AT390957B - Verfahren zur herstellung neuer cephalosporinsalze - Google Patents
Verfahren zur herstellung neuer cephalosporinsalze Download PDFInfo
- Publication number
- AT390957B AT390957B AT0211086A AT211086A AT390957B AT 390957 B AT390957 B AT 390957B AT 0211086 A AT0211086 A AT 0211086A AT 211086 A AT211086 A AT 211086A AT 390957 B AT390957 B AT 390957B
- Authority
- AT
- Austria
- Prior art keywords
- zwitterion
- acid addition
- addition salt
- crystalline
- mixture
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title description 3
- HOKIDJSKDBPKTQ-UHFFFAOYSA-N 3-(acetyloxymethyl)-7-[(5-amino-5-carboxypentanoyl)amino]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid Chemical class S1CC(COC(=O)C)=C(C(O)=O)N2C(=O)C(NC(=O)CCCC(N)C(O)=O)C12 HOKIDJSKDBPKTQ-UHFFFAOYSA-N 0.000 title 1
- 150000003839 salts Chemical class 0.000 claims description 91
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 60
- VEXZGXHMUGYJMC-UHFFFAOYSA-N hydrochloric acid Substances Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 32
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 29
- 239000000203 mixture Substances 0.000 claims description 26
- 239000002253 acid Substances 0.000 claims description 20
- 238000002360 preparation method Methods 0.000 claims description 17
- 235000011007 phosphoric acid Nutrition 0.000 claims description 15
- 238000002425 crystallisation Methods 0.000 claims description 14
- 230000008025 crystallization Effects 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 10
- 229910017604 nitric acid Inorganic materials 0.000 claims description 9
- 239000003960 organic solvent Substances 0.000 claims description 9
- -1 2-aminothiazol-4-yl Chemical group 0.000 claims description 7
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 5
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 4
- 239000012736 aqueous medium Substances 0.000 claims description 3
- 239000012453 solvate Substances 0.000 claims description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 56
- 229910001868 water Inorganic materials 0.000 description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 23
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 15
- 239000013078 crystal Substances 0.000 description 15
- 239000000243 solution Substances 0.000 description 14
- 238000003828 vacuum filtration Methods 0.000 description 13
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- 238000003756 stirring Methods 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 11
- 239000006069 physical mixture Substances 0.000 description 10
- 239000000843 powder Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 238000004128 high performance liquid chromatography Methods 0.000 description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 238000000921 elemental analysis Methods 0.000 description 6
- 229960003646 lysine Drugs 0.000 description 6
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 238000010899 nucleation Methods 0.000 description 4
- 239000008223 sterile water Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 4
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 3
- 239000012458 free base Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 3
- 235000011149 sulphuric acid Nutrition 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 229930186147 Cephalosporin Natural products 0.000 description 2
- 238000010268 HPLC based assay Methods 0.000 description 2
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 229960004261 cefotaxime Drugs 0.000 description 2
- AZZMGZXNTDTSME-JUZDKLSSSA-M cefotaxime sodium Chemical compound [Na+].N([C@@H]1C(N2C(=C(COC(C)=O)CS[C@@H]21)C([O-])=O)=O)C(=O)\C(=N/OC)C1=CSC(N)=N1 AZZMGZXNTDTSME-JUZDKLSSSA-M 0.000 description 2
- ORFOPKXBNMVMKC-DWVKKRMSSA-N ceftazidime Chemical compound S([C@@H]1[C@@H](C(N1C=1C([O-])=O)=O)NC(=O)\C(=N/OC(C)(C)C(O)=O)C=2N=C(N)SC=2)CC=1C[N+]1=CC=CC=C1 ORFOPKXBNMVMKC-DWVKKRMSSA-N 0.000 description 2
- 229960000484 ceftazidime Drugs 0.000 description 2
- 229940124587 cephalosporin Drugs 0.000 description 2
- 150000001780 cephalosporins Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 230000010196 hermaphroditism Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- RAIPHJJURHTUIC-UHFFFAOYSA-N 1,3-thiazol-2-amine Chemical compound NC1=NC=CS1 RAIPHJJURHTUIC-UHFFFAOYSA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 241000251730 Chondrichthyes Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 239000003782 beta lactam antibiotic agent Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- HVFLCNVBZFFHBT-ZKDACBOMSA-N cefepime Chemical compound S([C@@H]1[C@@H](C(N1C=1C([O-])=O)=O)NC(=O)\C(=N/OC)C=2N=C(N)SC=2)CC=1C[N+]1(C)CCCC1 HVFLCNVBZFFHBT-ZKDACBOMSA-N 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical class OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002132 β-lactam antibiotic Substances 0.000 description 1
- 229940124586 β-lactam antibiotics Drugs 0.000 description 1
- 150000003952 β-lactams Chemical class 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/54—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
- A61K31/542—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame ortho- or peri-condensed with heterocyclic ring systems
- A61K31/545—Compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins, cefaclor, or cephalexine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D501/00—Heterocyclic compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
- C07D501/14—Compounds having a nitrogen atom directly attached in position 7
- C07D501/16—Compounds having a nitrogen atom directly attached in position 7 with a double bond between positions 2 and 3
- C07D501/20—7-Acylaminocephalosporanic or substituted 7-acylaminocephalosporanic acids in which the acyl radicals are derived from carboxylic acids
- C07D501/24—7-Acylaminocephalosporanic or substituted 7-acylaminocephalosporanic acids in which the acyl radicals are derived from carboxylic acids with hydrocarbon radicals, substituted by hetero atoms or hetero rings, attached in position 3
- C07D501/38—Methylene radicals, substituted by nitrogen atoms; Lactams thereof with the 2-carboxyl group; Methylene radicals substituted by nitrogen-containing hetero rings attached by the ring nitrogen atom; Quaternary compounds thereof
- C07D501/46—Methylene radicals, substituted by nitrogen atoms; Lactams thereof with the 2-carboxyl group; Methylene radicals substituted by nitrogen-containing hetero rings attached by the ring nitrogen atom; Quaternary compounds thereof with the 7-amino radical acylated by carboxylic acids containing hetero rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Oncology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Communicable Diseases (AREA)
- Epidemiology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Cephalosporin Compounds (AREA)
- Medicinal Preparation (AREA)
Description
Nr. 390 957
Die Erfindung betrifft ein Verfahren zur Herstellung neuer temperaturstabiler kristalliner Salze von 7-[a-(2-Aminothiazol-4-yl)-a-(Z)-methoxyirninoacetarnido]-3-[(l-methyl-l-pyrrolidino)-methyl]-3-cephem-4-carboxylat (Zwitterion), und zwar der Schwefelsäure-, Di-Salpetersäure-, Mono-Chlorwasserstoffsäure- und Di-Chlorwasserstoffsäure-Additionssalze sowie von Orthophosphorsäure-Additionssalzen mit 1,5 - 2 Moläquivalenten H3PO4, oder von Solvaten, insbesondere dem Hydrat davon.
In der US-PS 4 406 899 (Aburaki et al.) ist die Zwitterionenform von 7-[a-(2-Aminothiazol-4-yl)-a-(Z)-methoxyimmoacetamido]-3-[(l-methyl-l-pynolidinio)-methyl]-3-cephem-4-carboxylat beschrieben. Dort sind auch entsprechende Säureadditionssalze erwähnt, die in injizierbaren Mitteln in der Zwitterionenform vorliegen. Es wird ausgeführt, daß die Zwitterionenform ein breiteres Wirkungsspektrum besitzt als Ceftazidim und Cefotaxim.
