WO2022185523A1 - めっきモジュールを調整する方法 - Google Patents

めっきモジュールを調整する方法 Download PDF

Info

Publication number
WO2022185523A1
WO2022185523A1 PCT/JP2021/008670 JP2021008670W WO2022185523A1 WO 2022185523 A1 WO2022185523 A1 WO 2022185523A1 JP 2021008670 W JP2021008670 W JP 2021008670W WO 2022185523 A1 WO2022185523 A1 WO 2022185523A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
substrate
substrate holder
paddle
plate
Prior art date
Application number
PCT/JP2021/008670
Other languages
English (en)
French (fr)
Inventor
泰之 増田
良輔 樋渡
正 下山
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Priority to JP2021539013A priority Critical patent/JP6999070B1/ja
Priority to PCT/JP2021/008670 priority patent/WO2022185523A1/ja
Priority to KR1020227011235A priority patent/KR102447745B1/ko
Priority to US17/781,363 priority patent/US20240183059A1/en
Priority to CN202180006560.6A priority patent/CN114787428B/zh
Publication of WO2022185523A1 publication Critical patent/WO2022185523A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/06Suspending or supporting devices for articles to be coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/001Apparatus specially adapted for electrolytic coating of wafers, e.g. semiconductors or solar cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/008Current shielding devices
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/02Tanks; Installations therefor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/10Agitating of electrolytes; Moving of racks
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • C25D21/14Controlled addition of electrolyte components
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/04Electroplating with moving electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/06Suspending or supporting devices for articles to be coated
    • C25D17/08Supporting racks, i.e. not for suspending

