CN116217250B - 晶须增强锂离子电池正极材料烧结用匣钵及其制备方法 - Google Patents

晶须增强锂离子电池正极材料烧结用匣钵及其制备方法 Download PDF

Info

Publication number
CN116217250B
CN116217250B CN202310111101.5A CN202310111101A CN116217250B CN 116217250 B CN116217250 B CN 116217250B CN 202310111101 A CN202310111101 A CN 202310111101A CN 116217250 B CN116217250 B CN 116217250B
Authority
CN
China
Prior art keywords
lithium ion
ion battery
sagger
sintering
whisker reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310111101.5A
Other languages
English (en)
Other versions
CN116217250A (zh
Inventor
张寒
郑重阳
何健
张毅
吴晓青
赵惠忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Jinkai New Material Technology Co ltd
Original Assignee
Hunan Jinkai New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Jinkai New Material Technology Co ltd filed Critical Hunan Jinkai New Material Technology Co ltd
Priority to CN202310111101.5A priority Critical patent/CN116217250B/zh
Publication of CN116217250A publication Critical patent/CN116217250A/zh
Application granted granted Critical
Publication of CN116217250B publication Critical patent/CN116217250B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D5/00Supports, screens, or the like for the charge within the furnace
    • F27D5/0068Containers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种晶须增强锂离子电池正极材料烧结用匣钵及其制备方法。其技术方案是:以52~57wt%的六铝酸钙颗粒、26~31wt%的六铝酸钙细粉、7~12wt%的钛溶胶和3~8wt%的氟化钾为原料,外加所述原料3~4wt%的纸浆废液,置于搅拌机中搅拌10~15分钟,得混合料。将所述混合料困料12~14小时,在50~70MPa条件下机压成型,再于100~110℃条件下干燥20~24小时,得到干燥后坯体;将干燥后坯体于750~850℃条件下保温2~3小时,制得晶须增强锂离子电池正极材料烧结用匣钵。本发明具有原料来源广泛、工艺简单和成本低的特点,所制备的晶须增强锂离子电池正极材料烧结用匣钵强度大、抗侵蚀性好和热震稳定性优良,保障了锂离子电池正极材料的纯度和品质。