Jedoch sind die dort beschriebenen Cephalosporine in Form der injizierbaren Mittel nur einige Stunden stabil. Das Zwitterion ist selbst als Trockenpulver bei Raumtemperatur instabil und verliert 30 % oder mehr seiner Aktivität bei 1-wöchiger Lagerung bei erhöhter Temperatur (z. B. 45 °C und darüber). Daher ist es erforderlich, eine speziell isolierte Verpackung einzusetzen und/oder zu kühlen. Dieses Präparat besitzt somit, verglichen mit Ceftazidim und Cefotaxim Nachteile bezüglich der Lagerung und der Verpackung.
Obwohl im oben genannten US-Patent Säureadditionssalze erwähnt sind, ist in dieser Patentschrift jedoch nicht ausgeführt, wie diese Salze hergestellt werden, und welche von ihnen - falls überhaupt - in Trockenpulverform über eine gute Stabilität verfügen. Kessler et al., "Comparison of a New Cephalosporin, BMY 28142, with Other Broad-Spectrum ß-Lactam Antibiotics", Antimicrobial Agents and Chemotherapy, Band 27, Nr. 2, Seiten 207-216, Februar 1985, erwähnen das Sulfatsalz, geben jedoch nicht an, wie dieses Salz erhalten werden kann oder daß dieses Salz bei Raumtemperatur stabil ist und als Trockenpulver über eine gute Stabilität selbst bei erhöhter Temperatur verfügt
Es wurde nun gefunden, daß bestimmte kristalline Säureadditionssalze von 7-[a-(2-Aminothiazol-4-yl)-a-(Z)-methoxyiminoacetamido]-3-[(l-methyl-l-pyrrolidinio)-methyl]-3-cephem-4-carboxylat als Trockenpulver über eine ausgezeichnete Stabilität bei Raumtemperatur verfügen und verglichen mit der Zwitterionenform bei erhöhter Temperatur stabiler sind. Als "Trockenpulver" wird ein solches bezeichnet, dessen Feuchtigkeitsgehalt geringer als 5 Gew.-% ist
Es handelt sich um die oben erwähnten Schwefelsäure-, Di-Salpetersäure-, Mono-Chlorwasserstoffsäure- und Di-Chlorwasserstoffsäure-Additionssalze sowie die Orthophosphorsäure-Additionssalze mit 1,2-2 Moläquivalenten H3PO4. Bei Verwendung von Orthophosphorsäure entspricht das angegebene Verhältnis beispielsweise einem Bereich von den Sesqui- bis zu den Di-Orthophosphorsäuresalzen. Erfindungsgemäß ist auch die Herstellung der Solvate dieser Salze umfaßt. Der Ausdruck "kristallin" bringt zum Ausdruck, daß die Moleküle zumindest teilweise in charakteristischer Weise angeordnet sind.
Die Herstellung dieser kristallinen Salze ist erfindungsgemäß dadurch gekennzeichnet, daß man (a) eine wässerige Mischung herstellt, die (i) mindestens 1 Moläquivalent Schwefel- oder Chlorwasserstoffsäure oder (ii) mindestens 2 Moläquivalente Salpeter- oder Chlorwasserstoffsäure oder (iii) 1,5-2 Moläquivalente Phosphorsäure und (iv) das Zwitterion enthält, (b) das Säureadditionssalz kristallisiert, wobei man die Kristallisation gegebenenfalls in Gegenwart eines organischen Lösungsmittels durchführt, und (c) das kristalline Säureadditionssalz isoliert. Während die erfindungsgemäß hergestellten Schwefelsäure-, Di-Salpetersäure-, Di-Chlorwasserstoffsäuie- und Orthophosphorsäure-Additionssalze deutlich kristalline Form besitzen (nachgewiesen durch Doppelbrechung unter einem polarisierenden Mikroskop), wobei die Moleküle genau ausgerichtete sind, besitzen die erfindungsgemäß hergestellten Mono-Chlorwasserstoffsäure-Additionssalze nur eine gewisse Gleichmäßigkeit in der Anordnung ihrer Moleküle (dies zeigt sich an einer nur geringen Doppelbrechung unter dem polarisierenden Mikroskop) und somit keine präzis festgelegte Anordnung, so daß sie als "schwach"-kristallin bezeichnet werden müssen. Der hier benutzte Ausdruck "kristallin" umfaßt somit nicht nur die deutlich kristallinen Salze, sondern auch das "schwach"-kristallin auftretende Mono-Chlorwasserstoffsäure-Additionssalz.
Die hier beschriebenen Säureadditionssalze setzen, wenn sie zu wäßrigen, injizierbaren Mitteln verarbeitet werden, das Zwitterion in der Lösung frei. Dieses Zwitterion besitzt die folgende Struktur: -2-
Nr. 390 957
15
Die Breitbandwirkung dieses Zwitterions und somit der aus den hier beschriebenen Salzen hergestellten wäßrigen Mitteln gegenüber verschiedenen Organismen geht aus den Daten der US-PS 4 406 899 (Aburaki et al.) 20 hervor.
Die aus den hier beschriebenen Säureadditionssalzen erhaltenen wässerigen Mittel, die dadurch hergestellt werden, daß man lediglich steriles Wasser zugibt, stellen saure Lösungen dar (pH 1,8-2,5), die nach intravenöser Verabreichung an Kaninchen eine nicht zu akzeptierende Reizung hervorrufen. Nach intramuskulärer Verabreichung dieser Lösungen an Kaninchen stellt man eine nicht zu akzeptierende Schmerzreaktion fest. Die 25 Löslichkeiten der Schwefelsäure- und Disalpetersäureadditionssalze sind außerdem zu gering und für typische injizierbare Mittel unzureichend.
Es wurde nun gefunden, daß diese unerwünschten Nachteile dadurch überwunden werden können, daß man die hier beschriebenen Salze in Form eines physikalischen Gemisches (es handelt sich um eine Mischung υοπ Feststoffen) mit einer pharmazeutisch verträglichen nichttoxischen organischen oder anorganischen Base in 30 solchen Anteilen einsetzt, daß nach Verdünnen mit Wasser ein pH-Wert von etwa 3,5 bis etwa 7 erzielt wird. Dabei erhält man eine Zwitterionenaktivität von 1 mg/ml bis 400 mg/ml, üblicherweise 250 mg/ml (bestimmt mittels high performance liquid chromatography, HPLC).
Vorzugsweise soll der pH-Wert bei der injizierbaren Konzentration bei 4-6 liegen.
Die hier beschriebenen kristallinen Salze sind bei Raumtemperatur ausgezeichnet stabil. Ihr 35 Wirksamkeitsverlust (bestimmt mittels HPLC) nach 1-monatiger Lagerung bei Raumtemperatur beträgt weniger als 1 %. Diese Salze sind auch bei erhöhten Temperaturen ausgezeichnet stabil; ihr Wirksamkeitsverlust (bestimmt mittels HPLC) nach 1-monatiger Lagerung bei 45 - 56 °C beträgt weniger als 15%.
Das Schwefelsäureadditionssalz ist besonders vorteilhaft. Der Wirksamkeitsverlust dieses Salzes beträgt nach 1-monatiger Lagerung bei 45-56 °C weniger als 10 %. Sehr bedeutsam ist, daß dieses Salz über eine geringe 40 Löslichkeit in Wasser verfügt, i. e. etwa 25 mg/ml. Die Verluste beim Kristallisieren dieses Salzes aus Wasser sind daher sehr gering.
