 podem receber uma entrada do controlador 1960 quando a ativação do dispositivo de entrada "liga/desliga" 2150 por um usuário é detectada pelo controlador 1960, para permitir o funcionamento ou o despertar dos conversores de tensão CC/CC 2130.
[00327] As Figuras 28A e 28B ilustram certos aspectos funcionais e estruturais de um aspecto do gerador 1100. A retroinformação indicando saída de corrente e tensão do enrolamento secundário 1580 do transformador de potência 1560 é recebida pelos ADCs 1780 e 1800, respectivamente. Conforme mostrado, os ADCs 1780 e 1800 podem ser implementados sob a forma de um ADC de 2 canais e podem tomar amostras dos sinais de retroinformação a uma alta velocidade (por exemplo, 80 Msps) para possibilitar a sobreamostragem (por exemplo, aproximadamente 200x de sobreamostragem) dos sinais de acionamento. Os sinais de retroinformação de corrente e tensão podem ser adequadamente condicionados no domínio analógico (por exemplo, amplificados, filtrados) antes do processamento pelos ADCs 1780 e
1800. As amostras de retroinformação de corrente e tensão dos ADCs 1780 e 1800 podem ser individualmente registradas (buffered) e subsequentemente multiplexadas ou intercaladas em um único fluxo de dados no interior do bloco 2120 do dispositivo lógico programável 1660. No aspecto das Figuras 28A e 28B, o dispositivo lógico programável 1660 compreende um FPGA.
[00328] As amostras de retroinformação de corrente e tensão multiplexadas podem ser recebidas por uma porta paralela de captura de dados (PDAP) implementada no interior do bloco 2144 do processador 1740. O PDAP pode compreender uma unidade de empacotamento para implementar quaisquer dentre as inúmeras metodologias para correlação das amostras de retroinformação multiplexadas com um endereço de memória. Em um aspecto, por exemplo, as amostras de retroinformação correspondentes a uma saída de amostra de LUT específica pelo dispositivo lógico programável 1660 podem ser armazenadas em um ou mais endereços de memória que estão correlacionados ou indexados ao endereço da LUT na amostra de LUT. Em um outro aspecto, as amostras de retroinformação correspondentes a uma amostra de LUT específica pelo dispositivo lógico programável 1660 podem ser armazenadas, juntamente com o endereço de LUT da amostra de LUT, em uma localização de memória em comum. De qualquer modo, as amostras de retroinformação podem ser armazenadas de modo que o endereço da amostra de LUT a partir da qual se originou um conjunto específico de amostras de retroinformação possa ser subsequentemente determinado. Conforme discutido acima, a sincronização dos endereços das amostras de LUT e das amostras de retroinformação dessa maneira contribui para a correta temporização e estabilidade do algoritmo de pré-distorção. Um controlador de acesso direto à memória (DMA) implementado no bloco 2166 do processador 1740 pode armazenar as amostras de retroinformação (e quaisquer LUT dados de endereço da amostra, onde aplicável) em uma localização de memória designada 2180 do processador 1740 (por exemplo, RAM interna).
[00329] O bloco 2200 do processador 1740 pode implementar um algoritmo de pré-distorção para pré-distorcer ou modificar as amostras de LUT armazenadas no dispositivo lógico programável 1660 de maneira dinâmica e contínua. Conforme discutido acima, a pré- distorção das amostras de LUT pode compensar por várias fontes de distorção presentes no circuito de acionamento de saída do gerador
1100. As amostras da LUT pré-distorcidas, quando processadas através do circuito de acionamento resultarão, portanto, em um sinal de acionamento tendo o formato de onda desejado (por exemplo, senoidal) para acionar de maneira ótima o transdutor ultrassônico.
[00330] No bloco 2220 do algoritmo de pré-distorção, é determinada a corrente através da ramificação de movimento do transdutor ultrassônico. A corrente da ramificação de movimento pode ser determinada com o uso da lei de corrente de Kirchoff com base, por exemplo, nas amostras de retroinformação de corrente e tensão armazenadas no local da memória 2180 (que quando, dimensionada adequadamente, pode ser representativa de Ig e Vg no modelo da Figura 25 discutido acima), um valor da capacitância estática do transdutor ultrassônico C0 (medida ou conhecida a priori) e um valor conhecido da frequência de acionamento. Pode ser determinada uma amostra de corrente da ramificação de movimento para cada conjunto de amostras de retroinformação de corrente e tensão armazenado associado a uma amostra de LUT.
[00331] No bloco 2240 do algoritmo de pré-distorção, cada amostra de corrente da ramificação de movimento determinada no bloco 2220 é comparada a uma amostra de um formato de onda da corrente desejado para determinar uma diferença, ou erro de amplitude da amostra, entre as amostras comparadas. Para essa determinação, a amostra com o formato de onda da corrente desejado pode ser fornecida, por exemplo, de uma LUT 2260 de formatos de onda contendo amostras de amplitude para um ciclo de um formato de onda da corrente desejado. A amostra específica do formato de onda da corrente da LUT 2260 utilizada para a comparação pode ser determinada pelo endereço da amostra da LUT associado à amostra de corrente da ramificação de movimento utilizada na comparação. Conforme necessário, a entrada da corrente da ramificação de movimento no bloco 2240 pode ser sincronizada com a entrada de seu endereço da amostra da LUT associado no bloco 2240. As amostras da LUT armazenadas no dispositivo lógico programável 1660 e as amostras da LUT armazenadas na LUT de formatos de onda 2260 podem, portanto, ser iguais em termos de número. Em certos aspectos, o formato de onda da corrente desejado, representado pelas amostras de LUT armazenadas na LUT de formatos de onda 2260 pode ser uma onda senoidal fundamental. Outros formatos de onda podem ser desejáveis. Por exemplo, contempla-se que poderia ser utilizada uma onda senoidal fundamental para acionar o movimento longitudinal principal de um transdutor ultrassônico, sobreposta a um ou mais outros sinais de acionamento em outras frequências, como uma ultrassônica de terceira ordem para acionar ao menos duas ressonâncias mecânicas de modo a obter vibrações benéficas em modo transversal ou outros modos.
[00332] Cada valor do erro de amplitude da amostra determinado no bloco 2240 pode ser transmitido para a LUT do dispositivo lógico programável 1660 (mostrado no bloco 2280 na Figura 28A) juntamente com uma indicação de seu endereço de LUT associado. Com base no valor da amostra de erro de amplitude e seu endereço associado (e, opcionalmente, os valores da amostra de erro de amplitude para o mesmo endereço de LUT anteriormente recebido), a LUT 2280 (ou outro bloco de controle do dispositivo lógico programável 1660) pode pré- distorcer ou modificar o valor da amostra de LUT armazenada no endereço de LUT, de modo que a amostra de erro de amplitude seja reduzida ou minimizada. Deve-se compreender que essa pré-distorção ou modificação de cada amostra de LUT de um modo iterativo ao longo da faixa de endereços de LUT fará com que o formato de onda da corrente de saída do gerador se iguale ou se adapte ao formato de onda da corrente desejado, representado pelas amostras da LUT 2260 de formatos de onda.
[00333] As medições de amplitude de corrente e tensão, as medições de potência e as medições de impedância podem ser determinadas no bloco 2300 do processador 1740, com base nas amostras de retroinformação de corrente e tensão armazenadas na localização de memória 2180. Antes da determinação dessas quantidades, as amostras de retroinformação podem ser adequadamente dimensionadas e, em certos aspectos, processadas através de um filtro 2320 adequado para remover o ruído resultante, por exemplo, do processo de captura de dados e dos componentes harmônicos induzidos. As amostras de tensão e corrente filtradas podem, portanto, representar substancialmente a frequência fundamental do sinal de saída do acionamento do gerador. Em certos aspectos, o filtro 2320 pode ser um filtro de resposta ao impulso finita (FIR) aplicado no domínio da frequência. Esses aspectos podem usar a transformada rápida de Fourier (FFT) dos sinais de saída de corrente e tensão do sinal de acionamento. Em certos aspectos, o espectro de frequência resultante pode ser utilizado para proporcionar funcionalidades adicionais ao gerador. Em um aspecto, por exemplo, a razão entre o componente harmônico de segunda e/ou terceira ordem em relação ao componente de frequência fundamental pode ser utilizado como indicador de diagnóstico.
[00334] No bloco 2340 (Figura 28B), um cálculo de valor quadrático médio (RMS) pode ser aplicado a um tamanho de amostra das amostras de retroinformação da corrente representando um número integral de ciclos do sinal de acionamento, para gerar uma medição Irms representando a corrente de saída do sinal de acionamento.
[00335] No bloco 2360, um cálculo de valor quadrático médio (RMS) pode ser aplicada a um tamanho de amostra das amostras de retroinformação da tensão representando um número integral de ciclos do sinal de acionamento, para determinar uma medição Vrms representando a tensão de saída do sinal de acionamento.
[00336] No bloco 2380, as amostras de retroinformação de corrente e tensão podem ser multiplicadas ponto por ponto, e um cálculo de média é aplicado às amostras representando um número integral de ciclos do sinal de acionamento, para determinar uma medição Pr da energia de saída real do gerador.
[00337] No bloco 2400, a medição Pa da potência de saída aparente do gerador pode ser determinada como o produto Vrms·Irms.
[00338] No bloco 2420, a medição Zm da magnitude da impedância de carga pode ser determinada como o quociente Vrms/Irms.
[00339] Em certos aspectos, as quantidades lrms, Vrms, Pr, Pa e Zm determinadas nos blocos 2340, 2360, 2380, 2400 e 2420, podem ser utilizadas pelo gerador 1100 para implementar quaisquer dentre um número de processos de controle e/ou diagnósticos. Em certos aspectos, qualquer dessas quantidades pode ser comunicada a um usuário por meio, por exemplo, de um dispositivo de saída 2140 Integral ao gerador 1100, ou um dispositivo de saída 2140 conectado ao gerador
1100 através de uma interface de comunicação adequada (por exemplo, uma interface USB). Os vários processos de diagnóstico podem incluir, sem limitação, integridade do cabo, integridade do instrumento, integridade da fixação instrumento, sobrecarga do instrumento, proximidade de sobrecarga do instrumento, falha no travamento da frequência, condição de excesso de tensão, condição de excesso de corrente, condição de excesso de potência, falha no sensor de tensão, falha no sensor de corrente, falha na indicação por áudio, falha na indicação visual, condição de curto-circuito, falha no fornecimento de potência, ou falha no capacitor de bloqueio, por exemplo.
[00340] O bloco 2440 do processador 1740 pode implementar um algoritmo de controle de fases para determinação e controle da fase da impedância de uma carga elétrica (por exemplo, o transdutor ultrassônico) conduzida pelo gerador 1100. Conforme discutido acima, ao controlar a frequência do sinal de acionamento para minimizar ou reduzir a diferença entre a fase da impedância determinada e um ponto de ajuste da fase da impedância (por exemplo, 0°), os efeitos de distorção harmônica podem ser minimizados ou reduzidos, sendo aumentada a exatidão na medição de fase.
[00341] O algoritmo de controle de fases recebe como entrada as amostras de retroinformação de corrente e tensão armazenadas na localização de memória 2180. Antes de seu uso no algoritmo de controle de fases, as amostras de retroinformação podem ser adequadamente dimensionadas e, em certos aspectos, processadas através de um filtro adequado 2460 (que pode ser idêntico ao filtro 2320) para remover o ruído resultante do processo de captura de dados e dos componentes harmônicos induzidos, por exemplo. As amostras de tensão e corrente filtradas podem, portanto, representar substancialmente a frequência fundamental do sinal de saída do acionamento do gerador.
[00342] No bloco 2480 do algoritmo de controle de fases, é determinada a corrente através da ramificação de movimento do transdutor ultrassônico. Essa determinação pode ser idêntica àquela descrita acima em conexão com o bloco 2220 do algoritmo de pré- distorção. Assim, a saída do bloco 2480 pode ser, para cada conjunto de amostras de retroinformação de corrente e tensão armazenado associado a uma amostra de LUT, uma amostra de corrente da ramificação de movimento.
[00343] No bloco 2500 do algoritmo de controle de fases, a fase da impedância é determinada com base na entrada sincronizada de amostras da corrente da ramificação de movimento determinada no bloco 2480 e correspondente a amostras de retroinformação da tensão. Em certos aspectos, a fase da impedância é determinada como a média entre a fase da impedância medida na borda de subida dos formatos de onda e a fase da impedância medida na borda de descida dos formatos de onda.
[00344] No bloco 2520 do algoritmo de controle de fases, o valor da fase da impedância determinado no bloco 2220 é comparado ao ponto de ajuste da fase 2540 para determinar uma diferença, ou erro de fase, entre os valores comparados.
[00345] No bloco 2560 (Figura 28A) do algoritmo de controle de fases, com base em um valor do erro de fase determinado no bloco 2520 e na magnitude de impedância determinada no bloco 2420, é determinada uma saída de frequência para controlar a frequência do sinal de acionamento. O valor da saída de frequência pode ser continuamente ajustado pelo bloco 2560 e transferido para um bloco de controle DDS 2680 (discutido abaixo) de modo a manter a fase da impedância determinada no bloco 2500 do ponto de ajuste da fase (por exemplo, erro de fase zero). Em certos aspectos, a fase da impedância pode ser regulada para um ponto de ajuste de fase de 0°. Dessa maneira, qualquer distorção harmônica estará centralizada em redor da crista do formato de onda da tensão, acentuando a acurácia da determinação da impedância de fase.
[00346] O bloco 2580 do processador 1740 pode implementar um algoritmo para modulação da amplitude de corrente do sinal de acionamento, de modo a controlar a corrente, a tensão e a potência do sinal de acionamento, de acordo com pontos de ajuste especificados pelo usuário, ou de acordo com requisitos especificados por outros processos ou algoritmos implementados pelo gerador 1100. O controle dessas quantidades pode ser realizado, por exemplo, mediante o dimensionamento das amostras de LUT na LUT 2280, e/ou mediante o ajuste da tensão de saída em escala total do DAC 1680 (que fornece a entrada ao amplificador de potência 1620) por meio de um DAC 1860. O bloco 2600 (que pode ser implementado como um controlador PID em certos aspectos) pode receber como entrada amostras de retroinformação da corrente (que podem ser adequadamente dimensionadas e filtradas) a partir da localização de memória 2180. As amostras de retroinformação da corrente podem ser comparadas ao valor de "demanda por corrente" Id determinado pela variável controlada (por exemplo, corrente, tensão ou potência) para determinar se o sinal de acionamento está fornecendo a corrente necessária. Em aspectos nos quais a corrente do sinal de acionamento é a variável de controle, a demanda por corrente Id pode ser especificada diretamente por um ponto de ajuste da corrente 2620A (Isp). Por exemplo, um valor RMS dos dados de retroinformação da corrente (determinado como no bloco 2340) pode ser comparado ao ponto de ajuste da corrente RMS Isp especificado pelo usuário para determinar a ação adequada para o controlador. Se por exemplo os dados de retroinformação da corrente indicam um valor de RMS menor que o ponto de ajuste da corrente Isp, dimensionamento da LUT e/ou tensão de saída em escala total do DAC
1680 pode ser ajustada pelo bloco 2600, de modo que seja aumentada a corrente do sinal de acionamento. Por outro lado, o bloco 2600 pode ajustar um dimensionamento da LUT e/ou a tensão de saída em escala total do DAC 1680 para diminuir a corrente do sinal de acionamento quando os dados de retroinformação da corrente indicam um valor RMS maior que o ponto de ajuste da corrente Isp.
[00347] Em aspectos nos quais a tensão do sinal de acionamento é a variável de controle, o Id de demanda de corrente pode ser especificado indiretamente, por exemplo, com base na corrente necessária para manter um valor de referência de tensão desejado 2620B (Vsp) dada a magnitude de impedância de carga Zm medida no bloco 2420 (por exemplo, Id = Vsp/Zm). Da mesma forma, em aspectos em que a potência do sinal do inversor é a variável de controle, o Id da demanda de corrente pode ser especificado indiretamente, por exemplo, com base na corrente necessária para manter um ponto de ajuste de potência desejado 2620C (Psp) dada a tensão Vrms medida nos blocos 2360 (por exemplo, Id = Psp/Vrms).
[00348] O bloco 2680 (Figura 28A) pode implementar um algoritmo de controle DDS para controlar o sinal de acionamento mediante a recuperação de amostras da LUT armazenadas na LUT 2280. Em certos aspectos, o algoritmo de controle DDS pode ser um algoritmo de oscilador numericamente controlado (NCO, de "numerically-controlled oscillator") para gerar amostras de um formato de onda a uma taxa de temporização fixa com o uso de uma técnica de saltar pontos (localizações na memória). O algoritmo NCO pode implementar um acumulador de fase, ou conversor de frequência para fase, que funciona como um apontador de endereço para recuperação de amostras de LUT da LUT 2280. Em um aspecto, o acumulador de fase pode ser um acumulador de fase com tamanho do passo D, módulo N, onde D é um número inteiro positivo representando um valor de controle da frequência, e N é o número de amostras de LUT na LUT 2280. Um valor de controle da frequência D=1, por exemplo, pode fazer com que o acumulador de fase aponte sequencialmente para cada endereço da LUT 2280, resultando em uma saída de formato de onda que replica o formato de onda armazenado na LUT 2280. Quando D>1, o acumulador de fase pode saltar endereços na LUT 2280, resultando em uma saída de formato de onda que tem uma frequência mais alta. Consequentemente, a frequência do formato de onda gerado pelo algoritmo de controle DDS pode, portanto, ser controlado variando-se adequadamente o valor de controle da frequência. Em certos aspectos, o valor de controle da frequência pode ser determinado com base na saída do algoritmo de controle de fases implementado no bloco 2440. A saída do bloco 2680 pode fornecer a entrada de DAC 1680 que, por sua vez, fornece um sinal analógico correspondente a uma entrada do amplificador de potência 1620.
[00349] O bloco 2700 do processador 1740 pode implementar um algoritmo de controle do conversor de modo da chave para modular dinamicamente a tensão do trilho do amplificador de potência 1620 com base no envelope de forma de onda do sinal sendo amplificado, melhorando assim a eficiência do amplificador de potência 1620. Em certos aspectos, as características do envelope de formato de onda podem ser determinadas mediante o monitoramento de um ou mais sinais contidos no amplificador de potência 1620. Em um aspecto, por exemplo, as características do envelope de formato de onda podem ser determinadas por monitoramento da mínima de uma tensão de drenagem (por exemplo, uma tensão de drenagem MOSFET) que é modulada de acordo com o envelope do sinal amplificado. Um sinal de tensão da mínima pode ser gerado, por exemplo, por um detector de mínima da tensão acoplado à tensão de drenagem. O sinal de tensão mínima pode ser amostrado pelo ADC 1760, com as amostras de tensão mínima de saída sendo recebidas no bloco 2720 do algoritmo de controle do conversor de modo de chaveamento. Com base nos valores das amostras de tensão mínima, o bloco 2740 pode controlar uma saída de sinal PWM por um gerador de PWM 2760 que, por sua vez, controla a tensão do trilho fornecida ao amplificador de potência 1620 pelo regulador de modo de chaveamento 1700. Em certos aspectos, contanto que os valores das amostras de tensão da mínima sejam menores que uma entrada-alvo para a mínima 2780 no bloco 2720, a tensão no trilho pode ser modulada de acordo com o envelope de formato de onda, conforme caracterizado pelas amostras de tensão da mínima. Quando as amostras de tensão da mínima indicam baixos níveis de potência do envelope, por exemplo, o bloco 2740 pode causar uma baixa tensão no trilho a ser fornecida ao amplificador de potência 1620, com a tensão total do trilho sendo fornecida somente quando as amostras de tensão da mínima indicam níveis máximos de potência do envelope. Quando as amostras de tensão da mínima caem abaixo do alvo para a mínima 2780, o bloco 2740 pode fazer com que a tensão do trilho seja mantida em um valor mínimo adequado para garantir o funcionamento adequado do amplificador de potência 1620.
[00350] A Figura 29 é um diagrama esquemático de um aspecto de um circuito elétrico 2900, adequado para acionar um transdutor ultrassônico, como o transdutor ultrassônico 1120, de acordo com ao menos um aspecto da presente descrição. O circuito elétrico 2900 compreende um multiplexador analógico 2980. O multiplexador analógico 2980 multiplexa vários sinais dos canais a montante SCL-A, SDA-A, como circuito de controle ultrassônico, de bateria e de controle de potência. Um sensor de corrente 2982 está acoplado em série à perna de retorno ou de aterramento do circuito de fonte de alimentação para medir a corrente fornecida pela fonte de alimentação. Um sensor de temperatura 2984 de transístor de efeito de campo (FET) fornece a temperatura ambiente. Um temporizador de vigilância de modulação por largura de pulso (PWM) 2988 gera automaticamente uma reinicialização do sistema se o programa principal deixar de repará-lo periodicamente. Ele é fornecido para reiniciar automaticamente o circuito elétrico 2900 quando ele trava ou congela devido a uma falha de software ou hardware. Será reconhecido que o circuito elétrico 2900 pode ser configurado como um circuito acionador de RF para acionar o transdutor ultrassônico ou para acionar os eletrodos de RF como o circuito elétrico 3600 mostrado na Figura 36, por exemplo. Consequentemente, com referência agora novamente à Figura 29, o circuito elétrico 2900 pode ser utilizado para acionar de forma intercambiável os transdutores ultrassônicos e os eletrodos de RF. Se acionados simultaneamente, circuitos de filtro podem ser fornecidos nos primeiros circuitos de estágio correspondentes 3404 (Figura 34) para selecionar tanto a forma de onda ultrassônica quanto a forma de onda de RF. Essas técnicas de filtragem são descritas na publicação de Patente U.S. n° US-2017-0086910-A1, de propriedade comum, intitulado TECHNIQUES FOR CIRCUIT TOPOLOGIES FOR COMBINED GENERATOR, que está aqui integralmente incorporado a título de referência.
[00351] Um circuito de acionamento 2986 fornece saídas de energia ultrassônica à esquerda e à direita. Um sinal digital que representa a forma de onda de sinal é fornecido às entradas SCL-A, SDA-A do multiplexador analógico 2980 a partir de um circuito de controle, como o circuito de controle 3200 (Figura 32). Um conversor de digital para analógico (DAC) 2990 converte a entrada digital em uma saída analógica para gerar um circuito de modulação por largura de pulso 2992 acoplado a um oscilador 2994. O circuito de modulação por largura de pulso 2992 fornece um primeiro sinal para um primeiro circuito de acionamento de porta 2996a acoplado a um primeiro estágio de saída do transístor 2998a para acionar uma primeira saída de energia ultrassônica (esquerda). O circuito de modulação por largura de pulso 2992 também fornece um segundo sinal para um segundo circuito de acionamento de porta 2996b acoplado a um segundo estágio de saída do transístor 2998b para acionar uma segunda saída de energia ultrassônica (direita). Um sensor de tensão 2999 é acoplado entre os terminais de saída ultrassônicos esquerdo/direito para medir a tensão de saída. O circuito de acionamento 2986, o primeiro e o segundo circuitos de acionamento 2996a, 2996b, e o primeiro e o segundo estágios de saída do transístor 2998a, 2998b definem um primeiro circuito amplificador de estágio. Em funcionamento, o circuito de controle 3200 (Figura 32) gera uma forma de onda digital 4300 (Figura 43) que emprega circuitos como os circuitos de síntese direta digital (DDS) 4100, 4200 (Figuras 41 e 42). O DAC 2990 recebe a forma de onda digital 4300 e a converte em uma forma de onda analógica, que é recebida e amplificada pelo primeiro circuito amplificador de estágio.
[00352] A Figura 30 é um diagrama esquemático do transformador 3000 acoplado ao circuito elétrico 2900 mostrado na Figura 29, de acordo com ao menos um aspecto da presente descrição. Os terminais de entrada ultrassônicos esquerdo/direito (enrolamento primário) do transformador 3000 estão acoplados eletricamente aos terminais de saída ultrassônicos esquerdo/direito do circuito elétrico 2900. O enrolamento secundário do transformador 3000 está acoplado aos eletrodos positivo e negativo 3074a, 3074b. Os eletrodos positivo e negativo 3074a, 3074b do transformador 3000 são acoplados ao terminal positivo (Pilha 1) e ao terminal negativo (Pilha 2) do transdutor ultrassônico. Em um aspecto, o transformador 3000 tem uma razão de voltas de n1:n2 de 1:50.
[00353] A Figura 31 é um diagrama esquemático do transformador 3000 mostrado na Figura 30 acoplado a um circuito de teste 3165, de acordo com um aspecto da presente descrição. O circuito de teste 3165 está acoplado aos eletrodos positivo e negativo 3074a, 3074b. Uma chave 3167 é colocada em série com uma carga de indutor/capacitor/resistor (LCR) que simula a carga de um transdutor ultrassônico.
[00354] A Figura 32 é um diagrama esquemático de um circuito de controle 3200, como o circuito de controle 3212, de acordo com ao menos um aspecto da presente descrição. O circuito de controle 3200 está situado no interior de um compartimento do conjunto de bateria. O conjunto de bateria é a fonte de alimentação para uma variedade de fontes de alimentação locais 3215. O circuito de controle compreende um processador principal 3214 acoplado por meio de um mestre de interface 3218 a vários circuitos a jusante por meio das saídas SCL-A e SDA-A, SCL-B e SDA-B, SCL-C e SDA-C, por exemplo. Em um aspecto, o mestre de interface 3218 é uma interface serial de propósito geral, como uma interface serial I2C. O processador principal 3214 também é configurado para acionar as chaves 3224 através de entrada/saída para propósitos gerais (GPIO) 3220, uma tela 3226 (por exemplo, uma tela de LCD), e vários indicadores 3228 através de GPIO 3222. Um processador de vigilância 3216 é fornecido para controlar o processador principal 3214. Uma chave 3230 é fornecida em série com uma bateria 3211 para ativar o circuito de controle 3212 mediante a inserção do conjunto de bateria em um conjunto de empunhadura de um instrumento cirúrgico.
[00355] Em um aspecto, o processador principal 3214 está acoplado ao circuito elétrico 2900 (Figura 29) por meio de terminais de saída SCL- A/SDA-A. O processador principal 3214 compreende uma memória para armazenar tabelas de sinais de acionamento ou formas de ondas digitalizados que são transmitidos ao circuito elétrico 2900 para acionar o transdutor ultrassônico 1120, por exemplo. Em outros aspectos, o processador principal 3214 pode gerar uma forma de onda digital e transmiti-la ao circuito elétrico 2900 ou pode armazenar a forma de onda digital para transmissão posterior ao circuito elétrico 2900. O processador principal 3214 pode fornecer também acionamento por RF por meio de terminais de saída SCL-B/SDA-B e vários sensores (por exemplo, sensores de efeito Hall, sensores de fluido magneto-reológico (MRF), etc.) por meio de terminais de saída SCL-C/SDA-C. Em um aspecto, o processador principal 3214 é configurado para detectar a presença de circuito de acionamento ultrassônico e/ou circuito de acionamento por RF para habilitar o software adequado e a funcionalidade de interface de usuário.
[00356] Em um aspecto, o processador principal 3214 pode ser um LM 4F230H5QR, disponível junto à Texas Instruments, por exemplo. Em ao menos um exemplo, o LM4F230H5QR da Texas Instruments é um núcleo processador ARM Cortex-M4F que compreende uma memória integrada de memória flash de ciclo único de 256 KB, ou outra memória não-volátil, até 40 MHz, um buffer de transferência para otimizar o desempenho acima de 40 MHz, uma memória de acesso aleatório seriada de ciclo único de 32 KB (SRAM), memória só de leitura interna (ROM) carregada com o programa StellarisWare®, memória só de leitura programável e apagável eletricamente (EEPROM) de 2 KB, um ou mais módulos de modulação por largura de pulso (PWM), um ou mais análogos de entrada do codificador de quadratura (QED), um ou mais conversores analógico para digital (ADC) de 12 bits com 12 canais de entrada analógicos, dentre outros recursos que são prontamente disponíveis na folha de dados do produto. Outros processadores podem ser facilmente substituídos e, consequentemente, a presente descrição não deve ser limitada neste contexto.
[00357] A Figura 33 mostra um diagrama de blocos de circuito simplificado que ilustra um outro circuito elétrico 3300 contido no interior de um instrumento cirúrgico ultrassônico modular 3334, de acordo com um aspecto da presente descrição. O circuito elétrico 3300 inclui um processador 3302, um clock 3330, uma memória 3326, uma fonte de alimentação 3304 (por exemplo, uma bateria), uma chave 3306, como uma chave de energia de transístor de efeito de campo de óxido metálico semicondutor (MOSFET), um circuito de acionamento 3308 (PLL), um transformador 3310, um circuito de suavização de sinal 3312 (também chamado de um circuito de correspondência e pode ser, por exemplo, um circuito de tanque), um circuito de detecção 3314, um transdutor 1120, e um conjunto de eixo de acionamento (por exemplo, conjunto de eixo de acionamento 1126, 1129) compreendendo um guia de ondas de transmissão ultrassônica que termina em uma lâmina ultrassônica (por exemplo, lâmina ultrassônica 1128, 1149) que pode ser chamada, na presente invenção, simplesmente de guia de ondas.
[00358] Uma característica da presente descrição que interrompe a dependência da energia de entrada de alta tensão (120 VAC) (uma característica de dispositivos de corte ultrassônicos gerais) é a utilização de chaveamento de baixa tensão ao longo de todo o processo de formação de onda e a amplificação do sinal de acionamento apenas diretamente antes do estágio do transformador. Por essa razão, em um aspecto da presente descrição, a energia é derivada de apenas uma bateria, ou um grupo de baterias, pequena o suficiente para se encaixar no interior de um conjunto de empunhadura. A tecnologia de bateria do estado da técnica fornece baterias potentes de alguns centímetros de altura e largura e alguns milímetros de profundidade. Pela combinação das características da presente descrição para fornecer um dispositivo ultrassônico autocontido e autoalimentado, pode-se obter uma redução do custo de produção.
[00359] A saída da fonte de alimentação 3304 é alimentada ao processador 3302 e o energiza. O processador 3302 recebe e envia sinais e, conforme será descrito abaixo, funciona de acordo com uma lógica personalizada ou de acordo com programas de computador que são executados pelo processador 3302. Conforme discutido acima, o circuito elétrico 3300 pode também incluir uma memória 3326, de preferência, uma memória de acesso aleatório (RAM) que armazena instruções e dados legíveis por computador.
[00360] A saída da fonte de alimentação 3304 também é direcionada à chave 3306 tendo um ciclo de trabalho controlado pelo processador
3302. Ao controlar o tempo de permanência da chave 3306, o processador 3302 é capaz de determinar a quantidade total de energia que é, por fim, fornecida ao transdutor 1120. Em um aspecto, a chave 3306 é um MOSFET, embora outras configurações de chave e chaveamento também sejam adaptáveis. A saída da chave 3306 é alimentada a um circuito de acionamento 3308 que contém, por exemplo, um circuito de detecção de fase para fase bloqueada (PLL) e/ou um filtro passa baixa e/ou um oscilador controlado por tensão. A saída da chave 3306 é amostrada pelo processador 3302 para determinar a tensão e a corrente do sinal de saída (VIN e IIN, respectivamente). Esses valores são utilizados em uma arquitetura de retroinformação para ajustar a modulação por largura de pulso da chave
3306. Por exemplo, o ciclo de trabalho da chave 3306 pode variar de cerca de 20% a cerca de 80%, dependendo da saída desejada e real da chave 3306.
[00361] O circuito de acionamento 3308, que recebe o sinal da chave 3306, inclui um circuito oscilatório que transforma a saída da chave 3306 em um sinal elétrico tendo uma frequência ultrassônica, por exemplo, de 55 kHz (VCO). Conforme explicado acima, uma versão suavizada dessa forma de onda ultrassônica é, por fim, alimentada ao transdutor ultrassônico 1120 para produzir uma onda senoidal ressonante ao longo do guia de ondas de transmissão ultrassônica.
[00362] Na saída do circuito de acionamento 3308 existe um transformador 3310 que é capaz de elevar o(s) sinal(is) de baixa tensão para uma tensão mais alta. Observa-se que o chaveamento a montante, antes do transformador 3310, é realizado em baixas tensões (por exemplo, acionado por bateria), algo que, até o momento, não era possível para dispositivos ultrassônicos de corte e cauterização. Isto ocorre, ao menos parcialmente, pelo fato de que o dispositivo vantajosamente utiliza dispositivos de chaveamento MOSFET de baixa resistência. As chaves MOSFET de baixa resistência são vantajosas, uma vez que produzem menores perdas de chaveamento e menos calor que um dispositivo MOSFET tradicional e possibilitam maior corrente para passagem. Portanto, o estágio de chaveamento (pré- transformador) pode ser caracterizado como de baixa tensão/alta corrente. Para garantir a menor resistência do(s) MOSFET(s) do amplificador, o(s) MOSFET(s) é(são) executado(s), por exemplo, a 10 V. Nesse caso, uma fonte de alimentação de 10 VDC separada pode ser utilizada para alimentar a porta MOSFET, o que garante que o MOSFET esteja totalmente ligado e que uma resistência razoavelmente baixa seja atingida. Em um aspecto da presente descrição, o transformador 3310 eleva a tensão da bateria para 120 V de valor quadrático médio (RMS). Os transformadores são conhecidos na técnica e, portanto, não são aqui explicados em detalhe.
[00363] Nas configurações descritas do circuito, a degradação do componente de circuito pode afetar negativamente o desempenho de circuito do circuito. Um fator que afeta diretamente o desempenho do componente é o calor. Os circuitos conhecidos em geral monitoram as temperaturas de chaveamento (ou seja, as temperaturas do MOSFET). Entretanto, devido aos avanços tecnológicos nos projetos de MOSFET e devido à correspondente redução no tamanho, as temperaturas de MOSFET não são mais um indicador válido de cargas e de calor do circuito. Por este motivo, de acordo com ao menos um aspecto da presente descrição, um circuito de detecção 3314 detecta a temperatura do transformador 3310. Essa detecção de temperatura é vantajosa, pois o transformador 3310 é operado na sua temperatura máxima ou muito próximo a ela, durante o uso do dispositivo. A temperatura adicional fará com que o material do núcleo, por exemplo, a ferrita, se rompa e um dano permanente pode ocorrer. A presente descrição pode responder a uma temperatura máxima do transformador 3310, por exemplo, reduzindo a energia de acionamento no transformador 3310, sinalizando o usuário, desligando a energia, pulsando a energia ou por meio de outras respostas apropriadas.
[00364] Em um aspecto da presente descrição, o processador 3302 está acoplado de forma comunicativa ao atuador de extremidade (por exemplo, 1122, 1125) que é utilizado para colocar o material em contato físico com a lâmina ultrassônica (por exemplo, 1128, 1149). São fornecidos sensores que medem, no atuador de extremidade, um valor de força de aperto (existente dentro uma faixa conhecida) e, com base no valor da força de aperto recebida, o processador 3302 altera a tensão de movimento VM. Uma vez que os altos valores de força, combinados com uma taxa de movimento definida, podem resultar em altas temperaturas da lâmina, um sensor de temperatura 3332 pode ser acoplado de forma comunicativa ao processador 3302, sendo que o processador 3302 é operável para receber e interpretar um sinal que indica uma temperatura atual da lâmina a partir do sensor de temperatura 3336 e para determinar uma frequência alvo de movimento da lâmina com base na temperatura recebida. Em um outro aspecto, sensores de força, como manômetros de tensão mecânica ou sensores de pressão, podem ser acoplados ao gatilho (por exemplo, 1143, 1147) para medir a força aplicada ao gatilho pelo usuário. Em um outro aspecto, sensores de força, como manômetros de tensão mecânica ou sensores de pressão, podem ser acoplados a um botão da chave de modo que a intensidade do deslocamento corresponda à força aplicada pelo usuário ao botão de chave.
[00365] De acordo com ao menos um aspecto da presente descrição, a porção PLL do circuito de acionamento 3308, que é acoplada ao processador 3302, é capaz de determinar uma frequência de movimento do guia de ondas e comunicar essa frequência ao processador 3302. O processador 3302 armazena o valor dessa frequência na memória 3326 quando o dispositivo é desligado. Ao ler o relógio 3330, o processador 3302 é capaz de determinar um tempo decorrido depois que o dispositivo é desligado e recuperar a última frequência de movimento do guia de ondas caso o tempo decorrido seja menor que um valor predeterminado. O dispositivo pode, então, iniciar na última frequência, que, presumivelmente, é a frequência ideal para a carga de corrente. Instrumento cirúrgico de mão modular acionado por bateria com circuitos geradores de múltiplos estágios
[00366] Em um outro aspecto, a presente descrição fornece um instrumento cirúrgico de mão modular alimentado por bateria com circuitos geradores de multiestágios. É descrito um instrumento cirúrgico que inclui um conjunto de bateria, um conjunto de empunhadura, e um conjunto de eixo de acionamento, sendo que o conjunto de bateria e o conjunto de eixo de acionamento são configurados para mecânica e eletricamente conectar o conjunto de empunhadura. O conjunto de bateria inclui um circuito de controle configurado para gerar uma forma de onda digital. O conjunto de empunhadura inclui um circuito de primeiro estágio configurado para receber a forma de onda digital, converter a forma de onda digital em uma forma de onda analógica e amplificar a forma de onda analógica. O conjunto de eixo de acionamento inclui um circuito de segundo estágio acoplado ao circuito de primeiro estágio para receber, amplificar e aplicar a forma de onda analógica a uma carga.
[00367] Em um aspecto, a presente descrição fornece um instrumento cirúrgico, que compreende: um conjunto de bateria, que compreende um circuito de controle que compreende uma bateria, uma memória acoplado à bateria, e um processador acoplado à memória e à bateria, sendo que o processador é configurado para gerar uma forma de onda digital; um conjunto de empunhadura que compreende um circuito de primeiro estágio acoplado ao processador, sendo que o circuito de primeiro estágio compreende um conversor digital para analógico (DAC) e um circuito de primeiro estágio amplificador, sendo que o DAC é configurado para receber a forma de onda digital e converter a forma de onda digital em uma forma de onda analógica, sendo que o primeiro circuito amplificador de estágio é configurado para receber e amplificar a forma de onda analógica; e um conjunto de eixo de acionamento que compreende um circuito de segundo estágio acoplado ao primeiro circuito amplificador de estágio para receber a forma de onda analógica, amplificar a forma de onda analógica, e aplicar a forma de onda analógica a uma carga; sendo que o conjunto de bateria e o conjunto de eixo de acionamento são configurados para se conectarem mecânica e eletricamente ao conjunto de empunhadura.
[00368] A carga pode compreender qualquer um dentre um transdutor ultrassônico, um eletrodo ou um sensor, ou quaisquer combinações dos mesmos. O circuito de primeiro estágio pode compreender um circuito de primeiro estágio de acionamento ultrassônico e um circuito de primeiro estágio de acionamento de corrente de alta frequência. O circuito de controle pode ser configurado para acionar o circuito de primeiro estágio de acionamento ultrassônico e o circuito de primeiro estágio de acionamento de corrente de alta frequência, independentemente ou simultaneamente. O circuito de primeiro estágio de acionamento ultrassônico pode ser configurado para se acoplar a um circuito de segundo estágio circuito de acionamento ultrassônico. O circuito de segundo estágio de acionamento ultrassônico pode ser configurado para se acoplar a um transdutor ultrassônico. O circuito de primeiro estágio de acionamento de corrente de alta frequência de primeiro estágio pode ser configurado para se acoplar a um circuito de segundo estágio de alta frequência. O circuito de segundo estágio de acionamento de alta frequência pode ser configurado para se acoplar a um eletrodo.
[00369] O circuito de primeiro estágio pode compreender um circuito de primeiro estágio de acionamento de sensor. O circuito de primeiro estágio de acionamento de sensor pode ser configurado a um circuito de segundo estágio de acionamento. O circuito de segundo estágio de acionamento de sensor pode ser configurado para se acoplar a um sensor.
[00370] Em um outro aspecto, a presente descrição fornece um instrumento cirúrgico, que compreende: um conjunto de bateria, que compreende um circuito de controle que compreende uma bateria, uma memória acoplado à bateria, e um processador acoplado à memória e à bateria, sendo que o processador é configurado para gerar uma forma de onda digital; um conjunto de empunhadura que compreende um circuito de primeiro estágio comum acoplado ao processador, sendo que o circuito de primeiro estágio comum compreende um conversor digital para analógico (DAC) e um primeiro circuito amplificador de estágio comum, sendo que o DAC é configurado para receber a forma de onda digital e converter a forma de onda digital em uma forma de onda analógica, sendo que o primeiro circuito amplificador de estágio comum é configurado para receber e amplificar a forma de onda analógica; e um conjunto de eixo de acionamento que compreende um circuito de segundo estágio acoplado ao primeiro circuito amplificador de estágio comum para receber a forma de onda analógica, amplificar a forma de onda analógica, e aplicar a forma de onda analógica a uma carga; sendo que o conjunto de bateria e o conjunto de eixo de acionamento são configurados para se conectarem mecânica e eletricamente ao conjunto de empunhadura.
[00371] A carga pode compreender qualquer um dentre um transdutor ultrassônico, um eletrodo ou um sensor, ou quaisquer combinações dos mesmos. O circuito de primeiro estágio comum pode ser configurado para acionar circuitos ultrassônicos, de alta frequência, ou sensores. O primeiro circuito estágio de acionamento comum pode ser configurado para se acoplar a um circuito de segundo estágio de acionamento ultrassônico, um circuito de segundo estágio de acionamento de alta frequência, ou um circuito de segundo estágio de acionamento de sensor. O circuito de segundo estágio de acionamento ultrassônico pode ser configurado para se acoplar a um transdutor ultrassônico, o circuito de segundo estágio de acionamento de alta frequência é configurado para se acoplar a um eletrodo, e o circuito de segundo estágio de acionamento de sensor é configurado para se acoplar a um sensor.
[00372] Em um outro aspecto, a presente descrição fornece um instrumento cirúrgico, que compreende: um circuito de controle que compreende uma memória acoplada a um processador, sendo que o processador é configurado para gerar uma forma de onda digital; um conjunto de empunhadura que compreende um circuito de primeiro estágio comum acoplado ao processador, o circuito de primeiro estágio comum configurado para receber a forma de onda digital, converter a forma de onda digital em uma forma de onda analógica, e amplificar a forma de onda analógica; e um conjunto de eixo de acionamento que compreende um circuito de segundo estágio acoplado ao circuito de primeiro estágio comum para receber e amplificar a forma de onda analógica; sendo que o conjunto de eixo de acionamento é configurado para se conectar mecânica e eletricamente ao conjunto de empunhadura.
[00373] O circuito de primeiro estágio comum pode ser configurado para acionar circuitos ultrassônicos, de alta frequência, ou sensores. O primeiro circuito estágio de acionamento comum pode ser configurado para se acoplar a um circuito de segundo estágio de acionamento ultrassônico, um circuito de segundo estágio de acionamento de alta frequência, ou um circuito de segundo estágio de acionamento de sensor. O circuito de segundo estágio de acionamento ultrassônico pode ser configurado para se acoplar a um transdutor ultrassônico, o circuito de segundo estágio de acionamento de alta frequência é configurado para se acoplar a um eletrodo, e o circuito de segundo estágio de acionamento de sensor é configurado para se acoplar a um sensor.
[00374] A Figura 34 ilustra um circuito gerador 3400 dividido em um circuito de primeiro estágio 3404 e um circuito de segundo estágio 3406, de acordo com ao menos um aspecto da presente descrição. Em um aspecto, os instrumentos cirúrgicos do sistema cirúrgico 1000 aqui descritos podem compreender um circuito gerador 3400 dividido em múltiplos estágios. Por exemplo, os instrumentos cirúrgicos do sistema cirúrgico 1000 podem compreender o circuito gerador 3400 dividido em ao menos dois circuitos: o circuito de primeiro estágio 3404 e o circuito de segundo estágio 3406 de amplificação permitindo a operação de energia de RF apenas, energia ultrassônica apenas, e/ou uma combinação de energia de RF e energia ultrassônica. Um conjunto de eixo de acionamento modular 3414 de combinação ser alimentado pelo circuito de primeiro estágio comum 3404 localizado em um conjunto de empunhadura 3412 e o circuito de segundo estágio modular 3406 integral com o conjunto de eixo de acionamento modular 3414. Como anteriormente discutido nesta descrição em conexão com os instrumentos cirúrgicos do sistema cirúrgico 1000, um conjunto de bateria 3410 e o conjunto de eixo de acionamento 3414 são configurados para mecanicamente e eletricamente se conectarem ao conjunto de empunhadura 3412. O conjunto de atuador de extremidade é configurado para mecânica e eletricamente se conectar ao conjunto de eixo de acionamento 3414.
[00375] Voltando-se agora para a Figura 34, o circuito gerador 3400 é dividido em múltiplos estágios localizados em múltiplos conjuntos modulares de um instrumento cirúrgico, como os instrumentos cirúrgicos do sistema cirúrgico 1000 aqui descritos. Em um aspecto, um circuito de controle de estágio 3402 pode estar situado no conjunto de bateria 3410 do instrumento cirúrgico. O circuito de controle de estágio 3402 é um circuito de controle 3200 conforme descrito em conexão com a Figura 32. O circuito de controle 3200 compreende um processador 3214, que inclui memória interna 3217 (Figura 34) (por exemplo, memória volátil e não volátil), e é eletricamente acoplado a uma bateria
3211. A bateria 3211 fornece energia para o circuito de primeiro estágio 3404, o circuito de segundo estágio 3406, e um terceiro circuito de estágio 3408, respectivamente. Conforme anteriormente discutido, o circuito de controle 3200 gera uma forma de onda digital 4300 (Figura 43) com o uso de circuitos e técnicas descritas em conexão com as Figuras 41 e 42. Novamente com referência à Figura 34, a forma de onda digital 4300 pode ser configurada para acionar um transdutor ultrassônico, eletrodos de alta frequência (por exemplo, RF), ou uma combinação dos mesmos, independentemente ou simultaneamente. Se acionados simultaneamente, circuitos de filtro podem ser fornecidos nos primeiros circuitos de estágio correspondentes 3404 para selecionar tanto a forma de onda ultrassônica quanto a forma de onda de RF. Essas técnicas de filtragem são descritas na publicação da Patente U.S.
n° US-2017-0086910-A1, de propriedade comum, intitulado
TECHNIQUES FOR CIRCUIT TOPOLOGIES FOR COMBINED GENERATOR, que está aqui integralmente incorporado a título de referência.
[00376] Os primeiros circuitos de estágio 3404 (por exemplo, o circuito de primeiro estágio de acionamento ultrassônico 3420, o circuito de primeiro estágio de acionamento de RF 3422, e o circuito de primeiro estágio de acionamento de sensor 3424) estão localizados em um conjunto de empunhadura 3412 do instrumento cirúrgico. O circuito de controle 3200 fornece o sinal de acionamento ultrassônico para o circuito de primeiro estágio de acionamento ultrassônico 3420 através das saídas SCL-A, SDA-A do circuito de controle 3200. O circuito de primeiro estágio de acionamento ultrassônico 3420 é descrito em detalhes em conexão com a Figura 29. O circuito de controle 3200 fornece o sinal de acionamento RF para o circuito de primeiro estágio de acionamento de RF 3422 através das saídas SCL-B, SDA-B do circuito de controle 3200. O circuito de primeiro estágio de acionamento RF 3422 é descrito em detalhes em conexão com a Figura 36. O circuito de controle 3200 fornece o sinal de acionamento do sensor ao circuito de primeiro estágio de acionamento do sensor 3424 através das saídas SCL-C, SDA-C do circuito de controle 3200. Em geral, cada um dentre os primeiros circuitos de estágio 3404 inclui um conversor digital para analógico (DAC) e uma primeira seção de amplificador de estágio para acionar os segundos circuitos de estágio 3406. As saídas dos primeiros circuitos de estágio 3404 são fornecidas para as entradas dos segundos circuitos de estágio 3406.
[00377] O circuito de controle 3200 é configurado para detectar quais módulos são plugados no circuito de controle 3200. Por exemplo, o circuito de controle 3200 é configurado para detectar se o circuito de primeiro estágio de acionamento ultrassônico 3420, o primeiro circuito estágio de acionamento de RF 3422, ou o circuito de primeiro estágio de acionamento de sensor 3424 situado no conjunto de empunhadura 3412 está conectado ao conjunto de bateria 3410. Da mesma forma, cada um dentre os primeiros circuitos de estágio 3404 pode detectar quais segundos circuitos de estágio 3406 estão conectados ao mesmo e qual informação é fornecida de volta ao circuito de controle 3200 para determinar que tipo de forma de onda de sinal gerar. De modo similar, cada um dentre os segundos circuitos de estágio 3406 pode detectar quais terceiros circuitos de estágio 3408 ou componentes estão conectados ao mesmo e qual informação é fornecida de volta ao circuito de controle 3200 para determinar que tipo de forma de onda de sinal gerar.
[00378] Em um aspecto, os segundos circuitos de estágio 3406 (por exemplo, o circuito de segundo estágio de acionamento ultrassônico 3430, o circuito de segundo estágio de acionamento de RF 3432, e o circuito de segundo estágio de acionamento de sensor 3434) estão localizados no conjunto de eixo de acionamento 3414 do instrumento cirúrgico. O circuito de primeiro estágio de acionamento ultrassônico 3420 fornece um sinal para o circuito de segundo estágio de acionamento ultrassônico 3430 através de saídas US-esquerda/US- direta. O circuito de segundo estágio de acionamento ultrassônico 3430 é descrito em detalhes em conexão com as Figuras 30 e 31. Além de um transformador (Figuras 30 e 31), o circuito de segundo estágio de acionamento ultrassônico 3430 também pode incluir filtro, amplificador, e circuitos de condicionamento de sinal. O circuito de primeiro estágio de acionamento de corrente (RF) de alta frequência 3422 fornece um sinal para o circuito de segundo estágio de acionamento de RF 3432 através das saídas de RF-esquerda/RF direita. Além de um transformador e capacitores de bloqueio, o circuito de segundo estágio de acionamento de RF 3432 também pode incluir filtro, amplificador, e circuitos de condicionamento de sinal. O circuito de primeiro estágio de acionamento de sensor 3424 fornece um sinal para o circuito de segundo estágio de acionamento de sensor 3434 através de saídas sensor-1/sensor-2. O circuito de segundo estágio de acionamento de sensor 3434 pode incluir filtro, amplificador, e circuitos de condicionamento de sinal dependendo do tipo de sensor. As saídas dos segundos circuitos de estágio 3406 são fornecidas para as entradas dos terceiros circuitos de estágio 3408.
[00379] Em um aspecto, os terceiros circuitos de estágio 3408 (por exemplo, o transdutor ultrassônico 1120, os eletrodos de RF 3074a, 3074b, e os sensores 3440) podem estar situados em vários conjuntos 3416 dos Instrumentos cirúrgicos. Em um aspecto, o circuito de segundo estágio de acionamento ultrassônico 3430 fornece um sinal de acionamento à pilha piezoelétrica do transdutor ultrassônico 1120. Em um aspecto, o transdutor ultrassônico 1120 está localizado no conjunto de transdutor ultrassônico do instrumento cirúrgico. Em outros aspectos, entretanto, o transdutor ultrassônico 1120 pode estar situado no conjunto de empunhadura 3412, no conjunto de eixo de acionamento 3414 ou no atuador de extremidade. Em um aspecto, o circuito de segundo estágio de acionamento de RF 3432 fornece um sinal de acionamento aos eletrodos de RF 3074a, 3074b, que estão geralmente localizados na porção de atuador de extremidade do instrumento cirúrgico. Em um aspecto, o circuito de segundo estágio de acionamento de sensor 3434 fornece um sinal de acionamento a vários sensores 3440 localizados no instrumento cirúrgico.
[00380] A Figura 35 ilustra um circuito gerador 3500 dividido em múltiplos estágios em que um circuito de primeiro estágio 3504 é comum para o circuito de segundo estágio 3506, de acordo com ao menos um aspecto da presente descrição. Em um aspecto, os instrumentos cirúrgicos do sistema cirúrgico 1000 aqui descritos podem compreender circuito gerador 3500 dividido em múltiplos estágios. Por exemplo, os instrumentos cirúrgicos do sistema cirúrgico 1000 podem compreender o circuito gerador 3500 dividido em ao menos dois circuitos: o circuito de primeiro estágio 3504 e o circuito de segundo estágio 3506 de amplificação permitindo a operação de energia de alta frequência RF apenas, energia ultrassônica apenas, e/ou uma combinação de energia de RF e energia ultrassônica. Um conjunto de eixo de acionamento modular 3514 de combinação ser alimentado pelo circuito de primeiro estágio comum 3504 localizado em um conjunto de empunhadura 3512 e o circuito de segundo estágio modular 3506 integral com o conjunto de eixo de acionamento modular 3514. Como anteriormente discutido nesta descrição em conexão com os instrumentos cirúrgicos do sistema cirúrgico 1000, um conjunto de bateria 3510 e o conjunto de eixo de acionamento 3514 são configurados para mecanicamente e eletricamente se conectarem ao conjunto de empunhadura 3512. O conjunto de atuador de extremidade é configurado para mecânica e eletricamente se conectar ao conjunto de eixo de acionamento 3514.
[00381] Conforme mostrado no exemplo da Figura 35, a porção do conjunto de bateria 3510 do instrumento cirúrgico compreende um primeiro circuito de controle 3502, que inclui o circuito de controle 3200 anteriormente descrito. O conjunto de empunhadura 3512, que se conecta ao conjunto de bateria 3510, compreende um circuito de primeiro estágio de acionamento comum 3420. Conforme anteriormente discutido, o circuito de primeiro estágio de acionamento 3420 é configurado para acionar a corrente ultrassônica de alta frequência (RF), e cargas de sensor. A saída do circuito de primeiro estágio de acionamento comum 3420 pode acionar qualquer um dos segundos circuitos de estágio 3506 como o circuito de segundo estágio de acionamento ultrassônico 3430, o circuito de segundo estágio de acionamento de corrente de alta frequência (RF) 3432, e/ou o circuito de segundo estágio de acionamento de sensor 3434. O circuito de primeiro estágio de acionamento comum 3420 detecta qual circuito de segundo estágio 3506 está situado no conjunto de eixo de acionamento 3514 quando o conjunto de eixo de acionamento 3514 é conectado ao conjunto de empunhadura 3512. Após o conjunto de eixo de acionamento 3514 ser conectado ao conjunto de empunhadura 3512, o circuito de primeiro estágio de acionamento comum 3420 determina qual dentre os segundos circuitos de estágio 3506 (por exemplo, o circuito de segundo estágio de acionamento ultrassônico 3430, o circuito de segundo estágio de acionamento de RF 3432, e/ou o circuito de segundo estágio de acionamento de sensor 3434) está situado no conjunto de eixo de acionamento 3514. As informações são fornecidas ao circuito de controle 3200 localizado no conjunto de empunhadura 3512 para fornecer uma forma de onda digital adequada 4300 (Figura 43) ao circuito de segundo estágio 3506 para acionar a carga adequada, por exemplo, ultrassônica, RF ou sensor. Será entendido que circuitos de identificação podem ser incluídos em vários conjuntos 3516 no terceiro circuito de estágio 3508 como o transdutor ultrassônico 1120, os eletrodos 3074a, 3074b, ou os sensores 3440. Dessa forma, quando um terceiro circuito de estágio 3508 é conectado a um circuito de segundo estágio 3506, o circuito de segundo estágio 3506 reconhece o tipo de carga que é necessária com base na informação de identificação.
[00382] A Figura 36 é um diagrama esquemático de um aspecto de um circuito elétrico 3600 configurado para acionar uma corrente de alta frequência (RF), de acordo com ao menos um aspecto da presente descrição. O circuito elétrico 3600 compreende um multiplexador analógico 3680. O multiplexador analógico 3680 multiplexa vários sinais a partir dos canais a montante SCL-A, SDA-A como circuitos de RF, de bateria e de controle de energia. Um sensor de corrente 3682 está acoplado em série à perna de retorno ou de aterramento do circuito de fonte de alimentação para medir a corrente fornecida pela fonte de alimentação. Um sensor de temperatura 3684 de transístor de efeito de campo (FET) fornece a temperatura ambiente. Um temporizador de vigilância de modulação por largura de pulso (PWM) 3688 gera automaticamente uma reinicialização do sistema se o programa principal deixar de repará-lo periodicamente. Ele é fornecido para reiniciar automaticamente o circuito elétrico 3600 quando ele trava ou congela devido a uma falha de software ou hardware. Será reconhecido que o circuito elétrico 3600 pode ser configurado para acionar eletrodos de RF ou para acionar o transdutor ultrassônico 1120 conforme descrito em conexão com a Figura 29, por exemplo. Consequentemente, com referência agora novamente à Figura 36, o circuito elétrico 3600 pode ser utilizado para acionar tanto eletrodos ultrassônicos quanto de RF de forma intercambiável.
[00383] Um circuito de acionamento 3686 fornece saídas de energia de RF à esquerda e à direita. Um sinal digital que representa a forma de onda de sinal é fornecido às entradas SCL-A, SDA-A do multiplexador analógico 3680 a partir de um circuito de controle, como o circuito de controle 3200 (Figura 32). Um conversor de digital para analógico (DAC) 3690 converte a entrada digital em uma saída analógica para gerar um circuito de modulação por largura de pulso 3692 acoplado a um oscilador 3694. O circuito de modulação por largura de pulso 3692 fornece um primeiro sinal para um primeiro circuito de acionamento de porta 3696a acoplado a um primeiro estágio de saída do transístor 3698a para acionar uma primeira saída de energia de RF+ (esquerda). O circuito de modulação por largura de pulso 3692 também fornece um segundo sinal para um segundo circuito de acionamento de porta 3696b acoplado a um segundo estágio de saída do transístor 3698b para acionar uma segunda saída de energia de RF- (direita). Um sensor de tensão 3699 está acoplado entre os terminais de saída de RF à esquerda/RF para medir a tensão de saída. O circuito de acionamento 3686, o primeiro e o segundo circuitos de acionamento 3696a, 3696b, e o primeiro e o segundo estágios de saída do transístor 3698a, 3698b definem um primeiro circuito amplificador de estágio. Em funcionamento, o circuito de controle 3200 (Figura 32) gera uma forma de onda digital 4300 (Figura 43) que emprega circuitos como os circuitos de síntese direta digital (DDS) 4100, 4200 (Figuras 41 e 42). O DAC 3690 recebe a forma de onda digital 4300 e a converte em uma forma de onda analógica, que é recebida e amplificada pelo primeiro circuito amplificador de estágio.
[00384] A Figura 37 é um diagrama esquemático do transformador 3700 acoplado ao circuito elétrico 3600 mostrado na Figura 36, de acordo com ao menos um aspecto da presente descrição. Os terminais de entrada RF+/RF (enrolamento primário) do transformador 3700 estão acoplados eletricamente aos terminais de saída RF esquerdo/RF do circuito elétrico 3600. Um lado do enrolamento secundário está acoplado em série ao primeiro e ao segundo capacitor de bloqueio 3706,
3708. O segundo capacitor de bloqueio está acoplado ao terminal positivo do circuito de segundo estágio de acionamento de RF 3774a. O outro lado do enrolamento secundário está acoplado ao terminal negativo do circuito de segundo estágio de acionamento de RF 3774b. A saída positiva do circuito de segundo estágio de acionamento de RF 3774a é acoplada à lâmina ultrassônica e o segundo terminal terra negativo do circuito de segundo estágio de acionamento de RF 3774b é acoplado a um tubo externo. Em um aspecto, o transformador tem uma razão de voltas de n1:n2 de 1:50.
[00385] A Figura 38 é um diagrama esquemático de um circuito 3800 compreendendo fontes de alimentação separadas para circuitos de acionamento/energia de alta potência e circuitos de baixa potência, de acordo com ao menos um aspecto da presente descrição.
A fonte de alimentação 3812 inclui uma bateria primária compreendendo a primeira e a segunda baterias primárias 3815, 3817 (por exemplo, baterias de íons de Li) que estão conectadas ao circuito 3800 por uma chave 3818 e uma bateria secundária compreendendo uma bateria secundária 3820 que está conectada ao circuito por uma chave 3823 quando a fonte de alimentação 3812 é inserida no conjunto de bateria.
A bateria secundária 3820 é uma bateria de prevenção de queda que tem componentes resistentes a esterilização por radiação gama ou outra radiação.
Por exemplo, uma fonte de alimentação chaveada 3827 e um circuito de carga opcional no interior do conjunto de bateria podem ser incorporados para permitir que a bateria secundária 3820 reduza a queda de tensão das baterias primárias 3815, 3817. Isso garante células totalmente carregadas no início de uma cirurgia que são fáceis de introduzir no campo estéril.
As baterias primárias 3815, 3817 podem ser usadas para alimentar os circuitos de controle do motor 3826 e os circuitos de energia 3832 diretamente.
Os circuitos de controle de motor 3826 são configurados para controlar um motor, como o motor 3829. A fonte de alimentação/bateria 3812 pode compreender um conjunto de bateria do tipo dupla incluindo baterias primárias de íons de Li 3815, 3817 e baterias secundárias de NiMH 3820 com células de energia dedicadas 3820 para controlar os circuitos eletrônicos da empunhadura 3830 a partir das células de energia dedicadas 3815, 3817 para operar os circuitos de controle do motor 3826 e os circuitos de energia 3832. Neste caso o circuito 3810 se alimenta das baterias secundárias 3820 envolvidas no acionamento dos circuitos eletrônicos da empunhadura 3830 quando as baterias primárias 3815, 3817 envolvidas no acionamento dos circuitos de energia 3832 e/ou circuitos de controle de motor 3826 estão baixando.
Em um aspecto diferente, o circuito 3810 pode incluir um diodo de sentido único que não possibilita que a corrente flua na direção oposta (por exemplo, a partir das baterias envolvidas no acionamento da energia e/ou circuitos de controle do motor para as baterias envolvidas no acionamento dos circuitos eletrônicos).
[00386] Adicionalmente, pode ser fornecido um circuito de carga passível de exposição à radiação gama que inclui uma fonte de alimentação chaveada 3827 utilizando diodos e componentes de tubo de vácuo para minimizar a queda de tensão em um nível predeterminado. Com a inclusão de uma mínima queda de tensão que é uma divisão das tensões de NiMH (3 células de NiMH), a fonte de alimentação chaveada 3827 poderia ser eliminada. Adicionalmente, pode ser fornecido um sistema modular em que os componentes reforçados contra radiação estão situados em um módulo, tornando o módulo esterilizável por esterilização por radiação. Outros componentes não reforçados contra radiação podem estar incluídos em outros componentes modulares e conexões feitas entre os componentes modulares, de modo que o componente opere junto como se os componentes estivessem situados juntos na mesma placa de circuito. Se apenas duas células de NiMH forem desejadas, a fonte de alimentação chaveada 3827 baseada em diodos e tubos de vácuo possibilita o circuito eletrônico esterilizável no interior da bateria primária descartável.
[00387] Com referência agora à Figura 39, é mostrado um circuito de controle 3900 para operação de um circuito gerador de RF alimentado pela bateria 3901 para uso com um instrumento cirúrgico 3902, de acordo com um ao menos um aspecto da presente descrição. O instrumento cirúrgico é configurado tanto para utilizar vibração ultrassônica quanto corrente de alta frequência para realizar tratamentos cirúrgicos de coagulação/corte em tecido vivo, e utiliza corrente de alta frequência para realizar um tratamento de coagulação cirúrgica em tecido vivo.
[00388] A Figura 39 ilustra o circuito de controle 3900 que permite que um sistema gerador duplo alterne entre as modalidades de energia do circuito gerador de RF 3902 e do circuito gerador ultrassônico 3920 para um instrumento cirúrgico do sistema cirúrgico 1000. Em um aspecto, um limiar de corrente em um sinal de RF é detectado. Quando a impedância do tecido for baixa, a corrente de alta frequência através do tecido é alta quando a energia de RF for utilizada como a fonte para o tratamento do tecido. De acordo com um aspecto, um indicador visual 3912 ou luz situado no instrumento cirúrgico do sistema cirúrgico 1000 pode ser configurado para estar em um estado ligado durante esse período de alta corrente. Quando a corrente cai abaixo de um limiar, o indicador visual 3912 entra em um estado desligado. Consequentemente, um fototransístor 3914 pode ser configurado para detectar a transição de um estado ligado para um estado desligado e desativar a energia de RF, conforme mostrado no circuito de controle 3900 mostrado na Figura 39. Portanto, quando o botão de energia é liberado e uma chave de energia 3926 é aberta, o circuito de controle 3900 é reinicializado e ambos os circuitos de RF e de gerador ultrassônico 3902, 3920 são mantidos desligados.
[00389] Com referência à Figura 39, em um aspecto, é fornecido um método de gerenciamento de um circuito gerador de RF 3902 e de um circuito gerador de ultrassom 3920. O circuito gerador de RF 3902 e/ou o circuito gerador de ultrassom 3920 podem estar situados no conjunto de empunhadura 1109, no conjunto de transdutor ultrassônico/gerador de RF 1120, no conjunto de bateria, no conjunto de eixo de acionamento 1129 e/ou no bocal, do instrumento eletrocirúrgico multifuncional 1108, por exemplo. O circuito de controle 3900 é mantido em um estado reinicializado se a chave de energia 3926 estiver desligada (por exemplo, aberta). Dessa forma, quando a chave de energia 3926 estiver aberta, o circuito de controle 3900 é reinicializado e ambos os circuitos geradores de RF e ultrassônicos 3902, 3920 são desligados. Quando a chave de energia 3926 é pressionada e a chave de energia 3926 é engatada (por exemplo, fechada), a energia de RF é distribuída ao tecido e o indicador visual 3912 operado por um transformador de aumento de detecção de corrente 3904 ficará aceso enquanto a impedância de tecido estiver baixa. A luz do indicador visual 3912 fornece um sinal logico para manter o circuito gerador ultrassônico 3920 no estado desligado. Uma vez que a impedância de tecido aumenta além de um limiar e a corrente de alta frequência através do tecido diminui abaixo de um limiar, o indicador visual 3912 desliga e luz passa para um estado desligado. Um sinal lógico gerado por essa transição desliga o relé 3908, por meio do que o circuito gerador de RF 3902 é desligado e o circuito gerador ultrassônico 3920 é ligado, para concluir o ciclo de coagulação e corte.
[00390] Ainda com referência à Figura 39, em um aspecto, a configuração do circuito gerador duplo emprega o circuito gerador de RF 3902 on-board, o qual é alimentado pela bateria 3901, para uma modalidade, e um segundo circuito gerador de ultrassom 3920 on- board, que pode estar incluído no conjunto de empunhadura 1109, no conjunto de bateria, no conjunto de eixo de acionamento 1129, no bocal e/ou no conjunto de transdutor ultrassônico/gerador de RF 1120 do instrumento circuito multifuncional 1108, por exemplo. O circuito gerador ultrassônico 3920 também é operado por bateria 3901. Em vários aspectos, o circuito gerador de RF 3902 e o circuito gerador ultrassônico 3920 podem ser um componente do conjunto de empunhadura 1109 integrado ou separável. De acordo com vários aspectos, ter os circuitos geradores de RF/ultrassônicos duplos 3902, 3920 como parte do conjunto de empunhadura 1109 pode eliminar a necessidade de fiação complicada. Os circuitos geradores de RF/ultrassônicos 3902, 3920 podem ser configurados para fornecer as capacidades totais de um gerador existente, enquanto se utilizam as capacidades de um sistema gerador sem fio simultaneamente.
[00391] Qualquer tipo de sistema pode ter controles separados para as modalidades que não estão se comunicando entre si. O cirurgião ativa a energia de RF e ultrassônica separadamente e a seu critério. Uma outra abordagem seria fornecer esquemas de comunicação completamente integrados que compartilham botões, estados do tecido, parâmetros operacionais do instrumento (como sistema de fechamento por garra, forças, etc.) e algoritmos para gerenciar o tratamento de tecido. Diversas combinações dessa integração podem ser implementadas para fornecer o nível adequado de funcionamento e desempenho.
[00392] Conforme discutido acima, em um aspecto, o circuito de controle 3900 inclui um circuito gerador de RF 3902 alimentado pela bateria 3901 que compreende uma bateria como uma fonte de energia. Conforme mostrado, o circuito gerador de RF 3902 está acoplado a duas superfícies eletricamente condutivas aqui chamadas de eletrodos 3906a, 3906b (isto é, eletrodo ativo 3906a e eletrodo de retorno 3906b) e é configurado para acionar os eletrodos 3906a, 3906b com energia de RF (por exemplo, corrente de alta frequência). Um primeiro enrolamento 3910a do transformador de elevação 3904 é conectado em série com um polo do circuito gerador de RF bipolar 3902 e o eletrodo de retorno 3906b. Em um aspecto, o primeiro enrolamento 3910a e o eletrodo de retorno 3906b são conectados ao polo negativo do circuito gerador de RF bipolar 3902. O outro polo do circuito gerador de RF bipolar 3902 é conectado ao eletrodo ativo 3906a através de um contato de chave 3909 do relé 3908, ou qualquer dispositivo de chaveamento eletromagnético adequado compreendendo uma armadura que é movida por um eletromagneto 3936 para operar o contato de chave 3909. O contato de chave 3909 é fechado quando o eletromagneto 3936 é energizado e o contato de chave 3909 é aberto quando o eletromagneto 3936 é desenergizado. Quando o contato de chave é fechado, a corrente de RF flui através do tecido condutivo (não mostrado) situado entre os eletrodos 3906a, 3906b. Será reconhecido que, em um aspecto, o eletrodo ativo 3906a é conectado ao polo positivo do circuito gerador de RF bipolar 3902.
[00393] Um circuito indicador visual 3905 compreende o transformador de elevação 3904, um resistor em série R2 e um indicador visual 3912. O indicador visual 3912 pode ser adaptado para uso com o instrumento cirúrgico 1108 e outros sistemas e ferramentas eletrocirúrgicos, como aqueles aqui descritos. O primeiro enrolamento 3910a do transformador de elevação 3904 está conectado em série ao eletrodo de retorno 3906b e o segundo enrolamento 3910b do transformador de elevação 3904 está conectado em série ao resistor R2 e ao indicador visual 3912 compreendendo uma lâmpada de neon do tipo NE-2, por exemplo.
[00394] Em funcionamento, quando o contato de chave 3909 do relé 3908 é aberto, o eletrodo ativo 3906a é desconectado do polo positivo do circuito gerador de RF bipolar 3902 e nenhuma corrente flui através do tecido, do eletrodo de retorno 3906b e do primeiro enrolamento 3910a do transformador de elevação 3904. Consequentemente, o indicador visual 3912 não é energizado e não emite luz. Quando o contato de chave 3909 do relé 3908 é fechado, o eletrodo ativo 3906a é conectado ao polo positivo do circuito gerador de RF bipolar 3902, possibilitando que a corrente flua através do tecido, do eletrodo de retorno 3906b e do primeiro enrolamento 3910a do transformador de elevação 3904 para funcionar sobre o tecido, por exemplo, cortar e cauterizar o tecido.
[00395] Uma primeira corrente flui através do primeiro enrolamento 3910a em função da impedância do tecido situado entre os eletrodos ativo e de retorno 3906a, 3906b fornecendo uma primeira tensão no primeiro enrolamento 3910a do transformador de elevação 3904. Uma segunda tensão aumentada é induzida no segundo enrolamento 3910b do transformador de elevação 3904. A tensão secundária aparece através do resistor R2 e energiza o indicador visual 3912, fazendo com que a lâmpada de neon acenda quando a corrente através do tecido é maior que um limiar predeterminado. Será reconhecido que o circuito e os valores de componente são ilustrativos e não limitados a eles. Quando o contato de chave 3909 do relé 3908 é fechado, a corrente flui através do tecido e o indicador visual 3912 é ligado.
[00396] Referindo-se agora à porção da chave de energia 3926 do circuito de controle 3900, quando a chave de energia 3926 está na posição aberta, uma lógica alta é aplicada à entrada de um primeiro inversor 3928 e uma lógica baixa é aplicada a uma das duas entradas da porta AND 3932. Dessa forma, a saída da porta AND 3932 é baixa e um transístor 3934 é desligado para impedir que a corrente flua através do enrolamento do eletromagneto 3936. Com o eletromagneto 3936 no estado desenergizado, o contato de chave 3909 do relé 3908 permanece aberto e impede que a corrente flua através dos eletrodos 3906a, 3906b. A saída de lógica baixa do primeiro inversor 3928 também é aplicada a um segundo inversor 3930, levando a saída para o estado lógico alto e reinicializando um "flip-flop" 3918 (por exemplo, um "flip-flop" do tipo D). Nesse momento, a saída Q fica baixa para desligar o circuito gerador de ultrassom 3920 e a saída fica alta e é aplicada à outra entrada da porta AND 3932.
[00397] Quando o usuário pressiona a chave de energia 3926 na empunhadura do instrumento para aplicar energia ao tecido entre os eletrodos 3906a, 3906b, a chave de energia 3926 se fecha e aplica uma lógica baixa na entrada do primeiro inversor 3928, que aplica uma lógica alta na outra entrada da porta AND 3932 fazendo com que a saída da porta AND 3932 passe para o nível alto e ligue o transístor 3934. No estado ligado, o transístor 3934 conduz e reduz a corrente através do enrolamento do eletromagneto 3936 para energizar o eletromagneto 3936 e fechar o contato de chave 3909 do relé 3908. Conforme discutido acima, quando o contato de chave 3909 é fechado, a corrente pode fluir através dos eletrodos 3906a, 3906b e do primeiro enrolamento 3910a do transformador de elevação 3904 quando o tecido está situado entre os eletrodos 3906a, 3906b.
[00398] Conforme discutido acima, a magnitude da corrente que flui através dos eletrodos 3906a, 3906b depende da impedância do tecido situado entre os eletrodos 3906a, 3906b. Inicialmente, a impedância de tecido é baixa e a magnitude da corrente é alta através do tecido e do primeiro enrolamento 3910a. Consequentemente, uma tensão aplicada ao segundo enrolamento 3910b é alta o suficiente para ligar o indicador visual 3912. A luz emitida pelo indicador visual 3912 liga o fototransístor 3914, o que reduz a entrada de um inversor 3916 e faz com que a saída do inversor 3916 passe para o nível alto. Uma entrada alta aplicada ao CLK do flip-flop 3918 não tem efeito sobre o Q ou sobre as saídas do flip-flop 3918 e a saída permanece alta. Consequentemente, enquanto o indicador visual 3912 permanece energizado, o circuito gerador de ultrassom 3920 é desligado e o transdutor ultrassônico 3922 e uma lâmina ultrassônica 3924 do instrumento eletrocirúrgico multifuncional não são ativados.
[00399] Conforme o tecido entre os eletrodos 3906a, 3906b seca devido ao calor gerado pela corrente que flui através do tecido, a impedância do tecido aumenta e a corrente através dele diminui. Quando a corrente através do primeiro enrolamento 3910a diminui, a tensão no segundo enrolamento 3910b também diminui e quando a tensão cai abaixo de um limiar mínimo exigido para operar o indicador visual 3912, o indicador visual 3912 e o fototransístor 3914 desligam.
Quando o fototransístor 3914 desliga, uma lógica alta é aplicada à entrada do inversor 3916 e uma lógica baixa é aplicada à entrada CLK do flip-flop 3918 para registrar uma lógica alta à saída Q e uma lógica baixa à saída . A lógica alta na saída Q liga o circuito gerador de ultrassom 3920 para ativar o transdutor ultrassônico 3922 e a lâmina ultrassônica 3924 para iniciar o corte do tecido localizado entre os eletrodos 3906a, 3906a. Simultaneamente ou quase simultaneamente com o circuito gerador de ultrassom 3920 se ligando, a saída do flip- flop 3918 passa o estado lógico baixo e faz com que a saída da porta AND 3932 passe para o estado lógico baixo e desligue o transístor 3934, desenergizando, assim, o eletroímã 3936 e abrindo o contato de chave 3909 do relê 3908 para cortar o fluxo de corrente através dos eletrodos 3906a, 3906b.
[00400] Enquanto o contato de chave 3909 do relé 3908 estiver aberto, nenhuma corrente flui através dos eletrodos 3906a, 3906b, do tecido e do primeiro enrolamento 3910a do transformador de elevação
3904. Portanto, nenhuma tensão é desenvolvida no segundo enrolamento 3910b e nenhuma corrente flui através do indicador visual
3912.
[00401] O estado do Q e as saídas do flip flop de 3918 permanecem os mesmos enquanto o usuário pressiona a chave de energia 3926 na empunhadura do instrumento para manter a chave de energia 3926 fechada. Dessa forma, a lâmina ultrassônica 3924 permanece ativada e continua a cortar o tecido entre as garras do atuador de extremidade, enquanto nenhuma corrente flui através dos eletrodos 3906a, 3906b a partir do circuito gerador de RF bipolar 3902. Quando o usuário libera a chave de energia 3926 na empunhadura do instrumento, a chave de energia 3926 se abre e a saída do primeiro inversor 3928 passa para o nível baixo e a saída do segundo inversor 3930 passa para o nível alto para reinicializar o flip-flop 3918 fazendo com que a saída Q passe para o nível baixo e desligue o circuito gerador de ultrassom 3920. Ao mesmo tempo, a saída para o nível alto e o circuito está agora em um estado desligado e pronto para que o usuário atue a chave de energia 3926 na empunhadura do instrumento para fechar a chave de energia 3926, aplicar corrente ao tecido situado entre os eletrodos 3906a, 3906b, e repetir o ciclo de aplicação de energia de RF ao tecido e energia ultrassônica ao tecido conforme descrito acima.
[00402] A Figura 40 ilustra um diagrama de um sistema cirúrgico 4000, que representa um aspecto do sistema cirúrgico 1000, que compreende um sistema de retroinformação para uso com qualquer um dos Instrumentos cirúrgicos do sistema cirúrgico 1000, que pode incluir ou implementar muitas das características descritas na presente invenção. O sistema cirúrgico 4000 pode incluir um gerador 4002 acoplado a um instrumento cirúrgico que inclui um atuador de extremidade 4006, que pode ser ativado quando um médico opera um gatilho 4010. Em vários aspectos, o atuador de extremidade 4006 pode incluir uma lâmina ultrassônica para aplicar vibração ultrassônica para realizar tratamentos cirúrgicos de coagulação/corte em tecido vivo. Em outros aspectos, o atuador de extremidade 4006 pode incluir elementos eletricamente condutivos acoplados a uma fonte de energia de corrente eletrocirúrgica de alta frequência para realizar tratamentos cirúrgicos de coagulação ou cauterização em tecido vivo e uma faca mecânica com uma borda afiada ou uma lâmina ultrassônica para realizar tratamentos de corte em tecido vivo. Quando o gatilho 4010 é atuado, um sensor de força 4012 pode gerar um sinal que indica a quantidade de força que é aplicada ao gatilho 4010. Além de, ou em vez de, um sensor de força 4012, o instrumento cirúrgico pode incluir um sensor de posição 4013, que pode gerar um sinal indicando a posição do gatilho 4010 (por exemplo, quão longe o gatilho foi pressionado ou de outro modo atuado). Em um aspecto, o sensor de posição 4013 pode ser um sensor posicionado com a bainha tubular externa ou um membro de atuação tubular reciprocante situado no interior da bainha tubular externa do instrumento cirúrgico. Em um aspecto, o sensor pode ser um sensor de efeito Hall ou qualquer transdutor adequado que varia sua tensão de saída em resposta a um campo magnético. O sensor de efeito Hall pode ser utilizado para aplicações de chaveamento por proximidade, posicionamento, detecção de velocidade e detecção de corrente. Em um aspecto, o sensor de efeito Hall funciona como um transdutor analógico, retornando diretamente uma tensão. Com um campo magnético conhecido, sua distância da placa de Hall pode ser determinada.
[00403] Um circuito de controle 4008 pode receber os sinais dos sensores 4012 e/ou 4013. O circuito de controle 4008 pode incluir quaisquer componentes de circuito analógico ou digital adequados. O circuito de controle 4008 pode também se comunicar com o gerador 4002 e/ou com o transdutor 4004 para modular a energia fornecida ao atuador de extremidade 4006 e/ou o nível do gerador ou a amplitude da lâmina ultrassônica do atuador de extremidade 4006 com base na força aplicada ao gatilho 4010 e/ou na posição do gatilho 4010 e/ou na posição da bainha tubular externa descrita acima em relação a um membro de atuação tubular reciprocante situado no interior da bainha tubular externa (por exemplo, conforme medido por uma combinação de sensor de efeito Hall e magneto). Por exemplo, quanto mais força é aplicada ao gatilho 4010, mais energia e/ou maior amplitude de lâmina ultrassônica pode ser fornecida ao atuador de extremidade 4006. De acordo com vários aspectos, o sensor de força 4012 pode ser substituído por uma chave de múltiplas posições.
[00404] De acordo com vários aspectos, o atuador de extremidade 4006 pode incluir uma garra ou mecanismo de preensão. Quando o gatilho 4010 é inicialmente acionado, o mecanismo de travamento pode fechar, prender o tecido entre um braço de aperto e o atuador de extremidade 4006. Conforme a força aplicada ao gatilho aumenta (por exemplo, conforme detectado pelo sensor de força 4012), o circuito de controle 4008 pode aumentar a energia fornecida ao atuador de extremidade 4006 pelo transdutor 4004 e/ou o nível de gerador ou a amplitude de lâmina ultrassônica gerada no atuador de extremidade
4006. Em um aspecto, a posição do gatilho, conforme detectada pelo sensor de posição 4013 ou a posição da garra ou do braço de garra, conforme detectada pelo sensor de posição 4013 (por exemplo, com um sensor de efeito Hall), podem ser utilizadas pelo circuito de controle 4008 para definir a energia e/ou a amplitude do atuador de extremidade
4006. Por exemplo, conforme o gatilho é movimentado adicionalmente em direção a uma posição completamente atuada, ou a garra ou o braço de garra se move adicionalmente em direção à lâmina ultrassônica (ou atuador de extremidade 4006), a energia e/ou amplitude do atuador de extremidade 4006 podem ser aumentadas.
[00405] De acordo com vários aspectos, o instrumento cirúrgico do sistema cirúrgico 4000 pode também incluir um ou mais dispositivos de retroinformação para indicar a quantidade de energia fornecida ao atuador de extremidade 4006. Por exemplo, um alto-falante 4014 pode emitir um sinal indicativo da energia do atuador de extremidade. De acordo com vários aspectos, o alto-falante 4014 pode emitir uma série de sons de pulso, onde a frequência dos sons indica a energia. Em adição a, ou em vez do alto-falante 4014, o instrumento cirúrgico pode incluir uma tela visual 4016. A tela visual 4016 pode indicar o atuador de extremidade de acordo com qualquer método adequado. Por exemplo, a tela visual 4016 pode incluir uma série de LEDs, em que a energia do atuador de extremidade é indicada pelo número de LEDs iluminados. O alto-falante 4014 e/ou a tela visual 4016 podem ser acionados pelo circuito de controle 4008. De acordo com vários aspectos, o instrumento cirúrgico pode incluir um dispositivo de catraca conectado ao gatilho 4010. O dispositivo de catraca pode gerar um sinal audível quanto mais força é aplicada ao gatilho 4010, fornecendo uma indicação indireta de energia do atuador de extremidade. O instrumento cirúrgico pode incluir outros recursos que podem aumentar a segurança. Por exemplo, o circuito de controle 4008 pode ser configurado para impedir que a energia seja fornecida ao atuador de extremidade 4006 além do limiar predeterminado. Além disso, o circuito de controle 4008 pode implementar um atraso entre o tempo em que uma alteração na energia do atuador de extremidade é indicada (por exemplo, pelo alto- falante 4014 ou tela 4016) e o tempo em que a alteração na energia do atuador de extremidade é fornecida. Dessa forma, um médico pode ter ampla ciência de que o nível de energia ultrassônica que deve ser fornecida ao atuador de extremidade 4006 está prestes a mudar.
[00406] Em um aspecto, o gerador 1000 é configurado para gerar digitalmente a forma de onda de sinal elétrico de tal forma que o desejado, usando um número predeterminado de pontos de fase armazenados em uma tabela de consulta, digitalize a forma de onda. Os pontos de fase podem ser armazenados em uma tabela definida em uma memória, um arranjo de portas programável em campo (FPGA) ou qualquer memória não volátil adequada. A Figura 41 ilustra um aspecto de uma arquitetura fundamental para um circuito de síntese digital, como um circuito de síntese direta digital (DDS) 4100, configurado para gerar uma pluralidade de formatos de onda para a forma de onda de sinal elétrico. O software e os controles digitais do gerador podem comandar o FPGA escanear os endereços na tabela de consulta 4104, que por sua vez fornece valores de entrada digitais variáveis para um circuito DAC 4108 que alimenta um amplificador de energia. Os endereços podem ser verificados de acordo com uma frequência de interesse. A utilização de tal tabela de consulta 4104 possibilita a geração de vários tipos de formatos de onda que podem ser alimentados no tecido ou a um transdutor, um eletrodo de RF, transdutores múltiplos simultaneamente, ou uma combinação de instrumentos ultrassônicos e de RF. Além disso, múltiplas tabelas de consulta 4104 que representam múltiplos formatos de onda podem ser criadas, armazenadas e aplicadas ao tecido a partir de um gerador.
[00407] A forma de onda de sinal pode ser configurada para controlar pelo menos uma de uma corrente de saída, uma tensão de saída ou uma potência de saída de um transdutor ultrassônico e/ou eletrodo de RF, ou múltiplos dos mesmos (por exemplo, dois ou mais transdutores ultrassônicos e/ou dois ou mais eletrodos de RF). Adicionalmente, onde um instrumento cirúrgico compreende componentes ultrassônicos, a forma de onda pode ser configurada para acionar pelo menos dois modos de vibração de um transdutor ultrassônico de pelo menos um instrumento cirúrgico. Dessa forma, o gerador pode ser configurado para fornecer uma forma de onda a pelo menos um instrumento cirúrgico, em que o sinal de forma de onda corresponde a pelo menos um formato de onda de uma pluralidade de formatos de onda na tabela. Adicionalmente, o sinal da forma de onda fornecida aos dois instrumentos cirúrgicos pode compreender dois ou mais formatos de onda. A tabela pode compreender informação associada a uma pluralidade de formatos de onda e a tabela pode ser armazenada dentro do gerador. Em um aspecto ou exemplo, a tabela pode ser uma tabela de síntese direta digital, que pode ser armazenada em um FPGA do gerador. A tabela pode ser endereçada de qualquer maneira que seja conveniente para categorizar formas de onda. De acordo com um aspecto, a tabela, que pode ser uma tabela de síntese direta digital, é endereçada de acordo com uma frequência do sinal de forma de onda. Adicionalmente, a informação associada à pluralidade de formas de onda pode ser armazenada como informação digital na tabela.
[00408] A forma de onda de sinal elétrico analógica pode ser configurada para controlar pelo menos uma de uma corrente de saída, uma tensão de saída ou uma potência de saída de um transdutor ultrassônico e/ou eletrodo de RF, ou múltiplos dos mesmos (por exemplo, dois ou mais transdutores ultrassônicos e/ou dois ou mais eletrodos de RF). Adicionalmente, onde o instrumento cirúrgico compreende componentes ultrassônicos, a forma de onda de sinal elétrico analógica pode ser configurada para acionar pelo menos dois modos de vibração de um transdutor ultrassônico de pelo menos um instrumento cirúrgico.
Dessa forma, o circuito gerador pode ser configurado para fornecer uma forma de onda de sinal elétrico analógico a ao menos um instrumento cirúrgico, sendo que a forma de onda de sinal elétrico analógico corresponde a ao menos um formato de onda de uma pluralidade de formatos de onda armazenados na tabela de consulta 4104. Adicionalmente, a forma de onda de sinal elétrico analógico fornecida aos pelo menos dois instrumentos cirúrgicos pode compreender dois ou mais formatos de onda.
A tabela de consulta 4104 pode compreender informação associada a uma pluralidade de formatos de onda e a tabela de consulta 4104 pode ser armazenada no interior do circuito gerador ou do instrumento cirúrgico.
Em um aspecto ou exemplo, a tabela de consulta 4104 pode ser uma tabela de síntese direta digital, que pode ser armazenada em um FPGA do circuito gerador ou do instrumento cirúrgico.
A tabela de consulta 4104 pode ser endereçada de qualquer maneira que seja conveniente para categorizar os formatos de onda.
De acordo com um aspecto, a tabela de consulta 4104, que pode ser uma tabela de síntese direta digital, é endereçada de acordo com uma frequência da forma de onda de sinal elétrico analógico desejado.
Adicionalmente, a informação associada à pluralidade de formatos de onda pode ser armazenada como informação digital na tabela de consulta 4104.
[00409] Com o uso generalizado de técnicas digitais em sistemas de instrumentação e comunicações, um método controlado digitalmente de geração de frequências múltiplas a partir de uma fonte de frequência de referência evoluiu e é referido como síntese digital direta. A arquitetura básica é mostrada na Figura 41. Neste diagrama de blocos simplificado, um circuito DDS é acoplado a um processador, controlador ou dispositivo lógico do circuito gerador e a um circuito de memória localizado no circuito gerador do sistema cirúrgico 1000. O circuito DDS 4100 compreende um contador de endereços 4102, uma tabela de consulta 4104, um registro 4106, um circuito DAC 4108 e um filtro 4112. Um relógio estável fc é recebido pelo contador de endereços 4102 e o registrador 4106 aciona uma memória só de leitura programável (PROM) que armazena um ou mais números inteiros de ciclos de uma onda senoidal (ou outra forma de onda arbitrária) em uma tabela de consulta 4104. À medida que o contador de endereços 4102 percorre as localizações de memória, os valores armazenados na tabela de consulta 4104 são gravados no registrador 4106, o qual está acoplado ao circuito DAC 4108. A amplitude digital correspondente do sinal na localização de memória da tabela de consulta 4104 aciona o circuito DAC 4108, o qual por sua vez gera um sinal de saída analógico 4110. A pureza espectral do sinal de saída analógico 4110 é determinada principalmente pelo circuito DAC 4108. O ruído de fase é basicamente o do clock de referência fc. O primeiro sinal de saída analógico 4110 do circuito DAC 4108 é filtrado pelo filtro 4112 e um segundo sinal de saída analógico 4114 produzido pelo filtro 4112 é fornecido a um amplificador tendo uma saída acoplada à saída do circuito gerador. O segundo sinal de saída analógica tem uma frequência fout.
[00410] Como o circuito DDS 4100 é um sistema de dados amostrados, problemas envolvidos na amostragem precisam ser considerados: ruído de quantização, distorção, filtragem, etc. Por exemplo, as harmônicas de ordem mais alta das frequências de saída do circuito DAC 4108 se dobram na largura de banda de Nyquist, tornando-as não filtráveis, ao passo que, as harmônicas de ordem mais alta da saída de sintetizadores baseados em circuito de bloqueio de fase ou malha de captura de fase (PLL, -de "phase-locked loop") podem ser filtrados. A tabela de consulta 4104 contém dados de sinal para um número integral de ciclos. A frequência de saída final fout pode ser alterada alterando a frequência do clock de referência fc ou reprogramando a PROM.
[00411] O circuito DDS 4100 pode compreender múltiplas tabelas de consulta 4104, onde a tabela de consulta 4104 armazena uma forma de onda representada por um número predeterminado de amostras, sendo que as amostras definem um formato predeterminado da forma de onda. Dessa forma, múltiplas formas de onda, tendo uma forma única, podem ser armazenadas em múltiplas tabelas de consulta 4104 para fornecer diferentes tratamentos de tecido com base em configurações de instrumento ou retroinformação de tecido. Exemplos de formas de onda incluem formas de onda de sinal elétrico de RF de alto fator de crista para coagulação do tecido de superfície, forma de onda de sinal elétrico RF de baixo fator de crista para penetração no tecido mais profunda e formas de onda de sinal elétrico que promovem coagulação de retoque eficiente. Em um aspecto, o circuito DDS 4100 pode criar múltiplas tabelas de consulta de formato de onda 4104 e durante um procedimento de tratamento de tecido (por exemplo, simultaneamente ou em tempo real virtual com base em entradas de usuário ou sensor) alternar entre diferentes formatos de ondas armazenados em tabelas de consulta 4104 separadas com base no efeito do tecido desejado e/ou retroinformação de tecido.
[00412] Por conseguinte, a alternância entre formas de onda pode ser baseada na impedância do tecido e outros fatores, por exemplo. Em outros aspetos, as tabelas de consulta 4104 podem armazenar formas de onda de sinal elétrico formatadas para maximizar a potência distribuída no tecido por ciclo (isto é, onda trapezoidal ou quadrada). Em outros aspectos, as tabelas de consulta 4104 podem armazenar formatos de onda sincronizados de modo que elas maximizam o fornecimento de energia pelo instrumento cirúrgico multifuncional do sistema cirúrgico 1000 quando este fornece sinais de acionamento de RF e ultrassônicos. Ainda em outros aspectos, as tabelas de consulta 4104 podem armazenar formas de onda de sinal elétrico para acionar simultaneamente energia terapêutica e/ou subterapêutica ultrassônica e de RF, mantendo simultaneamente o bloqueio da frequência ultrassônica. Formas de onda personalizadas específicas para diferentes instrumentos e seus efeitos teciduais podem ser armazenadas na memória não volátil do gerador ou na memória não volátil (por exemplo, EEPROM) do sistema cirúrgico 1000 e buscadas ao conectar o instrumento cirúrgico multifuncional ao circuito gerador. Um exemplo de uma senoide exponencialmente amortecida, conforme utilizada em muitos formatos de onda de "coagulação" de alto fator de crista, é mostrado na Figura 43.
[00413] Uma implementação mais flexível e eficiente do circuito DDS 4100 emprega um circuito digital chamado de Oscilador Controlado Numericamente (NCO, de Numerically Controlled Oscillator). Um diagrama de blocos de um circuito de síntese digital mais flexível e eficiente, como um circuito DDS 4200, é mostrado na Figura 42. Neste diagrama de blocos simplificado, um circuito DDS 4200 é acoplado a um processador, controlador ou dispositivo lógico do gerador e a um circuito de memória localizado no gerador ou em qualquer dos instrumentos cirúrgicos do sistema cirúrgico 1000. O circuito DDS 4200 compreende um registrador de carga 4202, um registrador de fase delta paralelo 4204, um circuito somador 4216, um registrador de fase 4208, uma tabela de consulta 4210 (conversor fase-amplitude), um circuito DAC 4212 e um filtro 4214. O circuito somador 4216 e o registrador de fase 4208 formam parte de um acumulador de fase 4206. Um sinal de clock fc é aplicado ao registrador de fase 4208 e a um circuito DAC 4212. O registrador de carga 4202 recebe uma palavra de sintonia que especifica a frequência de saída como uma fração do sinal de frequência de clock de referência fc. A saída do registrador de carga 4202 é fornecida ao registador de fase delta paralelo 4204 com uma palavra de sintonização M.
[00414] O circuito DDS 4200 inclui um clock de amostra que gera a frequência de clock fc, o acumulador de fase 4206 e a tabela de consulta 4210 (por exemplo, conversor de fase para amplitude). O conteúdo do acumulador de fase 4206 é atualizado uma vez por ciclo de clock fc. Quando o acumulador de fase 4206 é atualizado, o número digital, M, armazenado no registrador de fase delta 4204 é adicionado ao número no registrador de fase 4208 pelo um circuito somador 4216. Presumindo que o número no registo de fase delta paralela 4204 é 00...01 e que o conteúdo inicial do acumulador de fase 4206 é 00...00. O acumulador de fase 4206 é atualizado por 00...01 por ciclo de clock. Se o acumulador de fase 4206 tiver uma largura de 32 bits, são necessários 232 ciclos de clock (mais de 4 bilhões) antes do acumulador de fase 4206 retornar a 00...00, e o ciclo se repetir.
[00415] Uma saída truncada 4218 do acumulador de fase 4206 é fornecida a uma tabela de consulta do conversor de fase para amplitude 4210 e a saída da tabela de consulta 4210 é acoplada a um circuito DAC
4212. A saída truncada 4218 do acumulador de fase 4206 serve como o endereço para uma tabela de consulta de seno (ou cosseno). Um endereço na tabela de consulta corresponde a um ponto de fase na onda senoidal de 0° a 360°. A tabela de consulta 4210 contém as informações de amplitude digital correspondentes a um ciclo completo de uma onda senoidal. A tabela de consulta 4210, portanto, mapeia a informação de fase do acumulador de fase 4206 em uma palavra de amplitude digital, a qual, por sua vez, aciona o circuito DAC 4212. A saída do circuito DAC é um primeiro sinal analógico 4220 e é filtrada por um filtro 4214. A saída do filtro 4214 é um segundo sinal analógico 4222, que é fornecido a um amplificador de energia acoplado ao circuito gerador.
[00416] Em um aspecto, a forma de onda de sinal elétrico pode ser digitalizada em 1024 (210) pontos de fase, embora a forma de onda que pode ser digitalizada é qualquer número adequado de 2n pontos de fase variando de 256 (28) a 281.474.976.710.656 (248), onde n é um inteiro positivo, conforme mostrado na TABELA 1. A forma de onda do sinal elétrico pode ser expressa como An (θn), onde uma amplitude normalizada An em um ponto n é representada por um ângulo de fase θn é chamado de ponto de fase no ponto n. O número de pontos de fase discretos n determina a resolução de sintonia do circuito DDS 4200 (bem como o circuito DDS 4100 mostrado na Figura 41).
[00417] A Tabela 1 especifica a forma de onda de sinal elétrico digitalizada em um número de pontos de fase. Tabela 1 N Número de Pontos de Fase 2n 8 256 10 1.024 12 4.096 14 16.384 16 65.536 18 262.144 20 1.048.576
N Número de Pontos de Fase 2n 22 4.194.304 24 16.777.216 26 67.108.864 28 268.435.456 ... ...
32 4.294.967.296 ... ...
48 281.474.976.710.656 ... ...
[00418] Os algoritmos do circuito gerador e os controles digitais podem escanear os endereços na tabela de consulta 4210, que em retorno fornece valores de entrada digitais variáveis para o circuito DAC 4212 que alimenta o filtro 4214 e o amplificador de energia. Os endereços podem ser verificados de acordo com uma frequência de interesse. A utilização da tabela de consulta possibilita a geração de vários tipos de formatos que podem ser convertidos em sinal de saída analógico pelo circuito DAC 4212 filtrado pelo filtro 4214, amplificado pelo amplificador de potência acoplado à saída do circuito gerador e alimentado ao tecido na forma de energia de RF ou alimentado a um transdutor e aplicado ao tecido na forma de vibrações ultrassônicas que fornecem energia ao tecido na forma de calor. A saída do amplificador pode ser aplicada a um eletrodo de RF, múltiplos eletrodos de saída simultaneamente, um transdutor ultrassônico, múltiplos transdutores ultrassônicos simultaneamente ou uma combinação de transdutores de RF e ultrassônicos, por exemplo. Além disso, múltiplas tabelas de forma de onda podem ser criadas, armazenadas e aplicadas ao tecido a partir de um circuito gerador.
[00419] Com referência novamente à Figura 41, para n = 32 e M = 1, o acumulador de fase 4206 escala cada uma das saídas possíveis 232 antes de transbordar e reinicializar. A frequência de onda de saída correspondente é igual à frequência clock de entrada dividida por 232. Se M = 2, então o registro de fase 1708 "roda" duas vezes mais rápido, e a frequência de saída é duplicada. Isto pode ser generalizado como a seguir.
[00420] Para um acumulador de fase 4206 configurado para acumular n-bits (em geral fica na faixa de 24 a 32 na maioria dos sistemas DDS, mas conforme previamente discutido, n pode ser selecionado dentre uma ampla gama de opções), existem 2n possíveis pontos de fases. A palavra digital no registrador de fase delta M representa a quantidade de acúmulo de fase que é incrementada por ciclo de clock. Se fc é a frequência de clock, então a frequência da onda senoidal de saída é igual a:
[00421] A equação acima é conhecida como "equação de sintonia" DDS. Observa-se que a resolução de frequência do sistema é igual a . Para n = 2, a resolução é maior que uma parte em quatro bilhões.
Em um aspecto do sistema DDS 4200, nem todos os bits fora do acumulador de fase 4206 passam para a tabela de consulta 4210 mas são truncados, deixando apenas os primeiros 13 a 15 bits mais significativos (MSBs), por exemplo. Isto reduz o tamanho da tabela de consulta 4210 e não afeta a resolução de frequência. A truncagem de fase somente adiciona uma pequena, mas aceitável, quantidade de ruído de fase à saída final.
[00422] A forma de onda de sinal elétrico pode ser caracterizada pela corrente, tensão ou potência em uma determinada frequência.
Adicionalmente, quando qualquer um dos instrumentos cirúrgicos do sistema cirúrgico 1000 compreende componentes ultrassônicos, a forma de onda de sinal elétrico pode ser configurada para acionar ao menos dois modos de vibração de um transdutor ultrassônico de ao menos um instrumento cirúrgico.
Dessa forma, o circuito gerador pode ser configurado para fornecer uma forma de onda de sinal elétrico a ao menos um instrumento cirúrgico, sendo que a forma de onda de sinal elétrico é caracterizada por uma forma de onda predeterminada armazenada na tabela de consulta 4210 (ou tabela de consulta 4104 - Figura 41). Além disso, a forma de onda de sinal elétrico pode ser uma combinação de duas ou mais formas de onda.
A tabela de consulta 4210 pode compreender informação associada a uma pluralidade de formatos de onda.
Em um aspecto ou exemplo, a tabela de consulta 4210 pode ser gerada pelo circuito DDS 4200 e pode ser referida como uma tabela de síntese direta digital.
A síntese digital direta (DDS) opera armazenando primeiramente uma grande forma de onda repetitiva na memória integrada.
Um ciclo de uma forma de onda (senoidal, triangular, quadrada, arbitrária) pode ser representado por um número predeterminado de pontos de fase, conforme mostrado na TABELA 1 e armazenado na memória.
