CN116283317B - 一种钠离子电池正极材料烧结用匣钵及其制备方法 - Google Patents

一种钠离子电池正极材料烧结用匣钵及其制备方法 Download PDF

Info

Publication number
CN116283317B
CN116283317B CN202310218925.2A CN202310218925A CN116283317B CN 116283317 B CN116283317 B CN 116283317B CN 202310218925 A CN202310218925 A CN 202310218925A CN 116283317 B CN116283317 B CN 116283317B
Authority
CN
China
Prior art keywords
sagger
ion battery
sintering
sodium ion
magnesia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310218925.2A
Other languages
English (en)
Other versions
CN116283317A (zh
Inventor
张毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Jinkai New Material Technology Co ltd
Original Assignee
Hunan Jinkai New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Jinkai New Material Technology Co ltd filed Critical Hunan Jinkai New Material Technology Co ltd
Priority to CN202310218925.2A priority Critical patent/CN116283317B/zh
Publication of CN116283317A publication Critical patent/CN116283317A/zh
Application granted granted Critical
Publication of CN116283317B publication Critical patent/CN116283317B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D5/00Supports, screens, or the like for the charge within the furnace
    • F27D5/0068Containers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/448Sulphates or sulphites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了钠离子电池正极材料烧结用匣钵及其制备方法。制备方法包括如下步骤:S1、将一定质量比的镁铝尖晶石颗粒、镁铝尖晶石细粉、镁锆砂细粉和硼砂进行混合得到混合料;S2、将一定质量比的碳酸氢铵溶液、氯化镁溶液、硫酸钾溶液和四氯化钛溶液分散混合得到混合液;S3、将混合料和混合液以一定质量比进行混合、密封陈放后得到生坯;S4、将步骤S3得到的生坯机压成型后,在一定温度下干燥一段时间后高温热处理一段时间,得到钠离子电池正极材料烧结用匣钵;其中,步骤S1和S2无先后顺序。本发明的制备方法工艺简单、生产成本低,用该方法制备的钠离子电池正极材料烧结用匣钵的烧结性能好、成品率高、抗侵蚀性强和热震稳定性高。