Auch das hier beschriebene Di-Salpetersäureadditionssalz verfügt über eine niedrige Löslichkeit in Wasser, i. e. etwa 60 mg/ml. Somit sind auch bei diesem Salz die Verluste beim Kristallisieren aus Wasser gering.
Die Löslichkeit der Monochlorwasserstoff-, Dichlorwasserstoff und Sesqui- oder Diorthophosphorsäure-45 Additionssalze sind größer als 200 mg/ml.. Diese Salze kristallisiert man daher nicht aus Wasser, sondern vorzugsweise aus organischen Lösungsmitteln, um gute Ausbeute zu erzielen.
Vorzugsweise setzt man bei der Herstellung des Schwefelsäureadditionssalzes das Zwitterion in der Stufe (a) in einer solchen Menge ein, daß es in der Mischung in einer Konzentration von 100 mg/ml bis etwa 200 mg/ml vorliegt. Die Stufe (b) führt man vorzugsweise in einem wäßrigen Medium durch, das kein organisches 50 Lösungsmittel enthält. Üblicherweise setzt man nicht mehr als 2 Moläquivalente Schwefelsäure in Stufe (a) ein. Das Zwitterion setzt man normalerweise in Stufe (a) in einer solchen Menge ein, daß es in der Mischung in einer Konzentration von weniger als 500 mg/ml vorliegt.
Die Stufe (a) führt man durch, indem man entweder das feste Zwitterion zu einer Schwefelsäurelösung (z. B. IN H2SO4) unter heftigem Rühren unter Bildung einer Lösung zugibt. In alternativer Weise kann man die 55 Stufe (a) durchführen, indem man das feste Zwitterion in Wasser löst und langsam unter Rühren Schwefelsäure zugibt, wobei man eine Lösung erhält.
Die Stufe (b) führt man durch, indem man die Kristallisation induziert, beispielsweise durch Animpfen. Dann schlämmt man auf, vorzugsweise 15 min bis 2 h. Diese Kristallisationsstufe führt man vorzugsweise in einem wäßrigen Medium durch, das kein organisches Lösungsmittel aufweist. In diesem Fall ist die erzielte Reinheit 60 normalerweise höher als 98 %. Obgleich die Anwesenheit eines organischen Lösungsmittels, beispielsweise Aceton, die Kristallisation fördert und die Ausbeute erhöht, indem die Löslichkeit des gebildeten Schwefelsäureadditionssalzes im Kristallisationsmedium herabgesetzt wird, kann dadurch auch die Präzipitation -3-
Nr. 390 957 von Verunreinigungen begünstigt werden, was sich in einer verminderten Reinheit niederschlägt. Setzt man das Zwitterion in der Stufe (a) in einer so großen Menge ein, daß es in der Mischung in einer Menge von weniger als 25 mg/ml vorliegt, dann muß man ein organisches Lösungsmittel, vorzugsweise Aceton, dem Kristallisationsmedium einverleiben, um annehmbare Ausbeuten zu erzielen. Setzt man Aceton ein, dann verwendet man dieses in Mengen von etwa 0,5 - 10 Volumenteilen/Volumenteil an wäßrigem Kristallisationsmedium.
Die Stufe (c) führt man durch, indem man die Kristalle vom Kristallisationsmedium abtrennt, vorzugsweise mittels Vakuumfiltration. Anschließend wäscht man die Kristalle, beispielsweise mit Aceton/Wasser und dann mit Aceton alleine oder mit 0,1N Schwefelsäure (z. B. 1/10 Volumen) und dann mit Aceton (z. B. 1/4 Volumen). Dann trocknet man, beispielsweise durch Trocknen im Vakuum bei 30 - 50 °C während eines Zeitraums von 4 - 20 h.
Das hier beschriebene Verfahren zur Herstellung des Schwefelsäureadditionssalzes führt aufgrund der begrenzten Löslichkeit des Schwefelsäureadditionssalzes, verglichen mit der Zwitterionenform, zu einer Reinigung der Zwitterionenform. Dieses Verfahren kann somit dazu eingesetzt werden, das Zwitterion zu reinigen, ohne es als Feststoff zu isolieren. Soll aus dem gebildeten Schwefelsäureadditionssalz ein im wesentlichen reines Zwitterion (freie Base) gewonnen werden, dann kann man dies dadurch erreichen, daß man das Salz in Wasser löst, BaiOH^.ß^O in einer Menge von 90 -100% der Theorie bei einem pH-Wert von weniger als 6,5 zur Ausfüllung von BaSO^ zugibt, das BaSO^ abfiltriert und das Filtrat gewinnt, indem das Zwitterion gelöst ist, und es als Lösung verwendet oder das feste Zwitterion (freie Base) daraus durch Lyophilisieren isoliert. Es ist auch möglich, Aceton hinzuzugeben, um das amorphe Zwitterion auszufällen. Anschließend isoliert man das Zwitterion als Feststoff mittels Vakuumfiltration, wäscht z. B. mit Aceton und trocknet im Vakuum. In alternativer Weise kann man das Schwefelsäureadditionssalz in die freie Base überführen, indem man Ionenaustauschharze, beispielsweise Dowex WGR (ein schwach-basisches Anionenaustauschharz) und Dowex XU-40090.01 (ein stark saures Kationenaustauschhaiz) einsetzt und anschließend lyophilisiert.
Das kristalline Di-salpetersäureadditionssalz stellt man her, indem man (i) mindestens 2 Moläquivalente Salpetersäure mit (ii) dem Zwitterion vermischt, das in der Mischung in einer Konzentration größer als 100 mg/ml vorliegt, und dann eine Kristallisation durch Animpfen oder Reiben mit einem Glasstab induziert, mit 2-Propanol verdünnt und kühlt. Das kristalline Disalpetersäureadditionssalz gewinnt man beispielsweise durch Filtrieren, Waschen nacheinander mit beispielsweise 2-Propanol-H20 (50 % V/V), 2-Propanol und Trocknen im Vakuum während eines Zeitraums von 2 h bei 50 °C.
Das Mono-Chlorwasserstoffsäureadditionssalz stellt man her, indem man das Zwitterion in etwa 1 Moläquivalent Chlorwasserstoffsäure löst und kristallisiert, indem man Aceton unter Rühren zugibt und weiterrührt. Die gebildeten Kristalle isoliert man anschließend, beispielsweise mittels Vakuumfiltration. Dann wäscht man mit Aceton und trocknet im Vakuum. In alternativer Weise kann man das Mono-Chlorwasserstoffsäureadditionssalz aus dem Di-Chlorwasserstoffsäureadditionssalz erhalten, indem man das Di-Chlorwasserstoffsäureadditionssalz in Methylenchlorid aufschlämmt und 1 Moläquivalent Triethylamin zugibt. Anschließend schlämmt man auf, wobei sich das Mono-Chlorwasserstoffsäureadditionssalz bildet, das man isoliert, beispielsweise durch Vakuumfiltration. Anschließend wäscht man mit Methylenchlorid und trocknet im Vakuum.
Das kristalline Di-Chlorwasser$toffsäureadditionssalz stellt man her, indem man das Zwitterion in mindestens 2 Moläquivalenten Chlorwasserstoffsäure löst, durch Zugabe von Aceton eine Kristallisation herbeiführt, die gebildeten Kristalle isoliert, beispielsweise durch Vakuumfiltration, mit Aceton wäscht und im Vakuum trocknet.