Uma vez que a forma de onda é armazenada na memória, ela pode ser gerada em frequências muito precisas.
A tabela de síntese direta digital pode ser armazenada em uma memória não volátil do circuito gerador e/ou pode ser implementada com um circuito FPGA no circuito gerador.
A tabela de consulta 4210 pode ser endereçada por qualquer técnica adequada que seja conveniente para categorizar os formatos de onda.
De acordo com um aspecto, a tabela de consulta 4210 é endereçada de acordo com uma frequência da forma de onda de sinal elétrico.
Além disso, as informações associadas à pluralidade de formatos de onda podem ser armazenadas como informações digitais em uma memória ou como parte da tabela de consulta 4210.
[00423] Em um aspecto, o circuito gerador pode ser configurado para fornecer formas de onda de sinal elétrico a ao menos dois instrumentos cirúrgicos simultaneamente. O circuito gerador pode também ser configurado para fornecer a forma de onda de sinal elétrico, que pode ser caracterizada por duas ou mais formas de onda, através de um canal de saída do circuito gerador para os dois instrumentos cirúrgicos simultaneamente. Por exemplo, em um aspecto, a forma de onda de sinal elétrico compreende um primeiro sinal elétrico para acionar um transdutor ultrassônico (por exemplo, sinal de acionamento ultrassônico), um segundo sinal de acionamento de RF e/ou uma combinação dos mesmos. Além disso, uma forma de onda de sinal elétrico pode compreender uma pluralidade de sinais de acionamento ultrassônicos, uma pluralidade de sinais de acionamento de RF e/ou uma combinação de uma pluralidade de sinais de acionamento ultrassônicos e de RF.
[00424] Adicionalmente, um método para operar o gerador de acordo com a presente divulgação compreende gerar uma forma de onda de sinal elétrico e fornecer a forma de onda de sinal elétrico gerada a qualquer um dos instrumentos cirúrgicos do sistema cirúrgico 1000, sendo que gerar a forma de onda de sinal elétrico compreende receber informações associadas à forma de onda de sinal elétrico de uma memória. A forma de onda de sinal elétrico gerada compreende pelo menos um formato de onda. Além disso, fornecer a forma de onda de sinal elétrico gerada para ao menos um instrumento cirúrgico compreende fornecer a forma de onda de sinal elétrico ao menos a dois instrumentos cirúrgicos simultaneamente.
[00425] O circuito gerador, conforme descrito aqui, pode permitir a geração de vários tipos de tabelas de síntese direta digital. Exemplos de formatos de onda para sinais de RF/eletrocirúrgicos adequados para tratar uma variedade de tecidos gerados pelo circuito gerador incluem sinais de RF com um fator de crista alto (que podem ser utilizados para coagulação superficial no modo RF), sinais RF de fator de crista baixo (que podem ser usados para penetração no tecido mais profunda) e formas de onda que promovem coagulação de retoque eficiente. O circuito gerador pode também gerar múltiplas formas de onda empregando uma tabela de consulta de síntese direta digital 4210 e, em tempo real, pode alternar entre formatos de onda particulares com base no efeito de tecido desejado. A alternância pode ser baseada na impedância do tecido e/ou em outros fatores.
[00426] Além dos formatos tradicionais de onda seno/cosseno, o circuito gerador pode ser configurado para gerar formato(s) de onda que maximiza(m) a potência no tecido por ciclo (por exemplo, onda trapezoidal ou quadrada). O circuito gerador pode fornecer formatos de ondas que são sincronizados para maximizar a potência fornecida à carga ao acionar simultaneamente sinais de RF e ultrassônicos e manter a trava de frequência ultrassônica, desde que o circuito gerador inclua uma topologia de circuito que possibilite o acionamento simultâneo de sinais de RF e ultrassônicos. Além disso, formas de onda personalizadas específicas para instrumentos e seus efeitos no tecido podem ser armazenadas em uma memória não volátil (NVM) ou um EEPROM de instrumento e podem ser buscadas ao conectar qualquer um dos instrumentos cirúrgicos do sistema cirúrgico 1000 ao circuito gerador.
[00427] O circuito DDS 4200 pode compreender múltiplas tabelas de consulta 4104, onde a tabela de consulta 4210 armazena uma forma de onda representada por um número predeterminado de pontos de fase (também chamados de amostras), sendo que os pontos de fase definem um formato predeterminado de forma de onda. Dessa forma, múltiplas formas de onda, tendo uma forma única, podem ser armazenadas em múltiplas tabelas de consulta 4210 para fornecer diferentes tratamentos de tecido com base em configurações de instrumento ou retroinformação de tecido. Exemplos de formas de onda incluem formas de onda de sinal elétrico de RF de alto fator de crista para coagulação do tecido de superfície, forma de onda de sinal elétrico RF de baixo fator de crista para penetração no tecido mais profunda e formas de onda de sinal elétrico que promovem coagulação de retoque eficiente. Em um aspecto, o circuito DDS 4200 pode criar múltiplas tabelas de consulta de formato de onda 4210 e durante um procedimento de tratamento de tecido (por exemplo, simultaneamente ou em tempo real virtual com base em entradas de usuário ou sensor) alternar entre diferentes formatos de ondas armazenados em diferentes tabelas de consulta 4210 com base no efeito sobre o tecido desejado e/ou retroinformação de tecido.
[00428] Por conseguinte, a alternância entre formas de onda pode ser baseada na impedância do tecido e outros fatores, por exemplo. Em outros aspetos, as tabelas de consulta 4210 podem armazenar formas de onda de sinal elétrico formatadas para maximizar a potência distribuída no tecido por ciclo (isto é, onda trapezoidal ou quadrada). Em outros aspectos, as tabelas de consulta 4210 podem armazenar formatos de onda sincronizados de modo que elas maximizam o fornecimento de energia por qualquer um dos instrumentos cirúrgicos do sistema cirúrgico 1000 quando este fornece sinais de acionamento de RF e ultrassônicos. Ainda em outros aspectos, as tabelas de consulta 4210 podem armazenar formas de onda de sinal elétrico para acionar simultaneamente energia terapêutica e/ou subterapêutica ultrassônica e de RF, mantendo simultaneamente o bloqueio da frequência ultrassônica. De modo geral, o formato de onda de saída pode estar na forma de uma onda senoidal, onda cossenoidal, onda de pulso, onda quadrada e similares. No entanto, os formatos de onda personalizados e mais complexos específicos para diferentes instrumentos e seus efeitos teciduais podem ser armazenadas na memória não volátil do circuito gerador ou na memória não volátil (por exemplo, EEPROM) do instrumento cirúrgico e buscadas ao conectar o instrumento cirúrgico no circuito gerador. Um exemplo de uma forma de onda personalizada é uma senoide exponencialmente amortecida conforme utilizada em muitas formas de onda de "coagulação" de alto fator de crista, conforme mostrado na Figura 43.
[00429] A Figura 43 ilustra um ciclo de uma forma de onda do sinal elétrico digital de tempo discreto 4300, de acordo com ao menos um aspecto da presente descrição, de uma forma de onda analógica 4304 (mostrada sobreposta sob a forma de onda do sinal elétrico digital de tempo isolada 4300 para propósitos de comparação). O eixo geométrico horizontal representa o Tempo (t) e o eixo geométrico vertical representa os pontos de fases digitais. A forma de onda do sinal elétrico digital 4300 é uma versão do tempo digital isolado da forma de onda analógica desejada 4304, por exemplo. A forma de onda do sinal elétrico digital 4300 é gerada pelo armazenamento de um ponto de fase de amplitude 4302 que representa a amplitude por ciclo de relógio Tclk sobre um ciclo ou período To. A forma de onda de sinal elétrico digital 4300 é gerada sobre um período To por qualquer circuito de processamento digital adequado. Os pontos de fase de amplitude são palavras digitais armazenadas em um circuito de memória. No exemplo ilustrado nas Figura 41 e 42, a palavra digital é uma palavra de 6 bits que é capaz de armazenar os pontos de fase de amplitude com uma resolução de 26 ou 64 bits. Será compreendido que os exemplos mostrados nas Figuras 41 e 42 são para propósitos ilustrativos e, nas implementações atuais, a resolução pode ser muito maior. Os pontos de fase de amplitude digital 4302 durante um ciclo To são armazenados na memória como uma cadeia da cadeia de palavras em uma tabela de consulta 4104, 4210, como descrito em conexão com as Figuras 41 e 42, por exemplo. Para gerar a versão analógica da forma de onda analógica 4304, os pontos de fase de amplitude 4302 são lidos sequencialmente a partir da memória de 0 a To por ciclo de clock Tclk e são convertidos por um circuito DAC 4108, 4212, também descritos em conexão com as Figuras 41 e 42. Ciclos adicionais podem ser gerados pela leitura repetida dos pontos de fase de amplitude 4302 da forma de onda de sinal elétrico digital 4300 de 0 a To pelo maior número de ciclos ou períodos que possam ser desejados. A versão analógica suave da forma de onda 4304 é conseguida mediante a filtração da saída do circuito DAC 4108, 4212 por um filtro 4112, 4214 (Figuras 41 e 42). O sinal de saída analógico filtrado 4114, 4222 (Figuras 41 e 42) é aplicado à entrada de um amplificador de potência.
[00430] A Figura 44 é um diagrama de um sistema de controle 12950 configurado para fornecer fechamento progressivo de um membro de fechamento (por exemplo, tubo de fechamento) quando o membro de deslocamento avança distalmente e se acopla a um braço de aperto (por exemplo, bigorna) para diminuir a carga da força de fechamento no membro de fechamento em uma velocidade desejada e diminuir a carga da força de disparo sobre o membro de disparo de acordo com um aspecto da presente descrição. Em um aspecto, o sistema de controle 12950 pode ser implementado como um controlador de retroinformação PID aninhado. Um controlador PID é um mecanismo de retroinformação do circuito de controle (controlador) para calcular continuamente um valor de erro como a diferença entre um ponto de ajuste desejado e uma variável de processo medida e aplicar uma correção com base nos termos proporcionais, integrais e derivados (às vezes indicados P, I, e D respectivamente). O sistema de controle de retroinformação do controlador PID aninhado 12950 inclui um controlador primário 12952,
em um circuito de realimentação (externo) primário 12954 e um controlador secundário 12955 em um circuito de realimentação (interno) secundário 12956. O controlador primário 12952 pode ser um controlador PID 12972, conforme mostrado na Figura 45, e o controlador secundário 12955 também pode ser um controlador PID 12972 conforme mostrado na Figura 45. O controlador primário 12952 controla um processo primário 12958 e o controlador secundário 12955 controla um processo secundário 12960. A saída 12966 do processador primário 12958 é subtraída de um ponto de ajuste primário SP1 por um primeiro somador 12962. O primeiro somador 12962 produz um único sinal de soma de saída que é aplicado ao controlador primário 12952. A saída do controlador primário 12952 é o ponto de ajuste secundário SP2. A saída 12968 do processador secundário 12960 é subtraída de um ponto de ajuste primário SP2 por um primeiro somador 12964.
[00431] No contexto de controlar o deslocamento de um tubo de fechamento, o sistema de controle 12950 pode ser configurado de modo que o ponto de ajuste primário SP1 é um valor de força de fechamento desejado e o controlador primário 12952 é configurado para receber a força de fechamento a partir de um sensor de torque acoplado à saída de um motor de fechamento e determinar uma velocidade do motor do ponto de ajuste SP2 para o motor de fechamento. Em outros aspectos, a força de fechamento pode ser medida com medidores de esforço, células de carga, ou outros sensores de força adequados. O ponto de ajuste da velocidade do motor de fechamento SP2 é comparado à velocidade real do tubo de fechamento, que é determinada pelo controlador secundário 12955. A velocidade real do tubo de fechamento pode ser medida mediante comparação do deslocamento do tubo de fechamento com o sensor de posição e a medição do tempo decorrido com um temporizador/contador. Outras técnicas, como codificadores lineares ou giratórios podem ser usadas para medir o deslocamento do tubo de fechamento. A saída 12968 do processo secundário 12960 é a velocidade real do tubo de fechamento. Esta saída da velocidade do tubo de fechamento 12968 é fornecida ao processador primário 12958 que determina a força que atua sobre o tubo de fechamento e é alimentada de volta ao somador 12962, que subtrai a força de fechamento medida do ponto de ajuste primário SP1. O ponto de ajuste principal SP1 pode ser um limiar superior ou um limiar inferior. Com base na saída do somador 12962, o controlador primário 12952 controla a velocidade e direção do motor de fechamento. O controlador secundário 12955 controla a velocidade do motor de fechamento com base na velocidade real do tubo de fechamento medida pelo processo secundário 12960 e o ponto de ajuste secundário SP2, que é com base em uma comparação dos limiares superior e inferior da força de disparo e da força de disparo real.
[00432] A Figura 45 ilustra um sistema de controle de retroinformação por PID 12970, de acordo com um aspecto desta descrição. O controlador primário 12952 ou o controlador secundário 12955, ou ambos, podem ser implementados como um controlador PID
12972. Em um aspecto, o controlador PID 12972 pode compreender um elemento proporcional 12974 (P), um elemento integral 12976 (I), e um elemento de derivativo 12978 (D). As saídas dos elementos P, I e D 12974, 12976, 12978 são somadas por um somador 12986, que fornece a variável de controle µ(t) ao processo 12980. A saída do processo 12980 é a variável de processo y(t). Um somador 12984 calcula a diferença entre um ponto de ajuste desejado r(t) e uma variável de processo y(t) medida. O controlador PID 12972 continuamente calcula um valor de erro e(t) (por exemplo, a diferença entre o limiar da força de fechamento e a força de fechamento medida) como a diferença entre um ponto de ajuste desejado r(t) (por exemplo, o limiar de força de fechamento) e a variável de processo medida y(t) (por exemplo, a velocidade e direção do tubo de fechamento) e aplica uma correção com base nos termos proporcional, integral e derivativo calculados pelo elemento proporcional 12974 (P), o elemento integral 12976 (I), e o elemento derivativo 12978 (D), respectivamente. O controlador PID 12972 tenta minimizar o erro e(t) ao longo do tempo mediante o ajuste da variável de controle µ(t) (por exemplo, a velocidade e direção do tubo de fechamento).
[00433] De acordo com o algoritmo PID, o elemento "P" 12974 representa os valores presentes do erro. Por exemplo, se o erro for grande e positivo, a saída de controle também será grande e positiva. De acordo com a presente descrição, o termo de erro e(t) é a diferentes entre a força de fechamento desejada e força de fechamento medida do tubo de fechamento. O elemento "I" 12976 representa os valores passados do erro. Por exemplo, se a saída de corrente não for suficientemente forte, a integral do erro irá se acumular ao longo do tempo, e o controlador responderá aplicando uma ação mais forte. O elemento "D" 12978 representa possíveis tendências futuras do erro, com base na sua taxa real de alteração. Por exemplo, continuando o exemplo P acima, quando a saída de controle positivo grande consegue trazer o erro mais próximo de zero, ela coloca também o processo em um modo de grande erro negativo no futuro próximo. Neste caso, a derivativa torna-se negativa e o módulo D reduz a força da ação para evitar este excesso.
[00434] Será entendido que outras variáveis e os pontos de ajuste podem ser monitorados e controlados de acordo com os sistemas de controle de retroinformação 12950, 12970. Por exemplo, o algoritmo de controle da velocidade do membro de fechamento adaptável aqui descrito pode mediar ao menos dois dos seguintes parâmetros: o local de curso do membro de disparo, a carga do membro de disparo, o deslocamento do elemento de corte, a velocidade de elemento de corte,
o local de curso do tubo de fechamento, a carga do tubo de fechamento, entre outros.
[00435] Vários aspectos são direcionados a dispositivos cirúrgicos ultrassônicos aprimorados, dispositivos eletrocirúrgicos e geradores para uso com os mesmos. Os aspectos dos dispositivos cirúrgicos ultrassônicos podem ser configurados para transeccionar e/ou coagular o tecido durante procedimentos cirúrgicos, por exemplo. Os aspectos dos dispositivos eletrocirúrgicos podem ser configurados para transeccionar, coagular, escalonar, soldar e/ou dessecar o tecido durante procedimentos cirúrgicos, por exemplo.
[00436] Os aspectos do gerador utilizam amostragem analógica para digital de alta velocidade (por exemplo, aproximadamente 200 × excesso de amostragem, dependendo da frequência) da corrente e tensão do sinal de acionamento do gerador, juntamente com processamento de sinal digital, para fornecer inúmeras vantagens e benefícios sobre as arquiteturas do gerador conhecidas. Em um aspecto, por exemplo, com base em dados de retroinformação de corrente e tensão, um valor da capacitância estática do transdutor ultrassônico, e um valor da frequência do sinal de acionamento, o gerador pode determinar a corrente da ramificação de movimento de um transdutor ultrassônico. Isso fornece o benefício de um sistema virtualmente ajustado, e simula a presença de um sistema que é ajustado ou ressonante com qualquer valor da capacitância estática (por exemplo, C0 na Figura 4) em qualquer frequência. Consequentemente, o controle da corrente de ramificação do movimento pode ser realizado mediante o cancelamento dos efeitos da capacitância estática sem a necessidade de um indutor de sintonia. Adicionalmente, a eliminação do indutor de sintonia não pode degradar as capacidades de travamento de frequência do gerador, já que o travamento de frequência pode ser realizado mediante o processamento adequado dos dados de retroinformação de corrente e tensão.
[00437] A amostragem analógica para digital de alta velocidade da corrente e da tensão do sinal de acionamento do gerador, juntamente com o processamento de sinal digital, também pode possibilitar a filtragem digital precisa das amostras. Por exemplo, aspectos do gerador podem utilizar um filtro digital passa baixo (por exemplo, um filtro de resposta finita ao impulso (FIR) que rola fora entre uma frequência do sinal de acionamento fundamental e uma harmônica de segunda ordem para reduzir a distorção harmônica assimétrica e o ruído induzido por EMI nas amostras de retroinformação de corrente e tensão. As amostras de retroinformação de corrente e tensão filtradas representam substancialmente a frequência do sinal de acionamento fundamental, permitindo assim uma medição mais acurada da fase da impedância em relação à frequência do sinal de acionamento fundamental e um aprimoramento na capacidade do gerador de manter o travamento da frequência de ressonância. A exatidão da medição de fase da impedância pode ser adicionalmente otimizada mediante cálculo da média das medições da borda descida e da borda de descida, e mediante a regulação da fase da impedância medida a 0°.
[00438] Vários aspectos do gerador podem também utilizar a amostragem analógica para digital de alta velocidade da corrente e tensão do sinal de acionamento do gerador, juntamente com o processamento de sinal digital, para determinar o consumo de energia real e outras quantidades com um alto grau de precisão. Isso pode permitir que o gerador implemente inúmeros algoritmos úteis, como, por exemplo, controlar a quantidade de potência aplicada ao tecido conforme a impedância do tecido se altera e controlar a aplicação de potência para manter uma taxa constante de aumento na impedância do tecido. Alguns desses algoritmos são usados para determinar a diferença de fase entre os sinais de corrente e tensão do sinal de acionamento do gerador. Na ressonância, a diferença de fase entre os sinais de corrente e tensão é zero. A fase se altera conforme o sistema ultrassônico sai de ressonância. Vários algoritmos podem ser usados para detectar a diferença de fase e ajustar a frequência de acionamento até que o sistema ultrassônico retorna à ressonância, isto é, a diferença de fase entre os sinais de corrente e tensão chega a zero. As informações de fase também podem ser usadas para inferir as condições da lâmina ultrassônica. Conforme discutido com particularidade abaixo, a fase se altera como uma função da temperatura da lâmina ultrassônica. Portanto, as informações de fase podem ser usadas para controlar a temperatura da lâmina ultrassônica. Isso pode ser feito, por exemplo, mediante a redução da potência fornecida à lâmina ultrassônica quando a lâmina ultrassônica está muito quente e mediante aumento da potência aplicada à lâmina ultrassônica quando a lâmina ultrassônica está muito fria.
[00439] Vários aspectos do gerador podem ter uma faixa ampla de frequências e potência aumentada de saída necessária para acionar os dispositivos cirúrgicos ultrassônicos e os dispositivos eletrocirúrgicos. Quanto menor a tensão, maior a demanda de corrente dos dispositivos eletrocirúrgicos pode ser atendida por uma derivação dedicada em um transformador de potência de banda larga, eliminando assim a necessidade por um amplificador de potência e um transformador de saída separados. Além disso, os circuitos de detecção e retroinformação do gerador podem suportar uma ampla faixa dinâmica que atende às necessidades das aplicações ultrassônicas e das aplicações eletrocirúrgicas com mínima distorção.
[00440] Vários aspectos podem fornecer um meio simples e econômico para o gerador ler e opcionalmente gravar em um circuito de dados (por exemplo, um único dispositivo de barramento de fio, como um protocolo de fio único EEPROM, conhecido sob o nome comercial "1-Wire") disposto em um instrumento fixado à peça de mão usando os cabos de gerador/empunhadora do multicondutor existentes. Dessa forma, o gerador é capaz de recuperar e processar dados específicos do instrumento a partir de um instrumento fixado à empunhadura. Isso pode permitir que o gerador forneça melhor controle e diagnóstico e detecção de erro aprimorados. Adicionalmente, a capacidade do gerador de gravar dados no instrumento possibilita uma nova funcionalidade em termos de, por exemplo, rastreamento do uso do instrumento e captura de dados operacionais. Além disso, o uso da faixa de frequência permite a compatibilidade com versões anteriores de instrumentos contendo um dispositivo de barramento com geradores existentes.
[00441] Aspectos descritos do gerador fornecem cancelamento ativo da corrente de fuga causados pelo acoplamento capacitivo não intencional entre circuitos não isolados e isolados, do paciente, do gerador. Além de reduzir os riscos ao paciente, a redução da corrente de fuga pode também diminuir as emissões eletromagnéticas. Esses e outros benefícios de aspectos da presente descrição serão evidentes a partir da descrição apresentada a seguir.
[00442] Será reconhecido que os termos "proximal" e "distal" são aqui usados com referência ao ato do médico de apertar uma empunhadura. Assim, um atuador de extremidade é distal em relação à empunhadura mais proximal. Será reconhecido adicionalmente que, por uma questão de conveniência e clareza, termos espaciais como "topo" e "fundo" podem também ser usados na presente invenção em relação ao médico segurando a empunhadura. Entretanto, os dispositivos cirúrgicos são usados em muitas orientações e posições, e tais termos não se destinam a serem limitadores e absolutos.
[00443] A Figura 46 é uma vista explodida em elevação do instrumento cirúrgico ultrassônico de mão modular 6480 mostrando a metade esquerda do compartimento removida de um conjunto de empunhadura 6482 e expondo um identificador de dispositivo acoplado de forma comunicativa ao conjunto de terminal de cabo de múltiplos condutores, de acordo com um aspecto da presente descrição.
Em aspectos adicionais da presente descrição, uma bateria inteligente (ou "smart") é utilizada para alimentar o instrumento cirúrgico ultrassônico de mão modular 6480. Entretanto, a bateria inteligente não se limita ao instrumento cirúrgico ultrassônico modular de mão 6480 e, como será explicado, pode ser usada em uma variedade de dispositivos, que podem ou não ter requisitos de potência (por exemplo, corrente e tensão) que variam um do outro.
O conjunto de bateria inteligente 6486, de acordo com um aspecto da presente descrição, é vantajosamente capaz de identificar o dispositivo específico ao qual ele está acoplado eletricamente.
Isso é feito através de métodos de identificação encriptada ou não encriptada.
Por exemplo, um conjunto de bateria inteligente 6486 pode ter uma porção de conexão, como a porção de conexão 6488. O conjunto de empunhadura 6482 pode também ser dotado de um identificador de dispositivo acoplado de forma comunicativa ao conjunto de terminal de cabo de múltiplos condutores 6491 e operável para comunicar ao menos uma informação sobre o conjunto de empunhadura 6482. Essa informação pode se referir ao número de vezes que o conjunto de empunhadura 6482 foi utilizado, ao número de vezes que um conjunto de transdutor/gerador ultrassônico 6484 (atualmente desconectado do conjunto de empunhadura 6482) foi utilizado, o número de vezes que um conjunto de guia de ondas do eixo de acionamento 6490 (atualmente conectado ao conjunto de empunhadura 6482) foi utilizado, o tipo de conjunto de guia de ondas do eixo de acionamento 6490 que está atualmente conectado ao conjunto de empunhadura 6482, o tipo ou identidade do conjunto de transdutor/gerador ultrassônico 6484 que está atualmente conectado ao conjunto de empunhadura 6482 e/ou muitas outras características. Quando o conjunto de bateria inteligente 6486 é inserido no conjunto de empunhadura 6482, a porção de conexão 6488 no interior do conjunto de bateria inteligente 6486 faz contato de comunicação com o identificador de dispositivo do conjunto de empunhadura 6482. O conjunto de empunhadura 6482, por meio do hardware, software, ou de uma combinação dos mesmos, é capaz de transmitir informações ao conjunto de bateria inteligente 6486 (seja por autoiniciação ou em resposta a uma solicitação do conjunto de bateria inteligente 6486). Esse identificador comunicado é recebido pela porção de conexão 6488 do conjunto de bateria inteligente 6486. Em um aspecto, quando o conjunto de bateria inteligente 6486 recebe a informação, a porção de comunicação é operável para controlar a saída do conjunto de bateria inteligente 6486 para atender às exigências de energia específicas do dispositivo.
[00444] Em um aspecto, a porção de comunicação inclui um processador 6493 e uma memória 6497 que podem ser separados ou um componente único. O processador 6493, em combinação com a memória, é capaz de fornecer gerenciamento de energia inteligente para o instrumento cirúrgico ultrassônico de mão modular 6480. Esse aspecto é particularmente vantajoso devido ao fato de que um dispositivo ultrassônico, como o instrumento cirúrgico ultrassônico de mão modular 6480, tem uma exigência de energia (frequência, corrente e tensão) que pode ser única para o instrumento cirúrgico ultrassônico de mão modular 6480. De fato, o instrumento cirúrgico ultrassônico de mão modular 6480 pode ter uma exigência específica de energia ou limitação para uma dimensão ou tipo de tubo externo 6494 e uma segunda exigência diferente de energia para um segundo tipo de guia de ondas tendo uma dimensão, um formato e/ou uma configuração diferentes.
[00445] Um conjunto de bateria inteligente 6486, de acordo com ao menos um aspecto da presente descrição, portanto, possibilita que um conjunto de bateria seja usado entre vários instrumentos cirúrgicos. Devido ao fato de que o conjunto de bateria inteligente 6486 é capaz de identificar em qual dispositivo está fixado e é consequentemente capaz de alterar sua saída, os operadores de vários instrumentos cirúrgicos diferentes que utilizam o conjunto de bateria inteligente 6486 não precisam mais se preocupar com qual fonte de energia estão tentando instalar no interior do dispositivo eletrônico que está sendo usado. Isto é particularmente vantajoso em um ambiente operacional onde um conjunto de bateria precisa ser substituído ou intercambiado com um outro instrumento cirúrgico no meio de um procedimento cirúrgico complexo.
[00446] Em um outro aspecto da presente descrição, o conjunto de bateria inteligente 6486 armazena, em uma memória 6497, um registro cada vez que um dispositivo específico é usado. Esse registro pode ser útil para avaliar o final da vida útil ou permitida de um dispositivo. Por exemplo, depois que um dispositivo é utilizado 20 vezes, as baterias no conjunto de bateria inteligente 6486 conectado ao dispositivo, se recusarão a fornecer energia ao mesmo – uma vez que o dispositivo é definido como um instrumento cirúrgico "não mais confiável". A confiabilidade é determinada com base em vários fatores. Um fator pode ser o desgaste, que pode ser estimado de diversas maneiras, incluindo o número de vezes que o dispositivo foi utilizado ou ativado. Após um certo número de usos, as peças do dispositivo podem ficar desgastadas e as tolerâncias entre as peças podem ser excedidas. Por exemplo, o conjunto de bateria inteligente 6486 pode detectar o número de vezes que o botão é pressionado pelo conjunto de empunhadura 6482 e pode determinar quando um número máximo de vezes que o botão é pressionado foi atingido ou excedido. O conjunto de bateria inteligente 6486 pode também monitorar uma impedância do mecanismo de botão que pode mudar, por exemplo, se a empunhadura for contaminada, por exemplo, com solução salina.
[00447] Esse desgaste pode levar a uma falha inaceitável durante um procedimento. Em alguns aspectos, o conjunto de bateria inteligente 6486 pode reconhecer quais partes são combinadas em um dispositivo e mesmo quantos usos uma parte experimentou. Por exemplo, se o conjunto de bateria inteligente 6486 for uma bateria inteligente, de acordo com a presente descrição, esta pode identificar o conjunto de empunhadura 6482, o conjunto de guia de ondas do eixo de acionamento 6490, bem como o conjunto de transdutor/gerador ultrassônico 6484, muito antes que o usuário tente utilizar o dispositivo composto. A memória 6497 no interior do conjunto de bateria inteligente 6486 pode, por exemplo, registrar um horário em que o conjunto de transdutor/gerador ultrassônico 6484 é operado e como, quando e por quanto tempo é operado. Se o conjunto de transdutor/gerador ultrassônico 6484 tiver um identificador individual, o conjunto de bateria inteligente 6486 pode monitorar o uso do conjunto de transdutor/gerador ultrassônico 6484 e recusar o fornecimento de energia àquele conjunto de transdutor/gerador ultrassônico 6484 quando o conjunto de empunhadura 6482 ou o conjunto de transdutor/gerador ultrassônico 6484 exceder seu número máximo de utilizações. O conjunto de transdutor/gerador ultrassônico 6484, o conjunto de empunhadura 6482, o conjunto de guia de ondas do eixo de acionamento 6490, ou outros componentes podem incluir um circuito integrado (chip) de memória que também registra essas informações. Dessa forma, qualquer quantidade de baterias inteligentes no conjunto de bateria inteligente 6486 pode ser utilizada com qualquer quantidade de conjuntos de transdutor/gerador ultrassônico 6484, grampeadores, vedadores de vaso, etc. e ainda poder determinar o número total de utilizações, ou o tempo total de uso (através do uso do clock), ou o número total de atuações, etc. do conjunto de transdutor/gerador ultrassônico 6484, do grampeador, do vedador de vaso, etc. ou ciclos de carga ou descarga. A funcionalidade inteligente pode residir fora do conjunto de bateria 6486 e pode residir no conjunto de empunhadura 6482, no conjunto de transdutor/gerador ultrassônico 6484 e/ou no conjunto de eixo de acionamento 6490, por exemplo.
[00448] Ao contabilizar os usos do conjunto de transdutor/gerador ultrassônico 6484 para encerrar de forma inteligente a vida útil do conjunto de transdutor/gerador ultrassônico 6484, o instrumento cirúrgico faz uma distinção precisa entre a conclusão de um uso real do conjunto de transdutor/gerador ultrassônico 6484 em um procedimento cirúrgico e um lapso momentâneo na atuação do conjunto de transdutor/gerador ultrassônico 6484 devido a, por exemplo, uma troca de bateria ou um atraso temporário no procedimento cirúrgico. Portanto, como uma alternativa a simplesmente contar o número de ativações do conjunto de transdutor/gerador ultrassônico 6484, um circuito de clock em tempo real (RTC) pode ser implementado para monitorar a quantidade de tempo que o conjunto de transdutor/gerador ultrassônico 6484 está de fato desligado. A partir da extensão de tempo medida, pode-se determinar, por meio de lógica adequada, se o desligamento foi significativo o bastante para ser considerado o final de um uso real ou se o desligamento foi muito curto em termos de tempo para ser considerado o fim de um uso. Dessa forma, em algumas aplicações, este método pode ser uma determinação mais precisa da vida útil do conjunto de transdutor/gerador ultrassônico 6484 do que um algoritmo simples "baseado em ativações", o que pode, por exemplo, informar que dez "ativações" ocorrem em um procedimento cirúrgico e, portanto, dez ativações devem indicar que o contador é incrementado de um em um. De modo geral, esse tipo e sistema de contagem interna de tempo impedirá o uso incorreto do dispositivo que é projetado para enganar um algoritmo simples "baseado em ativações" e impedirá o registro incorreto de um uso completo em casos em que houve apenas uma simples perda de correspondência do conjunto de transdutor/gerador ultrassônico 6484 ou o conjunto de bateria inteligente 6486 que foi exigido por motivos legítimos.
[00449] Embora os conjuntos de transdutor/gerador ultrassônico 6484 do instrumento cirúrgico 6480 sejam reutilizáveis, em um aspecto um número finito de usos pode ser definido uma vez que o instrumento cirúrgico 6480 está sujeito a condições rigorosas durante a limpeza e a esterilização. Mais especificamente, a bateria é configurada para ser esterilizada. Independente do material empregado para as superfícies externas, há uma vida útil esperada limitada para os reais materiais utilizados. Essa vida útil é determinada por várias características que poderiam incluir, por exemplo, o número de vezes que a bateria foi de fato esterilizada, o tempo desde que a bateria foi fabricada e o número de vezes que a bateria foi recarregada, para citar algumas. Além disso, a vida útil das células de bateria em si é limitada. O software da presente descrição incorpora algoritmos da invenção que verificam o número de usos do conjunto de transdutor/gerador ultrassônico 6484 e do conjunto de bateria inteligente 6486 e desabilita o dispositivo quando esse número de usos foi atingido ou excedido. A análise do exterior da bateria em cada um dos possíveis métodos de esterilização pode ser realizada. Com base no procedimento de esterilização mais rigoroso, o número máximo de esterilizações permitidas pode ser definido e esse número pode ser armazenado em uma memória do conjunto de bateria inteligente 6486. Se é presumido que um carregador é não estéril e que o conjunto de bateria inteligente 6486 deve ser utilizado depois de ser carregado, então a contagem de cargas pode ser definida como sendo igual ao número de esterilizações encontradas por aquela bateria específica.
[00450] Em um aspecto, o hardware na bateria pode ser desabilitado para minimizar ou eliminar questões de segurança devido ao esgotamento contínuo das células de bateria depois que a bateria tiver sido desabilitada pelo software. Pode haver uma situação em que o hardware interno da bateria é incapaz de desabilitar a bateria sob determinadas condições de baixa tensão. Nessa situação, em um aspecto, o carregador pode ser utilizado para "matar" a bateria. Devido ao fato de que o microcontrolador da bateria está desligado enquanto a bateria está em seu carregador, memória programável e apagável eletricamente só de leitura (EEPROM) não volátil baseada em Barramento de Gerenciamento do Sistema (SMB) pode ser utilizada para troca de informações entre o microcontrolador da bateria e o carregador. Dessa forma, uma EEPROM serial pode ser utilizada para armazenar informações que podem ser gravadas e lidas mesmo quando o microcontrolador da bateria está desligado, o que é muito benéfico ao se tentar trocar informações com o carregador ou com outros dispositivos periféricos. Essa EEPROM exemplificadora pode ser configurada para conter registros de memória suficientes para armazenar ao menos (a) um limite de contagem de uso no qual a bateria deve ser desabilitada (Contagem de Uso da Bateria), (b) o número de procedimentos aos quais a bateria foi submetida (Contagem de Procedimentos da Bateria) e/ou (c) um número de cargas as quais a bateria foi submetida (Contagem de Cargas), entre outros. Algumas das informações armazenadas na EEPROM, como o Registro de Contagem de Uso e o Registro de Contagem de Carga, são armazenadas em seções protegidas de gravação de EEPROM para evitar que os usuários alterem as informações. Em um aspecto, o uso e os contadores são armazenados com registros secundários invertidos por bit correspondentes para detectar o corrompimento de dados.
[00451] Qualquer tensão residual nas linhas de SMBus (barramento de gerenciamento do sistema) poderia danificar o microcontrolador e corromper o sinal dos SMBus. Portanto, para garantir que as linhas de SMBus de um controlador de bateria não contenham uma tensão enquanto o microcontrolador está desligado, são fornecidos relés entre as linhas de SMBus externas e a microplaca controladora da bateria.
[00452] Durante o carregamento do conjunto de bateria inteligente 6486, uma condição de "final de carga" das baterias no interior do conjunto de bateria inteligente 6486 é determinada quando, por exemplo, a corrente que flui para o interior da bateria cai abaixo de um limiar determinado de uma maneira afunilada ao empregar um esquema de carregamento de corrente constante/tensão constante. Para detectar com precisão essa condição de "final de carga", o microcontrolador da bateria e as placas rebaixadoras são desenergizadas e desligadas durante o carregamento da bateria para reduzir qualquer drenagem de corrente que possa ser causada pelas placas e que possa interferir na detecção da corrente decrescente. Adicionalmente, o microcontrolador e as placas rebaixadoras são desenergizadas durante o carregamento para impedir qualquer corrompimento resultante do sinal de SMBus.
[00453] Em relação ao carregador, em um aspecto, o conjunto de bateria inteligente 6486 é impedido de ser inserido no carregador de uma maneira diferente da posição de inserção correta. Consequentemente, o exterior do conjunto de bateria inteligente 6486 é dotado de recursos de fixação do carregador. Um recipiente para fixar o conjunto de bateria inteligente 6486 de maneira segura no carregador é configurado com uma geometria cônica de correspondência de contorno para impedir a inserção acidental do conjunto de bateria inteligente 6486 de qualquer forma que não a correta (pretendida). É contemplado adicionalmente que a presença do conjunto de bateria inteligente 6486 pode ser detectável pelo próprio carregador. Por exemplo, o carregador pode ser configurado para detectar a presença da transmissão de SMBus a partir do circuito de proteção da bateria, bem como dos resistores que estão localizados na placa de proteção. Nesse caso, o carregador seria habilitado para controlar uma tensão que é exposta nos pinos do carregador até que o conjunto de bateria inteligente 6486 fique corretamente encaixado ou no local no carregador. Isso se deve ao fato de que uma tensão presente nos pinos do carregador pode apresentar um perigo e um risco de que um curto-circuito elétrico possa ocorrer entre os pinos e fazer com que o carregador comece a ser inadvertidamente carregado.
[00454] Em alguns aspectos, o conjunto de bateria inteligente 6486 pode se comunicar com o usuário através de retroinformação auditiva e/ou visual. Por exemplo, o conjunto de bateria inteligente 6486 pode fazer com que os LEDs emitam luz de uma forma predefinida. Nesse caso, embora o microcontrolador no conjunto de transdutor/gerador ultrassônico 6484 controle os LEDs, o microcontrolador recebe instruções a serem executadas diretamente a partir do conjunto de bateria inteligente 6486.
[00455] Ainda em um outro aspecto da presente descrição, o microcontrolador no conjunto de transdutor/gerador ultrassônico 6484, quando não estiver em uso por um período predeterminado, entra no modo suspenso. Vantajosamente, quando no modo suspenso, a velocidade do clock do microcontrolador é reduzida, cortando significativamente a drenagem de corrente. Alguma corrente continua sendo consumida porque o processador continua enviando sinal, aguardando para detectar uma entrada. Vantajosamente, quando o microcontrolador está neste modo suspenso de economia de energia, o microcontrolador e o controlador de bateria podem controlar diretamente os LEDs. Por exemplo, um circuito de decodificador poderia ser construído no conjunto de transdutor/gerador ultrassônico 6484 e conectado às linhas de comunicação de modo que os LEDs possam ser controlados independentemente pelo processador 6493 enquanto o microcontrolador do conjunto de transdutor/gerador ultrassônico 6484 está "DESLIGADO" ou em um "modo suspenso". Este é um recurso de economia de energia que elimina a necessidade de acionar o microcontrolador no conjunto de transdutor/gerador ultrassônico 6484. A energia é poupada ao permitir que o gerador seja desligado enquanto ainda é capaz de controlar ativamente os indicadores de interface de usuário.
[00456] Um outro aspecto retarda um ou mais dos microcontroladores para conservar energia quando não está em uso. Por exemplo, as frequências do clock de ambos os microcontroladores podem ser reduzidas para economizar energia. Para manter uma operação sincronizada, os microcontroladores coordenam a mudança de suas respectivas frequências de clock para que ocorram aproximadamente ao mesmo tempo, tanto a redução quanto o subsequente aumento na frequência quando a operação em velocidade total é exigida. Por exemplo, ao entrar no modo ocioso, as frequências de clock são diminuídas e ao sair do modo ocioso, as frequências são aumentadas.
[00457] Em um aspecto adicional, o conjunto de bateria inteligente 6486 é capaz de determinar a quantidade de energia útil remanescente no interior de suas células e é programado para apenas operar o instrumento cirúrgico ao qual está conectado caso determine que há energia de bateria remanescente suficiente para previsivelmente operar o dispositivo durante todo o procedimento previsto. Por exemplo, o conjunto de bateria inteligente 6486 é capaz de permanecer em um estado não operacional se não houver energia suficiente no interior das células para operar o instrumento cirúrgico durante 20 segundos. De acordo com um aspecto, o conjunto de bateria inteligente 6486 determina a quantidade de energia remanescente no interior das células ao final da sua função anterior mais recente, por exemplo, um corte cirúrgico. Neste aspecto, portanto, o conjunto de bateria inteligente 6486 não permitiria que uma função subsequente fosse realizada se, por exemplo, durante aquele procedimento, o conjunto determinasse que as células não têm energia suficiente. Alternativamente, se o conjunto de bateria inteligente 6486 determinar que há energia suficiente para um procedimento subsequente e ficar abaixo daquele limiar durante o procedimento, ele não interrompe o procedimento em andamento e, em vez disso, possibilita o término do procedimento e, posteriormente, impede que novos procedimentos ocorram.
[00458] O exposto a seguir explica uma vantagem de maximizar o uso do dispositivo com o conjunto de bateria inteligente 6486 da presente descrição. Neste exemplo, um conjunto de diferentes dispositivos tem diferentes guias de ondas de transmissão ultrassônica. Por definição, os guias de ondas poderiam ter um respectivo limite de energia máximo permissível, em que exceder o dito limite de energia sobrecarrega o guia de ondas e, por fim, provoca sua fratura. Um guia de onda do conjunto de guias de onda terá, naturalmente, a menor tolerância máxima de energia. Uma vez que as baterias da técnica anterior não possuem a gestão de energia de bateria inteligente, a saída das baterias da técnica anterior precisa ser limitada por um valor da menor entrada de energia máxima permissível para o guia de ondas menor/mais estreito/mais frágil no conjunto que se pretende utilizar com o dispositivo/bateria. Isso seria verdade mesmo que guias de onda maiores e mais espessas fossem posteriormente fixadas àquela empunhadura e, por definição, permitir que uma força maior seja aplicada. Esta limitação também é verdadeira para a potência máxima da bateria. Por exemplo, se uma bateria for projetada para ser utilizada em múltiplos dispositivos, sua máxima energia de saída será limitada à menor classificação de energia máxima de quaisquer dos dispositivos em que deve ser utilizada. Com essa configuração, um ou mais dispositivos ou configurações de dispositivo não seriam capazes de maximizar o uso da bateria, uma vez que a bateria não conhece os limites específicos do dispositivo específico.
[00459] Em um aspecto, o conjunto de bateria inteligente 6486 pode ser empregado para contornar de maneira inteligente as limitações acima mencionadas do dispositivo ultrassônico. O conjunto de bateria inteligente 6486 pode produzir uma saída para um dispositivo ou uma configuração de dispositivo específica e o mesmo conjunto de bateria inteligente 6486 pode posteriormente produzir uma saída diferente para um segundo dispositivo ou configuração de dispositivo. Esse sistema universal de bateria cirúrgica inteligente se presta bem às modernas salas de cirurgia em que o espaço e o tempo são limitados. Ao ter uma bateria inteligente alimentando vários dispositivos diferentes, as equipes de enfermagem podem facilmente gerenciar o armazenamento, a recuperação e o estoque dessas baterias. Vantajosamente, em um aspecto, o sistema de bateria inteligente, de acordo com a presente descrição, pode empregar um tipo de estação de carregamento, aumentando dessa forma a facilidade e a eficiência do uso e diminuindo os custos dos equipamentos de carregamento das salas de cirurgia.
[00460] Além disso, outros instrumentos cirúrgicos, por exemplo, um grampeador elétrico, podem ter uma exigência de energia diferente daquela do instrumento cirúrgico ultrassônico de mão modular 6480. De acordo com vários aspectos da presente descrição, um conjunto de bateria inteligente 6486 pode ser utilizado com qualquer um de uma série de instrumentos cirúrgicos e pode ser produzido para adaptar sua própria saída de energia ao dispositivo específico no qual está instalado.
Em um aspecto, essa adaptação de energia é obtida mediante o controle do ciclo de trabalho de uma fonte de alimentação em modo chaveado, por exemplo, uma configuração rebaixadora (buck), rebaixadora-elevadora (buck-boost), elevadora (boost), ou outra configuração, integrada ou de outra forma acoplada ao conjunto de bateria inteligente 6486 e controlada por ele. Em outros aspectos, o conjunto de bateria inteligente 6486 pode alterar dinamicamente sua saída de energia durante a operação do dispositivo. Por exemplo, em dispositivos de selagem de vasos, a gestão de energia possibilita uma selagem aprimorada do tecido. Nesses dispositivos, altos valores de corrente constante são necessários. A saída de potência total precisa ser ajustada dinamicamente porque, à medida que o tecido é vedado, sua impedância se altera. Aspectos da presente descrição fornecem o conjunto de bateria inteligente 6486 com um limite máximo de corrente variável. O limite de corrente pode variar de uma aplicação (ou dispositivo) para outra, com base nas exigências da aplicação ou do dispositivo.
[00461] A Figura 47 é uma vista em detalhe de uma porção de gatilho 6483 e de uma chave do instrumento cirúrgico ultrassônico 6480 mostradas na Figura 46, de acordo com um aspecto da presente descrição. O gatilho 6483 está operacionalmente acoplado ao membro de garra 6495 do atuador de extremidade 6492. A lâmina ultrassônica 6496 é energizada pelo conjunto de transdutor/gerador ultrassônico 6484 mediante a ativação da chave de ativação 6485. Continuando agora com a Figura 46, e também olhando para a Figura 47, o gatilho 6483 e a chave de ativação 6485 são mostrados como componentes do conjunto de empunhadura 6482. O gatilho 6483 ativa o atuador de extremidade 6492, que tem uma associação cooperativa com a lâmina ultrassônica 6496 do conjunto de guia de ondas do eixo de acionamento 6490 para permitir que vários tipos de contato entre o membro de garra
6495 do atuador de extremidade e a lâmina ultrassônica 6496 com tecido e/ou outras substâncias. O membro de garra 6495 do atuador de extremidade 6492 é, em geral, uma garra articulada que atua para prender ou segurar o tecido disposto entre a garra e a lâmina ultrassônica 6496. Em um aspecto, uma retroinformação audível é fornecida no gatilho que faz um "clique" quando o gatilho é completamente pressionado. O ruído pode ser gerado por uma fina peça metálica que o gatilho toca durante o fechamento. Essa característica adiciona um componente audível à retroinformação do usuário que informa ao usuário que a garra está totalmente comprimida contra o guia de onda e que pressão de aperto suficiente está sendo aplicada para realizar a vedação do vaso. Em um outro aspecto, sensores de força, como manômetros de tensão mecânica ou sensores de pressão, podem ser acoplados ao gatilho 6483 para medir a força aplicada ao gatilho 6483 pelo usuário. Em um outro aspecto, sensores de força, como manômetros de tensão mecânica ou sensores de pressão, podem ser acoplados ao botão da chave 6485 de modo que a intensidade do deslocamento corresponda à força aplicada pelo usuário ao botão de chave 6485.
[00462] A chave de ativação 6485, quando pressionada, coloca o instrumento cirúrgico ultrassônico de mão modular 6480 em um modo de operação ultrassônica, o que causa movimento ultrassônico no conjunto de guia de ondas do eixo de acionamento 6490. Em um aspecto, o pressionamento da chave de ativação 6485 faz com que os contatos elétricos no interior da chave se fechem, completando assim um circuito entre o conjunto de bateria inteligente 6486 e o conjunto de transdutor/gerador ultrassônico 6484, de maneira que a energia elétrica seja aplicada ao transdutor ultrassônico, conforme anteriormente descrito. Em um outro aspecto, o pressionamento da chave de ativação 6485 fecha os contatos elétricos para o conjunto de bateria inteligente
6486. Evidentemente, dos contatos elétricos de fechamento em um circuito é, aqui, meramente um exemplo de descrição geral de operação da chave. Há muitos aspectos alternativos que podem incluir a abertura de contatos ou de fornecimento de energia controlada por processador que recebe informações da chave e direciona uma reação de circuito correspondente com base na informação.
[00463] A Figura 48 é uma vista em perspectiva ampliada fragmentada de um atuador de extremidade 6492, de acordo com ao menos um aspecto da presente descrição, a partir de uma extremidade distal com um membro de garra 6495 em uma posição aberta. Com referência à Figura 48, é mostrada uma vista parcial em perspectiva da extremidade distal 6498 do conjunto de guia de ondas do eixo de acionamento 6490. O conjunto de eixo de acionamento de guia de ondas 6490 inclui um tubo externo 6494 que circunda uma porção do guia de ondas. A porção de lâmina ultrassônica 6496 do guia de ondas 6499 se projeta a partir da extremidade distal 6498 do tubo externo
6494. É a porção de lâmina ultrassônica 6496 que entra em contato com o tecido durante um procedimento médico e transfere sua energia ultrassônica ao tecido. O conjunto de eixo de acionamento de guia de ondas 6490 inclui também um membro de garra 6495 que está acoplado ao tubo externo 6494 e um tubo interno (não visível nesta vista). O membro de garra 6495, com os tubos internos e externos e com a porção de lâmina ultrassônica 6496 do guia de ondas 6499, pode ser chamado de um atuador de extremidade 6492. Conforme será explicado abaixo, o tubo externo 6494 e o tubo interno não ilustrado deslizam longitudinalmente um em relação ao outro. À medida que o movimento relativo entre o tubo externo 6494 e o tubo interno não ilustrado ocorre, o membro de garra 6495 se articula sobre um ponto de pivô, fazendo assim com que o membro de garra 6495 se abra e se feche. Quando fechado, o membro de garra 6495 confere uma força de aperto sobre o tecido situado entre o membro de garra 6495 e a lâmina ultrassônica 6496, garantindo um contato positivo e eficiente entre a lâmina e o tecido.
[00464] A Figura 49 é um diagrama de sistema 7400 de um circuito segmentado 7401 compreendendo uma pluralidade de segmentos de circuito operados independentemente 7402, 7414, 7416, 7420, 7424, 7428, 7434, 7440, de acordo com ao menos um aspecto da presente descrição. Um segmento de circuito da pluralidade de segmentos de circuito do circuito segmentado 7401 compreende um ou mais circuitos e um ou mais conjuntos de instruções executáveis em máquina armazenadas em um ou mais dispositivos de memória. O um ou mais circuitos de um segmento de circuito são acoplados para comunicação elétrica através de um ou mais meios de conexão com ou sem fio. A pluralidade de segmentos de circuito é configurada para realizar a transição entre três modos compreendendo um modo suspenso, um modo de espera e um modo operacional.
[00465] Em um aspecto mostrado, a pluralidade de segmentos de circuito 7402, 7414, 7416, 7420, 7424, 7428, 7434, 7440 começa, em primeiro lugar, no modo de espera, em segundo lugar passa para o modo suspenso e em terceiro lugar, passa para o modo operacional. Entretanto, em outros aspectos, a pluralidade de segmentos de circuito pode realizar a transição de qualquer um dos três modos para qualquer um dos outros três modos. Por exemplo, a pluralidade de segmentos de circuito pode realizar a transição diretamente do modo de espera para o modo operacional. Segmentos de circuito individuais podem ser colocados em um estado específico pelo circuito de controle de tensão 7408 com base na execução, por um processador de instruções executáveis em máquina. Os estados compreendem um estado desenergizado, um estado de baixa energia e um estado energizado. O estado desenergizado corresponde ao modo suspenso, o estado de baixa energia corresponde ao modo de espera e o estado energizado corresponde ao modo operacional. A transição para o estado de baixa energia pode ser atingida, por exemplo, mediante o uso de um potenciômetro.
[00466] Em um aspecto, a pluralidade de segmentos de circuito 7402, 7414, 7416, 7420, 7424, 7428, 7434, 7440 pode realizar a transição do modo suspenso ou do modo de espera para o modo operacional de acordo com uma sequência de energização. A pluralidade de segmentos de circuito pode também realizar a transição do modo operacional para o modo de espera ou para o modo suspenso de acordo com a sequência de desenergização. A sequência de energização e a sequência de desenergização podem ser diferentes. Em alguns aspectos, a sequência de energização compreende a energização de apenas um subconjunto de segmentos de circuito da pluralidade de segmentos de circuito. Em alguns aspectos, a sequência de desenergização compreende a desenergização de apenas um subconjunto de segmentos de circuito da pluralidade de segmentos de circuito.
[00467] Novamente com referência ao diagrama de sistema 7400 na Figura. 49, o circuito segmentado 7401 compreendem uma pluralidade de segmentos de circuito que compreendem um segmento de circuito de transição 7402, um segmento de circuito de processador 7414, um segmento de circuito de empunhadura 7416, um segmento de circuito de comunicação 7420, um segmento de circuito de tela 7424, um segmento de circuito de controle do motor 7428, um segmento de circuito de tratamento de energia 7434, e um segmento de circuito de eixo de acionamento 7440. O segmento de circuito de transição compreende um circuito de ativação 7404, um circuito de corrente de intensificação 7406, um circuito de controle de tensão 7408, um controlador de segurança 7410 e um controlador de POST 7412. O segmento de circuito de transição 7402 é configurado para implementar uma sequência de desenergização e uma sequência de energização, um protocolo de detecção de segurança e um POST.
[00468] Em alguns aspectos, o circuito de ativação 7404 compreende um sensor de botão de acelerômetro 7405. Em aspectos, o segmento de circuito de transição 7402 é configurado para estar em um estado energizado, enquanto outros segmentos de circuito da pluralidade de segmentos de circuito do circuito segmentado 7401 são configurados para estar em um estado de baixa energia, um estado desenergizado ou um estado energizado. O sensor de botão do acelerômetro 7405 pode monitorar o movimento ou a aceleração do instrumento cirúrgico 6480 descrito na presente invenção. Por exemplo, o movimento pode ser uma alteração na orientação ou rotação do instrumento cirúrgico. O instrumento cirúrgico pode ser movimentado em qualquer direção em relação a um espaço euclidiano tridimensional, por exemplo, por um usuário do instrumento cirúrgico. Quando o sensor de botão de acelerômetro 7405 detecta movimento ou aceleração, o sensor de botão de acelerômetro 7405 envia um sinal para o circuito de controle de tensão 7408 para fazer com que o circuito de controle de tensão 7408 aplique tensão ao segmento de circuito de processador 7414 para realizar a transição do processador e de uma a memória volátil para um estado energizado. Nos aspectos, o processador e a memória volátil estão em um estado energizado antes do circuito de controle de tensão 7409 aplicar tensão ao processador e à memória volátil. No modo operacional, o processador pode iniciar uma sequência de energização ou uma sequência de desenergização. Em vários aspectos, o sensor de botão de acelerômetro 7405 pode também enviar um sinal ao processador para fazer com que o processador inicie uma sequência de energização ou uma sequência de desenergização. Em alguns aspectos, o processador inicia uma sequência de energização quando a maioria dos segmentos de circuito individuais estão em um estado de baixa energia ou em um estado desenergizado. Em outros aspectos, o processador inicia uma sequência de desenergização quando a maioria dos segmentos de circuito individuais estiver em um estado energizado.
[00469] Adicional ou alternativamente, o sensor de botão do acelerômetro 7405 pode detectar o movimento externo dentro de uma vizinhança predeterminada do instrumento cirúrgico. Por exemplo, o sensor de botão do acelerômetro 7405 pode detectar o movimento da mão de um usuário do instrumento cirúrgico 6480 aqui descrito, que se move dentro da vizinhança predeterminada. Quando o sensor de botão de acelerômetro 7405 detecta esse movimento externo, o sensor de botão de acelerômetro 7405 pode enviar um sinal ao circuito de controle de tensão 7408 e um sinal ao processador, conforme anteriormente descrito. Após receber o sinal enviado, o processador pode iniciar uma sequência de energização ou uma sequência de desenergização para fazer a transição de um ou mais segmentos de circuito entre os três modos. Nos aspectos, o sinal enviado para o circuito de controle de tensão 7408 é enviado para verificar se o processador está em modo operacional. Em alguns aspectos, o sensor de botão de acelerômetro 7405 pode detectar quando o instrumento cirúrgico foi deixado cair e enviar um sinal ao processador com base na queda detectada. Por exemplo, o sinal pode indicar um erro na operação de um segmento de circuito individual. Um ou mais sensores podem detectar danos ou falhas dos segmentos de circuito individuais afetados. Com base no dano ou falha detectado, o controlador de POST 7412 pode realizar um POST dos segmentos de circuito individuais correspondentes.
[00470] Uma sequência de energização ou uma sequência de desenergização pode ser definida com base no sensor de botão de acelerômetro 7405. Por exemplo, o sensor de botão de acelerômetro
7405 pode detectar um movimento específico ou uma sequência de movimentos que indica a seleção de um segmento de circuito específico da pluralidade de segmentos de circuito. Com base no movimento detectado ou na série de movimentos detectados, o sensor de botão de acelerômetro 7405 pode transmitir um sinal compreendendo uma indicação de um ou mais segmentos de circuito da pluralidade de segmentos de circuito ao processador quando o processador está em um estado energizado. Com base no sinal, o processador determina uma sequência de energização compreendendo o um ou mais segmentos de circuito selecionados. Adicional ou alternativamente, um usuário dos instrumentos cirúrgicos 6480 aqui descritos pode selecionar uma quantidade e a ordem dos segmentos de circuito para definir uma sequência de energização ou uma sequência de desenergização com base na interação com uma interface gráfica de usuário (GUI) do instrumento cirúrgico.
[00471] Em vários aspectos, o sensor de botão de acelerômetro 7405 pode enviar um sinal ao circuito de controle de tensão 7408 e um sinal ao processador apenas quando o sensor de botão de acelerômetro 7405 detecta movimento do instrumento cirúrgico 6480 aqui descrito ou o movimento externo dentro de uma vizinhança predeterminada acima de um limiar predeterminado. Por exemplo, um sinal só pode ser enviado se o movimento for detectado durante 5 ou mais segundos ou se o instrumento cirúrgico for movido 5 ou mais polegadas. Em outros aspectos, o sensor de botão de acelerômetro 7405 pode enviar um sinal ao circuito de controle de tensão 7408 e um sinal ao processador apenas quando o sensor de botão de acelerômetro 7405 detecta movimento oscilatório do instrumento cirúrgico. Um limiar predeterminado reduz a transição inadvertida dos segmentos de circuito do instrumento cirúrgico. Conforme anteriormente descrito, a transição pode compreender uma transição para o modo operacional de acordo com uma sequência de energização, uma transição para o modo de baixa energia de acordo com uma sequência de desenergização, ou uma transição para o modo suspenso de acordo com uma sequência de desenergização. Em alguns aspectos, o instrumento cirúrgico compreende um atuador que pode ser atuado por um usuário do instrumento cirúrgico. A atuação é detectada pelo sensor de botão de acelerômetro 7405. O atuador pode ser um elemento deslizante, uma chave de alternância ou uma chave de contato momentâneo. Com base na atuação detectada, o sensor de botão de acelerômetro 7405 pode enviar um sinal ao circuito de controle de tensão 7408 e um sinal ao processador.
[00472] O circuito de corrente de amplificação 7406 está acoplado à bateria. O circuito de corrente de amplificação 7406 é um amplificador de corrente, como um relé ou transístor, e é configurado para amplificar a magnitude de uma corrente de um segmento de circuito individual. A magnitude da corrente inicial corresponde à tensão da fonte fornecida pela bateria ao circuito segmentado 7401. Relés adequados incluem solenoides. Transístores adequados incluem transístores de efeito de campo (FET), MOSFET e transístores de junção bipolar (BJT). O circuito de corrente de amplificação 7406 pode amplificar a magnitude da corrente correspondente a um segmento de circuito individual ou ao circuito que exige mais extração de corrente durante a operação dos instrumentos cirúrgicos 6480 aqui descritos. Por exemplo, um aumento na corrente para o segmento de circuito de controle do motor 7428 pode ser fornecido quando um motor do instrumento cirúrgico exige mais potência de entrada. O aumento na corrente fornecida a um segmento de circuito individual pode causar uma redução correspondente na corrente de um outro segmento de circuito ou segmentos de circuito. Adicional ou alternativamente, o aumento na corrente pode corresponder à tensão fornecida por uma fonte de tensão adicional que opera em conjunto com a bateria.
[00473] O circuito de controle de tensão 7408 está acoplado à bateria. O circuito de controle de tensão 7408 é configurado para fornecer tensão ou remover tensão da pluralidade de segmentos de circuito. O circuito de controle de tensão 7408 é também configurado para aumentar ou reduzir uma tensão fornecida a uma pluralidade de segmentos de circuito do circuito segmentado 7401. Em vários aspectos, o circuito de controle de tensão 7408 compreende um circuito lógico combinacional como um multiplexador (MUX) para selecionar as entradas, uma pluralidade de chaves eletrônicas e uma pluralidade de conversores de tensão. Uma chave eletrônica da pluralidade de chaves eletrônicas pode ser configurada para alternar entre uma configuração aberta e uma fechada para desconectar ou conectar um segmento de circuito individual à bateria ou a partir dela. A pluralidade de chaves eletrônicas pode consistir em dispositivos em estado sólido como transístores ou outros tipos de chaves, como chaves sem fio, chaves ultrassônicas, acelerômetros, sensores de inércia, entre outros. O circuito lógico combinacional é configurado para selecionar uma chave eletrônica individual para realizar o chaveamento para uma configuração aberta para permitir a aplicação de tensão ao segmento de circuito correspondente. O circuito lógico combinado é, também, configurado para selecionar uma chave eletrônica individual para realizar o chaveamento para uma configuração fechada para permitir a remoção da tensão do segmento de circuito correspondente. Mediante a seleção de uma pluralidade de chaves eletrônicas individuais, o circuito lógico combinado pode implementar uma sequência de desenergização ou uma sequência de energização. A pluralidade de conversores de tensão pode fornecer uma tensão escalonada ascendente ou uma tensão escalonada descendente a uma pluralidade de segmentos de circuito. O circuito de controle de tensão 7408 pode compreender também um microprocessador e um dispositivo de memória.
[00474] O controlador de segurança 7410 é configurado para realizar verificações de segurança nos segmentos de circuito. Em alguns aspectos, o controlador de segurança 7410 realiza as verificações de segurança quando um ou mais segmentos de circuito individuais estão no modo operacional. As verificações de segurança podem ser realizadas para determinar se há ou não quaisquer erros ou defeitos no funcionamento ou operação dos segmentos de circuito. O controlador de segurança 7410 pode monitorar um ou mais parâmetros da pluralidade de segmentos de circuito. O controlador de segurança 7410 pode verificar a identidade e a operação da pluralidade de segmentos de circuito mediante a comparação do um ou mais parâmetros a parâmetros predefinidos. Por exemplo, se uma modalidade de energia de RF for selecionada, o controlador de segurança 7410 pode verificar se um parâmetro de articulação do eixo de acionamento corresponde a um parâmetro de articulação predefinido para verificar a operação da modalidade de energia de RF do instrumento cirúrgico 6480 descritos na presente invenção. Em alguns aspectos, o controlador de segurança 7410 pode monitorar, por meio dos sensores, uma relação predeterminada entre uma ou mais propriedades do instrumento cirúrgico para detectar um defeito. Um defeito pode ocorrer quando a uma ou mais propriedades são inconsistentes com a relação predeterminada. Quando o controlador de segurança 7410 determinar que existe um defeito, um erro ou que alguma operação da pluralidade de segmentos de circuito não foi verificada, o controlador de segurança 7410 impede ou desabilita a operação do segmento de circuito específico onde o defeito, erro ou falha de verificação foi originado.
[00475] O controlador de POST 7412 realiza um POST para verificar a operação adequada da pluralidade de segmentos de circuito. Em alguns aspectos, o POST é executado para um segmento de circuito individual da pluralidade de segmentos de circuito antes que o circuito de controle de tensão 7408 aplique uma tensão ao segmento de circuito individual para realizar a transição do segmento de circuito individual do modo de espera ou do modo suspenso para o modo operacional. Se o segmento de circuito individual não passar no POST, o segmento de circuito específico não realiza a transição do modo de espera ou do modo suspenso para o modo operacional. O POST do segmento de circuito de empunhadura 7416 pode compreender, por exemplo, testar se os sensores de controle da empunhadura 7418 detectam uma atuação de um controle de empunhadura do instrumento cirúrgico 6480 descrito na presente invenção. Em alguns aspectos, o controlador de POST 7412 pode transmitir um sinal para o sensor de botão de acelerômetro 7405 para verificar a operação do segmento de circuito individual como parte do POST. Por exemplo, depois de receber o sinal, o sensor de botão de acelerômetro 7405 pode instruir um usuário do instrumento cirúrgico a mover o instrumento cirúrgico para uma pluralidade de locais variáveis para confirmar a operação do instrumento cirúrgico. O sensor de botão de acelerômetro 7405 pode também monitorar uma saída de um segmento de circuito ou um circuito de um segmento de circuito como parte do POST. Por exemplo, o sensor de botão de acelerômetro 7405 pode detectar um pulso de motor incremental gerado pelo motor 7432 para verificar a operação. Um controlador de motor do circuito de controle de motor 7430 pode ser utilizado para controlar o motor 7432 para gerar o pulso de motor incremental.
[00476] Em vários aspectos, o instrumento cirúrgico 6480 aqui descrito pode compreender sensores de botão de acelerômetro adicionais. O controlador de POST 7412 pode também executar um programa de controle armazenado no dispositivo de memória do circuito de controle de tensão 7408. O programa de controle pode fazer com que o controlador de POST 7412 transmita um sinal que solicita um parâmetro criptografado correlacionado a partir de uma pluralidade de segmentos de circuito. A falha no recebimento de um parâmetro criptografado correlacionado de um segmento de circuito individual indica ao controlador de POST 7412 que o segmento de circuito correspondente está danificado ou com defeito. Em alguns aspectos, se o controlador de POST 7412 determinar, com base no POST, que o processador está danificado ou com defeito, o controlador de POST 7412 pode enviar um sinal a um ou mais processadores secundários para fazer com que um ou mais processadores secundários realizem funções críticas que o processador não é capaz de realizar. Em alguns aspectos, se o controlador de POST 7412 determinar, com base no POST, que um ou mais segmentos de circuito não operam adequadamente, o controlador de POST 7412 pode iniciar um modo de desempenho reduzido daqueles segmentos de circuito que operam adequadamente, enquanto bloqueiam esses segmentos de circuito que não passam no POST ou que não operam adequadamente. Um segmento de circuito bloqueado pode funcionar de modo similar a um segmento de circuito em modo de espera ou modo suspenso.
[00477] O segmento de circuito de processador 7414 compreende o processador e a memória volátil. O processador é configurado para iniciar uma sequência de energização ou uma sequência de desenergização. Para iniciar a sequência de energização, o processador transmite um sinal de energização ao circuito de controle de tensão 7408 para fazer com que o circuito de controle de tensão 7408 aplique tensão à pluralidade ou a um subconjunto da pluralidade de segmentos de circuito de acordo com a sequência de energização. Para iniciar a sequência de desenergização, o processador transmite um sinal de desenergização ao circuito de controle de tensão 7408 para fazer com que o circuito de controle de tensão 7408 remova a tensão da pluralidade ou de um subconjunto da pluralidade de segmentos de circuito de acordo com a sequência de desenergização.
[00478] O segmento de circuito de empunhadura 7416 compreende sensores de controle de empunhadura 7418. Os sensores de controle de empunhadura 7418 podem detectar uma atuação de um ou mais controles de empunhadura do instrumento cirúrgico 6480 aqui descrito. Em vários aspectos, o um ou mais controles de empunhadura compreendem um controle da garra, um botão de liberação, uma chave de articulação, um botão de ativação de energia, e/ou qualquer outro controle de empunhadura adequado. O usuário pode ativar o botão de ativação de energia para selecionar entre um modo de energia de RF, um modo de energia ultrassônica ou um modo combinado de energia de RF e ultrassônica. Os sensores de controle de empunhadura 7418 podem também facilitar a fixação de uma empunhadura modular ao instrumento cirúrgico. Por exemplo, os sensores de controle de empunhadura 7418 podem detectar a fixação adequada da empunhadura modular ao instrumento cirúrgico e indicar a fixação detectada a um usuário do instrumento cirúrgico. A tela de LCD 7426 pode fornecer uma indicação gráfica da fixação detectada. Em alguns aspectos, os sensores de controle de empunhadura 7418 detecta o acionamento dos um ou mais controles de empunhadura. Com base na atuação detectada, o processador pode iniciar tanto uma sequência de energização quanto uma sequência de desenergização.
[00479] O segmento de circuito de comunicação 7420 compreende um circuito de comunicação 7422. O circuito de comunicação 7422 compreende uma interface de comunicação para facilitar a comunicação do sinal entre os segmentos de circuito individuais da pluralidade de segmentos de circuito. Em alguns aspectos, o circuito de comunicação 7422 fornece uma trajetória para os componentes modulares do instrumento cirúrgico 6480 aqui descritos se comunicarem eletricamente. Por exemplo, um eixo de acionamento modular e um transdutor modular, quando fixados juntos à empunhadura do instrumento cirúrgico, podem carregar programas de controle para a empunhadura através do circuito de comunicação 7422.
[00480] O segmento de circuito de tela 7424 compreende uma tela de LCD 7426. A tela de LCD 7426 pode compreender uma tela de cristal líquido, indicadores de LED, etc. Em alguns aspectos, a tela de LCD 7426 é uma tela de diodo emissor de luz orgânico (OLED). Uma tela pode ser colocada sobre, embutida ou localizada remotamente em relação ao instrumento cirúrgico 6480 aqui descrito. Por exemplo, a tela pode ser colocada na empunhadura do instrumento cirúrgico. A tela é configurada para fornecer retroinformação sensorial a um usuário. Em vários aspectos, a tela de LCD 7426 compreende adicionalmente uma retroiluminação. Em alguns aspectos, o instrumento cirúrgico pode compreender também dispositivos de retroinformação de áudio como um alto-falante ou um sinal sonoro e dispositivos de retroinformação tátil como um atuador háptico.
[00481] O segmento de circuito de controle de motor 7428 compreende um circuito de controle de motor 7430 acoplado a um motor
7432. O motor 7432 está acoplado ao processador por um acionador e um transístor, como um FET. Em vários aspectos, o circuito de controle de motor 7430 compreende um sensor de corrente do motor em comunicação por sinal com o processador para fornecer um sinal indicativo de uma medição da extração de corrente do motor para o processador. O processador transmite o sinal para a tela. A tela recebe o sinal e exibe a medição da extração de corrente do motor 7432. O processador pode utilizar o sinal, por exemplo, para monitorar que a extração de corrente do motor 7432 existe dentro de uma faixa aceitável para comparar a extração de corrente com um ou mais parâmetros da pluralidade de segmentos de circuito, e para determinar um ou mais parâmetros de um local de tratamento do paciente. Em vários aspectos, o circuito de controle de motor 7430 compreende um controlador de motor para controlar a operação do motor. Por exemplo, o circuito de controle de motor 7430 controla vários parâmetros de motor, por exemplo, mediante o ajuste da velocidade, do torque e da aceleração do motor 7432. O ajuste é realizado com base na corrente que passa através do motor 7432, medida pelo sensor de corrente do motor.
[00482] Em vários aspectos, o circuito de controle de motor 7430 compreende um sensor de força para medir a força e o torque gerados pelo motor 7432. O motor 7432 é configurado para atuar um mecanismo dos instrumentos cirúrgicos 6480 aqui descritos. Por exemplo, o motor 7432 é configurado para controlar a atuação do eixo de acionamento do instrumento cirúrgico para realizar as funcionalidades de preensão, rotação e articulação. Por exemplo, o motor 7432 é configurado para controlar a atuação do eixo de acionamento do instrumento cirúrgico para realizar as funcionalidades de preensão, rotação e articulação. O controlador de motor pode determinar se o material travado pelas garras é tecido ou metal. O controlador de motor pode também determinar a extensão a qual as garras prendem o material. Por exemplo, o controlador de motor pode determinar como abrir ou fechar as garras com base na derivação da corrente detectada do motor ou da tensão do motor. Em alguns aspectos, o motor 7432 é configurado para acionar o transdutor para fazer com que o transdutor aplique torque à empunhadura ou para controlar a articulação do instrumento cirúrgico. O sensor de corrente do motor pode interagir com o controlador de motor para definir um limite de corrente do motor. Quando a corrente satisfaz o limite de limiar predefinido, o controlador do motor inicia uma alteração correspondente em uma operação de controle do motor. Por exemplo, exceder o limite da corrente do motor faz com que o controlador de motor reduza a extração de corrente do motor.
[00483] O segmento de circuito de tratamento de energia 7434 compreende um amplificador de RF e o circuito de segurança 7436 e um circuito gerador de sinal ultrassônico 7438 para implementar a funcionalidade de energia modular do instrumento cirúrgico 6480 aqui descrito. Em vários aspectos, o amplificador de RF e o circuito de segurança 7436 são configurados para controlar a modalidade de RF do instrumento cirúrgico mediante a geração de um sinal de RF. O circuito gerador de sinal ultrassônico 7438 é configurado para controlar a modalidade de energia ultrassônica mediante a geração de um sinal ultrassônico. O amplificador de RF e o circuito de segurança 7436 e um circuito gerador de sinal ultrassônico 7438 podem operar em conjunto para controlar a modalidade combinada de energia de RF e ultrassônica.
[00484] O segmento de circuito de eixo de acionamento 7440 compreende um controlador de módulo de eixo de acionamento 7442, um atuador de controle modular 7444, um ou mais sensores de atuador de extremidade 7446 e uma memória não volátil 7448. O controlador de módulo de eixo de acionamento 7442 é configurado para controlar uma pluralidade de módulos de eixo de acionamento compreendendo os programas de controle a serem executados pelo processador. A pluralidade de módulos de eixo de acionamento implementa uma modalidade de eixo de acionamento, por exemplo, ultrassônica, combinação de ultrassônica e de RF, lâmina em perfil I de RF e por garra oposta por RF. O controlador de módulo de eixo de acionamento 7442 pode selecionar a modalidade de eixo de acionamento mediante a seleção do módulo de eixo de acionamento correspondente para que o processador opere. O atuador de controle modular 7444 é configurado para atuar o eixo de acionamento de acordo com a modalidade selecionada de eixo de acionamento. Após a atuação ser iniciada, o eixo de acionamento articula o atuador de extremidade de acordo com um ou mais parâmetros, rotinas ou programas específicos para a modalidade de eixo selecionada e a modalidade de atuador de extremidade selecionada. O um ou mais sensores de atuador de extremidade 7446, situados no atuador de extremidade, podem incluir sensores de força, sensores de temperatura, sensores de corrente ou sensores de movimento. O um ou mais sensores de atuador de extremidade 7446 transmitem dados sobre uma ou mais operações do atuador de extremidade, com base na modalidade de energia implementada pelo atuador de extremidade. Em vários aspectos, as modalidades de energia incluem uma modalidade de energia ultrassônica, uma modalidade de energia de RF ou uma combinação da modalidade de energia ultrassônica e da modalidade de energia de RF. A memória não volátil 7448 armazena os programas de controle do eixo de acionamento. Um programa de controle compreende um ou mais parâmetros, rotinas ou programas específicos para o eixo de acionamento. Em vários aspectos, a memória não volátil 7448 pode ser uma memória ROM, EPROM, EEPROM ou flash. A memória não volátil 7448 armazena os módulos de eixo de acionamento correspondentes ao eixo de acionamento selecionado do instrumento cirúrgico 6480 aqui descrito. Os módulos de eixo de acionamento podem ser alterados ou atualizados na memória não volátil 7448 pelo controlador do módulo de eixo de acionamento 7442, dependendo do eixo de acionamento do instrumento cirúrgico a ser usado na operação.
[00485] A Figura 50 é um diagrama esquemático de um circuito 7925 de vários componentes de um instrumento cirúrgico com funções de controle de motor, de acordo com ao menos um aspecto da presente descrição. Em vários aspectos, o instrumento cirúrgico 6480 aqui descrito pode incluir um mecanismo de acionamento 7930 que é configurado para acionar eixos de acionamento e/ou componentes de engrenagem a fim de realizar as várias operações associadas ao instrumento cirúrgico 6480. Em um aspecto, o mecanismo de acionamento 7930 inclui um trem de acionamento de rotação 7932 configurado para girar um atuador de extremidade, por exemplo, em torno de um eixo geométrico longitudinal em relação ao compartimento da empunhadura. O mecanismo de acionamento 7930 inclui, ainda, um trem de acionamento do sistema de fechamento 7934 configurado para fechar um membro de garra para prender o tecido ao atuador de extremidade. Além disso, o mecanismo de acionamento 7930 inclui um trem de acionamento de disparo 7936 configurado para abrir e fechar uma porção de braço de aperto do atuador de extremidade para prender o tecido com o atuador de extremidade.
[00486] O mecanismo de acionamento 7930 inclui um conjunto de caixa de engrenagens com seletor 7938 que pode estar localizado no conjunto de empunhadura do instrumento cirúrgico. Proximal ao conjunto de caixa de engrenagem com seletor 7938 existe um módulo de seleção de função que inclui um primeiro motor 7942 que funciona para mover seletivamente elementos de engrenagem no interior do conjunto de caixa de engrenagem com seletor 7938 para posicionar seletivamente um dos trens de acionamento 7932, 7934, 7936 em encaixe com um componente de acionamento de entrada de um segundo motor opcional 7944 e um circuito de acionamento de motor 7946 (mostrado em linha pontilhada para indicar que o segundo motor 7944 e o circuito de acionamento de motor 7946 são componentes opcionais).
[00487] Ainda com referência à Figura 50, os motores 7942 e 7944 são acoplados aos circuitos de controle de motor 7946, 7948, respectivamente, que são configurados para controlar a operação dos motores 7942 e 7944, incluindo o fluxo de energia elétrica de uma fonte de alimentação 7950 para os motores 7942 e 7944. A fonte de alimentação 7950 pode ser uma bateria de CC (por exemplo, uma bateria recarregável à base de chumbo, à base de níquel, à base de íons de lítio, etc.) ou qualquer outra fonte de alimentação adequada para fornecer energia elétrica ao instrumento cirúrgico.
[00488] O instrumento cirúrgico inclui adicionalmente um microcontrolador 7952 ("controlador"). Em certos exemplos, o controlador 7952 pode incluir um microprocessador 7954 ("processador") e um ou mais meios legíveis por computador ou unidades de memória 7956 ("memória"). Em certos casos, a memória 7956 pode armazenar várias instruções de programa que, quando executadas, podem fazer com que o processador 7954 execute uma pluralidade de funções e/ou cálculos aqui descritos. Uma fonte de alimentação 7950 pode ser configurada para fornecer energia ao controlador 7952, por exemplo.
[00489] O processador 7954 pode estar em comunicação com o circuito de controle do motor 7946. Além disso, a memória 7956 pode armazenar instruções de programa que, quando executadas pelo processador 7954 em resposta a uma entrada de usuário 7958 ou elementos de retroinformação 7960, podem fazer com que o circuito de controle do motor 7946 induza o motor 7942 a gerar ao menos um movimento giratório para mover seletivamente os elementos de engrenagem no interior do conjunto de caixa de câmbio com seletor 7938 para posicionar seletivamente um dos trens de acionamento 7932, 7934, 7936 para engatar no componente de acionamento de entrada do segundo motor 7944. Além disso, o processador 7954 pode estar em comunicação com o circuito de controle do motor 7948. A memória 7956 pode também armazenar instruções de programa que, quando executadas pelo processador 7954 em resposta a uma entrada de usuário 7958, podem fazer com que o circuito de controle do motor 7948 induza o motor 7944 a gerar ao menos um movimento giratório para acionar o trem de acionamento engatado no componente de acionamento de entrada do segundo motor 7948, por exemplo.
[00490] O controlador 7952 e/ou os outros controladores da presente descrição podem ser implementados usando elementos de hardware integrados e/ou distintos, elementos de software e/ou uma combinação de ambos. Exemplos de elementos de hardware integrados podem incluir processadores, microprocessadores, microcontroladores, circuitos integrados, ASICs, PLDs, DSPs, FPGAs, portas lógicas, registros, dispositivos de semicondutor, circuitos integrados, microcircuitos, chipsets, microcontroladores, sistema em um circuito integrado (chip)(SoC) e/ou pacote único em linha (SiP). Exemplos de elementos de hardware distintos podem incluir circuitos e/ou elementos de circuito, como portas lógicas, transistores de efeito de campo, transistores bipolares, resistores, capacitores, indutores e/ou relés. Em certas modalidades, o controlador 7952 pode incluir um circuito híbrido que compreende elementos ou componentes de circuitos integrados e isolados em um ou mais substratos, por exemplo.
[00491] Em certos exemplos, o controlador 7952 e/ou os outros controladores da presente descrição podem ser um LM 4F230H5QR, disponível junto à Texas Instruments, por exemplo. Em certas instâncias, o LM4F230H5QR da Texas Instruments é um núcleo processador ARM Cortex-M4F que compreende uma memória integrada do tipo flash de ciclo único de 256 KB, ou outra memória não volátil, até 40 MHz, um buffer de pré-busca para otimizar o desempenho acima de 40 MHz, uma SRAM de ciclo único de 32 KB, ROM interna carregada com o software StellarisWare®, EEPROM de 2KB, um ou mais módulos de PWM, um ou mais análogos de QEI, um ou mais ADCs de 12 bits com 12 canais de entrada analógicos, dentre outros recursos que são prontamente disponíveis. Outros microcontroladores podem ser prontamente substituídos para uso com a presente descrição. Consequentemente, a presente descrição não deve ser limitada nesse contexto.
[00492] Em vários exemplos, uma ou mais das várias etapas aqui descritas podem ser executadas por uma máquina de estados finitos que compreende um circuito lógico combinacional ou um circuito lógico sequencial, onde o circuito lógico combinacional ou o circuito lógico sequencial é acoplado, ao menos, a um circuito de memória. O pelo menos um circuito de memória armazena um estado atual da máquina de estados finitos. O circuito lógico combinacional ou sequencial é configurado para fazer com que a máquina de estados finitos execute as etapas. O circuito lógico sequencial pode ser síncrono ou assíncrono. Em outros exemplos, uma ou mais das várias etapas aqui descritas podem ser executadas por um circuito que inclui uma combinação do processador 7958 e da máquina de estados finitos, por exemplo.
[00493] Em vários casos, pode ser vantajoso ser capaz de avaliar o estado da funcionalidade de um instrumento cirúrgico para assegurar sua função adequada. É possível, por exemplo, que o mecanismo de acionamento, conforme explicado acima, que é configurado para incluir vários motores, trens de acionamento e/ou componentes de engrenagem para executar as várias operações do instrumento cirúrgico, se desgaste ao longo do tempo. Isso pode ocorrer através do uso normal e, em alguns casos, o mecanismo de acionamento pode se desgastar mais rapidamente devido a condições de uso abusivo. Em certos casos, um instrumento cirúrgico pode ser configurado para executar autoavaliações para determinar o estado, ou seja, a saúde, do mecanismo de acionamento e seus diversos componentes.
[00494] Por exemplo, a autoavaliação pode ser utilizada para determinar quando o instrumento cirúrgico é capaz de desempenhar sua função antes de uma nova esterilização ou quando alguns dos componentes devem ser substituídos e/ou reparados. A avaliação do mecanismo de acionamento e de seus componentes, incluindo, mas não se limitando ao trem de acionamento de rotação 7932, o trem de acionamento do sistema de fechamento 7934 e/ou o trem de acionamento de disparo 7936, pode ser realizada de diversas formas. A magnitude do desvio de um desempenho previsto pode ser utilizada para determinar a probabilidade de uma falha detectada e da gravidade dessa falha. Várias métricas podem ser utilizadas, incluindo: Análise periódica de eventos repetidamente previsíveis, aumentos ou quedas que excedem um limiar esperado e a extensão da falha.
[00495] Em diversos casos, uma forma de onda de assinatura de um mecanismo de acionamento operando adequadamente ou um ou mais de seus componentes pode ser empregada para avaliar o estado do mecanismo de acionamento ou de um ou mais de seus componentes. Um ou mais sensores de vibração podem estar dispostos em relação a um mecanismo de acionamento operando adequadamente ou um ou mais de seus componentes para registrar diversas vibrações que ocorrem durante a operação do mecanismo de acionamento operando adequadamente ou de um ou mais de seus componentes. As vibrações registradas podem ser empregadas para criar a forma de onda de assinatura. As futuras formas de ondas podem ser comparadas à forma de onda de assinatura para avaliar o estado do mecanismo de acionamento e seus componentes.
[00496] Ainda com referência à Figura 50, o instrumento cirúrgico 7930 inclui um módulo de detecção de falha do trem de acionamento 7962 configurado para registrar e analisar uma ou mais saídas acústicas de um ou mais dos trens de acionamento 7932, 7934, 7936. O processador 7954 pode estar em comunicação com ou, de outro modo, controlar o módulo 7962. Conforme descrito com mais detalhes abaixo,
o módulo 7962 pode ser incorporado como vários meios, como circuitos, hardware, um produto de programa de computador que compreende uma mídia legível por computador (por exemplo, a memória 7956) que armazena instruções de programa legíveis por computador que são executáveis por um dispositivo de processamento (por exemplo, o processador 7954), ou alguma combinação dos mesmos. Em alguns casos, o processador 36 pode incluir ou, de outro modo, controlar o módulo 7962.
[00497] Novamente com referência à Figura 51, o atuador de extremidade 8400 compreende sensores de dados de RF 8406, 8408a, 8408b localizado no membro de garra 8402. O atuador de extremidade 8400 compreende um membro de garra 8402 e uma lâmina ultrassônica
8404. O braço de preensão 8402 é mostrado prendendo tecido 8410 localizado entre o braço de preensão 8402 e a lâmina ultrassônica 8404. Um primeiro sensor 8406 está situado em uma porção central do membro de garra 8402. O segundo e o terceiro sensores 8408a, 8408b estão localizados em porções laterais do membro de garra 8402. Os sensores 8406, 8408a, 8408b são montados ou formados integralmente com um circuito flexível 8412 (mostrado mais particularmente na Figura 52) configurado para ser montado de modo fixo ao membro de garra
8402. O atuador de extremidade 8400 é um atuador de extremidade exemplificador para um instrumento cirúrgico. Os sensores 8406, 8408a, 8408b são eletricamente conectados a um circuito de controle como o circuito de controle 7400 (Figura 63) através de circuitos de interface. Os sensores 8406, 8408a, 8408b são alimentados por bateria e os sinais gerados pelos sensores 8406, 8408a, 8408b são fornecidos aos circuitos de processamento analógicos e/ou digitais do circuito de controle.
[00498] Em um aspecto, o primeiro sensor 8406 é um sensor de força para medir uma força normal F3 aplicada ao tecido 8410 pelo membro de garra 8402. O segundo e o terceiro sensores 8408a, 8408b incluem um ou mais elementos para aplicar energia de RF ao tecido 8410, medem a impedância do tecido, a força para baixo F1, as forças transversais F2, e a temperatura, entre outros parâmetros. Os eletrodos 8409a, 8409b são acoplados eletricamente a uma fonte de energia e aplicam energia de RF ao tecido 8410. Em um aspecto, o primeiro sensor 8406 e o segundo e o terceiro sensores 8408a, 8408b são medidores de esforço para medir força ou força por unidade de área. Será reconhecido que as medidas da força para baixo F1, as forças laterais F2 e a força normal F3 podem ser facilmente convertidas em pressão determinando a área de superfície sobre a qual os sensores de força 8406, 8408a, 8408b estão atuando. Adicionalmente, como descrito com particularidade aqui, o circuito flexível 8412 pode compreender sensores de temperatura incorporados em uma ou mais camadas do circuito flexível 8412. O um ou mais sensores de temperatura podem ser dispostos de maneira simétrica ou assimétrica, e fornecer retroinformação de temperatura do tecido 8410 para circuitos de controle de um circuito de acionamento ultrassônico e um circuito de acionamento de RF.
[00499] A Figura 52 ilustra um aspecto do circuito flexível 8412 mostrado na Figura 51, em que os sensores 8406, 8408a, 8408b podem ser montados ao mesmo ou formados integralmente com o mesmo. O circuito flexível 8412 está configurado para se ligar de modo fixo ao membro de garra 8402. Conforme mostrado particularmente na Figura 52, os sensores de temperatura assimétricos 8414a, 8414b são montados no circuito flexível 8412 para permitir a medição da temperatura do tecido 8410 (Figura 51).
[00500] A Figura 53 é um sistema alternativo 132000 para controlar a frequência de um sistema eletromecânico ultrassônico 132002 e detectar a impedância do mesmo, de acordo com ao menos um aspecto da presente descrição. O sistema 132000 pode ser incorporado em um gerador. Um processador 132004 acoplado a uma memória 132026 programa um contador programável 132006 para sintonizar à frequência de saída fo do sistema eletromecânico ultrassônico 132002. A frequência de entrada é gerada por um oscilador de cristal 132008 e é inserida em um contador fixo 132010 para dimensionar a frequência para um valor adequado. As saídas do contador fixo 132010 e do contador programável 132006 são aplicadas a um detector de fase/frequência 132012. A saída do detector de fase/frequência 132012 é aplicada a um amplificador/circuito de filtro ativo 132014 para gerar uma tensão de sintonização Vt que é aplicada a um oscilador controlado por tensão 132016 (VCO, "voltage controlled oscillator"). O VCO 132016 aplica a frequência de saída fo a uma porção de transdutor ultrassônico do sistema eletromecânico ultrassônico 132002, mostrado aqui modelado como um circuito elétrico equivalente. Os sinais de tensão e corrente aplicados ao transdutor ultrassônico são monitorados por um sensor de tensão 132018 e um sensor de corrente 132020.
[00501] As saídas dos sensores de tensão e corrente 132018, 13020 são aplicadas a um outro detector de fase/frequência 132022 para determinar o ângulo de fase entre a tensão e a corrente conforme medido pelos sensores de tensão e corrente 132018, 13020. A saída do detector de fase/frequência 132022 é aplicada a um canal de um conversor analógico para digital de alta velocidade 132024 (ADC) e é fornecida ao processador 132004 através do mesmo. Opcionalmente, as saídas dos sensores de tensão e corrente 132018, 132020 podem ser aplicadas aos respectivos canais dos dois canais de ADC 132024 e fornecidas ao processador 132004 para passagem por zero, FFT, ou outro algoritmo descrito aqui para determinar o ângulo de fase entre os sinais de tensão e a corrente aplicados ao sistema eletromecânico ultrassônico 132002.
[00502] Opcionalmente a tensão de sintonia Vt, a qual é proporcional à frequência de saída fo, pode ser alimentada de volta para o processador 132004 através do ADC 132024. Isso fornece ao processador 132004 um sinal de retroinformação proporcional à frequência de saída fo e pode usar essa retroinformação para ajustar e controlar a frequência de saída fo. Inferência de temperatura
[00503] As Figuras 54A a 54B são representações gráficas 133000, 133010 de espectros de impedância complexos do mesmo dispositivo ultrassônico com uma lâmina ultrassônica fria (temperatura ambiente) e quente, de acordo com ao menos um aspecto da presente descrição. Como usado na presente invenção, uma lâmina ultrassônica fria se refere a uma lâmina ultrassônica à temperatura ambiente e uma lâmina ultrassônica quente se refere a uma lâmina ultrassônica depois que ela é aquecida por atrito durante o uso. A Figura 54A é uma representação gráfica 133000 do ângulo de fase da impedância φ como uma função da frequência de ressonância fo do mesmo dispositivo ultrassônico com uma lâmina ultrassônica fria e quente e a Figura 54B é uma representação gráfica 133010 de magnitude de impedância |Z| como uma função da frequência de ressonância fo do mesmo dispositivo ultrassônico com uma lâmina ultrassônica fria e quente. O ângulo de fase da impedância φ e a magnitude de impedância |Z| estão, no mínimo, na frequência de ressonância fo.
[00504] A impedância do transdutor ultrassônico Zg(t) pode ser medida como a razão entre os sinais de acionamento de tensão do gerador Vg(t) e corrente do gerador Ig(t):
[00505] Conforme mostrado na Figura 54A, quando a lâmina ultrassônica está fria, por exemplo, à temperatura ambiente e não aquecida por atrito, a frequência eletromecânica ressonante fo do dispositivo ultrassônico é aproximadamente 55.500 Hz e a frequência de excitação do transdutor ultrassônico é ajustada para 55.500 Hz. Dessa forma, quando o transdutor ultrassônico é excitado na frequência eletromecânica ressonante fo e a lâmina ultrassônica está fria, o ângulo de fase φ é no mínimo ou aproximadamente 0 Rad conforme indicado pela plotagem da lâmina fria 133002. Conforme mostrado na Figura 54B, quando a lâmina ultrassônica está fria e o transdutor ultrassônico é excitado na frequência eletromecânica ressonante fo, a magnitude de impedância |Z| é 800 Ω, por exemplo, a magnitude de impedância |Z| está em um mínimo de impedância, e a amplitude do sinal de acionamento está em um máximo devido ao circuito equivalente de ressonância em série do sistema eletromecânico ultrassônico conforme representado na Figura 25.
[00506] Com referência agora novamente às Figuras 54A e 54B, quando o transdutor ultrassônico é acionado por sinais de tensão do gerador Vg(t) e sinais de corrente do gerador Ig(t) na frequência eletromecânica ressonante f o de 55.500 Hz, o ângulo de fase φ entre os sinais de tensão do gerador Vg(t) e da corrente do gerador Ig(t) é zero, a magnitude de impedância |Z| está em um mínimo de impedância, por exemplo, 800 Ω, e a amplitude do sinal está em um pico ou máxima devido ao circuito equivalente de ressonância em série do sistema eletromecânico ultrassônico. À medida que a temperatura da lâmina ultrassônica aumenta, devido ao calor friccional gerado em uso, a frequência eletromecânica ressonante fo’ do dispositivo ultrassônico diminui. Uma vez que o transdutor ultrassônico está ainda acionado pelo sinas de tensão do gerador Vg(t) e de corrente do gerador Ig(t) na frequência eletromecânica ressoante anterior (lâmina fria) fo de 55.500 Hz, o dispositivo ultrassônico opera fora de ressonância a fo’ causando um deslocamento no ângulo de fase φ entre os sinais de tensão do gerador Vg(t) e de corrente do gerador Ig(t). Há também um aumento na magnitude de impedância |Z| e uma queda na magnitude de pico do sinal de acionamento em relação à frequência eletromecânica ressonante anterior (lâmina fria) de 55.500 Hz. Consequentemente, a temperatura da lâmina ultrassônica pode ser inferida mediante a medição do ângulo de fase φ entre os sinais de tensão do gerador Vg(t) e de corrente do gerador Ig(t) quando a frequência eletromecânica ressonante fo se altera devido às alterações na temperatura da lâmina ultrassônica.
[00507] Conforme anteriormente descrito, um sistema ultrassônico eletromecânico inclui um transdutor ultrassônico, um guia de onda e uma lâmina ultrassônica. Conforme anteriormente discutido, o transdutor ultrassônico pode ser modelado como um circuito ressonante em série equivalente (consulte a Figura 25) que compreende uma primeira ramificação tendo uma capacitância estática e uma segunda ramificação " de movimento" tendo uma indutância, resistência e capacitância conectadas série que definem as propriedades eletromecânicas de um ressonador. O sistema ultrassônico eletromecânico tem uma frequência de ressonância eletromecânica inicial definida pelas propriedades físicas do transdutor ultrassônico, o guia de ondas, e a lâmina ultrassônica. O transdutor ultrassônico é excitado por um sinal de tensão Vg(t) e corrente Ig(t) alternada em uma frequência igual à frequência de ressonância eletromecânica, por exemplo, frequência de ressonância do sistema ultrassônico eletromecânica. Quando o sistema ultrassônico eletromecânico está excitado na frequência de ressonância, o ângulo de fase φ entre os sinais de tensão Vg(t) e corrente Ig(t) é zero.
[00508] Dito de uma outra forma, na ressonância, a impedância indutiva analógica do sistema ultrassônico eletromecânico é igual à impedância capacitiva analógica do sistema ultrassônico eletromecânico. Conforme a lâmina ultrassônica aquece, por exemplo devido ao engate por atrito com o tecido, a conformidade da lâmina ultrassônica (modelada como uma capacitância analógica) faz com que a frequência de ressonância do sistema ultrassônico eletromecânico se altere. No presente exemplo, a frequência de ressonância do sistema ultrassônico eletromecânico diminui conforme a temperatura da lâmina ultrassônica aumenta. Dessa forma, a impedância indutiva analógica do sistema ultrassônico eletromecânico já não é igual à impedância capacitiva analógica do sistema ultrassônico eletromecânico causando um desfasamento entre a frequência de acionamento e a nova frequência de ressonância do sistema ultrassônico eletromecânico. Dessa forma, com uma lâmina ultrassônica quente, o sistema ultrassônico eletromecânico opera "fora de ressonância". A diferença entre a frequência de acionamento e a frequência de ressonância é manifestada como um ângulo de fase φ entre os sinais de tensão Vg(t) e corrente Ig(t) aplicados ao transdutor ultrassônico.
[00509] Conforme anteriormente discutido, o circuito eletrônico do gerador pode facilmente monitorizar o ângulo de fase φ entre os sinais de tensão Vg(t) e corrente Ig(t) aplicados ao transdutor ultrassônico. O ângulo de fase φ pode ser determinado através de análise de Fourier, estimativa de quadrados mínimos ponderados, filtração Kalman, técnicas baseadas em espaço-vetor, método de passagem por zero, figuras de Lissajous, método de três voltímetros, método "crossed-coil", métodos de voltímetro vetorial e impedância vetorial, instrumentos de fase padrões, malha de captura de fase ("phase-locked loops") e outras técnicas anteriormente descritas. O gerador pode monitorar continuamente o ângulo de fase φ e ajustar a frequência de acionamento até o ângulo de fase φ ficar zero. Nesse ponto, a nova frequência de acionamento é igual à frequência de ressonância do novo sistema ultrassônico eletromecânico. A alteração no ângulo de fase φ e/ou frequência de acionamento do gerador pode ser usada como uma medição indireta ou inferida da temperatura da lâmina ultrassônica.
[00510] Uma variedade de técnicas estão disponíveis para estimar a temperatura a partir dos dados na esses espectros. Mais notadamente, um conjunto não linear, tempo-variante, de equações de espaço de estado pode ser usado para modelar a relação dinâmica entre a temperatura da lâmina ultrassônica e a impedância medida: através de uma faixa de frequências de acionamento do gerador, sendo que a faixa de frequências de acionamento do gerador é específica para o modelo de dispositivo. Métodos de estimativa de temperatura
[00511] Um aspecto de estimar ou inferir a temperatura de uma lâmina ultrassônica pode incluir três etapas. Primeiro, definir um modelo de espaço de estado de temperatura e frequência que é dependente de tempo e energia. Para modelar a temperatura como uma função do conteúdo de frequência, um conjunto de equações não lineares de espaço de estado são usadas para modelar a relação entre a frequência de ressonância eletromecânica e a temperatura da lâmina ultrassônica. Segundo, aplicar um filtro Kalman para aprimorar a acurácia do estimador de temperatura e do modelo de espaço de estado ao longo do tempo. Terceiro, um estimador de estado é fornecido no circuito de realimentação do filtro de Kalman para controlar a potência aplicada ao transdutor ultrassônico, e consequentemente a lâmina ultrassônica, para regular a temperatura da lâmina ultrassônica. As três etapas são descritas mais adiante neste documento. Etapa 1
[00512] A primeira etapa é definir um modelo de espaço de estado de temperatura e frequência que é dependente de tempo e energia. Para modelar a temperatura como uma função do conteúdo de frequência, um conjunto de equações não lineares de espaço de estado são usadas para modelar a relação entre a frequência de ressonância eletromecânica e a temperatura da lâmina ultrassônica. Em um aspecto, o modelo de espaço de estado é definido por:
[00513] O modelo de espaço de estado representa a taxa de variação da frequência natural do sistema ultrassônico eletromecânico e a taxa de variação da temperatura da lâmina ultrassônica com relação à frequência natural , temperatura , energia , e tempo t. representa a observabilidade das variáveis que são mensuráveis e observáveis como a frequência natural do sistema ultrassônico eletromecânico, a temperatura da lâmina ultrassônica, a energia aplicada à lâmina ultrassônica, e o tempo t. A temperatura da lâmina ultrassônica é observável como uma estimativa. Etapa 2
[00514] A segunda etapa é para aplicar um filtro Kalman para melhorar o estimador de temperatura e o modelo de espaço de estado. A Figura 55 é um diagrama de um filtro Kalman 133020 para melhorar o estimador de temperatura e o modelo de espaço de estado com base na impedância de acordo com a equação: que representa a impedância de um transdutor ultrassônico medida em uma variedade de frequências, de acordo com ao menos um aspecto da presente descrição.
[00515] O filtro Kalman 133020 pode ser empregado para melhorar o desempenho da estimativa de temperatura e permite o aumento dos sensores externos, modelos, ou informação prévia para melhorar a previsão de temperatura no meio de dados ruidosos. O filtro Kalman 133020 inclui um regulador 133022 e uma planta 133024. Em teoria de controle, uma planta 133024 é a combinação de processo e atuador. Uma planta 133024 pode ser chamada de uma função de transferência que indica a relação entre um sinal de entrada e o sinal de saída de um sistema. O regulador 133022 inclui um estimador de estado 133026 e um controlador K 133028. O regulador de estado 133026 inclui um circuito de realimentação 133030. O regulador de estado 133026 recebe y, a saída da planta 133024, como uma entrada e uma variável de retroinformação u. O estimador de estado 133026 é um sistema de retroinformação interno que converge para o valor real do estado do sistema. A saída do estimador de estado 133026 é , a variável de controle de retroinformação completa incluindo do sistema ultrassônico eletromecânico, a estimativa da temperatura da lâmina ultrassônica, a energia aplicada à lâmina ultrassônica, o ângulo de fase φ, e o tempo t. A entrada para dentro do controlador K 133028 é e a saída do controlador K 133028 u é alimentada de volta para o estimador de estado 133026 e t da planta 133024.
[00516] A filtração Kalman, também conhecido como estimativa linear quadrática (LQE), é um algoritmo que usa uma série de medições observadas ao longo do tempo, contendo ruído e outras imprecisões estatísticas, e produz estimativas das variáveis desconhecidas que tendem a ser mais acuradas do que aquelas com base em uma única medição apenas, mediante estimativa de uma distribuição de probabilidade conjunta sobre as variáveis para cada período de tempo e, desse modo, cálculo da estimativa de máxima probabilidade de medições reais. O algoritmo funciona em um processo em duas etapas. Em uma etapa de previsão, o filtro Kalman 133020 produz estimativas das variáveis de estado atuais, juntamente com suas incertezas. Após o resultado da próxima medição (necessariamente corrompida com alguma quantidade de erro, incluindo ruído aleatório) ser observado, estas estimativas são atualizadas usando-se uma média ponderada, com mais peso sendo dado às estimativas com maior certeza. O algoritmo é recursivo e pode ser executado em tempo real, usando-se apenas as medições de entrada presentes e o estado anteriormente calculado e sua matriz de incerteza; não são necessárias informações adicionais passadas.
[00517] O filtro Kalman 133020 usa um modelo dinâmico do sistema ultrassônico eletromecânico, entradas de controle conhecidas para aquele sistema, e múltiplas medições sequenciais (observações) da frequência natural e ângulo de fase dos sinais aplicados (por exemplo, magnitude e fase da impedância elétrica do transdutor ultrassônico) ao transdutor ultrassônico para formar uma estimativa das quantidades variáveis do sistema ultrassônico eletromecânico (seu estado) para prever a temperatura da porção da lâmina ultrassônica do sistema ultrassônico eletromecânico que é melhor do que uma estimativa obtida com o uso de apenas uma única medição apenas. Como tal, o filtro de Kalman 133020 é um algoritmo que inclui sensor e fusão de dados para fornecer a estimativa de máxima probabilidade da temperatura da lâmina ultrassônica.
[00518] O filtro Kalman 133020 estima com eficácia a incerteza devido às medições de ruído dos sinais aplicados ao transdutor ultrassônico para medir os dados de frequência natural e deslocamento de fase e também estima com eficácia a incerteza devido a fatores aleatórios externos. O filtro Kalman 133020 produz uma estimativa do estado do sistema ultrassônico eletromecânico como uma média ponderada do estado previsto do sistema e da nova medição. Os valores ponderados fornecem melhor (isto é, menor) incerteza estimada e são mais "confiáveis" do que os valores não ponderados. Os pesos podem ser calculados a partir da covariância, uma medida da incerteza estimada da predição do estado do sistema. O resultado da média ponderada é uma nova estimativa do estado que se situa entre o estado previsto e medido, e tem uma melhor incerteza estimada do que um ou outro sozinho. Esse processo é repetido em cada etapa de tempo, com a nova estimativa e sua covariância gerando a predição usada na próxima iteração. Esta natureza recursiva do filtro Kalman 133020 exige apenas do último "melhor palpite", ao invés de toda a história, do estado do sistema ultrassônico eletromecânico para calcular um novo estado.
[00519] A certeza relativa das medições e da estimativa do estado atual é uma consideração importante, e é comum discutir a resposta do filtro em termos de o ganho K do filtro de Kalman 133020. O ganho de Kalman K é o peso relativo atribuído às medições e à estimativa do estado atual, e pode ser "ajustado" para obter um desempenho específico. Com um alto ganho K, o filtro de Kalman 133020 coloca mais peso sobre as medições mais recentes, e dessa forma os segue de maneira mais responsiva. Com um baixo ganho K, o filtro de Kalman 133020 segue mais de perto as previsões do modelo. De ambos os extremos, um alto ganho próximo de um resultará em uma trajetória estimada mais irregular, enquanto um baixo ganho próximo a zero irá nivelar o ruído mas diminuir a capacidade de resposta.
[00520] Quando se realiza os cálculos reais para o filtro de Kalman 133020 (conforme discutido abaixo), a estimativa e covariâncias do estado são codificadas em matrizes covariâncias para lidar com as múltiplas dimensões envolvidas em um único conjunto de cálculos. Isso permite uma representação das relações lineares entre variáveis de diferentes estados (como a posição, velocidade, e a aceleração) em qualquer dos modelos ou covariâncias de transição. O uso de um filtro Kalman 133020 não assume que os erros são gaussianos. Entretanto, o filtro Kalman 133020 produz a estimativa de probabilidade condicional exata no caso especial de que todos os erros são distribuídos gaussianos. Etapa 3
[00521] A terceira etapa usa um estimador 133026 no estado de realimentação 133032 do filtro de Kalman 133020 para o controle da potência aplicada ao transdutor ultrassônico, e consequentemente da lâmina ultrassônica, para regular a temperatura da lâmina ultrassônica.
[00522] A Figura 56 é uma representação gráfica 133040 de três distribuições de probabilidade empregadas por um estimador de estado 133026 do filtro de Kalman 133020 mostrado na Figura 55 para maximizar as estimativas, de acordo com ao menos um aspecto da presente descrição. As distribuições de probabilidade incluem a distribuição de probabilidade anterior 133042, a distribuição de probabilidade (estado) de predição 133044 e a distribuição de probabilidade de observação 133046. As três distribuições de probabilidade 133042, 133044, 1330467 são usadas em um controle de retroinformação de energia aplicada a um transdutor ultrassônico para regular a temperatura com base na impedância do transdutor ultrassônico medida em uma variedade de frequências, de acordo com ao menos um aspecto da presente descrição. O estimador usado no controle de retroinformação da potência aplicada a um transdutor ultrassônico para regular a temperatura com base na impedância é definido pela expressão: que é a impedância do transdutor ultrassônico medida em uma variedade de frequências, de acordo com ao menos um aspecto da presente descrição.
[00523] A distribuição de probabilidade anterior 133042 inclui uma variação de estado definida pela expressão:
[00524] A variância de estado é usada para predizer o próximo estado do sistema, que é representado como a distribuição de probabilidade de previsão (estado) 133044. A distribuição de probabilidade de observação 133046 é a distribuição de probabilidade da observação real do estado do sistema onde a variância de observação é usada para definir o ganho, que é definido pela seguinte expressão: Circuito de controle de retroinformação
[00525] A entrada de energia é diminuída para assegurar que a temperatura (como estimado pelo estimador de estado e do filtro de Kalman) é controlada.
[00526] Em um aspecto, a primeira prova de conceito assumiu uma relação linear estática entre a frequência natural do sistema ultrassônico eletromecânico e a temperatura da lâmina ultrassônica. Reduzindo-se a potência como uma função da frequência natural do sistema ultrassônico eletromecânico (isto é, regulação de temperatura com controle de retroinformação), a temperatura da ponta da lâmina ultrassônica pode ser controlada diretamente. Neste exemplo, a temperatura da ponta distal da lâmina ultrassônica pode ser controlada para não excederá o ponto de fusão do bloco de Teflon.
[00527] A Figura 57A é uma representação gráfica 133050 da temperatura em função do tempo de um dispositivo ultrassônico sem controle de retroinformação de temperatura. A temperatura (°C) da lâmina ultrassônica é mostrada ao longo do eixo vertical e o tempo (seg) é mostrado ao longo do eixo horizontal. O teste foi conduzido com uma camurça localizada nas garras do dispositivo ultrassônico. Uma garra é a lâmina ultrassônica e a outra garra é o braço de aperto com um bloco de Teflon. A lâmina ultrassônica foi excitada na frequência de ressonância enquanto em engate por atrito com a camurça presa entre a lâmina ultrassônica e o braço de aperto. Ao longo do tempo, a temperatura (°C) da lâmina ultrassônica aumenta devido ao engate por atrito com a camurça. Ao longo do tempo, o perfil de temperatura 133052 da lâmina ultrassônica aumenta até a amostra de camurça ser cortada após cerca de 19,5 segundos a uma temperatura de 220°C como indicado no ponto 133054. Sem controle de retroinformação de temperatura, após o corte da amostra de camurça, a temperatura da lâmina ultrassônica aumenta para uma temperatura bem acima do ponto de fusão do Teflon ~380°C até ~490°C. No ponto 133056, a temperatura da lâmina ultrassônica atinge uma temperatura máxima de 490°C até o bloco de Teflon ser completamente fundido. A temperatura da lâmina ultrassônica cai ligeiramente a partir do pico de temperatura no ponto 133056 após o bloco desaparecer completamente.
[00528] A Figura 57B é um gráfico da temperatura em função do tempo de um dispositivo ultrassônico com controle de retroinformação de temperatura, de acordo com ao menos um aspecto da presente descrição. A temperatura (°C) da lâmina ultrassônica é mostrada ao longo do eixo vertical e o tempo (seg) é mostrado ao longo do eixo horizontal. O teste foi conduzido com uma amostra de camurça localizada nas garras do dispositivo ultrassônico. Uma garra é a lâmina ultrassônica e a outra garra é o braço de aperto com um bloco de Teflon. A lâmina ultrassônica foi excitada na frequência de ressonância enquanto em engate por atrito com a camurça presa entre a lâmina ultrassônica e o bloco do braço de aperto. Ao longo do tempo, o perfil de temperatura 133062 da lâmina ultrassônica aumenta até a amostra de camurça ser cortada após cerca de 23 segundos a uma temperatura de 220°C como indicado no ponto 133064. Com controle de retroinformação de temperatura, a temperatura da lâmina ultrassônica aumenta até uma temperatura máxima de cerca de 380°C, logo abaixo do ponto de fusão de TEFLON, conforme indicado no ponto 133066 e então é abaixada para uma média de cerca de 330°C conforme indicado genericamente na região 133068, impedindo assim a fusão do bloco de TEFLON. Aplicação de tecnologia de lâmina ultrassônica inteligente
[00529] Quando uma lâmina ultrassônica é imersa em um campo cirúrgico preenchido com fluido, a lâmina ultrassônica resfria durante a ativação se tornando menos eficaz para vedação e corte do tecido em contato com a mesma. O resfriamento da lâmina ultrassônica pode levar a tempos de ativação mais longos e/ou problemas de hemostasia porque calor adequado não é aplicado ao tecido. Para superar o resfriamento da lâmina ultrassônica, mais aplicação de energia pode ser necessária para encurtar os tempos de transecção e alcançar a hemostasia adequada sob essas condições de imersão de fluido. Com o uso de um sistema de controle de retroinformação de frequência- temperatura, se a temperatura da lâmina ultrassônica for detectada para começar abaixo, ou permanecer abaixo de uma certa temperatura durante um certo período de tempo, a potência de saída do gerador pode ser aumentada para compensar o resfriamento devido ao sangue/solução salina/outro fluido presente no campo cirúrgico.
[00530] Consequentemente, o sistema de controle de retroinformação de temperatura-frequência aqui descrito pode otimizar o desempenho de um dispositivo ultrassônico especialmente quando a lâmina ultrassônica está situada ou imersa, parcial ou totalmente, em um campo cirúrgico preenchido com fluido. O sistema de controle de retroinformação de frequência-temperatura aqui descrito minimiza longos tempos de ativação e/ou problemas potenciais com o desempenho do dispositivo ultrassônico no campo cirúrgico preenchido com fluido.
[00531] Conforme anteriormente descrito, a temperatura da lâmina ultrassônica pode ser inferida mediante a detecção da impedância do transdutor ultrassônico dada pela seguinte expressão: ou equivalentemente, a detecção do ângulo de fase φ entre os sinais de tensão Vg(t) e corrente Ig(t) aplicados ao transdutor ultrassônico. As informações do ângulo de fase φ também podem ser usadas para inferir as condições da lâmina ultrassônica. Conforme discutido com particularidade aqui, o ângulo de fase φ se altera como uma função da temperatura da lâmina ultrassônica. Portanto, as informações do ângulo de fase φ podem ser usadas para controlar a temperatura da lâmina ultrassônica. Isso pode ser feito, por exemplo, mediante a redução da potência fornecida à lâmina ultrassônica quando a lâmina ultrassônica está muito quente e mediante aumento da potência aplicada à lâmina ultrassônica quando a lâmina ultrassônica está muito fria. As Figuras 58A a 58B são representações gráficas do controle de retroinformação de temperatura para ajustar a energia ultrassônica aplicada a um transdutor ultrassônico quando uma queda repentina na temperatura de uma lâmina ultrassônica é detectada.
[00532] A Figura 58A é uma representação gráfica da saída de energia ultrassônica 133070 como uma função de temo, de acordo com ao menos um aspecto da presente descrição. A saída de energia do gerador ultrassônico é mostrada ao longo do eixo vertical e o tempo (s) é mostrado ao longo do eixo horizontal. A Figura 58B é uma representação gráfica de temperatura da lâmina ultrassônica 133080 como uma função do tempo, de acordo com ao menos um aspecto da presente descrição. A temperatura da lâmina ultrassônica é mostrada ao longo do eixo vertical e o tempo (seg) é mostrado ao longo do eixo geométrico horizontal. A temperatura da lâmina ultrassônica aumenta com a aplicação de potência constante 133072 conforme mostrado na Figura 58A. Durante o uso, a temperatura da lâmina ultrassônica cai repentinamente. Isso pode resultar de uma variedade de condições, entretanto, durante o uso, pode ser inferido que a temperatura da lâmina ultrassônica cai quando é imersa em um campo cirúrgico preenchido com fluido (por exemplo, sangue, solução salina, água, etc.). No tempo t0, a temperatura da lâmina ultrassônica cai abaixo da temperatura mínima desejada 133082 e o algoritmo de controle de retroinformação da frequência-temperatura de retroinformação de temperatura algoritmo de controle detecta a queda na temperatura e começa a aumentar ou "eleva" a potência conforme mostrado pelo aumento de energia 133074 fornecido para a lâmina ultrassônica para iniciar a elevação da temperatura da lâmina ultrassônica acima da temperatura mínima desejada 133082.
[00533] Com referência às Figuras 58A e 58B, o gerador ultrassônico fornece saídas de potência substancialmente constantes 133072 enquanto a temperatura da lâmina ultrassônica permanece acima da temperatura mínima desejada 133082. Em t0, o processador ou o circuito de controle no gerador ou no instrumento, ou ambos, detecta a queda na temperatura da lâmina ultrassônica baixo da temperatura mínima desejada 133072 e inicia um algoritmo de controle de retroinformação de frequência-temperatura para elevar a temperatura da lâmina ultrassônica acima da temperatura mínima desejada 133082. Consequentemente, a energia do gerador começa a subir 133074 em t1 correspondente à detecção de uma queda repentina na temperatura da lâmina ultrassônica em t0. Sob o algoritmo de controle de retroinformação de frequência-temperatura, a energia continua a subir 133074 até a temperatura da lâmina ultrassônica estar acima da temperatura mínima desejada 133082.
[00534] A Figura 59 é um diagrama de fluxo lógico 133090 de um processo que representa um programa de controle ou uma configuração lógica para controlar a temperatura de uma lâmina ultrassônica, de acordo com ao menos um aspecto da presente descrição. De acordo com o processo, o processador ou circuito de controle do gerador ou instrumento, ou ambos, executa um aspecto de um algoritmo de controle de retroinformação de frequência-temperatura discutido em conexão com as Figuras 58A e 58B para aplicar 133092 um nível de potência ao transdutor ultrassônico para alcançar uma temperatura desejada na lâmina ultrassônica. O gerador 133094 monitora o ângulo de fase φ entre os sinais de tensão Vg(t) e corrente Ig(t) aplicados para acionar o transdutor ultrassônico. Com base no ângulo de fase φ, o gerador infere 133096 infere a temperatura da lâmina ultrassônica com o uso das técnicas aqui descrito em conexão com Figuras 54A a 56. O gerador determina 133098 se a temperatura da lâmina ultrassônica está abaixo de uma temperatura mínima desejada mediante comparação da temperatura inferida da lâmina ultrassônica com uma temperatura desejada predeterminada. O gerador então ajusta o nível de potência aplicada ao transdutor ultrassônico com base na comparação. Por exemplo, o processo continua ao longo da ramificação "NÃO" quando a temperatura da lâmina ultrassônica está na ou acima da temperatura mínima desejada e continua ao longo da ramificação "SIM" quando a temperatura da lâmina ultrassônica está abaixo da temperatura mínima desejada. Quando a temperatura da lâmina ultrassônica está abaixo da temperatura mínima desejada, o gerador aumenta 133100 o nível de potência para o transdutor ultrassônico, por exemplo, mediante o aumento dos sinais de tensão Vg(t) e/ou de corrente Ig(t), para elevar a temperatura da lâmina ultrassônica e continua a aumentar o nível de potência aplicada ao transdutor ultrassônico até que a temperatura da lâmina ultrassônica aumente acima da temperatura mínima desejada. Modo economizador de bloco de tratamento de tecido avançado adaptável
[00535] A Figura 60 é uma representação gráfica 133110 da temperatura da lâmina ultrassônica como uma função do tempo durante o disparo de um vaso, de acordo com ao menos um aspecto da presente descrição. Um gráfico 133112 da lâmina ultrassônica temperatura é representado graficamente ao longo do eixo vertical como uma função de tempo ao longo do eixo horizontal. O algoritmo de controle de retroinformação de frequência-temperatura combina a temperatura de controle da lâmina ultrassônica com a capacidade de detecção de garra. O algoritmo de controle de retroinformação de frequência-temperatura fornece hemostasia ótima equilibrada com durabilidade do dispositivo e pode distribuir energia de maneira inteligente para melhor vedação enquanto protege o bloco do braço de aperto.
[00536] Conforme mostrado na Figura 60, a temperatura ótima 133114 para vedação do vaso é marcada como uma primeira temperatura alvo T1 e a temperatura ótima 133116 para a vida "infinita" do bloco de braço de aperto é marcada como uma segunda vida temperatura alvo T2. O algoritmo de controle de retroinformação de frequência-temperatura infere a temperatura da lâmina ultrassônica e mantém a temperatura da lâmina ultrassônica entre o primeiro e o segundo limiares de temperatura alvo T1 e T2. A saída de energia do gerador é dessa forma acionada para obter ótimas temperaturas da lâmina ultrassônica para vedar os vasos e prolongar a vida útil do bloco de braço de aperto.
[00537] Inicialmente, a temperatura da lâmina ultrassônica aumenta à medida que a lâmina aquece e eventualmente excede o primeiro limiar de temperatura alvo T1. O algoritmo de controle de retroinformação de frequência-temperatura assume o controle da temperatura da lâmina para T1 até a transecção do vaso ser completada 133118 em t0 e a temperatura da lâmina ultrassônica cai abaixo da segunda temperatura alvo limiar T2. Um processador ou circuito de controle do gerador ou instrumento, ou ambos, detecta quando a lâmina ultrassônica entra em contato com o bloco de braço de aperto. Quando a transfecção do vaso é concluída em t0 e detectada, o algoritmo de controle de retroinformação de frequência-temperatura muda para controlar a temperatura da lâmina ultrassônica ao segundo limiar alvo T2 para prolongar a vida útil do bloco de braço de aperto. A temperatura ótima do bloco de braço de aperto para um bloco de braço de aperto de TEFLON é aproximadamente 325°C. Em um aspecto, o tratamento de tecido avançado pode ser anunciado ao usuário em um segundo tom de ativação.
[00538] A Figura 61 é um diagrama de fluxo lógico 133120 de um processo que representa um programa de controle ou uma configuração lógica para controlar a temperatura de uma lâmina ultrassônica entre dois pontos de ajuste de temperatura, conforme representado na Figura 60, de acordo com ao menos um aspecto da presente descrição. De Acordo com o processo, o gerador executa um aspecto do algoritmo de controle de retroinformação de frequência-temperatura algoritmo para aplicar 133122 um primeiro nível de potência ao transdutor ultrassônico, por exemplo, por ajuste dos sinais da tensão Vg(t) e/ou da corrente Ig(t) aplicados ao transdutor ultrassônico, para ajustar a lâmina ultrassônica a uma primeira temperatura alvo T1 otimizada para vedação de vaso. Conforme anteriormente descrito, o gerador monitora 133124 o ângulo de fase φ entre os sinais de tensão Vg(t) e corrente Ig(t) aplicados ao transdutor ultrassônico e com base no ângulo de fase φ, o gerador 133126 infere a temperatura da lâmina ultrassônica com o uso das técnicas aqui descritas em conexão com Figuras 54A a 56. De acordo com o algoritmo de controle de retroinformação de frequência- temperatura, um processador ou circuito de controle do gerador ou instrumento, ou ambos, mantém a lâmina ultrassônica temperatura na primeira temperatura alvo T1 até a transecção ser concluída. O algoritmo de controle de retroinformação de frequência-temperatura pode ser usado para detectar a conclusão do processo de transecção do vaso. O processador ou circuito de controle do gerador ou instrumento, ou ambos, determina 133128 quando a transecção do vaso está completa. O processo continua ao longo da ramificação NÃO quando a transecção do vaso não está completa e continua ao longo da ramificação SIM quando a transecção do vaso está completa.
[00539] Quando a transecção do vaso não está completa, o processador ou circuito de controle do gerador ou instrumento, ou ambos, determina 133130 se a temperatura da lâmina ultrassônica é ajustada na temperatura T1 otimizada para vedação e transecção do vaso. Se a temperatura da lâmina ultrassônica é ajustada em T1, o processo continua ao longo da ramificação SIM e o processador ou circuito de controle do gerador ou instrumento, ou ambos, continua a monitorar 133124 o ângulo de fase φ entre os sinais de tensão Vg(t) e corrente Ig(t) aplicados ao transdutor ultrassônico e com base no ângulo de fase φ. Se a temperatura da lâmina ultrassônica a temperatura não for ajustada em T1, o processo continua ao longo da ramificação NÃO e o processador ou circuito de controle do gerador ou instrumento, ou ambos, continua a aplicar 133122 um primeiro nível de potência ao transdutor ultrassônico.
[00540] Quando a transecção do vaso está completa, o processador ou circuito de controle do gerador ou instrumento, ou ambos, 133132 aplica um segundo nível de potência ao transdutor ultrassônico para ajustar a lâmina ultrassônica a uma segunda temperatura alvo T2 otimizada para preservar ou estender a vida útil do bloco de braço de aperto. O processador ou circuito de controle do gerador ou instrumento, ou ambos, determina 133134 se a temperatura da lâmina ultrassônica está na temperatura ajustada T2. Se a temperatura da lâmina ultrassônica é ajustada para T2, o processo completa 133136 o procedimento de transecção do vaso. Temperatura de Início da lâmina
[00541] Conhecer a temperatura da lâmina ultrassônica no início de uma transecção pode permitir que o gerador forneça a quantidade adequada de energia para aquecer a lâmina para um corte rápido ou se a lâmina já está quente adicionar energia apenas na quantidade que seria necessária. Essa técnica pode alcançar tempos mais consistentes de transecção e prolonga a vida útil do bloco de braço de garra (por exemplo, um bloco de braço de aperto de TEFLON). Conhecer a temperatura da lâmina ultrassônica no início da transecção pode permitir que o gerador forneça a quantidade certa de energia para o transdutor ultrassônico para gerar uma quantidade desejada de deslocamento da lâmina ultrassônica.
[00542] A Figura 62 é um diagrama de fluxo lógico 133140 de um processo que representa um programa de controle ou uma configuração lógica para determinar a temperatura inicial de uma lâmina ultrassônica, de acordo com ao menos um aspecto da presente descrição. Para determinar a temperatura inicial de uma lâmina ultrassônica, nas instalações de fabricação, as frequências de ressonância de lâminas ultrassônicas são medidas à temperatura ambiente ou a uma temperatura ambiente predeterminada. Os valores de frequência da linha de base são registrados e armazenados em uma tabela de consulta do gerador ou instrumento ou ambos. Os valores da linha de base são usados para gerar uma função de transferência. No início de um ciclo de ativação de transdutor ultrassônico, o gerador mede 133142 a frequência de ressonância da lâmina ultrassônica 133144 e compara a frequência da ressonância medida ao valor de frequência de ressonância na linha de base e determina a diferença de frequência (Δf). A Δf é comparada a uma tabela de consulta ou função de transferência para obter a temperatura corrigida da lâmina ultrassônica. A frequência de ressonância da lâmina ultrassônica pode ser determinada mediante varredura da frequência dos sinais de tensão Vg(t) e corrente Ig(t) aplicados ao transdutor ultrassônico. A frequência de ressonância é a frequência na qual o ângulo de fase φ entre os sinais de tensão Vg(t) e corrente Ig(t) é zero conforme descrito na presente invenção.
[00543] Após a frequência de ressonância da lâmina ultrassônica ser determinada, o processador ou circuito de controle do gerador ou instrumento, ou ambos, determina 133146 a temperatura inicial da lâmina ultrassônica com base na diferença entre a frequência de ressonância medida e a frequência de ressonância da linha de base. O gerador define o nível de potência fornecido ao transdutor ultrassônico, por exemplo, pelo ajuste dos sinais de acionamento de tensão Vg(t) ou corrente Ig(t) ou ambas, a um dos valores seguintes antes de ativar o transdutor ultrassônico.
[00544] O processador ou circuito de controle do gerador ou instrumento, ou ambos, determina 133148 se a temperatura inicial da lâmina ultrassônica está baixa. Se a temperatura inicial da lâmina ultrassônica for baixa, o processo continua ao longo da ramificação SIM e o processador ou circuito de controle do gerador ou instrumento, ou ambos, 133152 aplica um nível alto de potência ao transdutor ultrassônico para aumentar a temperatura da lâmina ultrassônica e completa 133156 o procedimento de transecção do vaso.
[00545] Se a temperatura inicial da lâmina ultrassônica não for baixa, o processo continua ao longo da ramificação NÃO e o processador ou circuito de controle do gerador ou instrumento, ou ambos, determina 133150 se a temperatura inicial da lâmina ultrassônica é alta. Se a temperatura inicial da lâmina ultrassônica for baixa, o processo continua ao longo da ramificação SIM e o processador ou circuito de controle do gerador ou instrumento, ou ambos, 133154 aplica um nível baixo de potência ao transdutor ultrassônico para diminuir a temperatura da lâmina ultrassônica e completa 133156 o procedimento de transecção do vaso. Se a temperatura inicial da lâmina ultrassônica não for alta, o processo continua ao longo da ramificação NÃO e o processador ou circuito de controle do gerador ou instrumento, ou ambos, completa 133156 a transecção do vaso. Tecnologia de lâmina inteligente para controlar a instabilidade da lâmina
[00546] A temperatura de uma lâmina ultrassônica e os conteúdos dentro das garras de um atuador de extremidade ultrassônico podem ser determinados com o uso dos algoritmos de controle de retroinformação de frequência-temperatura descritos na presente invenção. A relação frequência/temperatura da lâmina ultrassônica é usada para controlar a instabilidade da lâmina ultrassônica instabilidade com a temperatura.
[00547] Conforme descrito aqui, existe uma relação bem conhecida entre a frequência e temperatura em lâminas ultrassônicas. Algumas lâminas ultrassônicas apresentam instabilidade ou deslocamento modal instabilidade na presença de aumento da temperatura. Essa relação conhecida pode ser usada para interpretar quando uma lâmina ultrassônica está se aproximando da instabilidade e então ajustar o nível de potência mediante o acionamento do transdutor ultrassônico (por exemplo, pelo ajuste dos sinais de acionamento da tensão Vg(t) ou da corrente Ig(t), ou ambos, aplicados ao transdutor ultrassônico) para modular a temperatura da lâmina ultrassônica para evitar a instabilidade da lâmina ultrassônica.
[00548] A Figura 63 é um diagrama de fluxo lógico 133160 de um processo que representa um programa de controle ou uma configuração lógica para determinar quando uma lâmina ultrassônica está se aproximando da instabilidade e então ajustar a potência aplicada ao transdutor ultrassônico para impedir a instabilidade do transdutor ultrassônico, de acordo com ao menos um aspecto da presente descrição. A relação frequência/temperatura de uma lâmina ultrassônica que apresenta um deslocamento ou instabilidade modal é mapeada mediante varredura da frequência dos sinais de acionamento da tensão Vg(t) ou da corrente Ig(t), ou ambos, na temperatura da lâmina ultrassônica e registrar os resultados. Uma função ou relação é desenvolvida que pode ser usada/interpretada por um algoritmo de controle executado pelo gerador. Pontos acionadores podem ser estabelecidos com o uso da relação para notificar o gerador que uma lâmina ultrassônica está se aproximando da instabilidade conhecida da lâmina. O gerador executa uma função de processamento do algoritmo de controle de retroinformação de frequência-temperatura e a resposta de circuito fechado de modo que o nível da potência de acionamento é reduzido (por exemplo, mediante abaixamento da tensão Vg(t) ou corrente Ig(t) de acionamento, ou ambas, aplicada ao transdutor ultrassônico) para modular a temperatura da lâmina ultrassônica no ou abaixo do ponto de acionamento para evitar que uma dada lâmina atinja instabilidade.
[00549] As vantagens incluem simplificação das configurações da lâmina ultrassônica de modo que as características de instabilidade da lâmina ultrassônica não precisam ser projetadas e podem ser compensadas com o uso da presente técnica de controle de instabilidade. A presente técnica de controle de instabilidade também permite novas geometrias de lâmina ultrassônica e pode melhorar o perfil de estresse em lâminas ultrassônicas aquecidas. Além disso, as lâminas ultrassônicas podem ser configuradas para diminuir o desempenho da lâmina ultrassônica se usadas com geradores que não utilizam essa técnica.
[00550] De acordo com o processo mostrado pelo diagrama de fluxo lógico 133160, o processador ou circuito de controle do gerador ou instrumento, ou ambos, monitora 133162 o ângulo de fase φ entre os sinais de tensão Vg(t) e corrente Ig(t) aplicados ao transdutor ultrassônico. O processador ou circuito de controle do gerador ou instrumento, ou ambos, infere 133164 a temperatura da lâmina ultrassônica com base no ângulo de fase φ entre os sinais de tensão Vg(t) e corrente Ig(t) aplicados ao transdutor ultrassônico. O processador ou circuito de controle do gerador ou instrumento, ou ambos, compara 133166 a temperatura inferida da lâmina ultrassônica a um limiar de ponto de acionamento de instabilidade da lâmina ultrassônica. O processador ou circuito de controle do gerador ou instrumento, ou ambos, determina 133168 se a lâmina ultrassônica está se aproximando da instabilidade. Se não, o processo prossegue ao longo da ramificação NÃO e monitora 133162 o ângulo de fase φ, infere 133164 a temperatura da lâmina ultrassônica, e compara 133166 a temperatura inferida da lâmina ultrassônica a um limiar de ponto de acionamento de instabilidade da lâmina ultrassônica até a lâmina ultrassônica se aproximar da instabilidade. O processo então prossegue ao longo da ramificação SIM e o processador ou circuito de controle do gerador ou instrumento, ou ambos, ajusta 133170 o nível de potência aplicado ao transdutor ultrassônico para modular a temperatura da lâmina ultrassônica. Algoritmo de vedação ultrassônica com controle de temperatura
[00551] Algoritmos de vedação ultrassônica para controle de temperatura da lâmina ultrassônica podem ser usados para otimizar a hemóstase mediante o uso de um algoritmo de controle de retroinformação de frequência-temperatura aqui descrito para explorar a relação frequência/temperatura das lâminas ultrassônicas.
[00552] Em um aspecto, um algoritmo de controle de retroinformação de frequência-temperatura pode ser usado para alterar o nível de potência aplicado do transdutor ultrassônico com base na frequência de ressonância medida (usando espectroscopia) que se refere à temperatura, conforme descrito em vários aspectos da presente descrição. Em um aspecto, o algoritmo de controle de retroinformação de frequência-temperatura pode ser ativado por um botão de energia no instrumento ultrassônico.
[00553] É conhecido que ótimos efeitos de tecido podem ser obtidos mediante o aumento do nível de potência que aciona o transdutor ultrassônico (por exemplo, por aumento da tensão Vg(t) ou corrente Ig(t) de acionamento, ou ambos, aplicada ao transdutor ultrassônico) no início do ciclo de vedação para rapidamente aquecer e dessecar o tecido, então abaixamento do nível de potência que aciona o transdutor ultrassônico (por exemplo, por abaixamento da tensão Vg(t) ou corrente Ig(t) de acionamento, ou ambos, aplicada ao transdutor ultrassônico) para lentamente permitir a formação da vedação final. Em um aspecto, um algoritmo de controle de retroinformação de frequência-temperatura de acordo com a presente descrição define um limite no limiar da temperatura que o tecido pode atingir conforme o tecido se aquece durante o estágio de nível mais alto de potência e então reduz o nível de potência para controlar a temperatura da lâmina ultrassônica com base no ponto de fusão do bloco de garra de aperto (por exemplo, Teflon) para completar a vedação. O algoritmo de controle pode ser implementado mediante a ativação de um botão de energia no instrumento para uma vedação mais responsiva/adaptativa para reduzir mais a complexidade do algoritmo de hemostasia.
[00554] A Figura 64 é um diagrama de fluxo lógico 133180 de um processo que representa um programa de controle ou uma configuração lógica para fornecer vedação ultrassônica com controle de temperatura, de acordo com ao menos um aspecto da presente descrição. De acordo com o algoritmo de controle, o processador ou circuito de controle do gerador ou instrumento, ou ambos, ativa 133182 a detecção de lâmina ultrassônica com o uso de espectroscopia (por exemplo, lâmina inteligente) e mede 133184 a frequência de ressonância da lâmina ultrassônica (por exemplo, a frequência de ressonância do sistema eletromecânico ultrassônico) para determinar a temperatura da lâmina ultrassônica com o uso de um algoritmo de controle de retroinformação de frequência-temperatura (espectroscopia) conforme descrito na presente invenção. Conforme anteriormente descrito, a frequência de ressonância do sistema eletromecânico ultrassônico é mapeada para se obter a temperatura da lâmina ultrassônica como uma função da frequência de ressonância do sistema ultrassônico eletromecânico.
[00555] Uma primeira frequência de ressonância desejada fx do sistema eletromecânico ultrassônico corresponde a uma primeira temperatura desejada Z° da lâmina ultrassônica. Em um aspecto, a primeira temperatura da lâmina ultrassônica desejada Z° é a temperatura ótima (por exemplo, 450°C) para a coagulação de tecido. Uma segunda frequência desejada fY do sistema eletromecânico ultrassônico corresponde a uma segunda temperatura desejada ZZ° da lâmina ultrassônica. Em um aspecto, a segunda temperatura da lâmina ultrassônica desejada ZZ° é uma temperatura de 330°C, que está abaixo do ponto de fusão do bloco de braço de aperto, aproximadamente 380°C que é para o TEFLON.
[00556] O processador ou circuito de controle do gerador ou instrumento, ou ambos, compara 133186 a frequência de ressonância medida do sistema eletromecânico ultrassônica à primeira frequência desejada fx. Em outras palavras, o processo determina se a temperatura da lâmina ultrassônica é menor que a temperatura para a coagulação ótima de tecido. Se a medida da frequência de ressonância do sistema eletromecânico ultrassônica for menor que a primeira frequência desejada fx, o processo continua ao longo da ramificação NÃO e o processador ou circuito de controle do gerador ou instrumento, ou ambos, 133188 aumenta o nível de potência aplicado ao transdutor ultrassônico para aumentar a temperatura da lâmina ultrassônica até que a frequência de ressonância medida do sistema eletromecânico ultrassônica exceda a primeira frequência desejada fx. Neste caso, o processo de coagulação do tecido é concluído e o processo controla a temperatura da lâmina ultrassônica para a segunda temperatura desejada correspondente à segunda frequência desejada fy.
[00557] O processo continua ao longo da ramificação SIM e o processador ou circuito de controle do gerador ou instrumento, ou ambos, diminui 133190 o nível de potência aplicado ao transdutor ultrassônico para diminui a temperatura da lâmina ultrassônica. O processador ou circuito de controle do gerador ou instrumento, ou ambos, mede 133192 a frequência de ressonância do sistema eletromecânico ultrassônica e compara a frequência de ressonância medida à segunda frequência desejada fY. Se a frequência de ressonância medida não for menor que a segunda frequência desejada fY, o processador ou circuito de controle do gerador ou instrumento, ou ambos, diminui 133190 o nível de potência ultrassônica até que a frequência de ressonância medida seja menor que a segunda frequência desejada fY. O algoritmo de controle de retroinformação de frequência-temperatura mantém a frequência de ressonância medida do sistema eletromecânico ultrassônica abaixo da segunda frequência desejada fY, por exemplo, a temperatura da lâmina ultrassônica é menor que a temperatura do ponto de fusão do bloco de braço de aperto então, o gerador executa os aumentos do nível de potência aplicado ao transdutor ultrassônico para aumentar a temperatura da lâmina ultrassônica até que a conclusão do processo de transecção de tecido
133196.
[00558] A Figura 65 é uma representação gráfica 133200 da corrente do transdutor ultrassônico e da temperatura da lâmina ultrassônica como uma função do tempo, de acordo com ao menos um aspecto da presente descrição. A Figura 65 ilustra os resultados da aplicação do algoritmo de controle de retroinformação de frequência-temperatura descrito na Figura 64. A representação gráfica 133200 representa uma primeira plotagem 133202 da temperatura da lâmina ultrassônica como uma função do tempo em relação a uma segunda plotagem 133204 da corrente do transdutor ultrassônico Ig(t) como uma função do tempo. Conforme mostrado, o transdutor Ig(t) é mantido constante até a temperatura da lâmina ultrassônica atingir 450°, que é uma temperatura ótima de coagulação. Quando a temperatura da lâmina ultrassônica atinge 450°, o algoritmo de controle de retroinformação da frequência- temperatura diminui a corrente do transdutor Ig(t) até a temperatura da lâmina ultrassônica cair abaixo de 330°, que está abaixo do ponto de fusão de um bloco de Teflon, por exemplo. Gerenciamento térmico controlado (CTM) para proteção do bloco
[00559] Em um aspecto, a presente descrição fornece um algoritmo de gerenciamento térmico controlado (CTM) para regular a temperatura com controle de retroinformação. A saída do circuito de controle de retroinformação pode ser usada para impedir que o bloco de braço de aperto do atuador de extremidade ultrassônico se queime, o que, para instrumentos cirúrgicos ultrassônicos, não é um efeito desejável. Conforme anteriormente discutido, em geral, o consumo do bloco é causado pela aplicação contínua de energia ultrassônica a uma lâmina ultrassônica em contato com o bloco após o tecido apertado no atuador de extremidade ter sido transeccionado.
[00560] O algoritmo de CTM acentua o fato de que a frequência de ressonância de uma lâmina ultrassônica, em geral, feita de titânio, varia em proporção à temperatura. À medida que a temperatura aumenta, o módulo de elasticidade da lâmina ultrassônica diminui, e também a frequência natural da lâmina ultrassônica. Um fator a ser considerado é que quando a extremidade distal da lâmina ultrassônica está quente, mas o guia de ondas está frio, existe uma diferença de frequência (delta) para atingir uma temperatura predeterminada que é diferente da diferença de frequência quando a extremidade distal da lâmina ultrassônica e o guia de ondas estão ambos quentes.
[00561] Em um aspecto, o algoritmo de CTM calcula uma alteração na frequência do sinal de acionamento do transdutor ultrassônico que é necessária para atingir uma certa temperatura predeterminada como uma função da frequência de ressonância do sistema eletromecânico ultrassônica no início da ativação (no travamento). O sistema eletromecânico ultrassônico compreendendo um transdutor ultrassônico acoplado a uma lâmina ultrassônica por um guia de ondas ultrassônico tem uma frequência de ressonância predefinida que varia com a temperatura. A frequência de ressonância do sistema eletromecânico ultrassônica no "lock" pode ser usada para estimar a alteração da frequência de acionamento do transdutor ultrassônico que é necessária para se obter um ponto final de temperatura para considerar o estado térmico inicial da lâmina ultrassônica. A frequência de ressonância do sistema eletromecânico ultrassônico pode variar como uma função da temperatura do transdutor ultrassônico ou do guia de ondas ultrassônicas ou da lâmina ultrassônica ou uma combinação desses componentes.
[00562] A Figura 66 é uma representação gráfica 133300 da relação entre a frequência de ressonância inicial (frequência no travamento) e a alteração na frequência (frequência delta) necessária para se obter uma temperatura de aproximadamente 340°C, de acordo com ao menos um aspecto da presente descrição. A alteração na frequência necessária para atingir uma temperatura da lâmina ultrassônica de aproximadamente 340°C é mostrada ao longo do eixo vertical e a frequência de ressonância do sistema ultrassônico eletromecânico no travamento é mostrada ao longo do eixo horizontal. Com base nos pontos de dados de medição 133302 mostrados como gráfico de espalhamento existe uma relação linear 133304 entre a mudança na frequência necessária para atingir uma temperatura da lâmina ultrassônica de aproximadamente 340°C e a frequência de ressonância no travamento.
[00563] No travamento da frequência de ressonância, o algoritmo de CTM usa a relação linear 133304 entre a frequência de travamento e a frequência delta necessária para se obter uma temperatura logo abaixo do ponto de fusão de um bloco de TEFLON (aproximadamente 340°C).
Quando a frequência está dentro de uma certa distância de buffer de um limite muito baixo na frequência, conforme mostrado na Figura 67, um sistema para controle de retroinformação 133310 que compreende um gerador ultrassônico 133312 regula o ponto de ajuste da corrente elétrica (i) aplicada ao transdutor ultrassônico do sistema ultrassônico eletromecânico 133314 para evitar que a frequência (f) do transdutor ultrassônico diminua abaixo de um limiar predeterminado, de acordo com ao menos um aspecto da presente descrição. A diminuição do ponto de ajuste de corrente elétrica diminui o deslocamento da lâmina ultrassônica, que por sua vez diminui a temperatura da lâmina ultrassônica e aumenta a frequência natural da lâmina ultrassônica. Essa relação possibilita que uma alteração na corrente elétrica aplicada ao transdutor ultrassônico regule a frequência natural da lâmina ultrassônica e indiretamente controle a temperatura da lâmina ultrassônica ou do sistema eletromecânico ultrassônico 133314. Em um aspecto, o gerador 133312 pode ser implementado como o gerador ultrassônico descrito com referência às Figuras 21, 26, 27A a 27C e 28A a 28B, por exemplo. O sistema para controle de retroinformação 133310 pode ser implementado como o controlador de PID descrito com referência às Figuras 44 a 45, por exemplo.
[00564] A Figura 68 é um diagrama de fluxo 133320 de um processo ou configuração de um algoritmo de gerenciamento térmico controlado (CTM) para proteger o bloco do braço de aperto em um atuador de extremidade ultrassônico, de acordo com ao menos um aspecto da presente descrição. O processo ou lógica configuração ilustrado por meio do diagrama de fluxo 133320 pode ser executado pelo gerador ultrassônico 133312 conforme descrito na presente invenção ou por circuitos de controle localizados no instrumento ultrassônico ou uma combinação dos mesmos. Conforme anteriormente discutido, o gerador
133312 pode ser implementado como o gerador descrito com referência às Figuras 21, 26, 27A a 27C e 28A a 28B, por exemplo.
[00565] Em um aspecto, inicialmente o circuito de controle no gerador 133312 ativa o instrumento ultrassônico mediante a aplicação de uma corrente elétrica ao transdutor ultrassônico. A frequência de ressonância do sistema eletromecânico ultrassônica é inicialmente travada em condições iniciais onde a temperatura da lâmina ultrassônica está fria ou próximo da temperatura ambiente. À medida que a temperatura da lâmina ultrassônica aumenta devido ao contato de atrito com o tecido, por exemplo, o circuito de controle monitora a alteração ou delta na frequência de ressonância do sistema eletromecânico ultrassônica e determina 133324 se o limiar de frequência delta para uma temperatura predeterminado de lâmina foi atingido. Se a frequência delta está abaixo do limiar, o processo continua ao longo da ramificação NÃO e o circuito de controle continua a procurar 133325 a nova frequência de ressonância e monitorar a frequência delta. Quando a frequência delta satisfaz ou excede o limiar de frequência de delta, o processo continua ao longo da ramificação SIM e calcula 133326 uma nova frequência menor limite (limiar), que corresponde ao ponto de fusão do bloco de braço de aperto. Em um exemplo não limitador, o bloco do braço de aperto é feito de Teflon e o ponto de fusão é de aproximadamente 340°C.
[00566] Quando um novo limite mais baixo de frequência é calculado 133326, o circuito de controle determina 133328 se a frequência de ressonância está perto do limite de frequência inferior recém calculado. Por exemplo, no caso de um bloco de braço de aperto de TEFLON, o circuito de controle determina 133328 se a temperatura da lâmina ultrassônica está se aproximando de 350°C, por exemplo, com base na frequência de ressonância da corrente. Se a frequência de ressonância da corrente está acima do limite mais baixo de frequência, o processo continua ao longo da ramificação NÃO e aplica 133330 um nível normal de corrente elétrica ao transdutor ultrassônico adequado para transecção de tecido. Alternativamente, se a frequência de ressonância atual estiver no ou abaixo do limite mais baixo de frequência mais baixo, o processo continua ao longo da ramificação SIM e regula 133332 a frequência de ressonância mediante a modificação da corrente elétrica aplicada ao transdutor ultrassônico. Em um aspecto, o circuito de controle usa um controlador PID conforme descrito com referência às Figuras 44 a 45, por exemplo. O circuito de controle regula 133332 a frequência em um circuito para determinar 133328 quando a frequência está próxima do limite inferior até o procedimento cirúrgico de "vedação e corte" estar terminado e o transdutor ultrassônico ser desativado. Uma vez que o algoritmo de CTM representado pelo diagrama de fluxo lógico 133320 apenas tem um efeito no ou próximo do ponto de fusão do bloco de braço de aperto, o algoritmo de CTM é ativado após o tecido ser transeccionado.
[00567] A pressão de ruptura dos testes conduzidos com amostras indica que não há nenhum impacto sobre a pressão de ruptura da vedação quando o processo de CTM ou a configuração lógica representada pelo diagrama de fluxo lógico 133320 é usado para vedar e cortar vasos ou outro tecido. Além disso, com base em amostras de teste, os tempos de transecção foram afetados. Além disso, as medições de temperatura confirmam que a temperatura da lâmina ultrassônica é delimitada pelo algoritmo de CTM comparado aos dispositivos sem controle de algoritmo de retroalimentação de CTM e os dispositivos que passaram por 10 disparos na potência máxima durante dez segundos contra o bloco com 5 segundos de repouso entre os disparos mostraram desgaste significativamente reduzido do bloco enquanto nenhum dispositivo sem controle de feedback de algoritmo de CTM duraram mais de 2 disparos neste teste de abuso.
[00568] A Figura 69 é uma representação gráfica 133340 da temperatura em função do tempo comparando a temperatura desejada de uma lâmina ultrassônica com uma lâmina ultrassônica inteligente e uma lâmina ultrassônica convencional, de acordo com ao menos um aspecto da presente descrição. A temperatura (degraus C) é mostrada ao longo do eixo vertical e o tempo (seg) é mostrado ao longo do eixo horizontal. Na plotagem, a linha traço-ponto é um limiar de temperatura 133342 que representa a temperatura desejada da lâmina ultrassônica. A linha sólida é uma curva de temperatura em função do tempo 133344 de uma lâmina ultrassônica inteligente sob o controle do algoritmo de CTM descrito com referência às Figuras 67 e 68. A linha pontilhada é uma curva de temperatura em função do tempo 133346 de uma lâmina ultrassônica regular que não está sob o controle do algoritmo de CTM descrito com referência às Figuras 67 e 68. Conforme mostrado. Quando a temperatura da lâmina ultrassônica inteligente sob o controle do algoritmo de CTM excede o limiar de temperatura desejado (~340°C), o algoritmo de CTM assume o controle e regula a temperatura da lâmina ultrassônica inteligente para corresponder ao limiar tão estritamente quanto possível até o procedimento de transecção ser concluído e a potência para o transdutor ultrassônico ser desativada ou interrompida.
[00569] Em um outro aspecto, a presente descrição fornece um algoritmo CTM para um efeito de "vedação apenas" do tecido por um dispositivo ultrassônico, como tesouras ultrassônicas, por exemplo. De um modo geral, os instrumentos cirúrgicos ultrassônicos tipicamente vedam e cortam o tecido simultaneamente. Criar um dispositivo ultrassônico configurado para vedação apenas sem corte não tem sido difícil de se obter com o uso de tecnologia ultrassônica apenas devido às incertezas de se saber quando a vedação foi concluída antes de se iniciar o corte. Em um aspecto, o algoritmo de CTM que pode ser configurado para proteger o bloco de braço de aperto do atuador de extremidade permitindo que a temperatura da lâmina ultrassônica exceda a temperatura necessária para corte (transecção) do tecido, mas não para exceder o ponto de fusão do bloco de braço de aperto.
Em um outro aspecto, o algoritmo de CTM de vedação apenas pode ser ajustado para exceder a temperatura de vedação do tecido (aproximadamente 115°C a aproximadamente 180°C baseada na experimentação) mas não para exceder a temperatura de corte (transecção) do tecido (aproximadamente 180°C a aproximadamente 350°C). Na última configuração, o algoritmo de CTM de vedação apenas fornece um efeito de "vedação apenas" do tecido que foi demonstrado ser bem-sucedido.
Em um ajuste linear que calcula a alteração na frequência em relação à frequência de travamento inicial, conforme mostrado na Figura 66, por exemplo, a alteração da interceptação do ajuste regula a temperatura final do estado de equilíbrio da lâmina ultrassônica.
Pelo ajuste do parâmetro de interceptação, a lâmina ultrassônica pode ser ajustada para nunca exceder aproximadamente 180°C que resulta na vedação do tecido, mas não no corte.
Em um aspecto, o aumento da força de aperto pode otimizar o processo de vedação sem impactar o desgaste do bloco de braço de aperto porque a temperatura da lâmina é controlada pelo algoritmo de CTM de vedação.
Conforme anteriormente descrito, o algoritmo de CTM de vedação apenas pode ser implementado pelo gerador e controlador PID descrito com referência às Figuras 21, 26, 27A 27C, 28A 28B e 44 a 45, por exemplo.
Consequentemente, o diagrama de fluxo 133320 mostrado na Figura 68 pode ser modificado de modo que o circuito de controle calcula 133326 um novo limite de frequência mais baixa (limite t corresponde a uma temperatura de "selagem apenas" como, por exemplo, aproximadamente 180°C, determina 133328 quando a frequência está próxima do limite mais baixo, e regula 133332 a temperatura até o procedimento cirúrgico de "selagem apenas" ser interrompido e o transdutor ultrassônico é desativado.
[00570] Em um outro aspecto, a presente descrição fornece um algoritmo de monitoramento de temperatura fria (CTMo) configurado para detectar quando é possível segurar de maneira atraumática. Energia ultrassônica acústica resulta em uma lâmina ultrassônica com temperatura de aproximadamente 230°C a aproximadamente 300°C para obter o efeito desejado de corte ou transecção do tecido. Visto que o calor é retido no corpo metálico da lâmina ultrassônica durante um período de tempo após a desativação do transdutor ultrassônico, o calor residual armazenado na lâmina ultrassônica pode causar dano ao tecido se o atuador de extremidade ultrassônico for usado para prender o tecido antes da lâmina ultrassônica ter tido uma oportunidade de resfriar.
[00571] Em um aspecto, o algoritmo CTMo calcula uma alteração na frequência natural do sistema eletromecânico ultrassônico da frequência natural em um estado quente para uma frequência natural a uma temperatura onde a preensão atraumática é possível sem danificar o tecido preso pelo atuador de extremidade. Diretamente ou em um período de tempo predeterminado após a ativação do transdutor ultrassônico, um sinal não terapêutico (aproximadamente 5 mA) é aplicado ao transdutor ultrassônico contendo uma largura de banda de frequências, aproximadamente 48.000 Hz a 52.000 Hz, por exemplo, na qual se espera que a frequência natural seja encontrada. Um algoritmo de FFT, ou outro algoritmo matematicamente eficiente de detecção da frequência natural do sistema eletromecânico ultrassônico, da impedância do transdutor ultrassônico medida durante a estimulação do transdutor ultrassônico com o sinal não terapêutico irá indicar a frequência natural da lâmina ultrassônica como sendo a frequência na qual a magnitude de impedância está em um mínimo. O estímulo contínuo do transdutor ultrassônico dessa maneira fornece retroinformação contínua da frequência natural da lâmina ultrassônica dentro de uma resolução de frequência do FFT ou outro algoritmo para estimar ou medir a frequência natural. Quando uma alteração na frequência natural é detectada que corresponde a uma temperatura que é viável para preensão atraumática, um tom, ou um LED, ou uma exibição na tela ou outra forma de notificação, ou uma combinação dos mesmos, é fornecida para indicar que o dispositivo é capaz de preensão atraumática.
[00572] Em um outro aspecto, a presente descrição fornece um algoritmo de CTM configurado para notificar a vedação e o fim do corte ou transecção. Fornecer notificações de "tecido vedado" e "fim do corte" é um desafio dos dispositivos ultrassônicos convencionais porque a medição de temperatura não pode ser facilmente montada diretamente na lâmina ultrassônica e o bloco do braço de aperto não é explicitamente detectado pela lâmina com o uso de sensores. Um algoritmo de CTM pode indicar o estado de temperatura da lâmina ultrassônica e pode ser usado para indicar os estados "fim do corte" ou "tecido vedado", ou ambos, porque estes estados são eventos com base em temperatura.
[00573] Em um aspecto, um algoritmo de CTM de acordo com a presente descrição detecta o estado "final do corte" e ativa uma notificação. O tecido tipicamente corta em aproximadamente 210°C a aproximadamente 320°C com alta probabilidade. Um algoritmo de CTM pode ativar um tom a 320°C (ou similar) para indicar que ativação adicional sobre o tecido não é produtiva uma vez que o tecido está provavelmente cortado e a lâmina ultrassônica está se movendo contra o bloco de braço de aperto, o que é aceitável quando o algoritmo de CTM está ativo uma vez que controla a temperatura da lâmina ultrassônica. Em um aspecto, o algoritmo de CTM é programado para controlar ou regular a potência ao transdutor ultrassônico para manter a temperatura da lâmina ultrassônica até aproximadamente 320°C quando é estimado que a temperatura da lâmina ultrassônica atingiu 320°C. Iniciar um tom nesse ponto fornece uma indicação de que o tecido foi cortado. O algoritmo de CTM tem por base uma variação na frequência com a temperatura. Depois de determinar uma temperatura do estado inicial (com base na frequência inicial), o algoritmo de CTM pode calcular uma alteração de frequência que corresponde a uma temperatura que implica quando o tecido é cortado. Por exemplo, se a frequência inicial for 51.000 Hz, o algoritmo CTM irá calcular a alteração na frequência necessária para atingir 320°C, o que pode ser -112 Hz. A seguir iniciará o controle para manter o ponto de ajuste de frequência (por exemplo, 50.888 Hz) regulando assim a temperatura da lâmina ultrassônica. De modo similar, uma alteração de frequência pode ser calculada com base em uma frequência inicial que indica quando a lâmina ultrassônica está em uma temperatura que indica que o tecido está provavelmente cortado. Neste ponto, o algoritmo de CTM não tem que a controlar a potência, mas simplesmente iniciar um tom para indicar o estado do tecido ou o algoritmo de CTM pode controlar a frequência neste ponto para manter essa temperatura se for desejado. De qualquer forma, o "fim de corte" é indicado.
[00574] Em um aspecto, um algoritmo de CTM de acordo com a presente descrição detecta o estado "tecido vedado" e ativa uma notificação. Similar ao final da detecção de corte, o tecido veda entre aproximadamente 105°C e aproximadamente 200°C. A mudança na frequência de uma frequência inicial necessária para indicar que uma temperatura da lâmina ultrassônica atingiu 200°C, o que indica um estado de selamento apenas, pode ser calculada no início da ativação do transdutor ultrassônico. O algoritmo de CTM pode ativar um tom neste ponto e se o cirurgião desejar obter um estado de vedação apenas, o cirurgião poderia parar a ativação ou para alcançar um estado de vedação apenas pode parar a ativação do transdutor ultrassônico e iniciar automaticamente um algoritmo de vedação apenas específico a partir deste ponto em diante ou o cirurgião poderia continuar a ativação do transdutor ultrassônico para obter um estado de corte do tecido. Reconhecimento situacional
[00575] A Figura 70 mostra uma linha de tempo 5200 representando o reconhecimento situacional de um controlador central, como o controlador cirúrgico central 106 ou 206, por exemplo. A linha de tempo 5200 é um procedimento cirúrgico ilustrativo e as informações contextuais que o controlador cirúrgico central 106, 206 pode derivar dos dados recebidos das fontes de dados em cada etapa no procedimento cirúrgico. A linha de tempo 5200 representa as etapas típicas que seriam tomadas pelos enfermeiros, cirurgiões, e outro pessoal médico durante o curso de um procedimento de segmentectomia pulmonar, começando com a configuração da sala de operação e terminando com a transferência do paciente para uma sala de recuperação no pós-operatório.
[00576] O controlador cirúrgico central com reconhecimento situacional 106, 206 recebe dados das origens de dados durante todo o curso do procedimento cirúrgico, incluindo os dados gerados cada vez que o pessoal médico utiliza um dispositivo modular que é pareado com o controlador cirúrgico central 106, 206. O controlador cirúrgico central 106, 206 pode receber estes dados dos dispositivos modulares emparelhados e outras fontes de dados e continuamente deriva inferências (isto é, informações contextuais) sobre o procedimento em curso conforme os novos dados são recebidos, como qual etapa do procedimento está sendo realizada em qualquer dado momento. O sistema de reconhecimento situacional do controlador cirúrgico central 106, 206 é capaz de, por exemplo, registrar dados referentes ao procedimento para gerar relatórios, verificar as etapas sendo tomadas pelo pessoal médico, fornecer dados ou avisos (por exemplo, através de uma tela de exibição) que pode ser pertinente para a etapa específica do procedimento, ajustar os dispositivos modulares com base no contexto (por exemplo, ativar monitores, ajustar o campo de visão (FOV) do dispositivo de imageamento médico, ou alterar o nível de energia de um instrumento cirúrgico ultrassônico ou instrumento eletrocirúrgico de RF), e assumir qualquer outra ação descrita acima.
[00577] Na primeira etapa 5202, neste procedimento ilustrativo, os membros da equipe hospital recuperam o prontuário eletrônico do paciente (PEP) a partir da base de dados do PEP do hospital. Com base nos dados de seleção do paciente no PEP, o controlador cirúrgico central 106, 206 determina que o procedimento a ser realizado é um procedimento torácico.
[00578] Na segunda etapa 5204, os membros da equipe escaneiam a entrada dos suprimentos médicos para o procedimento. O controlador cirúrgico central 106, 206 cruza as referências dos suprimentos escaneados com uma lista de suprimentos que são utilizados em vários tipos de procedimentos e confirma que a mistura dos suprimentos corresponde a um procedimento torácico. Adicionalmente, o controlador cirúrgico central 106, 206 também é capaz de determinar que o procedimento não é um procedimento de cunha (porque os suprimentos de entrada têm uma ausência de certos suprimentos que são necessários para um procedimento de cunha torácico ou, caso contrário, que os suprimentos de entrada não correspondem a um procedimento de cunha torácico).
[00579] Na terceira etapa 5206, o pessoal médico escaneia a banda do paciente com um escâner que é conectado de maneira comunicável ao controlador cirúrgico central 106, 206. O controlador cirúrgico central 106, 206 pode então confirmar a identidade do paciente com base nos dados escaneados.
[00580] Na quarta etapa 5208, o pessoal médico liga o equipamento auxiliar.
Os equipamentos auxiliares sendo utilizados podem variar de acordo com o tipo de procedimento cirúrgico e as técnicas a serem usadas pelo cirurgião, mas neste caso ilustrativo eles incluem um evacuador de fumaça, um insuflador e um dispositivo de imageamento médico.
Quando ativados, os equipamentos auxiliares que são dispositivos modulares podem se emparelhar automaticamente com o controlador cirúrgico central 106, 206 que está situado dentro de uma vizinhança específica dos dispositivos modulares como parte de seu processo de inicialização.
O controlador cirúrgico central 106, 206 pode então derivar informações contextuais sobre o procedimento cirúrgico por meio da detecção dos tipos de dispositivos modulares que se correspondem com o mesmo durante essa fase pré-operatória ou de inicialização.
Neste exemplo em particular, o controlador cirúrgico central 106, 206 determina que o procedimento cirúrgico é um procedimento VATS (cirurgia torácica vídeo-assistida) baseado nesta combinação específica de dispositivos modulares emparelhados.
Com base na combinação dos dados do prontuário eletrônico do paciente (PEP), na lista de suprimentos médicos a serem usados no procedimento, e no tipo de dispositivos modulares que se conectam ao controlador central, o controlador cirúrgico central 106, 206 pode, em geral, inferir o procedimento específico que a equipe cirúrgica irá realizar.
Depois que o controlador cirúrgico central 106, 206 reconhece qual procedimento específico está sendo realizado, o controlador cirúrgico central 106, 206 pode então recuperar as etapas desse processo a partir de uma memória ou a partir da nuvem e então cruzar os dados que subsequentemente recebe das fontes de dados conectadas (por exemplo, dispositivos modulares e dispositivos de monitoramento do paciente) para inferir qual etapa do procedimento cirúrgico a equipe cirúrgica está realizando.
[00581] Na quinta etapa 5210, os membros da equipe fixam os eletrodos do eletrocardiograma (ECG) e outros dispositivos de monitoramento de paciente no paciente. Os eletrodos do ECG e outros dispositivos de monitoramento de paciente são capazes de parear com o controlador cirúrgico central 106, 206. Conforme o controlador cirúrgico central 106, 206 começa a receber dados dos dispositivos de monitoramento do paciente, o controlador cirúrgico central 106, 206 dessa forma confirma que o paciente está na sala de operação.
[00582] Na sexta etapa 5212, o pessoal médico induzi a anestesia no paciente. O controlador cirúrgico central 106, 206 pode inferir que o paciente está sob anestesia com base nos dados dos dispositivos modulares e/ou dos dispositivos de monitoramento de paciente, incluindo os dados de ECG, dados de pressão sanguínea, dados do ventilador, ou combinações dos mesmos, por exemplo. Após a conclusão da sexta etapa 5212, a porção do pré-operatório do procedimento de segmentectomia do pulmão é concluído e a porção operatória se inicia.
[00583] Na sétima etapa 5214, o pulmão do paciente que está sendo operado é retraído (enquanto a ventilação é chaveada para o pulmão contralateral). O controlador cirúrgico central 106, 206 pode inferir a partir dos dados de ventilador que o pulmão do paciente foi retraído, por exemplo. O controlador cirúrgico central 106, 206 pode inferir que a porção operatória do procedimento se iniciou quando ele pode comparar a detecção do colapso do pulmão do paciente nas etapas esperadas do procedimento (que podem ser acessadas ou recuperadas anteriormente) e assim determinar que o retraimento do pulmão é a primeira etapa operatória nesse procedimento específico.
[00584] Na oitava etapa 5216, o dispositivo de imageamento médico (por exemplo, um dispositivo de visualização) é inserido e o vídeo a partir do dispositivo de imageamento médico é iniciado. O controlador cirúrgico central 106, 206 recebe os dados do dispositivo de imageamento médico (isto é, os dados de vídeo ou imagens) através de sua conexão com o dispositivo de imageamento médico.
Após o recebimento dos dados do dispositivo de imageamento médico, o controlador cirúrgico central 106, 206 pode determinar que a porção do procedimento cirúrgico laparoscópico se iniciou.
Adicionalmente, o controlador cirúrgico central 106, 206 pode determinar que o procedimento específico sendo realizado é uma segmentectomia, em vez de uma lobectomia (note que um procedimento de cunha já foi descartado pelo controlador cirúrgico central 106, 206 com base nos dados recebidos na segunda etapa 5204 do procedimento). Os dados do dispositivo de imageamento médico 124 (A Figura 2) podem ser utilizados para determinar informações contextuais sobre o tipo de procedimento sendo realizado em um número de maneiras diferentes, incluindo mediante a determinação do ângulo no qual o dispositivo de imageamento médico é orientado em relação à visualização da anatomia do paciente, monitorar o número ou dispositivos de imageamento médicos sendo utilizados (isto é, que são ativados e pareados com o centro cirúrgico 106, 206), e monitorar os tipos de dispositivos de visualização utilizados.
Por exemplo, uma técnica para realizar uma lobectomia VATS coloca a câmera no canto anterior inferior da cavidade torácica do paciente acima do diafragma, enquanto uma técnica para executar uma segmentectomia VATS coloca a câmera em uma posição intercostal anterior em relação à fissura do segmento.
Com o uso de técnicas padrão de reconhecimento ou de aprendizado de máquina, por exemplo, o sistema de reconhecimento situacional pode ser treinado para reconhecer o posicionamento do dispositivo de imageamento médico de acordo com a visualização da anatomia do paciente.
Como um outro exemplo, uma técnica para realizar uma lobectomia VATS utiliza um único dispositivo de imageamento médico,
enquanto que uma outra técnica para executar uma segmentectomia VATS utiliza múltiplas câmeras. Como ainda um outro exemplo, uma técnica para executar uma segmentectomia VATS utiliza uma fonte de luz infravermelha (que pode ser acoplada de maneira comunicável ao controlador cirúrgico central como parte do sistema de visualização) para visualizar a fissura do segmento, que não é utilizada em uma lobectomia VATS. Através do rastreamento de qualquer um ou todos dentre esses dados a partir do dispositivo de imageamento médico, o controlador cirúrgico central 106, 206 pode assim determinar o tipo específico de procedimento cirúrgico sendo realizado e/ou a técnica sendo usada para um tipo específico de procedimento cirúrgico.
[00585] Na nona etapa 5218 do procedimento, a equipe cirúrgica inicia a etapa de dissecção. O controlador cirúrgico central 106, 206 pode inferir que o cirurgião está no processo de dissecação para mobilizar o pulmão do paciente porque ele recebe dados do gerador de RF ou ultrassônico que indicam que um instrumento de energia está sendo disparado. O controlador cirúrgico central 106, 206 pode cruzar os dados recebidos com as etapas recuperadas do procedimento cirúrgico para determinar que um instrumento de energia sendo disparado nesse ponto no processo (isto é, após a conclusão das etapas anteriormente discutidas do procedimento) corresponde à etapa de dissecção. Em certos casos, o instrumento de energia pode ser uma ferramenta de energia montada em um braço robótico de um sistema cirúrgico robótico.
[00586] Na décima etapa 5220 do procedimento, a equipe cirúrgica prossegue até a etapa de ligação. O controlador cirúrgico central 106, 206 pode inferir que o cirurgião está ligando as artérias e veias porque ele recebe os dados do instrumento de grampeamento e corte cirúrgico indicando que o instrumento está sendo disparado. De modo similar à etapa anterior, o controlador cirúrgico central 106, 206 pode derivar essa inferência ao cruzar os dados de recepção do instrumento de grampeamento e corte cirúrgico com as etapas recuperadas no processo. Em certos casos, o instrumento cirúrgico pode ser uma ferramenta cirúrgico montado em um braço robótico de um sistema cirúrgico robótico.
[00587] Na décima primeira etapa 5222, a porção de segmentectomia do procedimento é realizada. O controlador cirúrgico central 106, 206 pode inferir que o cirurgião está transeccionando o parênquima com base nos dados do instrumento de grampeamento e corte cirúrgico, incluindo os dados de seu cartucho. Os dados do cartucho podem corresponder ao tamanho ou tipo de grampo sendo disparo pelo instrumento, por exemplo. Como diferentes tipos de grampos são utilizados para diferentes tipos de tecidos, os dados do cartucho podem dessa forma indicar o tipo de tecido que está sendo grampeado e/ou transectado. Neste caso, o tipo de grampo que é disparado é utilizado para a parênquima (ou outros tipos similares de tecido), que permite que o controlador cirúrgico central 106, 206 infira qual porção de segmentectomia do procedimento está sendo realizada.
[00588] Na décima segunda etapa 5224, a etapa de dissecção do nó é então realizada. O controlador cirúrgico central 106, 206 pode inferir que a equipe cirúrgica está dissecando o nó e realizando um teste de vazamento com base nos dados recebidos do gerador que indica qual instrumento ultrassônico ou de RF está sendo disparado. Para esse procedimento específico, um instrumento de RF ou ultrassônico sendo utilizado depois que o parênquima foi transectado corresponde à etapa de dissecção do nó, que permite que o controlador cirúrgico central 106, 206 faça essa inferência. Deve ser observado que os cirurgiões regularmente alternam entre os instrumentos de grampeamento cirúrgico/corte e os instrumentos de energia cirúrgica (isto é, de RF ou ultrassônica) dependendo da etapa específica no procedimento porque diferentes instrumentos são melhor adaptados para tarefas específicas. Portanto, a sequência específica na qual os instrumentos de corte/grampeamento e os instrumentos de energia cirúrgica são usados pode indicar qual etapa do procedimento o cirurgião está realizada. Além disso, em certos casos, ferramentas robóticas podem ser utilizadas para uma ou mais etapas em um procedimento cirúrgico e/ou Instrumentos cirúrgico de mão podem ser utilizados para uma ou mais etapas no procedimento cirúrgico. O cirurgião pode alternar entre ferramentas robóticas e instrumentos cirúrgicos de mão e/ou pode usar os dispositivos simultaneamente, por exemplo. Após a conclusão da décima segunda etapa 5224, as incisões são fechadas e a porção do pós-operatório do processo se inicia.
[00589] Na décima terceira etapa 5226, a anestesia do paciente é revertida. O controlador cirúrgico central 106, 206 pode inferir que o paciente está emergindo da anestesia com base nos dados de ventilador (isto é, a frequência respiratória do paciente começa a aumentar), por exemplo.
[00590] Finalmente, na décima quarta etapa 5228 é que o pessoal médico remove os vários dispositivos de monitoramento de paciente do paciente. O controlador cirúrgico central 106, 206 pode, dessa forma, inferir que o paciente está sendo transferido para uma sala de recuperação quando o controlador central perde os dados de ECG, pressão sanguínea e outros dados dos dispositivos de monitoramento de paciente. Como pode ser visto a partir da descrição deste procedimento ilustrativo, o controlador cirúrgico central 106, 206 pode determinar ou inferir quando cada etapa de um dado procedimento cirúrgico está ocorrendo de acordo com os dados recebidos das várias fontes de dados que estão comunicavelmente acopladas ao controlador cirúrgico central 106, 206.
[00591] Consciência situacional é adicionalmente descrito no Pedido de Patente Provisório U.S. n° de série 62/611.341, intitulado INTERACTIVE SURGICAL PLATFORM, depositado em 28 de dezembro de 2017, que está aqui incorporado a título de referência em sua totalidade. Em certos casos, a operação de um sistema cirúrgico robótico, incluindo os vários sistemas cirúrgicos robóticos aqui descritos, por exemplo, pode ser controlada pelo controlador central 106, 206 com base em sua percepção situacional e/ou retroinformação dos componentes da mesma e/ou com base nas informações da nuvem
102.
[00592] Embora várias formas tenham sido ilustradas e descritas, não é intenção do requerente restringir ou limitar o escopo das reivindicações anexadas a tal detalhe. Numerosas modificações, variações, alterações, substituições, combinações e equivalentes destas formas podem ser implementadas e ocorrerão aos versados na técnica sem se que afaste do escopo da presente descrição. Além disso, a estrutura de cada elemento associado com a forma pode ser alternativamente descrita como um meio para fornecer a função realizada pelo elemento. Além disso, onde forem descritos materiais para determinados componentes, outros materiais podem ser usados. Deve-se compreender, portanto, que a descrição precedente e as reivindicações em anexo pretendem cobrir todas essas modificações, combinações e variações abrangidas pelo escopo das modalidades apresentadas. As reivindicações em anexo se destinam a cobrir todas essas modificações, variações, alterações, substituições, modificações e equivalentes.
[00593] A descrição detalhada precedente apresentou várias formas dos dispositivos e/ou processos por meio do uso de diagramas de blocos, fluxogramas e/ou exemplos. Embora esses diagramas de bloco, fluxogramas e/ou exemplos contenham uma ou mais funções e/ou operações, será compreendido pelos versados na técnica que cada função e/ou operação dentro desses diagramas de bloco, fluxogramas e/ou exemplos pode ser implementada, individual e/ou coletivamente, através de uma ampla gama de hardware, software, firmware ou praticamente qualquer combinação destes. Os versados na técnica reconhecerão, contudo, que alguns aspectos dos aspectos aqui descritos, no todo ou em parte, podem ser implementados de modo equivalente em circuitos integrados, como um ou mais programas de computador executados em um ou mais computadores (por exemplo, como um ou mais programas executados em um ou mais sistemas de computador), como um ou mais programas executados em um ou mais processadores (por exemplo, como um ou mais programas executados em um ou mais microprocessadores), como firmware, ou virtualmente como qualquer combinação dos mesmos, e que projetar o conjunto de circuitos e/ou escrever o código para o software e firmware estaria dentro do âmbito de prática do versado na técnica, à luz desta descrição. Além disso, os versados na técnica entenderão que os mecanismos do assunto aqui descrito podem ser distribuídos como um ou mais produtos de programa em uma variedade de formas e que uma forma ilustrativa do assunto aqui descrito é aplicável independentemente do tipo específico de meio de transmissão de sinais utilizado para efetivamente realizar a distribuição.
[00594] As instruções usadas para programar a lógica para executar vários aspectos descritos podem ser armazenadas em uma memória no sistema, como memória de acesso aleatório dinâmica (DRAM), cache, memória flash ou outro armazenamento. Além disso, as instruções podem ser distribuídas através de uma rede ou por meio de outras mídias legíveis por computador. Dessa forma uma mídia legível por máquina pode incluir qualquer mecanismo para armazenar ou transmitir informações em uma forma legível por uma máquina (por exemplo, um computador), mas não se limita a, disquetes, discos ópticos, disco compacto de memória só de leitura (CD-ROMs), e discos óptico- dínamos discos, memória só de leitura (ROM), memória de acesso aleatório (RAM), memória só de leitura programável apagável (EPROM), memória só de leitura programável apagável eletricamente (EEPROM), cartões magnéticos ou ópticos, memória flash, ou uma mídia tangível de armazenamento legíveis por máquina usada na transmissão de informações pela Internet através de um cabo elétrico, óptico, acústico ou outras formas de sinais de propagados (por exemplo, ondas portadoras, sinal de infravermelho, sinais digitais, etc.). Consequentemente, a mídia não transitória legível por computador inclui qualquer tipo de mídia legível por máquina adequada para armazenar ou transmitir instruções ou informações eletrônicas em uma forma legível por uma máquina (por exemplo, um computador).
[00595] Como usado em qualquer aspecto da presente invenção, o termo "circuito de controle" pode se referir a, por exemplo, um conjunto de circuitos com fio, circuitos programáveis (por exemplo, um processador de computador que compreende um ou mais núcleos de processamento de instrução individuais, unidade de processamento, processador, microcontrolador, unidade do microcontrolador, controlador, processador de sinal digital (DSP), dispositivo lógico programável (PLD), matriz lógica programável (PLA), ou arranjo de portas programável em campo (FPGA)), circuitos de máquinas de estado, firmware que armazena instruções executadas pelo circuito programável, e qualquer combinação dos mesmos. O circuito de controle pode, coletiva ou individualmente, ser incorporado como circuito elétrico que é parte de um sistema maior, por exemplo, um circuito integrado (IC), um circuito integrado específico de aplicação (ASIC), um sistema on-chip (SoC), computadores desktop, computadores laptop, computadores tablet, servidores, fones inteligentes, etc. Consequentemente, como usado na presente invenção, "circuito de controle" inclui, mas não se limita a, circuitos elétricos que tenham ao menos um circuito elétrico discreto, circuitos elétricos que tenham ao menos um circuito integrado, circuitos elétricos que tenham ao menos um circuito integrado para aplicação específica, circuitos elétricos que formem um dispositivo de computação para finalidades gerais configurado por um programa de computador (por exemplo, um computador para finalidades gerais configurado por um programa de computador que ao menos parcialmente execute processos e/ou dispositivos aqui descritos, ou um microprocessador configurado por um programa de computador que ao menos parcialmente execute os processos e/ou dispositivos aqui descritos), circuitos elétricos que formem um dispositivo de memória (por exemplo, formas de memória de acesso aleatório), e/ou circuitos elétricos que formem um dispositivo de comunicações (por exemplo, um modem, chave de comunicação, ou equipamento óptico-elétrico). Os versados na técnica reconhecerão que o assunto aqui descrito pode ser implementado de modo analógico ou digital, ou em alguma combinação destes.
[00596] Como usado em qualquer aspecto da presente invenção, o termo "lógico" pode se referir a um aplicativo, software, firmware e/ou circuito configurado para executar qualquer das operações anteriormente mencionadas. O software pode ser incorporado como um pacote de software, um código, instruções, conjuntos de instruções e/ou dados registados na mídia de armazenamento não transitório legível por computador. O firmware pode ser incorporado como código, instruções ou conjuntos de instruções e/ou dados que são codificados rigidamente (por exemplo, não voláteis) em dispositivos de memória.
[00597] Como usado em qualquer aspecto da presente invenção, os termos "componente", "sistema", "módulo" e similares podem se referir a uma entidade relacionada a computador, seja hardware, uma combinação de hardware e software, software ou software em execução.
[00598] Como aqui usado em um aspecto na presente invenção, um "algoritmo" se refere à sequência autoconsistente de etapas que levam ao resultado desejado, onde uma "etapa" se refere à manipulação de quantidades físicas e/ou estados lógicos que podem, embora não necessariamente precisem, assumir a forma de sinais elétricos ou magnéticos que possam ser armazenados, transferidos, combinados, comparados e manipulados de qualquer outra forma. É uso comum chamar esses sinais de bits, valores, elementos, símbolos, caracteres, termos, números ou congêneres. Esses termos e termos similares podem estar associados às grandezas físicas apropriadas e são identificações meramente convenientes aplicadas a essas quantidades e/ou estados.
[00599] Uma rede pode incluir uma rede comutada de pacotes. Os dispositivos de comunicação podem ser capazes de se comunicar uns com os outros com o uso de um protocolo de comunicações de rede comutada de pacotes selecionado. Um protocolo de comunicações exemplificador pode incluir um protocolo de comunicações Ethernet que pode ser capaz de permitir a comunicação com o uso de um protocolo de controle de transmissão/protocolo de Internet (TCP/IP). O protocolo Ethernet pode se conformar ou ser compatível com o padrão Ethernet publicado pelo Institute of Electrical and Electronics Engineers (IEEE) intitulado "IEEE 802.3 Standard", publicado em dezembro de 2008 e/ou versões posteriores deste padrão. Alternativamente ou adicionalmente, os dispositivos de comunicação podem ser capazes de se comunicar uns com os outros com o uso de um protocolo de comunicações X.25. O protocolo de comunicações X.25 pode se conformar ou ser compatível com um padrão promulgado pelo International
Telecommunication Union-Telecommunication Standardization Sector (ITU-T). Alternativamente ou adicionalmente, os dispositivos de comunicação podem ser capazes de se comunicar uns com os outros com o uso de um protocolo de comunicações frame-relay. O protocolo de comunicações frame-relay pode se conformar ou ser compatível com um padrão promulgado pelo Consultative Committee for International Telegraph and Telephone (CCITT) e/ou the American National Standards Institute (ANSI). Alternativamente ou adicionalmente, os transceptores podem ser capazes de se comunicar uns com os outros com o uso de um protocolo de comunicação ATM ("asynchronous transfer mode", modo de transferência assíncrono). O protocolo de comunicação ATM pode se conformar ou ser compatível com um padrão ATM publicado pelo fórum ATM intitulado "ATM-MPLS Network Interworking 2.0" publicado em agosto de 2001, e/ou versões posteriores desse padrão. Obviamente, protocolos de comunicação de rede orientados por conexão diferentes e/ou pós-desenvolvidos são igualmente contemplados na presente invenção.
[00600] Salvo afirmação expressa em contrário, conforme fica evidente a partir da descrição precedente, é entendido que, ao longo da descrição precedente, as discussões que usam termos como "processamento", ou "computação", ou "cálculo", ou "determinação", ou "exibição", ou similares, se referem à ação e aos processos de um computador, ou dispositivo de computação eletrônica similar, que manipule e transforme os dados representados sob a forma de grandezas físicas (eletrônicas) nos registros e nas memórias do computador em outros dados representados de modo similar sob a forma de grandezas físicas nas memórias ou nos registros do computador, ou em outros dispositivos similares de armazenamento, transmissão ou exibição de informações.
[00601] Um ou mais componentes podem ser chamados na presente invenção de "configurado para", "configurável para", "operável/operacional para", "adaptado/adaptável para", "capaz de", "conformável/conformado para", etc. Os versados na técnica reconhecerão que "configurado para" pode, de modo geral, abranger componentes em estado ativo e/ou componentes em estado inativo e/ou componentes em estado de espera, exceto quando o contexto determinar o contrário.
[00602] Os termos "proximal" e "distal" são usados na presente invenção com referência a um médico que manipula a porção de cabo do instrumento cirúrgico. O termo "proximal" se refere à porção mais próxima ao médico, e o termo "distal" se refere à porção situada na direção oposta ao médico. Também será entendido que, por uma questão de conveniência e clareza, termos espaciais como "vertical", "horizontal", "para cima" e "para baixo" podem ser usados na presente invenção com relação aos desenhos. Entretanto, instrumentos cirúrgicos podem ser usados em muitas orientações e posições, e esses termos não se destinam a ser limitadores e/ou absolutos.
[00603] As pessoas versadas na técnica reconhecerão que, em geral, os termos usados aqui, e principalmente nas reivindicações em anexo (por exemplo, corpos das reivindicações em anexo) destinam-se geralmente como termos "abertos" (por exemplo, o termo "incluindo" deve ser interpretado como "incluindo, mas não se limitando a", o termo "tendo" deve ser interpretado como "tendo, ao menos", o termo "inclui" deve ser interpretado como "inclui, mas não se limita a", etc.). Será ainda entendido pelos versados na técnica que, quando um número específico de uma menção de reivindicação introduzida for pretendido, tal intenção será expressamente mencionada na reivindicação e, na ausência de tal menção, nenhuma intenção estará presente. Por exemplo, como uma ajuda para a compreensão, as seguintes reivindicações em anexo podem conter o uso das frases introdutórias "ao menos um" e "um ou mais" para introduzir menções de reivindicação. Entretanto, o uso de tais frases não deve ser interpretado como implicando que a introdução de uma menção da reivindicação pelos artigos indefinidos "um, uns" ou "uma, umas" limita qualquer reivindicação específica contendo a menção da reivindicação introduzida a reivindicações que contêm apenas uma tal menção, mesmo quando a mesma reivindicação inclui as frases introdutórias "um ou mais" ou "ao menos um" e artigos indefinidos, como "um, uns" ou "uma, umas" (por exemplo, "um, uns" e/ou "uma, umas" deve tipicamente ser interpretado como significando "ao menos um" ou "um ou mais"); o mesmo vale para o uso de artigos definidos usados para introduzir as menções de reivindicação.
[00604] Além disso, mesmo se um número específico de uma menção de reivindicação introduzida for explicitamente mencionado, os versados na técnica reconhecerão que essa menção precisa ser tipicamente interpretada como significando ao menos o número mencionado (por exemplo, a mera menção de "duas menções", sem outros modificadores, tipicamente significa ao menos duas menções, ou duas ou mais menções). Além disso, em casos onde é usada uma convenção análoga a "pelo menos um dentre A, B e C, etc.", em geral essa construção se destina a ter o sentido no qual a convenção seria entendida por (por exemplo, "um sistema que tem ao menos um dentre A, B e C" incluiria, mas não se limitaria a, sistemas que têm A sozinho, B sozinho, C sozinho, A e B juntos, A e C juntos, B e C juntos, e/ou A, B e C juntos, etc.). Em casos nos quais é usada uma convenção análoga a "pelo menos um dentre A, B ou C, etc.", em geral essa construção se destina a ter o sentido no qual a convenção seria entendida por (por exemplo, "um sistema que tem ao menos um dentre A, B e C" incluiria, mas não se limitaria a, sistemas que têm A sozinho, B sozinho, C sozinho, A e B juntos, A e C juntos, B e C juntos, e/ou A, B e C juntos, etc.). Será adicionalmente entendido pelos versados na técnica que tipicamente uma palavra e/ou uma frase disjuntiva apresentando dois ou mais termos alternativos, quer na descrição, nas reivindicações ou nos desenhos, deve ser entendida como contemplando a possibilidade de incluir um dos termos, qualquer um dos termos ou ambos os termos, exceto quando o contexto determinar indicar algo diferente. Por exemplo, a frase "A ou B" será tipicamente entendida como incluindo as possibilidades de "A" ou "B" ou "A e B".
[00605] Com respeito às reivindicações em anexo, os versados na técnica entenderão que as operações mencionadas nas mesmas podem, de modo geral, ser executadas em qualquer ordem. Além disso, embora vários diagramas de fluxos operacionais sejam apresentados em uma ou mais sequências, deve-se compreender que as várias operações podem ser executadas em outras ordens diferentes daquelas que estão ilustradas, ou podem ser executadas simultaneamente. Exemplos dessas ordenações alternativas podem incluir ordenações sobrepostas, intercaladas, interrompidas, reordenadas, incrementais, preparatórias, suplementares, simultâneas, inversas ou outras ordenações variantes, exceto quando o contexto determinar em contrário. Ademais, termos como "responsivo a", "relacionado a" ou outros particípios adjetivos não pretendem de modo geral excluir essas variantes, exceto quando o contexto determinar em contrário.
[00606] Vale notar que qualquer referência a "um (1) aspecto", "um aspecto", "uma exemplificação" ou "uma (1) exemplificação", e similares significa que um determinado recurso, estrutura ou característica descrito em conexão com o aspecto está incluído em ao menos um aspecto. Dessa forma, o uso de expressões como "em um (1) aspecto", "em um aspecto", "em uma exemplificação", "em uma (1) exemplificação", em vários locais ao longo deste relatório descritivo não se refere necessariamente ao mesmo aspecto. Além disso, os recursos, estruturas ou características específicos podem ser combinados de qualquer maneira adequada em um ou mais aspectos.
[00607] Qualquer pedido de patente, patente, publicação não de patente ou outro material de descrição mencionado neste relatório descritivo e/ou mencionado em qualquer folha de dados de pedido está aqui incorporado a título de referência, até o ponto em que os materiais incorporados não são inconsistentes com isso. Desse modo, e na medida do necessário, a descrição como explicitamente aqui apresentada substitui qualquer material conflitante incorporado à presente invenção a título de referência. Qualquer material, ou porção do mesmo, tido como aqui incorporado a título de referência, mas que entre em conflito com as definições, declarações, ou outros materiais de descrição existentes aqui apresentados estará aqui incorporado apenas até o ponto em que não haja conflito entre o material incorporado e o material de descrição existente.
[00608] Em resumo, foram descritos numerosos benefícios que resultam do emprego dos conceitos descritos no presente documento. A descrição anteriormente mencionada de uma ou mais modalidades foi apresentada para propósitos de ilustração e descrição. Essa descrição não pretende ser exaustiva nem limitar a invenção à forma precisa descrita. Modificações ou variações são possíveis à luz dos ensinamentos acima. Uma ou mais modalidades foram escolhidas e descritas com a finalidade de ilustrar os princípios e a aplicação prática para, assim, permitir que o versado na técnica use as várias modalidades e com várias modificações, conforme sejam convenientes ao uso específico contemplado. Pretende-se que as reivindicações apresentadas em anexo definam o escopo geral.
[00609] Vários aspectos da matéria descrita no presente documento são definidos nos seguintes exemplos numerados:
[00610] Exemplo 1. Um método de determinação de uma temperatura de uma lâmina ultrassônica, sendo que o método compreende: determinar, por um circuito de controle acoplado a uma Memória, uma frequência de ressonância real de um sistema eletromecânico ultrassônico que compreende um transdutor ultrassônico acoplado a uma lâmina ultrassônica por meio de um guia de ondas ultrassônico, sendo que a frequência de ressonância real é correlacionado a uma temperatura real da lâmina ultrassônica; recuperar, a partir da memória pelo circuito de controle, uma frequência de ressonância de referência do sistema eletromecânico ultrassônico, sendo que a frequência de ressonância de referência está correlacionada a uma temperatura de referência da lâmina ultrassônica; e inferir, pelo circuito de controle, a temperatura da lâmina ultrassônica com base na diferença entre a frequência de ressonância real e a frequência de ressonância de referência.
[00611] Exemplo 2. O método do Exemplo 1, em que a determinação, pelo circuito de controle, da frequência de ressonância real do sistema eletromecânico ultrassônica compreende: determinar, pelo circuito de controle, um ângulo de fase φ entre um sinal de tensão Vg(t) e corrente Ig(t) aplicado ao transdutor ultrassônico.
[00612] Exemplo 3. O método do Exemplo 2, que compreende adicionalmente gerar, pelo circuito de controle, um estimador de temperatura e um modelo de espaço de estado da temperatura inferida da lâmina ultrassônica como uma função da frequência de ressonância do sistema eletromecânico ultrassônico com base em um conjunto de equações não lineares de espaço de estado.
[00613] Exemplo 4. O método do Exemplo 3, em que o modelo de espaço de estado é definido por:
[00614] Exemplo 5. O método do Exemplo 4, que compreende adicionalmente aplicar, pelo circuito de controle, um filtro Kalman para melhorar o estimador de temperatura e o modelo de espaço de estado.
[00615] Exemplo 6. O método do Exemplo 5, que compreende adicionalmente: aplicar, pelo circuito de controle, um estimador de estado em um circuito de realimentação do filtro de Kalman; controlar, pelo circuito de controle, a potência aplicada ao transdutor ultrassônico; e regular, pelo circuito de controle, a temperatura da lâmina ultrassônica.
[00616] Exemplo 7. O método do Exemplo 6, em que uma variância de estado do estimador de estado do filtro de Kalman é definida por: e um ganho K do filtro de Kalman é definido por:
[00617] Exemplo 8. O método do Exemplo 1, em que o circuito de controle e a memória estão localizados em um controlador cirúrgico central em comunicação com o sistema eletromecânico ultrassônico.
[00618] Exemplo 9. Um gerador para determinar uma temperatura de uma lâmina ultrassônica, sendo que o gerador compreende: um circuito de controle acoplado a uma memória, sendo o circuito de controle configurado para: determinar uma frequência de ressonância real de um sistema eletromecânico ultrassônico compreendendo um transdutor ultrassônico acoplado a uma lâmina ultrassônica por meio de um guia de ondas ultrassônico, sendo que a frequência de ressonância real está correlacionada a uma temperatura real da lâmina ultrassônica; recuperar da memória uma frequência de ressonância de referência do sistema eletromecânico ultrassônico, sendo que a frequência de ressonância de referência está correlacionada a uma temperatura de referência da lâmina ultrassônica; e inferir a temperatura da lâmina ultrassônica com base na diferença entre a frequência de ressonância real e a frequência de ressonância de referência.
[00619] Exemplo 10. O gerador do Exemplo 9, em que para determinar a frequência de ressonância real do sistema eletromecânico ultrassônica, o circuito de controle é configurado adicionalmente para: determinar um ângulo de fase φ entre um sinal de tensão Vg(t) e corrente Ig(t) aplicado ao transdutor ultrassônico.
[00620] Exemplo 11. O gerador do Exemplo 10, em que o circuito de controle é configurado adicionalmente para gerar um estimador de temperatura e um modelo de espaço de estado da temperatura inferida da lâmina ultrassônica como uma função da frequência de ressonância do sistema eletromecânico ultrassônico com base em um conjunto de equações não lineares de espaço de estado.
[00621] Exemplo 12. O gerador do Exemplo 11, em que o modelo de espaço de estado é definido por:
[00622] Exemplo 13. O gerador do Exemplo 12, em que o circuito de controle é configurado adicionalmente para aplicar um filtro Kalman para melhorar o estimador de temperatura e o modelo de espaço de estado.
[00623] Exemplo 14. O gerador do Exemplo 13, em que o circuito de controle é adicionalmente configurado para: aplicar um estimador de estado em um circuito de realimentação do filtro de Kalman; controlar a potência aplicada ao transdutor ultrassônico; e regular a temperatura da lâmina ultrassônica.
[00624] Exemplo 15. O gerador do Exemplo 14, em que uma variância de estado do estimador de estado do filtro de Kalman é definida por: e um ganho K do filtro de Kalman é definido por:
[00625] Exemplo 16. O método do Exemplo 9, em que o circuito de controle e a memória estão localizados em um controlador cirúrgico central em comunicação com o gerador.
[00626] Exemplo 17. Um dispositivo ultrassônico para determinar uma temperatura de uma lâmina ultrassônica, sendo que o dispositivo ultrassônico compreende: um circuito de controle acoplado a uma memória, sendo o circuito de controle configurado para: determinar uma frequência de ressonância real de um sistema eletromecânico ultrassônico compreendendo um transdutor ultrassônico acoplado a uma lâmina ultrassônica por meio de um guia de ondas ultrassônico, sendo que a frequência de ressonância real está correlacionada a uma temperatura real da lâmina ultrassônica; recuperar da memória uma frequência de ressonância de referência do sistema eletromecânico ultrassônico, sendo que a frequência de ressonância de referência está correlacionada a uma temperatura de referência da lâmina ultrassônica;
e inferir a temperatura da lâmina ultrassônica com base na diferença entre a frequência de ressonância real e a frequência de ressonância de referência.
[00627] Exemplo 18. O dispositivo ultrassônico do Exemplo 17, em que para determinar a frequência de ressonância real do sistema eletromecânico ultrassônica, o circuito de controle é configurado adicionalmente para: determinar um ângulo de fase φ entre um sinal de tensão Vg(t) e corrente Ig(t) aplicado ao transdutor ultrassônico.
[00628] Exemplo 19. O dispositivo ultrassônico do Exemplo 18, em que o circuito de controle é configurado adicionalmente para gerar um estimador de temperatura e um modelo de espaço de estado da temperatura inferida da lâmina ultrassônica como uma função da frequência de ressonância do sistema eletromecânico ultrassônico com base em um conjunto de equações não lineares de espaço de estado.
[00629] Exemplo 20. O dispositivo ultrassônico do Exemplo 19, em que o modelo de espaço de estado é definido por:
[00630] Exemplo 21. O dispositivo ultrassônico do Exemplo 20, em que o circuito de controle é configurado adicionalmente para aplicar um filtro Kalman para melhorar o estimador de temperatura e o modelo de espaço de estado.
[00631] Exemplo 22. O dispositivo ultrassônico do Exemplo 21, em que o circuito de controle é adicionalmente configurado para: aplicar um estimador de estado em um circuito de realimentação do filtro de Kalman; controlar a potência aplicada ao transdutor ultrassônico; e regular a temperatura da lâmina ultrassônica.
[00632] Exemplo 23. O dispositivo ultrassônico do Exemplo 22, em que uma variância de estado do estimador de estado o filtro de Kalman é definida por: e um ganho K do filtro de Kalman é definido por:
[00633] Exemplo 24. O instrumento ultrassônico do Exemplo 17, em que o circuito de controle e a memória estão localizadas em um controlador cirúrgico central em comunicação com o instrumento ultrassônico.