Description

一种钠离子电池正极材料烧结用匣钵及其制备方法
技术领域
本发明涉及钠离子电池技术领域,尤其涉及一种钠离子电池正极材料烧结用匣钵及其制备方法。
背景技术
钠离子电池是新能源电池中重要的组成部分,可应用于储能、消费及动力等领域(方学舟,吕景文,郑涛,等。钠离子电池正极材料的研究现状[J].电池,2021,51(2):201-204)。钠离子电池正极材料是影响其性能的关键因素,且成本占比也最高(丁玉寅,祝鹏浩,陆继鑫,等。钠离子电池正、负极材料研究进展[J].化工科技,2022,30(1):57-62)。自钠离子电池商业化量产以来,盛装钠离子电池正极材料的匣钵也得到了广泛的关注。
与锂离子电池正极材料不同,钠离子电池正极材料的碱性更强,在高温固相工艺中,低黏度的钠电正极前驱体对匣钵的侵蚀和渗透加剧,这导致了匣钵服役寿命的显著降低(王英男,孙辉。正极材料烧结过程产生匣钵结晶的研究[J].电源技术,2022,46(11):1249-1252)。
目前,对钠离子电池正极材料烧结用匣钵的开发报道较少,仍沿用锂电正极材料烧结用匣钵的材质体系——即以堇青石-莫来石/尖晶石形成的复合材质为主(翟鹏涛,刘明杨,周文英,等。镁铝尖晶石对煅烧LiNixCoyMnzO2正极材料用匣钵材料性能的影响[J].耐火材料,2021,55(2):102-106),虽其具有一定的优势,但堇青石-莫来石/尖晶石系匣钵在钠离子电池正极材料热处理过程中仍面临诸多问题,主要表现在以下几个方面:
(1)钠离子电池正极材料前驱体中钠源(碳酸钠或氢氧化钠)对匣钵的侵蚀更为严重,极易与匣钵本体中的酸性SiO2组分发生反应形成钠霞石,且在钠离子电池正极材料高温(800~1000℃)热处理过程中,该反应无法避免的持续进行,并引发近30~40%的体积膨胀,导致匣钵开裂损毁。
(2)钠离子电池正极材料的黏度低,高温下熔融呈液态,对堇青石-莫来石/尖晶石质匣钵的渗透能力更强,甚至直接穿透匣钵侧壁和底部而引发钠电正极材料的流失。
(3)堇青石-莫来石/尖晶石系匣钵在作为钠电正极材料烧结用匣钵在往复服役过程中,同时面临循环热应力的损毁导致匣钵的结构剥落,一方面污染正极材料,影响钠电正极材料的纯度及电化学性能;另一方面加速了匣钵的损毁。
(4)钠电正极材料中钠源化学反应活性高,热处理过程中还易与其它游离组分如游离Al2O3(f-Al2O3)、游离SiO2(f-SiO2)等反应形成偏铝酸钠或偏硅酸钠/硅酸钠等高膨胀物相,加速匣钵的开裂、剥落与损毁。
(5)匣钵的结合体系也是影响其服役性能的重要因素。匣钵属于定形烧成制品,既要求具备一定的生坯强度来保障烘烤脱水阶段的整体外观,又要具有良好的成品烧结强度。而传统结合体系(如糊精等)在匣钵烧结过程中逸出,留下孔隙,降低了匣钵的致密度,损害了匣钵的抗侵蚀性能;而强酸性结合剂(如磷酸、磷酸盐等)虽然高温烧成阶段不挥发,但又易与碱性钠源反应形成低熔相。含盐类结合剂(如纸浆废液等)又难以为匣钵提供良好的早期强度,导致匣钵在成型后开裂损毁,增大了匣钵的废品率。
发明内容
本发明的目的在于,针对现有技术的上述不足,提供一种工艺简单、生产成本低的钠离子电池正极材料烧结用匣钵的制备方法,用该方法制备的钠离子电池正极材料烧结用匣钵的烧结性能好、成品率高、抗侵蚀性强和热震稳定性高。
本发明的一种钠离子电池正极材料烧结用匣钵的制备方法,包括如下步骤:
S1、将一定质量比的镁铝尖晶石颗粒、镁铝尖晶石细粉、镁锆砂细粉和硼砂进行混合得到混合料;
S2、将一定质量比的碳酸氢铵溶液、氯化镁溶液、硫酸钾溶液和四氯化钛溶液分散混合得到混合液;
S3、将步骤S1得到的混合料和S2得到的混合液以一定质量比进行混合、密封陈放后得到生坯;
S4、将步骤S3得到的生坯机压成型后,在一定温度下干燥一段时间后高温热处理一段时间,得到钠离子电池正极材料烧结用匣钵;
其中,步骤S1和S2无先后顺序。
进一步的,步骤S1中,所述镁铝尖晶石颗粒、镁铝尖晶石细粉、镁锆砂细粉和硼砂的质量比为100∶(40~45)∶(8~15)∶(6~12)。
进一步的,步骤S2中,碳酸氢铵溶液、氯化镁溶液、硫酸钾溶液和四氯化钛溶液的质量比为100∶(50~80)∶(40~70)∶(20~30);其中,所述碳酸氢铵溶液的浓度为3~5mol/L;所述氯化镁溶液的浓度为2~3mol/L;所述硫酸钾溶液的浓度为3~4mol/L;所述四氯化钛溶液的浓度为1~3mol/L。
进一步的,步骤S2中,在60~70℃水浴加热条件下超声分散10~15分钟,得到混合液。
进一步的,步骤S3中,混合液占混合料的5~7wt%;搅拌15~20分钟,密封陈放6~8小时。
进一步的,步骤S4中,机压成型的压力为60~80MPa,干燥的温度为110~120℃,干燥的时间为4~8小时,热处理的温度为1200~1250℃,时间为3~6小时。
进一步的,所述镁铝尖晶石颗粒的粒度为0.2~2.5mm,其中粒度分别为[0.2mm,0.5mm)、[0.5mm,1.2mm)、[1.2mm,1.8mm)、[1.8mm,2.5mm)的颗粒质量比例为100∶(25~40)∶(15~18)∶(5~8);所述镁铝尖晶石颗粒的Al2O3含量为55~60wt%,MgO含量为38~40wt%。
进一步的,所述镁铝尖晶石细粉的粒度为70~80μm;所述镁铝尖晶石细粉的Al2O3含量为70~78wt%,MgO含量为20~22wt%。
进一步的,所述镁锆砂细粉的粒度为40~60μm;所述镁锆砂细粉的MgO含量为88~90wt%,ZrO2含量为8~10wt%。
进一步的,所述硼砂为工业纯。
一种采用上述的制备方法制备的钠离子电池正极材料烧结用匣钵。
由于采取上述技术方案,本发明与现有技术相比具有如下积极效果:
1、本发明所选用原料均是无机材料领域的常见组分,原料来源广,无特殊设备或技术要求,仅需将原料按配比混合均匀后压制、干燥和烧成,工艺过程简单,适宜于匣钵的工业化生产。
2、本发明利用可溶性钛盐、镁盐和钾盐组分在碳酸氢铵缓冲液中离子交换形成前驱体,与混合料充分接触后,在高温热处理过程中以镁源为基体,在基质中原位形成丰富的晶须,增强匣钵基体的结构韧性,提高匣钵的热震稳定性。
3、本发明以晶须的原位生长来强化骨料颗粒与基质细粉的结合,并通过其交错网络结构与形貌,增大匣钵的粗糙度,利用晶须的碱性组分(镁和钾)与碱性钠离子电池正极材料形成隔离,提高界面反应惰性,阻碍钠电正极材料的侵蚀和渗透。
4、本发明通过硼砂水解的B(OH)4 和羟基基团长链链接形成化学结合,为匣钵提供良好的早期强度,提高了匣钵制品的成品率,且在高温热处理过程中既无分解挥发,不降低匣钵的致密度,又能形成陶瓷相致密结合,同时增大匣钵材料体系的碱度,进一步提高匣钵的抗侵蚀性能。
5、本发明原料组分中无f-Al2O3或酸性SiO2组分等,避免钠离子电池正极材料中碱性钠源与匣钵的化学反应。此外,镁铝尖晶石及镁锆组分原料的热膨胀系数低,与钠电正极材料的润湿性差,从材料设计源头着手改善匣钵的抗侵蚀性,并有利于提高匣钵的结构稳定和抗剥落性。
6、本发明通过原料组分的颗粒级配与临界粒度级差形成紧密堆积,并利用硼砂的结合提供液相介质,促进晶须的原位生长发育和匣钵的烧结,显著降低了匣钵的烧结温度,有利于匣钵开发的节能环保。
本发明所制备的钠离子电池正极材料烧结用匣钵检测:成品率为95~98%,体积密度为2.68~2.76g/cm3,1100℃循环水冷5次热震稳定性实验残余抗折强度保持率为88~92%,1000℃×10h静态坩埚法抗渣实验侵蚀指数为1.2~1.6%。
因此,本发明具有工艺简单、生产成本低的特点,所制备的钠离子电池正极材料烧结用匣钵的烧结性能好、成品率高、抗侵蚀性强和热震稳定性高。
附图说明
图1为实施例2制备的匣钵微观结构SEM照片;
图2为Mg-B-O二元系相平衡;
图3为匣钵体系抗Na2O侵蚀反应的Factsage热力学。
具体实施方式
以下是本发明的具体实施例并结合附图,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
实施例1
本实施例的一种钠离子电池正极材料烧结用匣钵的制备方法,包括如下步骤:
S1、将一定质量比的镁铝尖晶石颗粒、镁铝尖晶石细粉、镁锆砂细粉和硼砂进行混合得到混合料;
S2、将一定质量比的碳酸氢铵溶液、氯化镁溶液、硫酸钾溶液和四氯化钛溶液分散混合得到混合液;
S3、将步骤S1得到的混合料和S2得到的混合液以一定质量比进行混合、密封陈放后得到生坯;
S4、将步骤S3得到的生坯机压成型后,在一定温度下干燥一段时间后高温热处理一段时间,得到钠离子电池正极材料烧结用匣钵;
其中,步骤S1和S2无先后顺序。
步骤S1中,所述镁铝尖晶石颗粒、镁铝尖晶石细粉、镁锆砂细粉和硼砂的质量比为100∶42∶13∶8。
步骤S2中,碳酸氢铵溶液、氯化镁溶液、硫酸钾溶液和四氯化钛溶液的质量比为100∶65∶45∶22;其中,所述碳酸氢铵溶液的浓度为3mol/L;所述氯化镁溶液的浓度为3mol/L;所述硫酸钾溶液的浓度为4mol/L;所述四氯化钛溶液的浓度为2mol/L。
步骤S2中,在65℃水浴加热条件下超声分散15分钟,得到混合液。
步骤S3中,混合液占混合料的5wt%;搅拌20分钟,密封陈放6小时。
步骤S4中,机压成型的压力为65MPa,干燥的温度为110℃,干燥的时间为6小时,热处理的温度为1230℃,时间为5小时。
镁铝尖晶石颗粒的粒度为0.2~2.5mm,其中粒度分别为[0.2mm,0.5mm)、[0.5mm,1.2mm)、[1.2mm,1.8mm)、[1.8mm,2.5mm)的颗粒质量比例为100∶28∶16∶6;所述镁铝尖晶石颗粒的Al2O3含量为55~60wt%,MgO含量为38~40wt%。
本实施例所制备的钠离子电池正极材料烧结用匣钵检测:成品率为96%,体积密度为2.72g/cm3,1100℃循环水冷5次热震稳定性实验残余抗折强度保持率为91%,1000℃×10h静态坩埚法抗渣实验侵蚀指数为1.3%。
实施例2
本实施例的一种钠离子电池正极材料烧结用匣钵的制备方法,包括如下步骤:
S1、将一定质量比的镁铝尖晶石颗粒、镁铝尖晶石细粉、镁锆砂细粉和硼砂进行混合得到混合料;
S2、将一定质量比的碳酸氢铵溶液、氯化镁溶液、硫酸钾溶液和四氯化钛溶液分散混合得到混合液;
S3、将步骤S1得到的混合料和S2得到的混合液以一定质量比进行混合、密封陈放后得到生坯;
S4、将步骤S3得到的生坯机压成型后,在一定温度下干燥一段时间后高温热处理一段时间,得到钠离子电池正极材料烧结用匣钵;
其中,步骤S1和S2无先后顺序。
步骤S1中,所述镁铝尖晶石颗粒、镁铝尖晶石细粉、镁锆砂细粉和硼砂的质量比为100∶40∶10∶6。
步骤S2中,碳酸氢铵溶液、氯化镁溶液、硫酸钾溶液和四氯化钛溶液的质量比为100∶72∶65∶24;其中,所述碳酸氢铵溶液的浓度为4mol/L;所述氯化镁溶液的浓度为3mol/L;所述硫酸钾溶液的浓度为3mol/L;所述四氯化钛溶液的浓度为1mol/L。
步骤S2中,在70℃水浴加热条件下超声分散12分钟,得到混合液。
步骤S3中,混合液占混合料的6wt%;搅拌18分钟,密封陈放7小时。
步骤S4中,机压成型的压力为60MPa,干燥的温度为120℃,干燥的时间为4小时,热处理的温度为1220℃,时间为6小时。
镁铝尖晶石颗粒的粒度为0.2~2.5mm,其中粒度分别为[0.2mm,0.5mm)、[0.5mm,1.2mm)、[1.2mm,1.8mm)、[1.8mm,2.5mm)的颗粒质量比例为100∶35∶18∶8;所述镁铝尖晶石颗粒的Al2O3含量为55~60wt%,MgO含量为38~40wt%。
本实施例所制备的钠离子电池正极材料烧结用匣钵检测:成品率为98%,体积密度为2.68g/cm3,1100℃循环水冷5次热震稳定性实验残余抗折强度保持率为89%,1000℃×10h静态坩埚法抗渣实验侵蚀指数为1.4%。
实施例3
本实施例的一种钠离子电池正极材料烧结用匣钵的制备方法,包括如下步骤:
S1、将一定质量比的镁铝尖晶石颗粒、镁铝尖晶石细粉、镁锆砂细粉和硼砂进行混合得到混合料;
S2、将一定质量比的碳酸氢铵溶液、氯化镁溶液、硫酸钾溶液和四氯化钛溶液分散混合得到混合液;
S3、将步骤S1得到的混合料和S2得到的混合液以一定质量比进行混合、密封陈放后得到生坯;
S4、将步骤S3得到的生坯机压成型后,在一定温度下干燥一段时间后高温热处理一段时间,得到钠离子电池正极材料烧结用匣钵;
其中,步骤S1和S2无先后顺序。
步骤S1中,所述镁铝尖晶石颗粒、镁铝尖晶石细粉、镁锆砂细粉和硼砂的质量比为100∶45∶9∶10。
步骤S2中,碳酸氢铵溶液、氯化镁溶液、硫酸钾溶液和四氯化钛溶液的质量比为100∶56∶55∶27;其中,所述碳酸氢铵溶液的浓度为3mol/L;所述氯化镁溶液的浓度为2mol/L;所述硫酸钾溶液的浓度为4mol/L;所述四氯化钛溶液的浓度为3mol/L。
步骤S2中,在70℃水浴加热条件下超声分散10分钟,得到混合液。
步骤S3中,混合液占混合料的7wt%;搅拌15分钟,密封陈放8小时。
步骤S4中,机压成型的压力为80MPa,干燥的温度为115℃,干燥的时间为5小时,热处理的温度为1200℃,时间为4小时。
镁铝尖晶石颗粒的粒度为0.2~2.5mm,其中粒度分别为[0.2mm,0.5mm)、[0.5mm,1.2mm)、[1.2mm,1.8mm)、[1.8mm,2.5mm)的颗粒质量比例为100∶25∶17∶7;所述镁铝尖晶石颗粒的Al2O3含量为55~60wt%,MgO含量为38~40wt%。
本实施例所制备的钠离子电池正极材料烧结用匣钵检测:成品率为97%,体积密度为2.75g/cm3,1100℃循环水冷5次热震稳定性实验残余抗折强度保持率为92%,1000℃×10h静态坩埚法抗渣实验侵蚀指数为1.2%。
图1为实施例2制备的匣钵微观结构SEM照片;从图中可以看出在匣钵中形成了大量的晶须,骨料颗粒形貌保持良好,晶须主要从基质中生长并交错形成网状结构。
图2为Mg-B-O二元系相平衡;从图中可以看出,在MgO基材料体系中B2O3的引入能够提供充分的液相介质环境,保障晶须的生长发育。
图3为匣钵体系抗Na2O侵蚀反应的Factsage热力学结果,从图中可以看到,匣钵材料体系抗侵蚀能力强,液相(slag)的形成量小,且固相Mg3B2O6(s)的形成与尖晶石固相(s)等一起,有效阻碍液相熔体的侵蚀与渗透。
以上未涉及之处,适用于现有技术。
虽然已经通过示例对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本发明的范围,本发明所属技术领域的技术人员可以对所描述的具体实施例来做出各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的方向或者超越所附权利要求书所定义的范围。本领域的技术人员应该理解,凡是依据本发明的技术实质对以上实施方式所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围。