Das kristalline Di-orthophosphorsäure-Additionssalz stellt man her, indem man das Zwitterion in mindestens 2 Moläquivalenten Phosphorsäure löst, durch Zugabe von Aceton eine Kristallisation herbeiführt, die gebildeten Kristalle isoliert, beispielsweise mittels Vakuumfiltration, anschließend zuerst mit Aceton und dann mit Ether wäscht und dann im Vakuum trocknet. Das kristalline Sesqui-Orthophosphorsäure-Additionssalz erhält man nach dem gleichen Verfahren, wobei man jedoch 1,5 Moläquivalente Phosphorsäure einsetzt.
Aus den hier beschriebenen Salzen stellt man injizierbare Mittel her, die eine injizierbare Konzentration von 1 mg/ml bis zu 400 mg/ml an dem Zwitterion aufweisen, indem man mit sterilem Wasser verdünnt und puffert (pH-Wert: 3,5 - 7). Als geeignete Puffer kann man beispielsweise nennen: Trinatriumorthophosphat, Natriumbicarbonat, Natriumcitrat, N-Methylglucamin, L(+)-Lysin und L(+)-Arginin. Für eine intramuskuläre oder intravenöse Verabreichung an einen erwachsenen Patienten ist eine Gesamtdosierung von etwa 750 bis etwa 3 000 mg/Tag, aufgeteilt auf mehrere Dosen, normalerweise ausreichend.
Aus den hier beschriebenen Salzen injizierbare Mittel herzustellen, indem man lediglich steriles Wasser zugibt, ist nicht zweckmäßig, da die Schwefelsäure- und Di-Salpetersäureadditionssalze nicht ausreichend löslich sind, um Mittel mit einer für eine Verabreichung ausreichenden Konzentration zu ergeben, und da die hier beschriebenen Salze, wenn sie gelöst sind, zu Mitteln mit einem sehr niedrigen pH-Wert (1,8 - 2,5) führen, die nach Injektion eine Schmerzreaktion hervorrufen. Wie bereits oben ausgeführt, wurde es erfindungsgemäß -4-
Nr. 390 957 gefunden, daß diese Nachteile dadurch überwunden werden können, daß man aus den hier beschriebenen Salzen ein physikalisches Gemisch (i. e. Mischung von Feststoffen) mit pharmazeutisch verträglichen, normalerweise festen nicht-toxischen organischen oder anorganischen Basen in solchen Anteilen herstellt, daß man nach Verdünnung des Gemisches mit Wasser bis zu einer injizierbaren Konzentration von 1 mg/ml bis zu 400 mg/ml an Zwitterion, z. B. einer Zwitterionenaktivität von 250 mg/ml (bestimmt mittels HPLC) einen pH-Wert von etwa 3.5 bis etwa 7, vorzugsweise von etwa 4 bis etwa 6 erzielt
Die exakten Anteile der Bestandteile in dem physikalischen Gemisch variieren von Charge zu Charge des Salzes, da die Reinheit des Salzes von Charge zu Charge variiert. Die Anteile an Bestandteilen bestimmt man für eine bestimmte Charge, indem man vortitriert und mit einer Probe vergleicht, um einen gewünschten pH-Wert innerhalb des oben genannten Bereichs zu erhalten.
Das physikalische Gemisch kann man ohne Schwierigkeiten lagern und in fester Form vertreiben, wobei man die Vorteile der Stabilität der Salze ausnutzt. Das physikalische Gemisch kann zudem ohne Schwierigkeiten in ein injizierbares Mittel überführt werden, indem man lediglich Wasser zugibt. Dies kann von einer Krankenschwester oder einem Arzt kurz vor der Anwendung vorgenommen werden.
Das physikalische Gemisch stellt man her, indem man das Salz und die Base zu einer gleichmäßigen Mischung verarbeitet, beispielsweise unter Verwendung eines Standardmischers in einer trockenen Atmosphäre. Dann füllt man in Vials oder andere Behälter ab. Alle diese Handlungen müssen unter aseptischen Bedingungen vorgenommen werden.
Zu den Basen, die in dem Gemisch eingesetzt werden können, zählen beispielsweise Trinatriumorthophosphat, Natriumbicarbonat, Natriumcitrat, N-Methylglucamin, L(+)-Lysin und L(+)-Arginin. L(+)-Lysin und L(+)-Arginin sind bevorzugt, da die diese Verbindungen enthaltende Gemische zu injizierbaren Mitteln rekonstituiert werden können, die nach Injektion bei den Tieren eine geringere Schmerzreaktion hervorrufen als diejenigen Mittel, die sich von den Gemischen ableiten, welche die anderen Basen enthalten. Das L(+)-Lysin setzt man vorzugsweise in einem solchen Anteü ein, daß nach Verdünnen des Gemisches mit Wasser zu einem Mittel mit einer Zwitterionenaktivität von 250 mg/ml (bestimmt mittels HPLC) ein pH-Wert von 3.5 - 6 erreicht wird.
Die erfindungsgemäß erhältlichen Salze und die diese Salze enthaltenen trockenen physikalischen Gemische können ohne Kühlen und ohne Verwendung einer isolierenden Verpackung gelagert werden und behalten dennoch ihre hohe Wirksamkeit.
Bei verschiedenen der hier beschriebenen Präparate setzt man das instabile Zwitterion als Ausgangsverbindung ein. Die Herstellung dieses Zwitterions ist beschrieben in den Beispielen 1 bis 3 der US-PS 4 406 899 (Aburaki et al.). Das Zwitterion wird dort wie folgt bezeichnet: 7-[(Z)-2-Methoxyimino-2-(2-aminothiazol-4-yI)-acetamido]-3-[(l-methyl-l-pyrrolidinium)-methyl]-3-cephem-4-carboxylat.
Die Erfindung wird im folgenden anhand der Beispiele näher erläutert.
Beispiel,!
Herstellung des Schwefelsäureadditionssalzes 1,5 g Zwitterion gibt man langsam zu 10 ml schnellgerührter IN H2SO4 (1,59 Moläquivalente) bei 20 - 26 °C. Man erhält eine Lösung. Man induziert eine Kristallisation, indem man mit kristallinem Schwefelsäureadditionssalz animpft und die kristalline Masse 0,5 h aufschlämmt. Die Kristalle trennt man dann durch Vakuumfiltration ab, wäscht sie mit 3 ml 50% Aceton/Wasser (V/V) und mit zwei 5 ml-Portionen Aceton. Anschließend trocknet man im Vakuum bei 40 - 50 °C über Nacht.
Die typische Ausbeute an Schwefelsäureadditionssalz beträgt 1,3 g.
Elementaranalyse für £^<^24^0582^2804: C H N S Ber.: 39,44 4,53 14,52 16,62 gef.: 38,91 4,57 14,64 16,71 Beispiel 2 h2o - % 1,42 %
Herstellung des Schwefelsäureadditionssalzes 1,5 g Zwitterion löst man in 5 ml Wasser. Man gibt 5 ml IM H2SO4 langsam unter Rühren zu dieser Lösung. Man induziert die Kristallisation, indem man mit kristallinem Säureadditionssalz animpft und die kristalline Masse 0,5 h aufschlämmt. Man trennt die Kristalle durch Vakuumfiltration ab, wäscht sie mit 3 ml 50 % Aceton/Wasser (V/V) und zweimal mit 5 ml Aceton und trocknet im Vakuum über Nacht bei 40 - 50 °C. Das Schwefelsäureadditionssalz erhält man üblicherweise in einer Ausbeute von 1,3 g. -5-
Nr. 390 957
Beispiel 3
Herstellung des (HNOj^-Säureadditionssalzes 300 mg des Zwitterions löst man in 2N Salpetersäure (0,5 ml). Die Lösung reibt man mit einem Glasstab, verdünnt mit 0,4 ml 2-Propanol und kühlt. Man sammelt die laistalline Titelverbindung und wäscht nacheinander mit 0,4 ml 2-Propanol/H20 (1:1), 2-Propanol und dann mit Ether, wobei man 127 mg des Dinitratsalzes erhält.