Claims (24)

REIVINDICAÇÕES
1. Método de determinação de uma temperatura de uma lâmina ultrassônica, caracterizado pelo fato de que compreende: determinar, por um circuito de controle acoplado a uma memória, uma frequência de ressonância real de um sistema eletromecânico ultrassônico que compreende um transdutor ultrassônico acoplado a uma lâmina ultrassônica por meio de um guia de ondas ultrassônico, em que a frequência de ressonância real está correlacionada a uma temperatura real da lâmina ultrassônica; recuperar, a partir da memória pelo circuito de controle, uma frequência de ressonância de referência do sistema eletromecânico ultrassônico, em que a frequência de ressonância de referência está correlacionada a uma temperatura de referência da lâmina ultrassônica; e inferir, pelo circuito de controle, a temperatura da lâmina ultrassônica com base na diferença entre a frequência de ressonância real e a frequência de ressonância de referência.
2. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que a determinação, pelo circuito de controle, da frequência de ressonância real do sistema eletromecânico ultrassônico compreende: determinar, pelo circuito de controle, um ângulo de fase φ entre o sinal de tensão Vg(t) e corrente Ig(t) aplicado ao transdutor ultrassônico.
3. Método, de acordo com a reivindicação 2, caracterizado pelo fato de que compreende adicionalmente: gerar, pelo circuito de controle, um estimador de temperatura e um modelo de espaço de estado da temperatura inferida da lâmina ultrassônica como uma função da frequência de ressonância do sistema eletromecânico ultrassônico com base em um conjunto de equações não lineares de espaço de estado.
4. Método, de acordo com a reivindicação 3, caracterizado pelo fato de que o modelo de espaço de estado é definido por:
5. Método, de acordo com a reivindicação 4, caracterizado pelo fato de que compreende adicionalmente aplicar, pelo circuito de controle, um filtro Kalman para melhorar o estimador de temperatura e o modelo de espaço de estado.
6. Método, de acordo com a reivindicação 5, caracterizado pelo fato de que compreende adicionalmente: aplicar, pelo circuito de controle, um estimador de estado em um circuito de realimentação do filtro de Kalman; controlar, pelo circuito de controle, a potência aplicada ao transdutor ultrassônico; e regular, pelo circuito de controle, a temperatura da lâmina ultrassônica.
7. Método, de acordo com a reivindicação 6, caracterizado pelo fato de que uma variância de estado do estimador de estado do filtro de Kalman é definida por: e um ganho K do filtro de Kalman é definido por:
8. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que o circuito de controle e a memória estão localizados em um controlador cirúrgico central em comunicação com o sistema eletromecânico ultrassônico.
9. Gerador, caracterizado pelo fato de que é para determinar a temperatura de uma lâmina ultrassônica, compreendendo: um circuito de controle acoplado a uma memória, sendo o circuito de controle configurado para: determinar uma frequência de ressonância real de um sistema eletromecânico ultrassônico que compreende um transdutor ultrassônico acoplado a uma lâmina ultrassônica por meio de um guia de ondas ultrassônico, em que a frequência de ressonância real está correlacionada a uma temperatura real da lâmina ultrassônica; recuperar da memória uma frequência de ressonância de referência do sistema eletromecânico ultrassônico, em que a frequência de ressonância de referência está correlacionada a uma temperatura de referência da lâmina ultrassônica; e inferir a temperatura da lâmina ultrassônica com base na diferença entre a frequência de ressonância real e a frequência de ressonância de referência.
10. Gerador, de acordo com a reivindicação 9, caracterizado pelo fato de que, para determinar a frequência de ressonância real do sistema eletromecânico ultrassônico, o circuito de controle é configurado adicionalmente para: determinar um ângulo de fase φ entre o sinal de tensão Vg(t) e corrente Ig(t) aplicado ao transdutor ultrassônico.
11. Gerador, de acordo com a reivindicação 10, caracterizado pelo fato de que o circuito de controle é configurado adicionalmente para gerar um estimador de temperatura e um modelo de espaço de estado da temperatura inferida da lâmina ultrassônica como uma função da frequência de ressonância do sistema eletromecânico ultrassônico com base em um conjunto de equações não lineares de espaço de estado.
12. Gerador, de acordo com a reivindicação 11, caracterizado pelo fato de que o modelo de espaço de estado é definido por:
13. Gerador, de acordo com a reivindicação 12, caracterizado pelo fato de que o circuito de controle é configurado adicionalmente para aplicar um filtro de Kalman para melhorar o estimador de temperatura e o modelo de espaço de estado.
14. Instrumento cirúrgico, de acordo com a reivindicação 13, caracterizado pelo fato de que o circuito de controle é configurado para: aplicar um estimador de estado em um circuito de realimentação do filtro de Kalman; controlar a potência aplicada ao transdutor ultrassônico; e regular a temperatura da lâmina ultrassônica.
15. Gerador, de acordo com a reivindicação 14, caracterizado pelo fato de que uma variância de estado do estimador de estado do filtro de Kalman é definida por: e um ganho K do filtro de Kalman é definido por:
16. Método, de acordo com a reivindicação 9, caracterizado pelo fato de que o circuito de controle e a memória estão localizados em um controlador cirúrgico central em comunicação com o gerador.
17. Dispositivo ultrassônico, caracterizado pelo fato de que é para determinar uma temperatura de uma lâmina ultrassônica, compreendendo: um circuito de controle acoplado a uma memória, sendo o circuito de controle configurado para: determinar uma frequência de ressonância real de um sistema eletromecânico ultrassônico que compreende um transdutor ultrassônico acoplado a uma lâmina ultrassônica por meio de um guia de ondas ultrassônico, em que a frequência de ressonância real está correlacionada a uma temperatura real da lâmina ultrassônica; recuperar da memória uma frequência de ressonância de referência do sistema eletromecânico ultrassônico, em que a frequência de ressonância de referência está correlacionada a uma temperatura de referência da lâmina ultrassônica; e inferir a temperatura da lâmina ultrassônica com base na diferença entre a frequência de ressonância real e a frequência de ressonância de referência.
18. Dispositivo ultrassônico, caracterizado pelo fato de que, para determinar a frequência de ressonância real do sistema eletromecânico ultrassônico, o circuito de controle é configurado adicionalmente para: determinar um ângulo de fase φ entre o sinal de tensão Vg(t) e corrente Ig(t) aplicado ao transdutor ultrassônico.
19. Dispositivo ultrassônico, de acordo com a reivindicação 18, caracterizado pelo fato de que o circuito de controle é configurado adicionalmente para gerar um estimador de temperatura e um modelo de espaço de estado da temperatura inferida da lâmina ultrassônica como uma função da frequência de ressonância do sistema eletromecânico ultrassônico com base em um conjunto de equações não lineares de espaço de estado.
20. Dispositivo ultrassônico, de acordo com a reivindicação 19, caracterizado pelo fato de que o modelo de espaço de estado é definido por:
21. Dispositivo ultrassônico, de acordo com a reivindicação 20, caracterizado pelo fato de que o circuito de controle é configurado para aplicar um filtro de Kalman para melhorar o estimador de temperatura e o modelo de espaço de estado.
22. Instrumento cirúrgico, de acordo com a reivindicação 21, caracterizado pelo fato de que o circuito de controle é adicionalmente configurado para: aplicar um estimador de estado em um circuito de realimentação do filtro de Kalman; controlar a potência aplicada ao transdutor ultrassônico; e regular a temperatura da lâmina ultrassônica.
23. Dispositivo ultrassônico, de acordo com a reivindicação 22, caracterizado pelo fato de que uma variância de estado do estimador de estado do filtro de Kalman é definida por: e um ganho K do filtro de Kalman é definido por:
24. Instrumento ultrassônico, de acordo com a reivindicação 17, caracterizado pelo fato de que circuito de controle e a memória estão localizados em um controlador cirúrgico central em comunicação com o instrumento ultrassônico.
BR112020012402-8A 2017-12-28 2019-02-28 controle de temperatura do atuador de extremidade ultrassônico e sistema de controle para o mesmo BR112020012402A2 (pt)