Definitions

  • the present invention relates to a method of adjusting a plating module.
  • a cup-type electroplating device is known as an example of a plating device.
  • a cup-type electroplating apparatus immerses a substrate (for example, a semiconductor wafer) held in a substrate holder with the surface to be plated facing downward in a plating solution, and applies a voltage between the substrate and the anode to A conductive film (plating film) is deposited on the surface of the
  • a plating module is assembled by aligning the central axis and parallelism of the wafer and each component (anode, electric field control component) in the plating bath.
  • Patent Document 1 describes a method of arranging a jig equipped with an optical sensor in a plating bath to adjust the positions of each component in the plating bath.
  • the plating tank Due to the structure of the plating tank, it may not be suitable for adjustment using a jig equipped with an optical sensor like the method described in Patent Document 1. In addition, it may be difficult to perfectly match the central axes and parallelism of the wafer and each part of the plating module with zero error. In this case, axial misalignment, parallelism misalignment, and/or dimensional tolerance of each part between the wafer and each part of the plating module may affect the film thickness distribution in the wafer plane. At this time, the film thickness mainly changes in the peripheral portion of the wafer, and the in-plane uniformity deteriorates. In this way, the in-plane uniformity of the plating film thickness distribution may differ from plating module to plating module due to individual differences in plating modules.
  • One of the objects of the present invention is to provide a method of adjusting a plating module that can suppress or prevent deterioration in the uniformity of the plating film due to individual differences in plating modules.
  • a substrate holder that holds a substrate, an anode arranged to face the substrate holder, and a plate as a resistor arranged between the substrate holder and the anode are A method for adjusting a plating module provided, wherein the porosity of the outer peripheral portion of the plate is adjusted so that the plating film thickness of the outer peripheral portion of the substrate is smaller than the thickness of the other portions.
  • FIG. 1 is a perspective view showing the overall configuration of a plating apparatus of this embodiment;
  • FIG. 1 is a plan view showing the overall configuration of a plating apparatus of this embodiment;
  • FIG. It is a schematic diagram showing an example of a plating module according to the present embodiment.
  • 4 is a schematic diagram showing an example of the central axis and parallelism of each part of the plating module;
  • FIG. This is an example of simulating a case where the film thickness distribution changes most due to the influence of axis misalignment, parallelism misalignment and/or dimensional tolerance. It is a simulation example showing adjustment of the plating film thickness distribution by adjusting the height of the head.
  • 3 is a partially enlarged plan view of a plate (resistor);
  • FIG. 4 is a flow chart of a plating module adjustment method according to the present embodiment.
  • FIG. 4 is a schematic diagram showing an example of a head height adjustment method
  • FIG. 4 is a schematic diagram showing an example of a head height adjustment method
  • FIG. 4 is a schematic diagram showing an example of a head height adjustment method
  • 4 is a graph showing the relationship between the substrate surface flow velocity and the distance between the substrate and the paddle. 4 is a graph showing the relationship between the substrate surface flow velocity and the substrate-paddle distance at each paddle movement speed.
  • FIG. 1 is a perspective view showing the overall configuration of the plating apparatus of this embodiment.
  • FIG. 2 is a plan view showing the overall configuration of the plating apparatus of this embodiment.
  • the plating apparatus 1000 includes a load port 100, a transfer robot 110, an aligner 120, a pre-wet module 200, a pre-soak module 300, a plating module 400, a cleaning module 500, a spin rinse dryer 600, and a transfer device. 700 and a control module 800 .
  • the load port 100 is a module for loading substrates stored in cassettes such as FOUPs (not shown) into the plating apparatus 1000 and for unloading substrates from the plating apparatus 1000 to cassettes. Although four load ports 100 are arranged horizontally in this embodiment, the number and arrangement of the load ports 100 are arbitrary.
  • the transport robot 110 is a robot for transporting substrates, and is configured to transfer substrates among the load port 100 , the aligner 120 and the transport device 700 . When transferring substrates between the transfer robot 110 and the transfer device 700, the transfer robot 110 and the transfer device 700 can transfer the substrates via a temporary placement table (not shown).
  • the aligner 120 is a module for aligning the positions of orientation flats, notches, etc. of the substrate in a predetermined direction. Although two aligners 120 are arranged horizontally in this embodiment, the number and arrangement of the aligners 120 are arbitrary.
  • the pre-wet module 200 replaces the air inside the pattern formed on the substrate surface with the treatment liquid by wetting the surface to be plated of the substrate before the plating treatment with a treatment liquid such as pure water or degassed water.
  • the pre-wet module 200 is configured to perform a pre-wet process that facilitates the supply of the plating solution to the inside of the pattern by replacing the treatment solution inside the pattern with the plating solution during plating. Although two pre-wet modules 200 are arranged vertically in this embodiment, the number and arrangement of the pre-wet modules 200 are arbitrary.
  • the presoak module 300 for example, an oxide film having a large electric resistance existing on the surface of a seed layer formed on the surface to be plated of the substrate before plating is etched away with a processing liquid such as sulfuric acid or hydrochloric acid, and the surface of the plating substrate is cleaned.
  • a processing liquid such as sulfuric acid or hydrochloric acid
  • it is configured to perform a pre-soak process for activation.
  • two presoak modules 300 are arranged side by side in the vertical direction, but the number and arrangement of the presoak modules 300 are arbitrary.
  • the plating module 400 applies plating to the substrate.
  • the cleaning module 500 is configured to perform a cleaning process on the substrate in order to remove the plating solution and the like remaining on the substrate after the plating process.
  • the spin rinse dryer 600 is a module for drying the substrate after cleaning by rotating it at high speed. Although two spin rinse dryers are arranged vertically in this embodiment, the number and arrangement of the spin rinse dryers are arbitrary.
  • the transport device 700 is a device for transporting substrates between a plurality of modules within the plating apparatus 1000 .
  • Control module 800 is configured to control a plurality of modules of plating apparatus 1000 and may comprise, for example, a general purpose or dedicated computer with input/output interfaces to an operator.
  • the control module 800 includes a non-volatile storage medium that stores programs, parameters, etc. for controlling each part of the plating apparatus, or is configured to communicate with such a storage medium.
  • a substrate stored in a cassette is loaded into the load port 100 .
  • the transport robot 110 takes out the substrate from the cassette of the load port 100 and transports the substrate to the aligner 120 .
  • the aligner 120 aligns orientation flats, notches, etc. of the substrate in a predetermined direction.
  • the transport robot 110 transfers the substrate aligned by the aligner 120 to the transport device 700 .
  • the transport device 700 transports the substrate received from the transport robot 110 to the pre-wet module 200 .
  • the pre-wet module 200 pre-wets the substrate.
  • the transport device 700 transports the pre-wet processed substrate to the pre-soak module 300 .
  • the presoak module 300 applies a presoak treatment to the substrate.
  • the transport device 700 transports the presoaked substrate to the plating module 400 .
  • the plating module 400 applies plating to the substrate.
  • the transport device 700 transports the plated substrate to the cleaning module 500 .
  • the cleaning module 500 performs a cleaning process on the substrate.
  • the transport device 700 transports the cleaned substrate to the spin rinse dryer 600 .
  • a spin rinse dryer 600 performs a drying process on the substrate.
  • the transport device 700 delivers the dried substrate to the transport robot 110 .
  • the transport robot 110 transports the substrate received from the transport device 700 to the cassette of the load port 100 . Finally, the cassette containing the substrates is unloaded from the load port 100 .
  • the plating apparatus 1000 of this embodiment is provided with a film thickness measuring device 900 .
  • the transport robot 110 transports the dried substrate to the film thickness measuring device 900 before transporting it to the cassette of the load port 100, and the film thickness measuring device 900 measures the plating film thickness (plating film thickness distribution) of the substrate. ) can be measured.
  • the film thickness measuring device is provided at a remote place outside the plating device 1000, and the substrate after being housed in the cassette is transported to the film thickness measuring device 900, A film thickness measurement device outside the plating apparatus 1000 may be used to measure the plating film thickness distribution of the substrate.
  • FIG. 3 is a schematic diagram showing an example of the plating module according to this embodiment.
  • the plating module 400 according to this embodiment is a so-called face-down type or cup type plating module.
  • the plating solution may be, for example, a copper sulfate solution, and the plating film may be a copper film.
  • the plating film may be any metal that can be plated, and the plating solution can be selected according to the type of plating film.
  • the plating module 400 includes a plating tank 401 , a substrate holder (also referred to as a head) 403 as a substrate holder, and a plating solution storage tank 404 .
  • the head 403 is configured to hold a substrate 402 such as a wafer with its surface to be plated facing downward.
  • the plating module 400 has a motor 411 that rotates the head 403 in the circumferential direction.
  • the motor 411 receives power supply from a power source (not shown).
  • the motor 411 is controlled by the control module 800 to control the rotation of the head 403 and the substrate 402 held by the head 403 .
  • control module 800 controls the number of rotations per unit time (also referred to as frequency or rotation speed) of the substrate 402 by controlling the rotation of the motor 411 .
  • a liquid flow of the plating solution is formed in the vicinity of the substrate surface, and a sufficient amount of ions are uniformly supplied to the substrate.
  • An anode 410 is arranged in the plating bath 401 so as to face the substrate 402 .
  • Anode 410 may be provided with an anode mask 414 ( FIG. 4 ) that adjusts the exposed areas of anode 410 .
  • Anode 410 and/or anode mask 414 are examples of electric field control components.
  • the plating module 400 further has a plating solution receiving tank 408 .
  • the plating solution in the plating solution reservoir 404 is supplied from the bottom of the plating bath 401 into the plating bath 401 through the filter 406 and the plating solution supply pipe 407 by the pump 405 .
  • the plating solution overflowing from the plating tank 401 is received by the plating solution receiving tank 408 and returned to the plating solution storage tank 404 .
  • the plating module 400 further has a power supply 409 connected to the substrate 402 and the anode 410 . While the motor 411 rotates the head 403 , the power supply 409 applies a predetermined voltage (DC voltage, pulse voltage) between the substrate 402 and the anode 410 , thereby generating a plating current between the anode 410 and the substrate 402 . A plating film is formed on the surface of the substrate 402 to be plated.
  • a predetermined voltage DC voltage, pulse voltage
  • FIG. 7 is a partially enlarged plan view of a plate (resistor). As shown in the figure, the plate 10 has a plurality of circular (perfect circle) or slotted holes 12 .
  • the holes 12 penetrate between the front surface and the back surface of the plate 10 and form a path through which the plating solution and ions in the plating solution pass.
  • the plurality of holes 12 are arranged on a plurality (for example, three or more) virtual reference circles that are concentric with the center of the plate 10 as a reference and have different diameters.
  • a hole formation area (area radius) on the plate 10 is divided into a plurality of virtual annular areas (divided areas) corresponding to each reference circle, and each reference circle is located at the center of the width of each divided area. Corresponds to the circle formed by connecting the points. In this example, the difference between the diameter of an arbitrary reference circle and the diameter of an adjacent reference circle is constant. Also, a plurality of holes 12 are arranged at equal intervals along the circumferential direction on the reference circle. Note that the configuration of the plate 10 in FIG. 7 is an example, and other configurations can be adopted. In FIG. 7, the holes 12 in the outermost divided area are long holes, but the holes 12 in the center and/or near the outermost divided area may be long holes, or may be holes of other shapes. . Also, in this example, the outer shape of the hole formation area is circular, but it may be any shape other than circular.
  • the opening area of the holes 12 per unit area in the hole forming area on the plate 10 is referred to as the opening ratio or porosity.
  • the open area ratio or porosity is inversely proportional to the resistance value of the plate 10 (resistance to ion flow or plating current), and the local open area ratio or porosity is inversely proportional to the local resistance value.
  • a paddle 412 is arranged between the substrate 402 and the plate 10 .
  • the paddle 412 is driven by a drive mechanism 413 and reciprocates in parallel (substantially horizontally) with the substrate 402 to agitate the plating solution and form a stronger liquid flow on the surface of the substrate 402 .
  • the drive mechanism 413 includes a motor 413a that receives power from a power source (not shown), a rotation/linear motion conversion mechanism 413b such as a ball screw that converts the rotation of the motor 413a into linear motion, a rotation/linear motion conversion mechanism 413b, and a paddle 412. and a shaft 413c that is coupled to transmit the power of the rotation-to-linear motion conversion mechanism 413b to the paddle 412.
  • Control module 800 controls the speed of reciprocating motion (also referred to as motion speed) of paddle 412 by controlling the rotation of motor 413a.
  • FIG. 4 is a schematic diagram showing an example of the central axis and parallelism of each part of the plating module.
  • the anode mask 414 is also displayed.
  • the plating module 400 adjustments are made to align the central axes and parallelism of the substrate 402, the anode 410, and the plate 10.
  • errors can be completely eliminated. It is difficult to do so, and it may affect the plating film thickness distribution. That is, there is a possibility that the axial deviation, parallelism deviation and/or dimensional tolerance between the substrate 402 and each component (anode 410, plate 10) in the plating bath 401 affects the film thickness distribution in the substrate plane. .
  • the dimensional tolerances of the parts in the plating tank 401, particularly the plate 10 and the anode 410, which are parts for electric field control, have a great influence on the plating film thickness distribution.
  • the thickness of the plated film mainly on the outer peripheral portion of the substrate 402 changes, and the in-plane uniformity deteriorates.
  • FIG. 5 is an example of a simulation of a case in which the film thickness distribution changes most due to the influence of axis misalignment, parallelism misalignment, and/or dimensional tolerance.
  • the film thickness distribution of the substrate is simulated by changing the axial misalignment, parallelism misalignment, and/or dimensional error between the substrate 402 and each component (the head 403, the anode 410, and the plate 10) of the plating tank 401. (calculation) was performed.
  • a film thickness distribution simulation can be performed using a commercially available or dedicated plating analysis software/program.
  • Case 1 is a film thickness distribution in the worst case (module structure) in which the film thickness of the peripheral portion of the substrate 401 is maximum due to the accumulation of various deviations and dimensional tolerances.
  • Case 2 is a film thickness distribution in the worst case (module structure) in which the film thickness of the outer peripheral portion of the substrate 401 is minimized due to the accumulation of various deviations and dimensional tolerances. Standard Std.
  • FIG. 6 is a simulation example showing the adjustment of the plating film thickness distribution by adjusting the height of the head.
  • the plating film thickness distribution is improved by adjusting the height h (see FIG. 4) of the head 403 with respect to the plate 10 .
  • an adjustment method is adopted in which the plating film thickness on the outer peripheral portion of the substrate is controlled by changing the head-plate distance h.
  • the changing area is roughly the same position/area as the area where the plating film thickness changes due to the axis misalignment and dimensional tolerance of each part, so it is suitable for adjusting the plating film thickness distribution.
  • the curve hs+2 (one-dot chain line) indicates that the film thickness distribution becomes most uniform when the head height h is adjusted to the standard height hs+2 mm in the Case 2 module structure.
  • Curve hs+1 (solid line) is standard Std.
  • the film thickness distribution becomes most uniform when the head height h is adjusted to the standard height hs+1 mm in the module structure of FIG.
  • a curve hs (dashed line) indicates that the film thickness distribution is most uniform when the head height h is set to the standard height hs in the Case 1 module structure.
  • the film thickness of the peripheral portion of the substrate is set to be lower than the desired film thickness in advance by simulation or the like, and the head height (the distance between the head and the plate) h is adjusted according to the degree of variation in finish of the plating module.
  • An adjustment method is adopted in which adjustment is made in an increasing direction to flatten the plating film thickness distribution from the center to the outer peripheral portion of the substrate 402 .
  • FIG. 8 is a simulation example for explaining the adjustment method of the plating module according to this embodiment.
  • the simulation software and analysis conditions are the same as above.
  • FIG. 8A shows the plating film thickness distribution when the head height (head-plate distance) h is set to the standard height hs.
  • This graph shows simulation results similar to those in FIG. 5, and shows that the thickness of the film on the periphery of the substrate increases or decreases due to individual differences in plating modules (axis deviation, parallelism deviation, dimensional tolerance). .
  • the in-plane uniformity U of the plating film thickness is 1.1 to 2.8%.
  • the porosity (opening ratio) of the outermost divided area of the plate 10 shown in FIG. tend to set.
  • the opening area (total hole area) of the outermost peripheral divided area of the plate 10 is reduced by 8% from the initial design value (set to 92% of the initial design value), and the plating film thickness distribution is simulated. did.
  • the opening area can be reduced by reducing the radius if the hole in the outermost divided area is a perfect circle, or by reducing the major axis and/or the minor axis if the hole is an elongated hole. .
  • the initial design value is the configuration (area, arrangement, porosity) of the holes 12 of the plate 10 that makes the film thickness distribution flat in the ideal case where there are no misalignments or dimensional errors in the assembled plating module.
  • the total pore area (or porosity) of the outermost divided area is determined so that the film thickness of the outer peripheral portion of the substrate is reduced even in Case 1 where the film thickness of the outer peripheral portion of the substrate is maximum.
  • the determined total pore area (or porosity) is measured in Case 1, standard Std. , Case 2, as shown in FIG. 8B, Case 1, standard Std. , and Case 2, the thickness of the plated film is reduced at the periphery of the substrate.
  • the porosity of the divided area at the outermost periphery of the plate 10 may be changed to another radius. It can be set equal to or greater than the porosity of the position division area.
  • the curve "92%_Case1_h+0.2" is the film thickness distribution when the total hole area of the divided area on the outermost periphery of the substrate is 92% in Case 1, and the head height h is the standard height hs+0.2 mm. shows the simulation results of The curve "92%_Std._h+1" corresponds to the standard Std. shows the simulation result of the film thickness distribution when the total hole area of the divided area on the outermost periphery of the substrate is 92% and the head height h is set to the standard height hs+1 mm.
  • a curve “92%_Case2_h+2” shows a simulation result of the film thickness distribution in Case 2 in which the total hole area of the divided area on the outermost periphery of the substrate is 92% and the height h of the head 403 is the standard height hs+2 mm.
  • the plating module after actually being manufactured and assembled should be in the range between Case 1 and Case 2 in Fig. 8(A). Therefore, by simulation, the module structure of the plating module (including the material, shape, size, and arrangement of each part) is set, and the module structure is adjusted in consideration of various deviations and/or dimensional tolerances. , Std. , Case 2 is determined (FIG. 8(A)). In Case 1, the opening area (porosity) of the divided area on the outermost periphery of the plate 10 is determined so that the film thickness distribution on the outer peripheral portion of the substrate is smaller than that on other portions (FIG. 8B).
  • the plate 10 that satisfies the determined opening area (porosity) is produced, and the plating module 400 is produced and assembled.
  • the substrate is plated by the plating module 400 after assembly, and the head height (the distance between the head and the plate) is adjusted so that the plating film thickness distribution of the entire substrate is uniform according to the film thickness distribution of the plating film thickness of the substrate. Adjust h.
  • the plating module is initially set so that the film thickness distribution becomes flat. is characterized by adjusting the distance between the head and the plate in accordance with the finish of the plating module (plating module after assembly), which is unknown, to achieve a flat film thickness distribution on the substrate.
  • FIG. 9 is a flow chart of the adjustment method of the plating module according to this embodiment.
  • Steps S10 to S30 are simulated and can be performed by the control module 800 of the plating apparatus or other computer.
  • Steps S50 to S80 are plating evaluations in an actual plating module.
  • the height of the head (distance from the plate) is adjustable in the range of 6 to 12 mm, preferably in the range of 7 to 10 mm.