Elementaranalyse für C ^24^()582.21^03: c H N S Ber.: 37,62 4,32 18,47 10,57 % Gef.: 36,92 4,10 18,08 10,67 (H20-Gehalt0,90 %)
Beispiel 4
Herstellung des Monohydrochlorid-Säureadditionssalzes 1 g des Zwitterions löst man in 2,08 ml IN HCl (1 Moläquivalent) bei 20 - 25 °C. Man gibt unter heftigem Rühren während eines Zeitraums von 15 min 30 ml Aceton zu, wobei sich Kristalle bilden. Man rührt eine weitere Stunde. Man isoliert die Kristalle durch Vakuumfiltration, wäscht mit 10 ml Aceton und trocknet im Vakuum 2 h bei 50 °C.
Eine typische Ausbeute an dem kristallinen Monohydrochloridsalz beträgt 0,9 g.
Elementaranalyse für ^9^4^0582^01: C H N S CI Ber.: 41,37 4,75 15,2 11,63 12,86 Gef.: 39,32 4,88 13,95 11,28 12,44 (Korrigiert für H20: 41,17 14,61 11,82 13,03 %)
Beispiel 5
Herstellung des Dihydrochlorid-Säureadditionssalzes und Herstellung des Monohydrochlorid-Säureadditionssalzes aus ersterem Salz
Man löst 350 mg Zwitterion in 2 ml IN HCl. Man gibt unter heftigem Rühren während eines Zeitraums von 5 min 10 ml Aceton zu der erhaltenen Lösung, wobei sich Kristalle bilden. Man rührt weitere 5 min, gibt dann weitere 10 ml Aceton zu und rührt weitere 0,5 h. Man entfernt die Kristalle durch Vakuumfiltration, wäscht zweimal mit 5 ml Aceton und trocknet 24 h im Vakuum bei 40 - 45 °C.
Eine typische Ausbeute an kristallinem Dihydrochlorid-Säureadditionssalz beträgt 300 mg.
Elementaranalyse für Ci9H24NgC>5S2.2HCl: C H N S CI Ber.: 41,38 4,75 15,2 11,62 12,8 Gef.: 40,78 4,98 14,7 11,25 (Korrigiert für H2O: 41,1 14,88 11,39 11,94 %)
Man schlämmt 1 g des so hergestellten Dihydrochloridsalzes in 20 ml Methylenchlorid von 20 - 25 °C in einem verschlossenen Kolben auf und gibt während eines Zeitraums von 15 min 0,28 ml Triethylamin zu. Man schlämmt die kristalline Masse dann 5 h auf. Man isoliert die erhaltenen Monohydrochloridkristalle dann durch Vakuumfiltration, wäscht sie zweimal mit 5 ml Methylenchlorid und trocknet 2 h im Vakuum bei 50 °C. Eine typische Ausbeute beträgt 800 mg.
Beispiel 6
Herstellung des Di-Orthophosphorsäure-Additionssalzes 1 g Zwitterion löst man in 3,4 ml von 144 mg/ml H3PO4 (2,2 Moläquivalente) bei 15 °C. Man filtriert die Lösung in geeigneter Weise, um sie zu klären. Unter heftigem Rühren und während eines Zeitraums von 10 min gibt man 12 ml Aceton zu der geklärten Lösung, wobei sich Kristalle bilden. Man rührt weitere 10 min, gibt dann 30 ml Aceton während eines Zeitraums von 10 min zu und rührt weitere 15 min. Man sammelt die Kristalle mittels Vakuumfiltration, wäscht sie zweimal mit 5 ml Aceton und zweimal mit 5 ml Ether und trocknet 16 h im Hochvakuum. -6-
Nr. 390 957
Eine typische Ausbeute an kristallinem Diorthophosphorsäure-Additionssalz bei dieser Art der Herstellung beträgt 1,1 g.
Elementaranalyse für C19H24N6O5S2.2H3PO4: C H N Ber.: 33,72 4,47 12,42 Gef.: 33,43 4,65 12,02 (Korrigiert für H2O: 34,0 12,2 %)
Das Sesqui-orthophosphorsäure-Additionssalz erhält man wie oben beschrieben, wobei man jedoch 1,5 Moläquivalente H3PO4 statt der 2,2 Moläquivalente einsetzt.
Beispiel 7
Stabilitätsuntersuchungen bei erhöhten Temperaturen
Die Stabilitätsuntersuchungen bei erhöhter Temperatur wurden durchgeführt, indem die Präparate in Trockenbehältem bei den nachstehend aufgeführten Temperaturen für die ebenfalls nachstehend aufgeführten Zeiträume gelagert wurden. Die Wirksamkeitszunahmen bzw. -Verluste wurden mittels HPLC bestimmt. Eine Wirksamkeitszunahme wird durch ein Pluszeichen vor der Zahl angezeigt. Ein Wirksamkeitsverlust von weniger als 10 % während eines Zeitraums von 2-4 Wochen bei 45 - 56 °C zeigt normalerweise an, daß der Wirksamkeitsverlust bei einer 2- bis 3-jährigen Lagerung bei Raumtemperatur weniger als 10 % beträgt. (Es folgt eine Tabelle) -7- m <3 > Λ3c <υ N i
ω2bu o O O
c <D JZ o O U o VO in c <D *C8 u o in
§ CO cs
Nr. 390 957 Γ η
τζ. CS Ό+
Ci c*- co+ cs o, in VO + in
f-; CO vd“ cs* VO 1 rH CO ©* 1-H 6,4 1 00 VO, ολ o„ xj- 71 +5 cT VO t" cs in CO 3,4 CO cs 3,0 co in+ 00 00 00
TfcT c 0 1 ja CO cs CO N CO ci CO 1 Ί a CO cs > θ’· o CO | s 00 öT 1 s ä CO s ocs incs
o CO -8-
Nr. 390 957
Beispiel 8
Untersuchungen der physikalischen Gemische
Es wurden physikalische Gemische des kristallinen Schwefelsäuresalzes mit (a) Trinatriumorthophosphat, (b) Natriumbicarbonat, (c) L(+)-Lysin und (d) L(+)-Arginin hergestellt Die Basen wurden in solchen Mengen zugegeben, daß nach Verdünnen des Gemisches mit Wasser bis zu einer Zwitterionenaktivität von 250 mg/ml (bestimmt mittels HPLC-Assay) die folgenden pH-Werte erhalten wurden: Trinatriumorthophosphat (pH-Wert von 6,0); Natriumbicarbonat (pH-Wert von 6,0); L(+)-Lysin (pH-Wert von 6,0); (+)-Arginin (pH-Wert von 6,0).
Durch Rekonstitution mit sterilem Wasser bis zu einer Zwitterionenaktivität von 250 mg/ml (bestimmt mittels HPLC-Assay) wurden injizierbare Mittel hergestellt. Dabei treten keine Löslichkeitsprobleme auf. Kaninchen wurden Injektionen (100 mg/kg) intramuskulär verabreicht, wobei sich die Schmerzreaktionen in Grenzen hielten. Die geringste Schmerzreaktion trat bei dem Arginin enthaltenden Mittel auf.
Setzt man die anderen hier beschriebenen Salze in den physikalischen Gemischen mit den oben beschriebenen Basen ein, dann erhält man ähnliche Ergebnisse. Die Löslichkeit ist ähnlich gut und der nach der intramuskulären Injektion auftretende Schmerz liegt im ertragbaren Rahmen.
Die Figur 1 zeigt das Infrarot-Absorptionsspektrum des kristallinen 7-[a-(2-Aminothiazol-4-yl)-a-(Z)-methoxyiminoacetamido]-3-[(l-methyl-l-pyrrolidinio)-methyl]-3-cephem-4-carboxylat-Sulfatsalzes (hergestellt gemäß den Beispielen 1 oder 2). Das Spektrum wurde mit einem KBr-Preßling aufgenommen.
Die Figur 2 zeigt das Infrarot-Absorptionsspektrum des kristallinen Sesquiphosphatsalzes von 7-[a-(2-Aminothiazol)-4-yl)-3-(Z)-methoxyiminoacetamido]-3-[(l-methyl-l-pyrrolidinio)-methyl]-3-cephem-4-cafboxylat (KBr-Preßling).
Die Figur 3 zeigt das Infrarot-Absorptionsspektrum des kristallinen Diphosphatsalzes von 7-[a-(2-Aminothiazol-4-yl)-3-(Z)-methoxyiminoacetamido]-3-[(l-methyl-l-pynolidinio)-methyl]-3-cephem-4-carboxylat (KBr-Preßling).
Das Röntgenbeugungs-Pulverdiagramm des kristallinen Sulfatsalzes von 7-[a-(2-Aminothiazol-4-yl)-a-(Z)-methoxyiminoacetamido]-3-[(l-methyl-l-pyrrolidinio)-methyl]-3-cephem-4-carboxylat (hergestellt gemäß den Beispielen 1 oder 2) wurde mit einem Rigaku-Pulverdiffraktometer unter Verwendung einer Kupfer-Röntgenröhre und eines Nickelfilters aufgenommen, wobei sich die Probe in einer Glasschale befand. Die Scangeschwindigkeit betrug 2°/min über einen Bereich von 5 - 40°. Zur Bestimmung der Winkel der maximalen Beugung wurde ein Diagramm mechanisch aufgezeichnet. Daraus wurden die Abstände (d) und die relativen Intensitäten (I/I-) berechnet. Diese Daten sind nachstehend aufgelistet. d Abstand (A) I/I_ (Ψο) 9,20 100 6,80 50 5,50 28 5,09 22 4,50 38 4,41 44 4,19 63 3,78 38 3,64 44 3,39 25 3,31 31 3,15 47
Beispiel 9
Herstellung des Sesquiphosphatsalzes
Man löst 0,70 g Zwitterion unter heftigem Rühren in 2,2 - 2,4 ml 85 %iger Phosphorsäure (2,8 - 2,2 Moläquivalente), die 1:1 (V/V) mit Wasser verdünnt ist- Zum Klären der Lösung filtriert man sie durch ein Membranfilter mit einer Porengröße von 0,22 - 0,45 μτη. Zum Filtrat gibt man unter heftigem Rühren während eines Zeitraums von 30 - 60 min 5-7 Vol.-Teile (15 - 20 ml) Methanol. Dabei bilden sich Kristalle. Man rührt weitere 1,5 - 2 h heftig. Man gewinnt das kristalline Produkt mittels Vakuumfiltration, wäscht es auf -9-
Nr. 390 957 dem Filter zuerst mit 6 - 8 ml Methanol/Aceton (1:1 V/V), wobei man darauf achtet, daß der Filterkuchen eng zusammenbleibt, und dann mit Aceton und trocknet das Produkt 2 h bei 50 °C im Vakuum; typische Ausbeute: 0,7 - 0,75 g.
Interpretation des Infrarot-Spektrums (vgl. Fig. 2) (IR, KBr-Preßling)
Lage des Peaks (cm~*I
Funktionelle Gruppe 2800 - 3400 NH,NH3+,CarboxylOH 1780 ß-Lactam C=0 1680 Carboxyl C=0 1660 AmidC=0 1630 C=N, C=C 1550 Amid OH 980,1040 po4=
Verhalten beim Erhitzen:
Beim Untersuchen im Differential-Kalorimeter findet man bei 171,8 °C ein Exotherm. Röntgenbeugungsdiagramm:
Das Röntgenbeugungs-Pulverdiagramm des zuvor beschriebenen Sesquiphosphatsalzes wurde auf die gleiche Weise mit einem Rigaku-Pulverdifffaktometer bestimmt, wie das vorstehend beim Sulfatsalz beschrieben ist. Das Ergebnis ist nachstehend wiedergegeben: d I/L O 11,04 32 9,2 - 16 7,89 - 24 7,02 - 42 6,7 - 32 5,5 - 26 4,64 - 100 4,456 - 53 4,3 - 58 3,88 - 26 3,75 - 89 3,56 - 21 3,31 - 26 3,05 - 16
Interpretation des ^H-NMR-Spektrums (90 MHz, D20-Lösung) von: 20 3
OCH
N
-10-
Nr. 390 957
Chemische Beschreibung Integral Zuordnung
Verschiebung (ppm in δ gegenüber 5 TSP)_
2,0 - 2,4 Multiplett 4 14CH2,14'CH2 3,04 Singulett 3 12CH3 10 3,3 - 3,6 Multiple« 5 2CH, 13CH2, 13’CH2 3,94 Dublett 1 2CH 4,12 Singulett 3 20CH3 4,12 Dublett 1 11CH 4,8 Dublett 1 11CH 15 5,42 Dublett 1 6CH 5,88 Dublett 1 7CH 7,21 Singulett 1 18CH 20
Stabilität:
Zeit
Temperatur prozentualer Verlust 25 30 35 1 Tag 100 °C 10,9 3 Tage 70 °C 0 7 Tage 70 °C 1,9 1 Woche 56 °C 1,0 2 Wochen 56 °C 1,4 4 Wochen 56 °C 0 1 Woche 45 °C 0 2 Wochen 45 °C 1,4 4 Wochen 45 °C 0,7 8 Wochen 45 °C 1,6 1 Monat 37 °C 2,5 40
Elementaranalyse (Gew.-%): 45
Theorie Gefunden Auf Trockenbasis (SesauinhosDhaf) C 35,44 36,3 36,4 H 4,66 4,41 4,7 N 12,88 13,2 13,4 H2° 2,29* - Monohydrat = 2,8 % H20 h3po4 23,06 23,6 23,6 50 * bestimmt nach Karl Fischer -11- 55
Claims (6)
- Nr. 390 957 PATENTANSPRÜCHE 1. Verfahren zur Herstellung neuer temperaturstabiler kristalliner Salze von 7- [a-(2-Aminothiazol-4-yl)-a-(Z)-methoxyiminoacetamido]-3-[(l-methyl-l-pyrrolidinio)-methyl]-3-cephem-4-carboxylat (Zwitterion), und zwar der Schwefelsäure-, Di-Salpetersäure-, Mono-Chlorwasserstoffsäure- und Di-Chlorwasserstoffsäure-Additionssalze sowie von Orthophosphorsäure-Additionssalzen mit 1,5 bis 2 Moläquivalenten H3PO4, oder von Solvaten, insbesondere dem Hydrat davon, dadurch gekennzeichnet, daß man (a) eine wäßrige Mischung herstellt, die (i) mindestens 1 Moläquivalent Schwefel- oder Chlorwasserstoffsäure oder (ii) mindestens 2 Moläquivalente Salpeter- oder Chlorwasserstoffsäure oder (iii) 1,5 bis 2 Moläquivalente Phosphorsäure und (iv) das Zwitterion enthält, (b) das Säureadditionssalz kristallisiert, wobei man die Kristallisation gegebenfalls in Gegenwart eines organischen Lösungsmittels durchführt, und (c) das kristalline Säureadditionssalz isoliert
- 2. Verfahren nach Anspruch 1 zur Herstellung des kristallinen Schwefelsäureadditionssalzes, dadurch gekennzeichnet, daß man (a) eine wäßrige Mischung aus mindestens 1 Moläquivalent Schwefelsäure und dem Zwitterion herstellt, (b) das Schwefelsäureadditionssalz kristallisiert, wobei man, falls das Zwitterion in der Mischung in einer Konzentration von weniger als 25 mg/ml vorhanden ist, die Kristallisation in Gegenwart eines organischen Lösungsmittels durchführt und (c) das kristalline Schwefelsäureadditionssalz isoliert.