Applications Claiming Priority (37)

Application Number Priority Date Filing Date Title
US201762611340P 2017-12-28 2017-12-28
US201762611341P 2017-12-28 2017-12-28
US201762611339P 2017-12-28 2017-12-28
US62/611,340 2017-12-28
US62/611,339 2017-12-28
US62/611,341 2017-12-28
US201862640415P 2018-03-08 2018-03-08
US201862640417P 2018-03-08 2018-03-08
US62/640,417 2018-03-08
US62/640,415 2018-03-08
US201862650898P 2018-03-30 2018-03-30
US201862650882P 2018-03-30 2018-03-30
US201862650877P 2018-03-30 2018-03-30
US201862650887P 2018-03-30 2018-03-30
US62/650,887 2018-03-30
US62/650,882 2018-03-30
US62/650,877 2018-03-30
US62/650,898 2018-03-30
US201862692747P 2018-06-30 2018-06-30
US201862692748P 2018-06-30 2018-06-30
US201862692768P 2018-06-30 2018-06-30
US62/692,768 2018-06-30
US62/692,748 2018-06-30
US62/692,747 2018-06-30
US201862721999P 2018-08-23 2018-08-23
US201862721998P 2018-08-23 2018-08-23
US201862721994P 2018-08-23 2018-08-23
US201862721996P 2018-08-23 2018-08-23
US201862721995P 2018-08-23 2018-08-23
US62/721,999 2018-08-23
US62/721,996 2018-08-23
US62/721,994 2018-08-23
US62/721,998 2018-08-23
US62/721,995 2018-08-23
US16/115,205 2018-08-28
US16/115,205 US11571234B2 (en) 2017-12-28 2018-08-28 Temperature control of ultrasonic end effector and control system therefor
PCT/US2019/020142 WO2019134006A1 (en) 2017-12-28 2019-02-28 Temperature control of ultrasonic end effector and control system therefor

Publications (1)

Publication Number Publication Date
BR112020012402A2 true BR112020012402A2 (pt) 2020-11-24

Family

ID=64734056

Family Applications (1)

Application Number Title Priority Date Filing Date
BR112020012402-8A BR112020012402A2 (pt) 2017-12-28 2019-02-28 controle de temperatura do atuador de extremidade ultrassônico e sistema de controle para o mesmo

Country Status (4)

Country Link
US (1) US11571234B2 (pt)
EP (1) EP3505102B1 (pt)
BR (1) BR112020012402A2 (pt)
WO (1) WO2019134006A1 (pt)

Families Citing this family (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11871901B2 (en) 2012-05-20 2024-01-16 Cilag Gmbh International Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
US11504192B2 (en) 2014-10-30 2022-11-22 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11564756B2 (en) 2017-10-30 2023-01-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11291510B2 (en) 2017-10-30 2022-04-05 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11801098B2 (en) 2017-10-30 2023-10-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11510741B2 (en) 2017-10-30 2022-11-29 Cilag Gmbh International Method for producing a surgical instrument comprising a smart electrical system
US11311342B2 (en) 2017-10-30 2022-04-26 Cilag Gmbh International Method for communicating with surgical instrument systems
US11911045B2 (en) 2017-10-30 2024-02-27 Cllag GmbH International Method for operating a powered articulating multi-clip applier
US11229436B2 (en) 2017-10-30 2022-01-25 Cilag Gmbh International Surgical system comprising a surgical tool and a surgical hub
US11129636B2 (en) 2017-10-30 2021-09-28 Cilag Gmbh International Surgical instruments comprising an articulation drive that provides for high articulation angles
US11141160B2 (en) 2017-10-30 2021-10-12 Cilag Gmbh International Clip applier comprising a motor controller
US11317919B2 (en) 2017-10-30 2022-05-03 Cilag Gmbh International Clip applier comprising a clip crimping system
US10943454B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Detection and escalation of security responses of surgical instruments to increasing severity threats
US10695081B2 (en) 2017-12-28 2020-06-30 Ethicon Llc Controlling a surgical instrument according to sensed closure parameters
US11304699B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11051876B2 (en) 2017-12-28 2021-07-06 Cilag Gmbh International Surgical evacuation flow paths
US11424027B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Method for operating surgical instrument systems
US11589888B2 (en) 2017-12-28 2023-02-28 Cilag Gmbh International Method for controlling smart energy devices
US11540855B2 (en) 2017-12-28 2023-01-03 Cilag Gmbh International Controlling activation of an ultrasonic surgical instrument according to the presence of tissue
US20190201146A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Safety systems for smart powered surgical stapling
US11864728B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Characterization of tissue irregularities through the use of mono-chromatic light refractivity
US11896322B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US11308075B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity
US10987178B2 (en) 2017-12-28 2021-04-27 Ethicon Llc Surgical hub control arrangements
US11529187B2 (en) 2017-12-28 2022-12-20 Cilag Gmbh International Surgical evacuation sensor arrangements
US20190201039A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Situational awareness of electrosurgical systems
US11257589B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes
US11304720B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Activation of energy devices
US11076921B2 (en) 2017-12-28 2021-08-03 Cilag Gmbh International Adaptive control program updates for surgical hubs
US11432885B2 (en) 2017-12-28 2022-09-06 Cilag Gmbh International Sensing arrangements for robot-assisted surgical platforms
US11109866B2 (en) 2017-12-28 2021-09-07 Cilag Gmbh International Method for circular stapler control algorithm adjustment based on situational awareness
US11026751B2 (en) 2017-12-28 2021-06-08 Cilag Gmbh International Display of alignment of staple cartridge to prior linear staple line
US11559308B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method for smart energy device infrastructure
US11132462B2 (en) 2017-12-28 2021-09-28 Cilag Gmbh International Data stripping method to interrogate patient records and create anonymized record
US11317937B2 (en) 2018-03-08 2022-05-03 Cilag Gmbh International Determining the state of an ultrasonic end effector
US11202570B2 (en) 2017-12-28 2021-12-21 Cilag Gmbh International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US11896443B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Control of a surgical system through a surgical barrier
US11744604B2 (en) 2017-12-28 2023-09-05 Cilag Gmbh International Surgical instrument with a hardware-only control circuit
US11324557B2 (en) 2017-12-28 2022-05-10 Cilag Gmbh International Surgical instrument with a sensing array
US11464559B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Estimating state of ultrasonic end effector and control system therefor
US11069012B2 (en) 2017-12-28 2021-07-20 Cilag Gmbh International Interactive surgical systems with condition handling of devices and data capabilities
US11389164B2 (en) 2017-12-28 2022-07-19 Cilag Gmbh International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US10932872B2 (en) 2017-12-28 2021-03-02 Ethicon Llc Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set
US11278281B2 (en) 2017-12-28 2022-03-22 Cilag Gmbh International Interactive surgical system
US11364075B2 (en) 2017-12-28 2022-06-21 Cilag Gmbh International Radio frequency energy device for delivering combined electrical signals
US11410259B2 (en) 2017-12-28 2022-08-09 Cilag Gmbh International Adaptive control program updates for surgical devices
US11147607B2 (en) 2017-12-28 2021-10-19 Cilag Gmbh International Bipolar combination device that automatically adjusts pressure based on energy modality
US11832840B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical instrument having a flexible circuit
US11937769B2 (en) 2017-12-28 2024-03-26 Cilag Gmbh International Method of hub communication, processing, storage and display
US11160605B2 (en) 2017-12-28 2021-11-02 Cilag Gmbh International Surgical evacuation sensing and motor control
US11612444B2 (en) 2017-12-28 2023-03-28 Cilag Gmbh International Adjustment of a surgical device function based on situational awareness
US11998193B2 (en) 2017-12-28 2024-06-04 Cilag Gmbh International Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation
US11419630B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Surgical system distributed processing
US11311306B2 (en) 2017-12-28 2022-04-26 Cilag Gmbh International Surgical systems for detecting end effector tissue distribution irregularities
US11304745B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical evacuation sensing and display
US11678881B2 (en) 2017-12-28 2023-06-20 Cilag Gmbh International Spatial awareness of surgical hubs in operating rooms
US11423007B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Adjustment of device control programs based on stratified contextual data in addition to the data
US11179208B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Cloud-based medical analytics for security and authentication trends and reactive measures
US11659023B2 (en) 2017-12-28 2023-05-23 Cilag Gmbh International Method of hub communication
US11266468B2 (en) 2017-12-28 2022-03-08 Cilag Gmbh International Cooperative utilization of data derived from secondary sources by intelligent surgical hubs
US11857152B2 (en) 2017-12-28 2024-01-02 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
US11559307B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method of robotic hub communication, detection, and control
US11818052B2 (en) 2017-12-28 2023-11-14 Cilag Gmbh International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11304763B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use
US11576677B2 (en) 2017-12-28 2023-02-14 Cilag Gmbh International Method of hub communication, processing, display, and cloud analytics
US11096693B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing
US11832899B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical systems with autonomously adjustable control programs
US11464535B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Detection of end effector emersion in liquid
US11969142B2 (en) 2017-12-28 2024-04-30 Cilag Gmbh International Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US11602393B2 (en) 2017-12-28 2023-03-14 Cilag Gmbh International Surgical evacuation sensing and generator control
US11058498B2 (en) 2017-12-28 2021-07-13 Cilag Gmbh International Cooperative surgical actions for robot-assisted surgical platforms
US11253315B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Increasing radio frequency to create pad-less monopolar loop
US11291495B2 (en) 2017-12-28 2022-04-05 Cilag Gmbh International Interruption of energy due to inadvertent capacitive coupling
US11013563B2 (en) 2017-12-28 2021-05-25 Ethicon Llc Drive arrangements for robot-assisted surgical platforms
US11969216B2 (en) 2017-12-28 2024-04-30 Cilag Gmbh International Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution
US11273001B2 (en) 2017-12-28 2022-03-15 Cilag Gmbh International Surgical hub and modular device response adjustment based on situational awareness
US11786245B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Surgical systems with prioritized data transmission capabilities
US11056244B2 (en) 2017-12-28 2021-07-06 Cilag Gmbh International Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks
US11666331B2 (en) 2017-12-28 2023-06-06 Cilag Gmbh International Systems for detecting proximity of surgical end effector to cancerous tissue
US10892995B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11100631B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Use of laser light and red-green-blue coloration to determine properties of back scattered light
US11633237B2 (en) 2017-12-28 2023-04-25 Cilag Gmbh International Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US11376002B2 (en) 2017-12-28 2022-07-05 Cilag Gmbh International Surgical instrument cartridge sensor assemblies
US10898622B2 (en) 2017-12-28 2021-01-26 Ethicon Llc Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device
US10892899B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Self describing data packets generated at an issuing instrument
US11612408B2 (en) 2017-12-28 2023-03-28 Cilag Gmbh International Determining tissue composition via an ultrasonic system
US10849697B2 (en) 2017-12-28 2020-12-01 Ethicon Llc Cloud interface for coupled surgical devices
US10966791B2 (en) 2017-12-28 2021-04-06 Ethicon Llc Cloud-based medical analytics for medical facility segmented individualization of instrument function
US11284936B2 (en) 2017-12-28 2022-03-29 Cilag Gmbh International Surgical instrument having a flexible electrode
US11786251B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US10944728B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Interactive surgical systems with encrypted communication capabilities
US10755813B2 (en) 2017-12-28 2020-08-25 Ethicon Llc Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform
US11166772B2 (en) 2017-12-28 2021-11-09 Cilag Gmbh International Surgical hub coordination of control and communication of operating room devices
US11419667B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location
US11446052B2 (en) 2017-12-28 2022-09-20 Cilag Gmbh International Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue
US11903601B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Surgical instrument comprising a plurality of drive systems
US10758310B2 (en) 2017-12-28 2020-09-01 Ethicon Llc Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US11234756B2 (en) 2017-12-28 2022-02-01 Cilag Gmbh International Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter
US11701162B2 (en) 2018-03-08 2023-07-18 Cilag Gmbh International Smart blade application for reusable and disposable devices
US11707293B2 (en) 2018-03-08 2023-07-25 Cilag Gmbh International Ultrasonic sealing algorithm with temperature control
US11259830B2 (en) * 2018-03-08 2022-03-01 Cilag Gmbh International Methods for controlling temperature in ultrasonic device
US11213294B2 (en) 2018-03-28 2022-01-04 Cilag Gmbh International Surgical instrument comprising co-operating lockout features
US11471156B2 (en) 2018-03-28 2022-10-18 Cilag Gmbh International Surgical stapling devices with improved rotary driven closure systems
US11278280B2 (en) 2018-03-28 2022-03-22 Cilag Gmbh International Surgical instrument comprising a jaw closure lockout
US11589865B2 (en) 2018-03-28 2023-02-28 Cilag Gmbh International Methods for controlling a powered surgical stapler that has separate rotary closure and firing systems
US11207067B2 (en) 2018-03-28 2021-12-28 Cilag Gmbh International Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing
US10973520B2 (en) 2018-03-28 2021-04-13 Ethicon Llc Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature
US11219453B2 (en) 2018-03-28 2022-01-11 Cilag Gmbh International Surgical stapling devices with cartridge compatible closure and firing lockout arrangements
US11096688B2 (en) 2018-03-28 2021-08-24 Cilag Gmbh International Rotary driven firing members with different anvil and channel engagement features
US11090047B2 (en) 2018-03-28 2021-08-17 Cilag Gmbh International Surgical instrument comprising an adaptive control system
BR102019017761A2 (pt) * 2018-08-28 2020-05-26 Ethicon Llc Controle de temperatura do atuador de extremidade ultrassônico e sistema de controle para o mesmo
CN113226673A (zh) * 2018-10-25 2021-08-06 温克机器人技术公司 用于美容机器人科学的可分离端部执行器
US11369377B2 (en) 2019-02-19 2022-06-28 Cilag Gmbh International Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout
US11464511B2 (en) 2019-02-19 2022-10-11 Cilag Gmbh International Surgical staple cartridges with movable authentication key arrangements
US11272931B2 (en) 2019-02-19 2022-03-15 Cilag Gmbh International Dual cam cartridge based feature for unlocking a surgical stapler lockout
US11357503B2 (en) 2019-02-19 2022-06-14 Cilag Gmbh International Staple cartridge retainers with frangible retention features and methods of using same
US11317915B2 (en) 2019-02-19 2022-05-03 Cilag Gmbh International Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers
USD964564S1 (en) 2019-06-25 2022-09-20 Cilag Gmbh International Surgical staple cartridge retainer with a closure system authentication key
USD952144S1 (en) 2019-06-25 2022-05-17 Cilag Gmbh International Surgical staple cartridge retainer with firing system authentication key
USD950728S1 (en) 2019-06-25 2022-05-03 Cilag Gmbh International Surgical staple cartridge
CN111084611B (zh) * 2019-12-25 2022-09-20 苏州大学 基于辐射比色测温仪的头戴式体温实时监控耳温计
CN111557739B (zh) * 2020-01-14 2023-05-02 杭州法博激光科技有限公司 适用于软镜辅助装置的计算机存储介质
US11331157B2 (en) 2020-03-19 2022-05-17 Verb Surgical Inc. Integrated robotic insufflation and smoke evacuation
US20210393310A1 (en) * 2020-06-23 2021-12-23 Olympus Corporation Method for controlling a medical device and a medical device implementing the same
CN113722994B (zh) * 2021-08-30 2023-11-07 以诺康医疗科技(苏州)有限公司 基于温度分布函数模型的超声刀杆温度控制方法及系统

