WO2023071396A1 - 钠离子电池正极材料及其制备方法和应用 - Google Patents

钠离子电池正极材料及其制备方法和应用 Download PDF

Info

Publication number
WO2023071396A1
WO2023071396A1 PCT/CN2022/111809 CN2022111809W WO2023071396A1 WO 2023071396 A1 WO2023071396 A1 WO 2023071396A1 CN 2022111809 W CN2022111809 W CN 2022111809W WO 2023071396 A1 WO2023071396 A1 WO 2023071396A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium
source
ferrous
phosphate
positive electrode
Prior art date
Application number
PCT/CN2022/111809
Other languages
English (en)
French (fr)
Inventor
余海军
张学梅
谢英豪
李爱霞
钟应声
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2023071396A1 publication Critical patent/WO2023071396A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention belongs to the technical field of sodium ion batteries, and in particular relates to a positive electrode material of a sodium ion battery and a preparation method and application thereof.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. Therefore, the present invention proposes a positive electrode material for a sodium ion battery and its preparation method and application.
  • the positive electrode material for a sodium ion battery does not need to contain lithium and has abundant sources. Not only is it not restricted by limited lithium resources, but it also 4 Cathode material, theoretical capacity and cycle stability are more ideal.
  • the present invention adopts the following technical solutions:
  • a positive electrode material for a sodium ion battery the general formula of which is Na x Fe y (PO 4 ) a (SO 4 ) b -zM c O d /NC; wherein 0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 4, 0 ⁇ z ⁇ 0.5, 0 ⁇ a ⁇ 4, 0 ⁇ b ⁇ 3, 0 ⁇ c ⁇ 4, 0 ⁇ d ⁇ 5; M is Ti, V, Cr, Mn, Fe, Co, Cd, Ni, Cu, Zn, Al , Ag, Mg, Ca, Sn or Se oxides, hydroxides, sulfates, chlorides, nitrates or at least one of carbonates.
  • the Na x Fe y (PO 4 ) a (SO 4 ) b /zM c O d has a particle size D max ⁇ 30 ⁇ m, D 50 ⁇ 10 ⁇ m, and a specific surface area of 12-16 m 2 /g; the M At least one of oxides, sulfates or chlorides of Ti, V, Cr, Mn, Fe, Co, Cd, Ni, Cu, Zn, Al, Ag, Mg, Ca, Sn or Se.
  • a preparation method of a sodium ion battery cathode material comprising the following steps:
  • the aforementioned M c O d /NC is carbon nitrogen (NC) doped M c O d .
  • the ferrous source is at least one of ferrous chloride, ferrous acetate, ferrous oxalate, ferrous citrate, ferrous phosphate, ferrous sulfate or ferrous hydroxide.
  • the ferrous source is at least one of ferrous phosphate, ferrous oxalate and ferrous hydroxide.
  • the sodium source is sodium hydroxide, sodium carbonate, sodium hydrogen phosphate, sodium dihydrogen phosphate, sodium oxalate, formic acid/sodium acetate, sodium citrate, sodium sulfate, sodium bisulfate, sodium methanesulfonate or acetic acid at least one of sodium.
  • the sodium source is sodium phosphate or sodium sulfate.
  • the phosphoric acid source is at least one of sodium phosphate, sodium hydrogen phosphate, ferrous phosphate, phosphoric acid, phosphoric acid, ammonium phosphate, diammonium hydrogen phosphate or ammonium dihydrogen phosphate.
  • the phosphoric acid source is at least one of ferrous phosphate, sodium phosphate, and phosphoric acid.
  • the ferrous phosphate in the ferrous source and/or phosphoric acid source is recovered from waste lithium iron phosphate battery powder. Specifically, it can be prepared by mixing waste lithium iron phosphate battery powder and activator, and then acid leaching. Wherein, the mixing process is preferably ball milling.
  • the ferrous phosphate obtained by separating the waste lithium iron phosphate can be recycled as an iron source or a phosphoric acid source, the cost is correspondingly reduced, and it is suitable for industrial production. Further, in the recycling process of waste lithium iron phosphate, the activator sodium salt is selected to co-grind the waste lithium iron phosphate to activate the lithium in the waste lithium iron phosphate, so as to promote the isomorphism between sodium and lithium in the waste lithium iron phosphate replace.
  • the activator is at least one of sodium chloride, sodium acetate, sodium oxalate, sodium citrate, sodium phosphate, sodium sulfite or sodium sulfate.
  • the acid used in the acid leaching has a solid-to-liquid ratio of 10-200 g/L, preferably 20-80 g/L.
  • the concentration of the acid used in the acid leaching process is 0.001-10 mol/L, preferably 0.1-2 mol/L.
  • it also includes adding acid to the prepared ferrous phosphate to remove impurities.
  • the acid is at least one of phosphoric acid, sulfurous acid, oxalic acid, formic acid, and acetic acid.
  • the McOd / NC is prepared by reacting a mixed aqueous solution containing M source, amine source and ammonium source. Specifically: add acid to M source to obtain M solution, then add amine source and ammonium source solution to mix, react, separate solid and liquid, and take the solid phase for calcination to obtain M c O d /NC.
  • the content of M in the M solution is 0.0001-8 mol/L.
  • the ratio of the amine source to the M solution is 0.1-100 (w/v).
  • the calcination temperature is 300-800° C.
  • the calcination time is 3-8 hours.
  • the calcining atmosphere is one of argon, helium and neon.
  • the acid is at least one of sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, and oxalic acid.
  • the amine source is at least one of aniline, dimethylamine, trimethylamine, benzylamine, phenethylamine, ethylamine, diethylamine, propylamine, phenylenediamine, benzylamine or m-xylylenediamine A sort of.
  • the M source is Ti, V, Cr, Mn, Fe, Co, Cd, Ni, Cu, Zn, Al, Ag, Mg, Ca, Sn or Se oxides, hydroxides, sulfates , chloride, nitrate or at least one of carbonate.
  • the ammonium source is at least one of ammonia water, ammonium carbonate, ammonium nitrate, ammonium chloride, ammonium vanadate, ammonium aluminate or ammonium sulfate.
  • the ammonium source is at least one of ammonia water, ammonium carbonate, ammonium phosphate or ammonium nitrate.