Claims (10)

1.一种钠离子电池正极材料烧结用匣钵的制备方法,其特征在于,包括如下步骤:
S1、将一定质量比的镁铝尖晶石颗粒、镁铝尖晶石细粉、镁锆砂细粉和硼砂进行混合得到混合料;
S2、将一定质量比的碳酸氢铵溶液、氯化镁溶液、硫酸钾溶液和四氯化钛溶液分散混合得到混合液;
S3、将步骤S1得到的混合料和S2得到的混合液以一定质量比进行混合、密封陈放后得到生坯;
S4、将步骤S3得到的生坯机压成型后,在一定温度下干燥一段时间后高温热处理一段时间,得到钠离子电池正极材料烧结用匣钵;
其中,步骤S1和S2无先后顺序。
2.根据权利要求1所述的一种钠离子电池正极材料烧结用匣钵的制备方法,其特征在于,步骤S1中,所述镁铝尖晶石颗粒、镁铝尖晶石细粉、镁锆砂细粉和硼砂的质量比为100∶(40~45)∶(8~15)∶(6~12)。
3.根据权利要求1所述的一种钠离子电池正极材料烧结用匣钵的制备方法,其特征在于,步骤S2中,碳酸氢铵溶液、氯化镁溶液、硫酸钾溶液和四氯化钛溶液的质量比为100∶(50~80)∶(40~70)∶(20~30);其中,所述碳酸氢铵溶液的浓度为3~5mol/L;所述氯化镁溶液的浓度为2~3mol/L;所述硫酸钾溶液的浓度为3~4mol/L;所述四氯化钛溶液的浓度为1~3mol/L。
4.根据权利要求1所述的一种钠离子电池正极材料烧结用匣钵的制备方法,其特征在于,步骤S2中,在60~70℃水浴加热条件下超声分散10~15分钟,得到混合液。
5.根据权利要求1所述的一种钠离子电池正极材料烧结用匣钵的制备方法,其特征在于,步骤S3中,混合液占混合料的5~7wt%;搅拌15~20分钟,密封陈放6~8小时。
6.根据权利要求1所述的一种钠离子电池正极材料烧结用匣钵的制备方法,其特征在于,步骤S4中,机压成型的压力为60~80MPa,干燥的温度为110~120℃,干燥的时间为4~8小时,热处理的温度为1200~1250℃,时间为3~6小时。
7.根据权利要求1所述的一种钠离子电池正极材料烧结用匣钵的制备方法,其特征在于,所述镁铝尖晶石颗粒的粒度为0.2~2.5mm,其中粒度分别为[0.2mm,0.5mm)、[0.5mm,1.2mm)、[1.2mm,1.8mm)、[1.8mm,2.5mm)的颗粒质量比例为100∶(25~40)∶(15~18)∶(5~8);所述镁铝尖晶石颗粒的Al2O3含量为55~60wt%,MgO含量为38~40wt%。
8.根据权利要求1所述的一种钠离子电池正极材料烧结用匣钵的制备方法,其特征在于,所述镁铝尖晶石细粉的粒度为70~80μm;所述镁铝尖晶石细粉的Al2O3含量为70~78wt%,MgO含量为20~22wt%。
9.根据权利要求1所述的一种钠离子电池正极材料烧结用匣钵的制备方法,其特征在于,所述镁锆砂细粉的粒度为40~60μm;所述镁锆砂细粉的MgO含量为88~90wt%,ZrO2含量为8~10wt%。
10.一种采用权利要求1-9任一项所述的制备方法制备的钠离子电池正极材料烧结用匣钵。
CN202310218925.2A 2023-03-08 2023-03-08 一种钠离子电池正极材料烧结用匣钵及其制备方法 Active CN116283317B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310218925.2A CN116283317B (zh) 2023-03-08 2023-03-08 一种钠离子电池正极材料烧结用匣钵及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310218925.2A CN116283317B (zh) 2023-03-08 2023-03-08 一种钠离子电池正极材料烧结用匣钵及其制备方法

Publications (2)

Publication Number Publication Date
CN116283317A CN116283317A (zh) 2023-06-23
CN116283317B true CN116283317B (zh) 2023-10-24

Family

ID=86780984

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310218925.2A Active CN116283317B (zh) 2023-03-08 2023-03-08 一种钠离子电池正极材料烧结用匣钵及其制备方法

Country Status (1)

Country Link
CN (1) CN116283317B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010015296A2 (de) * 2008-08-06 2010-02-11 Carl Zeiss Smt Ag Transmittierendes optisches element aus magnesium-aluminium-spinell
CN102583585A (zh) * 2012-01-09 2012-07-18 安徽亚兰德新能源材料股份有限公司 一种掺杂Ti、Mg、Al的球形钴酸锂的制备工艺
CN103601521A (zh) * 2013-11-15 2014-02-26 瑞泰科技股份有限公司 低气孔方镁石-镁铝尖晶石-氧化锆烧结复合耐火材料及其生产工艺
CN104193368A (zh) * 2014-08-28 2014-12-10 洛阳利尔耐火材料有限公司 一种rh精炼炉用镁尖晶石砖及其制备方法
CN107285787A (zh) * 2017-07-28 2017-10-24 武汉科技大学 一种轻量化刚玉‑镁铝尖晶石耐火材料及其制备方法
CN112279662A (zh) * 2020-11-06 2021-01-29 湘潭海泡石科技有限公司 一种镁铝尖晶石-堇青石质煅烧锂电池正极材料用匣钵及其制备方法
CN114230371A (zh) * 2021-11-26 2022-03-25 汉川市石金科技有限公司 一种改善匣钵表面耐腐蚀性,提高使用寿命复合涂层
WO2022105175A1 (zh) * 2020-11-19 2022-05-27 山东玉皇新能源科技有限公司 一种钠离子电池正极材料及其制备方法、钠离子电池
WO2022127314A1 (zh) * 2020-12-15 2022-06-23 广东邦普循环科技有限公司 一种用于锂过渡金属氧化物烧结的匣钵及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010015296A2 (de) * 2008-08-06 2010-02-11 Carl Zeiss Smt Ag Transmittierendes optisches element aus magnesium-aluminium-spinell
CN102583585A (zh) * 2012-01-09 2012-07-18 安徽亚兰德新能源材料股份有限公司 一种掺杂Ti、Mg、Al的球形钴酸锂的制备工艺
CN103601521A (zh) * 2013-11-15 2014-02-26 瑞泰科技股份有限公司 低气孔方镁石-镁铝尖晶石-氧化锆烧结复合耐火材料及其生产工艺
CN104193368A (zh) * 2014-08-28 2014-12-10 洛阳利尔耐火材料有限公司 一种rh精炼炉用镁尖晶石砖及其制备方法
CN107285787A (zh) * 2017-07-28 2017-10-24 武汉科技大学 一种轻量化刚玉‑镁铝尖晶石耐火材料及其制备方法
CN112279662A (zh) * 2020-11-06 2021-01-29 湘潭海泡石科技有限公司 一种镁铝尖晶石-堇青石质煅烧锂电池正极材料用匣钵及其制备方法
WO2022105175A1 (zh) * 2020-11-19 2022-05-27 山东玉皇新能源科技有限公司 一种钠离子电池正极材料及其制备方法、钠离子电池
WO2022127314A1 (zh) * 2020-12-15 2022-06-23 广东邦普循环科技有限公司 一种用于锂过渡金属氧化物烧结的匣钵及其制备方法
CN114230371A (zh) * 2021-11-26 2022-03-25 汉川市石金科技有限公司 一种改善匣钵表面耐腐蚀性,提高使用寿命复合涂层

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
锂电池正极材料合成用堇青石-莫来石质匣钵研究进展;段雪珂;王新福;刘国齐;王龙光;陈红伟;钱凡;;耐火材料(第02期);第27-31页 *

Also Published As

Publication number Publication date
CN116283317A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
CN110590341B (zh) 溶胶结合的锂电池正极材料烧结用匣钵及其制备方法
CN108341666B (zh) 一种匣钵及其制备方法
CN108610024B (zh) 一种用于锂离子电池正极材料焙烧的匣钵及其制备方法
CN109761593A (zh) 一种以铝溶胶为结合剂的锂电池正极材料烧结用匣钵及其制备方法
CN110207499A (zh) 基于镁铝尖晶石溶胶的锂电池正极材料烧结用匣钵及其制备方法
CN111644573B (zh) 碳化硅增强硅基陶瓷型芯及其制备方法
CN108546093B (zh) 一种氧化铝短纤增强氧化镁基坩埚及其制备方法
CN116283317B (zh) 一种钠离子电池正极材料烧结用匣钵及其制备方法
CN106365654A (zh) 一种添加ZrN‑SiAlON的抗锂电材料侵蚀耐火坩埚
CN115353372B (zh) 一种锂电正极材料烧结用匣钵及其制备方法
CN114349484B (zh) 一种用于锂电池电极材料煅烧的陶瓷材料及其制备方法
CN106348773B (zh) 一种添加SiAlON-AlN-TiN的抗锂电材料侵蚀耐火坩埚
KR20130051290A (ko) 이차전지의 양극소재 소성을 위한 요도구용 조성물 및 요도구
CN112759377B (zh) 一种锂电池正极材料焙烧用匣钵及其制备方法
CN111848194B (zh) 一种锂离子电池正极材料生产窑炉用高强轻质尖晶石空心球砖及其制备方法
CN114105630A (zh) 一种透锂长石结合六铝酸钙匣钵及其制备方法
EP3458428A1 (en) Open vessels and their use
CN108439959B (zh) 一种二氧化锆短纤与碱式硫酸镁晶须复合增强氧化镁基坩埚及其制备方法
CN116217250B (zh) 晶须增强锂离子电池正极材料烧结用匣钵及其制备方法
CN110117194B (zh) 抗铝液侵蚀的铸嘴涂料及抗铝液侵蚀铸嘴的制备方法
CN111217613A (zh) 一种镁钙材料及其制备方法
CN118084515A (zh) 一种高镍ncm811系三元正极材料烧结用匣钵及其制备方法
CN118108496A (zh) 一种中低镍三元正极材料烧结用匣钵及其制备方法
CN118063225A (zh) 一种钠电正极材料烧结专用匣钵及其制备方法
CN118047602A (zh) 一种磷酸锰铁锂烧结用整体匣钵及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant