WO2022105175A1 - 一种钠离子电池正极材料及其制备方法、钠离子电池 - Google Patents

一种钠离子电池正极材料及其制备方法、钠离子电池 Download PDF

Info

Publication number
WO2022105175A1
WO2022105175A1 PCT/CN2021/096811 CN2021096811W WO2022105175A1 WO 2022105175 A1 WO2022105175 A1 WO 2022105175A1 CN 2021096811 W CN2021096811 W CN 2021096811W WO 2022105175 A1 WO2022105175 A1 WO 2022105175A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium ion
ion battery
positive electrode
electrode material
battery according
Prior art date
Application number
PCT/CN2021/096811
Other languages
English (en)
French (fr)
Inventor
时爽二
庞晨阳
戚昌伟
张立君
张会斌
王瑛
Original Assignee
山东玉皇新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东玉皇新能源科技有限公司 filed Critical 山东玉皇新能源科技有限公司
Publication of WO2022105175A1 publication Critical patent/WO2022105175A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D13/00Compounds of sodium or potassium not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of sodium ion batteries, and in particular relates to a positive electrode material for a sodium ion battery and a preparation method thereof, and a sodium ion battery.
  • Typical cathode materials for sodium-ion batteries include layered transition metal oxides, Prussian blue analogs, and polyanion cathode materials.
  • Prussian blue analogs have three-dimensional sodium ion intercalation and deintercalation channels, which can be used for intercalation and deintercalation of sodium ions with larger ionic radius, but there are a large number of vacancies in the material, which will cause the material in the process of intercalation and deintercalation of sodium ions.
  • the collapse of the structure in addition, there is a large amount of coordinated water in the material, and these water molecules will also affect the performance of the material.
  • the framework structure of polyanion-based materials is stable, showing excellent structural stability, and the inductive effect of polyanion can further improve the working voltage of the material; however, the three-dimensional structure of polyanion cannot provide more Na + intercalation sites, resulting in this kind of The material has a lower specific capacity and additionally Na + migration in the 3D tunnel also exhibits slower reaction kinetics.
  • Layered transition metal oxides are one of the current research hotspots of cathode materials for sodium-ion batteries because of their reversible ion de-intercalation ability and stable layered structure, which facilitate the insertion of other ions or molecules between layers.
  • the layered oxide cathode material has high theoretical specific capacity and fast two-dimensional diffusion of Na + in the layer, the electrochemical cycle performance of the material is poor. Therefore, finding a cathode material for sodium-ion batteries with better cycle performance is of great significance in this field.
  • the purpose of the present invention is to address the above problems, to provide a sodium ion battery positive electrode material and a preparation method thereof, and a sodium ion battery.
  • the tap density has high charge-discharge specific capacity and energy density and excellent cycle performance; the preparation method effectively reduces the layered structure of the cathode material for sodium ion batteries by controlling the reaction of the precursor mixture under high temperature and high pressure conditions.
  • the interlayer oxygen content significantly improves the cycle performance of the material.
  • a positive electrode material for a sodium ion battery is provided, and the chemical formula of the positive electrode material for a sodium ion battery is Na x Ni y M 1-y O 2 , wherein 0.5 ⁇ x ⁇ 1, 0.1 ⁇ y ⁇ 0.5, M is selected from at least one of Mn, Fe, Co, V, Cu, Cr and Ti;
  • the positive electrode material of the sodium ion battery is spherical-like particles, and the positive electrode material of the sodium ion battery has a layered structure.
  • M is selected from at least one of Mn, Fe, Co and Cr;
  • 0.8 ⁇ x ⁇ 0.85, 0.3 ⁇ y ⁇ 0.35, and M is Mn.
  • the particle size of the quasi-spherical particles is 0.5-10 ⁇ m; preferably, the particle size of the quasi-spherical particles is 1-5 ⁇ m; preferably, the specific surface area of the cathode material of the sodium ion battery is 0.6-1.0 m 2 /g; preferably, the tap density of the positive electrode material for the sodium ion battery is 1.0-1.3 m 2 /g; preferably, the phase of the positive electrode material for the sodium ion battery is the P2 phase.
  • the positive electrode material for the sodium ion battery is obtained.
  • oxygen ions in the material are in an active state, and the reaction system is in a high pressure state, oxygen ions are easily released from the interlayers and defects of the material to form oxygen, Effectively reduce the oxygen content between layers, weaken the interaction between oxygen ions and oxygen ions, and form stable products.
  • the sodium salt is selected from at least one of sodium carbonate, sodium nitrate and sodium acetate;
  • the nickel salt is selected from divalent nickel salts
  • the divalent nickel salt is selected from at least one of nickel sulfate, nickel chloride and nickel nitrate;
  • the M salt is selected from at least one of sulfate, chloride and nitrate;
  • the solvent in the salt solution is selected from at least one of water, ethanol and acetone.
  • step (2) the precursor mixture is reacted at a pressure of 10-25MPa and a temperature of 150-180°C for 8-15h;
  • step (2) the precursor mixture is reacted at a pressure of 15-20 MPa and a temperature of 160-170° C. for 10-12 hours.
  • step (2) the precursor mixture is placed in an autoclave of 5-50 MPa, and the autoclave is sealed, and then the autoclave is heated to 120-200°C to make the precursor mixture reaction;
  • the heating is selected from at least one of electric heating and oil bath heating;
  • the heating is oil bath heating.
  • step (3) before calcining the product, it also includes the steps of washing and drying the product;
  • the washing includes multiple washings using deionized water and ethanol;
  • the drying temperature is 80-100°C, and the drying time is 5-10 minutes.
  • step (3) the temperature of the calcination is 600-1000°C, and the time is 5-15h;
  • the temperature of the calcination is 700-800°C, and the time is 6-10h;
  • the calcining atmosphere is a compressed air atmosphere
  • the temperature is raised to 600-1000°C at a rate of 2-5°C/min;
  • step (3) it also includes cooling the calcined product
  • the cooling is natural cooling to room temperature.
  • a sodium ion battery comprising the sodium ion battery cathode material described in any one of the above and the sodium ion obtained by the preparation method described in any one of the above At least one of positive electrode materials for ion batteries.
  • the application of the graphene-coated graphite material as a negative electrode material for a lithium ion battery is also provided.
  • the positive electrode material for sodium ion battery provided by the present invention, the positive electrode material for sodium ion battery has a layered structure, and is quasi-spherical particles, has high specific surface area and tap density, and has high charge-discharge specific capacity and energy density and excellent cycle performance.
  • the preparation method of the positive electrode material of the sodium ion battery controls the reaction of the precursor mixed solution under the condition of high temperature and high pressure, improves the specific surface area and the tap density of the layered structure of the positive electrode material for the sodium ion battery, and effectively reduces the The interlayer oxygen content of the layered structure of the cathode material of the sodium ion battery is significantly improved, and the cycle performance of the material is significantly improved.
  • the preparation method of the anode material for a sodium ion battery provided by the present invention has simple process steps, readily available raw materials, easy realization, and is suitable for large-scale production and application.