  • the sulfuric acid source is at least one of sulfuric acid, sodium sulfate, ferrous sulfate, diammonium sulfate, and ammonium bisulfate.
  • the molar ratio of the sodium source, ferrous source, phosphoric acid source, and sulfuric acid source is (0.1-40):(0.01-20):(0.01-20):(0.01-30).
  • the added amount of McOd / NC is 0.01-20% of the total mass of sodium source, ferrous source, phosphoric acid source and sulfuric acid source; preferably 0.5-4%.
  • the ball milling process also includes adding a dispersant for ball milling.
  • the dispersant is at least one of polyethylene glycol, methanol, and ethanol.
  • the added amount of the dispersant is 0.1-20% of the total mass of the sodium source, ferrous source, phosphoric acid source and sulfuric acid source; preferably 0.5-4%.
  • the discharge particle diameter after ball milling is D max ⁇ 55 ⁇ m, D 50 ⁇ 15 ⁇ m, preferably D max ⁇ 20 ⁇ m, D 50 ⁇ 10 ⁇ m.
  • the rotational speed of the ball mill is 100-2000r/min, and the milling time is 4-24h; the rotational speed is preferably 600-1500r/min, and the milling time is preferably 8-12h.
  • the calcination temperature is 200-850° C.
  • the calcination time is 3-24 hours; preferably 400-600° C. for 4-8 hours.
  • a battery comprising the positive electrode material of the sodium ion battery.
  • Na x Fe y (PO 4 ) a (SO 4 ) b -zM c O d /NC of the present invention is used as the positive electrode material so that the sodium ion battery does not need to contain lithium, and the source is rich, not only free from the constraints of limited lithium resources, but also Compared with the existing Na 2 FePO 4 cathode material, Na x Fe y (PO 4 ) a (SO 4 ) b /zM c O d has more ideal theoretical capacity and cycle stability.
  • Na x Fe y (PO 4 ) a (SO 4 ) b /zM c O d is a (composite) polyanion positive electrode material.
  • both phosphate and sulfate have a tetrahedral three-dimensional structure, they can coordinate with oxygen ions , after the two are mixed, the oxygen ion coordination site can be shared synergistically, so the two tetrahedrons can share corners, providing a larger ion diffusion channel, and further expanding the channel for the sodium ion to detach and intercalate during charging and discharging.
  • the migration rate of sodium ions is increased, the sodium storage capacity is increased, and the electrochemical performance is improved.
  • Na x Fe y (PO 4 ) a (SO 4 ) b -zM c O d /NC of the present invention in order to overcome the generally low electronic conductivity of polyanionic cathode materials, Na x Fe y ( M c O d is introduced into PO 4 ) a (SO 4 ) b , and M can be transition metal elements such as Ti, V, Cr, Mn, Fe, Co, Cd, Ni, Cu, Zn, Ag, etc., because phosphate and sulfuric acid The induction effect of roots on transition metals is very good, making the working voltage of Na x Fe y (PO 4 ) a (SO 4 ) b /zM c O d cathode material higher than that of Na 2 FePO 4 cathode material, and the cathode material The energy density is improved, and the electrochemical performance of the material is further improved.
  • the zM c O d /NC in the Na x Fe y (PO 4 ) a (SO 4 ) b -zM c O d /NC of the present invention provides a MNC chemical bond with an interface, which is equivalent to Na x Fe y ( PO 4 ) a (SO 4 ) b is doped with carbon and nitrogen, which is beneficial to the electron transport and storage between the interfaces.
  • the other side benefits from the MNC chemical bonds of this interface, and some phosphates and sulfates produce interfacial coupling.
  • the present invention utilizes waste lithium iron phosphate to separate and obtain ferrous salt and recycle it as iron source or phosphoric acid source, The cost is correspondingly reduced, suitable for industrial production, and is a potential positive electrode material for sodium ion batteries.
  • Fig. 1 is the process flow chart of embodiment 1 of the present invention.
  • Fig. 2 is the SEM figure of the positive electrode material of the sodium ion battery of the embodiment of the present invention 1;
  • FIG. 3 is a low-rate discharge cycle chart of Example 3 of the present invention and Comparative Example 1.
  • FIG. 3 is a low-rate discharge cycle chart of Example 3 of the present invention and Comparative Example 1.
  • FIG. 4 is a low-rate discharge cycle diagram of Example 2 and Comparative Example 1 of the present invention.
  • the positive electrode material of the sodium ion battery in this embodiment has a formula of Na 3 Fe(PO 4 )(SO 4 )-0.07ZnO/NC.
  • the positive electrode material of the sodium ion battery in this embodiment has a formula of Na 3 Fe(PO 4 )(SO 4 )-0.06CuO/NC.
  • the positive electrode material of the sodium ion battery in this embodiment has a formula of Na 1.45 Fe 0.3 (PO 4 ) 0.5 (SO 4 ) 0.275 -0.05ZnO/NC.
  • the positive electrode material of the sodium ion battery in this embodiment has a formula of Na 1.80 Fe 0.5 (PO 4 ) 0.55 (SO 4 ) 0.575 -0.07MnO/NC.
  • the positive electrode material of the sodium ion battery in this embodiment has a formula of Na 2.0 Fe 0.65 (PO 4 ) 0.8 (SO 4 ) 0.45 -0.05CuO/NC.
  • the positive electrode material of the sodium ion battery in this embodiment has a formula of Na 2.4 Fe 0.7 (PO 4 )(SO 4 ) 0.45 -0.06NiO/NC.
  • NiO/N-C (1) Synthesis of NiO/N-C: Add 31g of nickel sulfate to 190mL of deionized water, then add 10mL of 6.5wt% sulfuric acid to dissolve into a 1.0mol/L nickel sulfate solution, and mix the nickel sulfate solution with 30g of m-phenylenediamine Dissolve in 150mL of 0.166mol/L ammonia solution to obtain a Cu-containing mixed solution, centrifuge, separate the solid and liquid, take the solid phase and send it to a box furnace, and keep it at 700°C for 3.5h in a neon atmosphere to obtain 24.9 g NiO/N-C;
  • the preparation method of the Na 3 Fe(PO 4 )(SO 4 ) cathode material of this comparative example includes the following specific steps:
  • a method for preparing Na 1.45 Fe 0.3 (PO 4 ) 0.5 (SO 4 ) 0.275 cathode material comprising the following specific steps:
  • Embodiment 1-6 and comparative example 1-2 analyze:
  • the sodium ion positive electrode material, acetylene black, and PVDF prepared in Example 1-6 and Comparative Example 1-2 were weighed and mixed, stirred, and ground in a mass ratio of 8:1:1, and a certain amount of NMP solution was added as a solvent , a slurry was obtained after stirring.
  • the slurry was evenly coated on a clean copper foil, then placed in a heating tube at 70°C for 6 hours, and punched into electrode sheets with a diameter of 1.8 cm.
  • the assembly of the sodium ion button cell is carried out in a glove box full of neon gas, with the prepared electrode sheet as the positive electrode, 1.2mol/L NaClO 4 (the solvent is ethylene carbonate) as the electrolyte, press the shell, shrapnel, gasket, Negative electrode (sodium sheet), 0.25mL electrolyte, separator (glass fiber), positive electrode (electrode sheet), and shell are assembled in sequence, and the button battery is packaged, and it is left to stand for 12 hours for use.
  • the charge and discharge test of the battery is carried out on constant current charge and discharge test equipment, the voltage range is 2.0-3.5V, the test rate is 0.1C, and the test environment is 25°C.
  • the sodium ion positive electrode materials prepared in Examples 1-6 of the present invention have a large specific surface area, which is more conducive to the entry and exit of sodium ions, the migration rate of sodium ions is improved and the sodium storage capacity is increased, and the cycle efficiency is further improved.
  • Figure 1 is a process flow diagram of Example 1 of the present invention: as shown in Figure 1, the discarded lithium iron phosphate powder is co-milled with sodium sulfite to obtain lithium iron phosphate battery powder, followed by acid leaching and solid-liquid separation to obtain lithium-containing solution and The insoluble ferrous salt is added to the ferrous salt to wash and remove impurities to obtain the ferrous salt after removal of impurities.
  • the solution obtained by mixing zinc hydroxide, deionized water and acid is added with benzylamine solution, dissolved in ammonium chloride solution, centrifuged, separated from solid and liquid, and kept warm to obtain ZnO/NC.
  • Ferrous salt, sodium hydroxide, diammonium hydrogen phosphate, diammonium sulfate ZnO/NC, and polyethylene glycol are mixed under a neon gas atmosphere and then ball milled. After completion, they are washed and dried, and then sent to the neon gas atmosphere for calcination, heat preservation, Lower the temperature to obtain Na 3 Fe(PO 4 )(SO 4 )-0.07ZnO/NC.
  • Fig. 2 is the SEM image of the positive electrode material of the sodium ion battery in Example 1 of the present invention. It can be seen that the small particles of the positive electrode material of the sodium ion battery obtained in Example 1 are about 0.8-1 ⁇ m, and the slightly larger ones are about 3 ⁇ m.
  • Fig. 3 and Fig. 4 are low-rate discharge cycle diagrams of Example 3 and Comparative Example 1 of the present invention, and Example 2 and Comparative Example 1, respectively.
  • the positive electrode materials prepared in Examples 2 and 3 were assembled to obtain a sodium ion button battery for 1-100 cycle experiments, and the discharge specific capacities were respectively 128-140mAh/g and 148-150mAh/g, which were all higher than the 100mAh/g of Comparative Example 1
  • the discharge specific capacity of about 2, 3 illustrates Na 3 Fe(PO 4 )(SO 4 )-0.06CuO/NC, Na 1.45 Fe 0.3 (PO 4 ) 0.5 (SO 4 ) 0.275 -0.05ZnO/NC prepared in Examples 2 and 3
  • the CuO/NC and ZnO/NC in the positive electrode material have improved the electrochemical performance of Na x Fe y (PO 4 ) a (SO 4 ) b , and Examples 2, 3 and Comparative Example 1 are all (composite) polymer Anionic positive electrode material, the capacity fading is not obvious

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明属于钠离子电池技术领域,公开了一种钠离子电池正极材料及其制备方法和应用,该钠离子电池正极材料的通式为Na xFe y(PO 4) a(SO 4) b‑zM cO d/N‑C;其中0<x≤4、0<y≤4、0<z≤0.5、0<a≤4、0<b≤3、0<c≤4、0<d≤5;M为Ti、V、Cr、Mn、Fe、Co、Cd、Ni、Cu、Zn、Al、Ag、Mg、Ca、Sn或Se。本发明的Na xFe y(PO 4) a(SO 4) b‑zM cO d/N‑C作为正极材料使得钠离子电池无需含锂,来源丰富,不受有限锂资源的制约。

Description

钠离子电池正极材料及其制备方法和应用 技术领域
本发明属于钠离子电池技术领域,具体涉及钠离子电池正极材料及其制备方法和应用。
背景技术
近几年,随着锂离子电池价格的持续升高,尤其是锂资源的加速消耗以及全球锂储量并不丰富的前提下,将来不得不面临缺锂的困境,研究发现,化学性质与磷酸铁锂电池相似的磷酸铁钠电池非常有望成为继锂离子电池之后的下一代二次电池,但由于钠离子半径较大,原子量更重,加之钠的标准电位较高,导致电池的可逆能力较差和相对较低的能量密度,因此通常情况下其电池性能不如磷酸铁锂电池,尤其是电池中的正极材料,例如磷酸铁钠正极材料容量、电压、循环能力等各方面的电化学性能均低于磷酸铁锂正极材料。
为解决磷酸铁钠正极材料的缺点,亟需在磷酸铁钠正极材料基础上进行改进,提供一种性能更优异的钠离子电池正极材料。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种钠离子电池正极材料及其制备方法和应用,该钠离子电池正极材料无需含锂,来源丰富,不仅不受有限锂资源的制约,而且相对于现有Na 2FePO 4正极材料,理论容量和循环稳定性更为理想。
为实现上述目的,本发明采用以下技术方案:
一种钠离子电池正极材料,其通式为Na xFe y(PO 4) a(SO 4) b-zM cO d/N-C;其中0<x≤4、0<y≤4、0<z≤0.5、0<a≤4、0<b≤3、0<c≤4、0<d≤5;M为Ti、V、Cr、Mn、Fe、Co、Cd、Ni、Cu、Zn、Al、Ag、Mg、Ca、Sn或Se的氧化物、氢氧化物、硫酸盐、氯盐、硝酸盐或或碳酸盐中的至少一种。
优选地,所述Na xFe y(PO 4) a(SO 4) b/zM cO d的粒径D max<30μm,D 50<10μm,比表面积为12-16m 2/g;所述M为Ti、V、Cr、Mn、Fe、Co、Cd、Ni、Cu、Zn、Al、Ag、Mg、Ca、Sn或Se的氧化物、硫酸盐或氯盐中的至少一种。
一种钠离子电池正极材料的制备方法,包括以下步骤:
将亚铁源、钠源、磷酸源、硫酸源、M cO d/N-C、分散剂混合,再进行球磨,洗涤、干 燥,煅烧,得到Na xFe y(PO 4) a(SO 4) b-zM cO d/N-C。
上述M cO d/N-C为碳氮(N-C)掺杂的M cO d
优选地,所述亚铁源为氯化亚铁、乙酸亚铁、草酸亚铁、柠檬酸亚铁、磷酸亚铁、硫酸亚铁或氢氧化亚铁中的至少一种。
进一步优选地,所述亚铁源为磷酸亚铁、草酸亚铁、氢氧化亚铁中的至少一种。
优选地,所述钠源为氢氧化钠、碳酸钠、磷酸氢钠、磷酸二氢钠、草酸钠、甲酸/乙酸钠、柠檬酸钠、硫酸钠、硫酸氢钠、甲基磺酸钠或醋酸钠中的至少一种。
进一步优选地,所述钠源为磷酸钠或硫酸钠。
优选地,所述磷酸源为磷酸钠、磷酸氢钠、磷酸亚铁、磷酸、磷酸、磷酸铵、磷酸氢二氨或磷酸二氢铵中的至少一种。
进一步优选地,所述磷酸源为磷酸亚铁、磷酸钠、磷酸中的至少一种。
更优选地,所述亚铁源和/或磷酸源中的磷酸亚铁是由废旧磷酸铁锂电池粉回收得到。具体可由废旧磷酸铁锂电池粉和活化剂混合,经酸浸制得。其中,所述混合的工艺优选为球磨。
废弃磷酸铁锂分离得到磷酸亚铁可以回收用作为铁源或者磷酸源,成本相应降低,适合工业化生产。进一步,在废弃磷酸铁锂回收过程中选用活化剂钠盐与废弃磷酸铁锂共磨,活化废弃磷酸铁锂中的锂,促使钠与废弃磷酸铁锂中的锂能进行晶格间的同构取代。
更优选地,所述活化剂为氯化钠、乙酸钠、草酸钠、柠檬酸钠、磷酸钠、亚硫酸钠或硫酸钠中的至少一种。
更优选地,所述酸浸使用的酸的固液比为10-200g/L,优选为20-80g/L。
更优选地,所述酸浸过程中使用的酸的浓度为0.001-10mol/L,优选为0.1-2mol/L。
更优选地,还包括对所制得的磷酸亚铁加入酸进行除杂。
更优选地,所述酸为磷酸、亚硫酸、草酸、甲酸、乙酸中的至少一种。
优选地,所述M cO d/N-C是采用含M源、胺源和铵根源的混合水溶液反应制得。具体为:向M源中加酸,得到M溶液,再加入胺源和铵根源溶液混合,反应,固液分离,取固相进行煅烧,得到M cO d/N-C。
进一步优选地,所述M溶液中M的含量为0.0001-8mol/L。
进一步优选地,所述胺源和M溶液的比为0.1-100(w/v)。
进一步优选地,所述煅烧的温度为300-800℃,煅烧的时间为3-8h。
进一步优选地,所述煅烧的气氛为氩气、氦气、氖气中的一种。
进一步优选地,所述酸为硫酸、硝酸、盐酸、磷酸、草酸中的至少一种。
进一步优选地,所述胺源为苯胺、二甲胺、三甲胺、苯甲胺、苯乙胺、乙胺、二乙胺、丙胺、苯二胺、苄胺或间苯二甲胺中的至少一种。
进一步优选地,所述M源为Ti、V、Cr、Mn、Fe、Co、Cd、Ni、Cu、Zn、Al、Ag、Mg、Ca、Sn或Se的氧化物、氢氧化物、硫酸盐、氯盐、硝酸盐或或碳酸盐中的至少一种。
进一步优选地,所述铵根源为氨水、碳酸铵、硝酸铵、氯化铵、钒酸铵、铝酸氨或硫酸铵中的至少一种。
更优选地,所述铵根源为氨水、碳酸铵、磷酸铵或硝酸铵中的至少一种。
优选地,所述硫酸源为硫酸、硫酸钠、硫酸亚铁、硫酸二铵、硫酸氢铵中的至少一种。
优选地,所述钠源、亚铁源、磷酸源、硫酸源的摩尔比为(0.1-40):(0.01-20):(0.01-20):(0.01-30)。
优选地,所述M cO d/N-C的加入量为钠源、亚铁源、磷酸源、硫酸源总质量的0.01-20%;优选为0.5-4%。
优选地,所述球磨过程中还包括加入分散剂进行球磨。
进一步优选地,所述分散剂为聚乙二醇、甲醇、乙醇中的至少一种。
进一步优选地,所述分散剂的加入量为钠源、亚铁源、磷酸源、硫酸源总质量的0.1-20%;优选为0.5-4%。
优选地,所述球磨后的出料粒径D max<55μm,D 50<15μm,优选D max<20μm,D 50<10μm。
优选地,所述球磨的转速为100-2000r/min,球磨的时间为4-24h;转速优选为600-1500r/min,球磨时间优选为8-12h。
优选地,所述煅烧的温度为200-850℃,煅烧时间为3-24h;优选为400-600℃下煅烧4-8h。
一种电池,包括所述的钠离子电池正极材料。
相对于现有技术,本发明的有益效果如下:
1、本发明的Na xFe y(PO 4) a(SO 4) b-zM cO d/N-C作为正极材料使得钠离子电池无需含锂,来源丰富,不仅不受有限锂资源的制约,而且Na xFe y(PO 4) a(SO 4) b/zM cO d相对 于现有Na 2FePO 4正极材料,理论容量和循环稳定性更为理想。Na xFe y(PO 4) a(SO 4) b/zM cO d为(复合)聚阴离子型正极材料,由于磷酸根以及硫酸根均为四面体型的三维结构,均能与氧离子配位,将两者混合后,可以协同共用氧离子配位位点,因此两者四面体的能够共角,提供了更大的离子扩散通道,进一步扩大了充放电时钠离子脱离、嵌入的通道,钠离子的迁移速率提高和储钠容量提升,电化学性能得到改善。
2、本发明的Na xFe y(PO 4) a(SO 4) b-zM cO d/N-C中为了克服聚阴离子型正极材料的电子电导率普遍较低的缺点,在Na xFe y(PO 4) a(SO 4) b中引入M cO d,M可以为Ti、V、Cr、Mn、Fe、Co、Cd、Ni、Cu、Zn、Ag等过渡金属元素,因为磷酸根和硫酸根对过渡金属的诱导效应均很好,使得Na xFe y(PO 4) a(SO 4) b/zM cO d正极材料的工作电压相较于Na 2FePO 4正极材料更高,正极材料能量密度提高,材料电化学性能进一步提高。
3、本发明的Na xFe y(PO 4) a(SO 4) b-zM cO d/N-C中的zM cO d/N-C提供具有界面的M-N-C化学键,一方面相当于Na xFe y(PO 4) a(SO 4) b中掺杂碳氮,利于界面间电子传输和储存,另一方得益于这种界面的M-N-C化学键,部分磷酸根以及硫酸根产生界面耦合,磷酸根以及硫酸根的四面体间的离子转移效率进一步提高,因此M-N-C化学键的加入,增强了Na xFe y(PO 4) a(SO 4) b电子耦合性能,进一步提升材料整体的电化学性能和稳定性。
4、本发明在制备Na xFe y(PO 4) a(SO 4) b-zM cO d/N-C的过程中,利用废弃磷酸铁锂分离得到亚铁盐回收用作为铁源或者磷酸源,成本相应降低,适合工业化生产,是一种有潜力的钠离子电池正极材料。
附图说明
图1为本发明实施例1的工艺流程图。
图2为本发明实施例1的钠离子电池正极材料的SEM图;
图3为本发明实施例3和对比例1的低倍率放电循环图。
图4为本发明实施例2和对比例1的低倍率放电循环图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例的钠离子电池正极材料,其式为Na 3Fe(PO 4)(SO 4)-0.07ZnO/N-C。
本实施例的钠离子电池正极材料的制备方法,具体步骤如下:
(1)将1kg废弃的磷酸铁锂粉料除杂后,加入60g亚硫酸钠共磨,得到磷酸铁锂电池粉,再加0.59mol/L磷酸浸出(固液比为100g/L),固液分离,得到含锂溶液和不溶物亚铁盐(含钠盐的磷酸亚铁),向亚铁盐中加入0.13mol/L磷酸洗涤除杂,得到除杂后的亚铁盐;
(2)合成ZnO/N-C:将24g氢氧化锌、220mL去离子水加入至20mL的17.6wt%硝酸中,溶成0.8mol/L的硝酸锌溶液,将硝酸锌溶液与15g苯甲胺溶于100mlL0.35mol/L氯化铵溶液中,得到含Zn的混合溶液,离心、固液分离,取固相送至箱式炉,在氖气气氛和580℃下进行保温3.5h,得到31.2g ZnO/N-C;
(3)测定步骤(1)的亚铁盐中磷、亚铁、钠摩尔比=0.41:0.63:0.02,将120g氢氧化钠、120g亚铁盐、55g磷酸氢二铵、150g硫酸二铵、30g ZnO/N-C、50mL聚乙二醇在氖气气氛下混合再进行球磨12h,完毕后洗涤、干燥除去聚乙二醇,再送至氖气气氛下煅烧炉中630℃保温6h、降温得到Na 3Fe(PO 4)(SO 4)-0.07ZnO/N-C。
实施例2
本实施例的钠离子电池正极材料,其式为Na 3Fe(PO 4)(SO 4)-0.06CuO/N-C。
本实施例的钠离子电池正极材料的制备方法,具体步骤如下:
(1)将1kg废弃的磷酸铁锂粉料除杂后,加入40g柠檬酸钠共磨,得到磷酸铁锂电池粉,再加入0.59mol/L磷酸浸出(固液比为80g/L),固液分离,得到含锂溶液和不溶物亚铁盐(含钠盐的磷酸亚铁),向亚铁盐中加入0.13mol/L磷酸洗涤除杂,得到除杂后的亚铁盐;
(2)合成CuO/N-C:将68g二水氯化铜加入至360mL去离子水中,再加入40mL的7.6wt%盐酸,溶成1.0mol/L的氯化铜溶液,将氯化铜溶液与30g苯二胺溶于200mL的0.35mol/L氯化铵溶液中,得到含Cu的混合溶液,离心、固液分离,取固相送至箱式炉,在氖气气氛和580℃下进行保温3.5h,得到47.1g CuO/N-C;
(3)测定步骤(1)的亚铁盐中磷、亚铁、钠摩尔比=0.41:0.63:0.02,将120g氢氧化钠、120g亚铁盐、50g磷酸氢二铵、150g硫酸二铵、25g CuO/N-C、50mL聚乙二醇在氖气气氛下混合再进行球磨12h,完毕后洗涤、干燥除去聚乙二醇,再送至氖气气氛下煅烧炉中630℃保温6h、降温得到Na 3Fe(PO 4)(SO 4)-0.06CuO/N-C。
实施例3
本实施例的钠离子电池正极材料,其式为Na 1.45Fe 0.3(PO 4) 0.5(SO 4) 0.275-0.05ZnO/N-C。
本实施例的钠离子电池正极材料的制备方法,具体步骤如下:
(1)合成ZnO/N-C:将32g氢氧化锌、250mlL去离子水加入至70mL的17.6wt%的硝酸中,溶成1.0mol/L的硝酸锌溶液,将硝酸锌溶液与25g苯甲胺溶于200mlL0.083mo l/L氨水溶液中,得到含Zn的混合溶液,离心、固液分离,取固相送至箱式炉,氖气气氛和700℃下进行保温4h,得到31.2g ZnO/N-C;
(2)将54g二水草酸亚铁、58g氢氧化钠、65g磷酸氢二铵、38g硫酸二铵、10g ZnO/N-C、70mL乙醇在氖气气氛下混合,再进行球磨10h,完毕后洗涤、干燥除去乙醇,再送至氖气气氛下煅烧炉中煅烧、降温得到Na 1.45Fe 0.3(PO 4) 0.5(SO 4) 0.275-0.05ZnO/N-C。
实施例4
本实施例的钠离子电池正极材料,其式为Na 1.80Fe 0.5(PO 4) 0.55(SO 4) 0.575-0.07MnO/N-C。
本实施例的钠离子电池正极材料的制备方法,具体步骤如下:
(1)合成MnO/N-C:将30gMnCl 2、220mL去离子水加入至20mL的17.6wt%的硝酸中,溶成1.2mol/L的硝酸锰溶液,将硝酸锰溶液与25g苯二胺溶于200mL的0.083mo l/L氨水溶液中,得到含Zn的混合溶液,离心、固液分离,取固相送至箱式炉,氖气气氛和700℃下进行保温4h,得到27.7g MnO/N-C;
(2)将90g二水草酸亚铁、72g氢氧化钠、75g磷酸氢二铵、76g硫酸二铵、23g MnO/N-C、60mL乙醇在氖气气氛下混合再进行球磨10h,完毕后洗涤、干燥除去乙醇,再送至氖气气氛下煅烧炉中煅烧、降温得到Na 1.80Fe 0.5(PO 4) 0.55(SO 4) 0.575-0.07MnO/N-C。
实施例5
本实施例的钠离子电池正极材料,其式为Na 2.0Fe 0.65(PO 4) 0.8(SO 4) 0.45-0.05CuO/N-C。
本实施例的钠离子电池正极材料的制备方法,具体步骤如下:
(1)合成CuO/N-C:将68g二水氯化铜加入至360mL去离子水,再加入40mL的7.6wt%的盐酸,溶成1.0mol/L的氯化铜溶液,将氯化铜溶液与30g苯二胺溶于200mL的0.35mo l/L氯化铵溶液中,得到含Cu的混合溶液,离心、固液分离,取固相送至箱式炉,在氖气气氛和700℃下进行保温3.5h,得到47.1g CuO/N-C;
(2)将117g二水草酸亚铁、80g氢氧化钠、110g磷酸氢二铵、60g硫酸二铵、18g CuO/N-C、70mL聚乙二醇在氖气气氛下混合再进行球磨,完毕后洗涤、干燥除去聚乙二醇,再送至氖气气氛下煅烧炉中煅烧、降温得到Na 2.0Fe 0.65(PO 4) 0.8(SO 4) 0.45-0.05CuO/N-C。
实施例6
本实施例的钠离子电池正极材料,其式为Na 2.4Fe 0.7(PO 4)(SO 4) 0.45-0.06NiO/N-C。
本实施例的钠离子电池正极材料的制备方法,具体步骤如下:
(1)合成NiO/N-C:将31g硫酸镍加入至190mL去离子水,再加入10mL的6.5wt%的硫酸,溶成1.0mol/L的硫酸镍溶液,将硫酸镍溶液与30g间苯二胺溶于150mL的0.166mo l/L氨水溶液中,得到含Cu的混合溶液,离心、固液分离,取固相送至箱式炉,在氖气气氛和700℃下进行保温3.5h,得到24.9g NiO/N-C;
(2)将54g二水草酸亚铁、58g氢氧化钠、132g磷酸氢二铵、38g硫酸二铵、15g NiO/N-C、80mL聚乙二醇在氖气气氛下混合再进行球磨,完毕后洗涤、干燥除去聚乙二醇,再送至氖气气氛下煅烧炉中煅烧、降温得到Na 2.4Fe 0.7(PO 4)(SO 4) 0.45-0.06NiO/N-C。
对比例1
本对比例的Na 3Fe(PO 4)(SO 4)正极材料的制备方法,包括以下具体步骤:
(1)将1kg废弃的磷酸铁锂粉料除杂后,加入60g亚硫酸钠共磨,得到磷酸铁锂电池粉,再加0.59mol/L磷酸浸出(固液比为80g/L),固液分离,得到含锂溶液和不溶物亚铁盐(含钠盐的磷酸亚铁),向亚铁盐中加入0.13mol/L磷酸洗涤除杂,得到除杂后的亚铁盐;
(2)测定步骤(1)的亚铁盐中磷、亚铁、钠摩尔比=0.41:0.63:0.02,将120g氢氧化钠、120g亚铁盐、50g磷酸二氢铵、150g硫酸二铵、50mL聚乙二醇在氖气气氛下混合再进行球磨11h,完毕后洗涤、干燥除去聚乙二醇,再送至氖气气氛下煅烧炉中保温6h、降温得到Na 3Fe(PO 4)(SO 4)。
对比例2
一种制备Na 1.45Fe 0.3(PO 4) 0.5(SO 4) 0.275正极材料的方法,包括以下具体步骤:
(1)将54g二水草酸亚铁、58g氢氧化钠、65g磷酸氢二铵、38g硫酸二铵、70mL乙醇在氖气气氛下混合,再进行球磨10h,完毕后洗涤、干燥除去乙醇,再送至氖气气氛下煅烧炉中煅烧、降温得到Na 1.45Fe 0.3(PO 4) 0.5(SO 4) 0.275
实施例1-6与对比例1-2分析:
将实施例1-6与对比例1-2制备的钠离子正极材料、乙炔黑、PVDF按8:1:1的质量比进行称重并混合、搅拌、研磨,加入一定量的NMP溶液作为溶剂,搅拌后得到浆料。将浆料均匀地涂覆在洁净的铜箔上,然后放置在70℃加热管中保温6h,将其冲压成直径 1.8cm的电极片。钠离子扣式电池的组装在充满氖气的手套箱中进行,以制备的电极片为正极,1.2mol/L NaClO 4(溶剂为碳酸乙烯酯)为电解液,按外壳、弹片、垫片、负极(钠片)、0.25mL电解液、隔膜(玻璃纤维)、正极(电极片)、外壳顺序组装,封装扣式电池,静置12h待用。电池的充放电测试恒流充放电测试设备上进行,电压范围为2.0-3.5V,测试倍率为0.1C,测试环境为25℃。
表1
组别 BET(m 2/g) D max(μm) D 50(μm)
实施例1 12.62 22.84 2.94
实施例2 13.34 23.57 3.33
实施例3 13.49 21.82 3.93
实施例4 14.71 29.13 3.22
实施例5 15.65 25.47 3.37
实施例6 13.42 24.30 4.57
对比例1 8.77 38.63 8.89
对比例2 8.48 35.25 9.53
从表1中可得,本发明实施例1-6制备的钠离子正极材料的比表面积大,更有利于钠离子的进出,钠离子的迁移速率提高和储钠容量提升,进一步提升循环效率。
图1为本发明实施例1的工艺流程图:如图1,废弃的磷酸铁锂粉料加入亚硫酸钠共磨,得到磷酸铁锂电池粉,再加酸浸出,固液分离,得到含锂溶液和不溶物亚铁盐,向亚铁盐中加入酸洗涤除杂,得到除杂后的亚铁盐。氢氧化锌、去离子水、酸混合得到的溶液加苯甲胺溶液,溶于氯化铵溶液,离心、固液分离、保温,得到ZnO/N-C。亚铁盐、氢氧化钠、磷酸氢二铵、硫酸二铵ZnO/N-C、聚乙二醇在氖气气氛下混合再进行球磨,完毕后洗涤、干燥,再送至氖气气氛下煅烧、保温、降温得到Na 3Fe(PO 4)(SO 4)-0.07ZnO/N-C。
图2为本发明实施例1的钠离子电池正极材料的SEM图,可知,实施例1得到的钠离子电池正极材料小颗粒约为0.8-1μm左右,稍大的约为3μm左右。
图3、图4分别为本发明实施例3和对比例1、实施例2和对比例1的低倍率放电循环图。实施例2、3制备的正极材料组装得到钠离子扣式电池1-100次循环实验,放电比容量分别在128-140mAh/g、148-150mAh/g,均高于对比例1的100mAh/g左右的放电比容量, 说明实施例2、3制备的Na 3Fe(PO 4)(SO 4)-0.06CuO/N-C、Na 1.45Fe 0.3(PO 4) 0.5(SO 4) 0.275-0.05ZnO/N-C中的CuO/N-C、ZnO/N-C使得正极材料Na xFe y(PO 4) a(SO 4) b的电化学性能有所提升,且实施例2、3和对比例1均为(复合)聚阴离子型正极材料,容量衰减不明显,因此循环稳定性较佳。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种钠离子电池正极材料,其特征在于,所述钠离子电池正极材料的通式为Na xFe y(PO 4) a(SO 4) b-zM cO d/N-C;其中0<x≤4、0<y≤4、0<z≤0.5、0<a≤4、0<b≤3、0<c≤4、0<d≤5;所述M为Ti、V、Cr、Mn、Fe、Co、Cd、Ni、Cu、Zn、Al、Ag、Mg、Ca、Sn或Se的氧化物、氢氧化物、硫酸盐、氯盐、硝酸盐或碳酸盐中的至少一种。
  2. 根据权利要求1所述的钠离子电池正极材料,其特征在于,所述Na xFe y(PO 4) a(SO 4) b/zM cO d的粒径D max<30μm,D 50<10μm,比表面积为12-16m 2/g;所述M为Ti、V、Cr、Mn、Fe、Co、Cd、Ni、Cu、Zn、Al、Ag、Mg、Ca、Sn或Se的氧化物、硫酸盐或氯盐中的至少一种。
  3. 权利要求1-2任一项所述的钠离子电池正极材料的制备方法,其特征在于,包括以下步骤:
    将亚铁源、钠源、磷酸源、硫酸源、M cO d/N-C混合,球磨,煅烧,得到Na xFe y(PO 4) a(SO 4) b/zM cO d
  4. 根据权利要求3所述的制备方法,其特征在于,所述亚铁源为氯化亚铁、乙酸亚铁、草酸亚铁、柠檬酸亚铁、磷酸亚铁、硫酸亚铁或氢氧化亚铁中的至少一种。
  5. 根据权利要求3所述的制备方法,其特征在于,所述磷酸源为磷酸钠、磷酸氢钠、磷酸亚铁、磷酸、磷酸铵、磷酸氢二氨或磷酸二氢铵中的至少一种;所述硫酸源为硫酸、硫酸钠、硫酸亚铁、硫酸二铵或硫酸氢铵中的至少一种。
  6. 根据权利要求4或5所述的制备方法,其特征在于,所述磷酸亚铁是由废旧磷酸铁锂电池粉回收得到。
  7. 根据权利要求3所述的制备方法,其特征在于,所述钠源为氢氧化钠、碳酸钠、磷酸氢钠、磷酸二氢钠、草酸钠、甲酸/乙酸钠、柠檬酸钠、硫酸钠、硫酸氢钠、甲基磺酸钠或醋酸钠中的至少一种。
  8. 根据权利要求3所述的制备方法,其特征在于,所述M cO d/N-C是采用含M源、胺源和铵根源的混合水溶液反应制得;所述M源为Ti、V、Cr、Mn、Fe、Co、Cd、Ni、Cu、Zn、Al、Ag、Mg、Ca、Sn或Se的氧化物、氢氧化物、硫酸盐、氯盐、硝酸盐或碳酸盐中的至少一种。
  9. 根据权利要求3所述的制备方法,其特征在于,所述钠源、亚铁源、磷酸源、硫酸源的摩尔比为(0.1-40):(0.01-20):(0.01-20):(0.01-30);所述M cO d/N-C的加 入量为钠源、亚铁源、磷酸源、硫酸源总质量的0.01-20%。
  10. 一种电池,其特征在于,包括权利要求1-2任一项所述的钠离子电池正极材料。
PCT/CN2022/111809 2021-10-29 2022-08-11 钠离子电池正极材料及其制备方法和应用 WO2023071396A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111273805.X 2021-10-29
CN202111273805.XA CN114243001A (zh) 2021-10-29 2021-10-29 钠离子电池正极材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023071396A1 true WO2023071396A1 (zh) 2023-05-04

Family

ID=80743479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111809 WO2023071396A1 (zh) 2021-10-29 2022-08-11 钠离子电池正极材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114243001A (zh)
WO (1) WO2023071396A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116675207A (zh) * 2023-07-28 2023-09-01 赣州立探新能源科技有限公司 一种铁基磷酸焦磷酸盐材料及其制备方法和应用
CN117023547A (zh) * 2023-08-28 2023-11-10 湖北万润新能源科技股份有限公司 一种磷酸锰铁锂的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114243001A (zh) * 2021-10-29 2022-03-25 广东邦普循环科技有限公司 钠离子电池正极材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105390700A (zh) * 2015-11-16 2016-03-09 哈尔滨工业大学 一种通过添加金属氧化物/碳复合材料改性锂离子电池正极的方法
CN105789596A (zh) * 2016-04-28 2016-07-20 北京大学深圳研究生院 一种超容量锂离子电池正极材料及其制备方法和应用
CN111129480A (zh) * 2019-12-20 2020-05-08 河南师范大学 一种钠离子电池用MoO2/N-C复合电极材料的制备方法
CN112960663A (zh) * 2021-02-02 2021-06-15 胡国强 一种LiFeXCo1-XPO4/N-C/CC复合材料的制备方法
CN114243001A (zh) * 2021-10-29 2022-03-25 广东邦普循环科技有限公司 钠离子电池正极材料及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355886B (zh) * 2015-11-27 2017-12-15 中南大学 一种钠离子电池正极Na2+2xFe2‑x(SO4)3@碳复合材料及其制备方法
KR102168553B1 (ko) * 2018-10-15 2020-10-21 한국과학기술연구원 폴리도파민 전구체로부터 형성된 질소 도핑된 카본으로 둘러싸인 소듐이온전지용 양극 활물질 및 이의 제조방법
CN112447947B (zh) * 2019-08-28 2022-03-25 宁德时代新能源科技股份有限公司 钠离子电池用正极材料及其制备方法
CN111540885B (zh) * 2020-04-01 2021-09-03 重庆金皇后新能源汽车制造有限公司 一种多孔碳包覆LiFePO4-LiNiO2的锂离子电池正极材料及其制法
CN111613786B (zh) * 2020-05-29 2023-03-28 东莞东阳光科研发有限公司 一种复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105390700A (zh) * 2015-11-16 2016-03-09 哈尔滨工业大学 一种通过添加金属氧化物/碳复合材料改性锂离子电池正极的方法
CN105789596A (zh) * 2016-04-28 2016-07-20 北京大学深圳研究生院 一种超容量锂离子电池正极材料及其制备方法和应用
CN111129480A (zh) * 2019-12-20 2020-05-08 河南师范大学 一种钠离子电池用MoO2/N-C复合电极材料的制备方法
CN112960663A (zh) * 2021-02-02 2021-06-15 胡国强 一种LiFeXCo1-XPO4/N-C/CC复合材料的制备方法
CN114243001A (zh) * 2021-10-29 2022-03-25 广东邦普循环科技有限公司 钠离子电池正极材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAMDI BEN YAHIA ET AL.: "Sodium intercalation in the phosphosulfate cathode NaFe2(PO4)(SO4)2.", JOURNAL OF POWER SOURCES., vol. 382, 22 February 2018 (2018-02-22), XP085372768, ISSN: 0378-7753, DOI: 10.1016/j.jpowsour.2018.02.021 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116675207A (zh) * 2023-07-28 2023-09-01 赣州立探新能源科技有限公司 一种铁基磷酸焦磷酸盐材料及其制备方法和应用
CN116675207B (zh) * 2023-07-28 2023-10-20 赣州立探新能源科技有限公司 一种铁基磷酸焦磷酸盐材料及其制备方法和应用
CN117023547A (zh) * 2023-08-28 2023-11-10 湖北万润新能源科技股份有限公司 一种磷酸锰铁锂的制备方法

Also Published As

Publication number Publication date
CN114243001A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
WO2023071396A1 (zh) 钠离子电池正极材料及其制备方法和应用
CN102655231B (zh) 一种制备高功率性能锂离子电池正极材料LiMn2O4的方法
CN105870438B (zh) 一种锂二次电池富锂正极复合材料及其制备方法
JP4185191B2 (ja) スピネル型マンガン酸リチウムの製造方法
CN104009252A (zh) 一种钠离子电池及其制备方法
CN106981651A (zh) 铷和/或铯掺杂的三元正极材料及制备方法、锂离子电池
CN111916687A (zh) 一种正极材料及其制备方法和锂离子电池
CN106602024B (zh) 一种表面原位修饰型富锂材料及其制备方法
CN110459764B (zh) 一种锂离子电池正极材料及其制备方法与应用
CN104218235A (zh) 一种双掺杂富锂固溶体正极复合材料及其制备方法、锂离子电池正极片和锂离子电池
CN104953096B (zh) 一种表面改性的高电压钴酸锂正极材料及其制备方法
CN112310502A (zh) 废旧锰酸锂锂离子电池正极材料的回收及再利用方法
GB2618695A (en) Doped sodium ferric phosphate positive electrode material, preparation method therefor and application thereof
CN115763766A (zh) Na2MnPO4F包覆的O3型层状钠离子电池正极材料及其制备方法
CN107732193A (zh) 一种应用核壳结构高镍正极材料的全固态锂电池及其制备方法
CN114804235B (zh) 一种高电压镍钴锰酸锂正极材料及其制备方法和应用
CN102832381A (zh) 长寿命锂离子电池高压正极材料Li1+xMn3/2-yNi1/2-zMy+zO4的制备方法
CN108923032A (zh) 以金属氧化物修饰的锂离子电池三元正极材料及制备方法
CN111682174A (zh) 一种锑包覆的锂电池正极材料及其制备方法和应用
CN115010107A (zh) 一种磷化渣制备磷酸锰铁锂正极材料的方法
CN112786893B (zh) 一种纳米氟化锆锂原位包覆高镍三元正极材料、其制备方法及锂离子电池
JP4274630B2 (ja) スピネル型マンガン酸リチウムの製造方法
CN114256451A (zh) 一种钠离子电池正极材料及其制备方法和应用
WO2024060548A1 (zh) 一种铁包覆硼掺杂的高镍正极材料及其制备方法和应用
CN110660975A (zh) 一种锇掺杂的LiAlSiO4包覆镍钴锰酸锂正极材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885296

Country of ref document: EP

Kind code of ref document: A1