Description

晶须增强锂离子电池正极材料烧结用匣钵及其制备方法
技术领域
本发明属于锂离子电池正极材料烧结用匣钵技术领域。具体涉及一种晶须增强锂离子电池正极材料烧结用匣钵及其制备方法。
背景技术
锂离子电池主要分为正极材料、负极材料、电解液和隔膜四个部分,其中正极材料起核心关键作用,一方面正极材料是锂离子电池中主要的锂离子来源,其比表面积直接决定了材料的储能空间,另一方面成本占比最高。因此,正极材料的性能直接影响了锂离子电池的品质(李仲明,李斌,冯东,等.锂离子电池正极材料研究进展[J].复合材料学报,2022,39(2):513-527)。
锂离子电池正极材料制备技术包括溶胶-凝胶法、共沉淀法、水热法和高温固相法等(史芳,崔春华,赖欣,等.LiCoO2正极材料的制备技术及其进展[J].材料工程,2006(z1):466-468),目前主要通过高温固相法制备而成。在使用该方法制备锂离子电池正极材料时,需要用到匣钵作为盛装容器,其使用温度在700~1100℃之间。匣钵在使用过程中会由于热震损伤和侵蚀破坏导致其起皮、剥落甚至断裂,会严重影响正极材料的品质,且损毁后的匣钵会因难以回收利用而造成环境污染(徐海森.锂电池正极材料烧成用匣钵材料的研制[D].山东:山东科技大学,2014:1-8)。因此,制备具有优良的抗热震性和抗侵蚀性的匣钵对锂离子电池行业的发展具有重要意义。
目前大多匣钵材质一般以莫来石、堇青石、石英和刚玉等为主。其中以莫来石复合堇青石质匣钵材料应用最为广泛,而该材料体系在使用过程中存在诸多问题(解华婧,任耘,肖国庆,等.莫来石-堇青石质匣钵的制备及侵蚀机理[J].硅酸盐学报,2020,38(6):931-938),如:(1)莫来石-堇青石质匣钵中的酸性成分SiO2极易与正极材料中的碱性成分在高温下发生反应,生成大量的液相(如LiAlSiO4、Li4SiO4等),作为高膨胀相的该物相在高温下会造成匣钵的开裂,同时因其与匣钵基体材料膨胀系数的不匹配,在侵蚀和热震的共同作用下会引起匣钵的起皮和剥落的现象,从而导致匣钵的使用寿命较短。(2)匣钵遭受侵蚀后的剥落物会混入到正极材料中去,严重影响了正极材料的纯度。(3)在匣钵烧结过程中,添加的助烧组分(如硅微粉、黏土等)活性较高,增大了SiO2的掺入量,加剧了匣钵的侵蚀损毁。(4)莫来石-堇青石质匣钵的烧结温度较高,一般为1350~1400℃,而较高的烧成温度也会导致堇青石的分解及匣钵生产成本的增加。上述因素的综合影响导致莫来石-堇青石质匣钵的使用寿命较短、抗侵蚀性能不佳、成本较高,并且循环使用过程中影响锂离子电池正极材料的纯度并造成“锂流失”。
“一种用于锂离子电池正极材料焙烧的匣钵及其制备方法”(CN 108610024B)专利技术,该技术以菱镁矿、高岭土、六铝酸钙、石英砂和氧化锆溶胶为原料,经高温烧成制得六铝酸钙复合堇青石质匣钵。该匣钵虽用六铝酸钙作为骨料,在一定程度上增强匣钵的抗侵蚀性能,同时其片状晶体结构降低了匣钵的导热系数和热膨胀率。但六铝酸钙骨料通过原位生成的堇青石形成连接,虽其具有较好的热震稳定性,但多孔状的结构(菱镁矿分解)削弱了匣钵的抗侵蚀能力,且酸性组分SiO2与正极材料的侵蚀反应难以避免。
“一种锂离子电池正极材料合成用的复合纤维匣钵及其制备方法”(CN109020592B)专利技术,该技术以莫来石、纤维莫来石、堇青石、镁铝尖晶石、纤维氧化镁、纤维氧化铝、氧化锆-氧化钇纤维和锆英石等为原料,经高温烧成制得的含纤维的匣钵。该发明虽利用纤维增韧的作用,提高匣钵的抗剥落性能,同时利用氧化锆-氧化钇纤维的相变增韧改善了匣钵的抗热震性能。但该发明以纤维原料为主,由于纤维的交错难以在匣钵体系中混合均匀导致匣钵各组分的衔接不足,降低了匣钵的强度;此外,大量纤维的使用也显著增大了匣钵的制备成本。
“晶须增强煅烧锂电池正极材料用陶瓷匣钵及其制备方法”(CN 114835479A)专利技术,该技术以海泡石矿物细粉、氧化铝细粉、电熔镁砂细粉和金属微粉@陶瓷膜微胶囊为原料,经高温烧成。该发明虽通过原位生成氧化铝晶须来增强匣钵的抗热震性能,但该方法制备工艺复杂,金属粉末的加压水化及与陶瓷膜微胶囊的包覆结合难以均匀,对设备要求高,且海泡石多元组分在高温下易形成液相,降低了匣钵的服役与抗侵蚀性能。
发明内容