  • Fig. 1 is the SEM image of the positive electrode material of sodium ion battery obtained in Example 1 of the present invention
  • Fig. 2 is the XRD pattern of the positive electrode material of sodium ion battery obtained in Example 1 of the present invention
  • Fig. 3 is the EDS figure of the positive electrode material of sodium ion battery obtained in Example 1 of the present invention.
  • Fig. 4 is the EDS figure of the positive electrode material of sodium ion battery that comparative example 1 of the present invention obtains;
  • Fig. 5 is the first charge-discharge curve of the sodium-ion battery positive electrode material obtained in Example 1 of the present invention assembled into a battery;
  • FIG. 6 is a cycle curve of a battery assembled from the cathode material of the sodium ion battery obtained in Example 1 of the present invention.
  • the present invention adopts the following method to prepare the anode material of sodium ion battery:
  • the saggar containing the cleaned product was placed in a muffle furnace, the calcination temperature was 700 °C, and the heating rate was 3.5 °C/min.
  • the positive electrode material of sodium ion battery P2-Na 0.67 Ni 0.33 Mn 0.67 O 2 was obtained.
  • the sodium ion battery positive electrode material has a layered structure, as shown in FIG. 1 , the sodium ion battery positive electrode material is spherical particles with a particle size of 1-5 ⁇ m; the tap density of the sodium ion battery positive electrode material is 1.2 g /cm 3 , the specific surface area was 0.833 m 2 /g.
  • the XRD pattern of the cathode material of the sodium ion battery is shown in FIG. 2 . It can be seen from FIG. 2 that the obtained product has strong peaks and no impurity peaks; the EDS diagram of the cathode material of the sodium ion battery is shown in FIG. 3 .
  • the present invention adopts the following method to prepare the anode material of sodium ion battery:
  • the saggar containing the cleaned product was placed in a muffle furnace, the calcination temperature was 600 °C, and the heating rate was 2 °C/min.
  • the positive electrode material P2-Na 0.85 Ni 0.4 Co 0.6 O 2 was obtained for the sodium ion battery.
  • the positive electrode material of the sodium ion battery has a layered structure, and the positive electrode material of the sodium ion battery is spherical particles with a particle size of 1-5 ⁇ m; the tap density of the positive electrode material of the sodium ion battery is 1.0 g/cm 3 .
  • the surface area was 0.786 m 2 /g.
  • the present invention adopts the following method to prepare the anode material of sodium ion battery:
  • the saggar containing the cleaned product is placed in a muffle furnace, the calcination temperature is 800 °C, the heating rate is 3 °C/min, and under the atmosphere of compressed air, high temperature calcination is carried out for 6h, and it is naturally cooled to room temperature, that is,
  • the cathode material P2-Na 0.8 Ni 0.3 Mn 0.7 O 2 was obtained for the sodium ion battery.
  • the positive electrode material of the sodium ion battery has a layered structure, and the positive electrode material of the sodium ion battery is spherical particles with a particle size of 1-5 ⁇ m; the tap density of the positive electrode material of the sodium ion battery is 1.1 g/cm 3 , and the specific surface area is 1.1 g/cm 3 . is 0.815m 2 /g.
  • the present invention adopts the following method to prepare the anode material of sodium ion battery:
  • the saggar containing the cleaned product was placed in a muffle furnace, the calcination temperature was 600 °C, the heating rate was 4 °C/min, and the calcination was carried out at high temperature for 15 h under the atmosphere of compressed air, and cooled to room temperature naturally, that is, The positive electrode material P2-Na 0.67 Ni 0.33 Cr 0.67 O 2 was obtained for the sodium ion battery.
  • the positive electrode material of the sodium ion battery has a layered structure, and the positive electrode material of the sodium ion battery is spherical particles with a particle size of 1-5 ⁇ m; the tap density of the positive electrode material of the sodium ion battery is 1.2 g/cm 3 , and the specific surface area is 1.2 g/cm 3 . is 0.763m 2 /g.
  • the present invention adopts the following method to prepare the anode material of sodium ion battery:
  • the saggar containing the cleaned product is placed in a muffle furnace, the calcination temperature is 1000 °C, the heating rate is 5 °C/min, and the calcination is carried out at high temperature for 5 hours under the atmosphere of compressed air, and then naturally cooled to room temperature, that is,
  • the positive electrode material P2-Na 0.67 Ni 0.33 Fe 0.67 O 2 was obtained for the sodium ion battery.
  • the positive electrode material of the sodium ion battery has a layered structure, and the positive electrode material of the sodium ion battery is spherical particles with a particle size of 1-5 ⁇ m; the tap density of the positive electrode material of the sodium ion battery is 1.2 g/cm 3 , and the specific surface area is 1.2 g/cm 3 . is 0.802m 2 /g.
  • the present invention adopts the following method to prepare the anode material of sodium ion battery:
  • the saggar containing the cleaned product was placed in a muffle furnace, the calcination temperature was 700 °C, the heating rate was 2.5 °C/min, and the calcination was carried out at a high temperature for 8 hours in a compressed air atmosphere, and naturally cooled to room temperature, that is, The positive electrode material P2-Na 0.67 Ni 0.33 Co 0.67 O 2 was obtained for the sodium ion battery.
  • the positive electrode material of the sodium ion battery has a layered structure, and the positive electrode material of the sodium ion battery is spherical particles with a particle size of 1-5 ⁇ m; the tap density of the positive electrode material of the sodium ion battery is 1.1 g/cm 3 , and the specific surface area is 1.1 g/cm 3 . is 0.731m 2 /g.
  • the present invention adopts the following method to prepare the anode material of sodium ion battery:
  • the saggar containing the cleaned product was placed in a muffle furnace, the calcination temperature was 700 °C, and the heating rate was 3.5 °C/min.
  • a sodium-ion battery positive electrode material P2-Na 0.67 Ni 0.33 Mn 0.67 O 2 was obtained, the tap density of the sodium ion battery positive electrode material was 0.9 g/cm 3 , and the specific surface area was 0.528 m 2 /g; the sodium ion battery positive electrode
  • the EDS diagram of the material is shown in FIG. 4 , which, in conjunction with FIG. 3 , shows that the oxygen content of the sodium-ion battery cathode material of Example 1 of the present application is reduced, indicating that the high voltage of the present application can significantly reduce the oxygen content of the sodium-ion battery cathode material. .
  • the present invention adopts the following method to prepare the anode material of sodium ion battery:
  • the saggar containing the cleaned product was placed in a muffle furnace, the calcination temperature was 700°C, and the heating rate was 3.5°C/min.
  • a sodium ion battery positive electrode material was obtained; the tap density of the sodium ion battery positive electrode material was 0.8 g/cm 3 , and the specific surface area was 0.583 m 2 /g.
  • the sodium ion battery cathode materials prepared in Examples 1-6 and Comparative Examples 1-2 were assembled into sodium ion batteries, and electrochemical performance tests were carried out on them.
  • the charge-discharge specific capacity was tested under the voltage range of 1.0-4.2V and the current density of 0.1C. In the voltage range of 1.0 to 4.2V, the current density of 1C was carried out for 100 cycles of discharge tests.
  • the test structure is shown in Table 1.
  • the initial charge-discharge curve and cycle curve of the P2-Na 0.67 Ni 0.33 Mn 0.67 O 2 assembled sodium-ion battery obtained in Example 1 are shown in Figure 5 and Figure 6, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

提供了一种钠离子电池正极材料及其制备方法、钠离子电池,钠离子电池正极材料的化学式为NaxNiyM1-yO2,其中,0.5<x<1,0.1<y<0.5,M选自Mn、Fe、Co、V、Cu、Cr和Ti中的至少一种;钠离子电池正极材料为类球形颗粒,具有层状结构。钠离子电池正极材料具有良好的充放电比容量和循环性能;制备方法通过控制前驱体混合液在高温高压的条件下进行反应,有效地减少钠离子电池正极材料层状结构的层间氧含量,明显提高了材料的循环性能。制备工艺步骤简单,原料易得,易于实现,适宜规模化生产应用。

Description

一种钠离子电池正极材料及其制备方法、钠离子电池 技术领域
本发明属于钠离子电池的技术领域,尤其涉及一种钠离子电池正极材料及其制备方法、钠离子电池。
背景技术
近年来,中国新能源汽车产销量持续增长,稳居世界首位。但传统铅酸电池、镍镉电池能效较低且污染严重,锂离子电池成本高且安全性有待提升,随着新能源汽车市场需求量激增,难以满足市场需求。由于钠离子电池具有高安全、低成本、环境友好等优点,深受研究学者们的青睐,促进了钠离子电池在动力电池方面的应用。正负极材料、电解液和隔膜是组成钠离子电池的重要组成部分,其中正极材料起着至关重要的作用。
钠离子电池正极材料具有代表性的有层状过渡金属氧化物、普鲁士蓝类似物和聚阴离子类正极材料等。普鲁士蓝类似物具有三维的钠离子嵌脱通道可以供离子半径较大的钠离子进行嵌脱,但在材料之中存在着大量的空位,这些空位会在材料嵌脱钠离子的过程中引起材料结构的塌陷;此外材料之中还存在着大量的配位水,这些水分子也将影响材料的性能。聚阴离子类材料框架结构稳定,表现出优异的结构稳定性,同时聚阴离子的诱导效应也能进一步提升材料的工作电压;但聚阴离子三维结构无法提供更多的Na +嵌入位点,造成这类材料比容量较低,另外Na +在三维隧道中的迁移也表现出较慢的反应动力学。
层状过渡金属氧化物因其具有可逆的离子脱嵌能力和稳定的层状结构,其有利于层与层之间插入其他离子或分子,因而是目前钠离子电池正极材料的研究热点之一,层状氧化物正极材料虽理论比容量 高且Na +在层中的二维扩散较快,但材料电化学循环性能较差。因此,寻找一种循环性能更好的钠离子电池正极材料对于本领域有重要的意义。
发明内容
本发明的目的就是针对上述问题,提供一种钠离子电池正极材料及其制备方法、钠离子电池,该钠离子电池正极材料具有层状结构,且为类球形颗粒,具有较高的比表面积和振实密度,具有较高的充放电比容量和能量密度及优异的循环性能;该制备方法通过控制前驱体混合液在高温高压的条件下进行反应,有效减少了钠离子电池正极材料层状结构的层间氧含量,明显提高了材料的循环性能。
根据本申请的一个方面,提供了一种钠离子电池正极材料,所述钠离子电池正极材料的化学式为Na xNi yM 1-yO 2,其中,0.5<x<1,0.1<y<0.5,M选自Mn、Fe、Co、V、Cu、Cr和Ti中的至少一种;
所述钠离子电池正极材料为类球形颗粒,所述钠离子电池正极材料具有层状结构。
进一步的,0.6<x<0.9,0.2<y<0.4,M选自Mn、Fe、Co和Cr中的至少一种;
优选的,0.8<x<0.85,0.3<y<0.35,M为Mn。
进一步的,所述类球形颗粒的粒径为0.5~10μm;优选的,所述类球形颗粒的粒径为1~5μm;优选的,所述钠离子电池正极材料的比表面积为0.6~1.0m 2/g;优选的,所述钠离子电池正极材料的振实密度1.0~1.3m 2/g;优选的,所述钠离子电池正极材料的物相为P2相。
根据本申请的另一个方面,还提供了所述的钠离子电池正极材料的制备方法,该方法包括以下步骤:
(1)将钠盐、镍盐和M盐的盐溶液混合,得到前驱体混合液; 其中钠盐、镍盐和M盐中的钠原子、镍原子和M原子的摩尔比为0.5~1:0.1~0.5:0.5~0.9;M选自Mn、Fe、Co、V、Cu、Cr和Ti中的至少一种;
(2)将所述前驱体混合液在压力5~50MPa、温度120~200℃下反应5~20h,得到生成物;
(3)将所述生成物煅烧后,得到所述钠离子电池正极材料。
本申请通过将前驱体在高温高压条件下反应,在高温条件下,材料中氧离子处于活跃状态,加上反应体系处于高压状态,氧离子易于从材料的层间和缺陷处游离出来形成氧气,有效减少层间氧含量,削弱了氧离子与氧离子的相互作用,形成稳定的产物。
进一步的,步骤(1)中,所述钠盐选自碳酸钠、硝酸钠和醋酸钠中的至少一种;
优选的,所述镍盐选自二价镍盐;
优选的,所述二价镍盐选自硫酸镍、氯化镍和硝酸镍中的至少一种;
优选的,所述M盐选自硫酸盐、氯化盐和硝酸盐中的至少一种;
优选的,所述盐溶液中的溶剂选自水、乙醇和丙酮中至少一种。
进一步的,步骤(2)中,将所述前驱体混合液在压力10~25MPa、温度150~180℃下反应8~15h;
优选的,步骤(2)中,将所述前驱体混合液在压力15~20MPa、温度160~170℃下反应10~12h。
进一步的,步骤(2)中,将所述前驱体混合液置于5~50MPa的高压反应釜中,并密封高压反应釜,然后将高压反应釜加热至120~200℃,使前驱体混合液反应;
优选的,所述加热选自电加热和油浴加热中的至少一种;
优选的,所述加热为油浴加热。
进一步的,步骤(3)中,将所述生成物煅烧前,还包括将生成物洗涤、干燥的步骤;
优选的,所述洗涤包括使用去离子水和乙醇进行多次清洗;
优选的,所述干燥的温度为80~100℃,时间为5~10min。
进一步的,步骤(3)中,所述煅烧的温度为600~1000℃,时间为5~15h;
优选的,所述煅烧的温度为700~800℃,时间为6~10h;
优选的,所述煅烧的氛围为压缩空气氛围;
优选的,所述煅烧过程中,以2~5℃/min的速率升温至600~1000℃;
优选的,步骤(3)中,还包括将所述煅烧后的产物进行冷却;
优选的,所述冷却为自然冷却至室温。
根据本申请的另一个方面,还提供了一种钠离子电池,所述钠离子电池包含上述任一项所述的钠离子电池正极材料、和上述任一项所述的制备方法制得的钠离子电池正极材料中的至少一种。
根据本申请的另一个方面,还提供了石墨烯包覆的石墨材料在作为锂离子电池负极材料中的应用。
本发明的有益效果包括但不限于:
(1)本发明提供的钠离子电池正极材料,所述钠离子电池正极材料具有层状结构,且为类球形颗粒,具有较高的比表面积和振实密度,具有较高的充放电比容量和能量密度及优异的循环性能。
(2)本发明提供的钠离子电池正极材料的制备方法,控制前驱体混合液在高温高压的条件下进行反应,提高了钠离子电池正极材料层状结构的比表面积和振实密度,有效减少了钠离子电池正极材料层 状结构的层间氧含量,明显提高了材料的循环性能。
(3)本发明提供的钠离子电池正极材料的制备方法,工艺步骤简单,原料易得,易于实现,适宜规模化生产应用。
附图说明
图1为本发明实施例1得到的钠离子电池正极材料的SEM图;
图2为本发明实施例1得到的钠离子电池正极材料的XRD图;
图3为本发明实施例1得到的钠离子电池正极材料的EDS图;
图4为本发明对比例1得到的钠离子电池正极材料的EDS图;
图5为本发明实施例1得到的钠离子电池正极材料组装成电池的首次充放电曲线;
图6为本发明实施例1得到的钠离子电池正极材料组装成电池的循环曲线。
具体实施方式
为了更清楚的阐释本申请的整体构思,下面以实施例的方式进行详细说明。在下文的描述中,给出了大量具体的细节以便提供对本申请更为彻底的理解。然而,对于本领域技术人员来说是显而易见的,本申请可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本申请发生混淆,对于本领域公知的一些技术特征未进行描述。
如未特殊说明,在下述实施例中的原料和试剂均可通过商业途径购得。
实施例1
本发明采用如下方法制备钠离子电池正极材料:
(1)将55g CH 3COONa、82.1g(CH 3COO) 2Ni·4H 2O与164.2g(CH 3COO) 2Mn·4H 2O(Na、Ni、Mn的摩尔比为0.67:0.33:0.67)分别 加入到1L乙醇中,得到乙酸钠溶液、醋酸镍溶液和醋酸锰溶液;然后将乙酸钠溶液、醋酸镍溶液和醋酸锰溶液混匀置于高压反应釜中,密封好高压反应釜;
(2)控制高压反应釜的压力为15MPa,将高压反应釜在160℃的油浴锅中反应10h;
(3)将生成物分别进行水洗、乙醇洗各三次,在喷雾干燥机中温度80℃下干燥10min;生成物经过水洗、醇洗后,有效降低了生成物的残碱,提高了材料在空气中的稳定性;
(4)将盛有清洗后产物的匣钵置于马弗炉中,煅烧温度为700℃,升温速率为3.5℃/min,在压缩空气氛围下,进行高温煅烧8h,自然冷却至室温,即得钠离子电池正极材料P2-Na 0.67Ni 0.33Mn 0.67O 2
所述钠离子电池正极材料具有层状结构,如图1所示,所述钠离子电池正极材料为粒径1~5μm的类球形颗粒;所述钠离子电池正极材料的振实密度为1.2g/cm 3,比表面积为0.833m 2/g。
所述钠离子电池正极材料的XRD图如图2所示。从图2看出,制得产品的峰强且无杂峰;所述钠离子电池正极材料的EDS图如图3所示。
实施例2
本发明采用如下方法制备钠离子电池正极材料:
(1)将72.25g NaNO 3、105.2g NiSO 4·6H 2O与174.6g Co(NO 3) 2(Na、Ni、Co的摩尔比为0.85:0.4:0.6)分别加入到1L乙醇中,得到硝酸钠溶液、硫酸镍溶液和硝酸钴溶液;然后将硝酸钠溶液、硫酸镍溶液和硝酸钴溶液混匀置于高压反应釜中,密封好高压反应釜;
(2)控制高压反应釜的压力为20MPa,将高压反应釜在170℃的油浴锅中反应12h;
(3)将生成物分别进行水洗、乙醇洗各两次,在喷雾干燥机中温度100℃下干燥5min;
(4)将盛有清洗后产物的匣钵置于马弗炉中,煅烧温度为600℃,升温速率为2℃/min,在压缩空气氛围下,进行高温煅烧10h,自然冷却至室温,即得钠离子电池正极材料P2-Na 0.85Ni 0.4Co 0.6O 2
所述钠离子电池正极材料具有层状结构,所述钠离子电池正极材料为粒径1~5μm的类球形颗粒;所述钠离子电池正极材料的的振实密度为1.0g/cm 3,比表面积为0.786m 2/g。
实施例3
本发明采用如下方法制备钠离子电池正极材料:
(1)将68g NaNO 3、54.8g Ni(NO 3) 2与88.1g MnCl 2(Na、Ni、Mn的摩尔比为0.8:0.3:0.7)分别加入到1L乙醇中,得到硝酸钠溶液、硝酸镍溶液和氯化锰溶液;然后将硝酸钠溶液、硝酸镍溶液和氯化锰溶液混匀置于高压反应釜中,密封好高压反应釜;
(2)控制高压反应釜的压力为10MPa,将高压反应釜在180℃的油浴锅中反应8h;
(3)将生成物分别进行水洗、乙醇洗各三次,在喷雾干燥机中温度90℃下干燥8min;
(4)将盛有清洗后产物的匣钵置于马弗炉中,煅烧温度为800℃,升温速率为3℃/min,在压缩空气氛围下,进行高温煅烧6h,自然冷却至室温,即得钠离子电池正极材料P2-Na 0.8Ni 0.3Mn 0.7O 2
所述钠离子电池正极材料具有层状结构,所述钠离子电池正极材料为粒径1~5μm的类球形颗粒;所述钠离子电池正极材料的振实密度为1.1g/cm 3,比表面积为0.815m 2/g。
实施例4
本发明采用如下方法制备钠离子电池正极材料:
(1)将35.5g Na 2CO 3、42.8g NiCl 2与159.47g Cr(NO 3) 2(Na、Ni、Cr的摩尔比为0.67:0.33:0.67)分别加入到1L乙醇中,得到碳酸钠溶液、氯化镍溶液和硝酸铬溶液;然后将碳酸钠溶液、氯化镍溶液和硝酸铬溶液混匀置于高压反应釜中,密封好高压反应釜;
(2)控制高压反应釜的压力为25MPa,将高压反应釜在150℃的油浴锅中反应15h;
(3)将生成物分别进行水洗、乙醇洗各三次,在喷雾干燥机中温度80℃下干燥10min;
(4)将盛有清洗后产物的匣钵置于马弗炉中,煅烧温度为600℃,升温速率为4℃/min,在压缩空气氛围下,进行高温煅烧15h,自然冷却至室温,即得钠离子电池正极材料P2-Na 0.67Ni 0.33Cr 0.67O 2