  • a similar configuration without paddles can be used, in which case the height of the head (distance from the plate) can be adjusted within a range of 1 to 12 mm.
  • step S10 standard Std. Determine the optimum module structure (including the material, shape, size, and arrangement of each part) under the conditions of Standard Std.
  • the conditions of ( ) indicate the case where a plating module is finished in which the axial misalignment, parallelism misalignment, and dimensional tolerance are zero, and each part has ideal dimensions and arrangement.
  • Standard Std The module structure determined under the conditions of Std. Corresponds to curves.
  • step S20 within the range of dimensional tolerance of each component (head, plate, anode), the above-mentioned Case 1 in which the film thickness of the outer peripheral portion of the substrate is the largest, and the above-mentioned Case 2 in which the film thickness of the outer peripheral portion of the substrate is the smallest.
  • Determine module structure.
  • These conditions include axial misalignment, parallelism misalignment, and/or dimensional errors of each component (head, plate, anode).
  • the module structures of Case 1 and Case 2 respectively correspond to the curves indicated by Case 1 and Case 2 in FIG. 8(A).
  • step S30 the standard Std.
  • the opening area of the divided area on the outermost periphery of the plate is changed.
  • the opening area after this change is a value that reduces the film thickness at the periphery of the substrate even under the conditions of Case 1, and the amount of change in the head height ( S70), which will be described later, is set to a value within the movable range of the head height.
  • the amount of film thickness (maximum adjustment amount) at the outer peripheral portion of the substrate that can be adjusted by the maximum movable amount of the head height h is calculated in advance by experiments and simulations, and the required adjustment amount of the film thickness at the outer peripheral portion of the substrate in Case 2 is calculated. be within the maximum adjustment amount.
  • the simulation shown in FIG. 8B was performed.
  • the opening area and the module structure (conditions) of Case 2 the amount of change in head height (S70 described later) required to flatten the film thickness distribution falls within the movable range of the head height.
  • Determine the open area in this example, reduce to 92% of the original design open area).
  • standard Std in the module structure under the condition (1), the opening area of the divided area on the outermost periphery of the plate is changed to the determined opening area (92% of the opening area), and this is used as the default module configuration.
  • step S40 a plating module is produced and assembled with the default module structure determined in step S30.
  • step S50 the board is actually plated by the assembled plating module.
  • step S60 the plating film thickness distribution of the substrate after plating is measured by the film thickness measuring device 900, and it is determined whether or not the film thickness distribution is flat. This determination can be made, for example, by calculating the in-plane uniformity from the film thickness distribution of the substrate after plating and confirming whether or not the in-plane uniformity is within a desired range. If the film thickness distribution is flat, the adjustment of the plating module 400 ends (step S80).
  • the plating film thickness distribution may be measured and determined by using the film thickness measuring device 900 of the plating device 1000 or by using the film thickness measuring device 900 outside the plating device 1000 .
  • step S70 the head height (head-plate distance) h is increased by a predetermined amount (for example, 0.1 mm) to increase the plated film thickness on the outer periphery of the substrate.
  • the head height (head-plate distance) h may be adjusted automatically by the control module 800 or manually.
  • the height and/or movement of the paddle 412 should be adjusted so that the flow velocity of the plating solution on the substrate surface (substrate surface flow velocity) due to the stirring of the plating solution by the paddle 412 does not change as the head height h increases. Also adjust the speed.
  • the height and/or speed of movement of paddle 412 may be automatically performed by control module 800 or manually (eg, a user changes the speed of movement of paddle 412 in a recipe).
  • the substrate is plated again, the film thickness distribution of the plated substrate is measured (step S50), and it is determined whether or not the film thickness distribution is flat. (step S60).
  • steps S70, S50, and S60 are repeated until it is determined in step S60 that the film thickness distribution of the substrate is flat. If it is determined in step S60 that the film thickness distribution of the substrate is flat, the adjustment of the plating module ends (step S80).
  • the module is initially set so that the film thickness of the outer peripheral portion of the substrate is reduced by adjusting the opening area of the outermost peripheral area of the plate 10 . Then, by adjusting the head height (head-plate distance) h according to the finish of the assembled plating module (film thickness distribution of the substrate after plating), which is not known in advance, a flat film thickness can be achieved. Adjust the plating module so that it is evenly distributed.
  • the method for adjusting the plating module according to the present embodiment can be performed as adjustment of the plating module before full operation. Further, the adjustment method of the plating module according to the present embodiment is performed by adjusting the head height (the distance between the head and the plate) h even when the uniformity of the plating film thickness distribution deteriorates after the actual operation. be able to.
  • FIG. 10A to 10C are schematic diagrams respectively showing first to third examples of the head height adjustment method.
  • the relationship between the change in the head-plate distance and the plating solution flow velocity on the substrate surface (substrate surface flow velocity) will be described.
  • the plating solution flow velocity can be, for example, the average flow velocity.
  • a paddle 412 for stirring the plating solution is installed between the head 403 (substrate 402) and the plate 10, as shown in FIG.
  • the stirring strength of the plating solution on the substrate surface by the paddle 412 (substrate surface flow velocity) is also changed.
  • FIG. 11 is a graph showing the relationship between the substrate surface flow velocity and the substrate-paddle distance.
  • the vertical axis indicates the substrate surface flow velocity
  • the horizontal axis indicates the distance between the substrate and the paddle.
  • the substrate surface flow velocity and head-paddle distance are shown normalized, with a standard head-paddle distance of 1 and a standard substrate surface flow velocity of 1 (as in FIG. 12).
  • the head-paddle distance changes by about 10%
  • the flow velocity changes by about 8%.
  • the head 403 and the paddle mechanism (including the paddle 412 and the drive mechanism 413) are integrated so as to move simultaneously, and the head 403 and the paddle mechanism move vertically (as indicated by the arrows) at the same time.
  • 460 is provided with an elevating mechanism 450 for moving the apparatus.
  • the lifting mechanism 450 may include an actuator controlled by the control module 800, or may be manually raised and lowered. According to this configuration, the head 403 and the paddle 412 move up and down together, and the distance between the paddle 412 and the substrate 402 can be kept constant. That is, in step S70 in FIG.
  • the head 403 and the paddle 412 are simultaneously lifted by the lifting mechanism 450 to change the head-plate distance and keep the head-paddle distance (substrate-paddle distance) constant. try to keep As a result, it is possible to suppress or prevent a change in the flow velocity of the plating solution (paddle agitation intensity) on the substrate surface due to an increase in the head height h.
  • the paddle mechanism is integrated with the plating bath 401, but as shown in FIG. ), and the lifting mechanism 452 lifts the paddle 412 by the amount that the head 403 is lifted by the lifting mechanism 451 .
  • Each lifting mechanism 451, 452 may include an actuator controlled by the control module 800, or may be manually lifted.
  • the head 403 and the paddle 412 move up and down by the same distance, and the distance between the paddle 412 and the substrate 402 can be kept constant. That is, in step S70 in FIG. 9, the lifting mechanism 451 lifts the head 403 by lifting the paddle 412 by the lifting mechanism 452, thereby changing the head-plate distance and the head-paddle distance ( substrate-paddle distance) can be kept constant.
  • the paddle mechanism is integrated with the plating bath 401 and does not have a lifting mechanism for lifting and lowering the paddle mechanism as shown in FIG. It changes with elevation (arrow 461) and is controlled to keep the substrate surface flow velocity constant.
  • a lifting mechanism 451 for moving the head 403 in the vertical direction (arrow 461) is the same as in FIG. 10B.
  • the movement speed of the paddle 412 is determined to keep the substrate surface flow velocity constant before and after the head height h is changed, and the movement speed of the paddle 412 is changed to the determined movement speed. As a result, it is possible to suppress or prevent the substrate surface flow velocity from changing due to an increase in the head height h.
  • the movement speed of the paddle 412 may be changed automatically by the control module 800 or by the user changing the recipe data.
  • FIG. 12 is a graph showing the relationship between the surface flow velocity and the substrate-paddle distance at each paddle motion velocity.
  • curve I shows the relationship between the surface flow velocity and the distance between the substrate and the paddle when the movement velocity of the paddle is standard.
  • Curve II shows the relationship between the surface flow velocity and the substrate-paddle distance when the paddle movement speed is higher than normal.
  • Curve III shows the relationship between the surface flow velocity and the substrate-paddle distance when the paddle movement speed is lower than normal.
  • step S70 in FIG. The superficial flux is about 0.92 (about 8% reduction).
  • the substrate surface flow velocity after changing the head height h will be 1.00. can do.
  • the substrate surface flow velocity can be kept constant before and after the head height h is changed.
  • the substrate surface flow velocity is kept constant before and after the head height h is changed.
  • Data (FIG. 12) indicating the relationship between the surface flow velocity and the distance between the substrate and the paddle at the motion velocity of each paddle can be stored in a storage medium that can be referred to by the control module 800 .
  • Data showing the relationship between the surface flow velocity and the distance between the substrate and the paddle can be determined in advance by simulation, experiment, or the like.
  • the control module 800 refers to the data stored in the storage medium, and determines the motion speed of the paddle 412 to keep the substrate surface flow speed constant before and after the head height h is changed. , the motion speed of the paddle 412 may be changed to the determined motion speed.
  • Control module 800 can control drive mechanism 413 to change the speed of movement of paddle 412 . As a result, it is possible to suppress or prevent the substrate surface flow velocity from changing due to an increase in the head height h.
  • the opening area (porosity) of the outermost divided area of the plate 10 is adjusted, but the opening area (porosity) of one or more adjacent divided areas including the outermost divided area is may be adjusted.
  • the position or movement speed of the paddle 412 is adjusted so that the flow rate of the plating solution on the substrate surface due to the agitation of the paddle 412 is kept constant. Although one has been adjusted, adjustment of the position of paddle 412 (FIG. 10B) and adjustment of movement speed of paddle 412 (FIG. 10C) may be combined.
  • the plate is fixed and the head is moved in order to change the distance between the head and the plate. good.
  • a lifting mechanism for the head and the plate may be provided, and both the head and the plate may be moved to adjust the head-plate distance.
  • the distance between the head (substrate) and the paddle does not change before and after the adjustment of the distance between the head and the plate.
  • the described adjustment to keep the surface flow velocity constant may be omitted.
  • the cup-type plating module was described as an example, but the present embodiment may be applied to a dip-type plating module or any other plating module.
  • a substrate holder that holds a substrate, an anode arranged to face the substrate holder, and a plate as a resistor arranged between the substrate holder and the anode wherein the porosity of the outer peripheral portion of the plate is adjusted so that the plating thickness of the outer peripheral portion of the substrate is smaller than the thickness of the other portion of the substrate, and the initial setting is performed.
  • adjusting the distance between the substrate holder and the plate according to the film thickness distribution of the substrate plated by the plating module so as to increase the film thickness of the outer peripheral portion of the substrate.
  • adjusting the distance between the substrate holder and the plate so that the plating thickness distribution across the substrate is flat.
  • the plating module is initially set in a state in which the plating film thickness distribution on the periphery of the substrate is small, and the space between the substrate holder and the plate is changed according to the film thickness distribution of the substrate actually plated by the plating module.
  • the distance of it is possible to adjust the thickness of the outer peripheral portion of the substrate to be large, and adjust the plating module so that the plating thickness distribution of the entire substrate is flat. This makes it possible to adjust the plating module so that the plating film thickness distribution is flat across the board, regardless of the individual differences of the plating module (axis deviation, parallelism deviation, and dimensional error of each component in the plating tank). can.
  • the adjustment to increase the film thickness of the outer peripheral portion of the substrate is an adjustment in the direction of increasing the distance between the substrate holder and the plate, the collision of the substrate holder with the paddle or plate is suppressed or prevented. be able to.
  • the module structure of the initially set plating module is determined by a simulation that takes into account the central axis deviation, parallelism deviation, and/or dimensional tolerance of each part of the plating module. and wherein said components include said substrate holder, said anode and said plate.
  • initial settings can be made so that the plating film thickness distribution in the peripheral portion of the substrate is smaller than the film thickness distribution in other portions.
  • the plating film thickness distribution over the entire substrate can be made flat by adjusting the direction in which the distance between the substrate holder and the plate is increased.
  • the simulation includes a module structure under standard conditions in which deviation of the central axis of the parts of the plating module, deviation of parallelism, and/or dimensional tolerance are zero or minimum; Determining a module structure of the first condition in which the plating film thickness on the outer peripheral portion of the substrate is maximized due to deviation of the central axis of the parts of the plating module, deviation of parallelism, and/or dimensional tolerance; In the module structure of the first condition, determining the porosity of the outer peripheral portion of the plate so that the film thickness distribution of the outer peripheral portion of the substrate is smaller than that of other portions, and the determined porosity to the standard condition module structure to determine the default module structure.
  • the porosity determined by the module structure of the error (center axis deviation, parallelism deviation, and/or dimensional error) that maximizes the plating film thickness on the outer peripheral portion of the substrate is set as the initial setting. Since it is used, regardless of individual differences in plating modules after assembly, initial setting can be made in a state in which the plating film thickness distribution on the peripheral portion of the substrate is small. In addition, since the plating module is manufactured and assembled under standard conditions with zero or minimal error, the determined porosity is applied to the module structure under standard conditions.
  • the plating module further includes a paddle disposed between the substrate holder and the plate for stirring the plating solution, and the distance between the substrate holder and the plate Before and after the adjustment, the position of the paddle with respect to the substrate holder and/or the movement speed of the paddle may be adjusted so that the plating solution flow velocity on the substrate surface due to the agitation of the paddle is kept constant.
  • the plating solution flow velocity (substrate surface flow velocity) on the substrate surface due to stirring of the paddle can be kept constant. It is possible to suppress or prevent the influence of the change on the plating quality such as the in-plane uniformity of the plating film thickness distribution. In addition, by eliminating the influence of changes in the substrate surface flow velocity and adjusting the distance between the substrate holder and the plate, the desired adjustment of the plating film thickness distribution can be made more easily.
  • the substrate holder and the paddle when adjusting the distance between the substrate holder and the plate, the substrate holder and the paddle are moved by the same distance so that the distance between the substrate holder and the paddle is adjusted. may be kept constant.
  • the flow velocity of the plating solution on the substrate surface can be kept constant by simple adjustment.
  • the distance between the substrate holder and the paddle may be kept constant by integrally moving the substrate holder and the paddle.
  • the distance between the substrate holder and the paddle can be kept constant more reliably.
  • the distance between the substrate holder and the paddle may be kept constant by moving the substrate holder and the paddle separately by the same distance.
  • a mechanism for moving the substrate holder and the paddle can be configured more easily.
  • the paddle before and after adjusting the distance between the substrate holder and the plate, the paddle moves so as to keep the plating solution flow rate on the substrate surface constant by stirring the paddle. You may make it adjust speed.
  • the paddle before and after adjusting the distance between the substrate holder and the plate, the paddle is positioned such that the plating solution flow rate on the substrate surface due to stirring of the paddle is kept constant. and adjustment of motion speed may be combined.
  • the adjustment of the porosity of the outer peripheral portion of the plate is performed on the outermost circumference of the holes provided on a plurality of concentric circles on the plate It may be implemented by adjusting the opening area of holes provided on the circumference and one or more adjacent circumferences.
  • the local opening area can be adjusted, and the porosity of the outer peripheral portion of the plate can be easily and accurately adjusted. can.
  • a substrate holder for holding a substrate, an anode arranged to face the substrate holder, and a plate as a resistor arranged between the substrate holder and the anode
  • a non-volatile storage medium for storing a program for causing a computer to execute a method for adjusting a plating module having According to the film thickness distribution of the substrate plated by the initially set plating module with the porosity of the outer peripheral portion of the plate adjusted, the substrate holder and the plate are arranged so as to increase the film thickness of the outer peripheral portion of the substrate.
  • a storage medium storing a program for causing a computer to adjust the distance between the substrate holder and the plate so that the plating film thickness distribution over the entire substrate is flat by adjusting the distance between provided.
  • the plating module further includes a paddle disposed between the substrate holder and the plate for stirring the plating solution, and the distance between the substrate holder and the plate causing a computer to adjust the position of the paddle with respect to the substrate holder and/or the movement speed of the paddle so as to keep the plating solution flow rate on the substrate surface by stirring the paddle constant before and after adjustment;
  • a substrate holder that holds a substrate, an anode arranged to face the substrate holder, and a plate as a resistor arranged between the substrate holder and the anode a plating module set so that the thickness of the plating on the outer peripheral portion of the substrate is smaller than that on other portions; and a first moving mechanism for moving the substrate holder and/or the plate.
  • a plating apparatus is provided.
  • a paddle is disposed between the substrate holder and the plate to stir the plating solution, and the first moving mechanism moves the substrate holder and the plate with respect to the plate.
  • the paddles may be configured to be moved integrally.
  • a paddle that is arranged between the substrate holder and the plate to stir the plating solution, and a second movement that moves the paddle toward and away from the substrate holder You may make it further provide a mechanism.
  • a control module is further provided, and the control module controls the first moving mechanism according to the film thickness distribution of the substrate plated by the plating module to control the substrate holder and the plate.
  • a control module is further provided, and the control module controls the first moving mechanism to keep the distance between the substrate holder and the paddle constant while the substrate You may make it move a holder and the said paddle integrally.
  • a control module is further provided, and the control module controls the first moving mechanism and the second moving mechanism to keep the distance between the substrate holder and the paddle constant.
  • the substrate holder and paddle may be moved so as to maintain.
  • the control module controls the drive mechanism so as to maintain a constant plating solution flow rate on the substrate surface due to agitation of the paddle before and after adjusting the distance between the substrate holder and the plate. You may make it adjust a motion speed.
  • a paddle that is arranged between the substrate holder and the plate to stir the plating solution, and a second movement that moves the paddle toward and away from the substrate holder a mechanism, a driving mechanism for reciprocating the paddle parallel to the substrate, and a control module, wherein the control module controls the second moving mechanism and the driving mechanism to control the substrate holder and the plate.
  • the paddle may be moved and the motion speed of the paddle may be adjusted so that the plating solution flow velocity on the substrate surface due to the agitation of the paddle is kept constant before and after the adjustment of the distance between the .
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2020-176303

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemically Coating (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

基板を保持する基板ホルダと、前記基板ホルダに対向して配置されるアノードと、前記基板ホルダと前記アノードとの間に配置される抵抗体としてのプレートとを備えるめっきモジュールを調整する方法であって、 基板の外周部のめっき膜厚が他の部分の膜厚よりも小さくなるように、前記プレートの外周部の気孔率を調整した状態で初期設定されためっきモジュールを準備すること、 前記めっきモジュールでめっきした基板の膜厚分布に応じて、基板の外周部の膜厚を増加させるように前記基板ホルダと前記プレートとの間の距離を調整することにより、基板全体のめっき膜厚分布が平坦になるように前記基板ホルダと前記プレートとの間の距離を調整すること、を含む、方法。

Description

めっきモジュールを調整する方法
 本発明は、めっきモジュールを調整する方法に関する。
 めっき装置の一例としてカップ式の電解めっき装置が知られている。カップ式の電解めっき装置は、被めっき面を下方に向けて基板ホルダに保持された基板(例えば半導体ウェハ)をめっき液に浸漬させ、基板とアノードとの間に電圧を印加することによって、基板の表面に導電膜(めっき膜)を析出させる。このようなめっき装置では、ウェハと、めっき槽内の各部品(アノード、電場制御部品)の中心軸及び平行度を合わせて、めっきモジュールが組み立てられる。特開2020-176303号公報(特許文献1)には、光学センサを備える治具をめっき槽に配置し、めっき槽内の各部品の位置調整を行う方法が記載されている。
特開2020-176303号公報
 めっき槽の構造上、特許文献1に記載の方法のように光学センサを備える治具による調整に適していない場合がある。また、ウェハとめっきモジュールの各部品の中心軸及び平行度を完全に誤差ゼロで合わせることは困難な場合がある。その場合、ウェハと、めっきモジュールの各部品の軸ずれ、平行度のずれ、及び/又は各部品の寸法公差が、ウェハ面内の膜厚分布に影響を与えることがある。このとき、主にウェハの外周部の膜厚が変化し、面内均一性が悪化する。このように、めっきモジュールの個体差に起因して、めっき膜厚分布の面内均一性がめっきモジュール毎に異なる可能性がある。
 現在求められているめっき膜厚分布の均一性に鑑みると、めっきモジュールの各部品の現在の加工精度では、めっき膜厚分布の均一性への影響が大きく、従来のめっきモジュールの調整方法では、所望の均一性を達成することが困難になってきている。
 本発明の目的の1つは、めっきモジュールの個体差に起因するめっき膜厚の均一性の低下を抑制ないし防止することが可能なめっきモジュールの調整方法を提供することにある。
 本発明の一側面によれば、 基板を保持する基板ホルダと、前記基板ホルダに対向して配置されるアノードと、前記基板ホルダと前記アノードとの間に配置される抵抗体としてのプレートとを備えるめっきモジュールを調整する方法であって、 基板の外周部のめっき膜厚が他の部分の膜厚よりも小さくなるように、前記プレートの外周部の気孔率を調整した状態で初期設定されためっきモジュールを準備すること、 前記めっきモジュールでめっきした基板の膜厚分布に応じて、基板の外周部の膜厚を増加させるように前記基板ホルダと前記プレートとの間の距離を調整することにより、基板全体のめっき膜厚分布が平坦になるように前記基板ホルダと前記プレートとの間の距離を調整すること、を含む、方法が提供される。
本実施形態のめっき装置の全体構成を示す斜視図である。 本実施形態のめっき装置の全体構成を示す平面図である。 本実施形態に係るめっきモジュールの一例を示す概略図である。 めっきモジュールの各部品の中心軸及び平行度の例を示す概略図である。 軸ずれ、平行度のずれ及び/又は寸法公差の影響で最も膜厚分布が変化するケースについてシミュレーションした例である。 ヘッドの高さ調整によるめっき膜厚分布の調整を示すシミュレーション例である。 プレート(抵抗体)の一部拡大平面図である。 本実施形態に係るめっきモジュールの調整方法を説明するシミュレーション例である。 本実施形態に係るめっきモジュールの調整方法のフローチャートである。 ヘッドの高さ調整方法の例を示す概略図である。 ヘッドの高さ調整方法の例を示す概略図である。 ヘッドの高さ調整方法の例を示す概略図である。 基板表面流速と基板-パドル間の距離との関係を示すグラフである。 各パドルの運動速度における、基板表面流速と基板-パドル間の距離との関係を示すグラフである。
 以下、本発明の実施形態について図面を参照して説明する。以下で説明する図面において、同一の又は相当する構成要素には、同一の符号を付して重複した説明を省略する。
 図1は、本実施形態のめっき装置の全体構成を示す斜視図である。図2は、本実施形態のめっき装置の全体構成を示す平面図である。図1、2に示すように、めっき装置1000は、ロードポート100、搬送ロボット110、アライナ120、プリウェットモジュール200、プリソークモジュール300、めっきモジュール400、洗浄モジュール500、スピンリンスドライヤ600、搬送装置700、および、制御モジュール800を備える。
 ロードポート100は、めっき装置1000に図示していないFOUPなどのカセットに収納された基板を搬入したり、めっき装置1000からカセットに基板を搬出するためのモジュールである。本実施形態では4台のロードポート100が水平方向に並べて配置されているが、ロードポート100の数および配置は任意である。搬送ロボット110は、基板を搬送するためのロボットであり、ロードポート100、アライナ120、および搬送装置700の間で基板を受け渡すように構成される。搬送ロボット110および搬送装置700は、搬送ロボット110と搬送装置700との間で基板を受け渡す際には、図示していない仮置き台を介して基板の受け渡しを行うことができる。
 アライナ120は、基板のオリエンテーションフラットやノッチなどの位置を所定の方向に合わせるためのモジュールである。本実施形態では2台のアライナ120が水平方向に並べて配置されているが、アライナ120の数および配置は任意である。プリウェットモジュール200は、めっき処理前の基板の被めっき面を純水または脱気水などの処理液で濡らすことで、基板表面に形成されたパターン内部の空気を処理液に置換する。プリウェットモジュール200は、めっき時にパターン内部の処理液をめっき液に置換することでパターン内部にめっき液を供給しやすくするプリウェット処理を施すように構成される。本実施形態では2台のプリウェットモジュール200が上下方向に並べて配置されているが、プリウェットモジュール200の数および配置は任意である。
 プリソークモジュール300は、例えばめっき処理前の基板の被めっき面に形成したシード層表面等に存在する電気抵抗の大きい酸化膜を硫酸や塩酸などの処理液でエッチング除去してめっき下地表面を洗浄または活性化するプリソーク処理を施すように構成される。本実施形態では2台のプリソークモジュール300が上下方向に並べて配置されているが、プリソークモジュール300の数および配置は任意である。めっきモジュール400は、基板にめっき処理を施す。本実施形態では、上下方向に3台かつ水平方向に4台並べて配置された12台のめっきモジュール400のセットが2つあり、合計24台のめっきモジュール400が設けられているが、めっきモジュール400の数および配置は任意である。
 洗浄モジュール500は、めっき処理後の基板に残るめっき液等を除去するために基板に洗浄処理を施すように構成される。本実施形態では2台の洗浄モジュール500が上下方向に並べて配置されているが、洗浄モジュール500の数および配置は任意である。スピンリンスドライヤ600は、洗浄処理後の基板を高速回転させて乾燥させるためのモジュールである。本実施形態では2台のスピンリンスドライヤが上下方向に並べて配置されているが、スピンリンスドライヤの数および配置は任意である。搬送装置700は、めっき装置1000内の複数のモジュール間で基板を搬送するための装置である。制御モジュール800は、めっき装置1000の複数のモジュールを制御するように構成され、例えばオペレータとの間の入出力インターフェースを備える一般的なコンピュータまたは専用コンピュータから構成することができる。制御モジュール800は、めっき装置の各部を制御するためのプログラム、パラメータ等を保存する不揮発性の記憶媒体を備えるか、又はそのような記憶媒体と通信可能するように構成されている。
 めっき装置1000による一連のめっき処理の一例を説明する。まず、ロードポート100にカセットに収納された基板が搬入される。続いて、搬送ロボット110は、ロードポート100のカセットから基板を取り出し、アライナ120に基板を搬送する。アライナ120は、基板のオリエンテーションフラットやノッチなどの位置を所定の方向に合わせる。搬送ロボット110は、アライナ120で方向を合わせた基板を搬送装置700へ受け渡す。
 搬送装置700は、搬送ロボット110から受け取った基板をプリウェットモジュール200へ搬送する。プリウェットモジュール200は、基板にプリウェット処理を施す。搬送装置700は、プリウェット処理が施された基板をプリソークモジュール300へ搬送する。プリソークモジュール300は、基板にプリソーク処理を施す。搬送装置700は、プリソーク処理が施された基板をめっきモジュール400へ搬送する。めっきモジュール400は、基板にめっき処理を施す。
 搬送装置700は、めっき処理が施された基板を洗浄モジュール500へ搬送する。洗浄モジュール500は、基板に洗浄処理を施す。搬送装置700は、洗浄処理が施された基板をスピンリンスドライヤ600へ搬送する。スピンリンスドライヤ600は、基板に乾燥処理を施す。搬送装置700は、乾燥処理が施された基板を搬送ロボット110へ受け渡す。搬送ロボット110は、搬送装置700から受け取った基板をロードポート100のカセットへ搬送する。最後に、ロードポート100から基板を収納したカセットが搬出される。
 また、本実施形態のめっき装置1000には、膜厚測定装置900が設けられている。搬送ロボット110は、乾燥処理が施された基板ををロードポート100のカセットへ搬送する前に、膜厚測定装置900に搬送し、膜厚測定装置900において基板のめっき膜厚(めっき膜厚分布)を測定するようにことができる。なお、めっき装置に膜厚測定装置900を設けることに代えて、めっき装置1000外の離れた場所に膜厚測定装置を設けて、カセットに収納後の基板を膜厚測定装置900に搬送し、めっき装置1000外の膜厚測定装置で基板のめっき膜厚分布を測定するようにしてもよい。
 図3は、本実施形態に係るめっきモジュールの一例を示す概略図である。同図に示すように、本実施形態に係るめっきモジュール400は、いわゆるフェースダウン式又はカップ式のめっきモジュールである。めっき液は、例えば、硫酸銅溶液であり、めっき膜は銅の膜とすることができる。但し、めっき膜はめっき可能な任意の金属としてよく、めっき液はめっき膜の種類に応じて選択することができる。
 めっきモジュール400は、めっき槽401と、基板保持具としての基板ホルダ(ヘッドとも称す)403と、めっき液貯留槽404と、を備える。ヘッド403は、ウェハ等の基板402を、その被めっき面を下向きにして保持するように構成される。めっきモジュール400は、ヘッド403を周方向に回転させるモータ411を有する。モータ411は、図示しない電源から電力の供給を受ける。モータ411は、制御モジュール800により制御され、ヘッド403、及びヘッド403に保持された基板402の回転を制御する。言い換えれば、制御モジュール800は、モータ411の回転を制御することにより、基板402の単位時間当たりの回転数(周波数、回転速度とも称す)を制御する。基板402を回転させることにより、基板面近傍にめっき液の液流れを形成し、十分な量のイオンを基板に均一に供給する。めっき槽401には、基板402と対向するようにアノード410が配置される。アノード410には、アノード410の露出領域を調整するアノードマスク414(図4)が設けられてもよい。アノード410及び/又はアノードマスク414は、電場制御部品の一例である。
 めっきモジュール400は、さらに、めっき液受槽408を有する。めっき液貯留槽404内のめっき液は、ポンプ405により、フィルタ406及びめっき液供給管407を通じてめっき槽401の底部からめっき槽401内に供給される。めっき槽401から溢れためっき液はめっき液受槽408に受け取られ、めっき液貯留槽404に戻る。
 めっきモジュール400は、さらに基板402とアノード410とに接続された電源409を有する。モータ411がヘッド403を回転させながら、電源409が基板402とアノード410との間に所定の電圧(直流電圧、パルス電圧)を印加することにより、アノード410と基板402との間にめっき電流が流れ、基板402の被めっき面にめっき膜が形成される。
 更に、基板402とアノード410の間には、複数の孔が設けられた電場調整用のプレート(抵抗体)10が配置される。プレート10は、電場制御部品の一例である。図7は、プレート(抵抗体)の一部拡大平面図である。同図に示すように、プレート10は、円形(真円)又は長孔の複数の孔12を有する。孔12は、プレート10の表面と裏面との間を貫通し、めっき液及びめっき液中のイオンを通過させる経路を構成する。本実施形態に係るプレート10では、複数の孔12は、プレート10の中心を基準として同心であり且つ径が異なる複数(例えば、3以上)の仮想的な基準円上に配置される。プレート10上の孔形成エリア(エリア半径)は、各基準円に対応して仮想的な複数の環状のエリア(分割エリア)に分割されており、各基準円は、各分割エリアの幅の中央点を繋いで形成される円に対応する。この例では、任意の基準円の径と、これに隣接する基準円との径との差が一定である。また、複数の孔12が、基準円上に周方向に沿って等間隔に配置される。なお、図7のプレート10の構成は、一例であり、他の構成を採用することができる。図7では、最外周の分割エリアの孔12が長孔であるが、中心部及び/又は最外周近傍の分割エリアの孔12が長孔であっても良いし、他の形状の孔でもよい。また、この例では、孔形成エリアの外形は、円形であるが、円形以外の任意の形状になるようにしてもよい。
 なお、プレート10上の孔形成エリアにおける単位面積当たりの孔12による開口面積を開口率又は気孔率と称する。開口率又は気孔率は、プレート10の抵抗値(イオンの流れ又はめっき電流に対する抵抗値)に反比例する関係にあり、局所的な開口率又は気孔率は、局所的な抵抗値と反比例する。各分割エリアにおいて、孔12の径又は形状を変更することにより、各分割エリアにおける全孔面積を変更し、局所的な開口率又は気孔率を調整することができる。
 再び図3を参照すると、基板402とプレート10との間には、パドル412が配置される。パドル412は、駆動機構413により駆動され、基板402と平行に(略水平方向に)往復運動することによりめっき液を攪拌し、基板402の表面に更に強い液流れを形成する。駆動機構413は、図示しない電源から電力の供給を受けるモータ413aと、モータ413aの回転を直線運動に変換するボールねじ等の回転直動変換機構413bと、回転直動変換機構413b及びパドル412に連結され、回転直動変換機構413bの動力をパドル412に伝達するシャフト413cとを有する。制御モジュール800は、モータ413aの回転を制御することにより、パドル412の往復運動の速度(運動速度とも称す)を制御する。
 図4は、めっきモジュールの各部品の中心軸及び平行度の例を示す概略図である。同図では、アノードマスク414も表示している。めっきモジュール400では、基板402とアノード410及びプレート10の中心軸、平行度を合わせる調整が実施されるが、めっき槽401及び各部品の寸法のばらつき等に起因して、誤差を完全にゼロにすることは困難であり、めっき膜厚分布に影響を与えることがある。つまり、基板402と、めっき槽401内の各部品(アノード410、プレート10)の軸ずれ、平行度のずれ及び/又は寸法公差が、基板面内の膜厚分布に影響を与える可能性がある。この場合、めっき槽401内の部品、特に電場制御のための部品であるプレート10、アノード410の寸法公差がめっき膜厚分布に与える影響が大きい。また、主に基板402の外周部のめっき膜厚が変化し、面内均一性が悪化する。
 図5は、軸ずれ、平行度のずれ及び/又は寸法公差の影響で最も膜厚分布が変化するケースについてシミュレーションした例である。このシミュレーションでは、基板402と、めっき槽401の各部品(ヘッド403、アノード410、プレート10)の軸ずれ、平行度のずれ、及び/又は寸法誤差を変化させて、基板の膜厚分布のシミュレーション(計算)を実施した。膜厚分布のシミュレーションは、市販又は専用のめっき解析ソフト/プログラムを使用して実施することができる。シミュレーションの解析条件(モデル)としては、めっきモジュールのモジュール構造(各部品の材質、形状、寸法、及び配置を含む)、印加電圧、めっき液の種類を含むパラメータを設定する。解析ソフトは、例えば、COMSOL Multiphysics(登録商標)を用いることができる。Case1は、種々のずれ並びに寸法公差の積み重ねに起因して、基板401の外周部の膜厚が最大となるワーストケース(モジュール構造)における膜厚分布である。Case2は、逆に、種々のずれ並びに寸法公差の積み重ねに起因して、基板401の外周部の膜厚が最小となるワーストケース(モジュール構造)における膜厚分布である。標準Std.は、種々のずれ並びに寸法公差がゼロ又は最小である最適な状態を示すケース(モジュール構造)における膜厚分布である。このシミュレーション結果では、基板外周部の膜厚が大きくなる影響が、外周部の膜厚が小さくなる影響よりも強く表れた。このようなモジュールの個体差により、得られるめっき膜厚の面内均一性がモジュール毎に異なることが予想される。
 図6は、ヘッドの高さ調整によるめっき膜厚分布の調整を示すシミュレーション例である。本実施形態では、プレート10を基準としたヘッド403の高さh(図4参照)を調整することにより、めっき膜厚分布を改善する。即ち、ヘッド-プレート間距離hを変更することにより、基板外周部のめっき膜厚を制御する調整方法を採用する。この調整により、変化する領域(基板外周部)は、各部品の軸ずれや寸法公差によりめっき膜厚が変化する領域と概ね同じ位置/領域であることから、めっき膜厚分布の調整に適している。図中、曲線hs+2(一点鎖線)は、Case2のモジュール構造においてヘッド高さhを標準の高さhs+2mmに調整した場合に膜厚分布が最も均一になることを示す。曲線hs+1(実線)は、標準Std.のモジュール構造においてヘッド高さhを標準の高さhs+1mmに調整した場合に膜厚分布が最も均一になることを示す。曲線hs(破線)は、Case1のモジュール構造においてヘッド高さhを標準の高さhsとした場合に膜厚分布が最も均一になることを示す。このように、ヘッド-プレート間距離hを調整することにより、図5の膜厚分布と比較して、膜厚分布を改善できることが分かる。なお、ヘッド高さ調整前のCase1、標準Std.、Case1のモジュール構造では、ヘッド高さh=標準の高さhsである。
 但し、ヘッド403の高さを標準の高さhsから減少させ、ヘッド403をプレート10に近づける調整(基板402の外周部の膜厚を減少させる方向の調整)では、ヘッド403がパドル412に衝突する可能性がある。そこで、本実施形態では、シミュレーション等により予め基板外周部の膜厚が所望の膜厚より下がる設定にしておき、めっきモジュールの仕上がりバラツキの度合いにより、ヘッド高さ(ヘッド-プレート間距離)hを増加させる方向で調整し、基板402の中心から外周部にかけてのめっき膜厚分布を平坦にする調整方法を採用する。
 図8は、本実施形態に係るめっきモジュールの調整方法を説明するシミュレーション例である。シミュレーションソフト、解析条件は、前記同様とする。図8(A)は、ヘッド高さ(ヘッド-プレート間距離)hを標準の高さhsに設定した場合のめっき膜厚の分布を示す。このグラフは、図5と同様のシミュレーション結果を示し、めっきモジュールの個体差(軸ずれ、平行度のずれ、寸法公差)に起因して、基板外周部の膜厚が大きく又は小さくなることを示す。このとき、めっき膜厚の面内均一性Uは、1.1~2.8%である。
 次に、例えば、図7に示すプレート10の最外周の分割エリアの気孔率(開口率)を他の半径位置の分割エリアの気孔率よりも小さく設定し、基板外周部のめっき膜厚が減少する傾向に設定する。この例では、プレート10の最外周の分割エリアの開口面積(全孔面積)を、当初設計値から8%低減し(当初設計値の92%に設定し)、めっき膜厚分布のシミュレーションを実施した。開口面積の低減は、最外周の分割エリアの孔が真円である場合には半径を低減することより、長孔である場合には長径及び/又は短径を低減することにより行うことができる。当初設計値とは、組立後のめっきモジュールに種々のずれ、寸法誤差がない理想的な場合に、膜厚分布がフラットになるようなプレート10の孔12の構成(面積、配置、気孔率)をいう。最外周の分割エリアの全孔面積(又は気孔率)は、基板外周部の膜厚が最大となるCase1においても、基板外周部の膜厚が減少するように決定する。決定された全孔面積(又は気孔率)を、Case1、標準Std.、Case2の全ての場合に適用すると、図8(B)に示すように、Case1、標準Std.、Case2の何れの場合も、基板外周部でめっき膜厚が減少することが分かる。なお、基板外周部の電場を低減する電場遮蔽部材を設けて、基板外周部のめっき膜厚が減少する傾向に設定する場合には、プレート10の最外周の分割エリアの気孔率を他の半径位置の分割エリアの気孔率と同一又はより大きく設定し得る。
 次に、各モジュールの仕上がりバラツキ(種々のずれ並びに寸法公差)に起因する膜厚分布を、ヘッド(ヘッド-プレート間距離)hを調整することにより平坦にする調整を実施する。図8(C)には、Case1、標準Std.、Case2の各ケースにおいて、膜厚分布が最も平坦になるようにヘッド高さhを調整したシミュレーション結果を示す。この例では、めっき膜厚の面内均一性Uを1.0~1.3%に向上させることができることが確認された。同図において、曲線「92%_Case1_h+0.2」は、Case1において、基板最外周の分割エリアの全孔面積92%とし、ヘッド高さhを標準の高さhs+0.2mmとした場合の膜厚分布のシミュレーション結果を示す。曲線「92%_Std._h+1」は、標準Std.において、基板最外周の分割エリアの全孔面積92%とし、ヘッド高さhを標準の高さhs+1mmとした場合の膜厚分布のシミュレーション結果を示す。曲線「92%_Case2_h+2」は、Case2において、基板最外周の分割エリアの全孔面積92%とし、ヘッド403の高さhを標準の高さhs+2mmとした場合の膜厚分布のシミュレーション結果を示す。
 なお、このシミュレーションでは、ヘッド高さhの変更に伴い基板表面のめっき液流速(基板表面流速)は変化しないものとした。本実施形態では、後述するように、基準位置(h=hs)からヘッド403の位置を動かした分だけ、パドル412の上下位置及び/又は運動速度を変更することにより、基板表面流速が変化しないようにする。
 実際に作製、組み立てた後のめっきモジュールは、図8(A)のCase1からCase2の間の範囲になるはずである。従って、シミュレーションにより、めっきモジュールのモジュール構造(各部品の材質、形状、寸法、及び配置を含む)を設定し、種々のずれ及び/又は寸法公差を考慮してモジュール構造を調整し、前述のCase1、Std.、Case2となるモジュール構造を決定する(図8(A))。そして、Case1の場合でも基板外周部の膜厚分布が他の部分よりも小さくなるように、プレート10の最外周の分割エリアの開口面積(気孔率)を決定する(図8(B))。次に、決定された開口面積(気孔率)を満たすプレート10を作製し、めっきモジュール400を作製、組み立てる。そして、組み立て後のめっきモジュール400で基板をめっきし、基板のめっき膜厚の膜厚分布に応じて、基板全体のめっき膜厚分布が均一になるようにヘッド高さ(ヘッド-プレート間距離)hを調整する。
 通常、膜厚分布が平坦になるようにめっきモジュールを初期設定しておくが、本実施形態では、基板外周部の最外周の膜厚が小さくなるようにめっきモジュールを初期設定した後、事前には分からないめっきモジュールの仕上がり(組み立て後のめっきモジュール)に合わせてヘッド-プレート間距離を調整し、基板の平坦な膜厚分布にすることを特徴とする。
 図9は、本実施形態に係るめっきモジュールの調整方法のフローチャートである。ステップS10からS30は、シミュレーションによるものであり、めっき装置の制御モジュール800又は他のコンピュータにより実施することができる。ステップS50からS80では、実際のめっきモジュールでめっき評価である。本実施形態のめっきモジュールの例では、ヘッドの高さ(プレートからの距離)は6~12mmの範囲で調整可能な構成であり、7~10mmの範囲で調整することが好ましい。なお、他の実施形態では、パドルを配置しない同様の構成とすることができ、その場合には、ヘッドの高さ(プレートからの距離)は1~12mmの範囲で調整可能な構成となる。
 ステップS10では、標準Std.の条件における最適なモジュール構造(各部品の材質、形状、寸法、及び配置を含む)を決定する。標準Std.の条件は、軸ずれ、平行度のずれ、及び寸法公差がゼロであり、各部品が理想的な寸法、配置であるめっきモジュールが仕上げられた場合を示す。標準Std.の条件で決定されるモジュール構造は、図8(A)のStd.曲線に対応する。
 ステップS20では、各部品(ヘッド、プレート、アノード)の寸法公差の範囲で、基板外周部の膜厚が最大となる前述のCase1、基板外周部の膜厚が最小となる前述のCase2となる条件(モジュール構造)を決定する。この条件には、各部品(ヘッド、プレート、アノード)の軸ずれ、平行度のずれ、及び/又は寸法誤差が含まれる。Case1、Case2のモジュール構造は、それぞれ、図8(A)のCase1、Case2で示される曲線に対応する。
 ステップS30では、ステップS10で決定した標準Std.の条件のモジュール構造において、プレート最外周の分割エリアの開口面積を変更する。この変更後の開口面積は、Case1の条件でも、基板外周部の膜厚が小さくなる値であり、且つ、Case2の条件でも膜厚分布を平坦にするために必要なヘッド高さの変化量(後述のS70)が、ヘッド高さの可動範囲内に入る値とする。Case1(基板外周部の膜厚が最大となるモジュール構造)における外周部膜厚を下げすぎると、Case2(基板外周部の膜厚が最小となるモジュール構造)における外周部膜厚が下がりすぎ、ヘッドの可動範囲内における調整(ヘッド高さhの調整)で膜厚分布を平坦にできない虞があるため、変更後のプレート開口面積による基板外周部膜厚がヘッド高さ可動範囲内で調整可能か確認する。例えば、ヘッド高さhの最大可動量で調整可能な基板外周部の膜厚量(最大調整量)を実験、シミュレーションにより予め算出しておき、Case2の場合の基板外周部膜厚の必要調整量が最大調整量内におさまるようにする。
 先ず、Case1及びCase2のモジュール構造(条件)で、図8(B)に示すシミュレーションを実施し、Case1のモジュール構造(条件)でも基板外周部の膜厚が小さくなるプレート10の最外周分割エリアの開口面積であって、且つ、Case2のモジュール構造(条件)で、膜厚分布を平坦にするために必要なヘッド高さの変化量(後述のS70)が、ヘッド高さの可動範囲内に入る開口面積を決定する(この例では、当初設計値の開口面積の92%に低減する)。次に、標準Std.の条件のモジュール構造において、プレート最外周の分割エリアの開口面積を、決定された開口面積(開口面積の92%)に変更し、これを初期設定のモジュール構成とする。
 ステップS40では、ステップS30で決定された初期設定のモジュール構造でめっきモジュールを作製し、組み立てる。ステップS50では、組み立て後のめっきモジュールで実際に基板をめっきする。ステップS60では、めっき後の基板のめっき膜厚分布を膜厚測定装置900により測定し、膜厚分布が平坦か否かを判定する。この判定は、例えば、めっき後の基板の膜厚分布から面内均一性を算出し、面内均一性が所望の範囲にあるか否かを確認することで実施することができる。膜厚分布が平坦である場合には、めっきモジュール400の調整を終了する(ステップS80)。めっき膜厚分布の測定及び判定は、めっき装置1000の膜厚測定装置900を使用して実施しても良いし、めっき装置1000外部の膜厚測定装置900を使用して実施してもよい。
 一方、ステップS60において膜厚分布が平坦でないと判定された場合には、ステップS70に進む。この例では、基板外周部の膜厚が中心部よりも依然として低い場合を示す。ステップS70では、ヘッド高さ(ヘッド-プレート間距離)hを所定量(例えば0.1mm)だけ増加させることにより、基板外周部のめっき膜厚を増加させる。ヘッド高さ(ヘッド-プレート間距離)hの調整は、制御モジュール800により自動で実施してもよいし、手動で実施してもよい。また、後述するように、ヘッド高さhの増加に伴い、パドル412のめっき液攪拌による基板表面でのめっき液流速(基板表面流速)が変化しないように、パドル412の高さ及び/又は運動速度も調節する。パドル412の高さ及び/又は運動速度は、制御モジュール800により自動で実施してもよいし、手動で実施(例えば、ユーザがレシピにおいてパドル412の運動速度を変更)してもよい。ヘッド高さhを増加させた後のめっきモジュール400で、再度、基板のめっきを実施し、めっき後の基板の膜厚分布を測定し(ステップS50)、膜厚分布が平坦か否かを判定する(ステップS60)。このように、ステップS60で基板の膜厚分布が平坦であると判定されるまで、ステップS70、S50、S60の処理を繰り返す。ステップS60で基板の膜厚分布が平坦であると判定されると、めっきモジュールの調整を終了する(ステップS80)。
 本実施形態に係るめっきモジュールの調整方法では、プレート10の最外周エリアの開口面積を調整することで、基板外周部の膜厚が下がるようにモジュールを初期設定する。そして、事前には分からない、組み立て後のめっきモジュールの仕上がり(めっき後の基板の膜厚分布)に合わせて、ヘッド高さ(ヘッド-プレート間距離)hを調整することにより、平坦な膜厚分布となるように、めっきモジュールを調整する。本実施形態に係るめっきモジュールの調整方法は、本稼働前のめっきモジュールの調整として実施することができる。また、本実施形態に係るめっきモジュールの調整方法は、本稼働後に、めっき膜厚分布の均一性が低下した場合にも、ヘッド高さ(ヘッド-プレート間距離)hを調整することで実施することができる。
 図10Aから図10Cは、ヘッドの高さ調整方法の第1から第3の例をそれぞれ示す概略図である。先ず、ヘッド-プレート間距離の変化と、基板表面でのめっき液流速(基板表面流速)との関係について説明する。ここでは、めっき液流速は、例えば平均流速とすることができる。めっき液撹拌のためのパドル412は、図3に示すように、ヘッド403(基板402)とプレート10との間に設置されている。上述のように、ヘッド高さhを変更したとき、同時にヘッド(基板)-パドル間距離も変わると、パドル412による基板表面でのめっき液の撹拌強度(基板表面流速)も変わることになる。図11は、基板表面流速と基板-パドル間の距離との関係を示すグラフである。同図において、縦軸は、基板表面流速を示し、横軸は、基板-パドル間距離を示す。基板表面流速及びヘッド-パドル間距離は、正規化して示されており、標準のヘッド-パドル間距離を1、標準の基板表面流速を1としている(図12も同様)。同図から分かるように、ヘッド-パドル間距離が約10%変化すると流速は約8%変化する。パドル攪拌による基板表面流速が変わると、基板表面に供給される銅イオンや添加剤の供給に差異が生じ、設定可能な最大電流密度や、めっき表面の形状が変わる可能性がある。そのような流速変化の影響を排除するために、ヘッド高さhを変更した際に基板表面流速が変化しないように対策を講じる。
 第1の例では、図10Aに示すように、ヘッド403とパドル機構(パドル412、駆動機構413を含む構成)とが同時に移動するように一体化し、ヘッド403とパドル機構を同時に上下方向(矢印460)に移動させる昇降機構450を設ける。昇降機構450は、制御モジュール800により制御されるアクチュエータを備えるものであっても良いし、手動で昇降させるものであってもよい。この構成によれば、ヘッド403及びパドル412が一体として上下移動し、パドル412と基板402との間の距離を一定に保つことができる。即ち、図9のステップS70において、昇降機構450によりヘッド403とパドル412を同時に上昇させることにより、ヘッド-プレート間距離を変更すると共に、ヘッド-パドル間距離(基板-パドル間距離)を一定に保つようにする。これにより、ヘッド高さhの増加により基板表面でのめっき液流速(パドル攪拌強度)が変化することを抑制ないし防止することができる。
 第2の例では、パドル機構はめっき槽401と一体化しているが、図10Bに示すように、ヘッド403を上下方向(矢印461)に移動させる昇降機構451及びパドル機構を上下方向(矢印462)に移動させる昇降機構452を備え、昇降機構451によりヘッド403を上昇させた分だけ、昇降機構452によりパドル412を上昇させる。各昇降機構451、452は、制御モジュール800により制御されるアクチュエータを備えるものであっても良いし、手動で昇降させるものであってもよい。この構成でも、ヘッド403及びパドル412が同じ距離だけ上下移動し、パドル412と基板402との間の距離を一定に保つことができる。即ち、図9のステップS70において、昇降機構451によりヘッド403を上昇させた分だけ、昇降機構452によりパドル412を上昇させることにより、ヘッド-プレート間距離を変更すると共に、ヘッド-パドル間距離(基板-パドル間距離)を一定に保つことができる。これにより、ヘッド高さhの増加により基板表面でのめっき液流速(パドル攪拌強度)が変化することを抑制ないし防止することができる。
 第3の例では、パドル機構はめっき槽401と一体化し、図10Cに示すように、パドル機構を昇降する昇降機構を備えていないが、矢印463に示すパドル412の運動速度が、ヘッド403の昇降(矢印461)とともに変化し、基板表面流速が一定になるように制御される。ヘッド403を上下方向(矢印461)に移動させる昇降機構451は、図10Bと同様のものである。図9のステップS70において、ヘッド高さhの変更前後で基板表面流速を一定とするための、パドル412の運動速度を決定し、パドル412の運動速度を決定された運動速度に変更する。これにより、ヘッド高さhの増加により基板表面流速が変化することを抑制ないし防止することができる。パドル412の運動速度の変更は、制御モジュール800により自動で実施してもよいし、ユーザがレシピデータを変更することにより実施してもよい。
 図12は、各パドルの運動速度における、表面流速と基板-パドル間の距離との関係を示すグラフである。同図において、曲線Iは、パドルの運動速度が標準である場合における、表面流速と基板-パドル間の距離との関係を示す。曲線IIは、パドルの運動速度が標準より高い場合における、表面流速と基板-パドル間の距離との関係を示す。曲線IIIは、パドルの運動速度が標準より低い場合における、表面流速と基板-パドル間の距離との関係を示す。図10Cの構成において、パドル412の高さを変更せずヘッド403の高さのみ増加させる場合を考える。初期設定において、基板-パドル間距離が1であるとすると、基板表面流速は1である(図12)。そして、めっき膜厚分布改善のため、図9のステップS70において、パドル412の高さを変更せずヘッド403の高さのみ増加させて、基板-パドル間の距離を1.10とすると、基板表面流速は約0.92(約8%減少)となる。このとき、パドル412の運動速度を標準の運動速度(曲線Iに相当)から、曲線IIに相当する運動速度まで増加させると、ヘッド高さhを変更した後の基板表面流速を1.00とすることができる。これにより、ヘッド高さ(ヘッド-プレート間距離)hを増加させて、基板-パドル間距離が増加した場合でも、ヘッド高さhの変更前後で基板表面流速を一定に保つことができる。ヘッド高さhを減少させる場合も、同様に、曲線Iに相当するパドル運動速度から、曲線IIIに相当するパドル運動速度まで減少させることにより、ヘッド高さhの変更前後で基板表面流速を一定に保つことができる。
 各パドルの運動速度における、表面流速と基板-パドル間の距離との関係を示すデータ(図12)を制御モジュール800が参照可能な記憶媒体に記憶しておくことができる。表面流速と基板-パドル間の距離との関係を示すデータは、あらかじめシミュレーション、実験等で決定することができる。図9のステップS70において、制御モジュール800が、記憶媒体に記憶されているデータを参照し、ヘッド高さhの変更前後で基板表面流速を一定とするための、パドル412の運動速度を決定し、パドル412の運動速度を決定された運動速度に変更するようにしてもよい。制御モジュール800は、駆動機構413を制御してパドル412の運動速度を変更することができる。これにより、ヘッド高さhの増加により基板表面流速が変化することを抑制ないし防止することができる。
 (他の実施形態)
 (1)上記実施形態では、プレート10の最外周の分割エリアの開口面積(気孔率)を調整したが、最外周の分割エリアを含む近接する1又は複数の分割エリアの開口面積(気孔率)を調整してもよい。
 (2)上記実施形態では、ヘッド403とプレート410との間の距離の調整前後で、パドル412の撹拌による基板表面でのめっき液流速を一定に保つように、パドル412の位置又は運動速度の一方を調整したが、パドル412の位置の調整(図10B)およびパドル412の運動速度の調整(図10C)を組み合わせてもよい。
 (3)上記実施形態では、ヘッド-プレート間距離を変更するために、プレートを固定し、ヘッドを移動させたが、プレートを昇降する昇降機構を設け、ヘッドを固定しプレートを移動させてもよい。また、ヘッド及びプレートの昇降機構をそれぞれ設け、ヘッド及びプレートの両方を移動させてヘッド-プレート間距離を調整してもよい。なお、ヘッドを固定し、プレートを移動させる場合には、ヘッド-プレート間距離の調整前後でヘッド(基板)-パドル間の距離は変わらないので、図10(A)から図10(C)で説明した表面流速を一定にする調整を省略してもよい。
 (4)上記実施形態では、カップ式のめっきモジュールを例に挙げて説明したが、ディップ式、その他の任意のめっきモジュールに本実施形態を適用してもよい。
 上述した実施形態には、少なくとも以下の実施形態が含まれる。
 [1]一実施形態によれば、 基板を保持する基板ホルダと、前記基板ホルダに対向して配置されるアノードと、前記基板ホルダと前記アノードとの間に配置される抵抗体としてのプレートとを備えるめっきモジュールを調整する方法であって、 基板の外周部のめっき膜厚が他の部分の膜厚よりも小さくなるように、前記プレートの外周部の気孔率を調整した状態で初期設定されためっきモジュールを準備すること、 前記めっきモジュールでめっきした基板の膜厚分布に応じて、基板の外周部の膜厚を増加させるように前記基板ホルダと前記プレートとの間の距離を調整することにより、基板全体のめっき膜厚分布が平坦になるように前記基板ホルダと前記プレートとの間の距離を調整すること、を含む、方法が提供される。
 この実施形態によれば、基板外周部のめっき膜厚分布を小さくする状態でめっきモジュールを初期設定し、実際にめっきモジュールでめっきした基板の膜厚分布に応じて、基板ホルダとプレートとの間の距離を調整することで、基板の外周部の膜厚を大きくする調整を行い、基板全体のめっき膜厚分布が平坦になるようにめっきモジュールを調整することができる。これにより、めっきモジュールの個体差(めっき槽の各部品の軸ずれ、平行度のずれ、寸法誤差)に関わらず、基板全体のめっき膜厚分布が平坦になるようにめっきモジュールを調整することができる。
 また、基板の外周部の膜厚を大きくする調整は、基板ホルダとプレートとの間の距離を大きくする方向の調整であるため、基板ホルダが、パドル又はプレートに衝突することを抑制又は防止することができる。
 [2]一実施形態によれば、 前記めっきモジュールの各部品の中心軸のずれ、平行度のずれ、及び/又は寸法公差を考慮したシミュレーションにより、前記初期設定のめっきモジュールのモジュール構造を決定することを更に含み、前記部品は前記基板ホルダ、前記アノード、及び前記プレートを含むようにしてもよい。
 この実施形態によれば、めっきモジュールの個体差に関わらず、基板外周部のめっき膜厚分布を他の部分の膜厚分布より小さくする状態で初期設定することができる。これにより、めっきモジュールの個体差に関わらず、基板ホルダとプレートとの間の距離を大きくする方向の調整により、基板全体のめっき膜厚分布を平坦にすることができる。
 [3]一実施形態によれば、 前記シミュレーションは、 前記めっきモジュールの前記部品の中心軸のずれ、平行度のずれ、及び/又は寸法公差がゼロ又は最小である標準条件のモジュール構造と、前記めっきモジュールの前記部品の中心軸のずれ、平行度のずれ、及び/又は寸法公差に起因して前記基板の外周部のめっき膜厚が最大になる第1条件のモジュール構造とを決定すること、 前記第1条件のモジュール構造において、前記基板の外周部の膜厚分布が他の部分と比較して小さくなるように、前記プレートの外周部の気孔率を決定すること、 前記決定された気孔率を前記標準条件のモジュール構造に適用して、前記初期設定のモジュール構造を決定すること、を含むようにしてもよい。
 この実施形態によれば、基板の外周部のめっき膜厚が最大になる誤差(中心軸のずれ、平行度のずれ、及び/又は寸法誤差)のモジュール構造で決定された気孔率を初期設定に使用するため、組み立て後のめっきモジュールの個体差に関わらず、基板外周部のめっき膜厚分布を小さくする状態で初期設定することができる。また、めっきモジュールの作製、組み立ては、誤差がゼロ又は最小となる標準条件を目指して行われるため、決定された気孔率を、標準条件のモジュール構造に適用する。
 [4]一実施形態によれば、前記めっきモジュールは、前記基板ホルダと前記プレートとの間に配置され、めっき液を攪拌するパドルを更に備え、 前記基板ホルダと前記プレートとの間の距離の調整前後で、前記パドルの撹拌による前記基板表面でのめっき液流速を一定に保つように、前記パドルの前記基板ホルダに対する位置及び/又は前記パドルの運動速度を調整するようにしてもよい。
 この実施形態によれば、基板ホルダとプレートとの間の距離の調整前後で、パドルの撹拌による基板表面でのめっき液流速(基板表面流速)を一定に保つことができるので、基板表面流速の変化が、めっき膜厚分布の面内均一性等のめっき品質に与える影響を抑制ないし防止することができる。また、基板表面流速の変化による影響を排除し、基板ホルダとプレートとの間の距離の調整により、めっき膜厚分布の所望の調整をより容易に行うことができる。
 [5]一実施形態によれば、前記基板ホルダと前記プレートとの間の距離を調整する際に、前記基板ホルダ及び前記パドルを同じ距離だけ移動させて、前記基板ホルダと前記パドルとの間の距離を一定に保つようにしてもよい。
 この実施形態によれば、簡易な調整により、基板表面でのめっき液流速を一定に保つことができる。
 [6]一実施形態によれば、前記基板ホルダと前記パドルとを一体的に移動させることにより、前記基板ホルダと前記パドルとの間の距離を一定に保つようにしてもよい。
 この実施形態によれば、基板ホルダ及びパドルを一体的に移動させるので、より確実に基板ホルダとパドルとの間の距離を一定に保つことができる。
 [7]一実施形態によれば、前記基板ホルダと前記パドルとを別々に同じ距離だけ移動させることにより、前記基板ホルダと前記パドルとの間の距離を一定に保つようにしてもよい。
 この実施形態によれば、基板ホルダとパドルとを別々に移動させるので、基板ホルダ及びパドルの各々を移動させる機構をより容易に構成することができる。
 [8]一実施形態によれば、 前記基板ホルダと前記プレートとの間の距離の調整前後で、前記パドルの撹拌による前記基板表面でのめっき液流速を一定に保つように、前記パドルの運動速度を調整するようにしてもよい。
 この実施形態によれば、パドルの位置を調整する機構を省略することが可能であり、モジュールの大型化及び/又はコストアップを抑制ないし防止することができる。
 [9]一実施形態によれば、前記基板ホルダと前記プレートとの間の距離の調整前後で、前記パドルの撹拌による前記基板表面でのめっき液流速を一定に保つように、前記パドルの位置及び運動速度の調整を組み合わせるようにしてもよい。
 この実施形態によれば、パドルの位置及び運動速度の調整を組み合わせることにより、パドルの位置及び運動速度の変更幅を抑制しつつ、基板ホルダを広い範囲で移動させることができる。
 [10]一実施形態によれば、 前記プレートの外周部の気孔率の調整は、前記プレート上の複数の同心円周上に設けられる孔のうち、最外周の円周上、又は最外周の円周及び近接する1又は複数の円周上に設けられる孔の開口面積を調整することにより実施されるようにしてもよい。
 この実施形態によれば、プレートの外周部の孔の径及び/又は形状等を変更することにより局所的な開口面積を調整し、プレートの外周部の気孔率を簡易かつ精度よく調整することができる。
 [11]一実施形態によれば、 基板を保持する基板ホルダと、前記基板ホルダに対向して配置されるアノードと、前記基板ホルダと前記アノードとの間に配置される抵抗体としてのプレートと、を有するめっきモジュールを調整する方法をコンピュータに実行させるプログラムを記憶する不揮発性の記憶媒体であって、 基板の外周部のめっき膜厚が他の部分の膜厚よりも小さくなるように、前記プレートの外周部の気孔率を調整した状態で初期設定されためっきモジュールでめっきした基板の膜厚分布に応じて、基板の外周部の膜厚を増加させるように前記基板ホルダと前記プレートとの間の距離を調整することにより、基板全体のめっき膜厚分布が平坦になるように前記基板ホルダと前記プレートとの間の距離を調整すること、をコンピュータに実行させるプログラムを記憶する記憶媒体が提供される。
 この実施形態によれば、上記[1]で上述したと同様の作用効果を奏する。また、組み立て後のめっきモジュールにおける調整を自動で行うことができる。
 [12]一実施形態によれば、 前記めっきモジュールは、前記基板ホルダと前記プレートとの間に配置され、めっき液を攪拌するパドルを更に備え、 前記基板ホルダと前記プレートとの間の距離の調整前後で、前記パドルの撹拌による前記基板表面でのめっき液流速を一定に保つように、前記パドルの前記基板ホルダに対する位置及び/又は前記パドルの運動速度を調整することをコンピュータに実行させるようにしてもよい。
 この実施形態によれば、上記[4]で上述したと同様の作用効果を奏する。また、組み立て後のめっきモジュールにおける調整を自動で行うことができる。
 [13]一実施形態によれば、 基板を保持する基板ホルダと、前記基板ホルダに対向して配置されるアノードと、前記基板ホルダと前記アノードとの間に配置される抵抗体としてのプレートとを備え、基板の外周部のめっき膜厚が他の部分の膜厚よりも小さくなるように設定されためっきモジュールと、 前記基板ホルダ及び/又は前記プレートを移動する第1移動機構と、を備えるめっき装置が提供される。
 この実施形態によれば、上記[1]で上述したと同様の作用効果を奏する。
 [14]一実施形態によれば、 前記基板ホルダと前記プレートとの間に配置され、めっき液を攪拌するパドルを更に備え、 前記第1移動機構は、前記プレートに対して、前記基板ホルダ及び前記パドルを一体で移動させるように構成されているようにしてもよい。
 この実施形態によれば、上記[6]で上述したと同様の作用効果を奏する。
 [15]一実施形態によれば、 前記基板ホルダと前記プレートとの間に配置され、めっき液を攪拌するパドルと、 前記パドルを前記基板ホルダに対して接近離間するように移動する第2移動機構と、を更に備えるようにしてもよい。
 この実施形態によれば、上記[7]で上述したと同様の作用効果を奏する。
 [16]一実施形態によれば、 制御モジュールを更に備え、 前記制御モジュールは、前記めっきモジュールによるめっき後の基板の膜厚分布に応じて、前記第1移動機構を制御して、前記基板ホルダと前記プレートとの間の距離を調整する、ようにしてもよい。
 この実施形態によれば、上記[1]で上述したと同様の作用効果を奏する。また、組み立て後のめっきモジュールにおけるめっき評価、めっきモジュールの調整を自動で行うことができる。
 [17]一実施形態によれば、 制御モジュールを更に備え、 前記制御モジュールは、前記第1移動機構を制御して、前記基板ホルダと前記パドルとの間の距離を一定に保ちつつ、前記基板ホルダ及び前記パドルを一体で移動させるようにしてもよい。
 この実施形態によれば、上記[6]で上述したと同様の作用効果を奏する。また、組み立て後のめっきモジュールにおけるめっき評価、めっきモジュールの調整を自動で行うことができる。
 [18]一実施形態によれば、 制御モジュールを更に備え、 前記制御モジュールは、前記第1移動機構及び第2移動機構を制御して、前記基板ホルダと前記パドルとの間の距離を一定に保つように、前記基板ホルダ及び前記パドルを移動させるようにしてもよい。
 この実施形態によれば、上記[7]で上述したと同様の作用効果を奏する。また、組み立て後のめっきモジュールにおけるめっき評価、めっきモジュールの調整を自動で行うことができる。
 [19]一実施形態によれば、 前記基板ホルダと前記プレートとの間に配置され、めっき液を攪拌するパドルと、 前記パドルを基板と平行に往復移動させる駆動機構と、を更に備え、 前記制御モジュールは、前記駆動機構を制御して、前記基板ホルダと前記プレートとの間の距離の調整前後で、前記パドルの撹拌による基板表面でのめっき液流速を一定に保つように、前記パドルの運動速度を調整するようにしてもよい。
 この実施形態によれば、上記[8]で上述したと同様の作用効果を奏する。また、組み立て後のめっきモジュールにおける調整を自動で行うことができる。
 [20]一実施形態によれば、 前記基板ホルダと前記プレートとの間に配置され、めっき液を攪拌するパドルと、 前記パドルを前記基板ホルダに対して接近離間するように移動する第2移動機構と、 前記パドルを基板と平行に往復移動させる駆動機構と、制御モジュールと、を更に備え、 前記制御モジュールは、前記第2移動機構及び前記駆動機構を制御して、前記基板ホルダと前記プレートとの間の距離の調整前後で、前記パドルの撹拌による基板表面でのめっき液流速を一定に保つように、前記パドルを移動させると共に、前記前記パドルの運動速度を調整するようにしてもよい。
 この実施形態によれば、上記[9]で上述したと同様の作用効果を奏する。また、組み立て後のめっきモジュールにおける調整を自動で行うことができる。
 以上、本発明の実施形態について説明したが、上述した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物が含まれることはもちろんである。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲及び明細書に記載された各構成要素の任意の組み合わせ、又は省略が可能である。特開2020-176303号公報(特許文献1)の明細書、特許請求の範囲、図面及び要約書を含む全ての開示は、参照により全体として本願に組み込まれる。
100 ロードポート
110 搬送ロボット
120 アライナ
200 プリウェットモジュール
300 プリソークモジュール
400 めっきモジュール
401 めっき槽
402 基板
403 基板ホルダ(ヘッド)
404 めっき液貯留槽
405 ポンプ
406 フィルタ
407 めっき液供給管
408 めっき液受槽
409 電源
410 アノード
411 モータ
412 パドル
413 駆動機構
413a モータ
413b 回転直動変換機構
413c シャフト
414 アノードマスク
450、451、452 昇降機構
500 洗浄モジュール
600 スピンリンスドライヤ
700 搬送装置
800 制御モジュール
900 膜厚測定装置
1000 めっき装置

Claims (20)

  1.  基板を保持する基板ホルダと、前記基板ホルダに対向して配置されるアノードと、前記基板ホルダと前記アノードとの間に配置される抵抗体としてのプレートとを備えるめっきモジュールを調整する方法であって、
     基板の外周部のめっき膜厚が他の部分の膜厚よりも小さくなるように、前記プレートの外周部の気孔率を調整した状態で初期設定されためっきモジュールを準備すること、
     前記めっきモジュールでめっきした基板の膜厚分布に応じて、基板の外周部の膜厚を増加させるように前記基板ホルダと前記プレートとの間の距離を調整することにより、基板全体のめっき膜厚分布が平坦になるように前記基板ホルダと前記プレートとの間の距離を調整すること、
    を含む、方法。
  2.  請求項1に記載の方法において、
     前記めっきモジュールの各部品の中心軸のずれ、平行度のずれ、及び/又は寸法公差を考慮したシミュレーションにより、前記初期設定のめっきモジュールのモジュール構造を決定することを更に含み、
     前記部品は前記基板ホルダ、前記アノード、及び前記プレートを含む、方法。
  3.  請求項2に記載の方法において、
     前記シミュレーションは、
     前記めっきモジュールの前記部品の中心軸のずれ、平行度のずれ、及び/又は寸法公差がゼロ又は最小である標準条件のモジュール構造と、前記めっきモジュールの前記部品の中心軸のずれ、平行度のずれ、及び/又は寸法公差に起因して前記基板の外周部のめっき膜厚が最大になる第1条件のモジュール構造とを決定すること、
     前記第1条件のモジュール構造において、前記基板の外周部の膜厚分布が他の部分と比較して小さくなるように、前記プレートの外周部の気孔率を決定すること、
     前記決定された気孔率を前記標準条件のモジュール構造に適用して、前記初期設定のモジュール構造を決定すること、
    を含む、方法。
  4.  請求項1から3の何れかに記載の方法において、
     前記めっきモジュールは、前記基板ホルダと前記プレートとの間に配置され、めっき液を攪拌するパドルを更に備え、
     前記基板ホルダと前記プレートとの間の距離の調整前後で、前記パドルの撹拌による前記基板表面でのめっき液流速を一定に保つように、前記パドルの前記基板ホルダに対する位置及び/又は前記パドルの運動速度を調整する、方法。
  5.  請求項4に記載の方法において、
     前記基板ホルダと前記プレートとの間の距離を調整する際に、前記基板ホルダ及び前記パドルを同じ距離だけ移動させて、前記基板ホルダと前記パドルとの間の距離を一定に保つ、方法。
  6.  請求項5に記載の方法において、
     前記基板ホルダと前記パドルとを一体的に移動させることにより、前記基板ホルダと前記パドルとの間の距離を一定に保つ、方法。
  7.  請求項5に記載の方法において、
     前記基板ホルダと前記パドルとを別々に同じ距離だけ移動させることにより、前記基板ホルダと前記パドルとの間の距離を一定に保つ、方法。
  8.  請求項4に記載の方法において、
     前記基板ホルダと前記プレートとの間の距離の調整前後で、前記パドルの撹拌による前記基板表面でのめっき液流速を一定に保つように、前記パドルの運動速度を調整する、方法。
  9.  請求項4に記載の方法において、
     前記基板ホルダと前記プレートとの間の距離の調整前後で、前記パドルの撹拌による前記基板表面でのめっき液流速を一定に保つように、前記パドルの位置及び運動速度の調整を組み合わせる、方法。
  10.  請求項1から9の何れかに記載の方法において、
     前記プレートの外周部の気孔率の調整は、前記プレート上の複数の同心円周上に設けられる孔のうち、最外周の円周上、又は最外周の円周及び近接する1又は複数の円周上に設けられる孔の開口面積を調整することにより実施される、方法。
  11.  基板を保持する基板ホルダと、前記基板ホルダに対向して配置されるアノードと、前記基板ホルダと前記アノードとの間に配置される抵抗体としてのプレートと、を有するめっきモジュールを調整する方法をコンピュータに実行させるプログラムを記憶する不揮発性の記憶媒体であって、
     基板の外周部のめっき膜厚が他の部分の膜厚よりも小さくなるように、前記プレートの外周部の気孔率を調整した状態で初期設定されためっきモジュールでめっきした基板の膜厚分布に応じて、基板の外周部の膜厚を増加させるように前記基板ホルダと前記プレートとの間の距離を調整することにより、基板全体のめっき膜厚分布が平坦になるように前記基板ホルダと前記プレートとの間の距離を調整すること、
    をコンピュータに実行させるプログラムを記憶する記憶媒体。
  12.  請求項11に記載の記録媒体において、
     前記めっきモジュールは、前記基板ホルダと前記プレートとの間に配置され、めっき液を攪拌するパドルを更に備え、
     前記基板ホルダと前記プレートとの間の距離の調整前後で、前記パドルの撹拌による前記基板表面でのめっき液流速を一定に保つように、前記パドルの前記基板ホルダに対する位置及び/又は前記パドルの運動速度を調整することを、
    をコンピュータに実行させるプログラムを記憶する記憶媒体。
  13.  基板を保持する基板ホルダと、前記基板ホルダに対向して配置されるアノードと、前記基板ホルダと前記アノードとの間に配置される抵抗体としてのプレートとを備え、基板の外周部のめっき膜厚が他の部分の膜厚よりも小さくなるように設定されためっきモジュールと、
     前記基板ホルダ及び/又は前記プレートを移動する第1移動機構と、
    を備えるめっき装置。
  14.  請求項13に記載のめっき装置であって、
     前記基板ホルダと前記プレートとの間に配置され、めっき液を攪拌するパドルを更に備え、
     前記第1移動機構は、前記プレートに対して、前記基板ホルダ及び前記パドルを一体で移動させるように構成されている、
     めっき装置。
  15.  請求項13に記載のめっき装置であって、
     前記基板ホルダと前記プレートとの間に配置され、めっき液を攪拌するパドルと、
     前記パドルを前記基板ホルダに対して接近離間するように移動する第2移動機構と、
    を更に備える、めっき装置。
  16.  請求項13に記載のめっき装置であって、
     制御モジュールを更に備え、
     前記制御モジュールは、前記めっきモジュールによるめっき後の基板の膜厚分布に応じて、前記第1移動機構を制御して、前記基板ホルダと前記プレートとの間の距離を調整する、めっき装置。
  17.  請求項14に記載のめっき装置であって、
     制御モジュールを更に備え、
     前記制御モジュールは、前記第1移動機構を制御して、前記基板ホルダと前記パドルとの間の距離を一定に保ちつつ、前記基板ホルダ及び前記パドルを一体で移動させる、めっき装置。
  18.  請求項15に記載のめっき装置であって、
     制御モジュールを更に備え、
     前記制御モジュールは、前記第1移動機構及び第2移動機構を制御して、前記基板ホルダと前記パドルとの間の距離を一定に保つように、前記基板ホルダ及び前記パドルを移動させる、めっき装置。
  19.  請求項13に記載のめっき装置であって、
     前記基板ホルダと前記プレートとの間に配置され、めっき液を攪拌するパドルと、
     前記パドルを基板と平行に往復移動させる駆動機構と、
     制御モジュールと、
    を更に備え、
     前記制御モジュールは、前記駆動機構を制御して、前記基板ホルダと前記プレートとの間の距離の調整前後で、前記パドルの撹拌による基板表面でのめっき液流速を一定に保つように、前記パドルの運動速度を調整する、めっき装置。
  20.  請求項13に記載のめっき装置であって、
     前記基板ホルダと前記プレートとの間に配置され、めっき液を攪拌するパドルと、
     前記パドルを前記基板ホルダに対して接近離間するように移動する第2移動機構と、
     前記パドルを基板と平行に往復移動させる駆動機構と、
     制御モジュールと、
    を更に備え、
     前記制御モジュールは、前記第2移動機構及び前記駆動機構を制御して、前記基板ホルダと前記プレートとの間の距離の調整前後で、前記パドルの撹拌による基板表面でのめっき液流速を一定に保つように、前記パドルを移動させると共に、前記前記パドルの運動速度を調整する、めっき装置。
PCT/JP2021/008670 2021-03-05 2021-03-05 めっきモジュールを調整する方法 WO2022185523A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021539013A JP6999070B1 (ja) 2021-03-05 2021-03-05 めっきモジュールを調整する方法
PCT/JP2021/008670 WO2022185523A1 (ja) 2021-03-05 2021-03-05 めっきモジュールを調整する方法
KR1020227011235A KR102447745B1 (ko) 2021-03-05 2021-03-05 도금 모듈을 조정하는 방법
US17/781,363 US20240183059A1 (en) 2021-03-05 2021-03-05 Method of adjusting plating module
CN202180006560.6A CN114787428B (zh) 2021-03-05 2021-03-05 调整镀覆模块的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/008670 WO2022185523A1 (ja) 2021-03-05 2021-03-05 めっきモジュールを調整する方法

Publications (1)

Publication Number Publication Date
WO2022185523A1 true WO2022185523A1 (ja) 2022-09-09

Family

ID=80856378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008670 WO2022185523A1 (ja) 2021-03-05 2021-03-05 めっきモジュールを調整する方法

Country Status (5)

Country Link
US (1) US20240183059A1 (ja)
JP (1) JP6999070B1 (ja)
KR (1) KR102447745B1 (ja)
CN (1) CN114787428B (ja)
WO (1) WO2022185523A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI847954B (zh) * 2023-03-17 2024-07-01 日商荏原製作所股份有限公司 鍍覆裝置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195823A (ja) * 1998-12-28 2000-07-14 Hitachi Ltd めっき方法およびめっき装置
JP2002105695A (ja) * 2000-09-27 2002-04-10 Ebara Corp めっき装置及びめっき方法
JP2017008347A (ja) * 2015-06-18 2017-01-12 株式会社荏原製作所 めっき装置の調整方法及び測定装置
JP2017115170A (ja) * 2015-12-21 2017-06-29 株式会社荏原製作所 めっき装置及びめっき方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235188A (ja) * 2001-02-05 2002-08-23 Tokyo Electron Ltd 液処理装置、液処理方法
KR101027489B1 (ko) * 2002-07-18 2011-04-06 가부시키가이샤 에바라 세이사꾸쇼 도금장치 및 도금방법
KR100852046B1 (ko) * 2006-10-10 2008-08-13 현대자동차주식회사 크롬도금 두께 균일화를 위한 차량 부품의 제조 방법
JP2017052986A (ja) * 2015-09-08 2017-03-16 株式会社荏原製作所 調整板、これを備えためっき装置、及びめっき方法
JP6678490B2 (ja) * 2016-03-28 2020-04-08 株式会社荏原製作所 めっき方法
JP2020176303A (ja) 2019-04-18 2020-10-29 株式会社荏原製作所 位置調整装置、めっき装置の調整方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195823A (ja) * 1998-12-28 2000-07-14 Hitachi Ltd めっき方法およびめっき装置
JP2002105695A (ja) * 2000-09-27 2002-04-10 Ebara Corp めっき装置及びめっき方法
JP2017008347A (ja) * 2015-06-18 2017-01-12 株式会社荏原製作所 めっき装置の調整方法及び測定装置
JP2017115170A (ja) * 2015-12-21 2017-06-29 株式会社荏原製作所 めっき装置及びめっき方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI847954B (zh) * 2023-03-17 2024-07-01 日商荏原製作所股份有限公司 鍍覆裝置

Also Published As

Publication number Publication date
US20240183059A1 (en) 2024-06-06
JPWO2022185523A1 (ja) 2022-09-09
KR102447745B1 (ko) 2022-09-28
KR20220125734A (ko) 2022-09-14
JP6999070B1 (ja) 2022-02-10
CN114787428A (zh) 2022-07-22
CN114787428B (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
US11098414B2 (en) Plating system, a plating system control method, and a storage medium containing a program for causing a computer to execute the plating system control method
WO2022190243A1 (ja) めっき装置、およびめっき方法
WO2022254690A1 (ja) めっき装置
JP7279273B1 (ja) めっき装置
WO2022185523A1 (ja) めっきモジュールを調整する方法
JP7233588B1 (ja) めっき装置
JP6911220B1 (ja) めっき装置、およびめっき処理方法
JP7204060B1 (ja) めっき装置用抵抗体、及び、めっき装置
TWI779513B (zh) 鍍覆模組之調整方法、儲存媒體及鍍覆裝置
US20230160089A1 (en) Apparatus for plating and method of controlling apparatus for plating
JP2017137519A (ja) めっき装置
TWI759133B (zh) 鍍覆裝置及鍍覆方法
KR102553048B1 (ko) 기판 홀더, 도금 장치 및 도금 장치의 제조 방법
US11542629B2 (en) Method of plating, apparatus for plating, and non-volatile storage medium that stores program
WO2023157105A1 (ja) めっき装置、及びめっき方法
WO2023062778A1 (ja) プリウェット処理方法
TWI746334B (zh) 鍍覆裝置及鍍覆處理方法
US11993861B2 (en) Plating apparatus and air bubble removing method
KR102602975B1 (ko) 도금 장치 및 도금 방법
KR102493757B1 (ko) 도금 장치
JP2022127862A (ja) めっき装置及びめっき液の液面調整方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021539013

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 17781363

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929095

Country of ref document: EP

Kind code of ref document: A1