- 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß man die Stufe (b) in einem wäßrigen Medium durchführt, das kein organisches Lösungsmittel enthält.
- 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß man das Zwitterion in der Stufe (a) in einer solchen Menge einsetzt, daß es in der Mischung in einer Konzentration von weniger als 500 mg/ml vorliegt.
- 5. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß man das Zwitterion in der Stufe (a) in einer solchen Menge einsetzt, daß es in der Mischung in einer Konzentration größer als 25 mg/ml vorliegt.
- 6. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß man das Zwitterion in Stufe (a) in einer solchen Menge einsetzt, daß es in der Mischung in einer Konzentration von etwa 100 mg/ml bis etwa 200 mg/ml vorliegt. Hiezu 3 Blatt Zeichnungen -12-
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AT1248/89A AT393452B (de) | 1985-08-05 | 1989-05-23 | Verfahren zur herstellung eines cephalosporinpraeparates zur herstellung einer injektionsloesung |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US76223585A | 1985-08-05 | 1985-08-05 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| ATA211086A ATA211086A (de) | 1990-01-15 |
| AT390957B true AT390957B (de) | 1990-07-25 |
Family
ID=25064475
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AT0211086A AT390957B (de) | 1985-08-05 | 1986-08-05 | Verfahren zur herstellung neuer cephalosporinsalze |
Country Status (34)
| Country | Link |
|---|---|
| JP (1) | JPH0615548B2 (de) |
| KR (1) | KR930003121B1 (de) |
| AR (1) | AR243894A1 (de) |
| AT (1) | AT390957B (de) |
| AU (1) | AU597262B2 (de) |
| BE (1) | BE905219A (de) |
| CA (1) | CA1284994C (de) |
| CH (1) | CH675581A5 (de) |
| CS (2) | CS276849B6 (de) |
| CY (1) | CY1614A (de) |
| DD (2) | DD254941A5 (de) |
| DE (1) | DE3626375A1 (de) |
| DK (1) | DK162053C (de) |
| EG (1) | EG18003A (de) |
| ES (1) | ES2002112A6 (de) |
| FI (1) | FI84484C (de) |
| FR (1) | FR2585705B1 (de) |
| GB (1) | GB2179936B (de) |
| GR (1) | GR862055B (de) |
| HK (1) | HK99691A (de) |
| HU (1) | HU196602B (de) |
| IE (1) | IE59222B1 (de) |
| IL (1) | IL79608A (de) |
| IT (1) | IT1197067B (de) |
| LU (2) | LU88574I2 (de) |
| MY (1) | MY102212A (de) |
| NL (1) | NL8601991A (de) |
| OA (1) | OA08672A (de) |
| PT (1) | PT83134B (de) |
| SE (1) | SE469633B (de) |
| SG (1) | SG79791G (de) |
| SU (1) | SU1516013A3 (de) |
| YU (1) | YU45793B (de) |
| ZA (1) | ZA865842B (de) |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4959469A (en) * | 1984-12-27 | 1990-09-25 | Banyu Pharmaceutical Company, Ltd. | Crystalline cephalosporin compounds |
| WO1988010263A1 (fr) * | 1987-06-25 | 1988-12-29 | Banyu Pharmaceutical Co., Ltd. | Composes cristallins de cephalosporine, procede de preparation et produits intermediaires pour la preparation de ces composes |
| US4883868A (en) * | 1984-12-27 | 1989-11-28 | Banyu Pharmaceutical Co., Ltd. | 7-amino-3-(substituted isoindolinium)methyl-3-cephem derivatives |
| US4910301A (en) * | 1985-08-05 | 1990-03-20 | Bristol-Myers Company | Cefepime cephalosporin salts |
| US5244891A (en) * | 1985-08-05 | 1993-09-14 | Bristol-Myers Squibb Company | Injectable compositions of cefepime dihydrochloride hydrate |
| US4808617A (en) * | 1985-12-18 | 1989-02-28 | Bristol-Myers Company | Lyophilized or precipitated cephalosporin zwitterion and salt combination |
| JPH02101081A (ja) * | 1988-10-08 | 1990-04-12 | Meiji Seika Kaisha Ltd | セファロスポリン誘導体結晶性二塩酸塩及びその製造法 |
| CA2011116C (en) * | 1989-03-06 | 1999-11-16 | Murray A. Kaplan | Lyophilized bmy-28142 dihydrochloride for parenteral use |
| CA2101571A1 (en) * | 1992-09-08 | 1994-03-09 | Elizabeth A. Garofalo | Crystalline dihydrate of a cephalosporin dihydrate salt and injectable compositions thereof |
| WO1994020505A1 (en) * | 1993-03-12 | 1994-09-15 | The Upjohn Company | Crystalline ceftiofur free acid |
| EP0638573A1 (de) * | 1993-08-10 | 1995-02-15 | Lucky Ltd. | Kristalline Hydrate eines Cephalosporins und Verfahren zu ihrer Herstellung |
| WO2005063772A1 (en) | 2003-12-23 | 2005-07-14 | Sandoz Ag | Process for production of intermediates for use in cefalosporin synthesis |
| WO2008056221A2 (en) * | 2006-11-06 | 2008-05-15 | Orchid Chemicals & Pharmaceuticals Limited | Crystalline sulfate salt of cephalosporin antibiotic |
| DE102012101680A1 (de) * | 2012-02-29 | 2013-08-29 | Aicuris Gmbh & Co. Kg | Pharmazeutische Zubereitung enthaltend ein antiviral wirksames Dihydrochinazolinderivat |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS55151588A (en) * | 1979-05-14 | 1980-11-26 | Takeda Chem Ind Ltd | Preparation of cephalosporin salt crystal |
| CA1213882A (en) * | 1982-03-04 | 1986-11-12 | Jun Okumura | Cephalosporins |
| US4406899A (en) * | 1982-03-04 | 1983-09-27 | Bristol-Myers Company | Cephalosporins |
| US4525473A (en) * | 1983-03-30 | 1985-06-25 | Bristol-Myers Company | Cephalosporins |
| DE3419015A1 (de) * | 1984-05-22 | 1985-11-28 | Bayer Ag, 5090 Leverkusen | Verfahren zur herstellung von cephalosporinen |
| GB8424692D0 (en) * | 1984-10-01 | 1984-11-07 | Glaxo Group Ltd | Chemical compounds |
| GB2165245B (en) * | 1984-10-01 | 1988-05-25 | Glaxo Group Ltd | Chemical compounds |
-
1986
- 1986-07-28 FR FR8610892A patent/FR2585705B1/fr not_active Expired
- 1986-07-28 CA CA000514766A patent/CA1284994C/en not_active Expired - Lifetime
- 1986-07-29 AR AR86304717A patent/AR243894A1/es active