所述钠离子电池正极材料具有层状结构,所述钠离子电池正极材料为粒径1~5μm的类球形颗粒;所述钠离子电池正极材料的振实密度为1.2g/cm 3,比表面积为0.763m 2/g。
实施例5
本发明采用如下方法制备钠离子电池正极材料:
(1)将56.95g NaNO 3、60.3g Ni(NO 3) 2与133.95g Fe 2(SO 4) 3(Na、Ni、Fe的摩尔比为0.67:0.33:0.67)分别加入到1L乙醇中,分别得到硝酸钠溶液、硝酸镍溶液和硫酸铁溶液;然后将硝酸钠溶液、硝酸镍溶液和硫酸铁溶液混匀置于高压反应釜中,密封好高压反应釜;
(2)控制高压反应釜的压力为5MPa,将高压反应釜在120℃的油浴锅中反应20h;
(3)将生成物分别进行水洗、乙醇洗各三次,在喷雾干燥机中温度85℃下干燥6min;
(4)将盛有清洗后产物的匣钵置于马弗炉中,煅烧温度为1000℃,升温速率为5℃/min,在压缩空气氛围下,进行高温煅烧5h,自然冷却至室温,即得钠离子电池正极材料P2-Na 0.67Ni 0.33Fe 0.67O 2
所述钠离子电池正极材料具有层状结构,所述钠离子电池正极材料为粒径1~5μm的类球形颗粒;所述钠离子电池正极材料的振实密度为1.2g/cm 3,比表面积为0.802m 2/g。
实施例6
本发明采用如下方法制备钠离子电池正极材料:
(1)将35.5g Na 2CO 3、60.3g Ni(NO 3) 2与87g CoCl 2(Na、Ni、Mn的摩尔比为0.67:0.33:0.67)分别加入到1L乙醇中,得到碳酸钠溶液、硝酸镍溶液和氯化钴溶液;然后将碳酸钠溶液、硝酸镍溶液和氯化钴溶液混匀置于高压反应釜中,密封好高压反应釜;
(2)控制高压反应釜的压力为50MPa,将高压反应釜在120℃的油浴锅中反应10h;
(3)将生成物分别进行水洗、乙醇洗各两次,在喷雾干燥机中温度90℃下干燥5min;
(4)将盛有清洗后产物的匣钵置于马弗炉中,煅烧温度为700℃,升温速率为2.5℃/min,在压缩空气氛围下,进行高温煅烧8h,自然冷却至室温,即得钠离子电池正极材料P2-Na 0.67Ni 0.33Co 0.67O 2
所述钠离子电池正极材料具有层状结构,所述钠离子电池正极材料为粒径1~5μm的类球形颗粒;所述钠离子电池正极材料的振实密度为1.1g/cm 3,比表面积为0.731m 2/g。
对比例1
本发明采用如下方法制备钠离子电池正极材料:
(1)55g CH 3COONa、82.1g(CH 3COO) 2Ni·4H 2O与164.2g (CH 3COO) 2Mn·4H 2O(Na、Ni、Mn的摩尔比为0.67:0.33:0.67)分别加入到1L乙醇中,得到乙酸钠溶液、醋酸镍溶液和醋酸锰溶液;然后将乙酸钠溶液、醋酸镍溶液和醋酸锰溶液混匀置于反应釜中;
(2)将反应釜在160℃的油浴锅中反应10h;
(3)将生成物分别进行水洗、乙醇洗各三次,在喷雾干燥机中温度80℃下干燥10min。
(4)将盛有清洗后产物的匣钵置于马弗炉中,煅烧温度为700℃,升温速率为3.5℃/min,在压缩空气氛围下,进行高温煅烧8h,自然冷却至室温,即得钠离子电池正极材料P2-Na 0.67Ni 0.33Mn 0.67O 2,所述钠离子电池正极材料的振实密度为0.9g/cm 3,比表面积为0.528m 2/g;所述钠离子电池正极材料的EDS图如图4所示,结合图3所示,说明本申请实施例1的钠离子电池正极材料的氧含量有降低,表明本申请的高压能明显降低钠离子电池正极材料的氧含量。
对比例2
本发明采用如下方法制备钠离子电池正极材料:
(1)55g CH 3COONa、82.1g(CH 3COO) 2Ni·4H 2O与164.2g(CH 3COO) 2Mn·4H 2O(Na、Ni、Mn的摩尔比为0.67:0.33:0.67)分别加入到1L乙醇中,得到乙酸钠溶液、醋酸镍溶液和醋酸锰溶液;然后将乙酸钠溶液、醋酸镍溶液和醋酸锰溶液混匀置于高压反应釜中,密封好高压反应釜;
(2)控制高压反应釜的压力为15MPa,将高压反应釜在50℃的油浴锅中反应10h;
(3)将生成物分别进行水洗、乙醇洗各三次,在喷雾干燥机中温度80℃下干燥10min。
(4)将盛有清洗后产物的匣钵置于马弗炉中,煅烧温度为700℃, 升温速率为3.5℃/min,在压缩空气氛围下,进行高温煅烧8h,自然冷却至室温,即得钠离子电池正极材料;所述钠离子电池正极材料的振实密度为0.8g/cm 3,比表面积为0.583m 2/g。
将实施例1-6和对比例1-2制备的钠离子电池正极材料组装钠离子电池,并对其进行电化学性能测试。在电压范围为1.0~4.2V,电流密度0.1C下,测试其充放电比容量。在电压范围为1.0~4.2V,电流密度1C进行循环100周的放电测试,测试结构如表1所示。实施例1得到的P2-Na 0.67Ni 0.33Mn 0.67O 2组装钠离子电池的首次充放电曲线及循环曲线分别如图5和图6所示。
表1电池性能测试结果
Figure PCTCN2021096811-appb-000001
由表1可得,本申请实施例制得的钠离子电池正极材料所组装的钠离子电池的充、放电比容量和能量密度都较高,相较于对比例1~2,100周循环后容量保持率有了显著提高,尤其是实施例1中的100周循环后容量保持率达到103.5%。这主要是由于本申请的高温高压条件,提高了所得钠离子电池正极材料的振实密度和比表面积,降低了 所得钠离子电池正极材料的层间氧含量,从而提高了材料的电化学循环性能。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述,仅为本申请的实施例而已,本申请的保护范围并不受这些具体实施例的限制,而是由本申请的权利要求书来确定。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的技术思想和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (29)

  1. 一种钠离子电池正极材料,其特征在于,所述钠离子电池正极材料的化学式为Na xNi yM 1-yO 2,其中,0.5<x<1,0.1<y<0.5,M选自Mn、Fe、Co、V、Cu、Cr和Ti中的至少一种;
    所述钠离子电池正极材料为类球形颗粒,所述钠离子电池正极材料具有层状结构。
  2. 根据权利要求1所述的钠离子电池正极材料,其特征在于,0.6<x<0.9,0.2<y<0.4,M选自Mn、Fe、Co和Cr中的至少一种。
  3. 根据权利要求2所述的钠离子电池正极材料,其特征在于,0.8<x<0.85,0.3<y<0.35,M为Mn。
  4. 根据权利要求1所述的钠离子电池正极材料,其特征在于,所述类球形颗粒的粒径为0.5~10μm。
  5. 根据权利要求4所述的钠离子电池正极材料,其特征在于,所述类球形颗粒的粒径为1~5μm。
  6. 根据权利要求1所述的钠离子电池正极材料,其特征在于,所述钠离子电池正极材料的物相为P2相;
  7. 根据权利要求1所述的钠离子电池正极材料,其特征在于,所述钠离子电池正极材料的比表面积为0.6~1.0m 2/g;
  8. 根据权利要求1所述的钠离子电池正极材料,其特征在于,所述钠离子电池正极材料的振实密度1.0~1.3m 2/g。
  9. 一种权利要求1-8任一项所述的钠离子电池正极材料的制备方法,其特征在于,该方法包括以下步骤:
    (1)将钠盐、镍盐和M盐的盐溶液混合,得到前驱体混合液;其中钠盐、镍盐和M盐中的钠原子、镍原子和M原子的摩尔比为0.5~1:0.1~0.5:0.5~0.9,M选自Mn、Fe、Co、V、Cu、Cr和Ti中的至少一种;
    (2)将所述前驱体混合液在压力5~50MPa、温度120~200℃下反应5~20h,得到生成物;
    (3)将所述生成物煅烧后,得到所述钠离子电池正极材料。
  10. 根据权利要求9所述的钠离子电池正极材料的制备方法,其特征在于,步骤(1)中,所述钠盐选自碳酸钠、硝酸钠和醋酸钠中的至少一种。
  11. 根据权利要求9所述的钠离子电池正极材料的制备方法,其特征在于,所述镍盐选自二价镍盐。
  12. 根据权利要求11所述的钠离子电池正极材料的制备方法,其特征在于,所述二价镍盐选自硫酸镍、氯化镍和硝酸镍中的至少一种。
  13. 根据权利要求9所述的钠离子电池正极材料的制备方法,其特征在于,所述M盐选自硫酸盐、氯化盐和硝酸盐中的至少一种。
  14. 根据权利要求9所述的钠离子电池正极材料的制备方法,其特征在于,所述盐溶液中的溶剂选自水、乙醇和丙酮中至少一种。
  15. 根据权利要求9所述的钠离子电池正极材料的制备方法,其特征在于,步骤(2)中,将所述前驱体混合液在压力10~25MPa、温度150~180℃下反应8~15h。
  16. 根据权利要求15所述的钠离子电池正极材料的制备方法,其特征在于,步骤(2)中,将所述前驱体混合液在压力15~20MPa、温度160~170℃下反应10~12h。
  17. 根据权利要求9所述的钠离子电池正极材料的制备方法,其特征在于,步骤(2)中,将所述前驱体混合液置于5~50MPa的高压反应釜中,并密封高压反应釜,然后将高压反应釜加热至120~200℃,使前驱体混合液反应。
  18. 根据权利要求17所述的钠离子电池正极材料的制备方法,其特征在于,所述加热选自电加热和油浴加热中的至少一种。
  19. 根据权利要求18所述的钠离子电池正极材料的制备方法,其特征在,所述加热为油浴加热。
  20. 根据权利要求9所述的钠离子电池正极材料的制备方法,其特征在于,步骤(3)中,将所述生成物煅烧前,还包括将生成物洗涤、干燥的步骤。
  21. 根据权利要求20所述的钠离子电池正极材料的制备方法,其特征在于,所述洗涤包括使用去离子水和乙醇进行多次清洗。
  22. 根据权利要求20所述的钠离子电池正极材料的制备方法,其特征在于,所述干燥的温度为80~100℃,时间为5~10min。
  23. 根据权利要求9所述的钠离子电池正极材料的制备方法,其特征在于,步骤(3)中,所述煅烧的温度为600~1000℃,时间为5~15h。
  24. 根据权利要求23所述的钠离子电池正极材料的制备方法,其特征在于,所述煅烧的温度为700~800℃,时间为6~10h。
  25. 根据权利要求24所述的钠离子电池正极材料的制备方法,其特征在于,所述煅烧的氛围为压缩空气氛围。
  26. 根据权利要求20所述的钠离子电池正极材料的制备方法,其特征在于,所述煅烧过程中,以2~5℃/min的速率升温至600~1000℃。
  27. 根据权利要求9所述的钠离子电池正极材料的制备方法,其特征在于,步骤(3)中,还包括将所述煅烧后的产物进行冷却。
  28. 根据权利要求27所述的钠离子电池正极材料的制备方法,其特征在于,所述冷却为自然冷却至室温。
  29. 一种钠离子电池,其特征在于,所述钠离子电池包含权利要 求1~8任一项所述的钠离子电池正极材料、和权利要求9~28任一项所述的制备方法制得的钠离子电池正极材料中的至少一种。
PCT/CN2021/096811 2020-11-19 2021-05-28 一种钠离子电池正极材料及其制备方法、钠离子电池 WO2022105175A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011303645.4A CN112563484B (zh) 2020-11-19 2020-11-19 一种钠离子电池正极材料及其制备方法、钠离子电池
CN202011303645.4 2020-11-19

Publications (1)

Publication Number Publication Date
WO2022105175A1 true WO2022105175A1 (zh) 2022-05-27

Family

ID=75043971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096811 WO2022105175A1 (zh) 2020-11-19 2021-05-28 一种钠离子电池正极材料及其制备方法、钠离子电池

Country Status (2)

Country Link
CN (1) CN112563484B (zh)
WO (1) WO2022105175A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115172709A (zh) * 2022-07-26 2022-10-11 上海应用技术大学 一种高性能锶掺杂三元钠离子电池正极材料及其制备方法
CN115224254A (zh) * 2022-07-07 2022-10-21 中国科学技术大学 一种Cu、Zn和Mg共掺杂层状氧化物钠离子电池正极材料及其制备方法和应用
CN115504520A (zh) * 2022-09-27 2022-12-23 湖南金富力新能源股份有限公司 一种层状钠离子电池正极材料及其制备方法和应用
CN115881929A (zh) * 2023-03-03 2023-03-31 星恒电源股份有限公司 一种钠离子电池正极材料、其制备方法及应用
CN116283317A (zh) * 2023-03-08 2023-06-23 湖南金铠新材料科技股份有限公司 一种钠离子电池正极材料烧结用匣钵及其制备方法
CN116730406A (zh) * 2023-06-30 2023-09-12 天能电池集团股份有限公司 一种提高防潮性能的钠电池正极材料及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112563484B (zh) * 2020-11-19 2022-08-19 山东玉皇新能源科技有限公司 一种钠离子电池正极材料及其制备方法、钠离子电池
CN114005987B (zh) * 2021-10-26 2024-03-22 山东玉皇新能源科技有限公司 一种钠离子电池正极材料添加剂及钠离子电池正极材料
CN114256451A (zh) * 2021-11-29 2022-03-29 广东邦普循环科技有限公司 一种钠离子电池正极材料及其制备方法和应用
CN114394629A (zh) * 2021-12-24 2022-04-26 格林美股份有限公司 一种钠离子电池正极材料的制备方法
CN114927681B (zh) * 2022-05-16 2024-03-12 华侨大学 一种p2型五元高熵钠层状正极材料及其制备方法和应用
CN115000399B (zh) * 2022-05-25 2023-07-25 江苏聚烽新能源科技有限公司 一种类球状钠离子电池正极材料及其制备方法和钠离子电池
CN115714178A (zh) * 2022-11-15 2023-02-24 湖南法恩莱特新能源科技有限公司 一种钠离子电池正极材料及其制备方法、钠离子电池
CN116143192A (zh) * 2023-02-21 2023-05-23 深圳华钠新材有限责任公司 嵌钠层状过渡金属氧化物材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102769137A (zh) * 2012-08-02 2012-11-07 厦门钨业股份有限公司 一种尖晶石或层状结构锂离子电池正极材料液相制备方法
CN108565457A (zh) * 2018-07-19 2018-09-21 东北大学秦皇岛分校 一种钠离子电池正极材料、其制备方法以及钠离子电池
CN108878864A (zh) * 2018-06-12 2018-11-23 华南理工大学 一种球形钠离子电池正极材料及其制备方法
CN108899538A (zh) * 2018-07-19 2018-11-27 东北大学秦皇岛分校 一种三元钠离子电池正极材料、其制备方法以及钠离子电池
US20190288326A1 (en) * 2018-03-17 2019-09-19 Massachusetts Institute Of Technology Sodium ion battery cathodes
CN111435741A (zh) * 2019-01-11 2020-07-21 宁德时代新能源科技股份有限公司 正极活性材料、正极极片及钠离子电池
CN112563484A (zh) * 2020-11-19 2021-03-26 山东玉皇新能源科技有限公司 一种钠离子电池正极材料及其制备方法、钠离子电池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2962346B1 (en) * 2013-02-27 2018-06-13 Umicore Doped sodium manganese oxide cathode material for sodium ion batteries
CN105226264B (zh) * 2014-06-16 2018-12-14 北京理工大学 一种钠离子电池富钠正极材料及其制备方法和钠离子电池
CN108987711B (zh) * 2018-07-19 2021-05-11 中南大学 一种球形钠离子电池正极四元材料及其制备方法
CN110071285B (zh) * 2019-04-18 2020-09-15 中南大学 钠离子电池正极材料及其制备方法与应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102769137A (zh) * 2012-08-02 2012-11-07 厦门钨业股份有限公司 一种尖晶石或层状结构锂离子电池正极材料液相制备方法
US20190288326A1 (en) * 2018-03-17 2019-09-19 Massachusetts Institute Of Technology Sodium ion battery cathodes
CN108878864A (zh) * 2018-06-12 2018-11-23 华南理工大学 一种球形钠离子电池正极材料及其制备方法
CN108565457A (zh) * 2018-07-19 2018-09-21 东北大学秦皇岛分校 一种钠离子电池正极材料、其制备方法以及钠离子电池
CN108899538A (zh) * 2018-07-19 2018-11-27 东北大学秦皇岛分校 一种三元钠离子电池正极材料、其制备方法以及钠离子电池
CN111435741A (zh) * 2019-01-11 2020-07-21 宁德时代新能源科技股份有限公司 正极活性材料、正极极片及钠离子电池
CN112563484A (zh) * 2020-11-19 2021-03-26 山东玉皇新能源科技有限公司 一种钠离子电池正极材料及其制备方法、钠离子电池

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115224254A (zh) * 2022-07-07 2022-10-21 中国科学技术大学 一种Cu、Zn和Mg共掺杂层状氧化物钠离子电池正极材料及其制备方法和应用
CN115224254B (zh) * 2022-07-07 2024-04-23 中国科学技术大学 一种Cu、Zn和Mg共掺杂层状氧化物钠离子电池正极材料及其制备方法和应用
CN115172709A (zh) * 2022-07-26 2022-10-11 上海应用技术大学 一种高性能锶掺杂三元钠离子电池正极材料及其制备方法
CN115504520A (zh) * 2022-09-27 2022-12-23 湖南金富力新能源股份有限公司 一种层状钠离子电池正极材料及其制备方法和应用
CN115881929A (zh) * 2023-03-03 2023-03-31 星恒电源股份有限公司 一种钠离子电池正极材料、其制备方法及应用
CN116283317A (zh) * 2023-03-08 2023-06-23 湖南金铠新材料科技股份有限公司 一种钠离子电池正极材料烧结用匣钵及其制备方法
CN116283317B (zh) * 2023-03-08 2023-10-24 湖南金铠新材料科技股份有限公司 一种钠离子电池正极材料烧结用匣钵及其制备方法
CN116730406A (zh) * 2023-06-30 2023-09-12 天能电池集团股份有限公司 一种提高防潮性能的钠电池正极材料及其制备方法

Also Published As

Publication number Publication date
CN112563484A (zh) 2021-03-26
CN112563484B (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
WO2022105175A1 (zh) 一种钠离子电池正极材料及其制备方法、钠离子电池
CN113258060B (zh) 一种钠离子电池高镍层状氧化物材料及其制备方法和应用
WO2023097982A1 (zh) 一种复合正极材料及其制备方法、正极片以及钠离子电池
WO2023097984A1 (zh) 一种正极材料及其制备方法、正极片以及钠离子电池
WO2020134048A1 (zh) 一种无钴富锂三元正极材料nma及其制备方法
CN101562245B (zh) 一种高倍率富锂正极材料的改性方法
WO2023169591A1 (zh) 含钠氧化物正极材料及其制备方法与应用、正极片及其应用
WO2024031913A1 (zh) 一种层状氧化物正极材料及其制备方法和钠离子电池
CN101499527B (zh) 一种硅酸铁锂正极材料的制备方法
CN108483516B (zh) 一种具有超晶格有序结构的锂离子电池正极材料及其合成方法
CN106960955B (zh) 钒硫化物包覆的锂离子电池三元正极材料及其制备方法
CN100544081C (zh) 一种纳米钛酸锂及其与二氧化钛的复合物的制备方法
CN105870438B (zh) 一种锂二次电池富锂正极复合材料及其制备方法
CN105449169A (zh) 锂离子电池正极材料、制备方法及锂离子电池
CN102569773B (zh) 用于锂离子二次电池的正极材料及其制备方法
CN106602024B (zh) 一种表面原位修饰型富锂材料及其制备方法
WO2017036069A1 (zh) 具有纳米线三维缠绕结构的v2o5空心微米线球及其制备方法和应用
CN106299344B (zh) 一种钠离子电池钛酸镍负极材料及其制备方法
WO2022089205A1 (zh) 一种掺杂型高镍三元材料及其制备方法
CN110233261A (zh) 一种单晶三元锂电池正极材料的制备方法及锂离子电池
WO2023093187A1 (zh) 一种钠离子电池正极材料及其制备方法和应用
WO2023071396A1 (zh) 钠离子电池正极材料及其制备方法和应用
CN103855372B (zh) 一种高锰复合正极材料及其制备方法
CN115763766A (zh) Na2MnPO4F包覆的O3型层状钠离子电池正极材料及其制备方法
CN114843469A (zh) 一种MgFe2O4改性的P2/O3型镍基层状钠离子电池正极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21893330

Country of ref document: EP

Kind code of ref document: A1