Family Cites Families (2079)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1853416A (en) 1931-01-24 1932-04-12 Ada P Hall Tattoo marker
US2222125A (en) 1940-03-19 1940-11-19 Rudolph J Stehlik Nail driver
US3082426A (en) 1960-06-17 1963-03-26 George Oliver Halsted Surgical stapling device
US3503396A (en) 1967-09-21 1970-03-31 American Hospital Supply Corp Atraumatic surgical clamp
US3584628A (en) 1968-10-11 1971-06-15 United States Surgical Corp Wire suture wrapping instrument
US3633584A (en) 1969-06-10 1972-01-11 Research Corp Method and means for marking animals for identification
US4041362A (en) 1970-01-23 1977-08-09 Canon Kabushiki Kaisha Motor control system
US3626457A (en) 1970-03-05 1971-12-07 Koppers Co Inc Sentinel control for cutoff apparatus
DE2037167A1 (pt) 1970-07-27 1972-02-03 Kretschmer H
US3759017A (en) 1971-10-22 1973-09-18 American Air Filter Co Latch for a filter apparatus
US3863118A (en) 1973-01-26 1975-01-28 Warner Electric Brake & Clutch Closed-loop speed control for step motors
US3898545A (en) 1973-05-25 1975-08-05 Mohawk Data Sciences Corp Motor control circuit
US3932812A (en) 1974-03-20 1976-01-13 Peripheral Equipment Corporation Motor speed indicator
US3912121A (en) 1974-08-14 1975-10-14 Dickey John Corp Controlled population monitor
US3915271A (en) 1974-09-25 1975-10-28 Koppers Co Inc Method and apparatus for electronically controlling the engagement of coacting propulsion systems
US4052649A (en) 1975-06-18 1977-10-04 Lear Motors Corporation Hand held variable speed drill motor and control system therefor
AT340039B (de) 1975-09-18 1977-11-25 Viennatone Gmbh Myoelektrische steuerschaltung
US4096006A (en) 1976-09-22 1978-06-20 Spectra-Strip Corporation Method and apparatus for making twisted pair multi-conductor ribbon cable with intermittent straight sections
US4412539A (en) 1976-10-08 1983-11-01 United States Surgical Corporation Repeating hemostatic clip applying instruments and multi-clip cartridges therefor
US4171700A (en) 1976-10-13 1979-10-23 Erbe Elektromedizin Gmbh & Co. Kg High-frequency surgical apparatus
JPS6056394B2 (ja) 1976-12-10 1985-12-10 ソニー株式会社 モ−タの制御装置
US4157859A (en) 1977-05-26 1979-06-12 Clifford Terry Surgical microscope system
CA1124605A (en) 1977-08-05 1982-06-01 Charles H. Klieman Surgical stapler
DE3016131A1 (de) 1980-04-23 1981-10-29 Siemens AG, 1000 Berlin und 8000 München Nachrichtenkabel mit einer vorrichtung zur bestimmung des feuchtezustandes
DE3204522A1 (de) 1982-02-10 1983-08-25 B. Braun Melsungen Ag, 3508 Melsungen Chirurgisches hautklammergeraet
US4448193A (en) 1982-02-26 1984-05-15 Ethicon, Inc. Surgical clip applier with circular clip magazine
US5385544A (en) 1992-08-12 1995-01-31 Vidamed, Inc. BPH ablation method and apparatus
US4614366A (en) 1983-11-18 1986-09-30 Exactident, Inc. Nail identification wafer
US4633874A (en) 1984-10-19 1987-01-06 Senmed, Inc. Surgical stapling instrument with jaw latching mechanism and disposable staple cartridge
US4608160A (en) 1984-11-05 1986-08-26 Nelson Industries, Inc. System for separating liquids
DE3523871C3 (de) 1985-07-04 1994-07-28 Erbe Elektromedizin Hochfrequenz-Chirurgiegerät
US4701193A (en) 1985-09-11 1987-10-20 Xanar, Inc. Smoke evacuator system for use in laser surgery
GB2180972A (en) 1985-09-27 1987-04-08 Philips Electronic Associated Generating addresses for circuit units
US5047043A (en) 1986-03-11 1991-09-10 Olympus Optical Co., Ltd. Resecting device for living organism tissue utilizing ultrasonic vibrations
US4735603A (en) 1986-09-10 1988-04-05 James H. Goodson Laser smoke evacuation system and method
USD303787S (en) 1986-10-31 1989-10-03 Messenger Ronald L Connector strain relieving back shell
GB8704265D0 (en) 1987-02-24 1987-04-01 Yang T H Manual electric tools(1)
US5084057A (en) 1989-07-18 1992-01-28 United States Surgical Corporation Apparatus and method for applying surgical clips in laparoscopic or endoscopic procedures
US5158585A (en) 1988-04-13 1992-10-27 Hitachi, Ltd. Compressor unit and separator therefor
DE3824913A1 (de) 1988-07-22 1990-02-01 Thomas Hill Einrichtung zur ueberwachung von hochfrequenten elektrischen leckstroemen
JPH071130Y2 (ja) 1988-10-25 1995-01-18 オリンパス光学工業株式会社 超音波処置装置
US4892244A (en) 1988-11-07 1990-01-09 Ethicon, Inc. Surgical stapler cartridge lockout device
US4955959A (en) 1989-05-26 1990-09-11 United States Surgical Corporation Locking mechanism for a surgical fastening apparatus
DE4017626A1 (de) 1989-05-31 1990-12-06 Kyocera Corp Blutgefaesskoagulations-/-blutstillungs-einrichtung
JPH0341943A (ja) 1989-07-10 1991-02-22 Topcon Corp レーザー手術装置
US5010341A (en) 1989-10-04 1991-04-23 The United States Of America As Represented By The Secretary Of The Navy High pulse repetition frequency radar early warning receiver
DE4002843C1 (en) 1990-02-01 1991-04-18 Gesellschaft Fuer Geraetebau Mbh, 4600 Dortmund, De Protective breathing mask with filter - having gas sensors in-front and behind with difference in their signals providing signal for change of filter
US5035692A (en) 1990-02-13 1991-07-30 Nicholas Herbert Hemostasis clip applicator
US5026387A (en) 1990-03-12 1991-06-25 Ultracision Inc. Method and apparatus for ultrasonic surgical cutting and hemostatis
US5318516A (en) 1990-05-23 1994-06-07 Ioan Cosmescu Radio frequency sensor for automatic smoke evacuator system for a surgical laser and/or electrical apparatus and method therefor
DE4026452C2 (de) 1990-08-21 1993-12-02 Schott Glaswerke Vorrichtung zur Erkennung und Unterscheidung von unter eine Steckverbindung an einen Laser anschließbaren medizinischen Einwegapplikatoren
US5204669A (en) 1990-08-30 1993-04-20 Datacard Corporation Automatic station identification where function modules automatically initialize
US5156315A (en) 1990-09-17 1992-10-20 United States Surgical Corporation Arcuate apparatus for applying two-part surgical fasteners
US5253793A (en) 1990-09-17 1993-10-19 United States Surgical Corporation Apparatus for applying two-part surgical fasteners
US5100402A (en) 1990-10-05 1992-03-31 Megadyne Medical Products, Inc. Electrosurgical laparoscopic cauterization electrode
US5129570A (en) 1990-11-30 1992-07-14 Ethicon, Inc. Surgical stapler
BR9107241A (pt) 1990-12-18 1994-02-16 Minnesota Mining & Mfg Conjunto de cartucho para grampos adaptado para uso em um grampeador cirurgico
USD399561S (en) 1991-01-24 1998-10-13 Megadyne Medical Products, Inc. Electrical surgical forceps handle
US5217003A (en) 1991-03-18 1993-06-08 Wilk Peter J Automated surgical system and apparatus
US5423192A (en) 1993-08-18 1995-06-13 General Electric Company Electronically commutated motor for driving a compressor
US5396900A (en) 1991-04-04 1995-03-14 Symbiosis Corporation Endoscopic end effectors constructed from a combination of conductive and non-conductive materials and useful for selective endoscopic cautery
US5171247A (en) 1991-04-04 1992-12-15 Ethicon, Inc. Endoscopic multiple ligating clip applier with rotating shaft
US5189277A (en) 1991-04-08 1993-02-23 Thermal Dynamics Corporation Modular, stackable plasma cutting apparatus
US5413267A (en) 1991-05-14 1995-05-09 United States Surgical Corporation Surgical stapler with spent cartridge sensing and lockout means
US5197962A (en) 1991-06-05 1993-03-30 Megadyne Medical Products, Inc. Composite electrosurgical medical instrument
US5417210A (en) 1992-05-27 1995-05-23 International Business Machines Corporation System and method for augmentation of endoscopic surgery
USD327061S (en) 1991-07-29 1992-06-16 Motorola, Inc. Radio telephone controller or similar article
US6250532B1 (en) 1991-10-18 2001-06-26 United States Surgical Corporation Surgical stapling apparatus
US5397046A (en) 1991-10-18 1995-03-14 United States Surgical Corporation Lockout mechanism for surgical apparatus
US5307976A (en) 1991-10-18 1994-05-03 Ethicon, Inc. Linear stapling mechanism with cutting means
EP0642376A4 (en) 1991-11-01 1995-04-12 Sorenson Laboratories, Inc. Dual mode laser smoke evacuation system with sequential filter monitor and vacuum compensation.
US7497828B1 (en) 1992-01-10 2009-03-03 Wilk Ultrasound Of Canada, Inc. Ultrasonic medical device and associated method
US5383880A (en) 1992-01-17 1995-01-24 Ethicon, Inc. Endoscopic surgical system with sensing means
US5271543A (en) 1992-02-07 1993-12-21 Ethicon, Inc. Surgical anastomosis stapling instrument with flexible support shaft and anvil adjusting mechanism
US5318563A (en) 1992-06-04 1994-06-07 Valley Forge Scientific Corporation Bipolar RF generator
US5906625A (en) 1992-06-04 1999-05-25 Olympus Optical Co., Ltd. Tissue-fixing surgical instrument, tissue-fixing device, and method of fixing tissue
US5762458A (en) 1996-02-20 1998-06-09 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US5772597A (en) 1992-09-14 1998-06-30 Sextant Medical Corporation Surgical tool end effector
FR2696089B1 (fr) 1992-09-25 1994-11-25 Gen Electric Cgr Dispositif de manipulation d'un appareil de radiologie.
US5626587A (en) 1992-10-09 1997-05-06 Ethicon Endo-Surgery, Inc. Method for operating a surgical instrument
DE4304353A1 (de) 1992-10-24 1994-04-28 Helmut Dipl Ing Wurster Endoskopisches Nähgerät
US5610811A (en) 1992-11-09 1997-03-11 Niti-On Medical Supply Co., Ltd. Surgical instrument file system
US5417699A (en) 1992-12-10 1995-05-23 Perclose Incorporated Device and method for the percutaneous suturing of a vascular puncture site
US5697926A (en) 1992-12-17 1997-12-16 Megadyne Medical Products, Inc. Cautery medical instrument
US5403312A (en) 1993-07-22 1995-04-04 Ethicon, Inc. Electrosurgical hemostatic device
US5403327A (en) 1992-12-31 1995-04-04 Pilling Weck Incorporated Surgical clip applier
US5322055B1 (en) 1993-01-27 1997-10-14 Ultracision Inc Clamp coagulator/cutting system for ultrasonic surgical instruments
US5987346A (en) 1993-02-26 1999-11-16 Benaron; David A. Device and method for classification of tissue
US5467911A (en) 1993-04-27 1995-11-21 Olympus Optical Co., Ltd. Surgical device for stapling and fastening body tissues
DE69414244T2 (de) 1993-04-30 1999-04-22 United States Surgical Corp Chirurgisches instrument mit einer schwenkbaren backenstruktur
GB9309142D0 (en) 1993-05-04 1993-06-16 Gyrus Medical Ltd Laparoscopic instrument
US5364003A (en) 1993-05-05 1994-11-15 Ethicon Endo-Surgery Staple cartridge for a surgical stapler
US5439468A (en) 1993-05-07 1995-08-08 Ethicon Endo-Surgery Surgical clip applier
ES2189805T3 (es) 1993-07-01 2003-07-16 Boston Scient Ltd Cateteres de visualizacion de imagen, de potencial electrico y de ablacion.
US5817093A (en) 1993-07-22 1998-10-06 Ethicon Endo-Surgery, Inc. Impedance feedback monitor with query electrode for electrosurgical instrument
GR940100335A (el) 1993-07-22 1996-05-22 Ethicon Inc. Ηλεκτροχειρουργικη συσκευη τοποθετησης συρραπτικων αγκυλων.
US5342349A (en) 1993-08-18 1994-08-30 Sorenson Laboratories, Inc. Apparatus and system for coordinating a surgical plume evacuator and power generator
US5503320A (en) 1993-08-19 1996-04-02 United States Surgical Corporation Surgical apparatus with indicator
ZA948393B (en) 1993-11-01 1995-06-26 Polartechnics Ltd Method and apparatus for tissue type recognition
US5462545A (en) 1994-01-31 1995-10-31 New England Medical Center Hospitals, Inc. Catheter electrodes
US5560372A (en) 1994-02-02 1996-10-01 Cory; Philip C. Non-invasive, peripheral nerve mapping device and method of use
US5465895A (en) 1994-02-03 1995-11-14 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
US5415335A (en) 1994-04-07 1995-05-16 Ethicon Endo-Surgery Surgical stapler cartridge containing lockout mechanism
US5529235A (en) 1994-04-28 1996-06-25 Ethicon Endo-Surgery, Inc. Identification device for surgical instrument
US5474566A (en) 1994-05-05 1995-12-12 United States Surgical Corporation Self-contained powered surgical apparatus
ATE239425T1 (de) 1994-07-29 2003-05-15 Olympus Optical Co Medizinisches instrument zur benützung in kombination mit endoskopen
US5496315A (en) 1994-08-26 1996-03-05 Megadyne Medical Products, Inc. Medical electrode insulating system
US6646541B1 (en) 1996-06-24 2003-11-11 Computer Motion, Inc. General purpose distributed operating room control system
US7053752B2 (en) 1996-08-06 2006-05-30 Intuitive Surgical General purpose distributed operating room control system
DE4434864C2 (de) 1994-09-29 1997-06-19 United States Surgical Corp Chirurgischer Klammerapplikator mit auswechselbarem Klammermagazin
US6678552B2 (en) 1994-10-24 2004-01-13 Transscan Medical Ltd. Tissue characterization based on impedance images and on impedance measurements
US5531743A (en) 1994-11-18 1996-07-02 Megadyne Medical Products, Inc. Resposable electrode
US5846237A (en) 1994-11-18 1998-12-08 Megadyne Medical Products, Inc. Insulated implement
JPH08164148A (ja) 1994-12-13 1996-06-25 Olympus Optical Co Ltd 内視鏡下手術装置
US5836869A (en) 1994-12-13 1998-11-17 Olympus Optical Co., Ltd. Image tracking endoscope system
US5632432A (en) 1994-12-19 1997-05-27 Ethicon Endo-Surgery, Inc. Surgical instrument
US5613966A (en) 1994-12-21 1997-03-25 Valleylab Inc System and method for accessory rate control
DE19503702B4 (de) 1995-02-04 2005-10-27 Nicolay Verwaltungs-Gmbh Flüssigkeits- und gasdicht gekapselter Schalter, insbesondere für elektrochirurgische Instrumente
US5654750A (en) 1995-02-23 1997-08-05 Videorec Technologies, Inc. Automatic recording system
US5735445A (en) 1995-03-07 1998-04-07 United States Surgical Corporation Surgical stapler
US5695505A (en) 1995-03-09 1997-12-09 Yoon; Inbae Multifunctional spring clips and cartridges and applicators therefor
US5942333A (en) 1995-03-27 1999-08-24 Texas Research Institute Non-conductive coatings for underwater connector backshells
US5624452A (en) 1995-04-07 1997-04-29 Ethicon Endo-Surgery, Inc. Hemostatic surgical cutting or stapling instrument
US5775331A (en) 1995-06-07 1998-07-07 Uromed Corporation Apparatus and method for locating a nerve
US5752644A (en) 1995-07-11 1998-05-19 United States Surgical Corporation Disposable loading unit for surgical stapler
US5706998A (en) 1995-07-17 1998-01-13 United States Surgical Corporation Surgical stapler with alignment pin locking mechanism
US5718359A (en) 1995-08-14 1998-02-17 United States Of America Surgical Corporation Surgical stapler with lockout mechanism
US5693052A (en) 1995-09-01 1997-12-02 Megadyne Medical Products, Inc. Coated bipolar electrocautery
USD379346S (en) 1995-09-05 1997-05-20 International Business Machines Corporation Battery charger
US6283960B1 (en) 1995-10-24 2001-09-04 Oratec Interventions, Inc. Apparatus for delivery of energy to a surgical site
GB9521772D0 (en) 1995-10-24 1996-01-03 Gyrus Medical Ltd An electrosurgical instrument
DE19546707A1 (de) 1995-12-14 1997-06-19 Bayerische Motoren Werke Ag Antriebseinrichtung für ein Kraftfahrzeug
US5746209A (en) 1996-01-26 1998-05-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of and apparatus for histological human tissue characterizationusing ultrasound
US5762255A (en) 1996-02-20 1998-06-09 Richard-Allan Medical Industries, Inc. Surgical instrument with improvement safety lockout mechanisms
US6010054A (en) 1996-02-20 2000-01-04 Imagyn Medical Technologies Linear stapling instrument with improved staple cartridge
US5797537A (en) 1996-02-20 1998-08-25 Richard-Allan Medical Industries, Inc. Articulated surgical instrument with improved firing mechanism
US5725536A (en) 1996-02-20 1998-03-10 Richard-Allen Medical Industries, Inc. Articulated surgical instrument with improved articulation control mechanism
US5820009A (en) 1996-02-20 1998-10-13 Richard-Allan Medical Industries, Inc. Articulated surgical instrument with improved jaw closure mechanism
US6099537A (en) 1996-02-26 2000-08-08 Olympus Optical Co., Ltd. Medical treatment instrument
US5673842A (en) 1996-03-05 1997-10-07 Ethicon Endo-Surgery Surgical stapler with locking mechanism
IL117607A0 (en) 1996-03-21 1996-07-23 Dev Of Advanced Medical Produc Surgical stapler and method of surgical fastening
EP0893969B1 (en) 1996-04-18 2005-06-29 Applied Medical Resources Corporation Malleable clip applier
US6911916B1 (en) 1996-06-24 2005-06-28 The Cleveland Clinic Foundation Method and apparatus for accessing medical data over a network
US6017354A (en) 1996-08-15 2000-01-25 Stryker Corporation Integrated system for powered surgical tools
US5997528A (en) 1996-08-29 1999-12-07 Bausch & Lomb Surgical, Inc. Surgical system providing automatic reconfiguration
ES2222518T3 (es) 1996-08-29 2005-02-01 BAUSCH &amp; LOMB INCORPORATED Control de frecuencia y de potencia de dos bucles.
US5724468A (en) 1996-09-09 1998-03-03 Lucent Technologies Inc. Electronic backplane device for a fiber distribution shelf in an optical fiber administration system
US7030146B2 (en) 1996-09-10 2006-04-18 University Of South Carolina Methods for treating diabetic neuropathy
US5836909A (en) 1996-09-13 1998-11-17 Cosmescu; Ioan Automatic fluid control system for use in open and laparoscopic laser surgery and electrosurgery and method therefor
US6109500A (en) 1996-10-04 2000-08-29 United States Surgical Corporation Lockout mechanism for a surgical stapler
US5843080A (en) 1996-10-16 1998-12-01 Megadyne Medical Products, Inc. Bipolar instrument with multi-coated electrodes
US6053910A (en) 1996-10-30 2000-04-25 Megadyne Medical Products, Inc. Capacitive reusable electrosurgical return electrode
US6582424B2 (en) 1996-10-30 2003-06-24 Megadyne Medical Products, Inc. Capacitive reusable electrosurgical return electrode
US7054674B2 (en) 1996-11-19 2006-05-30 Astron Clinica Limited Method of and apparatus for investigating tissue histology
US5766186A (en) 1996-12-03 1998-06-16 Simon Fraser University Suturing device
US6331181B1 (en) 1998-12-08 2001-12-18 Intuitive Surgical, Inc. Surgical robotic tools, data architecture, and use
US9050119B2 (en) 2005-12-20 2015-06-09 Intuitive Surgical Operations, Inc. Cable tensioning in a robotic surgical system
US8183998B2 (en) 1996-12-16 2012-05-22 Ip Holdings, Inc. System for seamless and secure networking of implantable medical devices, electronic patch devices and wearable devices
EP0864348A1 (en) 1997-03-11 1998-09-16 Philips Electronics N.V. Gas purifier
US6699187B2 (en) 1997-03-27 2004-03-02 Medtronic, Inc. System and method for providing remote expert communications and video capabilities for use during a medical procedure
US7041941B2 (en) 1997-04-07 2006-05-09 Patented Medical Solutions, Llc Medical item thermal treatment systems and method of monitoring medical items for compliance with prescribed requirements
US5947996A (en) 1997-06-23 1999-09-07 Medicor Corporation Yoke for surgical instrument
DE19731894C1 (de) 1997-07-24 1999-05-12 Storz Karl Gmbh & Co Endoskopisches Instrument zur Durchführung von endoskopischen Eingriffen oder Untersuchungen und endoskopisches Instrumentarium, enthaltend ein solches endoskopisches Instrument
US5878938A (en) 1997-08-11 1999-03-09 Ethicon Endo-Surgery, Inc. Surgical stapler with improved locking mechanism
US6102907A (en) 1997-08-15 2000-08-15 Somnus Medical Technologies, Inc. Apparatus and device for use therein and method for ablation of tissue
US5865361A (en) 1997-09-23 1999-02-02 United States Surgical Corporation Surgical stapling apparatus
US6039735A (en) 1997-10-03 2000-03-21 Megadyne Medical Products, Inc. Electric field concentrated electrosurgical electrode
US5873873A (en) 1997-10-10 1999-02-23 Ethicon Endo-Surgery, Inc. Ultrasonic clamp coagulator apparatus having improved clamp mechanism
US5980510A (en) 1997-10-10 1999-11-09 Ethicon Endo-Surgery, Inc. Ultrasonic clamp coagulator apparatus having improved clamp arm pivot mount
US6068627A (en) 1997-12-10 2000-05-30 Valleylab, Inc. Smart recognition apparatus and method
US6273887B1 (en) 1998-01-23 2001-08-14 Olympus Optical Co., Ltd. High-frequency treatment tool
WO1999040861A1 (en) 1998-02-17 1999-08-19 Baker James A Radiofrequency medical instrument for vessel welding
US6457625B1 (en) 1998-02-17 2002-10-01 Bionx Implants, Oy Device for installing a tissue fastener
US6126658A (en) 1998-02-19 2000-10-03 Baker; James A. Radiofrequency medical instrument and methods for vessel welding
JPH11267133A (ja) 1998-03-25 1999-10-05 Olympus Optical Co Ltd 治療装置
US5968032A (en) 1998-03-30 1999-10-19 Sleister; Dennis R. Smoke evacuator for a surgical laser or cautery plume
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6059799A (en) 1998-06-25 2000-05-09 United States Surgical Corporation Apparatus for applying surgical clips
US6341164B1 (en) 1998-07-22 2002-01-22 Entrust Technologies Limited Method and apparatus for correcting improper encryption and/or for reducing memory storage
US6126592A (en) 1998-09-12 2000-10-03 Smith & Nephew, Inc. Endoscope cleaning and irrigation sheath
US6090107A (en) 1998-10-20 2000-07-18 Megadyne Medical Products, Inc. Resposable electrosurgical instrument
US20100042093A9 (en) 1998-10-23 2010-02-18 Wham Robert H System and method for terminating treatment in impedance feedback algorithm
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
CA2347286A1 (en) 1998-10-23 2000-05-04 Applied Medical Resources Corporation Surgical grasper with inserts and method of using same
US7901400B2 (en) 1998-10-23 2011-03-08 Covidien Ag Method and system for controlling output of RF medical generator
JP4101951B2 (ja) 1998-11-10 2008-06-18 オリンパス株式会社 手術用顕微鏡
US6451015B1 (en) 1998-11-18 2002-09-17 Sherwood Services Ag Method and system for menu-driven two-dimensional display lesion generator
US6659939B2 (en) 1998-11-20 2003-12-09 Intuitive Surgical, Inc. Cooperative minimally invasive telesurgical system
US6325808B1 (en) 1998-12-08 2001-12-04 Advanced Realtime Control Systems, Inc. Robotic system, docking station, and surgical tool for collaborative control in minimally invasive surgery
US6522906B1 (en) 1998-12-08 2003-02-18 Intuitive Surgical, Inc. Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure
DE19860689C2 (de) 1998-12-29 2001-07-05 Erbe Elektromedizin Verfahren zum Steuern einer Vorrichtung zum Entfernen von Rauch sowie Vorrichtung zur Durchführung des Verfahrens
ATE543442T1 (de) 1998-12-31 2012-02-15 Kensey Nash Corp Gewebebefestigungsvorrichtungen
US6423057B1 (en) 1999-01-25 2002-07-23 The Arizona Board Of Regents On Behalf Of The University Of Arizona Method and apparatus for monitoring and controlling tissue temperature and lesion formation in radio-frequency ablation procedures
GB2351884B (en) 1999-04-10 2002-07-31 Peter Strong Data transmission method
US6308089B1 (en) 1999-04-14 2001-10-23 O.B. Scientific, Inc. Limited use medical probe
US6301495B1 (en) 1999-04-27 2001-10-09 International Business Machines Corporation System and method for intra-operative, image-based, interactive verification of a pre-operative surgical plan
US6461352B2 (en) 1999-05-11 2002-10-08 Stryker Corporation Surgical handpiece with self-sealing switch assembly
US6454781B1 (en) 1999-05-26 2002-09-24 Ethicon Endo-Surgery, Inc. Feedback control in an ultrasonic surgical instrument for improved tissue effects
US6264087B1 (en) 1999-07-12 2001-07-24 Powermed, Inc. Expanding parallel jaw device for use with an electromechanical driver device
US8241322B2 (en) 2005-07-27 2012-08-14 Tyco Healthcare Group Lp Surgical device
US6793652B1 (en) 1999-06-02 2004-09-21 Power Medical Interventions, Inc. Electro-mechanical surgical device
US6716233B1 (en) 1999-06-02 2004-04-06 Power Medical Interventions, Inc. Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities
US8025199B2 (en) 2004-02-23 2011-09-27 Tyco Healthcare Group Lp Surgical cutting and stapling device
US8229549B2 (en) 2004-07-09 2012-07-24 Tyco Healthcare Group Lp Surgical imaging device
US8262560B2 (en) 2001-04-20 2012-09-11 Tyco Healthcare Group Lp Imaging device for use with a surgical device
US6443973B1 (en) 1999-06-02 2002-09-03 Power Medical Interventions, Inc. Electromechanical driver device for use with anastomosing, stapling, and resecting instruments
US7032798B2 (en) 1999-06-02 2006-04-25 Power Medical Interventions, Inc. Electro-mechanical surgical device
US6619406B1 (en) 1999-07-14 2003-09-16 Cyra Technologies, Inc. Advanced applications for 3-D autoscanning LIDAR system
JP2001029353A (ja) 1999-07-21 2001-02-06 Olympus Optical Co Ltd 超音波処置装置
WO2001008578A1 (en) 1999-07-30 2001-02-08 Vivant Medical, Inc. Device and method for safe location and marking of a cavity and sentinel lymph nodes
DE19935904C1 (de) 1999-07-30 2001-07-12 Karlsruhe Forschzent Applikatorspitze eines chirurgischen Applikators zum Setzen von Clips/Klammern für die Verbindung von Gewebe
AU7880600A (en) 1999-08-12 2001-03-13 Somnus Medical Technologies, Inc. Nerve stimulation and tissue ablation apparatus and method
US6269411B1 (en) 1999-08-12 2001-07-31 Hewlett-Packard Company System for enabling stacking of autochanger modules
US6611793B1 (en) 1999-09-07 2003-08-26 Scimed Life Systems, Inc. Systems and methods to identify and disable re-use single use devices based on detecting environmental changes
WO2001020892A2 (en) 1999-09-13 2001-03-22 Fernway Limited A method for transmitting data between respective first and second modems in a telecommunications system, and a telecommunications system
US8004229B2 (en) 2005-05-19 2011-08-23 Intuitive Surgical Operations, Inc. Software center and highly configurable robotic systems for surgery and other uses
US6325811B1 (en) 1999-10-05 2001-12-04 Ethicon Endo-Surgery, Inc. Blades with functional balance asymmetries for use with ultrasonic surgical instruments
US20040078236A1 (en) 1999-10-30 2004-04-22 Medtamic Holdings Storage and access of aggregate patient data for analysis
US6466817B1 (en) 1999-11-24 2002-10-15 Nuvasive, Inc. Nerve proximity and status detection system and method
WO2001051122A1 (en) 2000-01-07 2001-07-19 Biowave Corporation Electro therapy method and apparatus
US6569109B2 (en) 2000-02-04 2003-05-27 Olympus Optical Co., Ltd. Ultrasonic operation apparatus for performing follow-up control of resonance frequency drive of ultrasonic oscillator by digital PLL system using DDS (direct digital synthesizer)
US6911033B2 (en) 2001-08-21 2005-06-28 Microline Pentax Inc. Medical clip applying device
US8016855B2 (en) 2002-01-08 2011-09-13 Tyco Healthcare Group Lp Surgical device
US7770773B2 (en) 2005-07-27 2010-08-10 Power Medical Interventions, Llc Surgical device
AUPQ600100A0 (en) 2000-03-03 2000-03-23 Macropace Products Pty. Ltd. Animation technology
US6689131B2 (en) 2001-03-08 2004-02-10 Tissuelink Medical, Inc. Electrosurgical device having a tissue reduction sensor
US6391102B1 (en) 2000-03-21 2002-05-21 Stackhouse, Inc. Air filtration system with filter efficiency management
US6778846B1 (en) 2000-03-30 2004-08-17 Medtronic, Inc. Method of guiding a medical device and system regarding same
NZ522128A (en) 2000-03-31 2003-08-29 Rita Medical Systems Inc Tissue biopsy and treatment apparatus and method
US6905498B2 (en) 2000-04-27 2005-06-14 Atricure Inc. Transmural ablation device with EKG sensor and pacing electrode
US7252664B2 (en) 2000-05-12 2007-08-07 Cardima, Inc. System and method for multi-channel RF energy delivery with coagulum reduction
WO2001087154A1 (en) 2000-05-18 2001-11-22 Nuvasive, Inc. Tissue discrimination and applications in medical procedures
DE10025285A1 (de) 2000-05-22 2001-12-06 Siemens Ag Vollautomatische, robotergestützte Kameraführung unter Verwendung von Positionssensoren für laparoskopische Eingriffe
US6742895B2 (en) 2000-07-06 2004-06-01 Alan L. Robin Internet-based glaucoma diagnostic system
AU2001279026B2 (en) 2000-07-25 2005-12-22 Angiodynamics, Inc. Apparatus for detecting and treating tumors using localized impedance measurement
DE60129997T2 (de) 2000-09-24 2008-05-08 Medtronic, Inc., Minneapolis Motorsteuerungssystem für ein chirurgisches handstück
WO2003079909A2 (en) 2002-03-19 2003-10-02 Tyco Healthcare Group, Lp Surgical fastener applying apparatus
US7334717B2 (en) 2001-10-05 2008-02-26 Tyco Healthcare Group Lp Surgical fastener applying apparatus
CA2425211C (en) 2000-10-13 2009-07-21 Tyco Healthcare Group Lp Surgical fastener applying apparatus
US6480796B2 (en) 2000-10-20 2002-11-12 Ethicon Endo-Surgery, Inc. Method for improving the start up of an ultrasonic system under zero load conditions
US6679899B2 (en) 2000-10-20 2004-01-20 Ethicon Endo-Surgery, Inc. Method for detecting transverse vibrations in an ultrasonic hand piece
CA2359281C (en) 2000-10-20 2010-12-14 Ethicon Endo-Surgery, Inc. Detection circuitry for surgical handpiece system
US20020049551A1 (en) 2000-10-20 2002-04-25 Ethicon Endo-Surgery, Inc. Method for differentiating between burdened and cracked ultrasonically tuned blades
US7077853B2 (en) 2000-10-20 2006-07-18 Ethicon Endo-Surgery, Inc. Method for calculating transducer capacitance to determine transducer temperature
US6633234B2 (en) 2000-10-20 2003-10-14 Ethicon Endo-Surgery, Inc. Method for detecting blade breakage using rate and/or impedance information
US6945981B2 (en) 2000-10-20 2005-09-20 Ethicon-Endo Surgery, Inc. Finger operated switch for controlling a surgical handpiece
WO2002045275A2 (en) 2000-11-28 2002-06-06 Flash Networks Ltd. System and method for a transmission rate controller
US7232445B2 (en) 2000-12-06 2007-06-19 Id, Llc Apparatus for the endoluminal treatment of gastroesophageal reflux disease (GERD)
US6558380B2 (en) 2000-12-08 2003-05-06 Gfd Gesellschaft Fur Diamantprodukte Mbh Instrument for surgical purposes and method of cleaning same
EP1216651A1 (de) 2000-12-21 2002-06-26 BrainLAB AG Kabelloses medizinisches Erfassungs- und Behandlungssystem
US20050004559A1 (en) 2003-06-03 2005-01-06 Senorx, Inc. Universal medical device control console
US6618626B2 (en) 2001-01-16 2003-09-09 Hs West Investments, Llc Apparatus and methods for protecting the axillary nerve during thermal capsullorhaphy
US6551243B2 (en) 2001-01-24 2003-04-22 Siemens Medical Solutions Health Services Corporation System and user interface for use in providing medical information and health care delivery support
US6775575B2 (en) 2001-02-26 2004-08-10 D. Bommi Bommannan System and method for reducing post-surgical complications
EP1235471A1 (en) 2001-02-27 2002-08-28 STMicroelectronics Limited A stackable module
US6923817B2 (en) 2001-02-27 2005-08-02 Smith & Nephew, Inc. Total knee arthroplasty systems and processes
EP1367958B1 (de) 2001-03-14 2007-11-07 Braun GmbH Vorrichtung zur zahnreinigung
JP2002288105A (ja) 2001-03-26 2002-10-04 Hitachi Ltd ストレージエリアネットワークシステム、その運用方法、ストレージ、データ転送量監視装置
US6783524B2 (en) 2001-04-19 2004-08-31 Intuitive Surgical, Inc. Robotic surgical tool with ultrasound cauterizing and cutting instrument
WO2002085218A2 (en) 2001-04-20 2002-10-31 Power Medical Interventions, Inc. Bipolar or ultrasonic surgical device
US20020169584A1 (en) 2001-05-14 2002-11-14 Zhongsu Fu Mobile monitoring system
US11229472B2 (en) 2001-06-12 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with multiple magnetic position sensors
EP1401332A4 (en) 2001-06-13 2007-06-20 Nervonix Inc NON-INVASIVE METHOD AND APPARATUS FOR TISSUE DETECTION
US7044911B2 (en) 2001-06-29 2006-05-16 Philometron, Inc. Gateway platform for biological monitoring and delivery of therapeutic compounds
US20040243147A1 (en) 2001-07-03 2004-12-02 Lipow Kenneth I. Surgical robot and robotic controller
WO2003013374A1 (en) 2001-08-06 2003-02-20 Penn State Research Foundation Multifunctional tool and method for minimally invasive surgery
EP2314233B1 (en) 2001-08-08 2013-06-12 Stryker Corporation A surgical tool system with an intermediate attachment located between the handpiece and an accessory or an implant, the attachment able to transmit energy from the handpiece to the accessory or the implant and the transmission of data signals from the accessory or implant to the handpiece
US7344532B2 (en) 2001-08-27 2008-03-18 Gyrus Medical Limited Electrosurgical generator and system
US20030046109A1 (en) 2001-08-30 2003-03-06 Olympus Optical Co., Ltd. Medical information system for improving efficiency of clinical record creating operations
US7104949B2 (en) 2001-08-31 2006-09-12 Ams Research Corporation Surgical articles for placing an implant about a tubular tissue structure and methods
US20030093503A1 (en) 2001-09-05 2003-05-15 Olympus Optical Co., Ltd. System for controling medical instruments
US7344533B2 (en) 2001-09-28 2008-03-18 Angiodynamics, Inc. Impedance controlled tissue ablation apparatus and method
CA2464330A1 (en) 2001-09-28 2003-04-03 Meagan Medical, Inc. Method and apparatus for securing and/or identifying a link to a percutaneous probe
US6524307B1 (en) 2001-10-05 2003-02-25 Medtek Devices, Inc. Smoke evacuation apparatus
US6635056B2 (en) 2001-10-09 2003-10-21 Cardiac Pacemakers, Inc. RF ablation apparatus and method using amplitude control
DE10151269B4 (de) 2001-10-17 2005-08-25 Sartorius Ag Verfahren zum Überwachen der Integrität von Filtrationsanlagen
US7464847B2 (en) 2005-06-03 2008-12-16 Tyco Healthcare Group Lp Surgical stapler with timer and feedback display
US10285694B2 (en) 2001-10-20 2019-05-14 Covidien Lp Surgical stapler with timer and feedback display
US8075558B2 (en) 2002-04-30 2011-12-13 Surgrx, Inc. Electrosurgical instrument and method
US6770072B1 (en) 2001-10-22 2004-08-03 Surgrx, Inc. Electrosurgical jaw structure for controlled energy delivery
CA2465625C (en) 2001-11-01 2007-07-10 Scott Laboratories, Inc. User interface for sedation and analgesia delivery systems and methods
US7383088B2 (en) 2001-11-07 2008-06-03 Cardiac Pacemakers, Inc. Centralized management system for programmable medical devices
US7409354B2 (en) 2001-11-29 2008-08-05 Medison Online Inc. Method and apparatus for operative event documentation and related data management
CN100522096C (zh) 2001-12-04 2009-08-05 能量医学介入公司 用于校准外科器械的系统和方法
US6783525B2 (en) 2001-12-12 2004-08-31 Megadyne Medical Products, Inc. Application and utilization of a water-soluble polymer on a surface
US20030114851A1 (en) 2001-12-13 2003-06-19 Csaba Truckai Electrosurgical jaws for controlled application of clamping pressure
US6869435B2 (en) 2002-01-17 2005-03-22 Blake, Iii John W Repeating multi-clip applier
US8775196B2 (en) 2002-01-29 2014-07-08 Baxter International Inc. System and method for notification and escalation of medical data
US6585791B1 (en) 2002-01-29 2003-07-01 Jon C. Garito Smoke plume evacuation filtration system
EP1334699A1 (en) 2002-02-11 2003-08-13 Led S.p.A. Apparatus for electrosurgery
US6685704B2 (en) 2002-02-26 2004-02-03 Megadyne Medical Products, Inc. Utilization of an active catalyst in a surface coating of an electrosurgical instrument
US20030210812A1 (en) 2002-02-26 2003-11-13 Ali Khamene Apparatus and method for surgical navigation
US8010180B2 (en) 2002-03-06 2011-08-30 Mako Surgical Corp. Haptic guidance system and method
US7527590B2 (en) 2002-03-19 2009-05-05 Olympus Corporation Anastomosis system
US7343565B2 (en) 2002-03-20 2008-03-11 Mercurymd, Inc. Handheld device graphical user interfaces for displaying patient medical records
US6641039B2 (en) 2002-03-21 2003-11-04 Alcon, Inc. Surgical procedure identification system
FR2838234A1 (fr) 2002-04-03 2003-10-10 Sylea Cable electrique plat
US7258688B1 (en) 2002-04-16 2007-08-21 Baylis Medical Company Inc. Computerized electrical signal generator
CA2483094C (en) 2002-04-25 2011-03-15 Tyco Healthcare Group, Lp Surgical instruments including mems devices
US7457804B2 (en) 2002-05-10 2008-11-25 Medrad, Inc. System and method for automated benchmarking for the recognition of best medical practices and products and for establishing standards for medical procedures
ES2540098T3 (es) 2002-05-10 2015-07-08 Covidien Lp Aparato grapador quirúrgico que tiene un conjunto aplicador de material para cierre de heridas
US20030223877A1 (en) 2002-06-04 2003-12-04 Ametek, Inc. Blower assembly with closed-loop feedback
US7442198B2 (en) 2002-06-12 2008-10-28 Boston Scientific Scimed, Inc. Suturing instrument with multi-load cartridge
JP4464816B2 (ja) 2002-06-14 2010-05-19 パワー メディカル インターベンションズ, エルエルシー 外科用デバイス
US6849074B2 (en) 2002-06-17 2005-02-01 Medconx, Inc. Disposable surgical devices
US6951559B1 (en) 2002-06-21 2005-10-04 Megadyne Medical Products, Inc. Utilization of a hybrid material in a surface coating of an electrosurgical instrument
WO2004001569A2 (en) 2002-06-21 2003-12-31 Cedara Software Corp. Computer assisted system and method for minimal invasive hip, uni knee and total knee replacement
US7121460B1 (en) 2002-07-16 2006-10-17 Diebold Self-Service Systems Division Of Diebold, Incorporated Automated banking machine component authentication system and method
US6852219B2 (en) 2002-07-22 2005-02-08 John M. Hammond Fluid separation and delivery apparatus and method
US20060116908A1 (en) 2002-07-30 2006-06-01 Dew Douglas K Web-based data entry system and method for generating medical records
US6824539B2 (en) 2002-08-02 2004-11-30 Storz Endoskop Produktions Gmbh Touchscreen controlling medical equipment from multiple manufacturers
US9271753B2 (en) 2002-08-08 2016-03-01 Atropos Limited Surgical device
WO2004014244A2 (en) 2002-08-13 2004-02-19 Microbotics Corporation Microsurgical robot system
EP1498082B1 (en) 2002-10-02 2008-12-10 Olympus Corporation Operating system having a plurality of medical devices and a plurality of remote control devices
EP2937044B1 (en) 2002-10-04 2019-05-15 Covidien LP Surgical stapler with universal articulation and tissue pre-clamp
CN1717893B (zh) 2002-10-28 2010-05-05 诺基亚有限公司 设备密钥
US6913471B2 (en) 2002-11-12 2005-07-05 Gateway Inc. Offset stackable pass-through signal connector
US7073765B2 (en) 2002-11-13 2006-07-11 Hill-Rom Services, Inc. Apparatus for carrying medical equipment
KR100486596B1 (ko) 2002-12-06 2005-05-03 엘지전자 주식회사 왕복동식 압축기의 운전장치 및 제어방법
US7009511B2 (en) 2002-12-17 2006-03-07 Cardiac Pacemakers, Inc. Repeater device for communications with an implantable medical device
JP3769752B2 (ja) 2002-12-24 2006-04-26 ソニー株式会社 情報処理装置および情報処理方法、データ通信システム、並びに、プログラム
ATE549397T1 (de) 2003-01-03 2012-03-15 Texas A & M Univ Sys Stammgesteuerte promotoren von pflanzeneigenen abwehrkräften und deren verwendung bei der gewebespezifischen expression in monokotyledonen pflanzen
US7081096B2 (en) 2003-01-24 2006-07-25 Medtronic Vascular, Inc. Temperature mapping balloon
US7230529B2 (en) 2003-02-07 2007-06-12 Theradoc, Inc. System, method, and computer program for interfacing an expert system to a clinical information system
US7182775B2 (en) 2003-02-27 2007-02-27 Microline Pentax, Inc. Super atraumatic grasper apparatus
US20080114212A1 (en) 2006-10-10 2008-05-15 General Electric Company Detecting surgical phases and/or interventions
US8882657B2 (en) 2003-03-07 2014-11-11 Intuitive Surgical Operations, Inc. Instrument having radio frequency identification systems and methods for use
US9149322B2 (en) 2003-03-31 2015-10-06 Edward Wells Knowlton Method for treatment of tissue
US20040206365A1 (en) 2003-03-31 2004-10-21 Knowlton Edward Wells Method for treatment of tissue
US20040199180A1 (en) 2003-04-02 2004-10-07 Knodel Bryan D. Method of using surgical device for anastomosis
WO2004091419A2 (en) 2003-04-08 2004-10-28 Wasielewski Ray C Use of micro-and miniature position sensing devices for use in tka and tha
CA2523675C (en) 2003-05-01 2016-04-26 Sherwood Services Ag Electrosurgical instrument which reduces thermal damage to adjacent tissue
ES2368488T3 (es) 2003-05-15 2011-11-17 Covidien Ag Sellador de tejidos con miembros de tope variables de forma selectiva y no conductores.
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070010838A1 (en) 2003-05-20 2007-01-11 Shelton Frederick E Iv Surgical stapling instrument having a firing lockout for an unclosed anvil
US7380695B2 (en) 2003-05-20 2008-06-03 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a single lockout mechanism for prevention of firing
US6988649B2 (en) 2003-05-20 2006-01-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a spent cartridge lockout
US6978921B2 (en) 2003-05-20 2005-12-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating an E-beam firing mechanism
US7044352B2 (en) 2003-05-20 2006-05-16 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a single lockout mechanism for prevention of firing
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US7143923B2 (en) 2003-05-20 2006-12-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a firing lockout for an unclosed anvil
US7140528B2 (en) 2003-05-20 2006-11-28 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated single lockout mechanism for prevention of firing
US20040243435A1 (en) 2003-05-29 2004-12-02 Med-Sched, Inc. Medical information management system
US9035741B2 (en) 2003-06-27 2015-05-19 Stryker Corporation Foot-operated control console for wirelessly controlling medical devices
US9002518B2 (en) 2003-06-30 2015-04-07 Intuitive Surgical Operations, Inc. Maximum torque driving of robotic surgical tools in robotic surgical systems
US20050020909A1 (en) 2003-07-10 2005-01-27 Moctezuma De La Barrera Jose Luis Display device for surgery and method for using the same
US8200775B2 (en) 2005-02-01 2012-06-12 Newsilike Media Group, Inc Enhanced syndication
JP2005058616A (ja) 2003-08-19 2005-03-10 Olympus Corp 医療システム用制御装置及び医療システム用制御方法
KR100724837B1 (ko) 2003-08-25 2007-06-04 엘지전자 주식회사 오디오 레벨 정보 기록 관리방법과 디지털 오디오기기에서의 오디오 출력 레벨 조절방법
US20050182655A1 (en) 2003-09-02 2005-08-18 Qcmetrix, Inc. System and methods to collect, store, analyze, report, and present data
US20050065438A1 (en) 2003-09-08 2005-03-24 Miller Landon C.G. System and method of capturing and managing information during a medical diagnostic imaging procedure
WO2005028078A2 (en) 2003-09-15 2005-03-31 Palmerton Christopher A Operating room smoke evacuator with integrated vacuum motor and filter
EP1517117A1 (de) 2003-09-22 2005-03-23 Leica Geosystems AG Verfahren und System zur Bestimmung einer Aktualposition eines Positionierungsgerätes
US20050063575A1 (en) 2003-09-22 2005-03-24 Ge Medical Systems Global Technology, Llc System and method for enabling a software developer to introduce informational attributes for selective inclusion within image headers for medical imaging apparatus applications
US8147486B2 (en) 2003-09-22 2012-04-03 St. Jude Medical, Atrial Fibrillation Division, Inc. Medical device with flexible printed circuit
JP2005111085A (ja) 2003-10-09 2005-04-28 Olympus Corp 手術支援システム
US10588629B2 (en) 2009-11-20 2020-03-17 Covidien Lp Surgical console and hand-held surgical device
US9113880B2 (en) 2007-10-05 2015-08-25 Covidien Lp Internal backbone structural chassis for a surgical device
US8968276B2 (en) 2007-09-21 2015-03-03 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US9055943B2 (en) 2007-09-21 2015-06-16 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US10041822B2 (en) 2007-10-05 2018-08-07 Covidien Lp Methods to shorten calibration times for powered devices
US10105140B2 (en) 2009-11-20 2018-10-23 Covidien Lp Surgical console and hand-held surgical device
US20090090763A1 (en) 2007-10-05 2009-04-09 Tyco Healthcare Group Lp Powered surgical stapling device
JP2007509717A (ja) 2003-10-28 2007-04-19 ザ ユーエービー リサーチ ファウンデーション 電気外科制御システム
US7169145B2 (en) 2003-11-21 2007-01-30 Megadyne Medical Products, Inc. Tuned return electrode with matching inductor
US7118564B2 (en) 2003-11-26 2006-10-10 Ethicon Endo-Surgery, Inc. Medical treatment system with energy delivery device for limiting reuse
US7317955B2 (en) 2003-12-12 2008-01-08 Conmed Corporation Virtual operating room integration
US7207472B2 (en) 2003-12-30 2007-04-24 Ethicon Endo-Surgery, Inc. Cartridge with locking knife for a curved cutter stapler
US7766207B2 (en) 2003-12-30 2010-08-03 Ethicon Endo-Surgery, Inc. Articulating curved cutter stapler
US7147139B2 (en) 2003-12-30 2006-12-12 Ethicon Endo-Surgery, Inc Closure plate lockout for a curved cutter stapler
US20050143759A1 (en) 2003-12-30 2005-06-30 Kelly William D. Curved cutter stapler shaped for male pelvis
US20050149356A1 (en) 2004-01-02 2005-07-07 Cyr Keneth K. System and method for management of clinical supply operations
DE602005013351D1 (de) 2004-01-23 2009-04-30 Ams Res Corp Gewebebefestigungs- und schneideinstrument
US7766905B2 (en) 2004-02-12 2010-08-03 Covidien Ag Method and system for continuity testing of medical electrodes
EP2253277B1 (en) 2004-02-17 2012-09-19 Tyco Healthcare Group LP Surgical Stapling Apparatus With Locking Mechanism
US7774044B2 (en) 2004-02-17 2010-08-10 Siemens Medical Solutions Usa, Inc. System and method for augmented reality navigation in a medical intervention procedure
US20050192610A1 (en) 2004-02-27 2005-09-01 Houser Kevin L. Ultrasonic surgical shears and tissue pad for same
US7625388B2 (en) 2004-03-22 2009-12-01 Alcon, Inc. Method of controlling a surgical system based on a load on the cutting tip of a handpiece
WO2005098736A2 (en) 2004-03-26 2005-10-20 Convergence Ct System and method for controlling access and use of patient medical data records
US20050222631A1 (en) 2004-04-06 2005-10-06 Nirav Dalal Hierarchical data storage and analysis system for implantable medical devices
US7379790B2 (en) 2004-05-04 2008-05-27 Intuitive Surgical, Inc. Tool memory-based software upgrades for robotic surgery
US20050251233A1 (en) 2004-05-07 2005-11-10 John Kanzius System and method for RF-induced hyperthermia
US7945065B2 (en) 2004-05-07 2011-05-17 Phonak Ag Method for deploying hearing instrument fitting software, and hearing instrument adapted therefor
US20070179482A1 (en) 2004-05-07 2007-08-02 Anderson Robert S Apparatuses and methods to treat biological external tissue
EP1753357B1 (en) 2004-05-11 2014-11-26 Wisconsin Alumni Research Foundation Radiofrequency ablation with independently controllable ground pad conductors
US20050277913A1 (en) 2004-06-09 2005-12-15 Mccary Brian D Heads-up display for displaying surgical parameters in a surgical microscope
US20050283148A1 (en) 2004-06-17 2005-12-22 Janssen William M Ablation apparatus and system to limit nerve conduction
EP1768574A4 (en) 2004-06-24 2011-02-23 Gildenberg Philip L SEMI-ROBOTISE SUTURE DEVICE
US7818041B2 (en) 2004-07-07 2010-10-19 Young Kim System and method for efficient diagnostic analysis of ophthalmic examinations
CA2513202C (en) 2004-07-23 2015-03-31 Mehran Anvari Multi-purpose robotic operating system and method
US7147138B2 (en) 2004-07-28 2006-12-12 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated buttress deployment mechanism
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US7879070B2 (en) 2004-07-28 2011-02-01 Ethicon Endo-Surgery, Inc. Electroactive polymer-based actuation mechanism for grasper
US8905977B2 (en) 2004-07-28 2014-12-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
US7143925B2 (en) 2004-07-28 2006-12-05 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating EAP blocking lockout mechanism
US7914551B2 (en) 2004-07-28 2011-03-29 Ethicon Endo-Surgery, Inc. Electroactive polymer-based articulation mechanism for multi-fire surgical fastening instrument
JP4873384B2 (ja) 2004-09-16 2012-02-08 オリンパス株式会社 医療行為管理方法ならびにそれを利用した管理サーバおよび医療行為管理システム
US8123764B2 (en) 2004-09-20 2012-02-28 Endoevolution, Llc Apparatus and method for minimally invasive suturing
US7782789B2 (en) 2004-09-23 2010-08-24 Harris Corporation Adaptive bandwidth utilization for telemetered data
US20080015664A1 (en) 2004-10-06 2008-01-17 Podhajsky Ronald J Systems and methods for thermally profiling radiofrequency electrodes
US20060079872A1 (en) 2004-10-08 2006-04-13 Eggleston Jeffrey L Devices for detecting heating under a patient return electrode
US8057467B2 (en) 2004-10-08 2011-11-15 Ethicon Endo-Surgery, Inc. Clamp mechanism for use with an ultrasonic surgical instrument
WO2006044868A1 (en) 2004-10-20 2006-04-27 Nervonix, Inc. An active electrode, bio-impedance based, tissue discrimination system and methods and use
US8641738B1 (en) 2004-10-28 2014-02-04 James W. Ogilvie Method of treating scoliosis using a biological implant
JP2006158525A (ja) 2004-12-03 2006-06-22 Olympus Medical Systems Corp 超音波手術装置及び超音波処置具の駆動方法
US7371227B2 (en) 2004-12-17 2008-05-13 Ethicon Endo-Surgery, Inc. Trocar seal assembly
US20060136622A1 (en) 2004-12-21 2006-06-22 Spx Corporation Modular controller apparatus and method
US7294116B1 (en) 2005-01-03 2007-11-13 Ellman Alan G Surgical smoke plume evacuation system
USD521936S1 (en) 2005-01-07 2006-05-30 Apple Computer, Inc. Connector system
US8027710B1 (en) 2005-01-28 2011-09-27 Patrick Dannan Imaging system for endoscopic surgery
US20080040151A1 (en) 2005-02-01 2008-02-14 Moore James F Uses of managed health care data
US20070168461A1 (en) 2005-02-01 2007-07-19 Moore James F Syndicating surgical data in a healthcare environment
EP1848332A4 (en) 2005-02-03 2011-11-02 Christopher Sakezles MODELS AND METHODS USING THESE MODELS FOR TESTING MEDICAL DEVICES
US20060241399A1 (en) 2005-02-10 2006-10-26 Fabian Carl E Multiplex system for the detection of surgical implements within the wound cavity
US7884735B2 (en) 2005-02-11 2011-02-08 Hill-Rom Services, Inc. Transferable patient care equipment support
JP4681908B2 (ja) 2005-02-14 2011-05-11 オリンパス株式会社 手術機器コントローラ及びそれを用いた手術システム
JP2006223375A (ja) 2005-02-15 2006-08-31 Olympus Corp 手術データ記録装置、手術データ表示装置及び手術データ記録表示方法
AU2006218889A1 (en) 2005-02-28 2006-09-08 Rothman Healthcare Corporation A system and method for improving hospital patient care by providing a continual measurement of health
US8206345B2 (en) 2005-03-07 2012-06-26 Medtronic Cryocath Lp Fluid control system for a medical device
US7784663B2 (en) 2005-03-17 2010-08-31 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having load sensing control circuitry
US20100249790A1 (en) 2009-03-26 2010-09-30 Martin Roche System and method for soft tissue tensioning in extension and flexion
US8945095B2 (en) 2005-03-30 2015-02-03 Intuitive Surgical Operations, Inc. Force and torque sensing for surgical instruments
US8038686B2 (en) 2005-04-14 2011-10-18 Ethicon Endo-Surgery, Inc. Clip applier configured to prevent clip fallout
US7699860B2 (en) 2005-04-14 2010-04-20 Ethicon Endo-Surgery, Inc. Surgical clip
US7297149B2 (en) 2005-04-14 2007-11-20 Ethicon Endo-Surgery, Inc. Surgical clip applier methods
CN101495025B (zh) 2005-04-15 2013-09-04 塞基森斯公司 用于检测组织特性具有传感器的外科器械,和使用所述器械的系统
US7362228B2 (en) 2005-04-28 2008-04-22 Warsaw Orthepedic, Inc. Smart instrument tray RFID reader
US7515961B2 (en) 2005-04-29 2009-04-07 Medtronic, Inc. Method and apparatus for dynamically monitoring, detecting and diagnosing lead conditions
US9526587B2 (en) 2008-12-31 2016-12-27 Intuitive Surgical Operations, Inc. Fiducial marker design and detection for locating surgical instrument in images
US7717312B2 (en) 2005-06-03 2010-05-18 Tyco Healthcare Group Lp Surgical instruments employing sensors
US8398541B2 (en) 2006-06-06 2013-03-19 Intuitive Surgical Operations, Inc. Interactive user interfaces for robotic minimally invasive surgical systems
US7828812B2 (en) 2005-06-13 2010-11-09 Ethicon Endo-Surgery, Inc. Surgical suturing apparatus with needle release system
US8468030B2 (en) 2005-06-27 2013-06-18 Children's Mercy Hospital System and method for collecting, organizing, and presenting date-oriented medical information
US20160374747A9 (en) 2005-07-15 2016-12-29 Atricure, Inc. Ablation Device with Sensor
US8603083B2 (en) 2005-07-15 2013-12-10 Atricure, Inc. Matrix router for surgical ablation
US7554343B2 (en) 2005-07-25 2009-06-30 Piezoinnovations Ultrasonic transducer control method and system
US8627993B2 (en) 2007-02-12 2014-01-14 Ethicon Endo-Surgery, Inc. Active braking electrical surgical instrument and method for braking such an instrument
US8627995B2 (en) 2006-05-19 2014-01-14 Ethicon Endo-Sugery, Inc. Electrically self-powered surgical instrument with cryptographic identification of interchangeable part
US8028885B2 (en) 2006-05-19 2011-10-04 Ethicon Endo-Surgery, Inc. Electric surgical instrument with optimized power supply and drive
US9662116B2 (en) 2006-05-19 2017-05-30 Ethicon, Llc Electrically self-powered surgical instrument with cryptographic identification of interchangeable part
WO2007014355A2 (en) 2005-07-27 2007-02-01 Power Medical Interventions, Inc. Shaft, e.g., for an electro-mechanical surgical device
US7621192B2 (en) 2005-07-29 2009-11-24 Dynatek Laboratories, Inc. Medical device durability test apparatus having an integrated particle counter and method of use
AU2006275907A1 (en) 2005-07-29 2007-02-08 Alcon, Inc. Method and system for configuring and data populating a surgical device
US7641092B2 (en) 2005-08-05 2010-01-05 Ethicon Endo - Surgery, Inc. Swing gate for device lockout in a curved cutter stapler
US7407075B2 (en) 2005-08-15 2008-08-05 Tyco Healthcare Group Lp Staple cartridge having multiple staple sizes for a surgical stapling instrument
US20070049947A1 (en) 2005-08-25 2007-03-01 Microline Pentax Inc. Cinch control device
US7720306B2 (en) 2005-08-29 2010-05-18 Photomed Technologies, Inc. Systems and methods for displaying changes in biological responses to therapy
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US8800838B2 (en) 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US20070066970A1 (en) 2005-09-16 2007-03-22 Leonard Ineson Integrated electrosurgical cart and surgical smoke evacuator unit
US20070078678A1 (en) 2005-09-30 2007-04-05 Disilvestro Mark R System and method for performing a computer assisted orthopaedic surgical procedure
US20090043253A1 (en) 2005-10-11 2009-02-12 Blake Podaima Smart medical compliance method and system
US8096459B2 (en) 2005-10-11 2012-01-17 Ethicon Endo-Surgery, Inc. Surgical stapler with an end effector support
US20070191713A1 (en) 2005-10-14 2007-08-16 Eichmann Stephen E Ultrasonic device for cutting and coagulating
US7966269B2 (en) 2005-10-20 2011-06-21 Bauer James D Intelligent human-machine interface
DE202005021068U1 (de) 2005-10-25 2007-02-15 Olympus Winter & Ibe Gmbh Chirurgisches Maulinstrument
JP4676864B2 (ja) 2005-10-26 2011-04-27 株式会社フジクラ フレキシブル配線基板を用いた回路構造
US7328828B2 (en) 2005-11-04 2008-02-12 Ethicon Endo-Surgery, Inc, Lockout mechanisms and surgical instruments including same
CN1964187B (zh) 2005-11-11 2011-09-28 鸿富锦精密工业(深圳)有限公司 音量管理系统、方法及装置
US8411034B2 (en) 2009-03-12 2013-04-02 Marc Boillot Sterile networked interface for medical systems
US7761164B2 (en) 2005-11-30 2010-07-20 Medtronic, Inc. Communication system for medical devices
US7246734B2 (en) 2005-12-05 2007-07-24 Ethicon Endo-Surgery, Inc. Rotary hydraulic pump actuated multi-stroke surgical instrument
WO2007070374A2 (en) 2005-12-12 2007-06-21 Cook Critical Care Incorporated Stimulating block needle comprising echogenic surface
EP2359878A3 (en) 2005-12-14 2012-03-28 Stryker Corporation Medical/surgical waste evacuator that continually monitors air drawn into the evacuator
US8054752B2 (en) 2005-12-22 2011-11-08 Intuitive Surgical Operations, Inc. Synchronous data communication
US7757028B2 (en) 2005-12-22 2010-07-13 Intuitive Surgical Operations, Inc. Multi-priority messaging
JP2007175231A (ja) 2005-12-27 2007-07-12 Olympus Medical Systems Corp 医療用システム
US20090036794A1 (en) 2005-12-29 2009-02-05 Rikshospitalet-Radiumhospitalet Hf Method and apparatus for determining local tissue impedance for positioning of a needle
US20070167702A1 (en) 2005-12-30 2007-07-19 Intuitive Surgical Inc. Medical robotic system providing three-dimensional telestration
US7930065B2 (en) 2005-12-30 2011-04-19 Intuitive Surgical Operations, Inc. Robotic surgery system including position sensors using fiber bragg gratings
US8628518B2 (en) 2005-12-30 2014-01-14 Intuitive Surgical Operations, Inc. Wireless force sensor on a distal portion of a surgical instrument and method
US7907166B2 (en) 2005-12-30 2011-03-15 Intuitive Surgical Operations, Inc. Stereo telestration for robotic surgery
US7670334B2 (en) 2006-01-10 2010-03-02 Ethicon Endo-Surgery, Inc. Surgical instrument having an articulating end effector
CA2574935A1 (en) 2006-01-24 2007-07-24 Sherwood Services Ag A method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
CN101400308B (zh) 2006-01-27 2014-05-14 舒图尔泰克公司 用于组织闭合的设备及方法
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US7464849B2 (en) 2006-01-31 2008-12-16 Ethicon Endo-Surgery, Inc. Electro-mechanical surgical instrument with closure system and anvil alignment components
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8763879B2 (en) 2006-01-31 2014-07-01 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of surgical instrument
US7568603B2 (en) 2006-01-31 2009-08-04 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with articulatable end effector
US7644848B2 (en) 2006-01-31 2010-01-12 Ethicon Endo-Surgery, Inc. Electronic lockouts and surgical instrument including same
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US7422139B2 (en) 2006-01-31 2008-09-09 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting fastening instrument with tactile position feedback
US7575144B2 (en) 2006-01-31 2009-08-18 Ethicon Endo-Surgery, Inc. Surgical fastener and cutter with single cable actuator
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US20070175955A1 (en) 2006-01-31 2007-08-02 Shelton Frederick E Iv Surgical cutting and fastening instrument with closure trigger locking mechanism
US10357184B2 (en) 2012-06-21 2019-07-23 Globus Medical, Inc. Surgical tool systems and method
US20070203744A1 (en) 2006-02-28 2007-08-30 Stefan Scholl Clinical workflow simulation tool and method
JP5317954B2 (ja) 2006-03-16 2013-10-16 ボストン サイエンティフィック リミテッド 組織壁脱出症を治療するためのシステムおよび方法
US20070225556A1 (en) 2006-03-23 2007-09-27 Ethicon Endo-Surgery, Inc. Disposable endoscope devices
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US9636188B2 (en) 2006-03-24 2017-05-02 Stryker Corporation System and method for 3-D tracking of surgical instrument in relation to patient body
US9675375B2 (en) 2006-03-29 2017-06-13 Ethicon Llc Ultrasonic surgical system and method
US20070270660A1 (en) 2006-03-29 2007-11-22 Caylor Edward J Iii System and method for determining a location of an orthopaedic medical device
US20080015912A1 (en) 2006-03-30 2008-01-17 Meryl Rosenthal Systems and methods for workforce management
US7667839B2 (en) 2006-03-30 2010-02-23 Particle Measuring Systems, Inc. Aerosol particle sensor with axial fan
FR2899932A1 (fr) 2006-04-14 2007-10-19 Renault Sas Procede et dispositif de controle de la regeneration d'un systeme de depollution
US20070244478A1 (en) 2006-04-18 2007-10-18 Sherwood Services Ag System and method for reducing patient return electrode current concentrations
US20070249990A1 (en) 2006-04-20 2007-10-25 Ioan Cosmescu Automatic smoke evacuator and insufflation system for surgical procedures
CN101060315B (zh) 2006-04-21 2010-09-29 鸿富锦精密工业(深圳)有限公司 音量管理系统及方法
US7278563B1 (en) 2006-04-25 2007-10-09 Green David T Surgical instrument for progressively stapling and incising tissue
US8007494B1 (en) 2006-04-27 2011-08-30 Encision, Inc. Device and method to prevent surgical burns
US8574229B2 (en) 2006-05-02 2013-11-05 Aesculap Ag Surgical tool
US7841980B2 (en) 2006-05-11 2010-11-30 Olympus Medical Systems Corp. Treatment system, trocar, treatment method and calibration method
US7920162B2 (en) 2006-05-16 2011-04-05 Stryker Leibinger Gmbh & Co. Kg Display method and system for surgical procedures
US10028789B2 (en) 2006-05-19 2018-07-24 Mako Surgical Corp. Method and apparatus for controlling a haptic device
CN102293673B (zh) 2006-05-19 2017-07-07 爱惜康内镜外科公司 电动手术器械
US20070293218A1 (en) 2006-05-22 2007-12-20 Qualcomm Incorporated Collision avoidance for traffic in a wireless network
US8574252B2 (en) 2006-06-01 2013-11-05 Ethicon Endo-Surgery, Inc. Ultrasonic blade support
JP4504332B2 (ja) 2006-06-12 2010-07-14 オリンパスメディカルシステムズ株式会社 手術システム及びそのシステム稼働情報告知方法
US9561045B2 (en) 2006-06-13 2017-02-07 Intuitive Surgical Operations, Inc. Tool with rotation lock
US8560047B2 (en) 2006-06-16 2013-10-15 Board Of Regents Of The University Of Nebraska Method and apparatus for computer aided surgery
US8834488B2 (en) 2006-06-22 2014-09-16 Board Of Regents Of The University Of Nebraska Magnetically coupleable robotic surgical devices and related methods
ES2361583T5 (es) 2006-06-28 2020-08-26 Medtronic Ardian Luxembourg Sàrl Sistema para neuromodulación renal inducida térmicamente
US10258425B2 (en) 2008-06-27 2019-04-16 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide
US20080059658A1 (en) 2006-06-29 2008-03-06 Nokia Corporation Controlling the feeding of data from a feed buffer
US7391173B2 (en) 2006-06-30 2008-06-24 Intuitive Surgical, Inc Mechanically decoupled capstan drive
JP2009543299A (ja) 2006-06-30 2009-12-03 モレックス インコーポレイテド コンプライアントピン制御モジュール及びその製造方法
CA2692368C (en) 2006-07-03 2016-09-20 Beth Israel Deaconess Medical Center Multi-channel medical imaging systems
US7776037B2 (en) 2006-07-07 2010-08-17 Covidien Ag System and method for controlling electrode gap during tissue sealing
US20080013460A1 (en) 2006-07-17 2008-01-17 Geoffrey Benjamin Allen Coordinated upload of content from multimedia capture devices based on a transmission rule
JP2008026051A (ja) 2006-07-19 2008-02-07 Furuno Electric Co Ltd 生化学自動分析装置
US7740159B2 (en) 2006-08-02 2010-06-22 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US20080033404A1 (en) 2006-08-03 2008-02-07 Romoda Laszlo O Surgical machine with removable display
US9757142B2 (en) 2006-08-09 2017-09-12 Olympus Corporation Relay device and ultrasonic-surgical and electrosurgical system
US7771429B2 (en) 2006-08-25 2010-08-10 Warsaw Orthopedic, Inc. Surgical tool for holding and inserting fasteners
ATE440549T1 (de) 2006-09-08 2009-09-15 Ethicon Endo Surgery Inc Chirurgisches instrument und betätigungsvorrichtung zur bewegungsübertragung dafür
US8652086B2 (en) 2006-09-08 2014-02-18 Abbott Medical Optics Inc. Systems and methods for power and flow rate control
US7637907B2 (en) 2006-09-19 2009-12-29 Covidien Ag System and method for return electrode monitoring
USD584688S1 (en) 2006-09-26 2009-01-13 Hosiden Corporation Photoelectric-transfer connector for optical fiber
US8220690B2 (en) 2006-09-29 2012-07-17 Ethicon Endo-Surgery, Inc. Connected surgical staples and stapling instruments for deploying the same
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US7845535B2 (en) 2006-10-06 2010-12-07 Tyco Healthcare Group Lp Surgical instrument having a plastic surface
US8733614B2 (en) 2006-10-06 2014-05-27 Covidien Lp End effector identification by mechanical features
US9028398B2 (en) 2006-10-11 2015-05-12 Alka Kumar System for evacuating detached tissue in continuous flow irrigation endoscopic procedures
CA2605135C (en) 2006-10-17 2014-12-30 Tyco Healthcare Group Lp Apparatus for applying surgical clips
JP5312337B2 (ja) 2006-10-18 2013-10-09 べシックス・バスキュラー・インコーポレイテッド 標的組織の選択的な処置のための調節されたrfエネルギーおよび電気的な組織の特徴付け
US8229767B2 (en) 2006-10-18 2012-07-24 Hartford Fire Insurance Company System and method for salvage calculation, fraud prevention and insurance adjustment
US8126728B2 (en) 2006-10-24 2012-02-28 Medapps, Inc. Systems and methods for processing and transmittal of medical data through an intermediary device
JP5085996B2 (ja) 2006-10-25 2012-11-28 テルモ株式会社 マニピュレータシステム
US8214007B2 (en) 2006-11-01 2012-07-03 Welch Allyn, Inc. Body worn physiological sensor device having a disposable electrode module
IL179051A0 (en) 2006-11-05 2007-03-08 Gyrus Group Plc Modular surgical workstation
WO2008056618A2 (en) 2006-11-06 2008-05-15 Johnson & Johnson Kabushiki Kaisha Stapling instrument
WO2008069816A1 (en) 2006-12-06 2008-06-12 Ryan Timothy J Apparatus and methods for delivering sutures
US8062306B2 (en) 2006-12-14 2011-11-22 Ethicon Endo-Surgery, Inc. Manually articulating devices
US8571598B2 (en) 2006-12-18 2013-10-29 Intel Corporation Method and apparatus for location-based wireless connection and pairing
US20100168561A1 (en) 2006-12-18 2010-07-01 Trillium Precision Surgical, Inc. Intraoperative Tissue Mapping and Dissection Systems, Devices, Methods, and Kits
US7617137B2 (en) 2006-12-19 2009-11-10 At&T Intellectual Property I, L.P. Surgical suite radio frequency identification methods and systems
US7954682B2 (en) 2007-01-10 2011-06-07 Ethicon Endo-Surgery, Inc. Surgical instrument with elements to communicate between control unit and end effector
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US7721936B2 (en) 2007-01-10 2010-05-25 Ethicon Endo-Surgery, Inc. Interlock and surgical instrument including same
WO2008089174A2 (en) 2007-01-16 2008-07-24 Ethicon Endo-Surgery, Inc. Ultrasonic device for cutting and coagulating
US20080177362A1 (en) 2007-01-18 2008-07-24 Medtronic, Inc. Screening device and lead delivery system
US20080177258A1 (en) 2007-01-18 2008-07-24 Assaf Govari Catheter with microphone
US20090017910A1 (en) 2007-06-22 2009-01-15 Broadcom Corporation Position and motion tracking of an object
US7836085B2 (en) 2007-02-05 2010-11-16 Google Inc. Searching structured geographical data
WO2008098085A2 (en) 2007-02-06 2008-08-14 The Uab Research Foundation Universal surgical function control system
US20080306759A1 (en) 2007-02-09 2008-12-11 Hakan Mehmel Ilkin Patient workflow process messaging notification apparatus, system, and method
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
WO2008109014A2 (en) 2007-03-01 2008-09-12 Medtek Devices, Inc. Dba/ Buffalo Filter Wick and relief valve for disposable laparscopic smoke evacuation system
CA2680148C (en) 2007-03-06 2015-09-01 Tyco Healthcare Group Lp Surgical stapling apparatus
US8690864B2 (en) 2007-03-09 2014-04-08 Covidien Lp System and method for controlling tissue treatment
US8727197B2 (en) 2007-03-15 2014-05-20 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configuration with cooperative surgical staple
US7422136B1 (en) 2007-03-15 2008-09-09 Tyco Healthcare Group Lp Powered surgical stapling device
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US7862560B2 (en) 2007-03-23 2011-01-04 Arthrocare Corporation Ablation apparatus having reduced nerve stimulation and related methods
EP2142087B1 (en) 2007-04-03 2016-06-29 Nuvasive Inc. Neurophysiologic monitoring system
EP2156718B1 (en) 2007-04-03 2015-06-03 Optis Wireless Technology, LLC Backplane to mate boards with different widths
CN102327136B (zh) 2007-04-11 2014-04-23 柯惠Lp公司 手术施夹器
US20080255413A1 (en) 2007-04-13 2008-10-16 Michael Zemlok Powered surgical instrument
US7995045B2 (en) 2007-04-13 2011-08-09 Ethicon Endo-Surgery, Inc. Combined SBI and conventional image processor
US7950560B2 (en) 2007-04-13 2011-05-31 Tyco Healthcare Group Lp Powered surgical instrument
CA2684474C (en) 2007-04-16 2015-11-24 Neuroarm Surgical Ltd. Methods, devices, and systems useful in registration
US8170396B2 (en) 2007-04-16 2012-05-01 Adobe Systems Incorporated Changing video playback rate
US20080281301A1 (en) 2007-04-20 2008-11-13 Deboer Charles Personal Surgical Center
US7823760B2 (en) 2007-05-01 2010-11-02 Tyco Healthcare Group Lp Powered surgical stapling device platform
DE102007021185B4 (de) 2007-05-05 2012-09-20 Ziehm Imaging Gmbh Röntgendiagnostikeinrichtung mit einer Vielzahl kodierter Marken und ein Verfahren zur Bestimmung der Lage von Einrichtungsteilen der Röntgendiagnostikeinrichtung
US8083685B2 (en) 2007-05-08 2011-12-27 Propep, Llc System and method for laparoscopic nerve detection
US20080281678A1 (en) 2007-05-09 2008-11-13 Mclagan Partners, Inc. Practice management analysis tool for financial advisors
US9042978B2 (en) 2007-05-11 2015-05-26 Neurometrix, Inc. Method and apparatus for quantitative nerve localization
US8768251B2 (en) 2007-05-17 2014-07-01 Abbott Medical Optics Inc. Exclusive pairing technique for Bluetooth compliant medical devices
US7518502B2 (en) 2007-05-24 2009-04-14 Smith & Nephew, Inc. System and method for tracking surgical assets
CA2687621C (en) 2007-05-24 2016-01-05 Suturtek Incorporated Apparatus and method for minimally invasive suturing
US20090036750A1 (en) 2007-05-25 2009-02-05 The Charles Stark Draper Laboratory, Inc. Integration and control of medical devices in a clinical environment
US8157145B2 (en) 2007-05-31 2012-04-17 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with electrical feedback
US20080296346A1 (en) 2007-05-31 2008-12-04 Shelton Iv Frederick E Pneumatically powered surgical cutting and fastening instrument with electrical control and recording mechanisms
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US9138129B2 (en) 2007-06-13 2015-09-22 Intuitive Surgical Operations, Inc. Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
US8620473B2 (en) 2007-06-13 2013-12-31 Intuitive Surgical Operations, Inc. Medical robotic system with coupled control modes
US8160690B2 (en) 2007-06-14 2012-04-17 Hansen Medical, Inc. System and method for determining electrode-tissue contact based on amplitude modulation of sensed signal
US20080312953A1 (en) 2007-06-14 2008-12-18 Advanced Medical Optics, Inc. Database design for collection of medical instrument parameters
US8308040B2 (en) 2007-06-22 2012-11-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US8062330B2 (en) 2007-06-27 2011-11-22 Tyco Healthcare Group Lp Buttress and surgical stapling apparatus
GB0715211D0 (en) 2007-08-06 2007-09-12 Smith & Nephew Apparatus
US9861354B2 (en) 2011-05-06 2018-01-09 Ceterix Orthopaedics, Inc. Meniscus repair
US20160184054A1 (en) 2007-07-05 2016-06-30 Orthoaccel Technologies, Inc. Pulsatile orthodontic device and methods
US7982776B2 (en) 2007-07-13 2011-07-19 Ethicon Endo-Surgery, Inc. SBI motion artifact removal apparatus and method
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US8035685B2 (en) 2007-07-30 2011-10-11 General Electric Company Systems and methods for communicating video data between a mobile imaging system and a fixed monitor system
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
US8604709B2 (en) 2007-07-31 2013-12-10 Lsi Industries, Inc. Methods and systems for controlling electrical power to DC loads
US8801703B2 (en) 2007-08-01 2014-08-12 Covidien Lp System and method for return electrode monitoring
US9020240B2 (en) 2007-08-10 2015-04-28 Leica Geosystems Ag Method and surveying system for noncontact coordinate measurement on an object surface
CN102831294B (zh) 2007-08-10 2016-08-17 施曼信医疗Asd公司 一种在服务器处确定医疗设备的操作能力的方法和系统
US20090046146A1 (en) 2007-08-13 2009-02-19 Jonathan Hoyt Surgical communication and control system
US20090048589A1 (en) 2007-08-14 2009-02-19 Tomoyuki Takashino Treatment device and treatment method for living tissue
FR2920086A1 (fr) 2007-08-24 2009-02-27 Univ Grenoble 1 Systeme et procede d'analyse pour une operation chirurgicale par endoscopie
US9848058B2 (en) 2007-08-31 2017-12-19 Cardiac Pacemakers, Inc. Medical data transport over wireless life critical network employing dynamic communication link mapping
GB0718291D0 (en) 2007-09-19 2007-10-31 King S College London Imaging apparatus and method
AU2008302043B2 (en) 2007-09-21 2013-06-27 Covidien Lp Surgical device
CA2921566C (en) 2007-09-21 2018-05-22 Tyco Healthcare Group Lp Surgical device
US8224484B2 (en) 2007-09-30 2012-07-17 Intuitive Surgical Operations, Inc. Methods of user interface with alternate tool mode for robotic surgical tools
US20090112618A1 (en) 2007-10-01 2009-04-30 Johnson Christopher D Systems and methods for viewing biometrical information and dynamically adapting schedule and process interdependencies with clinical process decisioning
US20130214025A1 (en) 2007-10-05 2013-08-22 Covidien Lp Powered surgical stapling device
US10498269B2 (en) 2007-10-05 2019-12-03 Covidien Lp Powered surgical stapling device
JP2010540186A (ja) 2007-10-05 2010-12-24 エシコン・エンド−サージェリィ・インコーポレイテッド 人間工学的外科用器具
US10271844B2 (en) 2009-04-27 2019-04-30 Covidien Lp Surgical stapling apparatus employing a predictive stapling algorithm
US8012170B2 (en) 2009-04-27 2011-09-06 Tyco Healthcare Group Lp Device and method for controlling compression of tissue
US20110022032A1 (en) 2007-10-05 2011-01-27 Tyco Healthcare Group Lp Battery ejection design for a surgical device
US10779818B2 (en) 2007-10-05 2020-09-22 Covidien Lp Powered surgical stapling device
US8967443B2 (en) 2007-10-05 2015-03-03 Covidien Lp Method and apparatus for determining parameters of linear motion in a surgical instrument
US8960520B2 (en) 2007-10-05 2015-02-24 Covidien Lp Method and apparatus for determining parameters of linear motion in a surgical instrument
US8343065B2 (en) 2007-10-18 2013-01-01 Innovative Surgical Solutions, Llc Neural event detection
US8321581B2 (en) 2007-10-19 2012-11-27 Voxer Ip Llc Telecommunication and multimedia management method and apparatus
DE102007050232B4 (de) 2007-10-20 2024-05-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Handhabungsroboter und Verfahren zur Steuerung eines Handhabungsroboters
EP2053353A1 (de) 2007-10-26 2009-04-29 Leica Geosystems AG Distanzmessendes Verfahren und ebensolches Gerät
US7954685B2 (en) 2007-11-06 2011-06-07 Tyco Healthcare Group Lp Articulation and firing force mechanisms
EP2060986B1 (en) 2007-11-13 2019-01-02 Karl Storz SE & Co. KG System and method for management of processes in a hospital and/or in an operating room
US8125168B2 (en) 2007-11-19 2012-02-28 Honeywell International Inc. Motor having controllable torque
DE102007057033A1 (de) 2007-11-27 2009-05-28 Robert Bosch Gmbh Elektrisch antreibbare Handwerkzeugmaschine
US9314261B2 (en) 2007-12-03 2016-04-19 Covidien Ag Battery-powered hand-held ultrasonic surgical cautery cutting device
JP5278854B2 (ja) 2007-12-10 2013-09-04 富士フイルム株式会社 画像処理システムおよびプログラム
DE102008061418A1 (de) 2007-12-12 2009-06-18 Erbe Elektromedizin Gmbh Vorrichtung zur kontaktlosen Kommunikation und Verwendung einer Speichereinrichtung
FR2924917B1 (fr) 2007-12-13 2011-02-11 Microval Appareil de pose de spires de suture resultant d'un fil metallique a memoire de forme.
EP2075096A1 (de) 2007-12-27 2009-07-01 Leica Geosystems AG Verfahren und System zum hochpräzisen Positionieren mindestens eines Objekts in eine Endlage im Raum
US20110264000A1 (en) 2007-12-28 2011-10-27 Saurav Paul System and method for determining tissue type and mapping tissue morphology
US20090182577A1 (en) 2008-01-15 2009-07-16 Carestream Health, Inc. Automated information management process
US8740840B2 (en) 2008-01-16 2014-06-03 Catheter Robotics Inc. Remotely controlled catheter insertion system
JP5154961B2 (ja) 2008-01-29 2013-02-27 テルモ株式会社 手術システム
US9336385B1 (en) 2008-02-11 2016-05-10 Adaptive Cyber Security Instruments, Inc. System for real-time threat detection and management
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US7913891B2 (en) 2008-02-14 2011-03-29 Ethicon Endo-Surgery, Inc. Disposable loading unit with user feedback features and surgical instrument for use therewith
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US7857185B2 (en) 2008-02-14 2010-12-28 Ethicon Endo-Surgery, Inc. Disposable loading unit for surgical stapling apparatus
US7810692B2 (en) 2008-02-14 2010-10-12 Ethicon Endo-Surgery, Inc. Disposable loading unit with firing indicator
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US10390823B2 (en) 2008-02-15 2019-08-27 Ethicon Llc End effector comprising an adjunct
US7980443B2 (en) 2008-02-15 2011-07-19 Ethicon Endo-Surgery, Inc. End effectors for a surgical cutting and stapling instrument
US8608044B2 (en) 2008-02-15 2013-12-17 Ethicon Endo-Surgery, Inc. Feedback and lockout mechanism for surgical instrument
US20090206131A1 (en) 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. End effector coupling arrangements for a surgical cutting and stapling instrument
US20090217932A1 (en) 2008-03-03 2009-09-03 Ethicon Endo-Surgery, Inc. Intraluminal tissue markers
US8118206B2 (en) 2008-03-15 2012-02-21 Surgisense Corporation Sensing adjunct for surgical staplers
US9987072B2 (en) 2008-03-17 2018-06-05 Covidien Lp System and method for detecting a fault in a capacitive return electrode for use in electrosurgery
US20090234352A1 (en) 2008-03-17 2009-09-17 Tyco Healthcare Group Lp Variable Capacitive Electrode Pad
WO2009120953A2 (en) 2008-03-27 2009-10-01 Mayo Foundation For Medical Education And Research Navigation and tissue capture systems and methods
US8343096B2 (en) 2008-03-27 2013-01-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter system
US8155479B2 (en) 2008-03-28 2012-04-10 Intuitive Surgical Operations Inc. Automated panning and digital zooming for robotic surgical systems
CA2720075C (en) 2008-03-31 2018-12-11 Applied Medical Resources Corporation Electrosurgical system
USD583328S1 (en) 2008-04-01 2008-12-23 Cheng Uei Precision Industry Co., Ltd. Receptacle connector
WO2009126553A2 (en) 2008-04-08 2009-10-15 The Quantum Group, Inc. Dynamic integration of disparate health-related processes and data
US20090259221A1 (en) 2008-04-15 2009-10-15 Naoko Tahara Power supply apparatus for operation
US20090259149A1 (en) 2008-04-15 2009-10-15 Naoko Tahara Power supply apparatus for operation
US9526407B2 (en) 2008-04-25 2016-12-27 Karl Storz Imaging, Inc. Wirelessly powered medical devices and instruments
WO2009140092A1 (en) 2008-05-13 2009-11-19 The Medicines Company Maintenance of platelet inhibition during antiplatelet therapy
AU2009258248B2 (en) 2008-05-27 2013-10-24 Stryker Corporation Wireless medical room control arrangement for control of a plurality of medical devices
US8506478B2 (en) 2008-06-04 2013-08-13 Fujifilm Corporation Illumination device for use in endoscope
AU2009256122A1 (en) 2008-06-05 2009-12-10 Alcon Research, Ltd. Wireless network and methods of wireless communication for ophthalmic surgical consoles
US7942303B2 (en) 2008-06-06 2011-05-17 Tyco Healthcare Group Lp Knife lockout mechanisms for surgical instrument
US7789283B2 (en) 2008-06-06 2010-09-07 Tyco Healthcare Group Lp Knife/firing rod connection for surgical instrument
US8622951B2 (en) 2008-06-09 2014-01-07 Abbott Medical Optics Inc. Controlling a phacoemulsification system based on real-time analysis of image data
US8007513B2 (en) 2008-06-12 2011-08-30 Ethicon Endo-Surgery, Inc. Partially reusable surgical stapler
US7932826B2 (en) 2008-06-12 2011-04-26 Abbott Laboratories Inc. System for tracking the location of components, assemblies, and subassemblies in an automated diagnostic analyzer
JP5216429B2 (ja) 2008-06-13 2013-06-19 富士フイルム株式会社 光源装置および内視鏡装置
US8628545B2 (en) 2008-06-13 2014-01-14 Covidien Lp Endoscopic stitching devices
WO2009155432A2 (en) 2008-06-18 2009-12-23 Sterling Lc Miniaturized imaging device multiple grin lenses optically coupled to multiple ssids
WO2010008846A2 (en) 2008-06-23 2010-01-21 John Richard Dein Intra-operative system for identifying and tracking surgical sharp objects, instruments, and sponges
US20090326336A1 (en) 2008-06-25 2009-12-31 Heinz Ulrich Lemke Process for comprehensive surgical assist system by means of a therapy imaging and model management system (TIMMS)
CN101617950A (zh) 2008-07-01 2010-01-06 王爱娣 一种连发钛夹钳
US8771270B2 (en) 2008-07-16 2014-07-08 Intuitive Surgical Operations, Inc. Bipolar cautery instrument
US8054184B2 (en) 2008-07-31 2011-11-08 Intuitive Surgical Operations, Inc. Identification of surgical instrument attached to surgical robot
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US8058771B2 (en) 2008-08-06 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic device for cutting and coagulating with stepped output
US8406859B2 (en) 2008-08-10 2013-03-26 Board Of Regents, The University Of Texas System Digital light processing hyperspectral imaging apparatus
US8172836B2 (en) 2008-08-11 2012-05-08 Tyco Healthcare Group Lp Electrosurgical system having a sensor for monitoring smoke or aerosols
US20100217991A1 (en) 2008-08-14 2010-08-26 Seung Wook Choi Surgery robot system of server and client type
US8257387B2 (en) 2008-08-15 2012-09-04 Tyco Healthcare Group Lp Method of transferring pressure in an articulating surgical instrument
WO2010022088A1 (en) 2008-08-18 2010-02-25 Encision, Inc. Enhanced control systems including flexible shielding and support systems for electrosurgical applications
US8409223B2 (en) 2008-08-29 2013-04-02 Covidien Lp Endoscopic surgical clip applier with clip retention
US8208707B2 (en) 2008-09-02 2012-06-26 General Electric Company Tissue classification in medical images
JP5231902B2 (ja) 2008-09-02 2013-07-10 株式会社ニデック 硝子体手術装置
US9107688B2 (en) 2008-09-12 2015-08-18 Ethicon Endo-Surgery, Inc. Activation feature for surgical instrument with pencil grip
CN101672648A (zh) 2008-09-12 2010-03-17 富士通天株式会社 信息处理装置、图像处理装置
US20100070417A1 (en) 2008-09-12 2010-03-18 At&T Mobility Ii Llc Network registration for content transactions
CA2736870A1 (en) 2008-09-12 2010-03-18 Ethicon Endo-Surgery, Inc. Ultrasonic device for fingertip control
US20100069939A1 (en) 2008-09-15 2010-03-18 Olympus Medical Systems Corp. Operation system
EP2163209A1 (en) 2008-09-15 2010-03-17 Zhiqiang Weng Lockout mechanism for a surgical stapler
US20100069942A1 (en) 2008-09-18 2010-03-18 Ethicon Endo-Surgery, Inc. Surgical instrument with apparatus for measuring elapsed time between actions
US7832612B2 (en) 2008-09-19 2010-11-16 Ethicon Endo-Surgery, Inc. Lockout arrangement for a surgical stapler
US8005947B2 (en) 2008-09-22 2011-08-23 Abbott Medical Optics Inc. Systems and methods for providing remote diagnostics and support for surgical systems
US7988028B2 (en) 2008-09-23 2011-08-02 Tyco Healthcare Group Lp Surgical instrument having an asymmetric dynamic clamping member
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9050083B2 (en) 2008-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
KR101578255B1 (ko) 2008-10-01 2015-12-16 셰브런 유.에스.에이.인크. 개선된 특성을 가지는 170 중성 기유
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8808308B2 (en) 2008-10-13 2014-08-19 Alcon Research, Ltd. Automated intraocular lens injector device
US7918377B2 (en) 2008-10-16 2011-04-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with apparatus for providing anvil position feedback
US8239066B2 (en) 2008-10-27 2012-08-07 Lennox Industries Inc. System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network
US8021890B2 (en) 2008-11-03 2011-09-20 Petty Jon A Colorimetric test for brake system corrosion
US8231042B2 (en) 2008-11-06 2012-07-31 Tyco Healthcare Group Lp Surgical stapler
ES2615826T3 (es) 2008-11-11 2017-06-08 Shifamed Holdings, Llc Conjunto de electrodos de perfil bajo
US20100137845A1 (en) 2008-12-03 2010-06-03 Immersion Corporation Tool Having Multiple Feedback Devices
US8515520B2 (en) 2008-12-08 2013-08-20 Medtronic Xomed, Inc. Nerve electrode
US10080578B2 (en) 2008-12-16 2018-09-25 Nico Corporation Tissue removal device with adjustable delivery sleeve for neurosurgical and spinal surgery applications
US8627483B2 (en) 2008-12-18 2014-01-07 Accenture Global Services Limited Data anonymization based on guessing anonymity
US8335590B2 (en) 2008-12-23 2012-12-18 Intuitive Surgical Operations, Inc. System and method for adjusting an image capturing device attribute using an unused degree-of-freedom of a master control device
US8160098B1 (en) 2009-01-14 2012-04-17 Cisco Technology, Inc. Dynamically allocating channel bandwidth between interfaces
US11075754B2 (en) 2009-01-15 2021-07-27 International Business Machines Corporation Universal personal medical database access control
US20100191100A1 (en) 2009-01-23 2010-07-29 Warsaw Orthopedic, Inc. Methods and systems for diagnosing, treating, or tracking spinal disorders
US20110278343A1 (en) 2009-01-29 2011-11-17 Cardica, Inc. Clamping of Hybrid Surgical Instrument
US20100198200A1 (en) 2009-01-30 2010-08-05 Christopher Horvath Smart Illumination for Surgical Devices
US9107694B2 (en) 2009-01-30 2015-08-18 Koninklijke Philips N.V. Examination apparatus
EP2391259A1 (en) 2009-01-30 2011-12-07 The Trustees Of Columbia University In The City Of New York Controllable magnetic source to fixture intracorporeal apparatus
US8799009B2 (en) 2009-02-02 2014-08-05 Mckesson Financial Holdings Systems, methods and apparatuses for predicting capacity of resources in an institution
US20100198248A1 (en) 2009-02-02 2010-08-05 Ethicon Endo-Surgery, Inc. Surgical dissector
EP2215980B1 (de) 2009-02-04 2012-12-19 Stryker Leibinger GmbH & Co. KG Chirurgisches Elektrowerkzeug und Betätigungsbaugruppe hierfür
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US20100204717A1 (en) 2009-02-12 2010-08-12 Cardica, Inc. Surgical Device for Multiple Clip Application
US8641621B2 (en) 2009-02-17 2014-02-04 Inneroptic Technology, Inc. Systems, methods, apparatuses, and computer-readable media for image management in image-guided medical procedures
US8858547B2 (en) 2009-03-05 2014-10-14 Intuitive Surgical Operations, Inc. Cut and seal instrument
US9848904B2 (en) 2009-03-06 2017-12-26 Procept Biorobotics Corporation Tissue resection and treatment with shedding pulses
JP2012520027A (ja) 2009-03-06 2012-08-30 インターデイジタル パテント ホールディングス インコーポレイテッド 無線装置のプラットフォームの検証と管理
WO2010104752A2 (en) 2009-03-08 2010-09-16 Oprobe, Llc Multi-function optical probe system for medical and veterinary applications
US8918207B2 (en) 2009-03-09 2014-12-23 Intuitive Surgical Operations, Inc. Operator input device for a robotic surgical system
US8423182B2 (en) 2009-03-09 2013-04-16 Intuitive Surgical Operations, Inc. Adaptable integrated energy control system for electrosurgical tools in robotic surgical systems
US8418073B2 (en) 2009-03-09 2013-04-09 Intuitive Surgical Operations, Inc. User interfaces for electrosurgical tools in robotic surgical systems
US8120301B2 (en) 2009-03-09 2012-02-21 Intuitive Surgical Operations, Inc. Ergonomic surgeon control console in robotic surgical systems
US9226689B2 (en) 2009-03-10 2016-01-05 Medtronic Xomed, Inc. Flexible circuit sheet
US20100235689A1 (en) 2009-03-16 2010-09-16 Qualcomm Incorporated Apparatus and method for employing codes for telecommunications
EP3462679A1 (en) 2009-03-26 2019-04-03 X-ped Holdings Pty Ltd An arrangement for managing wireless communication between devices
US8945163B2 (en) 2009-04-01 2015-02-03 Ethicon Endo-Surgery, Inc. Methods and devices for cutting and fastening tissue
US9277969B2 (en) 2009-04-01 2016-03-08 Covidien Lp Microwave ablation system with user-controlled ablation size and method of use
US8277446B2 (en) 2009-04-24 2012-10-02 Tyco Healthcare Group Lp Electrosurgical tissue sealer and cutter
US8365975B1 (en) 2009-05-05 2013-02-05 Cardica, Inc. Cam-controlled knife for surgical instrument
CA2761420C (en) 2009-05-08 2017-03-28 Abbott Medical Optics Inc. Self-learning engine for the refinement and optimization of surgical settings
GB2470189B (en) 2009-05-11 2013-10-16 Gyrus Medical Ltd Electrosurgical generator
WO2010132617A2 (en) 2009-05-12 2010-11-18 Chronicmobile, Inc. Methods and systems for managing, controlling and monitoring medical devices via one or more software applications functioning in a secure environment
US20100292684A1 (en) 2009-05-15 2010-11-18 Cybulski James S Tissue modification devices and methods of the same
GB0908368D0 (en) 2009-05-15 2009-06-24 Univ Leuven Kath Adjustable remote center of motion positioner
US20100292535A1 (en) 2009-05-18 2010-11-18 Larry Paskar Endoscope with multiple fields of view
WO2010141922A1 (en) 2009-06-04 2010-12-09 Abbott Diabetes Care Inc. Method and system for updating a medical device
US9277961B2 (en) 2009-06-12 2016-03-08 Advanced Cardiac Therapeutics, Inc. Systems and methods of radiometrically determining a hot-spot temperature of tissue being treated
US9226791B2 (en) 2012-03-12 2016-01-05 Advanced Cardiac Therapeutics, Inc. Systems for temperature-controlled ablation using radiometric feedback
US20110077512A1 (en) 2009-06-16 2011-03-31 Dept. Of Veterans Affairs Biopsy marker composition and method of use
US9532827B2 (en) 2009-06-17 2017-01-03 Nuortho Surgical Inc. Connection of a bipolar electrosurgical hand piece to a monopolar output of an electrosurgical generator
US9554692B2 (en) 2009-06-18 2017-01-31 EndoChoice Innovation Ctr. Ltd. Multi-camera endoscope
US9872609B2 (en) 2009-06-18 2018-01-23 Endochoice Innovation Center Ltd. Multi-camera endoscope
US8827134B2 (en) 2009-06-19 2014-09-09 Covidien Lp Flexible surgical stapler with motor in the head
EP2454696A1 (en) 2009-07-15 2012-05-23 Koninklijke Philips Electronics N.V. Method for automatic setting time varying parameter alert and alarm limits
US9017326B2 (en) 2009-07-15 2015-04-28 Ethicon Endo-Surgery, Inc. Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8461744B2 (en) 2009-07-15 2013-06-11 Ethicon Endo-Surgery, Inc. Rotating transducer mount for ultrasonic surgical instruments
US9439736B2 (en) 2009-07-22 2016-09-13 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for controlling a remote medical device guidance system in three-dimensions using gestures
FR2948594B1 (fr) 2009-07-31 2012-07-20 Dexterite Surgical Manipulateur ergonomique et semi-automatique et applications aux instruments pour chirurgie mini-invasive
US8968358B2 (en) 2009-08-05 2015-03-03 Covidien Lp Blunt tissue dissection surgical instrument jaw designs
GB0913930D0 (en) 2009-08-07 2009-09-16 Ucl Business Plc Apparatus and method for registering two medical images
US8955732B2 (en) 2009-08-11 2015-02-17 Covidien Lp Surgical stapling apparatus
US8360299B2 (en) 2009-08-11 2013-01-29 Covidien Lp Surgical stapling apparatus
US7956620B2 (en) 2009-08-12 2011-06-07 Tyco Healthcare Group Lp System and method for augmented impedance sensing
US8733612B2 (en) 2009-08-17 2014-05-27 Covidien Lp Safety method for powered surgical instruments
US20140148729A1 (en) 2012-11-29 2014-05-29 Gregory P. Schmitz Micro-mechanical devices and methods for brain tumor removal
WO2011022104A1 (en) 2009-08-19 2011-02-24 Opanga Networks, Inc. Optimizing channel resources by coordinating data transfers based on data type and traffic
US9636239B2 (en) 2009-08-20 2017-05-02 Case Western Reserve University System and method for mapping activity in peripheral nerves
US20110166883A1 (en) 2009-09-01 2011-07-07 Palmer Robert D Systems and Methods for Modeling Healthcare Costs, Predicting Same, and Targeting Improved Healthcare Quality and Profitability
SE0901166A1 (sv) 2009-09-10 2011-03-11 Cathprint Ab Flexibel ledningsbärare för kateter försedd med sådan ledningsbärare
US9265429B2 (en) 2009-09-18 2016-02-23 Welch Allyn, Inc. Physiological parameter measuring platform device supporting multiple workflows
US9750563B2 (en) 2009-09-22 2017-09-05 Mederi Therapeutics, Inc. Systems and methods for treating tissue with radiofrequency energy
US10386990B2 (en) 2009-09-22 2019-08-20 Mederi Rf, Llc Systems and methods for treating tissue with radiofrequency energy
US9474565B2 (en) 2009-09-22 2016-10-25 Mederi Therapeutics, Inc. Systems and methods for treating tissue with radiofrequency energy
US20120265555A1 (en) 2009-09-28 2012-10-18 Sandro Cappuzzo Method and system for monitoring the flow and usage of medical devices
US8899479B2 (en) 2009-09-28 2014-12-02 Ethicon Endo-Surgery, Inc. Method and system for monitoring the flow and usage of medical devices
US20110105895A1 (en) 2009-10-01 2011-05-05 Giora Kornblau Guided surgery
US20110119075A1 (en) 2009-10-02 2011-05-19 Rabin Chandra Kemp Dhoble Apparatuses, methods and systems for a mobile healthcare manager-based provider incentive manager
US9168054B2 (en) 2009-10-09 2015-10-27 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US8986302B2 (en) 2009-10-09 2015-03-24 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US20140074076A1 (en) 2009-10-12 2014-03-13 Kona Medical, Inc. Non-invasive autonomic nervous system modulation
US8157151B2 (en) 2009-10-15 2012-04-17 Tyco Healthcare Group Lp Staple line reinforcement for anvil and cartridge
AU2010306622A1 (en) 2009-10-16 2012-05-24 Nanomedapps Llc Item and user tracking
US8038693B2 (en) 2009-10-21 2011-10-18 Tyco Healthcare Group Ip Methods for ultrasonic tissue sensing and feedback
US8322590B2 (en) 2009-10-28 2012-12-04 Covidien Lp Surgical stapling instrument
JP4997344B2 (ja) 2009-10-28 2012-08-08 オリンパスメディカルシステムズ株式会社 医療用デバイスの出力制御装置
CN102781336B (zh) 2009-10-30 2016-01-20 约翰霍普金斯大学 用于外科手术干预的临床上重要的解剖标志的视觉跟踪和注释
US8225979B2 (en) 2009-10-30 2012-07-24 Tyco Healthcare Group Lp Locking shipping wedge
US8398633B2 (en) 2009-10-30 2013-03-19 Covidien Lp Jaw roll joint
EP2320621B1 (en) 2009-11-06 2016-10-05 F.Hoffmann-La Roche Ag Method for establishing cryptographic communications between a remote device and a medical device and system for carrying out the method
CN104958106B (zh) 2009-11-13 2018-06-01 直观外科手术操作公司 具有紧凑腕部的手术工具
US20110118708A1 (en) 2009-11-13 2011-05-19 Intuitive Surgical Operations, Inc. Double universal joint
US8682489B2 (en) 2009-11-13 2014-03-25 Intuitive Sugical Operations, Inc. Method and system for hand control of a teleoperated minimally invasive slave surgical instrument
US8521331B2 (en) 2009-11-13 2013-08-27 Intuitive Surgical Operations, Inc. Patient-side surgeon interface for a minimally invasive, teleoperated surgical instrument
KR101764780B1 (ko) 2009-11-13 2017-08-03 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 여분의 닫힘 메커니즘을 구비한 단부 작동기
US8622275B2 (en) 2009-11-19 2014-01-07 Ethicon Endo-Surgery, Inc. Circular stapler introducer with rigid distal end portion
US9241730B2 (en) 2009-11-25 2016-01-26 Eliaz Babaev Ultrasound surgical saw
US8540709B2 (en) 2009-12-07 2013-09-24 Covidien Lp Removable ink for surgical instrument
US8136712B2 (en) 2009-12-10 2012-03-20 Ethicon Endo-Surgery, Inc. Surgical stapler with discrete staple height adjustment and tactile feedback
US20110152712A1 (en) 2009-12-21 2011-06-23 Hong Cao Impedance Measurement Tissue Identification in Blood Vessels
US9339270B2 (en) 2010-10-11 2016-05-17 Cook Medical Technologies Llc Medical devices with detachable pivotable jaws
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
USD657368S1 (en) 2009-12-31 2012-04-10 Welch Allyn, Inc. Patient monitoring device with graphical user interface
US20110162048A1 (en) 2009-12-31 2011-06-30 Apple Inc. Local device awareness
US8608046B2 (en) 2010-01-07 2013-12-17 Ethicon Endo-Surgery, Inc. Test device for a surgical tool
WO2011089606A1 (en) 2010-01-20 2011-07-28 Creative Team Instruments Ltd. Orientation dector for use with a hand-held surgical or dental tool
US8439910B2 (en) 2010-01-22 2013-05-14 Megadyne Medical Products Inc. Electrosurgical electrode with electric field concentrating flash edge
CN102905637A (zh) 2010-01-22 2013-01-30 奥林巴斯医疗株式会社 治疗用处理器具、治疗用处理装置及治疗处理方法
US11881307B2 (en) 2012-05-24 2024-01-23 Deka Products Limited Partnership System, method, and apparatus for electronic patient care
US8476227B2 (en) 2010-01-22 2013-07-02 Ethicon Endo-Surgery, Inc. Methods of activating a melanocortin-4 receptor pathway in obese subjects
US10044791B2 (en) 2010-01-22 2018-08-07 Deka Products Limited Partnership System, method, and apparatus for communicating data
US8556929B2 (en) 2010-01-29 2013-10-15 Covidien Lp Surgical forceps capable of adjusting seal plate width based on vessel size
GB2477515B (en) 2010-02-03 2012-09-26 Orbital Multi Media Holdings Corp Data flow control method and apparatus
AU2011212786C1 (en) 2010-02-04 2014-10-16 Aesculap Ag Laparoscopic radiofrequency surgical device
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US8403945B2 (en) 2010-02-25 2013-03-26 Covidien Lp Articulating endoscopic surgical clip applier
US8512325B2 (en) 2010-02-26 2013-08-20 Covidien Lp Frequency shifting multi mode ultrasonic dissector
US9610412B2 (en) 2010-03-02 2017-04-04 Covidien Lp Internally pressurized medical devices
US9107684B2 (en) 2010-03-05 2015-08-18 Covidien Lp System and method for transferring power to intrabody instruments
USD673117S1 (en) 2010-03-09 2012-12-25 Wago Verwaltungsgesellschaft Mbh Electrical connectors
US8864761B2 (en) 2010-03-10 2014-10-21 Covidien Lp System and method for determining proximity relative to a critical structure
WO2011112843A1 (en) 2010-03-12 2011-09-15 Inspire Medical Systems, Inc. Method and system for identifying a location for nerve stimulation
TWI556802B (zh) 2010-03-12 2016-11-11 美國伊利諾大學理事會 在生物可再吸收基板上之可植入生物醫學裝置
WO2011119840A1 (en) 2010-03-25 2011-09-29 The Research Foundation Of State University Of New York Method and system for guided, efficient treatment
US9023032B2 (en) 2010-03-25 2015-05-05 Covidien Lp Shaped circuit boards suitable for use in electrosurgical devices and rotatable assemblies including same
JP5405373B2 (ja) 2010-03-26 2014-02-05 富士フイルム株式会社 電子内視鏡システム
JP5606120B2 (ja) 2010-03-29 2014-10-15 富士フイルム株式会社 内視鏡装置
USD678304S1 (en) 2010-03-31 2013-03-19 Spintso International Ab Display screen or portion thereof with graphical user interface
US8834518B2 (en) 2010-04-12 2014-09-16 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instruments with cam-actuated jaws
CN102845090B (zh) 2010-04-13 2016-07-06 皇家飞利浦电子股份有限公司 具有基于密钥的频谱使用状况控制的医学人体区域网(mban)
US9341704B2 (en) 2010-04-13 2016-05-17 Frederic Picard Methods and systems for object tracking
US9498298B2 (en) 2010-04-23 2016-11-22 Kenneth I. Lipow Ring form surgical effector
US10631912B2 (en) 2010-04-30 2020-04-28 Medtronic Xomed, Inc. Interface module for use with nerve monitoring and electrosurgery
USD631252S1 (en) 2010-05-26 2011-01-25 Leslie Henry E Glove holder for engaging a garment
US9052809B2 (en) 2010-05-26 2015-06-09 General Electric Company Systems and methods for situational application development and deployment with patient event monitoring
US9091588B2 (en) 2010-05-28 2015-07-28 Prognost Systems Gmbh System and method of mechanical fault detection based on signature detection
AU2015201140B2 (en) 2010-06-11 2017-02-09 Ethicon, Llc Suture delivery tools for endoscopic and robot-assisted surgery and methods
US20120130217A1 (en) 2010-11-23 2012-05-24 Kauphusman James V Medical devices having electrodes mounted thereon and methods of manufacturing therefor
US8596515B2 (en) 2010-06-18 2013-12-03 Covidien Lp Staple position sensor system
RU2579737C2 (ru) 2010-06-24 2016-04-10 Конинклейке Филипс Электроникс Н.В. Мониторинг и управление hifu терапией в реальном времени во множестве измерений
US8429153B2 (en) 2010-06-25 2013-04-23 The United States Of America As Represented By The Secretary Of The Army Method and apparatus for classifying known specimens and media using spectral properties and identifying unknown specimens and media
US20120022519A1 (en) 2010-07-22 2012-01-26 Ethicon Endo-Surgery, Inc. Surgical cutting and sealing instrument with controlled energy delivery
US8968337B2 (en) 2010-07-28 2015-03-03 Covidien Lp Articulating clip applier
US8403946B2 (en) 2010-07-28 2013-03-26 Covidien Lp Articulating clip applier cartridge
EP2605698B1 (en) 2010-08-17 2020-04-15 University of Florida Research Foundation, Inc. Central site photoplethysmography, medication administration, and safety
US8814864B2 (en) 2010-08-23 2014-08-26 Covidien Lp Method of manufacturing tissue sealing electrodes
US11544652B2 (en) 2010-09-01 2023-01-03 Apixio, Inc. Systems and methods for enhancing workflow efficiency in a healthcare management system
US20120059684A1 (en) 2010-09-02 2012-03-08 International Business Machines Corporation Spatial-Temporal Optimization of Physical Asset Maintenance
US8360296B2 (en) 2010-09-09 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US8632525B2 (en) 2010-09-17 2014-01-21 Ethicon Endo-Surgery, Inc. Power control arrangements for surgical instruments and batteries
US9289212B2 (en) 2010-09-17 2016-03-22 Ethicon Endo-Surgery, Inc. Surgical instruments and batteries for surgical instruments
WO2012044410A2 (en) 2010-09-20 2012-04-05 Surgiquest, Inc. Multi-flow filtration system
US9220559B2 (en) 2010-09-24 2015-12-29 Ethicon Endo-Surgery, Inc. Articulation joint features for articulating surgical device
US8733613B2 (en) 2010-09-29 2014-05-27 Ethicon Endo-Surgery, Inc. Staple cartridge
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
BR112013007659B1 (pt) 2010-09-30 2020-09-08 Ethicon Endo-Surgery, Inc. Instrumento cirúrgico
US20120100517A1 (en) 2010-09-30 2012-04-26 Andrew Bowditch Real-time, interactive, three-dimensional virtual surgery system and method thereof
US9592050B2 (en) 2010-09-30 2017-03-14 Ethicon Endo-Surgery, Llc End effector comprising a distal tissue abutment member
US9044227B2 (en) 2010-09-30 2015-06-02 Ethicon Endo-Surgery, Inc. Collapsible fastener cartridge
EP2621356B1 (en) 2010-09-30 2018-03-07 Ethicon LLC Fastener system comprising a retention matrix and an alignment matrix
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US8657176B2 (en) 2010-09-30 2014-02-25 Ethicon Endo-Surgery, Inc. Tissue thickness compensator for a surgical stapler
US9351730B2 (en) 2011-04-29 2016-05-31 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising channels
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US8979890B2 (en) 2010-10-01 2015-03-17 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
JP6143362B2 (ja) 2010-10-01 2017-06-07 アプライド メディカル リソーシーズ コーポレイション ジョー及び/又は電極、及び電気手術用増幅器を持つ電気手術器具
US9655672B2 (en) 2010-10-04 2017-05-23 Covidien Lp Vessel sealing instrument
US8628529B2 (en) 2010-10-26 2014-01-14 Ethicon Endo-Surgery, Inc. Surgical instrument with magnetic clamping force
US9155503B2 (en) 2010-10-27 2015-10-13 Cadwell Labs Apparatus, system, and method for mapping the location of a nerve
US20140287393A1 (en) 2010-11-04 2014-09-25 The Johns Hopkins University System and method for the evaluation of or improvement of minimally invasive surgery skills
US9381058B2 (en) 2010-11-05 2016-07-05 Ethicon Endo-Surgery, Llc Recharge system for medical devices
US20120116265A1 (en) 2010-11-05 2012-05-10 Houser Kevin L Surgical instrument with charging devices
US9161803B2 (en) 2010-11-05 2015-10-20 Ethicon Endo-Surgery, Inc. Motor driven electrosurgical device with mechanical and electrical feedback
US20120116381A1 (en) 2010-11-05 2012-05-10 Houser Kevin L Surgical instrument with charging station and wireless communication
US9011471B2 (en) 2010-11-05 2015-04-21 Ethicon Endo-Surgery, Inc. Surgical instrument with pivoting coupling to modular shaft and end effector
US9782214B2 (en) 2010-11-05 2017-10-10 Ethicon Llc Surgical instrument with sensor and powered control
US9072523B2 (en) 2010-11-05 2015-07-07 Ethicon Endo-Surgery, Inc. Medical device with feature for sterile acceptance of non-sterile reusable component
US10959769B2 (en) 2010-11-05 2021-03-30 Ethicon Llc Surgical instrument with slip ring assembly to power ultrasonic transducer
CA140107S (en) 2010-11-11 2011-11-30 Hosiden Corp Electrical connector
US9095362B2 (en) 2010-11-15 2015-08-04 Intutitive Surgical Operations, Inc. Method for passively decoupling torque applied by a remote actuator into an independently rotating member
EP2458328B1 (de) 2010-11-24 2016-01-27 Leica Geosystems AG Konstruktionsvermessungsgerät mit einer automatischen Lotpunktfindungs-Funktionalität
US8814996B2 (en) 2010-12-01 2014-08-26 University Of South Carolina Methods and sensors for the detection of active carbon filters degradation with EMIS-ECIS PWAS
US8523043B2 (en) 2010-12-07 2013-09-03 Immersion Corporation Surgical stapler having haptic feedback
US9044244B2 (en) 2010-12-10 2015-06-02 Biosense Webster (Israel), Ltd. System and method for detection of metal disturbance based on mutual inductance measurement
US8714352B2 (en) 2010-12-10 2014-05-06 Covidien Lp Cartridge shipping aid
WO2012088183A2 (en) 2010-12-22 2012-06-28 Cooper Technologies Company Pre-filtration and maintenance sensing for explosion-proof enclosures
WO2012088471A1 (en) 2010-12-22 2012-06-28 Veebot, Llc Systems and methods for autonomous intravenous needle insertion
US9119655B2 (en) 2012-08-03 2015-09-01 Stryker Corporation Surgical manipulator capable of controlling a surgical instrument in multiple modes
US8936614B2 (en) 2010-12-30 2015-01-20 Covidien Lp Combined unilateral/bilateral jaws on a surgical instrument
USD678196S1 (en) 2011-01-07 2013-03-19 Seiko Epson Corporation Input signal selector for projector
US9936955B2 (en) 2011-01-11 2018-04-10 Amsel Medical Corporation Apparatus and methods for fastening tissue layers together with multiple tissue fasteners
US8818556B2 (en) 2011-01-13 2014-08-26 Microsoft Corporation Multi-state model for robot and user interaction
US8798527B2 (en) 2011-01-14 2014-08-05 Covidien Lp Wireless relay module for remote monitoring systems
US20120191162A1 (en) 2011-01-20 2012-07-26 Cristiano Villa System of Remote Controlling a Medical Laser Generator Unit with a Portable Computing Device
US20120191091A1 (en) 2011-01-24 2012-07-26 Tyco Healthcare Group Lp Reusable Medical Device with Advanced Counting Capability
US9875339B2 (en) 2011-01-27 2018-01-23 Simbionix Ltd. System and method for generating a patient-specific digital image-based model of an anatomical structure
US9990856B2 (en) 2011-02-08 2018-06-05 The Trustees Of The University Of Pennsylvania Systems and methods for providing vibration feedback in robotic systems
CA2827044A1 (en) 2011-02-10 2012-08-16 Actuated Medical, Inc. Medical tool with electromechanical control and feedback
EP2675365B1 (en) 2011-02-15 2018-04-25 Intuitive Surgical Operations, Inc. Systems for detecting clamping or firing failure
KR102107720B1 (ko) 2011-02-15 2020-05-07 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 구동 샤프트에 의해 가동되는 관절식 말단 작동기를 구비한 수술 기구를 위한 시일 및 실링 방법
US9393017B2 (en) 2011-02-15 2016-07-19 Intuitive Surgical Operations, Inc. Methods and systems for detecting staple cartridge misfire or failure
CN103370015B (zh) 2011-02-15 2016-12-21 直观外科手术操作公司 用于指示夹紧预测的系统
US20120211542A1 (en) 2011-02-23 2012-08-23 Tyco Healthcare Group I.P Controlled tissue compression systems and methods
USD687146S1 (en) 2011-03-02 2013-07-30 Baylis Medical Company Inc. Electrosurgical generator
WO2012122129A1 (en) 2011-03-07 2012-09-13 Passer Stitch, Llc Suture passing devices and methods
US8397972B2 (en) 2011-03-18 2013-03-19 Covidien Lp Shipping wedge with lockout
US20120245958A1 (en) 2011-03-25 2012-09-27 Surgichart, Llc Case-Centric Medical Records System with Social Networking
US10729458B2 (en) 2011-03-30 2020-08-04 Covidien Lp Ultrasonic surgical instruments
US20120253847A1 (en) 2011-03-31 2012-10-04 General Electric Company Health information telecommunications system and method
EP2509276B1 (de) 2011-04-05 2013-11-20 F. Hoffmann-La Roche AG Verfahren zum sicheren Übertragen von elektronischen Daten über eine Datenkommunikationsverbindung zwischen einem Gerät und einem weiteren Gerät
BR112013026603A8 (pt) 2011-04-15 2018-03-06 Infobionic Inc sistema de monitoramento e coleta de dados remotos com análise de multicamadas
US20150051452A1 (en) 2011-04-26 2015-02-19 The Trustees Of Columbia University In The City Of New York Apparatus, method and computer-accessible medium for transform analysis of biomedical data
US9649113B2 (en) 2011-04-27 2017-05-16 Covidien Lp Device for monitoring physiological parameters in vivo
US9700661B2 (en) 2011-04-29 2017-07-11 Medtronic, Inc. Chronic pH or electrolyte monitoring
RU2606493C2 (ru) 2011-04-29 2017-01-10 Этикон Эндо-Серджери, Инк. Кассета со скобками, содержащая скобки, расположенные внутри ее сжимаемой части
US9820741B2 (en) 2011-05-12 2017-11-21 Covidien Lp Replaceable staple cartridge
JP5816457B2 (ja) 2011-05-12 2015-11-18 オリンパス株式会社 術具装置
JP5865606B2 (ja) 2011-05-27 2016-02-17 オリンパス株式会社 内視鏡装置及び内視鏡装置の作動方法
US10542978B2 (en) 2011-05-27 2020-01-28 Covidien Lp Method of internally potting or sealing a handheld medical device
US9202078B2 (en) 2011-05-27 2015-12-01 International Business Machines Corporation Data perturbation and anonymization using one way hash
KR101991034B1 (ko) 2011-05-31 2019-06-19 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 로봇 수술 기구 엔드 이펙터의 능동 제어
US9615877B2 (en) 2011-06-17 2017-04-11 Covidien Lp Tissue sealing forceps
US8930214B2 (en) 2011-06-17 2015-01-06 Parallax Enterprises, Llc Consolidated healthcare and resource management system
US9498231B2 (en) 2011-06-27 2016-11-22 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US20130001121A1 (en) 2011-07-01 2013-01-03 Biomet Manufacturing Corp. Backup kit for a patient-specific arthroplasty kit assembly
JP5623348B2 (ja) 2011-07-06 2014-11-12 富士フイルム株式会社 内視鏡システム、内視鏡システムのプロセッサ装置、及び内視鏡システムの作動方法
US20130008677A1 (en) 2011-07-08 2013-01-10 Chen Huifu Multi-head power tool
US9652655B2 (en) 2011-07-09 2017-05-16 Gauss Surgical, Inc. System and method for estimating extracorporeal blood volume in a physical sample
JP5502812B2 (ja) 2011-07-14 2014-05-28 富士フイルム株式会社 生体情報取得システムおよび生体情報取得システムの作動方法
JP5936914B2 (ja) 2011-08-04 2016-06-22 オリンパス株式会社 操作入力装置およびこれを備えるマニピュレータシステム
JP6021353B2 (ja) 2011-08-04 2016-11-09 オリンパス株式会社 手術支援装置
US9539007B2 (en) 2011-08-08 2017-01-10 Covidien Lp Surgical fastener applying aparatus
WO2013022889A2 (en) 2011-08-08 2013-02-14 Molex Incorporated Connector with tuned channel
US9724095B2 (en) 2011-08-08 2017-08-08 Covidien Lp Surgical fastener applying apparatus
WO2013023006A2 (en) 2011-08-08 2013-02-14 California Institute Of Technology Filtration membranes, and related nano and/or micro fibers, composites, methods and systems
US9123155B2 (en) 2011-08-09 2015-09-01 Covidien Lp Apparatus and method for using augmented reality vision system in surgical procedures
WO2013025622A1 (en) 2011-08-14 2013-02-21 SafePath Medical, Inc. Apparatus and method for suturing tissue
US20130046182A1 (en) 2011-08-16 2013-02-21 Elwha LLC, a limited liability company of the State of Delaware Devices and Methods for Recording Information on a Subject's Body
US20130046279A1 (en) 2011-08-16 2013-02-21 Paul J. Niklewski User interface feature for drug delivery system
US8685056B2 (en) 2011-08-18 2014-04-01 Covidien Lp Surgical forceps
US9028492B2 (en) 2011-08-18 2015-05-12 Covidien Lp Surgical instruments with removable components
DE202012013197U1 (de) 2011-08-21 2015-05-21 M.S.T. Medical Surgery Technologies Ltd. Vorrichtung zum Unterstützen einer laparoskopischen Chirurgie - Regelbasierte Herangehensweise
US9099863B2 (en) 2011-09-09 2015-08-04 Covidien Lp Surgical generator and related method for mitigating overcurrent conditions
US20130066647A1 (en) 2011-09-09 2013-03-14 Depuy Spine, Inc. Systems and methods for surgical support and management
US9101359B2 (en) 2011-09-13 2015-08-11 Ethicon Endo-Surgery, Inc. Surgical staple cartridge with self-dispensing staple buttress
US9414940B2 (en) 2011-09-23 2016-08-16 Orthosensor Inc. Sensored head for a measurement tool for the muscular-skeletal system
WO2013049386A1 (en) 2011-09-27 2013-04-04 Allied Minds Devices Llc Instruct-or
WO2013049595A1 (en) 2011-09-29 2013-04-04 Ethicon Endo-Surgery, Inc. Methods and compositions of bile acids
US9579503B2 (en) 2011-10-05 2017-02-28 Medtronic Xomed, Inc. Interface module allowing delivery of tissue stimulation and electrosurgery through a common surgical instrument
US9463646B2 (en) 2011-10-07 2016-10-11 Transact Technologies Incorporated Tilting touch screen for printer and printer with tilting touch screen
US8856936B2 (en) 2011-10-14 2014-10-07 Albeado Inc. Pervasive, domain and situational-aware, adaptive, automated, and coordinated analysis and control of enterprise-wide computers, networks, and applications for mitigation of business and operational risks and enhancement of cyber security
US8931679B2 (en) 2011-10-17 2015-01-13 Covidien Lp Surgical stapling apparatus
US8585631B2 (en) 2011-10-18 2013-11-19 Alcon Research, Ltd. Active bimodal valve system for real-time IOP control
US9370400B2 (en) 2011-10-19 2016-06-21 Ethicon Endo-Surgery, Inc. Clip applier adapted for use with a surgical robot
US9480492B2 (en) 2011-10-25 2016-11-01 Covidien Lp Apparatus for endoscopic procedures
US8657177B2 (en) 2011-10-25 2014-02-25 Covidien Lp Surgical apparatus and method for endoscopic surgery
US9016539B2 (en) 2011-10-25 2015-04-28 Covidien Lp Multi-use loading unit
US9492146B2 (en) 2011-10-25 2016-11-15 Covidien Lp Apparatus for endoscopic procedures
WO2013063522A2 (en) 2011-10-26 2013-05-02 Reid Robert Cyrus Surgical instrument motor pack latch
JP6210994B2 (ja) 2011-10-26 2017-10-11 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 一体型ナイフ刃を有する手術用器具
KR102115366B1 (ko) 2011-10-26 2020-05-26 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 카트리지 상태 및 존재 검출 방법 및 장치
US9364231B2 (en) 2011-10-27 2016-06-14 Covidien Lp System and method of using simulation reload to optimize staple formation
US10404801B2 (en) 2011-11-08 2019-09-03 DISH Technologies L.L.C. Reconfiguring remote controls for different devices in a network
US9277956B2 (en) 2011-11-09 2016-03-08 Siemens Medical Solutions Usa, Inc. System for automatic medical ablation control
US8968309B2 (en) 2011-11-10 2015-03-03 Covidien Lp Surgical forceps
JP6230541B2 (ja) 2011-11-15 2017-11-15 インテュイティブ サージカル オペレーションズ, インコーポレイテッド しまい込めるナイフブレードを持つ手術器具
US8968312B2 (en) 2011-11-16 2015-03-03 Covidien Lp Surgical device with powered articulation wrist rotation
JP5420802B2 (ja) 2011-11-16 2014-02-19 オリンパスメディカルシステムズ株式会社 医療機器
CN103945786B (zh) 2011-11-24 2017-03-08 赛诺龙医疗公司 用于个人使用的安全皮肤护理设备及其使用方法
JP2015510138A (ja) 2011-12-05 2015-04-02 クゥアルコム・インコーポレイテッドQualcomm Incorporated テレヘルスワイヤレス通信ハブデバイスおよびサービスプラットフォームシステム
US9259268B2 (en) 2011-12-06 2016-02-16 Covidien Lp Vessel sealing using microwave energy
US8968336B2 (en) 2011-12-07 2015-03-03 Edwards Lifesciences Corporation Self-cinching surgical clips and delivery system
US9010608B2 (en) 2011-12-14 2015-04-21 Covidien Lp Releasable buttress retention on a surgical stapler
US20130165776A1 (en) 2011-12-22 2013-06-27 Andreas Blomqvist Contraction status assessment
JP5859849B2 (ja) 2011-12-28 2016-02-16 タイコエレクトロニクスジャパン合同会社 電気コネクタ
US9220502B2 (en) 2011-12-28 2015-12-29 Covidien Lp Staple formation recognition for a surgical device
US20130178853A1 (en) 2012-01-05 2013-07-11 International Business Machines Corporation Surgical tool management
US8962062B2 (en) 2012-01-10 2015-02-24 Covidien Lp Methods of manufacturing end effectors for energy-based surgical instruments
US9867914B2 (en) 2012-01-10 2018-01-16 Buffalo Filter Llc Fluid filtration device and system
WO2013108461A1 (ja) 2012-01-19 2013-07-25 オリンパスメディカルシステムズ株式会社 医療システム
US20130191154A1 (en) 2012-01-22 2013-07-25 Dobkin William R. Medical data system generating automated surgical reports
US20130191647A1 (en) 2012-01-23 2013-07-25 Michael N. Ferrara, JR. Secure Wireless Access to Medical Data
JP6048838B2 (ja) 2012-01-25 2016-12-21 パナソニックIpマネジメント株式会社 家電情報管理装置、家電情報共有方法および家電情報共有システム
JP5815426B2 (ja) 2012-01-25 2015-11-17 富士フイルム株式会社 内視鏡システム、内視鏡システムのプロセッサ装置、及び画像処理方法
US9649064B2 (en) 2012-01-26 2017-05-16 Autonomix Medical, Inc. Controlled sympathectomy and micro-ablation systems and methods
US9183723B2 (en) 2012-01-31 2015-11-10 Cleanalert, Llc Filter clog detection and notification system
US9710644B2 (en) 2012-02-01 2017-07-18 Servicenow, Inc. Techniques for sharing network security event information
US9038882B2 (en) 2012-02-03 2015-05-26 Covidien Lp Circular stapling instrument
US20140066700A1 (en) 2012-02-06 2014-03-06 Vantage Surgical Systems Inc. Stereoscopic System for Minimally Invasive Surgery Visualization
BR112014020069B1 (pt) 2012-02-14 2021-07-20 Ethicon Endo-Surgery, Inc Cartucho para um atuador de extremidade de um grampeador linear e grampeador linear
US8682049B2 (en) 2012-02-14 2014-03-25 Terarecon, Inc. Cloud-based medical image processing system with access control
US9572566B2 (en) 2012-02-29 2017-02-21 Marker Medical, Llc Surgical suturing apparatus and method
US9486271B2 (en) 2012-03-05 2016-11-08 Covidien Lp Method and apparatus for identification using capacitive elements
US20150066000A1 (en) 2012-03-06 2015-03-05 Briteseed Llc Surgical Tool With Integrated Sensor
US11399898B2 (en) 2012-03-06 2022-08-02 Briteseed, Llc User interface for a system used to determine tissue or artifact characteristics
US9864839B2 (en) 2012-03-14 2018-01-09 El Wha Llc. Systems, devices, and method for determining treatment compliance including tracking, registering, etc. of medical staff, patients, instrumentation, events, etc. according to a treatment staging plan
US9119617B2 (en) 2012-03-16 2015-09-01 Ethicon, Inc. Clamping devices for dispensing surgical fasteners into soft media
US20130253480A1 (en) 2012-03-22 2013-09-26 Cory G. Kimball Surgical instrument usage data management
US9198711B2 (en) 2012-03-22 2015-12-01 Covidien Lp Electrosurgical system for communicating information embedded in an audio tone
US9364249B2 (en) 2012-03-22 2016-06-14 Ethicon Endo-Surgery, Llc Method and apparatus for programming modular surgical instrument
US9381003B2 (en) 2012-03-23 2016-07-05 Integrated Medical Systems International, Inc. Digital controller for surgical handpiece
US9375282B2 (en) 2012-03-26 2016-06-28 Covidien Lp Light energy sealing, cutting and sensing surgical device
US9078653B2 (en) 2012-03-26 2015-07-14 Ethicon Endo-Surgery, Inc. Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
WO2013143573A1 (en) 2012-03-26 2013-10-03 Brainlab Ag Pairing medical devices within a working environment
CN104321024B (zh) 2012-03-28 2017-05-24 伊西康内外科公司 包括多个层的组织厚度补偿件
US20130256373A1 (en) 2012-03-28 2013-10-03 Ethicon Endo-Surgery, Inc. Devices and methods for attaching tissue thickness compensating materials to surgical stapling instruments
JP2013202313A (ja) 2012-03-29 2013-10-07 Panasonic Corp 手術支援装置および手術支援プログラム
US9050063B2 (en) 2012-03-30 2015-06-09 Sandance Technology Llc Systems and methods for determining suitability of a mechanical implant for a medical procedure
KR101365357B1 (ko) 2012-04-02 2014-02-20 주식회사 모바수 관절 고정 구조를 갖는 최소 침습 수술 기구
USD772252S1 (en) 2012-04-05 2016-11-22 Welch Allyn, Inc. Patient monitoring device with a graphical user interface
US20130268283A1 (en) 2012-04-05 2013-10-10 Welch Allyn, Inc. Process to Streamline Workflow for Continuous Monitoring of a Patient
US9055870B2 (en) 2012-04-05 2015-06-16 Welch Allyn, Inc. Physiological parameter measuring platform device supporting multiple workflows
US9226766B2 (en) 2012-04-09 2016-01-05 Ethicon Endo-Surgery, Inc. Serial communication protocol for medical device
US9237921B2 (en) * 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US20130267874A1 (en) 2012-04-09 2013-10-10 Amy L. Marcotte Surgical instrument with nerve detection feature
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US9814457B2 (en) 2012-04-10 2017-11-14 Ethicon Llc Control interface for laparoscopic suturing instrument
JP5940864B2 (ja) 2012-04-12 2016-06-29 カール シュトルツ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 医療用マニピュレータ
US9186141B2 (en) 2012-04-12 2015-11-17 Covidien Lp Circular anastomosis stapling apparatus utilizing a two stroke firing sequence
US9788851B2 (en) 2012-04-18 2017-10-17 Ethicon Llc Surgical instrument with tissue density sensing
WO2013157011A2 (en) 2012-04-18 2013-10-24 CardioSonic Ltd. Tissue treatment
JP5997365B2 (ja) 2012-04-18 2016-09-28 カーディカ インコーポレイテッド 外科用ステープラ用の安全ロックアウト
US20150133945A1 (en) 2012-05-02 2015-05-14 Stryker Global Technology Center Handheld tracking system and devices for aligning implant systems during surgery
US11871901B2 (en) 2012-05-20 2024-01-16 Cilag Gmbh International Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
US9439622B2 (en) 2012-05-22 2016-09-13 Covidien Lp Surgical navigation system
US9498182B2 (en) 2012-05-22 2016-11-22 Covidien Lp Systems and methods for planning and navigation
US9493807B2 (en) 2012-05-25 2016-11-15 Medtronic Minimed, Inc. Foldover sensors and methods for making and using them
US9572592B2 (en) 2012-05-31 2017-02-21 Ethicon Endo-Surgery, Llc Surgical instrument with orientation sensing
US9084606B2 (en) 2012-06-01 2015-07-21 Megadyne Medical Products, Inc. Electrosurgical scissors
KR20130136184A (ko) 2012-06-04 2013-12-12 삼성전자주식회사 컨텐츠 백업을 위한 방법 및 그 전자 장치
US10453573B2 (en) 2012-06-05 2019-10-22 Dexcom, Inc. Dynamic report building
US11076880B2 (en) 2012-06-11 2021-08-03 Covidien Lp Temperature estimation and tissue detection of an ultrasonic dissector from frequency response monitoring
US20130331875A1 (en) * 2012-06-11 2013-12-12 Covidien Lp Temperature estimation and tissue detection of an ultrasonic dissector from frequency response monitoring
US10677764B2 (en) 2012-06-11 2020-06-09 Covidien Lp Temperature estimation and tissue detection of an ultrasonic dissector from frequency response monitoring
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US10799298B2 (en) 2012-06-21 2020-10-13 Globus Medical Inc. Robotic fluoroscopic navigation
US10136954B2 (en) 2012-06-21 2018-11-27 Globus Medical, Inc. Surgical tool systems and method
US20190000569A1 (en) 2012-06-21 2019-01-03 Globus Medical, Inc. Controlling a surgical robot to avoid robotic arm collision
US9483618B2 (en) 2012-06-22 2016-11-01 Exco Intouch Limited Systems, methods and computer program products for providing disease and/or condition specific adaptive mobile health content, applications and/or solutions
US20140107697A1 (en) 2012-06-25 2014-04-17 Castle Surgical, Inc. Clamping Forceps and Associated Methods
US8968296B2 (en) 2012-06-26 2015-03-03 Covidien Lp Energy-harvesting system, apparatus and methods
US9492065B2 (en) 2012-06-27 2016-11-15 Camplex, Inc. Surgical retractor with video cameras
US9642606B2 (en) 2012-06-27 2017-05-09 Camplex, Inc. Surgical visualization system
US20140001234A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Coupling arrangements for attaching surgical end effectors to drive systems therefor
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
BR112014032740A2 (pt) 2012-06-28 2020-02-27 Ethicon Endo Surgery Inc bloqueio de cartucho de clipes vazio
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US20140006132A1 (en) 2012-06-28 2014-01-02 Jason W. Barker Systems and methods for managing promotional offers
US20140005640A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical end effector jaw and electrode configurations
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
BR112014032776B1 (pt) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc Sistema de instrumento cirúrgico e kit cirúrgico para uso com um sistema de instrumento cirúrgico
US10930400B2 (en) 2012-06-28 2021-02-23 LiveData, Inc. Operating room checklist system
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
DE102012220116A1 (de) 2012-06-29 2014-01-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mobil handhabbare Vorrichtung, insbesondere zur Bearbeitung oder Beobachtung eines Körpers, und Verfahren zur Handhabung, insbesondere Kalibrierung, einer Vorrichtung
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
TWM444669U (zh) 2012-07-03 2013-01-01 Sercomm Corp 多模組化組合之通訊裝置
US20140018788A1 (en) 2012-07-04 2014-01-16 Zoar Jacob ENGELMAN Devices and Systems for Carotid Body Ablation
KR101806195B1 (ko) 2012-07-10 2018-01-11 큐렉소 주식회사 수술로봇 시스템 및 수술로봇 제어방법
US20140013565A1 (en) 2012-07-10 2014-01-16 Eileen B. MacDonald Customized process for facilitating successful total knee arthroplasty with outcomes analysis
US10194907B2 (en) 2012-07-18 2019-02-05 Covidien Lp Multi-fire stapler with electronic counter, lockout, and visual indicator
IN2015MN00022A (pt) 2012-07-26 2015-10-16 Olive Medical Corp
US20140029411A1 (en) 2012-07-27 2014-01-30 Samsung Electronics Co., Ltd. Method and system to provide seamless data transmission
US8917513B1 (en) 2012-07-30 2014-12-23 Methode Electronics, Inc. Data center equipment cabinet information center and updateable asset tracking system
US20140033926A1 (en) 2012-08-03 2014-02-06 Robert Scott Fassel Filtration System
US10198965B2 (en) 2012-08-03 2019-02-05 Applied Medical Resources Corporation Simulated stapling and energy based ligation for surgical training
US8761717B1 (en) 2012-08-07 2014-06-24 Brian K. Buchheit Safety feature to disable an electronic device when a wireless implantable medical device (IMD) is proximate
JP6257930B2 (ja) 2012-08-07 2018-01-10 東芝メディカルシステムズ株式会社 超音波診断装置および超音波プローブ
US9101374B1 (en) 2012-08-07 2015-08-11 David Harris Hoch Method for guiding an ablation catheter based on real time intracardiac electrical signals and apparatus for performing the method
CN104023664B (zh) 2012-08-07 2016-05-25 奥林巴斯株式会社 医疗用控制系统
EP2882368A4 (en) 2012-08-08 2016-03-16 Ortoma Ab METHOD AND SYSTEM FOR COMPUTER-ASSISTED SURGERY
US8795001B1 (en) 2012-08-10 2014-08-05 Cisco Technology, Inc. Connector for providing pass-through power
EP2698602A1 (de) 2012-08-16 2014-02-19 Leica Geosystems AG Handhaltbares Entfernungsmessgerät mit Winkelbestimmungseinheit
WO2014031800A1 (en) 2012-08-22 2014-02-27 Energize Medical Llc Therapeutic energy systems
WO2014032157A1 (en) 2012-08-28 2014-03-06 Leonard Ineson Adjustable electrosurgical pencil
USD729267S1 (en) 2012-08-28 2015-05-12 Samsung Electronics Co., Ltd. Oven display screen with a graphical user interface
US20140073893A1 (en) 2012-09-12 2014-03-13 Boston Scientific Scimed Inc. Open irrigated-mapping linear ablation catheter
US10496788B2 (en) 2012-09-13 2019-12-03 Parkland Center For Clinical Innovation Holistic hospital patient care and management system and method for automated patient monitoring
CN202875416U (zh) 2012-09-14 2013-04-17 苏州天臣国际医疗科技有限公司 直线型缝切器的钉仓
US20140081659A1 (en) 2012-09-17 2014-03-20 Depuy Orthopaedics, Inc. Systems and methods for surgical and interventional planning, support, post-operative follow-up, and functional recovery tracking
US20140087999A1 (en) 2012-09-21 2014-03-27 The General Hospital Corporation D/B/A Massachusetts General Hospital Clinical predictors of weight loss
WO2014047388A1 (en) 2012-09-21 2014-03-27 Ethicon Endo-Surgery, Inc. Systems and methods for predicting metabolic and bariatric surgery outcomes
US20140084949A1 (en) 2012-09-24 2014-03-27 Access Business Group International Llc Surface impedance systems and methods
JP5719819B2 (ja) 2012-09-28 2015-05-20 日本光電工業株式会社 手術支援システム
US9106270B2 (en) 2012-10-02 2015-08-11 Covidien Lp Transmitting data across a patient isolation barrier using an electric-field capacitive coupler module
DE102012109459A1 (de) 2012-10-04 2014-04-10 Aesculap Ag Weiteneinstellbares Schneidinstrument zur transapikalen Aortenklappenresektion
US20140108035A1 (en) 2012-10-11 2014-04-17 Kunter Seref Akbay System and method to automatically assign resources in a network of healthcare enterprises
US9107573B2 (en) 2012-10-17 2015-08-18 Karl Storz Endovision, Inc. Detachable shaft flexible endoscope
US9421014B2 (en) 2012-10-18 2016-08-23 Covidien Lp Loading unit velocity and position feedback
US10201365B2 (en) 2012-10-22 2019-02-12 Ethicon Llc Surgeon feedback sensing and display methods
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US9265585B2 (en) 2012-10-23 2016-02-23 Covidien Lp Surgical instrument with rapid post event detection
EP4257159A3 (en) 2012-10-24 2023-10-25 Stryker Corporation Mobile cart of a waste collection system
US9918788B2 (en) 2012-10-31 2018-03-20 St. Jude Medical, Atrial Fibrillation Division, Inc. Electrogram-based ablation control
US9572529B2 (en) 2012-10-31 2017-02-21 Covidien Lp Surgical devices and methods utilizing optical coherence tomography (OCT) to monitor and control tissue sealing
US10631939B2 (en) 2012-11-02 2020-04-28 Intuitive Surgical Operations, Inc. Systems and methods for mapping flux supply paths
JP6262754B2 (ja) 2012-11-02 2018-01-17 インテュイティブ サージカル オペレーションズ, インコーポレイテッド フラックス伝送コネクタ及びシステム、フラックス除去、並びにフラックス供給路をマッピングするためのシステム及び方法
WO2014116314A2 (en) 2012-11-02 2014-07-31 University Of Washington Through Its Center For Commercialization Using supplemental encrypted signals to mitigate man-in-the-middle attacks on teleoperated systems
US10004557B2 (en) 2012-11-05 2018-06-26 Pythagoras Medical Ltd. Controlled tissue ablation
CA2795323C (en) 2012-11-09 2019-09-24 Covidien Lp Multi-use loading unit
EP2732772B1 (en) 2012-11-14 2019-06-12 Covidien LP Multi-use loading unit
US9546662B2 (en) 2012-11-20 2017-01-17 Smith & Nephew, Inc. Medical pump
ES2870633T3 (es) 2012-11-20 2021-10-27 Surgiquest Inc Sistemas para conducir la evacuación de humo durante procedimientos quirúrgicos laparoscópicos
US20140148803A1 (en) 2012-11-28 2014-05-29 Covidien Lp External actuator for an electrosurgical instrument
US9724100B2 (en) 2012-12-04 2017-08-08 Ethicon Llc Circular anvil introduction system with alignment feature
US9743016B2 (en) 2012-12-10 2017-08-22 Intel Corporation Techniques for improved focusing of camera arrays
US9320534B2 (en) 2012-12-13 2016-04-26 Alcon Research, Ltd. Fine membrane forceps with integral scraping feature
FR2999757A1 (fr) 2012-12-13 2014-06-20 Patrick Coudert Procede d'acces securise a des donnees medicales confidentielles, et support de stockage pour ledit procede
US9498207B2 (en) 2012-12-13 2016-11-22 Ethicon Endo-Surgery, Llc Cartridge interface for surgical suturing device
US10722222B2 (en) 2012-12-14 2020-07-28 Covidien Lp Surgical system including a plurality of handle assemblies
CN202953237U (zh) 2012-12-14 2013-05-29 纬创资通股份有限公司 纸箱结构
JP2014134530A (ja) 2012-12-14 2014-07-24 Panasonic Corp 力計測装置、力計測方法、力計測プログラム、力計測用集積電子回路、並びに、マスタースレーブ装置
US9463022B2 (en) 2012-12-17 2016-10-11 Ethicon Endo-Surgery, Llc Motor driven rotary input circular stapler with lockable flexible shaft
US9597081B2 (en) 2012-12-17 2017-03-21 Ethicon Endo-Surgery, Llc Motor driven rotary input circular stapler with modular end effector
DE102012025102A1 (de) 2012-12-20 2014-06-26 avateramedical GmBH Endoskop mit einem Mehrkamerasystem für die minimal-invasive Chirurgie
US20140187856A1 (en) 2012-12-31 2014-07-03 Lee D. Holoien Control System For Modular Imaging Device
CA2896873A1 (en) 2012-12-31 2014-07-03 Mako Surgical Corp. System for image-based robotic surgery
US20140188440A1 (en) 2012-12-31 2014-07-03 Intuitive Surgical Operations, Inc. Systems And Methods For Interventional Procedure Planning
WO2014106275A1 (en) 2012-12-31 2014-07-03 Intuitive Surgical Operations, Inc. Surgical staple cartridge with enhanced knife clearance
US9717141B1 (en) 2013-01-03 2017-07-25 St. Jude Medical, Atrial Fibrillation Division, Inc. Flexible printed circuit with removable testing portion
CA2897190C (en) 2013-01-05 2023-06-13 Foundation Medicine, Inc. System and method for outcome tracking and analysis
GB2509523A (en) 2013-01-07 2014-07-09 Anish Kumar Mampetta Surgical instrument with flexible members and a motor
JP6112300B2 (ja) 2013-01-10 2017-04-12 パナソニックIpマネジメント株式会社 マスタースレーブロボットの制御装置及び制御方法、マスタースレーブロボット、並びに、制御プログラム
US9675354B2 (en) 2013-01-14 2017-06-13 Intuitive Surgical Operations, Inc. Torque compensation
US9522003B2 (en) 2013-01-14 2016-12-20 Intuitive Surgical Operations, Inc. Clamping instrument
US10265090B2 (en) 2013-01-16 2019-04-23 Covidien Lp Hand held electromechanical surgical system including battery compartment diagnostic display
US9750500B2 (en) 2013-01-18 2017-09-05 Covidien Lp Surgical clip applier
USD716333S1 (en) 2013-01-24 2014-10-28 Broadbandtv, Corp. Display screen or portion thereof with a graphical user interface
US9610114B2 (en) 2013-01-29 2017-04-04 Ethicon Endo-Surgery, Llc Bipolar electrosurgical hand shears
US9370248B2 (en) 2013-01-31 2016-06-21 Enrique Ramirez Magaña Theater seating system with reclining seats and comfort divider
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
CN105358070B (zh) 2013-02-08 2018-03-23 阿库图森医疗有限公司 带有柔性印刷电路板的可膨胀导管组件
US20140226572A1 (en) 2013-02-13 2014-08-14 Qualcomm Incorporated Smart WiFi Access Point That Selects The Best Channel For WiFi Clients Having Multi-Radio Co-Existence Problems
KR101451970B1 (ko) 2013-02-19 2014-10-23 주식회사 루트로닉 안과용 수술장치 및 이의 제어 방법
WO2014130954A1 (en) 2013-02-22 2014-08-28 Cibiem, Inc. Endovascular catheters for trans-superficial temporal artery transmural carotid body modulation
WO2014134196A1 (en) 2013-02-26 2014-09-04 Eastern Virginia Medical School Augmented shared situational awareness system
US9375262B2 (en) 2013-02-27 2016-06-28 Covidien Lp Limited use medical devices
US20140243799A1 (en) 2013-02-27 2014-08-28 Ethicon Endo-Surgery, Inc. Percutaneous Instrument with Tapered Shaft
US10098527B2 (en) 2013-02-27 2018-10-16 Ethidcon Endo-Surgery, Inc. System for performing a minimally invasive surgical procedure
US9717497B2 (en) 2013-02-28 2017-08-01 Ethicon Llc Lockout feature for movable cutting member of surgical instrument
US9808248B2 (en) 2013-02-28 2017-11-07 Ethicon Llc Installation features for surgical instrument end effector cartridge
US9307986B2 (en) 2013-03-01 2016-04-12 Ethicon Endo-Surgery, Llc Surgical instrument soft stop
RU2672520C2 (ru) 2013-03-01 2018-11-15 Этикон Эндо-Серджери, Инк. Шарнирно поворачиваемые хирургические инструменты с проводящими путями для передачи сигналов
JP6345707B2 (ja) 2013-03-01 2018-06-20 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. ソフトストップを備えた外科用器具
US20140252064A1 (en) 2013-03-05 2014-09-11 Covidien Lp Surgical stapling device including adjustable fastener crimping
KR102117270B1 (ko) 2013-03-06 2020-06-01 삼성전자주식회사 수술 로봇 시스템 및 그 제어방법
US9414776B2 (en) 2013-03-06 2016-08-16 Navigated Technologies, LLC Patient permission-based mobile health-linked information collection and exchange systems and methods
US9706993B2 (en) 2013-03-08 2017-07-18 Covidien Lp Staple cartridge with shipping wedge
US9204995B2 (en) 2013-03-12 2015-12-08 Katalyst Surgical, Llc Membrane removing forceps
KR20140112207A (ko) 2013-03-13 2014-09-23 삼성전자주식회사 증강현실 영상 표시 시스템 및 이를 포함하는 수술 로봇 시스템
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US9314308B2 (en) 2013-03-13 2016-04-19 Ethicon Endo-Surgery, Llc Robotic ultrasonic surgical device with articulating end effector
US9629628B2 (en) 2013-03-13 2017-04-25 Covidien Lp Surgical stapling apparatus
US9717498B2 (en) 2013-03-13 2017-08-01 Covidien Lp Surgical stapling apparatus
EP3135225B1 (en) 2013-03-13 2019-08-14 Covidien LP Surgical stapling apparatus
US9289211B2 (en) 2013-03-13 2016-03-22 Covidien Lp Surgical stapling apparatus
US9814463B2 (en) 2013-03-13 2017-11-14 Covidien Lp Surgical stapling apparatus
US9114494B1 (en) 2013-03-14 2015-08-25 Kenneth Jack Mah Electronic drill guide
ES2947036T3 (es) 2013-03-14 2023-07-31 Applied Med Resources Grapadora quirúrgica con receptáculos parciales
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9351726B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Articulation control system for articulatable surgical instruments
US9255907B2 (en) 2013-03-14 2016-02-09 Empire Technology Development Llc Identification of surgical smoke
WO2014142925A1 (en) 2013-03-14 2014-09-18 Empire Technology Development Llc Identification of surgical smoke
CA2942069C (en) 2013-03-15 2022-03-01 Synaptive Medical (Barbados) Inc. Surgical imaging systems
CA2904766C (en) 2013-03-15 2022-02-08 Synaptive Medical (Barbados) Inc. Method, system and apparatus for controlling a surgical navigation system
WO2014139024A1 (en) 2013-03-15 2014-09-18 Synaptive Medical (Barbados) Inc. Planning, navigation and simulation systems and methods for minimally invasive therapy
US9485475B2 (en) 2013-03-15 2016-11-01 Arthrex, Inc. Surgical imaging system and method for processing surgical images
KR102227182B1 (ko) 2013-03-15 2021-03-15 어플라이드 메디컬 리소시스 코포레이션 회전가능 샤프트를 구비한 구동 메커니즘을 갖는 수술용 스테이플러
JP6846929B2 (ja) 2013-03-15 2021-03-24 アルベルティ,ジョン 負荷応答電動ツール
EP2967294B1 (en) 2013-03-15 2020-07-29 DePuy Synthes Products, Inc. Super resolution and color motion artifact correction in a pulsed color imaging system
US9116597B1 (en) 2013-03-15 2015-08-25 Ca, Inc. Information management software
US10105149B2 (en) 2013-03-15 2018-10-23 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
WO2014145249A1 (en) 2013-03-15 2014-09-18 Olive Medical Corporation Controlling the integral light energy of a laser pulse
US9788906B2 (en) 2013-03-15 2017-10-17 Synaptive Medical (Barbados) Inc. Context aware surgical systems for intraoperatively configuring imaging devices
US11278353B2 (en) 2016-03-16 2022-03-22 Synaptive Medical Inc. Trajectory alignment system and methods
US9668765B2 (en) 2013-03-15 2017-06-06 The Spectranetics Corporation Retractable blade for lead removal device
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
CN105050527B (zh) 2013-03-15 2018-03-27 圣纳普医疗(巴巴多斯)公司 智能定位系统和用于其的方法
EP2967008A4 (en) 2013-03-15 2016-11-23 Pentair Water Pool & Spa Inc CONTROL SYSTEM OF SLAUGHTERED OXYGEN FOR AN AQUACULTURE
AU2014232694A1 (en) 2013-03-15 2015-09-17 Peerbridge Health, Inc. System and method for monitoring and diagnosing patient condition based on wireless sensor monitoring data
US9283028B2 (en) 2013-03-15 2016-03-15 Covidien Lp Crest-factor control of phase-shifted inverter
CN105188592B (zh) 2013-03-15 2018-07-27 Sri国际公司 超灵巧型手术系统
US10929939B2 (en) 2013-03-15 2021-02-23 Breg, Inc. Business intelligence portal
SG11201507611UA (en) 2013-03-15 2015-10-29 Synaptive Medical Barbados Inc Intramodal synchronization of surgical data
JP6554089B2 (ja) 2013-03-19 2019-07-31 サージセンス コーポレイション 組織酸素化の測定用の器具、システムおよびメソッド
US20140364691A1 (en) 2013-03-28 2014-12-11 Endochoice, Inc. Circuit Board Assembly of A Multiple Viewing Elements Endoscope
US20140303660A1 (en) 2013-04-04 2014-10-09 Elwha Llc Active tremor control in surgical instruments
US20140303990A1 (en) 2013-04-05 2014-10-09 Biomet Manufacturing Corp. Integrated orthopedic planning and management process
US10349824B2 (en) 2013-04-08 2019-07-16 Apama Medical, Inc. Tissue mapping and visualization systems
US9867612B2 (en) 2013-04-16 2018-01-16 Ethicon Llc Powered surgical stapler
US9561982B2 (en) 2013-04-30 2017-02-07 Corning Incorporated Method of cleaning glass substrates
US9592095B2 (en) 2013-05-16 2017-03-14 Intuitive Surgical Operations, Inc. Systems and methods for robotic medical system integration with external imaging
US9111548B2 (en) 2013-05-23 2015-08-18 Knowles Electronics, Llc Synchronization of buffered data in multiple microphones
EP3003177B1 (en) 2013-05-31 2021-03-10 Covidien LP Surgical device with an end-effector assembly for monitoring of tissue during a surgical procedure
EP3003120A4 (en) 2013-06-05 2017-01-18 The Arizona Board of Regents on behalf of the University of Arizona Dual-view probe for illumination and imaging, and use thereof
US9061162B2 (en) 2013-06-17 2015-06-23 Nyxoah SA Dynamic modification of modulation throughout a therapy period
JP6199486B2 (ja) 2013-06-18 2017-09-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 医療デバイスのステータス情報の処理
ES2647815T3 (es) 2013-06-20 2017-12-26 Siemens Schweiz Ag Control funcional de un sensor de gas electrolítico con tres electrodos, así como alarma de peligro y medidor de gas
US9797486B2 (en) 2013-06-20 2017-10-24 Covidien Lp Adapter direct drive with manual retraction, lockout and connection mechanisms
US9542481B2 (en) 2013-06-21 2017-01-10 Virtual Radiologic Corporation Radiology data processing and standardization techniques
US11195598B2 (en) 2013-06-28 2021-12-07 Carefusion 303, Inc. System for providing aggregated patient data
US9910963B2 (en) 2013-07-02 2018-03-06 Quintiles Ims Incorporated Market measures and outcomes for app prescribing
US9750503B2 (en) 2013-07-11 2017-09-05 Covidien Lp Methods and devices for performing a surgical anastomosis
EP2827099A1 (de) 2013-07-16 2015-01-21 Leica Geosystems AG Lasertracker mit Zielsuchfunktionalität
US10097578B2 (en) 2013-07-23 2018-10-09 Oasis Technology, Inc. Anti-cyber hacking defense system
EP3009077A4 (en) 2013-08-06 2017-02-15 Olympus Corporation Pneumoperitoneum apparatus
WO2015021333A1 (en) 2013-08-07 2015-02-12 Cornell Universty Semiconductor tweezers and instrumentation for tissue detection and characterization
AU2014304991B2 (en) 2013-08-08 2019-03-21 Bloom Technologies NV Wireless pregnancy monitor
US9439717B2 (en) 2013-08-13 2016-09-13 Covidien Lp Surgical forceps including thermal spread control
US9750522B2 (en) 2013-08-15 2017-09-05 Ethicon Llc Surgical instrument with clips having transecting blades
CN105684032B (zh) 2013-08-16 2020-05-12 直观外科手术操作公司 用于异构设备间的协调运动的系统和方法
US9833235B2 (en) 2013-08-16 2017-12-05 Covidien Lp Chip assembly for reusable surgical instruments
GB201314774D0 (en) 2013-08-19 2013-10-02 Fish Engineering Ltd Distributor apparatus
US9675419B2 (en) 2013-08-21 2017-06-13 Brachium, Inc. System and method for automating medical procedures
US10624634B2 (en) 2013-08-23 2020-04-21 Ethicon Llc Firing trigger lockout arrangements for surgical instruments
US9539006B2 (en) 2013-08-27 2017-01-10 Covidien Lp Hand held electromechanical surgical handle assembly for use with surgical end effectors, and methods of use
US9295514B2 (en) 2013-08-30 2016-03-29 Ethicon Endo-Surgery, Llc Surgical devices with close quarter articulation features
US11246666B2 (en) 2013-09-06 2022-02-15 The Brigham And Women's Hospital, Inc. System and method for a tissue resection margin measurement device
US9916942B2 (en) 2013-09-10 2018-03-13 Apple Inc. Sealed button for an electronic device
US9861428B2 (en) 2013-09-16 2018-01-09 Ethicon Llc Integrated systems for electrosurgical steam or smoke control
US9962157B2 (en) 2013-09-18 2018-05-08 Covidien Lp Apparatus and method for differentiating between tissue and mechanical obstruction in a surgical instrument
US9830424B2 (en) 2013-09-18 2017-11-28 Hill-Rom Services, Inc. Bed/room/patient association systems and methods
WO2015042120A1 (en) 2013-09-18 2015-03-26 Richard Awdeh Surgical navigation system and method
US9622684B2 (en) 2013-09-20 2017-04-18 Innovative Surgical Solutions, Llc Neural locating system
US10478189B2 (en) 2015-06-26 2019-11-19 Ethicon Llc Method of applying an annular array of staples to tissue
US9717548B2 (en) 2013-09-24 2017-08-01 Covidien Lp Electrode for use in a bipolar electrosurgical instrument
WO2015047216A1 (en) 2013-09-24 2015-04-02 Intel Corporation Systems and methods for wireless display discovery
US9867651B2 (en) 2013-09-26 2018-01-16 Covidien Lp Systems and methods for estimating tissue parameters using surgical devices
US9936942B2 (en) 2013-09-26 2018-04-10 Surgimatix, Inc. Laparoscopic suture device with release mechanism
DE102013016063A1 (de) 2013-09-27 2015-04-02 W. O. M. World of Medicine GmbH Druckerhaltende Rauchgasabsaugung in einem Insufflator
US20140035762A1 (en) 2013-10-01 2014-02-06 Ethicon Endo-Surgery, Inc. Providing Near Real Time Feedback To A User Of A Surgical Instrument
US20160235303A1 (en) 2013-10-11 2016-08-18 The Trustees Of Columbia University In The City Of New York System, method and computer-accessible medium for characterization of tissue
US10037715B2 (en) 2013-10-16 2018-07-31 Simulab Corporation Detecting insertion of needle into simulated vessel using a conductive fluid
US20150108198A1 (en) 2013-10-17 2015-04-23 Covidien Lp Surgical instrument, loading unit and fasteners for use therewith
US10463365B2 (en) 2013-10-17 2019-11-05 Covidien Lp Chip assembly for surgical instruments
US10022090B2 (en) 2013-10-18 2018-07-17 Atlantic Health System, Inc. Nerve protecting dissection device
WO2015061756A1 (en) 2013-10-24 2015-04-30 Auris Surgical Robotics, Inc. System for robotic-assisted endolumenal surgery and related methods
WO2015066424A1 (en) 2013-11-04 2015-05-07 Guided Interventions, Inc. Method and apparatus for performance of thermal bronchiplasty with unfocused ultrasound
EP3065649A1 (en) 2013-11-04 2016-09-14 Covidien LP Surgical fastener applying apparatus
US9922304B2 (en) 2013-11-05 2018-03-20 Deroyal Industries, Inc. System for sensing and recording consumption of medical items during medical procedure
US9544744B2 (en) 2013-11-15 2017-01-10 Richard Postrel Method and system for pre and post processing of beacon ID signals
USD783675S1 (en) 2013-11-18 2017-04-11 Mitsubishi Electric Corporation Information display for an automotive vehicle with a computer generated icon
US9949785B2 (en) 2013-11-21 2018-04-24 Ethicon Llc Ultrasonic surgical instrument with electrosurgical feature
EP2876885A1 (en) 2013-11-21 2015-05-27 Axis AB Method and apparatus in a motion video capturing system
US10552574B2 (en) 2013-11-22 2020-02-04 Spinal Generations, Llc System and method for identifying a medical device
US10368892B2 (en) 2013-11-22 2019-08-06 Ethicon Llc Features for coupling surgical instrument shaft assembly with instrument body
US9105174B2 (en) 2013-11-25 2015-08-11 Mark Matthew Harris System and methods for nonverbally communicating patient comfort data
US9943325B2 (en) 2013-11-26 2018-04-17 Ethicon Llc Handpiece and blade configurations for ultrasonic surgical instrument
JP2016538069A (ja) 2013-11-26 2016-12-08 エシコン・エンド−サージェリィ・エルエルシーEthicon Endo−Surgery, LLC 外科用器具の超音波ブレードに流体を塗布する機構
US10872684B2 (en) 2013-11-27 2020-12-22 The Johns Hopkins University System and method for medical data analysis and sharing
US9713503B2 (en) 2013-12-04 2017-07-25 Novartis Ag Surgical utility connector
FR3014636A1 (fr) 2013-12-05 2015-06-12 Sagemcom Broadband Sas Module electrique
US10159044B2 (en) 2013-12-09 2018-12-18 GM Global Technology Operations LLC Method and apparatus for controlling operating states of bluetooth interfaces of a bluetooth module
KR101527176B1 (ko) 2013-12-09 2015-06-09 (주)미래컴퍼니 수술 로봇 장치 및 수술 로봇 장치의 제어 방법
EP3578119B1 (en) 2013-12-11 2021-03-17 Covidien LP Wrist and jaw assemblies for robotic surgical systems
WO2015088655A1 (en) 2013-12-12 2015-06-18 Covidien Lp Gear train assemblies for robotic surgical systems
US9808245B2 (en) 2013-12-13 2017-11-07 Covidien Lp Coupling assembly for interconnecting an adapter assembly and a surgical device, and surgical systems thereof
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
US9743946B2 (en) 2013-12-17 2017-08-29 Ethicon Llc Rotation features for ultrasonic surgical instrument
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9642620B2 (en) 2013-12-23 2017-05-09 Ethicon Endo-Surgery, Llc Surgical cutting and stapling instruments with articulatable end effectors
WO2015100310A1 (en) 2013-12-23 2015-07-02 Camplex, Inc. Surgical visualization systems
US10039546B2 (en) 2013-12-23 2018-08-07 Covidien Lp Loading unit including shipping member
US9681870B2 (en) 2013-12-23 2017-06-20 Ethicon Llc Articulatable surgical instruments with separate and distinct closing and firing systems
US20150173756A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling methods
US9539020B2 (en) 2013-12-27 2017-01-10 Ethicon Endo-Surgery, Llc Coupling features for ultrasonic surgical instrument
TWI548388B (zh) 2013-12-30 2016-09-11 國立臺灣大學 骨科手術之手持式機器人以及其控制方法
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
US9579099B2 (en) 2014-01-07 2017-02-28 Covidien Lp Shipping member for loading unit
KR20150085251A (ko) 2014-01-15 2015-07-23 엘지전자 주식회사 디스플레이 디바이스 및 그 제어 방법
US9839424B2 (en) 2014-01-17 2017-12-12 Covidien Lp Electromechanical surgical assembly
US9655616B2 (en) 2014-01-22 2017-05-23 Covidien Lp Apparatus for endoscopic procedures
US20150208934A1 (en) 2014-01-24 2015-07-30 Genevieve Sztrubel Method And Apparatus For The Detection Of Neural Tissue
US9907550B2 (en) 2014-01-27 2018-03-06 Covidien Lp Stitching device with long needle delivery
US9801679B2 (en) 2014-01-28 2017-10-31 Ethicon Llc Methods and devices for controlling motorized surgical devices
US9700312B2 (en) 2014-01-28 2017-07-11 Covidien Lp Surgical apparatus
US9802033B2 (en) 2014-01-28 2017-10-31 Ethicon Llc Surgical devices having controlled tissue cutting and sealing
US9468454B2 (en) 2014-01-28 2016-10-18 Ethicon Endo-Surgery, Inc. Motor control and feedback in powered surgical devices
WO2015116687A1 (en) 2014-01-28 2015-08-06 St. Jude Medical, Cardiology Division, Inc. Elongate medical devices incorporating a flexible substrate, a sensor, and electrically-conductive traces
US9358685B2 (en) 2014-02-03 2016-06-07 Brain Corporation Apparatus and methods for control of robot actions based on corrective user inputs
US9706674B2 (en) 2014-02-04 2017-07-11 Covidien Lp Authentication system for reusable surgical instruments
US10213266B2 (en) 2014-02-07 2019-02-26 Covidien Lp Robotic surgical assemblies and adapter assemblies thereof
US11090109B2 (en) 2014-02-11 2021-08-17 Covidien Lp Temperature-sensing electrically-conductive tissue-contacting plate configured for use in an electrosurgical jaw member, electrosurgical system including same, and methods of controlling vessel sealing using same
CN106028990B (zh) 2014-02-17 2018-10-16 奥林巴斯株式会社 超声波处置装置
US9301691B2 (en) 2014-02-21 2016-04-05 Covidien Lp Instrument for optically detecting tissue attributes
BR112016019387B1 (pt) 2014-02-24 2022-11-29 Ethicon Endo-Surgery, Llc Sistema de instrumento cirúrgico e cartucho de prendedores para uso com um instrumento cirúrgico de fixação
US10973682B2 (en) 2014-02-24 2021-04-13 Alcon Inc. Surgical instrument with adhesion optimized edge condition
US9884456B2 (en) 2014-02-24 2018-02-06 Ethicon Llc Implantable layers and methods for altering one or more properties of implantable layers for use with fastening instruments
CA2940814C (en) 2014-02-27 2019-09-03 University Surgical Associates, Inc. Interactive display for surgery
JP2015163172A (ja) 2014-02-28 2015-09-10 オリンパス株式会社 圧排装置およびロボットシステム
US9603277B2 (en) 2014-03-06 2017-03-21 Adtran, Inc. Field-reconfigurable backplane system
WO2015134749A2 (en) 2014-03-06 2015-09-11 Stryker Corporation Medical/surgical waste collection unit with a light assembly separate from the primary display, the light assembly presenting informatin about the operation of the system by selectively outputting light
GB2523224C2 (en) 2014-03-07 2021-06-02 Cambridge Medical Robotics Ltd Surgical arm
US10342623B2 (en) 2014-03-12 2019-07-09 Proximed, Llc Surgical guidance systems, devices, and methods
KR20170035831A (ko) 2014-03-14 2017-03-31 시냅티브 메디컬 (바베이도스) 아이엔씨. 인텔리전트 포지셔닝 시스템과 그것의 방법들
WO2015142953A1 (en) 2014-03-17 2015-09-24 Intuitive Surgical Operations, Inc. System and method for recentering imaging devices and input controls
WO2015142798A1 (en) 2014-03-17 2015-09-24 Intuitive Surgical Operations, Inc. Methods and devices for tele-surgical table registration
CN118078465A (zh) 2014-03-17 2024-05-28 直观外科手术操作公司 外科手术套管以及用于识别外科手术套管的相关系统和方法
EP4074279A1 (en) 2014-03-17 2022-10-19 Intuitive Surgical Operations, Inc. Surgical cannula mounts and related systems
US10166061B2 (en) 2014-03-17 2019-01-01 Intuitive Surgical Operations, Inc. Teleoperated surgical system equipment with user interface
US10213268B2 (en) 2014-03-17 2019-02-26 Intuitive Surgical Operations, Inc. Latch release for surgical instrument
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US9750499B2 (en) 2014-03-26 2017-09-05 Ethicon Llc Surgical stapling instrument system
US10013049B2 (en) 2014-03-26 2018-07-03 Ethicon Llc Power management through sleep options of segmented circuit and wake up control
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US10004497B2 (en) 2014-03-26 2018-06-26 Ethicon Llc Interface systems for use with surgical instruments
EP3123826B1 (en) 2014-03-27 2018-02-21 Fagerhults Belysning AB Lighting system for providing light in a room
US10197803B2 (en) 2014-03-28 2019-02-05 Alma Mater Studiorum—Universita' di Bologna Augmented reality glasses for medical applications and corresponding augmented reality system
US9757126B2 (en) 2014-03-31 2017-09-12 Covidien Lp Surgical stapling apparatus with firing lockout mechanism
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
JP6725426B2 (ja) 2014-03-31 2020-07-15 インテュイティブ サージカル オペレーションズ, インコーポレイテッド シフト可能な伝動装置を備える手術器具
CN106163444B (zh) 2014-04-01 2019-06-28 直观外科手术操作公司 遥控操作的外科手术器械的控制输入准确度
US9987068B2 (en) 2014-04-04 2018-06-05 Covidien Lp Systems and methods for optimizing emissions from simultaneous activation of electrosurgery generators
US9974595B2 (en) 2014-04-04 2018-05-22 Covidien Lp Systems and methods for optimizing emissions from simultaneous activation of electrosurgery generators
US9433427B2 (en) 2014-04-08 2016-09-06 Incuvate, Llc Systems and methods for management of thrombosis
US9980769B2 (en) 2014-04-08 2018-05-29 Ethicon Llc Methods and devices for controlling motorized surgical devices
WO2015157266A1 (en) 2014-04-08 2015-10-15 Ams Research Corporation Flexible devices for blunt dissection and related methods
US9918730B2 (en) 2014-04-08 2018-03-20 Ethicon Llc Methods and devices for controlling motorized surgical devices
JP6915990B2 (ja) 2014-04-09 2021-08-11 ジャイラス エーシーエムアイ インク 使用が制限された製品のための強制装置
WO2015157337A1 (en) 2014-04-09 2015-10-15 University Of Rochester Method and apparatus to diagnose the metastatic or progressive potential of cancer, fibrosis and other diseases
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
US9833241B2 (en) 2014-04-16 2017-12-05 Ethicon Llc Surgical fastener cartridges with driver stabilizing arrangements
CN106456158B (zh) 2014-04-16 2019-02-05 伊西康内外科有限责任公司 包括非一致紧固件的紧固件仓
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
US20150302157A1 (en) 2014-04-17 2015-10-22 Ryan Mitchell Collar Apparatus, Method, and System for Counting Packaged, Consumable, Medical Items Such as Surgical Suture Cartridges
US10164466B2 (en) 2014-04-17 2018-12-25 Covidien Lp Non-contact surgical adapter electrical interface
US20150297200A1 (en) 2014-04-17 2015-10-22 Covidien Lp End of life transmission system for surgical instruments
US10258363B2 (en) 2014-04-22 2019-04-16 Ethicon Llc Method of operating an articulating ultrasonic surgical instrument
WO2015164830A1 (en) 2014-04-25 2015-10-29 Sherp Fluidics Llc Systems and methods for increased operating room efficiency
US10639185B2 (en) 2014-04-25 2020-05-05 The Trustees Of Columbia University In The City Of New York Spinal treatment devices, methods, and systems
US10133248B2 (en) 2014-04-28 2018-11-20 Covidien Lp Systems and methods for determining an end of life state for surgical devices
US20150317899A1 (en) 2014-05-01 2015-11-05 Covidien Lp System and method for using rfid tags to determine sterilization of devices
US10175127B2 (en) 2014-05-05 2019-01-08 Covidien Lp End-effector force measurement drive circuit
US9861366B2 (en) 2014-05-06 2018-01-09 Covidien Lp Ejecting assembly for a surgical stapler
US20150324114A1 (en) 2014-05-06 2015-11-12 Conceptualiz Inc. System and method for interactive 3d surgical planning and modelling of surgical implants
US10111703B2 (en) 2014-05-06 2018-10-30 Cosman Instruments, Llc Electrosurgical generator
US10471254B2 (en) 2014-05-12 2019-11-12 Virginia Tech Intellectual Properties, Inc. Selective modulation of intracellular effects of cells using pulsed electric fields
EP3142593B1 (en) 2014-05-13 2022-08-10 Covidien LP Surgical robotic arm support systems and methods of use
CN110680437B (zh) 2014-05-15 2023-01-31 柯惠Lp公司 手术紧固件施加装置
US9770541B2 (en) 2014-05-15 2017-09-26 Thermedx, Llc Fluid management system with pass-through fluid volume measurement
US11977998B2 (en) 2014-05-15 2024-05-07 Storz Endoskop Produktions Gmbh Surgical workflow support system
US9753568B2 (en) 2014-05-15 2017-09-05 Bebop Sensors, Inc. Flexible sensors and applications
US9943918B2 (en) 2014-05-16 2018-04-17 Powdermet, Inc. Heterogeneous composite bodies with isolated cermet regions formed by high temperature, rapid consolidation
US20150332003A1 (en) 2014-05-19 2015-11-19 Unitedhealth Group Incorporated Computer readable storage media for utilizing derived medical records and methods and systems for same
WO2015181997A1 (en) 2014-05-30 2015-12-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20160106516A1 (en) 2014-05-30 2016-04-21 Sameh Mesallum Systems for automated biomechanical computerized surgery
US9549781B2 (en) 2014-05-30 2017-01-24 The Johns Hopkins University Multi-force sensing surgical instrument and method of use for robotic surgical systems
EP3148465B1 (en) 2014-05-30 2018-05-16 Applied Medical Resources Corporation Electrosurgical system with an instrument comprising a jaw with a central insulative pad
US9325732B1 (en) 2014-06-02 2016-04-26 Amazon Technologies, Inc. Computer security threat sharing
US10251725B2 (en) 2014-06-09 2019-04-09 Covidien Lp Authentication and information system for reusable surgical instruments
WO2015191562A1 (en) 2014-06-09 2015-12-17 Revon Systems, Llc Systems and methods for health tracking and management
US9331422B2 (en) 2014-06-09 2016-05-03 Apple Inc. Electronic device with hidden connector
EP3785644B1 (en) 2014-06-11 2023-11-01 Applied Medical Resources Corporation Surgical stapler with circumferential firing
US10499831B2 (en) 2014-06-11 2019-12-10 University Of Houston System Systems and methods for medical procedure monitoring
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US11437125B2 (en) 2014-06-13 2022-09-06 University Hospitals Cleveland Medical Center Artificial-intelligence-based facilitation of healthcare delivery
KR101587721B1 (ko) 2014-06-17 2016-01-22 에스엔유 프리시젼 주식회사 수술용 버커터의 제어방법 및 제어장치
US10314577B2 (en) 2014-06-25 2019-06-11 Ethicon Llc Lockout engagement features for surgical stapler
US10335147B2 (en) 2014-06-25 2019-07-02 Ethicon Llc Method of using lockout features for surgical stapler cartridge
US9636825B2 (en) 2014-06-26 2017-05-02 Robotex Inc. Robotic logistics system
CN112862775A (zh) 2014-07-25 2021-05-28 柯惠Lp公司 增强手术现实环境
US20160034648A1 (en) 2014-07-30 2016-02-04 Verras Healthcare International, LLC System and method for reducing clinical variation
AU2015296014A1 (en) 2014-08-01 2017-02-23 Smith & Nephew, Inc. Providing implants for surgical procedures
US10422727B2 (en) 2014-08-10 2019-09-24 Harry Leon Pliskin Contaminant monitoring and air filtration system
JP6701172B2 (ja) 2014-08-13 2020-05-27 コヴィディエン リミテッド パートナーシップ 機械的利益把握のロボット制御
CN105449719B (zh) 2014-08-26 2019-01-04 珠海格力电器股份有限公司 分布式能源电源控制方法、装置及系统
US10194972B2 (en) 2014-08-26 2019-02-05 Ethicon Llc Managing tissue treatment
EP3193708A1 (en) 2014-08-26 2017-07-26 Avent, Inc. Method and system for identification of source of chronic pain and treatment
US9700320B2 (en) 2014-09-02 2017-07-11 Ethicon Llc Devices and methods for removably coupling a cartridge to an end effector of a surgical device
US9788835B2 (en) 2014-09-02 2017-10-17 Ethicon Llc Devices and methods for facilitating ejection of surgical fasteners from cartridges
US9848877B2 (en) 2014-09-02 2017-12-26 Ethicon Llc Methods and devices for adjusting a tissue gap of an end effector of a surgical device
US10004500B2 (en) 2014-09-02 2018-06-26 Ethicon Llc Devices and methods for manually retracting a drive shaft, drive beam, and associated components of a surgical fastening device
US9943312B2 (en) 2014-09-02 2018-04-17 Ethicon Llc Methods and devices for locking a surgical device based on loading of a fastener cartridge in the surgical device
US9795380B2 (en) 2014-09-02 2017-10-24 Ethicon Llc Devices and methods for facilitating closing and clamping of an end effector of a surgical device
US9280884B1 (en) 2014-09-03 2016-03-08 Oberon, Inc. Environmental sensor device with alarms
US10016199B2 (en) 2014-09-05 2018-07-10 Ethicon Llc Polarity of hall magnet to identify cartridge type
US10803977B2 (en) 2014-09-15 2020-10-13 Synaptive Medical (Barbados) Inc. System and method for collection, storage and management of medical data
EP3193767B1 (en) 2014-09-15 2022-04-20 Covidien LP Robotically controlling surgical assemblies
CA2962184C (en) 2014-09-15 2023-10-17 Applied Medical Resources Corporation Surgical stapler with self-adjusting staple height
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
US20170249432A1 (en) 2014-09-23 2017-08-31 Surgical Safety Technologies Inc. Operating room black-box device, system, method and computer readable medium
US20210076966A1 (en) 2014-09-23 2021-03-18 Surgical Safety Technologies Inc. System and method for biometric data capture for event prediction
US10478544B2 (en) 2014-09-25 2019-11-19 Nxstage Medical, Inc. Medicament preparation and treatment devices, methods, and systems
US9936961B2 (en) 2014-09-26 2018-04-10 DePuy Synthes Products, Inc. Surgical tool with feedback
JP2017529907A (ja) 2014-09-29 2017-10-12 コヴィディエン リミテッド パートナーシップ ロボット外科手術システムの制御のための動的入力スケーリング
US10039564B2 (en) 2014-09-30 2018-08-07 Ethicon Llc Surgical devices having power-assisted jaw closure and methods for compressing and sensing tissue
US9901406B2 (en) 2014-10-02 2018-02-27 Inneroptic Technology, Inc. Affected region display associated with a medical device
US9630318B2 (en) 2014-10-02 2017-04-25 Brain Corporation Feature detection apparatus and methods for training of robotic navigation
US9833254B1 (en) 2014-10-03 2017-12-05 Verily Life Sciences Llc Controlled dissection of biological tissue
WO2016057225A1 (en) 2014-10-07 2016-04-14 Covidien Lp Handheld electromechanical surgical system
US10292758B2 (en) 2014-10-10 2019-05-21 Ethicon Llc Methods and devices for articulating laparoscopic energy device
GB201417963D0 (en) 2014-10-10 2014-11-26 Univ Oslo Hf Measurement of impedance of body tissue
US10102926B1 (en) 2014-10-14 2018-10-16 Sentry Data Systems, Inc. Detecting, analyzing and impacting improvement opportunities related to total cost of care, clinical quality and revenue integrity
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US10226254B2 (en) 2014-10-21 2019-03-12 Covidien Lp Adapter, extension, and connector assemblies for surgical devices
CN107072726B (zh) 2014-10-24 2020-09-29 柯惠Lp公司 感测化的机器人手术系统进入端口
CN107072864B (zh) 2014-10-27 2019-06-14 直观外科手术操作公司 用于配准到手术台的系统及方法
US9717417B2 (en) 2014-10-29 2017-08-01 Spectral Md, Inc. Reflective mode multi-spectral time-resolved optical imaging methods and apparatuses for tissue classification
US11504192B2 (en) 2014-10-30 2022-11-22 Cilag Gmbh International Method of hub communication with surgical instrument systems
CN107072700A (zh) 2014-10-31 2017-08-18 奥林巴斯株式会社 医疗用处置装置
CN104436911A (zh) 2014-11-03 2015-03-25 佛山市顺德区阿波罗环保器材有限公司 一种基于滤芯识别防伪的空气净化器
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
JP2016087248A (ja) 2014-11-07 2016-05-23 ソニー株式会社 観察装置及び観察システム
US10792422B2 (en) 2014-11-10 2020-10-06 White Bear Medical LLC Dynamically controlled treatment protocols for autonomous treatment systems
US20170325876A1 (en) 2014-11-19 2017-11-16 Kyushu University, National University Corporation High frequency forceps
US10092355B1 (en) 2014-11-21 2018-10-09 Verily Life Sciences Llc Biophotonic surgical probe
US9782212B2 (en) 2014-12-02 2017-10-10 Covidien Lp High level algorithms
US20190069949A1 (en) 2014-12-03 2019-03-07 Metavention, Inc. Systems and methods for modulatng nerves or other tissue
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US9247996B1 (en) 2014-12-10 2016-02-02 F21, Llc System, method, and apparatus for refurbishment of robotic surgical arms
US10095942B2 (en) 2014-12-15 2018-10-09 Reflex Robotics, Inc Vision based real-time object tracking system for robotic gimbal control
JP6657224B2 (ja) 2014-12-16 2020-03-04 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 波長帯選択による画像化を用いた尿管検出
CN104490448B (zh) 2014-12-17 2017-03-15 徐保利 外科结扎用施夹钳
US9160853B1 (en) 2014-12-17 2015-10-13 Noble Systems Corporation Dynamic display of real time speech analytics agent alert indications in a contact center
WO2016100719A1 (en) 2014-12-17 2016-06-23 Maquet Cardiovascular Llc Surgical device
US10010366B2 (en) 2014-12-17 2018-07-03 Ethicon Llc Surgical devices and methods for tissue cutting and sealing
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US20160180045A1 (en) 2014-12-19 2016-06-23 Ebay Inc. Wireless beacon devices used to track medical information at a hospital
EP3238111A1 (en) 2014-12-24 2017-11-01 Oncompass GmbH System and method for adaptive medical decision support
EP3241505B1 (en) 2014-12-30 2024-02-07 Touchstone International Medical Science Co., Ltd. Stapling head assembly and suturing and cutting apparatus for endoscopic surgery
WO2016109726A1 (en) 2014-12-31 2016-07-07 Vector Medical, Llc Process and apparatus for managing medical device selection and implantation
US9775611B2 (en) 2015-01-06 2017-10-03 Covidien Lp Clam shell surgical stapling loading unit
US9931124B2 (en) 2015-01-07 2018-04-03 Covidien Lp Reposable clip applier
US10362179B2 (en) 2015-01-09 2019-07-23 Tracfone Wireless, Inc. Peel and stick activation code for activating service for a wireless device
US9931040B2 (en) 2015-01-14 2018-04-03 Verily Life Sciences Llc Applications of hyperspectral laser speckle imaging
US10404521B2 (en) 2015-01-14 2019-09-03 Datto, Inc. Remotely configurable routers with failover features, and methods and apparatus for reliable web-based administration of same
GB2535627B (en) 2015-01-14 2017-06-28 Gyrus Medical Ltd Electrosurgical system
CN107205747B (zh) 2015-01-15 2020-09-08 柯惠有限合伙公司 可重复使用的内窥镜外科夹具施加器
US10656720B1 (en) 2015-01-16 2020-05-19 Ultrahaptics IP Two Limited Mode switching for integrated gestural interaction and multi-user collaboration in immersive virtual reality environments
AU2016200084B2 (en) 2015-01-16 2020-01-16 Covidien Lp Powered surgical stapling device
AU2016209266B2 (en) 2015-01-21 2020-10-15 Serene Medical, Inc. Systems and devices to identify and limit nerve conduction
US20160206362A1 (en) 2015-01-21 2016-07-21 Serene Medical, Inc. Systems and devices to identify and limit nerve conduction
GB2534558B (en) 2015-01-21 2020-12-30 Cmr Surgical Ltd Robot tool retraction
US9387295B1 (en) 2015-01-30 2016-07-12 SurgiQues, Inc. Filter cartridge with internal gaseous seal for multimodal surgical gas delivery system having a smoke evacuation mode
US10159809B2 (en) 2015-01-30 2018-12-25 Surgiquest, Inc. Multipath filter assembly with integrated gaseous seal for multimodal surgical gas delivery system
EP3254255A4 (en) 2015-02-02 2018-09-19 Think Surgical, Inc. Method and system for managing medical data
EP3254640A4 (en) 2015-02-05 2018-08-08 Olympus Corporation Manipulator
US9713424B2 (en) 2015-02-06 2017-07-25 Richard F. Spaide Volume analysis and display of information in optical coherence tomography angiography
US20160228061A1 (en) 2015-02-10 2016-08-11 Cathprint Ab Low profile medical device with integrated flexible circuit and methods of making the same
JP6389774B2 (ja) 2015-02-10 2018-09-12 東芝テック株式会社 商品販売データ処理装置
US10111658B2 (en) 2015-02-12 2018-10-30 Covidien Lp Display screens for medical devices
DK3056923T3 (da) 2015-02-13 2021-07-12 Zoller & Froehlich Gmbh Scanningsanordning og fremgangsmåde til scanning af et objekt
US9805472B2 (en) 2015-02-18 2017-10-31 Sony Corporation System and method for smoke detection during anatomical surgery
US9905000B2 (en) 2015-02-19 2018-02-27 Sony Corporation Method and system for surgical tool localization during anatomical surgery
US10111665B2 (en) 2015-02-19 2018-10-30 Covidien Lp Electromechanical surgical systems
US20160242836A1 (en) 2015-02-23 2016-08-25 Hemostatix Medical Technologies, LLC Apparatus, System and Method for Excision of Soft Tissue
US10085749B2 (en) 2015-02-26 2018-10-02 Covidien Lp Surgical apparatus with conductor strain relief
US10285698B2 (en) 2015-02-26 2019-05-14 Covidien Lp Surgical apparatus
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10733267B2 (en) 2015-02-27 2020-08-04 Surgical Black Box Llc Surgical data control system
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
JP6440816B2 (ja) 2015-02-27 2018-12-19 オリンパス株式会社 医療用処置装置、及び医療用処置装置の作動方法
US20160249910A1 (en) 2015-02-27 2016-09-01 Ethicon Endo-Surgery, Llc Surgical charging system that charges and/or conditions one or more batteries
US20160301690A1 (en) 2015-04-10 2016-10-13 Enovate Medical, Llc Access control for a hard asset
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
KR101956496B1 (ko) 2015-03-06 2019-03-08 마이크로매스 유케이 리미티드 전기수술 응용분야에 대한 액체 트랩 또는 세퍼레이터
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
EP3267921B1 (en) 2015-03-10 2020-02-26 Covidien LP Robotic surgical systems, instrument drive units, and drive assemblies
JP6360803B2 (ja) 2015-03-10 2018-07-18 富士フイルム株式会社 診療データ管理装置、その作動方法及び作動プログラム
EP3267920A4 (en) 2015-03-10 2019-03-06 Covidien LP MEASURING THE HEALTH OF A CONNECTING ELEMENT OF A SURGICAL ROBOTIC SYSTEM
US10190888B2 (en) 2015-03-11 2019-01-29 Covidien Lp Surgical stapling instruments with linear position assembly
US10653476B2 (en) 2015-03-12 2020-05-19 Covidien Lp Mapping vessels for resecting body tissue
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US9717525B2 (en) 2015-03-17 2017-08-01 Prabhat Kumar Ahluwalia Uterine manipulator
US10390718B2 (en) 2015-03-20 2019-08-27 East Carolina University Multi-spectral physiologic visualization (MSPV) using laser imaging methods and systems for blood flow and perfusion imaging and quantification in an endoscopic design
US10349939B2 (en) 2015-03-25 2019-07-16 Ethicon Llc Method of applying a buttress to a surgical stapler
US10568621B2 (en) 2015-03-25 2020-02-25 Ethicon Llc Surgical staple buttress with integral adhesive for releasably attaching to a surgical stapler
US10136891B2 (en) 2015-03-25 2018-11-27 Ethicon Llc Naturally derived bioabsorbable polymer gel adhesive for releasably attaching a staple buttress to a surgical stapler
US10172618B2 (en) 2015-03-25 2019-01-08 Ethicon Llc Low glass transition temperature bioabsorbable polymer adhesive for releasably attaching a staple buttress to a surgical stapler
US10863984B2 (en) 2015-03-25 2020-12-15 Ethicon Llc Low inherent viscosity bioabsorbable polymer adhesive for releasably attaching a staple buttress to a surgical stapler
US9636164B2 (en) 2015-03-25 2017-05-02 Advanced Cardiac Therapeutics, Inc. Contact sensing systems and methods
CA2980618C (en) 2015-03-26 2023-09-26 Surgical Safety Technologies Inc. Operating room black-box device, system, method and computer readable medium for event and error prediction
US20160321400A1 (en) 2015-03-30 2016-11-03 Zoll Medical Corporation Clinical Data Handoff in Device Management and Data Sharing
US10813684B2 (en) 2015-03-30 2020-10-27 Ethicon Llc Control of cutting and sealing based on tissue mapped by segmented electrode
JP6560762B2 (ja) 2015-03-31 2019-08-14 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド 高熱感受性アブレーション・カテーテル及びカテーテル・チップ
US10383518B2 (en) 2015-03-31 2019-08-20 Midmark Corporation Electronic ecosystem for medical examination room
US10433844B2 (en) 2015-03-31 2019-10-08 Ethicon Llc Surgical instrument with selectively disengageable threaded drive systems
WO2016161137A1 (en) 2015-04-01 2016-10-06 Abbvie Inc. Systems and methods for generating longitudinal data profiles from multiple data sources
EP3280315B1 (en) 2015-04-06 2020-11-18 Thomas Jefferson University Implantable vital sign sensor
US10327779B2 (en) 2015-04-10 2019-06-25 Covidien Lp Adapter, extension, and connector assemblies for surgical devices
WO2016164590A1 (en) 2015-04-10 2016-10-13 Mako Surgical Corp. System and method of controlling a surgical tool during autonomous movement of the surgical tool
US10117702B2 (en) 2015-04-10 2018-11-06 Ethicon Llc Surgical generator systems and related methods
US20160296246A1 (en) 2015-04-13 2016-10-13 Novartis Ag Forceps with metal and polymeric arms
CN108366714A (zh) 2015-04-20 2018-08-03 美的洛博迪克斯公司 铰接式机器人探头
US10806506B2 (en) 2015-04-21 2020-10-20 Smith & Nephew, Inc. Vessel sealing algorithm and modes
ES2950459T3 (es) 2015-04-22 2023-10-10 Covidien Lp Sistema quirúrgico electromecánico portátil
CN107708595B (zh) 2015-04-23 2020-08-04 Sri国际公司 超灵巧型手术系统用户接口装置
US10617463B2 (en) 2015-04-23 2020-04-14 Covidien Lp Systems and methods for controlling power in an electrosurgical generator
US20160342753A1 (en) 2015-04-24 2016-11-24 Starslide Method and apparatus for healthcare predictive decision technology platform
US20160314711A1 (en) 2015-04-27 2016-10-27 KindHeart, Inc. Telerobotic surgery system for remote surgeon training using robotic surgery station and remote surgeon station with display of actual animal tissue images and associated methods
US20160314717A1 (en) 2015-04-27 2016-10-27 KindHeart, Inc. Telerobotic surgery system for remote surgeon training using robotic surgery station coupled to remote surgeon trainee and instructor stations and associated methods
US20160323283A1 (en) 2015-04-30 2016-11-03 Samsung Electronics Co., Ltd. Semiconductor device for controlling access right to resource based on pairing technique and method thereof
WO2016176781A1 (en) 2015-05-07 2016-11-10 Novadaq Technologies Inc. Methods and systems for laser speckle imaging of tissue using a color image sensor
EP3851062A1 (en) 2015-05-11 2021-07-21 Covidien LP Coupling instrument drive unit and robotic surgical instrument
US10235737B2 (en) 2015-05-11 2019-03-19 Elwha Llc Interactive surgical drape, system, and related methods
WO2016181404A1 (en) 2015-05-12 2016-11-17 Avraham Levy A dynamic field of view endoscope
GB2538497B (en) 2015-05-14 2020-10-28 Cmr Surgical Ltd Torque sensing in a surgical robotic wrist
US9566708B2 (en) 2015-05-14 2017-02-14 Daniel Kurnianto Control mechanism for end-effector maneuver
AU2016263106B2 (en) 2015-05-15 2020-01-16 Mako Surgical Corp. Systems and methods for providing guidance for a robotic medical procedure
WO2016187070A1 (en) 2015-05-15 2016-11-24 Gauss Surgical, Inc. Method for projecting blood loss of a patient during a surgery
US20160342916A1 (en) 2015-05-20 2016-11-24 Schlumberger Technology Corporation Downhole tool management system
CA3029355A1 (en) 2015-05-22 2016-11-22 Covidien Lp Surgical instruments and methods for performing tonsillectomy, adenoidectomy, and other surgical procedures
US9519753B1 (en) 2015-05-26 2016-12-13 Virtual Radiologic Corporation Radiology workflow coordination techniques
US10022120B2 (en) 2015-05-26 2018-07-17 Ethicon Llc Surgical needle with recessed features
US10349941B2 (en) 2015-05-27 2019-07-16 Covidien Lp Multi-fire lead screw stapling device
US9918326B2 (en) 2015-05-27 2018-03-13 Comcast Cable Communications, Llc Optimizing resources in data transmission
US20160354162A1 (en) 2015-06-02 2016-12-08 National Taiwan University Drilling control system and drilling control method
US10959788B2 (en) 2015-06-03 2021-03-30 Covidien Lp Offset instrument drive unit
US10118119B2 (en) 2015-06-08 2018-11-06 Cts Corporation Radio frequency process sensing, control, and diagnostics network and system
AU2016274414B2 (en) 2015-06-08 2020-05-21 Covidien Lp Mounting device for surgical systems and method of use
EP3307196A4 (en) 2015-06-09 2019-06-19 Intuitive Surgical Operations Inc. SURGICAL SYSTEM CONFIGURATION WITH ATLAS OF SURGICAL PROCEDURES
WO2016201198A1 (en) 2015-06-10 2016-12-15 Intuitive Surgical Operations, Inc. System and method for patient-side instrument control
WO2016199153A1 (en) 2015-06-10 2016-12-15 OrthoDrill Medical Ltd. Sensor technologies with alignment to body movements
US10004491B2 (en) 2015-06-15 2018-06-26 Ethicon Llc Suturing instrument with needle motion indicator
US10339496B2 (en) 2015-06-15 2019-07-02 Milwaukee Electric Tool Corporation Power tool communication system
US9888914B2 (en) 2015-06-16 2018-02-13 Ethicon Endo-Surgery, Llc Suturing instrument with motorized needle drive
JP6761822B2 (ja) 2015-06-16 2020-09-30 コヴィディエン リミテッド パートナーシップ ロボット外科用システムトルク変換検知
US9839419B2 (en) 2015-06-16 2017-12-12 Ethicon Endo-Surgery, Llc Suturing instrument with jaw having integral cartridge component
US9782164B2 (en) 2015-06-16 2017-10-10 Ethicon Endo-Surgery, Llc Suturing instrument with multi-mode cartridges
US9861422B2 (en) 2015-06-17 2018-01-09 Medtronic, Inc. Catheter breach loop feedback fault detection with active and inactive driver system
US10182818B2 (en) 2015-06-18 2019-01-22 Ethicon Llc Surgical end effectors with positive jaw opening arrangements
US10512499B2 (en) 2015-06-19 2019-12-24 Covidien Lp Systems and methods for detecting opening of the jaws of a vessel sealer mid-seal
CN107787207B (zh) 2015-06-19 2021-05-25 柯惠Lp公司 利用双向耦接控制机器人手术器械
EP3310287B1 (en) 2015-06-19 2022-04-20 Covidien LP Robotic surgical assemblies
AU2016284040B2 (en) 2015-06-23 2020-04-30 Covidien Lp Robotic surgical assemblies
WO2016210111A1 (en) 2015-06-23 2016-12-29 Matrix It Medical Tracking Systems, Inc. Sterile implant tracking device and system
US10528840B2 (en) 2015-06-24 2020-01-07 Stryker Corporation Method and system for surgical instrumentation setup and user preferences
WO2016206015A1 (en) 2015-06-24 2016-12-29 Covidien Lp Surgical clip applier with multiple clip feeding mechanism
US10905415B2 (en) 2015-06-26 2021-02-02 Ethicon Llc Surgical stapler with electromechanical lockout
US10265066B2 (en) 2015-06-26 2019-04-23 Ethicon Llc Surgical stapler with incomplete firing indicator
US10765470B2 (en) 2015-06-30 2020-09-08 Ethicon Llc Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
US9839470B2 (en) 2015-06-30 2017-12-12 Covidien Lp Electrosurgical generator for minimizing neuromuscular stimulation
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
KR101726054B1 (ko) 2015-07-08 2017-04-12 성균관대학교산학협력단 생체조직 판별 장치 및 방법, 이를 이용한 수술 장치
CA2991632A1 (en) 2015-07-13 2017-01-19 Mako Surgical Corp. Lower extremities leg length calculation method
JP6902525B2 (ja) 2015-07-13 2021-07-14 サージマティクス, インコーポレーテッドSurgimatix, Inc. 解放機構を備えた腹腔鏡縫合装置
WO2017011646A1 (en) 2015-07-14 2017-01-19 Smith & Nephew, Inc. Instrumentation identification and re-ordering system
GB2540756B (en) 2015-07-22 2021-03-31 Cmr Surgical Ltd Gear packaging for robot arms
GB2541369B (en) 2015-07-22 2021-03-31 Cmr Surgical Ltd Drive mechanisms for robot arms
US10420558B2 (en) 2015-07-30 2019-09-24 Ethicon Llc Surgical instrument comprising a system for bypassing an operational step of the surgical instrument
US10045782B2 (en) 2015-07-30 2018-08-14 Covidien Lp Surgical stapling loading unit with stroke counter and lockout
JP6197144B2 (ja) 2015-08-05 2017-09-13 オリンパス株式会社 処置具
US10679758B2 (en) 2015-08-07 2020-06-09 Abbott Cardiovascular Systems Inc. System and method for supporting decisions during a catheterization procedure
US9532845B1 (en) 2015-08-11 2017-01-03 ITKR Software LLC Methods for facilitating individualized kinematically aligned total knee replacements and devices thereof
EP3334510B1 (en) 2015-08-14 2020-02-12 3M Innovative Properties Company Identification of filter media within a filtration system
US10136949B2 (en) 2015-08-17 2018-11-27 Ethicon Llc Gathering and analyzing data for robotic surgical systems
US11351001B2 (en) 2015-08-17 2022-06-07 Intuitive Surgical Operations, Inc. Ungrounded master control devices and methods of use
US10205708B1 (en) 2015-08-21 2019-02-12 Teletracking Technologies, Inc. Systems and methods for digital content protection and security in multi-computer networks
US10639039B2 (en) 2015-08-24 2020-05-05 Ethicon Llc Surgical stapler buttress applicator with multi-zone platform for pressure focused release
US10166026B2 (en) 2015-08-26 2019-01-01 Ethicon Llc Staple cartridge assembly including features for controlling the rotation of staples when being ejected therefrom
WO2017037705A1 (en) 2015-08-30 2017-03-09 M.S.T. Medical Surgery Technologies Ltd An intelligent surgical tool control system for laparoscopic surgeries
JP6894431B2 (ja) 2015-08-31 2021-06-30 ケービー メディカル エスアー ロボット外科用システム及び方法
US20170068792A1 (en) 2015-09-03 2017-03-09 Bruce Reiner System and method for medical device security, data tracking and outcomes analysis
EP3141181B1 (en) 2015-09-11 2018-06-20 Bernard Boon Chye Lim Ablation catheter apparatus with a basket comprising electrodes, an optical emitting element and an optical receiving element
WO2017044406A1 (en) 2015-09-11 2017-03-16 Covidien Lp Robotic surgical system control scheme for manipulating robotic end effctors
DE102015115559A1 (de) 2015-09-15 2017-03-16 Karl Storz Gmbh & Co. Kg Manipulationssystem sowie Handhabungsvorrichtung für chirurgische Instrumente
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
WO2017053507A1 (en) 2015-09-25 2017-03-30 Covidien Lp Elastic surgical interface for robotic surgical systems
US11076909B2 (en) 2015-09-25 2021-08-03 Gyrus Acmi, Inc. Multifunctional medical device
US10898280B2 (en) 2015-09-25 2021-01-26 Covidien Lp Robotic surgical assemblies and electromechanical instruments thereof
CN108024836B (zh) 2015-09-25 2021-02-02 柯惠Lp公司 手术机器人组合件和其器械适配器
EP3352699B1 (en) 2015-09-25 2023-08-23 Covidien LP Robotic surgical assemblies and instrument drive connectors thereof
EP3355819A1 (en) 2015-09-30 2018-08-08 Ethicon LLC Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments
US11058475B2 (en) 2015-09-30 2021-07-13 Cilag Gmbh International Method and apparatus for selecting operations of a surgical instrument based on user intention
US9900787B2 (en) 2015-09-30 2018-02-20 George Ou Multicomputer data transferring system with a base station
MX2018003944A (es) 2015-09-30 2018-11-09 Ethicon Llc Topologias de circuito para generador combinado.
US20170086829A1 (en) 2015-09-30 2017-03-30 Ethicon Endo-Surgery, Llc Compressible adjunct with intermediate supporting structures
US11083399B2 (en) 2015-10-05 2021-08-10 Infobionic, Inc. Electrode patch for health monitoring
JP2018534011A (ja) 2015-10-14 2018-11-22 サージカル シアター エルエルシー 拡張現実感手術ナビゲーション
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10893914B2 (en) 2015-10-19 2021-01-19 Ethicon Llc Surgical instrument with dual mode end effector and modular clamp arm assembly
US10058393B2 (en) 2015-10-21 2018-08-28 P Tech, Llc Systems and methods for navigation and visualization
EP3364904A4 (en) 2015-10-22 2019-06-19 Covidien LP VARIABLE SCAN FOR INPUT DEVICES
US20170116873A1 (en) 2015-10-26 2017-04-27 C-SATS, Inc. Crowd-sourced assessment of performance of an activity
US10639027B2 (en) 2015-10-27 2020-05-05 Ethicon Llc Suturing instrument cartridge with torque limiting features
CN108430339A (zh) 2015-10-29 2018-08-21 夏普应用流体力学有限责任公司 用于手术室中数据捕获的系统和方法
WO2017075121A1 (en) 2015-10-30 2017-05-04 Covidien Lp Haptic fedback controls for a robotic surgical system interface
EP3369018A1 (en) 2015-10-30 2018-09-05 Koninklijke Philips N.V. Hospital matching of de-identified healthcare databases without obvious quasi-identifiers
WO2017075122A1 (en) 2015-10-30 2017-05-04 Covidien Lp Input handles for robotic surgical systems having visual feedback
EP3265785A4 (en) 2015-10-30 2018-04-04 Cedars-Sinai Medical Center Methods and systems for performing tissue classification using multi-channel tr-lifs and multivariate analysis
US20170132785A1 (en) 2015-11-09 2017-05-11 Xerox Corporation Method and system for evaluating the quality of a surgical procedure from in-vivo video
US10084833B2 (en) 2015-11-09 2018-09-25 Cisco Technology, Inc. Initiating a collaboration session between devices using an audible message
US10390831B2 (en) 2015-11-10 2019-08-27 Covidien Lp Endoscopic reposable surgical clip applier
US20180235722A1 (en) 2015-11-10 2018-08-23 Gsi Group, Inc. Cordless and wireless surgical display system
US10810284B2 (en) 2015-11-11 2020-10-20 Johnson & Johnson Surgical Vision, Inc. Systems and methods for providing virtual access to a surgical console
US20170132374A1 (en) 2015-11-11 2017-05-11 Zyno Medical, Llc System for Collecting Medical Data Using Proxy Inputs
US10912619B2 (en) 2015-11-12 2021-02-09 Intuitive Surgical Operations, Inc. Surgical system with training or assist functions
WO2017083126A1 (en) 2015-11-13 2017-05-18 Intuitive Surgical Operations, Inc. Staple pusher with lost motion between ramps
EP3373831B1 (en) 2015-11-13 2024-01-03 Intuitive Surgical Operations, Inc. Push-pull stapler with two degree of freedom wrist
WO2017083125A1 (en) 2015-11-13 2017-05-18 Intuitive Surgical Operations, Inc. Stapler with composite cardan and screw drive
EP3383247A4 (en) 2015-11-25 2019-06-26 Camplex, Inc. SURGICAL VISUALIZATION SYSTEMS AND DISPLAYS
US20170143284A1 (en) 2015-11-25 2017-05-25 Carestream Health, Inc. Method to detect a retained surgical object
KR102374677B1 (ko) 2015-11-27 2022-03-15 삼성전자 주식회사 무선 통신을 이용한 전자장치의 관리 방법과 장치
US10143526B2 (en) 2015-11-30 2018-12-04 Auris Health, Inc. Robot-assisted driving systems and methods
US9888975B2 (en) 2015-12-04 2018-02-13 Ethicon Endo-Surgery, Llc Methods, systems, and devices for control of surgical tools in a robotic surgical system
US10311036B1 (en) 2015-12-09 2019-06-04 Universal Research Solutions, Llc Database management for a logical registry
KR102535081B1 (ko) 2015-12-09 2023-05-22 삼성전자주식회사 시계-타입 웨어러블 장치
GB201521805D0 (en) 2015-12-10 2016-01-27 Cambridge Medical Robotics Ltd Guiding engagement of a robot arm and surgical instrument
US20170164997A1 (en) 2015-12-10 2017-06-15 Ethicon Endo-Surgery, Llc Method of treating tissue using end effector with ultrasonic and electrosurgical features
GB201521804D0 (en) 2015-12-10 2016-01-27 Cambridge Medical Robotics Ltd Pulley arrangement for articulating a surgical instrument
US10265130B2 (en) 2015-12-11 2019-04-23 Ethicon Llc Systems, devices, and methods for coupling end effectors to surgical devices and loading devices
CN108848667B (zh) 2015-12-11 2019-06-14 天津瑞奇外科器械股份有限公司 模块化信号接口系统和能量穿刺器
US10686805B2 (en) 2015-12-11 2020-06-16 Servicenow, Inc. Computer network threat assessment
BR112018012090A2 (pt) 2015-12-14 2018-11-27 Nuvasive Inc visualização 3d durante a cirurgia com exposição à radiação reduzida
EP3389525B1 (en) 2015-12-14 2022-02-02 Buffalo Filter LLC Method and apparatus for attachment and evacuation
US10238413B2 (en) 2015-12-16 2019-03-26 Ethicon Llc Surgical instrument with multi-function button
US20170172614A1 (en) 2015-12-17 2017-06-22 Ethicon Endo-Surgery, Llc Surgical instrument with multi-functioning trigger
US10624616B2 (en) 2015-12-18 2020-04-21 Covidien Lp Surgical instruments including sensors
US10368894B2 (en) 2015-12-21 2019-08-06 Ethicon Llc Surgical instrument with variable clamping force
US20180310986A1 (en) 2015-12-21 2018-11-01 GYRUS ACMI, INC., d/b/a Olympus Surgical Technologies America High surface energy portion on a medical instrument
US20170177807A1 (en) 2015-12-21 2017-06-22 Gavin Fabian Enhanced user interface for a system and method for optimizing surgical team composition and surgical team procedure resource management
JP6657933B2 (ja) 2015-12-25 2020-03-04 ソニー株式会社 医療用撮像装置及び手術ナビゲーションシステム
EP3397189A4 (en) 2015-12-29 2019-09-04 Covidien LP ROBOTIC SURGICAL SYSTEMS AND INSTRUMENT DRIVE ASSEMBLIES
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10470791B2 (en) 2015-12-30 2019-11-12 Ethicon Llc Surgical instrument with staged application of electrosurgical and ultrasonic energy
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US20210275129A1 (en) 2016-01-11 2021-09-09 Kambiz Behzadi In situ system and method for sensing or monitoring
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US10709469B2 (en) 2016-01-15 2020-07-14 Ethicon Llc Modular battery powered handheld surgical instrument with energy conservation techniques
US20170202595A1 (en) 2016-01-15 2017-07-20 Ethicon Endo-Surgery, Llc Modular battery powered handheld surgical instrument with a plurality of control programs
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
EP3405109A4 (en) 2016-01-20 2020-05-06 Lucent Medical Systems, Inc. LOW FREQUENCY ELECTROMAGNETIC TRACKING
US20170215944A1 (en) 2016-01-29 2017-08-03 Covidien Lp Jaw aperture position sensor for electrosurgical forceps
US11273006B2 (en) 2016-01-29 2022-03-15 Millennium Healthcare Technologies, Inc. Laser-assisted periodontics
US10258415B2 (en) 2016-01-29 2019-04-16 Boston Scientific Scimed, Inc. Medical user interfaces and related methods of use
JP6914942B2 (ja) 2016-01-29 2021-08-04 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 可変速度手術器具のためのシステム及び方法
US10786321B2 (en) 2016-02-02 2020-09-29 Intuitive Surgical Operations, Inc. Instrument force sensor using strain gauges in a faraday cage
USD784270S1 (en) 2016-02-08 2017-04-18 Vivint, Inc. Control panel
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10245029B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instrument with articulating and axially translatable end effector
US9980140B1 (en) 2016-02-11 2018-05-22 Bigfoot Biomedical, Inc. Secure communication architecture for medical devices
US10420559B2 (en) 2016-02-11 2019-09-24 Covidien Lp Surgical stapler with small diameter endoscopic portion
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US20170231628A1 (en) 2016-02-12 2017-08-17 Ethicon Endo-Surgery, Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
CA2958160A1 (en) 2016-02-24 2017-08-24 Covidien Lp Endoscopic reposable surgical clip applier
CN108778179A (zh) 2016-02-26 2018-11-09 思想外科有限公司 用于指导用户定位机器人的方法和系统
US10717194B2 (en) 2016-02-26 2020-07-21 Intuitive Surgical Operations, Inc. System and method for collision avoidance using virtual boundaries
WO2017147353A1 (en) 2016-02-26 2017-08-31 Covidien Lp Robotic surgical systems and robotic arms thereof
US10786298B2 (en) 2016-03-01 2020-09-29 Covidien Lp Surgical instruments and systems incorporating machine learning based tissue identification and methods thereof
US10561753B2 (en) 2016-03-02 2020-02-18 Asp Global Manufacturing Gmbh Method of sterilizing medical devices, analyzing biological indicators, and linking medical device sterilization equipment
US20210212777A1 (en) 2016-03-04 2021-07-15 Covidien Lp Inverse kinematic control systems for robotic surgical system
US10893884B2 (en) 2016-03-04 2021-01-19 Covidien Lp Ultrasonic instruments for robotic surgical systems
WO2017151993A1 (en) 2016-03-04 2017-09-08 Covidien Lp Electromechanical surgical systems and robotic surgical instruments thereof
WO2017155999A1 (en) 2016-03-07 2017-09-14 Hansa Medical Products, Inc. Apparatus and method for forming an opening in patient's tissue
JP6488249B2 (ja) 2016-03-08 2019-03-20 富士フイルム株式会社 血管情報取得装置、内視鏡システム及び血管情報取得方法
CA2960531C (en) 2016-03-11 2019-06-25 The Toronto-Dominion Bank Application platform security enforcement in cross device and ownership structures
WO2017160808A1 (en) 2016-03-15 2017-09-21 Advanced Cardiac Therapeutics, Inc. Improved devices, systems and methods for irrigated ablation
US10350016B2 (en) 2016-03-17 2019-07-16 Intuitive Surgical Operations, Inc. Stapler with cable-driven advanceable clamping element and dual distal pulleys
US10631858B2 (en) 2016-03-17 2020-04-28 Intuitive Surgical Operations, Inc. Stapler with cable-driven advanceable clamping element and distal pulley
EP3437593B1 (en) 2016-03-30 2022-05-04 Sony Group Corporation Image processing device and method, surgery system, and surgical member
US10542991B2 (en) 2016-04-01 2020-01-28 Ethicon Llc Surgical stapling system comprising a jaw attachment lockout
US10413293B2 (en) 2016-04-01 2019-09-17 Ethicon Llc Interchangeable surgical tool assembly with a surgical end effector that is selectively rotatable about a shaft axis
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US10175096B2 (en) 2016-04-01 2019-01-08 Ethicon Llc System and method to enable re-use of surgical instrument
US11064997B2 (en) 2016-04-01 2021-07-20 Cilag Gmbh International Surgical stapling instrument
US10722233B2 (en) 2016-04-07 2020-07-28 Intuitive Surgical Operations, Inc. Stapling cartridge
WO2017180785A1 (en) 2016-04-12 2017-10-19 Applied Medical Resources Corporation Reload shaft assembly for surgical stapler
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10478181B2 (en) 2016-04-18 2019-11-19 Ethicon Llc Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
WO2017184651A1 (en) 2016-04-19 2017-10-26 ClearMotion, Inc. Active hydraulec ripple cancellation methods and systems
US20170304020A1 (en) 2016-04-20 2017-10-26 Samson Ng Navigation arm system and methods
US10363032B2 (en) 2016-04-20 2019-07-30 Ethicon Llc Surgical stapler with hydraulic deck control
US10285700B2 (en) 2016-04-20 2019-05-14 Ethicon Llc Surgical staple cartridge with hydraulic staple deployment
WO2017189317A1 (en) 2016-04-26 2017-11-02 KindHeart, Inc. Telerobotic surgery system for remote surgeon training using robotic surgery station and remote surgeon station and an animating device
US20170312456A1 (en) 2016-04-27 2017-11-02 David Bruce PHILLIPS Skin Desensitizing Device
US10772673B2 (en) 2016-05-02 2020-09-15 Covidien Lp Surgical energy system with universal connection features
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
DE102016207666B4 (de) 2016-05-03 2023-03-02 Olympus Winter & Ibe Gmbh Medizinische Rauchgasabsaugvorrichtung und Verfahren zum Betreiben derselben
US10505756B2 (en) 2017-02-10 2019-12-10 Johnson Controls Technology Company Building management system with space graphs
CN105785611A (zh) 2016-05-04 2016-07-20 深圳市华星光电技术有限公司 背板及用于制造背板支架的模具
US20200348662A1 (en) 2016-05-09 2020-11-05 Strong Force Iot Portfolio 2016, Llc Platform for facilitating development of intelligence in an industrial internet of things system
US20170325878A1 (en) 2016-05-11 2017-11-16 Ethicon Llc Suction and irrigation sealing grasper
CN109715081B (zh) 2016-05-18 2021-11-09 虚拟切割有限公司 机器人外科装置、系统及相关方法
US10624667B2 (en) 2016-05-20 2020-04-21 Ethicon Llc System and method to track usage of surgical instrument
US10555748B2 (en) 2016-05-25 2020-02-11 Ethicon Llc Features and methods to control delivery of cooling fluid to end effector of ultrasonic surgical instrument
CA3022071A1 (en) 2016-05-26 2017-11-30 Covidien Lp Robotic surgical assemblies
EP3463158B1 (en) 2016-05-26 2023-08-30 Covidien LP Cannula assemblies for use with robotic surgical systems
WO2017205481A1 (en) 2016-05-26 2017-11-30 Covidien Lp Robotic surgical assemblies and instrument drive units thereof
EP3463159B1 (en) 2016-05-26 2024-01-03 Covidien LP Instrument drive units
GB201609467D0 (en) 2016-05-30 2016-07-13 Givaudan Sa Improvements in or relating to organic compounds
DE102016209576B4 (de) 2016-06-01 2024-06-13 Siemens Healthineers Ag Bewegungssteuerung für ein mobiles Medizingerät
CN109195542B (zh) 2016-06-03 2021-09-21 柯惠Lp公司 用于机器人手术系统的被动轴系统
CN107708594B (zh) 2016-06-03 2021-03-05 柯惠Lp公司 用于机器人手术系统的控制臂组合件
WO2017210101A1 (en) 2016-06-03 2017-12-07 Covidien Lp Systems, methods, and computer-readable storage media for controlling aspects of a robotic surgical device and viewer adaptive stereoscopic display
CN113180835A (zh) 2016-06-03 2021-07-30 柯惠Lp公司 用于机器人手术系统的控制臂
US11272992B2 (en) 2016-06-03 2022-03-15 Covidien Lp Robotic surgical assemblies and instrument drive units thereof
US11056219B2 (en) 2016-06-08 2021-07-06 Health Value Analytics, Inc. System and method for determining and indicating value of healthcare
US10561360B2 (en) 2016-06-15 2020-02-18 Biomet Manufacturing, Llc Implants, systems and methods for surgical planning and assessment
US11617611B2 (en) 2016-06-17 2023-04-04 Megadayne Medical Products, Inc. Hand-held instrument with dual zone fluid removal
WO2017220788A1 (en) 2016-06-23 2017-12-28 Siemens Healthcare Gmbh System and method for artificial agent based cognitive operating rooms
USD822206S1 (en) 2016-06-24 2018-07-03 Ethicon Llc Surgical fastener
US11125553B2 (en) 2016-06-24 2021-09-21 Syracuse University Motion sensor assisted room shape reconstruction and self-localization using first-order acoustic echoes
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
US10675024B2 (en) 2016-06-24 2020-06-09 Ethicon Llc Staple cartridge comprising overdriven staples
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
US11832891B2 (en) 2016-06-30 2023-12-05 Intuitive Surgical Operations, Inc. Systems and methods for fault reaction mechanisms for medical robotic systems
US10313137B2 (en) 2016-07-05 2019-06-04 General Electric Company Method for authenticating devices in a medical network
CN206097107U (zh) 2016-07-08 2017-04-12 山东威瑞外科医用制品有限公司 一种超声刀频率跟踪装置
US10258362B2 (en) 2016-07-12 2019-04-16 Ethicon Llc Ultrasonic surgical instrument with AD HOC formed blade
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
WO2018020553A1 (ja) 2016-07-25 2018-02-01 オリンパス株式会社 エネルギー制御装置及び処置システム
WO2018020577A1 (ja) 2016-07-26 2018-02-01 オリンパス株式会社 エネルギー制御装置及び処置システム
US10378893B2 (en) 2016-07-29 2019-08-13 Ca, Inc. Location detection sensors for physical devices
US9844321B1 (en) 2016-08-04 2017-12-19 Novartis Ag Enhanced ophthalmic surgical experience using a virtual reality head-mounted display
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US11006997B2 (en) 2016-08-09 2021-05-18 Covidien Lp Ultrasonic and radiofrequency energy production and control from a single power converter
US10037641B2 (en) 2016-08-10 2018-07-31 Elwha Llc Systems and methods for individual identification and authorization utilizing conformable electronics
JP2019534490A (ja) 2016-08-12 2019-11-28 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 一次/二次インタラクション機能を備えた分散型インタラクティブ医療視覚化システム
US10390895B2 (en) 2016-08-16 2019-08-27 Ethicon Llc Control of advancement rate and application force based on measured forces
US9943377B2 (en) 2016-08-16 2018-04-17 Ethicon Endo-Surgery, Llc Methods, systems, and devices for causing end effector motion with a robotic surgical system
US10398517B2 (en) 2016-08-16 2019-09-03 Ethicon Llc Surgical tool positioning based on sensed parameters
US10231775B2 (en) 2016-08-16 2019-03-19 Ethicon Llc Robotic surgical system with tool lift control
US10500000B2 (en) 2016-08-16 2019-12-10 Ethicon Llc Surgical tool with manual control of end effector jaws
US10813703B2 (en) 2016-08-16 2020-10-27 Ethicon Llc Robotic surgical system with energy application controls
US10531929B2 (en) 2016-08-16 2020-01-14 Ethicon Llc Control of robotic arm motion based on sensed load on cutting tool
US11285314B2 (en) 2016-08-19 2022-03-29 Cochlear Limited Advanced electrode array insertion
US10861605B2 (en) 2016-08-22 2020-12-08 Aic Innovations Group, Inc. Method and apparatus for determining health status
US10420580B2 (en) 2016-08-25 2019-09-24 Ethicon Llc Ultrasonic transducer for surgical instrument
US10695134B2 (en) 2016-08-25 2020-06-30 Verily Life Sciences Llc Motion execution of a robotic system
US10555750B2 (en) 2016-08-25 2020-02-11 Ethicon Llc Ultrasonic surgical instrument with replaceable blade having identification feature
CA3034071A1 (en) 2016-08-30 2018-03-08 Mako Surgical Corp. Systems and methods for intra-operative pelvic registration
US11370113B2 (en) 2016-09-06 2022-06-28 Verily Life Sciences Llc Systems and methods for prevention of surgical mistakes
US10568703B2 (en) 2016-09-21 2020-02-25 Verb Surgical Inc. User arm support for use in a robotic surgical system
US10069633B2 (en) 2016-09-30 2018-09-04 Data I/O Corporation Unified programming environment for programmable devices
US10786327B2 (en) 2016-10-03 2020-09-29 Verb Surgical Inc. Immersive three-dimensional display for robotic surgery
US20180098816A1 (en) 2016-10-06 2018-04-12 Biosense Webster (Israel) Ltd. Pre-Operative Registration of Anatomical Images with a Position-Tracking System Using Ultrasound
US10278778B2 (en) 2016-10-27 2019-05-07 Inneroptic Technology, Inc. Medical device navigation using a virtual 3D space
US20190254759A1 (en) 2016-11-04 2019-08-22 Intuitive Surgical Operations, Inc. Reconfigurable display in computer-assisted tele-operated surgery
US10492784B2 (en) 2016-11-08 2019-12-03 Covidien Lp Surgical tool assembly with compact firing assembly
JP7440262B2 (ja) 2016-11-11 2024-02-28 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 患者健康記録ベース器具制御を備える遠隔操作手術システム
US11147935B2 (en) 2016-11-14 2021-10-19 Conmed Corporation Smoke evacuation system for continuously removing gas from a body cavity
JP6788740B2 (ja) 2016-11-14 2020-11-25 コンメッド コーポレーション 体腔への連続的なガス流の継続的圧力監視を有するマルチモード外科用ガス送達システム
US11003988B2 (en) 2016-11-23 2021-05-11 General Electric Company Hardware system design improvement using deep learning algorithms
US10463371B2 (en) 2016-11-29 2019-11-05 Covidien Lp Reload assembly with spent reload indicator
UA126066C2 (uk) 2016-12-01 2022-08-10 Кінз Меньюфекчурінг, Інк. Системи, способи і/або пристрої для забезпечення користувацького дисплея та інтерфейсу для використання з сільськогосподарським знаряддям
CN117515738A (zh) 2016-12-06 2024-02-06 斐乐公司 具有智能传感器和气流的空气净化器
US10881446B2 (en) 2016-12-19 2021-01-05 Ethicon Llc Visual displays of electrical pathways
US10318763B2 (en) 2016-12-20 2019-06-11 Privacy Analytics Inc. Smart de-identification using date jittering
AU2017379816B2 (en) 2016-12-20 2020-02-20 Verb Surgical Inc. Sterile adapter control system and communication interface for use in a robotic surgical system
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US10779823B2 (en) 2016-12-21 2020-09-22 Ethicon Llc Firing member pin angle
US10617414B2 (en) 2016-12-21 2020-04-14 Ethicon Llc Closure member arrangements for surgical instruments
US10736629B2 (en) 2016-12-21 2020-08-11 Ethicon Llc Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10758230B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument with primary and safety processors
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US10835246B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US11191539B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US10667809B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Staple cartridge and staple cartridge channel comprising windows defined therein
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US20180168579A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical end effector with two separate cooperating opening features for opening and closing end effector jaws
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10537324B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Stepped staple cartridge with asymmetrical staples
US10610224B2 (en) 2016-12-21 2020-04-07 Ethicon Llc Lockout arrangements for surgical end effectors and replaceable tool assemblies
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
WO2018116247A1 (en) 2016-12-22 2018-06-28 Baylis Medical Company Inc. Multiplexing algorithm with power allocation
US10244926B2 (en) 2016-12-28 2019-04-02 Auris Health, Inc. Detecting endolumenal buckling of flexible instruments
US10610654B2 (en) 2017-01-10 2020-04-07 General Electric Company Lung protective ventilation control
US10842897B2 (en) 2017-01-20 2020-11-24 Éclair Medical Systems, Inc. Disinfecting articles with ozone
US20180211013A1 (en) 2017-01-25 2018-07-26 International Business Machines Corporation Patient Communication Priority By Compliance Dates, Risk Scores, and Organizational Goals
US11690691B2 (en) 2017-02-15 2023-07-04 Covidien Lp System and apparatus for crush prevention for medical robot applications
US11158415B2 (en) 2017-02-16 2021-10-26 Mako Surgical Corporation Surgical procedure planning system with multiple feedback loops
EP3582707A4 (en) 2017-02-17 2020-11-25 NZ Technologies Inc. PROCEDURES AND SYSTEMS FOR CONTACTLESS CONTROL OF A SURGICAL ENVIRONMENT
US20180242967A1 (en) 2017-02-26 2018-08-30 Endoevolution, Llc Apparatus and method for minimally invasive suturing
WO2018156928A1 (en) 2017-02-27 2018-08-30 Applied Logic, Inc. System and method for managing the use of surgical instruments
US9922172B1 (en) 2017-02-28 2018-03-20 Digital Surgery Limited Surgical guidance system based on a pre-coded surgical procedural map
US20170173262A1 (en) 2017-03-01 2017-06-22 François Paul VELTZ Medical systems, devices and methods
US10813710B2 (en) 2017-03-02 2020-10-27 KindHeart, Inc. Telerobotic surgery system using minimally invasive surgical tool with variable force scaling and feedback and relayed communications between remote surgeon and surgery station
US10675100B2 (en) 2017-03-06 2020-06-09 Covidien Lp Systems and methods for improving medical instruments and devices
US10497472B1 (en) 2017-03-08 2019-12-03 Deborah T. Bullington Directional signal fencing for medical appointment progress tracking
EP3595566B1 (en) 2017-03-14 2023-08-23 Stephen B. Murphy Systems and methods for determining leg length change during hip surgery
WO2018167878A1 (ja) 2017-03-15 2018-09-20 オリンパス株式会社 エネルギー源装置
WO2018165980A1 (en) 2017-03-17 2018-09-20 Covidien Lp Anvil plate for a surgical stapling instrument
US11017906B2 (en) 2017-03-20 2021-05-25 Amino, Inc. Machine learning models in location based episode prediction
US10028402B1 (en) 2017-03-22 2018-07-17 Seagate Technology Llc Planar expansion card assembly
WO2018176414A1 (en) 2017-03-31 2018-10-04 Fengh Medical Co., Ltd. Staple cartridge assembly and surgical instrument with the same
CN108652695B (zh) 2017-03-31 2020-02-14 江苏风和医疗器材股份有限公司 外科器械
US20180294060A1 (en) 2017-04-10 2018-10-11 Ghassan S. Kassab Technological devices and systems and methods to use the same to obtain biological information
WO2018189725A1 (en) 2017-04-14 2018-10-18 Stryker Corporation Surgical systems and methods for facilitating ad-hoc intraoperative planning of surgical procedures
JP2018176387A (ja) 2017-04-19 2018-11-15 富士ゼロックス株式会社 ロボット装置及びプログラム
EP3612122B1 (en) 2017-04-21 2023-12-20 Medicrea International A system for developing one or more patient-specific spinal implants
US20180315492A1 (en) 2017-04-26 2018-11-01 Darroch Medical Solutions, Inc. Communication devices and systems and methods of analyzing, authenticating, and transmitting medical information
JP7159208B2 (ja) 2017-05-08 2022-10-24 マシモ・コーポレイション ドングルを使用することによって医療システムをネットワークコントローラとペアリングするためのシステム
US11065062B2 (en) 2017-05-17 2021-07-20 Covidien Lp Systems and methods of tracking and analyzing use of medical instruments
USD834541S1 (en) 2017-05-19 2018-11-27 Universal Remote Control, Inc. Remote control
CN110650675B (zh) 2017-05-22 2022-12-06 贝克顿·迪金森公司 用于使用嵌入式带外密钥生成的两设备之间的安全无线配对的系统、装置和方法
US11229473B2 (en) 2017-05-22 2022-01-25 Cilag Gmbh International Combination ultrasonic and electrosurgical instrument with clamp arm position input and method for identifying tissue state
US10806532B2 (en) 2017-05-24 2020-10-20 KindHeart, Inc. Surgical simulation system using force sensing and optical tracking and robotic surgery system
US10478185B2 (en) 2017-06-02 2019-11-19 Covidien Lp Tool assembly with minimal dead space
US10992698B2 (en) 2017-06-05 2021-04-27 Meditechsafe, Inc. Device vulnerability management
US20180357383A1 (en) 2017-06-07 2018-12-13 International Business Machines Corporation Sorting Medical Concepts According to Priority
US11596400B2 (en) 2017-06-09 2023-03-07 Covidien Lp Handheld electromechanical surgical system
US10932784B2 (en) 2017-06-09 2021-03-02 Covidien Lp Handheld electromechanical surgical system
JP7189896B2 (ja) 2017-06-09 2022-12-14 ストライカー・コーポレイション ツイストロックによってバッテリー接続を行う外科システム
US11045199B2 (en) 2017-06-09 2021-06-29 Covidien Lp Handheld electromechanical surgical system
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US20180360456A1 (en) 2017-06-20 2018-12-20 Ethicon Llc Surgical instrument having controllable articulation velocity
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US11229496B2 (en) 2017-06-22 2022-01-25 Navlab Holdings Ii, Llc Systems and methods of providing assistance to a surgeon for minimizing errors during a surgical procedure
US10695057B2 (en) 2017-06-28 2020-06-30 Ethicon Llc Surgical instrument lockout arrangement
US11298128B2 (en) 2017-06-28 2022-04-12 Cilag Gmbh International Surgical system couplable with staple cartridge and radio frequency cartridge, and method of using same
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
USD893717S1 (en) 2017-06-28 2020-08-18 Ethicon Llc Staple cartridge for surgical instrument
WO2019005872A1 (en) 2017-06-28 2019-01-03 Auris Health, Inc. INSTRUMENT INSERTION COMPENSATION
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US11153076B2 (en) 2017-07-17 2021-10-19 Thirdwayv, Inc. Secure communication for medical devices
JP6901342B2 (ja) 2017-07-21 2021-07-14 東芝テック株式会社 情報処理装置
US10959732B2 (en) 2017-08-10 2021-03-30 Ethicon Llc Jaw for clip applier
US10751052B2 (en) 2017-08-10 2020-08-25 Ethicon Llc Surgical device with overload mechanism
US10912567B2 (en) 2017-08-29 2021-02-09 Ethicon Llc Circular stapler
US20190059986A1 (en) 2017-08-29 2019-02-28 Ethicon Llc Methods, systems, and devices for controlling electrosurgical tools
EP3662810A4 (en) 2017-08-31 2020-07-08 Sony Corporation DEVICE FOR PROCESSING MEDICAL IMAGES, SYSTEM FOR PROCESSING MEDICAL IMAGES AND CONTROL METHOD OF A DEVICE FOR PROCESSING MEDICAL IMAGES
US11027432B2 (en) 2017-09-06 2021-06-08 Stryker Corporation Techniques for controlling position of an end effector of a robotic device relative to a virtual constraint
USD831209S1 (en) 2017-09-14 2018-10-16 Ethicon Llc Surgical stapler cartridge
US10624707B2 (en) 2017-09-18 2020-04-21 Verb Surgical Inc. Robotic surgical system and method for communicating synchronous and asynchronous information to and from nodes of a robotic arm
US20190087544A1 (en) 2017-09-21 2019-03-21 General Electric Company Surgery Digital Twin
US10874460B2 (en) 2017-09-29 2020-12-29 K2M, Inc. Systems and methods for modeling spines and treating spines based on spine models
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
WO2019074722A2 (en) 2017-10-10 2019-04-18 Miki Roberto Augusto UNIVERSAL ORTHOPEDIC CLAMPING DEVICE
WO2019079179A1 (en) 2017-10-16 2019-04-25 Cryterion Medical, Inc. FLUID DETECTION ASSEMBLY FOR A MEDICAL DEVICE
CA3073009A1 (en) 2017-10-17 2019-04-25 Alcon Inc. Customized ophthalmic surgical profiles
US10835344B2 (en) 2017-10-17 2020-11-17 Verily Life Sciences Llc Display of preoperative and intraoperative images
US10398348B2 (en) 2017-10-19 2019-09-03 Biosense Webster (Israel) Ltd. Baseline impedance maps for tissue proximity indications
US11317919B2 (en) 2017-10-30 2022-05-03 Cilag Gmbh International Clip applier comprising a clip crimping system
US11229436B2 (en) 2017-10-30 2022-01-25 Cilag Gmbh International Surgical system comprising a surgical tool and a surgical hub
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11911045B2 (en) 2017-10-30 2024-02-27 Cllag GmbH International Method for operating a powered articulating multi-clip applier
US11564756B2 (en) 2017-10-30 2023-01-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US10842473B2 (en) 2017-10-30 2020-11-24 Ethicon Llc Surgical instrument having dual rotatable members to effect different types of end effector movement
US11141160B2 (en) 2017-10-30 2021-10-12 Cilag Gmbh International Clip applier comprising a motor controller
US11311342B2 (en) 2017-10-30 2022-04-26 Cilag Gmbh International Method for communicating with surgical instrument systems
US11291510B2 (en) 2017-10-30 2022-04-05 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11129636B2 (en) 2017-10-30 2021-09-28 Cilag Gmbh International Surgical instruments comprising an articulation drive that provides for high articulation angles
US11510741B2 (en) 2017-10-30 2022-11-29 Cilag Gmbh International Method for producing a surgical instrument comprising a smart electrical system
US10932804B2 (en) 2017-10-30 2021-03-02 Ethicon Llc Surgical instrument with sensor and/or control systems
US11801098B2 (en) 2017-10-30 2023-10-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11129634B2 (en) 2017-10-30 2021-09-28 Cilag Gmbh International Surgical instrument with rotary drive selectively actuating multiple end effector functions
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10783634B2 (en) 2017-11-22 2020-09-22 General Electric Company Systems and methods to deliver point of care alerts for radiological findings
US10937551B2 (en) 2017-11-27 2021-03-02 International Business Machines Corporation Medical concept sorting based on machine learning of attribute value differentiation
US10631916B2 (en) 2017-11-29 2020-04-28 Megadyne Medical Products, Inc. Filter connection for a smoke evacuation device
US10786317B2 (en) 2017-12-11 2020-09-29 Verb Surgical Inc. Active backdriving for a robotic arm
US11071595B2 (en) 2017-12-14 2021-07-27 Verb Surgical Inc. Multi-panel graphical user interface for a robotic surgical system
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10743868B2 (en) 2017-12-21 2020-08-18 Ethicon Llc Surgical instrument comprising a pivotable distal head
US11147607B2 (en) 2017-12-28 2021-10-19 Cilag Gmbh International Bipolar combination device that automatically adjusts pressure based on energy modality
US20190206555A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Cloud-based medical analytics for customization and recommendations to a user
US11659023B2 (en) 2017-12-28 2023-05-23 Cilag Gmbh International Method of hub communication
US10755813B2 (en) 2017-12-28 2020-08-25 Ethicon Llc Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform
US11304699B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11179208B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Cloud-based medical analytics for security and authentication trends and reactive measures
US20190200906A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Dual cmos array imaging
US11266468B2 (en) 2017-12-28 2022-03-08 Cilag Gmbh International Cooperative utilization of data derived from secondary sources by intelligent surgical hubs
US11423007B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Adjustment of device control programs based on stratified contextual data in addition to the data
US11857152B2 (en) 2017-12-28 2024-01-02 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
US11324557B2 (en) 2017-12-28 2022-05-10 Cilag Gmbh International Surgical instrument with a sensing array
US11666331B2 (en) 2017-12-28 2023-06-06 Cilag Gmbh International Systems for detecting proximity of surgical end effector to cancerous tissue
US20190201039A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Situational awareness of electrosurgical systems
US11464559B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Estimating state of ultrasonic end effector and control system therefor
US11109866B2 (en) 2017-12-28 2021-09-07 Cilag Gmbh International Method for circular stapler control algorithm adjustment based on situational awareness
US11253315B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Increasing radio frequency to create pad-less monopolar loop
US11678881B2 (en) 2017-12-28 2023-06-20 Cilag Gmbh International Spatial awareness of surgical hubs in operating rooms
US20190201140A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Surgical hub situational awareness
US20190206561A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Data handling and prioritization in a cloud analytics network
US11308075B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity
US11612408B2 (en) 2017-12-28 2023-03-28 Cilag Gmbh International Determining tissue composition via an ultrasonic system
US20190205567A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Data pairing to interconnect a device measured parameter with an outcome
US11602393B2 (en) 2017-12-28 2023-03-14 Cilag Gmbh International Surgical evacuation sensing and generator control
US11051876B2 (en) 2017-12-28 2021-07-06 Cilag Gmbh International Surgical evacuation flow paths
US11389164B2 (en) 2017-12-28 2022-07-19 Cilag Gmbh International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US10892995B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11100631B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Use of laser light and red-green-blue coloration to determine properties of back scattered light
US11633237B2 (en) 2017-12-28 2023-04-25 Cilag Gmbh International Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US11304745B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical evacuation sensing and display
US11056244B2 (en) 2017-12-28 2021-07-06 Cilag Gmbh International Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks
US11069012B2 (en) 2017-12-28 2021-07-20 Cilag Gmbh International Interactive surgical systems with condition handling of devices and data capabilities
US20190201090A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Capacitive coupled return path pad with separable array elements
US11832840B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical instrument having a flexible circuit
US11376002B2 (en) 2017-12-28 2022-07-05 Cilag Gmbh International Surgical instrument cartridge sensor assemblies
US20190200987A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Variable output cartridge sensor assembly
US11304763B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use
US11903601B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Surgical instrument comprising a plurality of drive systems
US11026751B2 (en) 2017-12-28 2021-06-08 Cilag Gmbh International Display of alignment of staple cartridge to prior linear staple line
US20190201112A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Computer implemented interactive surgical systems
US11446052B2 (en) 2017-12-28 2022-09-20 Cilag Gmbh International Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue
US11896443B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Control of a surgical system through a surgical barrier
US11424027B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Method for operating surgical instrument systems
US10898622B2 (en) 2017-12-28 2021-01-26 Ethicon Llc Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device
US11744604B2 (en) 2017-12-28 2023-09-05 Cilag Gmbh International Surgical instrument with a hardware-only control circuit
US20190201027A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Surgical instrument with acoustic-based motor control
US11576677B2 (en) 2017-12-28 2023-02-14 Cilag Gmbh International Method of hub communication, processing, display, and cloud analytics
US10849697B2 (en) 2017-12-28 2020-12-01 Ethicon Llc Cloud interface for coupled surgical devices
US11096693B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing
US11202570B2 (en) 2017-12-28 2021-12-21 Cilag Gmbh International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US11540855B2 (en) 2017-12-28 2023-01-03 Cilag Gmbh International Controlling activation of an ultrasonic surgical instrument according to the presence of tissue
US11273001B2 (en) 2017-12-28 2022-03-15 Cilag Gmbh International Surgical hub and modular device response adjustment based on situational awareness
US11969216B2 (en) 2017-12-28 2024-04-30 Cilag Gmbh International Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution
US11419630B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Surgical system distributed processing
US20190201146A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Safety systems for smart powered surgical stapling
US11864728B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Characterization of tissue irregularities through the use of mono-chromatic light refractivity
US11058498B2 (en) 2017-12-28 2021-07-13 Cilag Gmbh International Cooperative surgical actions for robot-assisted surgical platforms
US11234756B2 (en) 2017-12-28 2022-02-01 Cilag Gmbh International Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter
US11166772B2 (en) 2017-12-28 2021-11-09 Cilag Gmbh International Surgical hub coordination of control and communication of operating room devices
US11612444B2 (en) 2017-12-28 2023-03-28 Cilag Gmbh International Adjustment of a surgical device function based on situational awareness
US11317937B2 (en) 2018-03-08 2022-05-03 Cilag Gmbh International Determining the state of an ultrasonic end effector
US11896322B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US11832899B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical systems with autonomously adjustable control programs
US11786245B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Surgical systems with prioritized data transmission capabilities
US10892899B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Self describing data packets generated at an issuing instrument
US11132462B2 (en) 2017-12-28 2021-09-28 Cilag Gmbh International Data stripping method to interrogate patient records and create anonymized record
US11559308B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method for smart energy device infrastructure
US10987178B2 (en) 2017-12-28 2021-04-27 Ethicon Llc Surgical hub control arrangements
US20190201115A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Aggregation and reporting of surgical hub data
US11969142B2 (en) 2017-12-28 2024-04-30 Cilag Gmbh International Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US11160605B2 (en) 2017-12-28 2021-11-02 Cilag Gmbh International Surgical evacuation sensing and motor control
US20190200980A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Surgical system for presenting information interpreted from external data
US11559307B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method of robotic hub communication, detection, and control
US11464535B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Detection of end effector emersion in liquid
US11278281B2 (en) 2017-12-28 2022-03-22 Cilag Gmbh International Interactive surgical system
US20190206564A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Method for facility data collection and interpretation
US10966791B2 (en) 2017-12-28 2021-04-06 Ethicon Llc Cloud-based medical analytics for medical facility segmented individualization of instrument function
US10758310B2 (en) 2017-12-28 2020-09-01 Ethicon Llc Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US11013563B2 (en) 2017-12-28 2021-05-25 Ethicon Llc Drive arrangements for robot-assisted surgical platforms
US20190201045A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Method for smoke evacuation for surgical hub
US10932872B2 (en) 2017-12-28 2021-03-02 Ethicon Llc Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set
US11364075B2 (en) 2017-12-28 2022-06-21 Cilag Gmbh International Radio frequency energy device for delivering combined electrical signals
US20190206569A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Method of cloud based data analytics for use with the hub
US11998193B2 (en) 2017-12-28 2024-06-04 Cilag Gmbh International Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation
US11432885B2 (en) 2017-12-28 2022-09-06 Cilag Gmbh International Sensing arrangements for robot-assisted surgical platforms
US20190200997A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Stapling device with both compulsory and discretionary lockouts based on sensed parameters
US11284936B2 (en) 2017-12-28 2022-03-29 Cilag Gmbh International Surgical instrument having a flexible electrode
US11937769B2 (en) 2017-12-28 2024-03-26 Cilag Gmbh International Method of hub communication, processing, storage and display
US11419667B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location
US11529187B2 (en) 2017-12-28 2022-12-20 Cilag Gmbh International Surgical evacuation sensor arrangements
WO2019133144A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Detection and escalation of security responses of surgical instruments to increasing severity threats
US10695081B2 (en) 2017-12-28 2020-06-30 Ethicon Llc Controlling a surgical instrument according to sensed closure parameters
US10944728B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Interactive surgical systems with encrypted communication capabilities
US11589888B2 (en) * 2017-12-28 2023-02-28 Cilag Gmbh International Method for controlling smart energy devices
US20190201594A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub
US11410259B2 (en) 2017-12-28 2022-08-09 Cilag Gmbh International Adaptive control program updates for surgical devices
US11257589B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes
US11304720B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Activation of energy devices
US20190201130A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Communication of data where a surgical network is using context of the data and requirements of a receiving system / user to influence inclusion or linkage of data and metadata to establish continuity
US11291495B2 (en) 2017-12-28 2022-04-05 Cilag Gmbh International Interruption of energy due to inadvertent capacitive coupling
US11311306B2 (en) 2017-12-28 2022-04-26 Cilag Gmbh International Surgical systems for detecting end effector tissue distribution irregularities
US20190201034A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Powered stapling device configured to adjust force, advancement speed, and overall stroke of cutting member based on sensed parameter of firing or clamping
US10943454B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Detection and escalation of security responses of surgical instruments to increasing severity threats
US11076921B2 (en) 2017-12-28 2021-08-03 Cilag Gmbh International Adaptive control program updates for surgical hubs
WO2019143856A2 (en) 2018-01-17 2019-07-25 Zoll Medical Corporation Systems and methods for assisting patient airway management
US10856768B2 (en) 2018-01-25 2020-12-08 Biosense Webster (Israel) Ltd. Intra-cardiac scar tissue identification using impedance sensing and contact measurement
WO2019152898A1 (en) 2018-02-03 2019-08-08 Caze Technologies Surgical systems with sensing and machine learning capabilities and methods thereof
US10682139B2 (en) 2018-02-11 2020-06-16 Chul Hi Park Device and method for assisting selection of surgical staple height
AU2019228507A1 (en) 2018-02-27 2020-08-13 Applied Medical Resources Corporation Surgical stapler having a powered handle
US11967422B2 (en) 2018-03-05 2024-04-23 Medtech S.A. Robotically-assisted surgical procedure feedback techniques
US11259830B2 (en) * 2018-03-08 2022-03-01 Cilag Gmbh International Methods for controlling temperature in ultrasonic device
US11707293B2 (en) 2018-03-08 2023-07-25 Cilag Gmbh International Ultrasonic sealing algorithm with temperature control
US11701162B2 (en) 2018-03-08 2023-07-18 Cilag Gmbh International Smart blade application for reusable and disposable devices
US11207067B2 (en) 2018-03-28 2021-12-28 Cilag Gmbh International Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing
US11213294B2 (en) 2018-03-28 2022-01-04 Cilag Gmbh International Surgical instrument comprising co-operating lockout features
US11096688B2 (en) 2018-03-28 2021-08-24 Cilag Gmbh International Rotary driven firing members with different anvil and channel engagement features
US11219453B2 (en) 2018-03-28 2022-01-11 Cilag Gmbh International Surgical stapling devices with cartridge compatible closure and firing lockout arrangements
US10973520B2 (en) 2018-03-28 2021-04-13 Ethicon Llc Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature
US11278280B2 (en) 2018-03-28 2022-03-22 Cilag Gmbh International Surgical instrument comprising a jaw closure lockout
US11471156B2 (en) 2018-03-28 2022-10-18 Cilag Gmbh International Surgical stapling devices with improved rotary driven closure systems
US11090047B2 (en) 2018-03-28 2021-08-17 Cilag Gmbh International Surgical instrument comprising an adaptive control system
US20190298353A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical stapling devices with asymmetric closure features
US11589865B2 (en) 2018-03-28 2023-02-28 Cilag Gmbh International Methods for controlling a powered surgical stapler that has separate rotary closure and firing systems
US11141232B2 (en) 2018-03-29 2021-10-12 Intuitive Surgical Operations, Inc. Teleoperated surgical instruments
USD876466S1 (en) 2018-03-29 2020-02-25 Mitsubishi Electric Corporation Display screen with graphical user interface
JP7108449B2 (ja) 2018-04-10 2022-07-28 Dgshape株式会社 手術用器具管理システム
US11278274B2 (en) 2018-05-04 2022-03-22 Arch Day Design, Llc Suture passing device
US20190378610A1 (en) 2018-06-06 2019-12-12 Verily Life Sciences Llc Robotic surgery using multi-user authentication without credentials
US11642183B2 (en) 2018-06-06 2023-05-09 Verily Life Sciences Llc Systems and methods for fleet management of robotic surgical systems
CA3102138A1 (en) 2018-06-08 2019-12-12 East Carolina University Determining peripheral oxygen saturation (spo2) and hemoglobin concentration using multi-spectral laser imaging (msli) methods and systems
US10292769B1 (en) 2018-08-07 2019-05-21 Sony Corporation Surgical assistive device and method for providing assistance in surgery of anatomical portions of internal organ affected by intraoperative shift
USD904612S1 (en) 2018-08-13 2020-12-08 Ethicon Llc Cartridge for linear surgical stapler
US11278285B2 (en) 2018-08-13 2022-03-22 Cilag GbmH International Clamping assembly for linear surgical stapler
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US20200054321A1 (en) 2018-08-20 2020-02-20 Ethicon Llc Surgical instruments with progressive jaw closure arrangements
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11804679B2 (en) 2018-09-07 2023-10-31 Cilag Gmbh International Flexible hand-switch circuit
US20200078120A1 (en) 2018-09-07 2020-03-12 Ethicon Llc Modular surgical energy system with module positional awareness with digital logic
US11923084B2 (en) 2018-09-07 2024-03-05 Cilag Gmbh International First and second communication protocol arrangement for driving primary and secondary devices through a single port
US11918269B2 (en) 2018-09-07 2024-03-05 Cilag Gmbh International Smart return pad sensing through modulation of near field communication and contact quality monitoring signals
US20200078113A1 (en) 2018-09-07 2020-03-12 Ethicon Llc Port presence detection system for modular energy system
US11514576B2 (en) 2018-12-14 2022-11-29 Acclarent, Inc. Surgical system with combination of sensor-based navigation and endoscopy
US11605455B2 (en) 2018-12-22 2023-03-14 GE Precision Healthcare LLC Systems and methods for predicting outcomes using raw data
US11605161B2 (en) 2019-01-10 2023-03-14 Verily Life Sciences Llc Surgical workflow and activity detection based on surgical videos
US11272931B2 (en) 2019-02-19 2022-03-15 Cilag Gmbh International Dual cam cartridge based feature for unlocking a surgical stapler lockout
US11317915B2 (en) 2019-02-19 2022-05-03 Cilag Gmbh International Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers
US11369377B2 (en) 2019-02-19 2022-06-28 Cilag Gmbh International Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout
US11357503B2 (en) 2019-02-19 2022-06-14 Cilag Gmbh International Staple cartridge retainers with frangible retention features and methods of using same
US11464511B2 (en) 2019-02-19 2022-10-11 Cilag Gmbh International Surgical staple cartridges with movable authentication key arrangements
US20200305924A1 (en) 2019-03-29 2020-10-01 Ethicon Llc Automatic ultrasonic energy activation circuit design for modular surgical systems
US11218822B2 (en) 2019-03-29 2022-01-04 Cilag Gmbh International Audio tone construction for an energy module of a modular energy system
USD952144S1 (en) 2019-06-25 2022-05-17 Cilag Gmbh International Surgical staple cartridge retainer with firing system authentication key
USD950728S1 (en) 2019-06-25 2022-05-03 Cilag Gmbh International Surgical staple cartridge
US11547468B2 (en) 2019-06-27 2023-01-10 Cilag Gmbh International Robotic surgical system with safety and cooperative sensing control
US11253255B2 (en) 2019-07-26 2022-02-22 Covidien Lp Knife lockout wedge
US20210128149A1 (en) 2019-11-01 2021-05-06 Covidien Lp Surgical staple cartridge
US10902944B1 (en) 2020-01-06 2021-01-26 Carlsmed, Inc. Patient-specific medical procedures and devices, and associated systems and methods

Also Published As

Publication number Publication date
US20190201036A1 (en) 2019-07-04
US11571234B2 (en) 2023-02-07
EP3505102B1 (en) 2022-06-22
WO2019134006A8 (en) 2020-05-28
EP3505102A1 (en) 2019-07-03
WO2019134006A1 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
BR112020012402A2 (pt) controle de temperatura do atuador de extremidade ultrassônico e sistema de controle para o mesmo
US11464535B2 (en) Detection of end effector emersion in liquid
US11771487B2 (en) Mechanisms for controlling different electromechanical systems of an electrosurgical instrument
US11540855B2 (en) Controlling activation of an ultrasonic surgical instrument according to the presence of tissue
US20210212719A1 (en) Controlling an ultrasonic surgical instrument according to tissue location
US11464559B2 (en) Estimating state of ultrasonic end effector and control system therefor
BR112020013010A2 (pt) dispositivo de combinação bipolar que ajusta automaticamente a pressão com base na modalidade de energia
CN111526820B (zh) 用于控制电外科器械的不同机电系统的机构
EP3505095A1 (en) Mechanisms for controlling different electromechanical systems of an electrosurgical instrument
BR112020013051A2 (pt) ativação de dispositivos de energia
BR112020013234A2 (pt) estimativa do estado do atuador de extremidade ultrassônico e sistema de controle para o mesmo
BR102019017761A2 (pt) Controle de temperatura do atuador de extremidade ultrassônico e sistema de controle para o mesmo
BR112020013093A2 (pt) determinar o estado de um sistema ultrassônico
JP7350746B2 (ja) 超音波エンドエフェクタの温度制御、及びそのための制御システム
BR112020013057A2 (pt) detecção da imersão do atuador de extremidade em um líquido
BR112020013070A2 (pt) determinar o estado de um sistema eletromecânico ultrassônico de acordo com o deslocamento de frequência
BR112020012520A2 (pt) interrupção da energia devido a um acoplamento capacitivo inadvertido
BR112020012938A2 (pt) determinação da composição do tecido por meio de um sistema ultrassônico
BR112020012287A2 (pt) aumento de radiofrequência para criar um circuito monopolar sem bloco
BR112020013014B1 (pt) Instrumento cirúrgico
BR112020012933A2 (pt) controle de um instrumento cirúrgico ultrassônico de acordo com a localização do tecido
BR112020012906A2 (pt) Controle da ativação de um instrumento cirúrgico ultrassônico de acordo com a presença de tecido
BR112020012906B1 (pt) Instrumento cirúrgico ultrassônico conectável a um gerador e sistema cirúrgico

Legal Events

Date Code Title Description
B350 Update of information on the portal [chapter 15.35 patent gazette]
B06W Patent application suspended after preliminary examination (for patents with searches from other patent authorities) chapter 6.23 patent gazette]