- 1986-07-30 AU AU60694/86A patent/AU597262B2/en not_active Expired
- 1986-07-31 YU YU137186A patent/YU45793B/sh unknown
- 1986-08-01 FI FI863155A patent/FI84484C/fi not_active IP Right Cessation
- 1986-08-01 IE IE207886A patent/IE59222B1/en not_active IP Right Cessation
- 1986-08-04 NL NL8601991A patent/NL8601991A/nl not_active Application Discontinuation
- 1986-08-04 SU SU864027914A patent/SU1516013A3/ru active
- 1986-08-04 GB GB8618989A patent/GB2179936B/en not_active Expired
- 1986-08-04 CS CS903570A patent/CS276849B6/cs unknown
- 1986-08-04 CS CS865827A patent/CS276717B6/cs unknown
- 1986-08-04 PT PT83134A patent/PT83134B/pt unknown
- 1986-08-04 CH CH3117/86A patent/CH675581A5/de not_active IP Right Cessation
- 1986-08-04 IL IL79608A patent/IL79608A/xx not_active IP Right Cessation
- 1986-08-04 GR GR862055A patent/GR862055B/el unknown
- 1986-08-04 DK DK371886A patent/DK162053C/da not_active IP Right Cessation
- 1986-08-04 LU LU88574C patent/LU88574I2/fr unknown
- 1986-08-04 SE SE8603308A patent/SE469633B/sv not_active IP Right Cessation
- 1986-08-04 IT IT21409/86A patent/IT1197067B/it active Protection Beyond IP Right Term
- 1986-08-04 LU LU86540A patent/LU86540A1/fr unknown
- 1986-08-04 DE DE19863626375 patent/DE3626375A1/de not_active Ceased
- 1986-08-04 JP JP61183288A patent/JPH0615548B2/ja not_active Expired - Lifetime
- 1986-08-04 ZA ZA865842A patent/ZA865842B/xx unknown
- 1986-08-04 BE BE07217010A patent/BE905219A/fr not_active IP Right Cessation
- 1986-08-05 HU HU863376A patent/HU196602B/hu unknown
- 1986-08-05 DD DD86293433A patent/DD254941A5/de unknown
- 1986-08-05 AT AT0211086A patent/AT390957B/de not_active IP Right Cessation
- 1986-08-05 KR KR1019860006445A patent/KR930003121B1/ko not_active Expired - Lifetime
- 1986-08-05 ES ES8600872A patent/ES2002112A6/es not_active Expired
- 1986-08-05 OA OA58918A patent/OA08672A/xx unknown
-
1987
- 1987-09-29 MY MYPI87002279A patent/MY102212A/en unknown
-
1988
- 1988-03-30 DD DD88314213A patent/DD268395A5/de unknown
-
1989
- 1989-08-04 EG EG489/86A patent/EG18003A/xx active
-
1991
- 1991-10-02 SG SG797/91A patent/SG79791G/en unknown
- 1991-12-05 HK HK996/91A patent/HK99691A/xx not_active IP Right Cessation
-
1992
- 1992-07-10 CY CY1614A patent/CY1614A/en unknown
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AT390957B (de) | Verfahren zur herstellung neuer cephalosporinsalze | |
| DE69806067T2 (de) | Bisulfatsalz eines hiv-protease-inhibitors | |
| DE3901359C2 (de) | ||
| DE2332878C2 (de) | Salze von Cephalosporinen mit Arginin und Lysin, ihre Herstellung und injizierbare pharmazeutische Zubereitungen | |
| CH645118A5 (de) | Cephalosporinantibiotikum. | |
| DE2738712A1 (de) | Feste antibiotische zubereitungen | |
| DE3037104C2 (de) | Kristallines Bishydrochlorid von (6R,7R)-7-[(Z)-2-(2-Aminothiazol-4-yl)-2-(2-carboxyprop-2-oximino)acetamido]-3-(1-pyridiniummethyl)ceph-3-em-4-carboxylat | |
| DD215552A5 (de) | Verfahren zur herstellung von kristallisierten cephem-saeureadditionssalzen | |
| DE2500386C2 (de) | 7-[D-&alpha;-Amino-&alpha;-(p-hydroxyphenyl)-acetamido]-3-(1,2,3-triazol-5-yl-thiomethyl)-3-cephem-4-carbonsäure-1,2-propylenglykolate, Verfahren zu ihrer Herstellung und Arzneimittel, die diese Verbindungen enthalten | |
| EP0280157B1 (de) | Kristallisierte Cephem-Säureadditionssalze und Verfahren zu ihrer Herstellung | |
| DE3885031T2 (de) | Wasserlösliches antibiotisches Präparat und wasserlösliche Salze von Cephem-Verbindungen. | |
| DE2718730A1 (de) | Cephalosporin-antibiotika | |
| DE69004921T2 (de) | Injizierbare Cephalosporinpräparate und ihre Anwendung. | |
| DE3687171T2 (de) | Kristallines triethylaminsalz von cefbuperazon. | |
| AT392643B (de) | Verfahren zur herstellung von neuen derivaten der 7-(d-2-amino-2-(4-hydroxyphenyl)-acetamido)-3- ((z)-1-propenyl)ceph-3-em-4-carbonsaeure | |
| AT393452B (de) | Verfahren zur herstellung eines cephalosporinpraeparates zur herstellung einer injektionsloesung | |
| DE2522998A1 (de) | Neues cephalosporinderivat, verfahren zu seiner herstellung und arzneimittel | |
| DE3786734T2 (de) | Kristallines Additionssalz von Cephemcarboxylsäure. | |
| DE2857816C2 (de) | 7ß-(substituierte-Isothiazol)thioacetamido-7-methoxy(alkylsubstituierte-tetraz olyl)thiomethyl-&Delta;&uarr;3&uarr;-cephem-4-carbonsäuren, Verfahren zu ihrer Herstellung und deren Verwendung | |
| DE2949733A1 (de) | Silbersalze der phosphanilsaeure, verfahren zu deren herstellung und arzneimittel | |
| DE1445844C (de) | Salze mit dem Kation N(7-2-Thienylacetamidoceph-Sem-S-ylmethyO-pyridinium-4-carbonsäure und Verfahren zu deren Herstellung | |
| DE2914191A1 (de) | Cephalosporinsalze und diese verbindungen enthaltende therapeutische zubereitungen | |
| DE1545838C3 (de) | 7-(2-Azidooctanamido)-cephalosporansäure, deren Salze und Verfahren zur Herstellung dieser Verbindungen | |
| DE68922207T2 (de) | Verfahren zur Herstellung von Alkalimetall-Salze von 3,7-substituierten 7-Aminocephalosporansauerderivaten. | |
| DE4244069A1 (de) | Cephalosporinsalze und Verfahren zu deren Herstellung |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| SZA | Application filed for a certificate of protection |
Free format text: SZ60/94, 941207 |
|
| EZF | Grant of a certificate of protection |
Free format text: SZ 60/1994, 19941207, EXPIRES:20080629 |
|
| UEP | Publication of translation of european patent specification | ||
| ELA | Expired due to lapse of time |