本发明旨在克服现有技术的缺陷,提供一种料来源广泛、工艺简单和成本低的晶须增强锂离子电池正极材料烧结用匣钵的制备方法,用该方法制备的晶须增强锂离子电池正极材料烧结用匣钵强度大、抗侵蚀性好和热震稳定性优良,能保障锂离子电池正极材料的纯度和品质。
为实现上述目的,本发明所采用的技术方案是:
以52~57wt%的六铝酸钙颗粒、26~31wt%的六铝酸钙细粉、7~12wt%的钛溶胶和3~8wt%的氟化钾为原料,外加所述原料3~4wt%的纸浆废液,置于搅拌机中搅拌10~15分钟,得混合料。
将所述混合料困料12~14小时,在50~70MPa条件下机压成型,再于100~110℃条件下干燥20~24小时,得到干燥后的坯体;将干燥后的坯体于750~850℃条件下保温2~3小时,制得晶须增强锂离子电池正极材料烧结用匣钵。
所述六铝酸钙颗粒的化学成分是:Al2O3≥88.96wt%,CaO≥8.82wt%,Fe2O3≥0.60wt%,MgO≤0.074wt%,SiO2≤0.61wt%,TiO2≤0.07wt%;所述六铝酸钙颗粒:密度为3.38~3.45g/cm3,粒度为0.2~2mm。
所述六铝酸钙细粉的化学成分是:Al2O3≥88.96wt%,CaO≥8.82wt%,Fe2O3≥0.60wt%,MgO≤0.074wt%,SiO2≤0.61wt%,TiO2≤0.07wt%;所述六铝酸钙细粉的粒度≤0.088mm。
所述钛溶胶中TiO2含量≥20wt%,TiO2的粒度≤15nm。
所述氟化钾为工业纯,氟化钾的粒度≤0.088mm。
由于采用上述技术方案,本发明与现有技术相比具有以下优点:
1、本发明通过各组分原料混合、成型、干燥后烧成,即得晶须增强锂离子电池正极材料烧结用匣钵(以下简称“锂离子电池正极材料烧结用匣钵”),不仅制备工艺简单,制备过程中无特殊设备要求,且原料来源广泛,显著降低了锂离子电池正极材料烧结用匣钵的开发成本。
2、本发明利用钛溶胶胶粒与氟化钾的烧结活性,通过低温固相烧结在基质中原位形成钛酸钾晶须,一方面大幅降低了锂离子电池正极材料烧结用匣钵的烧结温度,节能环保,另一方面增强了骨料与基质的结合,增大了锂离子电池正极材料烧结用匣钵的强度。
3、本发明利用烧结过程中原位形成的钛酸钾晶须提高锂离子电池正极材料烧结用匣钵的表面粗糙度,进而增大锂离子电池正极材料与锂离子电池正极材料烧结用匣钵界面的润湿角,阻碍锂离子电池正极材料向锂离子电池正极材料烧结用匣钵内部的扩散,且锂离子电池正极材料烧结用匣钵内部通过晶须的交错结合形成网络结构,有效阻碍侵蚀产物的渗透,提高了锂离子电池正极材料烧结用匣钵的抗侵蚀和抗渗透能力;且通过晶须增韧提高了锂离子电池正极材料烧结用匣钵的热震稳定性。
4、本发明从提高匣钵材料组成体系碱度出发,利用六铝酸钙与含锂组分的反应惰性及钛酸钾晶须的形成,阻碍锂离子电池正极材料中含锂组分的侵蚀与渗透,防止锂离子电池正极材料的锂流失,同时避免锂离子电池正极材料烧结用匣钵与锂离子电池正极材料发生侵蚀反应而造成的结构剥落,保障锂离子电池正极材料的纯度和品质。
5、本发明不引入酸性SiO2组分,从原料源头进行控制,避免锂离子电池正极材料烧结用匣钵与锂离子电池正极材料中的强碱性组分发生化学侵蚀,进一步提高锂离子电池正极材料烧结用匣钵的抗侵蚀性能。
6、本发明不使用游离Al2O3组分,降低了锂离子电池正极材料烧结用匣钵的热膨胀,提高其结构韧性,并避免锂离子电池正极材料与锂离子电池正极材料烧结用匣钵基体发生反应形成LiA1O2,既降低了锂离子电池正极材料烧结用匣钵的开裂与结构剥落,又能提高锂离子电池正极材料烧结用匣钵的抗侵蚀能力。
本发明所制备的晶须增强锂离子电池正极材料烧结用匣钵经检测:体积密度为2.27~2.53g·cm-3;显气孔率为29.21~34.73%;抗折强度为7.45~10.55MPa;耐压强度为31.6~56.83MPa;热震前后强度保持率为46.25~55.64%;用于锂离子电池正极材料烧结用匣钵中,循环使用次数可达52~61次。
因此,本发明具有原料来源广泛、工艺简单和成本低的特点,所制备的晶须增强锂离子电池正极材料烧结用匣钵强度大、抗侵蚀性好和热震稳定性优良,保障了锂离子电池正极材料的纯度和品质。
附图说明
图1为本发明制备的一种晶须增强锂离子电池正极材料烧结用匣钵SEM图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步的描述,并非对其保护范围的限制。
一种晶须增强锂离子电池正极材料烧结用匣钵及其制备方法。本具体实施方式所述制备方法是:
以52~57wt%的六铝酸钙颗粒、26~31wt%的六铝酸钙细粉、7~12wt%的钛溶胶和3~8wt%的氟化钾为原料,外加所述原料3~4wt%的纸浆废液,置于搅拌机中搅拌10~15分钟,得混合料。将所述混合料困料12~14小时,在50~70MPa条件下机压成型,再于100~110℃条件下干燥20~24小时,得到干燥后的坯体;将干燥后的坯体于750~850℃条件下保温2~3小时,制得晶须增强锂离子电池正极材料烧结用匣钵。
所述六铝酸钙颗粒的化学成分是:Al2O3≥88.96wt%,CaO≥8.82wt%,Fe2O3≥0.60wt%,MgO≤0.074wt%,SiO2≤0.61wt%,TiO2≤0.07wt%;所述六铝酸钙颗粒的密度为3.38~3.45g/cm3
所述钛溶胶中TiO2含量≥20wt%。
本具体实施方式中:
所述六铝酸钙颗粒的粒度为0.2~2mm。
所述六铝酸钙细粉的粒度≤0.088mm;所述六铝酸钙细粉的化学成分与六铝酸钙颗粒的化学成分相同。
所述钛溶胶中的TiO2的粒度≤15nm。
所述氟化钾为工业纯,氟化钾的粒度≤0.088mm。
实施例中不再赘述。
实施例1
一种晶须增强锂离子电池正极材料烧结用匣钵及其制备方法。本实施例所述制备方法是:
以52wt%的六铝酸钙颗粒、31wt%的六铝酸钙细粉、10wt%的钛溶胶和7wt%的氟化钾为原料,外加所述原料3wt%的纸浆废液,置于搅拌机中搅拌10分钟,得混合料。将所述混合料困料12小时,在50MPa条件下机压成型,再于100℃条件下干燥20小时,得到干燥后的坯体;将干燥后的坯体于750℃条件下保温2小时,制得晶须增强锂离子电池正极材料烧结用匣钵。
所述六铝酸钙颗粒的化学成分是:Al2O3为88.96wt%,CaO为8.83wt%,Fe2O3为0.61wt%,MgO为0.074wt%,SiO2为0.61wt%,TiO2为0.07wt%;所述六铝酸钙颗粒密度为3.39g/cm3
所述钛溶胶中TiO2含量为20wt%。
本实施例所制备的晶须增强锂离子电池正极材料烧结用匣钵经检测:体积密度为2.27g·cm-3;显气孔率为34.73%;抗折强度为7.45MPa;耐压强度为31.6MPa;热震前后强度保持率为46.25%;用于锂离子电池正极材料烧结用匣钵中,循环使用次数可达52次。
实施例2
一种晶须增强锂离子电池正极材料烧结用匣钵及其制备方法。本实施例所述制备方法是:
以54wt%的六铝酸钙颗粒、26wt%的六铝酸钙细粉、12wt%的钛溶胶和8wt%的氟化钾为原料,外加所述原料3wt%的纸浆废液,置于搅拌机中搅拌12分钟,得混合料。将所述混合料困料12小时,在60MPa条件下机压成型,再于105℃条件下干燥22小时,得到干燥后的坯体;将干燥后的坯体于770℃条件下保温2.5小时,制得晶须增强锂离子电池正极材料烧结用匣钵。
所述六铝酸钙颗粒的化学成分是:Al2O3为88.97wt%,CaO为8.84wt%,Fe2O3为0.63wt%,MgO为0.072wt%,SiO2为0.60wt%,TiO2为0.05wt%;所述六铝酸钙颗粒密度为3.38g/cm3
所述钛溶胶中TiO2含量为22wt%。
本实施例所制备的晶须增强锂离子电池正极材料烧结用匣钵经检测:体积密度为2.40g·cm-3;显气孔率为32.81%;抗折强度为8.03MPa;耐压强度为36.18MPa;热震前后强度保持率为51.72%;用于锂离子电池正极材料烧结用匣钵中,循环使用次数可达55次。
实施例3
一种晶须增强锂离子电池正极材料烧结用匣钵及其制备方法。本实施例所述制备方法是:
以56wt%的六铝酸钙颗粒、29wt%的六铝酸钙细粉、7wt%的钛溶胶和8wt%的氟化钾为原料,外加所述原料4wt%的纸浆废液,置于搅拌机中搅拌14分钟,得混合料。将所述混合料困料13小时,在60MPa条件下机压成型,再于105℃条件下干燥23小时,得到干燥后的坯体;将干燥后的坯体于780℃条件下保温2.5小时,制得晶须增强锂离子电池正极材料烧结用匣钵。
所述六铝酸钙颗粒的化学成分是:Al2O3为89.03wt%,CaO为8.83wt%,Fe2O3为0.62wt%,MgO为0.071wt%,SiO2为0.59wt%,TiO2为0.06wt%;所述六铝酸钙颗粒密度为3.45g/cm3
所述钛溶胶中TiO2含量为21wt%。
本实施例所制备的晶须增强锂离子电池正极材料烧结用匣钵经检测:体积密度为2.42g·cm-3;显气孔率为31.63%;抗折强度为9.75MPa;耐压强度为45.45MPa;热震前后强度保持率为54.63%;用于锂离子电池正极材料烧结用匣钵中,循环使用次数可达59次。
实施例4
一种晶须增强锂离子电池正极材料烧结用匣钵及其制备方法。本实施例所述制备方法是:
以57wt%的六铝酸钙颗粒、28wt%的六铝酸钙细粉、12wt%的钛溶胶和3wt%的氟化钾为原料,外加所述原料4wt%的纸浆废液,置于搅拌机中搅拌15分钟,得混合料。将所述混合料困料14小时,在70MPa条件下机压成型,再于110℃条件下干燥24小时,得到干燥后的坯体;将干燥后的坯体于800℃条件下保温3小时,制得晶须增强锂离子电池正极材料烧结用匣钵。
所述六铝酸钙颗粒的化学成分是:Al2O3为89.12wt%,CaO为8.82wt%,Fe2O3为0.60wt%,MgO为0.070wt%,SiO2为0.58wt%,TiO2为0.07wt%;所述六铝酸钙颗粒密度为3.42g/cm3
所述钛溶胶中TiO2含量为20wt%。
本实施例所制备的晶须增强锂离子电池正极材料烧结用匣钵经检测:体积密度为2.53g·cm-3;显气孔率为29.21%;抗折强度为10.55MPa;耐压强度为56.83MPa;热震前后强度保持率为56.68%;用于锂离子电池正极材料烧结用匣钵中,循环使用次数可达61次。
本具体实施方式与现有技术相比具有以下优点:
1、本具体实施方式通过各组分原料混合、成型、干燥后烧成,即得晶须增强锂离子电池正极材料烧结用匣钵(以下简称“锂离子电池正极材料烧结用匣钵”),不仅制备工艺简单,制备过程中无特殊设备要求,且原料来源广泛,显著降低了锂离子电池正极材料烧结用匣钵的开发成本。
2、本具体实施方式利用钛溶胶胶粒与氟化钾的烧结活性,通过低温固相烧结在基质中原位形成钛酸钾晶须,一方面大幅降低了锂离子电池正极材料烧结用匣钵的烧结温度,节能环保,另一方面增强了骨料与基质的结合,增大锂离子电池正极材料烧结用匣钵的强度。
3、本具体实施方式利用烧结过程中原位形成的钛酸钾晶须提高锂离子电池正极材料烧结用匣钵的表面粗糙度,进而增大锂离子电池正极材料与锂离子电池正极材料烧结用匣钵界面的润湿角,阻碍锂离子电池正极材料向锂离子电池正极材料烧结用匣钵内部的扩散。所制备的锂离子电池正极材料烧结用匣钵如附图1所示,图1是实施例1制备的锂离子电池正极材料烧结用匣钵SEM图,从图1可以看出:锂离子电池正极材料烧结用匣钵内部通过六钛酸钾晶须的交错结合形成网络结构,有效阻碍侵蚀产物的渗透,提高了锂离子电池正极材料烧结用匣钵的抗侵蚀和抗渗透能力;且通过晶须增韧提高了锂离子电池正极材料烧结用匣钵的热震稳定性。
4、本具体实施方式从提高匣钵材料组成体系碱度出发,利用六铝酸钙与含锂组分的反应惰性及钛酸钾晶须的形成,阻碍锂离子电池正极材料中含锂组分的侵蚀与渗透,防止锂离子电池正极材料的锂流失;同时避免锂离子电池正极材料烧结用匣钵与锂离子电池正极材料发生侵蚀反应而造成的结构剥落,保障锂离子电池正极材料的纯度和品质。
5、本具体实施方式不引入酸性SiO2组分,从原料源头进行控制,避免锂离子电池正极材料烧结用匣钵与锂离子电池正极材料中的强碱性组分发生化学侵蚀,进一步提高锂离子电池正极材料烧结用匣钵的抗侵蚀性能。
6、本具体实施方式不使用游离Al2O3组分,降低了锂离子电池正极材料烧结用匣钵的热膨胀,提高其结构韧性,并避免锂离子电池正极材料与锂离子电池正极材料烧结用匣钵基体发生反应形成LiA1O2,既降低了锂离子电池正极材料烧结用匣钵的开裂与结构剥落,又能提高锂离子电池正极材料烧结用匣钵的抗侵蚀能力。
本具体实施方式制备的晶须增强锂离子电池正极材料烧结用匣钵经检测:体积密度为2.27~2.53g·cm-3;显气孔率为29.21~34.73%;抗折强度为7.45~10.55MPa;耐压强度为31.6~56.83MPa;热震前后强度保持率为46.25~55.64%;用于锂离子电池正极材料烧结用匣钵中,循环使用次数可达52~61次。
因此,本具体实施方式具有原料来源广泛、工艺简单和成本低的特点,所制备的晶须增强锂离子电池正极材料烧结用匣钵强度大、抗侵蚀性好和热震稳定性优良,保障了锂离子电池正极材料的纯度和品质。

Claims (6)

1.一种钛酸钾晶须增强锂离子电池正极材料烧结用匣钵的制备方法,其特征在于:以52~57wt%的六铝酸钙颗粒、26~31wt%的六铝酸钙细粉、7~12wt%的钛溶胶和3~8wt%的氟化钾为原料,外加所述原料3~4wt%的纸浆废液,置于搅拌机中搅拌10~15分钟,得混合料;
所述六铝酸钙颗粒的粒度为0.2~2mm;
所述六铝酸钙细粉的粒度≤0.088mm;
所述钛溶胶中TiO2含量≥20wt%;
将所述混合料困料12~14小时,在50~70MPa条件下机压成型,再于100~110℃条件下干燥20~24小时,得到干燥后的坯体;将干燥后的坯体于750~850℃条件下保温2~3小时,制得晶须增强锂离子电池正极材料烧结用匣钵。
2.根据权利要求1所述的钛酸钾晶须增强锂离子电池正极材料烧结用匣钵的制备方法,其特征在于所述六铝酸钙颗粒的化学成分是:Al2O3≥88.96wt%,CaO≥8.82wt%,Fe2O3≥0.60wt%,MgO≤0.074wt%,SiO2≤0.61wt%,TiO2≤0.07wt%;所述六铝酸钙颗粒:密度为3.38~3.45g/cm3
3.根据权利要求1所述的钛酸钾晶须增强锂离子电池正极材料烧结用匣钵的制备方法,其特征在于所述六铝酸钙细粉的化学成分是:Al2O3≥88.96wt%,CaO≥8.82wt%,Fe2O3≥0.60wt%,MgO≤0.074wt%,SiO2≤0.61wt%,TiO2≤0.07wt%。
4.根据权利要求1所述的钛酸钾晶须增强锂离子电池正极材料烧结用匣钵的制备方法,其特征在于所述钛溶胶中TiO2的粒度≤15nm。
5.根据权利要求1所述的钛酸钾晶须增强锂离子电池正极材料烧结用匣钵的制备方法,其特征在于所述氟化钾为工业纯;氟化钾的粒度≤0.088mm。
6.一种钛酸钾晶须增强锂离子电池正极材料烧结用匣钵,其特征在于所述钛酸钾晶须增强锂离子电池正极材料烧结用匣钵是根据权利要求1~5项中任一项所述钛酸钾晶须增强锂离子电池正极材料烧结用匣钵的制备方法所制备的钛酸钾晶须增强锂离子电池正极材料烧结用匣钵。
CN202310111101.5A 2023-02-14 2023-02-14 晶须增强锂离子电池正极材料烧结用匣钵及其制备方法 Active CN116217250B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310111101.5A CN116217250B (zh) 2023-02-14 2023-02-14 晶须增强锂离子电池正极材料烧结用匣钵及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310111101.5A CN116217250B (zh) 2023-02-14 2023-02-14 晶须增强锂离子电池正极材料烧结用匣钵及其制备方法

Publications (2)

Publication Number Publication Date
CN116217250A CN116217250A (zh) 2023-06-06
CN116217250B true CN116217250B (zh) 2023-12-12

Family

ID=86572583

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310111101.5A Active CN116217250B (zh) 2023-02-14 2023-02-14 晶须增强锂离子电池正极材料烧结用匣钵及其制备方法

Country Status (1)

Country Link
CN (1) CN116217250B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10338570A (ja) * 1997-06-05 1998-12-22 Ootake Seramu Kk フッ素白雲母セラミックス及びその製造方法
CN101139109A (zh) * 2007-08-07 2008-03-12 南京工业大学 一种快速制备易控微孔-介孔结构氧化钛或其前躯体的方法
CN101148779A (zh) * 2007-07-24 2008-03-26 山东大学 一种钛酸钾晶须的制备方法
WO2009018700A1 (fr) * 2007-08-07 2009-02-12 Nanjing University Of Technology Procédé de préparation rapide d'oxyde de titane ou de son précurseur avec une structure contrôlable de microporeuse à mésoporeuse
KR20100114269A (ko) * 2009-04-15 2010-10-25 동해케미칼공업주식회사 습식 확산 붕괴 및 연속결정성장법을 이용한 고온단열용 티탄산칼륨 위스커 제조방법
CN103265304A (zh) * 2013-06-05 2013-08-28 郑州九环科贸有限公司 一种低温合成的cfb用复合陶瓷及其制备方法
CN104944987A (zh) * 2015-06-23 2015-09-30 武汉科技大学 高红外反射率高铝轻质耐火保温材料及其制备方法
CN114133257A (zh) * 2020-12-31 2022-03-04 郑州轻工业大学 一种含六铝酸钙的微纳孔绝隔热耐火材料及其制备方法
CN115353372A (zh) * 2022-08-19 2022-11-18 武汉科技大学 一种锂电正极材料烧结用匣钵及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7495049B2 (en) * 2005-02-04 2009-02-24 Du Pont - Mitsoi Fluorochemicals Co, Ltd. Melt processible fluoropolymer composition containing nano particles

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10338570A (ja) * 1997-06-05 1998-12-22 Ootake Seramu Kk フッ素白雲母セラミックス及びその製造方法
CN101148779A (zh) * 2007-07-24 2008-03-26 山东大学 一种钛酸钾晶须的制备方法
CN101139109A (zh) * 2007-08-07 2008-03-12 南京工业大学 一种快速制备易控微孔-介孔结构氧化钛或其前躯体的方法
WO2009018700A1 (fr) * 2007-08-07 2009-02-12 Nanjing University Of Technology Procédé de préparation rapide d'oxyde de titane ou de son précurseur avec une structure contrôlable de microporeuse à mésoporeuse
KR20100114269A (ko) * 2009-04-15 2010-10-25 동해케미칼공업주식회사 습식 확산 붕괴 및 연속결정성장법을 이용한 고온단열용 티탄산칼륨 위스커 제조방법
CN103265304A (zh) * 2013-06-05 2013-08-28 郑州九环科贸有限公司 一种低温合成的cfb用复合陶瓷及其制备方法
CN104944987A (zh) * 2015-06-23 2015-09-30 武汉科技大学 高红外反射率高铝轻质耐火保温材料及其制备方法
CN114133257A (zh) * 2020-12-31 2022-03-04 郑州轻工业大学 一种含六铝酸钙的微纳孔绝隔热耐火材料及其制备方法
CN115353372A (zh) * 2022-08-19 2022-11-18 武汉科技大学 一种锂电正极材料烧结用匣钵及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
钛酸钾晶须的研究及应用;周文君;杭州师范学院学报(自然科学版)(01);第69-72页 *

Also Published As

Publication number Publication date
CN116217250A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
CN108975935B (zh) 一种锂离子电池正极材料合成用的复合纤维匣钵及其制备方法
CN110282964A (zh) 莫来石-堇青石质锂电池正极材料烧结用匣钵及其制备方法
CN113372105B (zh) 一种锂电池正极材料用双层结构匣钵及其制备方法
CN108610024B (zh) 一种用于锂离子电池正极材料焙烧的匣钵及其制备方法
CN108484188B (zh) 一种用于锂电池正极材料焙烧的碳化硅匣钵及其制备方法
CN111170744A (zh) 一种用于锂电池正极材料的碳化硅匣钵及其制备方法
CN112279662A (zh) 一种镁铝尖晶石-堇青石质煅烧锂电池正极材料用匣钵及其制备方法
CN110746180A (zh) 炼铜阳极炉用烧成铝铬锆滑板砖及其制备方法
CN112010661B (zh) 一种锂电池正极材料用匣钵及其制备方法
CN113200558A (zh) 微波煅烧生产微晶α-氧化铝的生产工艺
CN113845361A (zh) 一种高性能碱性特种陶瓷及其制备方法
CN109320216A (zh) 一种基于片层状结构的稀土氧化物修饰的六铝酸钙坩埚制造方法
JPH0258744B2 (zh)
CN112358304A (zh) 一种堇青石-镁铝尖晶石质煅烧锂电池正极材料用匣钵及其制备方法
CN106365654B (zh) 一种添加ZrN-SiAlON的抗锂电材料侵蚀耐火坩埚
CN116217250B (zh) 晶须增强锂离子电池正极材料烧结用匣钵及其制备方法
CN108083823B (zh) 复合匣钵,其制备方法和应用
CN115353372B (zh) 一种锂电正极材料烧结用匣钵及其制备方法
CN108658611B (zh) 一种堇青石结合六铝酸钙匣钵及其制备方法
CN114349484B (zh) 一种用于锂电池电极材料煅烧的陶瓷材料及其制备方法
Yin et al. Corrosion resistance of calcium hexaaluminate insulating firebrick for synthesising ternary lithium-ion battery cathode materials
CN108649148A (zh) 一种瘠性钛酸铝复合材料匣钵的制备方法
CN114031380A (zh) 一种氧化铝-氧化锆陶瓷匣钵的制备方法
CN112174651B (zh) 轻质耐火砖及其制备方法
CN113860860A (zh) 一种高效环保的锂电正极材料用匣钵及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant