WO2024031913A1 - 一种层状氧化物正极材料及其制备方法和钠离子电池 - Google Patents

一种层状氧化物正极材料及其制备方法和钠离子电池 Download PDF

Info

Publication number
WO2024031913A1
WO2024031913A1 PCT/CN2022/140550 CN2022140550W WO2024031913A1 WO 2024031913 A1 WO2024031913 A1 WO 2024031913A1 CN 2022140550 W CN2022140550 W CN 2022140550W WO 2024031913 A1 WO2024031913 A1 WO 2024031913A1
Authority
WO
WIPO (PCT)
Prior art keywords
optionally
sodium
precursor
precipitation
core
Prior art date
Application number
PCT/CN2022/140550
Other languages
English (en)
French (fr)
Inventor
许开华
赖延清
杨幸
张坤
李聪
华文超
范亮姣
薛晓斐
Original Assignee
格林美股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 格林美股份有限公司 filed Critical 格林美股份有限公司
Publication of WO2024031913A1 publication Critical patent/WO2024031913A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy

Definitions

  • This application belongs to the field of battery technology and relates to a layered oxide cathode material and its preparation method and sodium ion battery.
  • LIBs lithium-ion batteries
  • solid-state LIBs using metallic lithium as the anode have also been well developed.
  • Sodium-ion batteries (SIBs) equipped with advanced cobalt-free cathodes have shown great potential in solving the "lithium scare” and “cobalt scare” and have made significant progress in recent years.
  • sodium cathode materials As one of the core materials of sodium-ion batteries, sodium cathode materials have become the focus of researchers.
  • the currently studied cathode materials for sodium-ion batteries are mainly crystalline materials, including transition metal oxides, polyanionic compounds and Prussian blue compounds.
  • Transition metal layered oxide cathode materials have the advantages of wide sources of raw materials, good processing performance, and high specific capacity, and have huge application potential in the field of low-cost, large-scale energy storage.
  • CN112563484A provides a sodium ion battery cathode material and a preparation method thereof.
  • CN108899538A provides a ternary sodium ion battery cathode material and a preparation method thereof, which mixes a salt solution containing divalent nickel salt, divalent cobalt salt and divalent manganese salt with an alkali solution, performs a co-precipitation reaction, and then performs a precipitate reaction.
  • a sodium source and a titanium source are added and the material is calcined again to obtain a ternary sodium-ion battery cathode material with good cycle stability and discharge voltage platform.
  • CN109607624B adds soluble carbonate, manganese salt, and cobalt salt to water for stirring reaction, generates precipitate, and then adds sodium hydroxide for sintering to obtain a sodium-ion battery cathode material with a layered-tunnel composite structure.
  • the preparation process has few steps and is easy to operate. Simple and improves the capacity of the cathode material.
  • Transition metal layered oxides in sodium ion batteries in the prior art include monometal oxides, bimetal oxides and multi-metal oxides.
  • monometal oxide sodium manganate although its capacity is high, the cycle During the process, the internal resistance of the material is large and polarization is severe.
  • Mn 3+ octahedral compounds usually exhibit a strong Jahn-Teller effect, resulting in rapid material capacity decay and unsatisfactory cycle performance; while multi-metallic nickel-iron-manganese layered Oxide cathode materials have good air stability and excellent cycle stability under normal pressure, but their low gram capacity hinders their application in the field of high energy density batteries.
  • the purpose of this application is to provide a layered oxide cathode material and a preparation method thereof and a sodium ion battery.
  • the layered oxide cathode material of this application has a core-shell structure, and the core includes high manganese.
  • the application provides a layered oxide cathode material.
  • the layered oxide cathode material includes a core and a shell covering the surface of the core.
  • the core includes Na x Mn a M 1-a O 2
  • the shell includes Na x Ni b Mn c Fe d O 2 , where 0.7 ⁇ x ⁇ 0.9, 0.8 ⁇ a ⁇ 1, 0.2 ⁇ b ⁇ 0.5, 0.2 ⁇ c ⁇ 0.6, 0.2 ⁇ d ⁇ 0.5
  • M includes any one or a combination of at least two of Ni, Ti, Fe and Cu.
  • 0.2 ⁇ b ⁇ 0.5 for example, it can be 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 or 0.49, etc.
  • 0.2 ⁇ c ⁇ 0.6 for example, it can be 0.2, 0.25 , 0.3, 0.35, 0.4, 0.45, 0.5, 0.55 or 0.59, etc.
  • 0.2 ⁇ d ⁇ 0.5 for example, it can be 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 or 0.5, etc.
  • the layered oxide cathode material prepared in this application has a core-shell structure.
  • the core contains Na x Mn a M 1-a O 2 with high manganese content.
  • the outer shell includes Na x Ni b Mn c Fe d O 2 .
  • the core material can be The positive electrode provides a higher specific capacity, and the outer shell can effectively block the contact between Na x Mn a M 1-a O 2 and the electrolyte, avoiding the dissolution of Mn and reducing the occurrence of side reactions between the material and the electrolyte during the reaction process; at the same time,
  • the synergistic interaction between core and shell materials can improve the comprehensive electrochemical performance of the material, especially the discharge capacity and cycle performance.
  • the cathode material provided by this application has less Ni content and does not contain Co rare precious metal. It has the advantages of low price and simple preparation method, and has good application prospects in fields such as energy storage.
  • the D50 particle size of the layered oxide cathode material is 3 to 15 ⁇ m, for example, it can be 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 11 ⁇ m, 12 ⁇ m, 13 ⁇ m, 14 ⁇ m or 15 ⁇ m, etc. .
  • the thickness of the outer shell is 5 to 10% of the D50 particle diameter of the layered oxide cathode material, for example, it can be 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8 %, 8.5%, 9%, 9.5% or 10%, etc.
  • the thickness of the shell in this application refers to the average thickness of the shell in the layered oxide cathode material; for example, when the layered oxide layer is a sphere, if its D50 particle size is 10 ⁇ m, the core D50 particle size is 8 ⁇ m. , then the total length of the shell in the thickness direction of the cross section is 2 ⁇ m, that is, the thickness of the shell is 1 ⁇ m.
  • the structural stability of the sodium cathode material can be improved, and the cycle stability and thermal stability of the material can be further improved.
  • the present application provides a method for preparing the layered oxide cathode material according to the first aspect, the preparation method comprising:
  • the core precursor includes Mn a M 1-a (OH) 2
  • the shell precursor includes Ni b Mn c Fe d (OH) 2 ;
  • This application adopts a two-step feeding and two-step co-precipitation method to generate a hydroxide precursor with a core-shell structure, and by adding a sodium source for sintering, a layered oxide cathode material is obtained.
  • the preparation method is simple, and the morphology of the material is The size is highly controllable, and the prepared layered oxide cathode material has high specific capacity and good cycle stability.
  • the second salt solution can be directly added, and the co-precipitation reaction can be carried out under the action of the original precipitant and complexing agent, or a certain amount of salt can be added again.
  • Precipitating agent and complexing agent to carry out co-precipitation reaction.
  • the D50 particle size of the core precursor is 80 to 90% of the D50 particle size of the hydroxide precursor, for example, it can be 80%, 81%, 82%, 83%, 84%, 85%. %, 86%, 87%, 88%, 89% or 90%, etc.
  • the first salt solution includes Mn and M in a molar ratio of a:(1-a).
  • the second salt solution includes Ni, Mn and Fe in a molar ratio of b:c:d.
  • the type of salt in the first salt solution and the second salt solution is independently any one or a combination of at least two of chloride, oxalate, sulfate and nitrate, for example, it can be Combination of chloride and nitrate, combination of oxalate and sulfate, combination of sulfate and nitrate, combination of chloride, oxalate and sulfate, or chloride, oxalate, sulfate and nitrate combinations, etc.
  • the types of salts in the first salt solution and the second salt solution are independently chloride, oxalate, sulfate and nitric acid. Any one or a combination of at least two salts means that when the type of salt in the first salt solution is chloride salt, the type of salt in the second salt solution can be chloride salt or oxalate, It may also be a combination of sulfate and nitrate, etc., and the selection of the types of salts in the first salt solution and the second salt solution does not interfere with each other.
  • the concentrations of the first salt solution and the second salt solution are independently 80-120g/L, for example, they can be 80g/L, 85g/L, 90g/L, 95g/L, 100g/L, 105g /L, 110g/L, 115g/L or 120g/L, etc.
  • the precipitating agent includes an aqueous sodium hydroxide solution.
  • the mass fraction of the solute in the precipitant is 20 to 40%, for example, it can be 20%, 22%, 24%, 26%, 28%, 30% %, 32%, 34%, 36%, 38% or 40%, etc.
  • the complexing agent includes any one or a combination of at least two of ammonia, oxalic acid, lactic acid, sodium oxalate and EDTA solution, for example, it can be a combination of oxalic acid and lactic acid, a combination of sodium oxalate and EDTA solution, The combination of ammonia and sodium oxalate, or the combination of oxalic acid, lactic acid, sodium oxalate and EDTA solution, etc.
  • the concentration of the complexing agent is 8 to 10 mol/L, for example, it can be 8 mol/L, 8.2 mol/L, 8.4 mol/L, or 8.6 mol/L. , 8.8mol/L, 9mol/L, 9.2mol/L, 9.4mol/L, 9.6mol/L, 9.8mol/L or 10mol/L, etc.
  • the temperatures of the first co-precipitation and the second co-precipitation are independently 40-70°C, for example, they can be 40°C, 45°C, 50°C, 55°C, 60°C °C, 65°C or 70°C, etc.
  • the pH values of the first co-precipitation and the second co-precipitation are independently 9.5 to 11.5, for example, they can be 9.5, 9.8, 10, 10.2, 10.5, 10.8, 11, 11.2 or 11.5, etc.
  • the co-precipitation reaction is carried out at a suitable temperature and pH value, which can improve the sphericity and crystallinity of the precursor.
  • the concentration of the complexing agent is independently 0.1 to 0.5 mol/L, for example, it can be 0.1 mol/L. L, 0.2mol/L, 0.3mol/L, 0.4mol/L or 0.5mol/L, etc.
  • the co-precipitated solution contains an appropriate concentration of complexing agent, which is beneficial to controlling the growth rate of the precursor and improving the spherical shape of the precursor. Spend.
  • the rotation speeds of the first co-precipitation and the second co-precipitation are independently 320-380 rpm/min, for example, they can be 320 rpm/min, 330 rpm/min, 340 rpm/min, 350 rpm/min, 360 rpm/min, 370 rpm /min or 380rpm/min, etc.
  • the steps of aging, filtration, washing and drying are also included.
  • the drying temperature is 100-120°C, for example, it can be 100°C, 102°C, 104°C, 106°C, 108°C, 110°C, 112°C, 114°C, 116°C, 118°C or 120°C. wait.
  • the drying method includes any one of rotary kiln drying, microwave drying, tray dryer drying and box oven drying or a mixture of at least two of them.
  • the molar ratio of Na in the sodium source to the sum of Ni, Mn, Fe and M in the hydroxide precursor is 0.7 to 0.9, for example, it can be 0.7, 0.75, 0.8, 0.85 or 0.9 wait.
  • the sodium source includes any one or a combination of at least two of sodium hydroxide, sodium carbonate, sodium oxalate, sodium chloride and sodium nitrate, for example, it can be a combination of sodium hydroxide and sodium carbonate, oxalic acid
  • the sintering includes first sintering and second sintering.
  • the temperature of the first sintering is 450-550°C, for example, it can be 450°C, 460°C, 470°C, 480°C, 490°C, 500°C, 510°C, 520°C, 530°C, 540°C or 550°C etc.
  • the first sintering time is 4 to 6 hours, for example, it can be 4 hours, 4.5 hours, 5 hours, 5.5 hours or 6 hours.
  • the temperature rise rate of the first sintering is 3 to 5°C/min, for example, it may be 3°C/min, 3.5°C/min, 4°C/min, 4.5°C/min or 5°C/min.
  • the second sintering temperature is 600-800°C, for example, it can be 600°C, 620°C, 640°C, 660°C, 680°C, 700°C, 720°C, 740°C, 760°C, 780°C or 800°C etc.
  • the second sintering time is 10 to 16 hours, for example, it can be 10 hours, 11 hours, 12 hours, 13 hours, 14 hours, 15 hours, 16 hours, etc.
  • the temperature rise rate of the second sintering is 3 ⁇ 5°C/min, for example, it can be 3°C/min, 3.5°C/min, 4°C/min, 4.5°C/min or 5°C/min.
  • two-step sintering is performed at a suitable temperature and time, which is beneficial to the diffusion of sodium ions during the high-temperature sintering process and reduces residual sodium on the material surface.
  • the preparation method includes:
  • the first salt solution includes Mn and M with a molar ratio of a:(1-a) to obtain the core precursor, and then Add a second salt solution to perform a second co-precipitation reaction.
  • the second salt solution includes Ni, Mn and Fe in a molar ratio of b:c:d.
  • a shell precursor is generated on the surface of the core precursor to obtain a hydroxide.
  • the temperatures of the first co-precipitation and the second co-precipitation are independently 40-70°C, and the pH values of the first co-precipitation and the second co-precipitation are independently 9.5-11.5.
  • the volume of the solution and the second co-precipitated solution is used as a basis, the concentration of the complexing agent is independently 0.1 to 0.5 mol/L, and the core precursor includes Mn a M 1-a (OH) 2 , so
  • the shell precursor includes Ni b Mn c Fe d (OH) 2 , and the D50 particle size of the core precursor is 80 to 90% of the D50 particle size of the hydroxide precursor;
  • the present application provides a sodium-ion battery
  • the cathode of the sodium-ion battery includes the layered oxide cathode material according to the first aspect.
  • the sodium-ion battery prepared using the layered oxide cathode material of the present application has higher specific capacity and better cycle stability, and exhibits excellent comprehensive electrochemical performance.
  • the layered oxide cathode material prepared in this application has a core-shell structure.
  • the core contains Na x Mn a M 1-a O 2 with high manganese content.
  • the outer shell includes Na x Ni b Mn c Fe d O 2 .
  • the material can provide a high specific capacity for the positive electrode, and the outer shell can effectively block the contact between Na x Mn a M 1-a O 2 and the electrolyte, avoiding the dissolution of Mn and reducing the occurrence of side reactions between the material and the electrolyte during the reaction process. ;
  • the synergy between core and shell materials can improve the comprehensive electrochemical properties of the materials, especially the discharge capacity and cycle performance.
  • the cathode material provided by this application has less Ni content and does not contain Co rare precious metals. It has the advantages of low price and simple preparation method, and has good application prospects in fields such as energy storage.
  • Figure 1 is a cross-sectional SEM image of the hydroxide precursor prepared in Example 1 of the present application.
  • Figure 2 is a cross-sectional distribution diagram of the Ni element in the hydroxide precursor prepared in Example 1 of the present application.
  • Figure 3 is an SEM image of the layered oxide cathode material prepared in Example 1 of the present application.
  • This embodiment provides a layered oxide cathode material, including a core Na 0.8 Mn 0.85 Cu 0.15 O 2 and a shell Na 0.8 Ni 0.33 Fe 0.33 Mn 0.33 O 2 covering the surface of the core.
  • the thickness of the shell is 1 ⁇ m, and the layer
  • the D50 particle size of the oxide cathode material is 12 ⁇ m.
  • This embodiment also provides a method for preparing the above layered oxide cathode material, including:
  • step (3) Evenly mix the hydroxide precursor obtained in step (2) and sodium carbonate at a molar ratio of Na to transition metal (Ni, Fe, Mn and Cu) of 0.8:1, in an air atmosphere at 3°C/ Heating to 500°C at a heating rate of 5 min and holding for 5 hours, then heating to 700°C and holding for 15 hours at a heating rate of 3°C/min, and cooling naturally to obtain a core of Na 0.8 Mn 0.85 Cu 0.15 O 2 and an outer shell of Na 0.8 Ni 0.33 Fe 0.33 Mn 0.33 O 2 core-shell structure layered oxide cathode material.
  • This embodiment provides a layered oxide cathode material, including a core Na 0.8 Mn 0.8 Ni 0.2 O 2 and a shell Na 0.8 Ni 0.33 Fe 0.33 Mn 0.33 O 2 covering the surface of the core.
  • the thickness of the shell is 0.8 ⁇ m.
  • the D50 particle size of the layered oxide cathode material is 8 ⁇ m.
  • This embodiment also provides a method for preparing the above layered oxide cathode material, including:
  • step (3) Evenly mix the hydroxide precursor obtained in step (2) and sodium carbonate at a molar ratio of Na to transition metal (Ni, Fe, Mn and Cu) of 0.85:1, in an air atmosphere at 3°C/ Heating to 550°C at a heating rate of min and holding for 4 hours, then heating to 650°C and holding for 16 hours at a heating rate of 3°C/min, cooling naturally to obtain a core of Na 0.8 Mn 0.85 Cu 0.15 O 2 and an outer shell of Na 0.8 Ni 0.33 Fe 0.33
  • the SEM image of the layered oxide cathode material with a core-shell structure of Mn 0.33 O 2 is shown in Figure 3.
  • This embodiment provides a layered oxide cathode material, including a core of Na 0.8 Mn 0.85 Cu 0.15 O 2 and a shell of Na 0.8 Ni 0.33 Fe 0.33 Mn 0.33 O 2 covering the surface of the core.
  • the thickness of the shell is 1.5 ⁇ m.
  • the D50 particle size of the layered oxide cathode material is 15 ⁇ m.
  • This embodiment also provides a method for preparing the above layered oxide cathode material, including:
  • step (3) Evenly mix the hydroxide precursor obtained in step (2) and sodium carbonate at a molar ratio of Na to transition metal (Ni, Fe, Mn and Cu) of 0.8:1, in an air atmosphere at 3°C/ Heating to 500°C at a heating rate of 5 min and holding for 5 hours, then heating to 700°C and holding for 15 hours at a heating rate of 3°C/min, and cooling naturally to obtain a core of Na 0.8 Mn 0.85 Cu 0.15 O 2 and an outer shell of Na 0.8 Ni 0.33 Fe 0.33 Mn 0.33 O 2 core-shell structure layered oxide cathode material.
  • step (2) when the particle size reaches 9 ⁇ m, the flow of the first salt solution is stopped, and the second salt solution is added to react so that the thickness of the shell is 15% of the D50 particle size of the layered oxide cathode material. , the rest are the same as Example 1.
  • step (2) when the particle size reaches 11 ⁇ m, the flow of the first salt solution is stopped, and the second salt solution is added to react so that the thickness of the shell is 3% of the D50 particle size of the layered oxide cathode material. , the rest are the same as Example 1.
  • step (2) Except that in step (2), the concentration of ammonia water (complexing agent) during the co-precipitation reaction was replaced with 0.09 mol/L, the rest were the same as in Example 1.
  • step (2) Except that in step (2), the concentration of ammonia water (complexing agent) during the coprecipitation reaction was replaced with 0.6 mol/L, the rest were the same as in Example 1.
  • step (3) Except that the first sintering temperature in step (3) is replaced from 500°C to 400°C, the rest is the same as in Example 1.
  • step (3) Except that the first sintering temperature in step (3) is replaced from 500°C to 600°C, the rest is the same as in Example 1.
  • step (3) Except that the second sintering temperature in step (3) is replaced from 700°C to 550°C, the rest is the same as in Example 1.
  • step (3) Except that the second sintering temperature in step (3) is replaced from 700°C to 850°C, the rest is the same as in Example 1.
  • step (2) except that in step (2) only the first salt solution is passed in and the second salt solution is not passed in, the rest are the same as in Example 1;
  • step (2) except that in step (2) only the second salt solution is passed in and the first salt solution is not passed in, the rest are the same as in Example 1;
  • the blue power CT2001A electrochemical tester is used for charge and discharge testing.
  • the voltage range is 2.5 ⁇ 4.0V
  • the test current density is 0.2C
  • the number of cycles is 50.
  • the experimental results are shown in Table 1.
  • Example 1 160.3 84.1
  • Example 2 159.3 84.5
  • Example 3 161.2 85.1
  • Example 4 158.1 82.2
  • Example 5 159.5 82.1
  • Example 6 158.1 80.2
  • Example 7 157.2 81.3
  • Example 8 157.3 80.4
  • Example 9 156.6 82.2
  • Example 10 158.2 80.1
  • Example 11 159.9 80.9
  • Example 12 157.2 75.8
  • Example 13 157.3 78.9 Comparative example 1 155.2 71.1 Comparative example 2 150.3 83.2 Comparative example 3 158.2 50.1
  • the layered oxide cathode material of the present application has a core-shell structure.
  • the core includes Na x Mn a M 1-a O 2 with high manganese content
  • the outer shell includes Na x Ni b Mn c Fe d O 2
  • the core and the shell work together to prevent Mn from dissolving, reduce side reactions between the material and the electrolyte during the reaction, and improve the discharge capacity and cycle performance of the layered oxide cathode material.
  • Example 1 From the comparison between Example 1 and Examples 4-5, it can be seen that in this application, by controlling the particle size of the core and the shell, the synergy between the core and the shell is fully utilized, and the initial specific capacity and cycle performance of the material are improved.
  • the shell In Example 4, the shell is too thick, which will lead to low material capacity and reduced cycle performance; in Example 5, the outer shell is too thin, which will lead to reduced material cycle performance. Therefore, Example 1 has a higher capacity and better cycle performance.
  • Example 1 has higher capacity and better cycle performance.
  • Example 1 From the comparison between Example 1 and Examples 10-13, it can be seen that in this application, through two-step sintering and further optimizing the temperature of the first sintering and the second sintering, the residual sodium of the material can be reduced; compared with Examples 10-13 , the cycle performance of Example 1 is better.
  • Example 1 it can be seen from the comparison between Example 1 and Comparative Examples 1-3 that in this application, Na 0.8 Mn 0.85 Cu 0.15 O 2 cathode material, Na 0.8 Ni 0.33 Fe 0.33 Mn 0.33 O 2 cathode material or Na 0.8 MnO 2 cathode material is used alone. None of them can achieve the core-shell synergy in this application to improve the specific capacity and cycle performance of the material; Comparative Example 1 uses Na 0.8 Mn 0.85 Cu 0.15 O 2 cathode material, and manganese is easily dissolved in the electrolyte, affecting the specific capacity of the material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请提供了一种层状氧化物正极材料及其制备方法和钠离子电池,所述层状氧化物正极材料包括内核和包覆在所述内核表面的外壳,所述内核包括Na xMn aM 1-aO 2,所述外壳包括Na xNi bMn cFe dO 2,其中,0.7<x≤0.9,0.8≤a<1,0.2≤b<0.5,0.2≤c<0.6,0.2≤d≤0.5,M包括Ni、Ti、Fe和Cu中的任意一种或至少两种的组合。本申请通过内核和外壳协同作用,防止Mn溶解,降低反应过程中材料与电解液的副反应,提高了层状氧化物正极材料的放电容量和循环性能。

Description

一种层状氧化物正极材料及其制备方法和钠离子电池 技术领域
本申请属于电池技术领域,涉及一种层状氧化物正极材料及其制备方法和钠离子电池。
背景技术
锂离子电池(LIBs)在大规模电化学储能系统中的应用已经取得了初步成功,使用金属锂作为阳极的固态LIBs也得到了良好的发展。然而,需求和成本的急剧增加以及LIBs中重要的金属元素锂和钴的有限储备引起了人们对未来发展的关注。配备先进的无钴阴极的钠离子电池(SIBs)在解决“锂恐慌”和“钴恐慌”方面显示出巨大的潜力,并在近些年取得了显著的进展。
作为钠离子电池最核心的材料之一,钠电正极材料成为了研究者关注的重点。目前研究的钠离子电池正极材料,主要是晶态材料,包括过渡金属氧化物、聚阴离子化合物和普鲁士蓝类化合物。而过渡金属层状氧化物正极材料因具有原料来源广、加工性能好、高比容量等优点,在低成本、大规模储能领域有巨大的应用潜力。CN112563484A提供了一种钠离子电池正极材料及其制备方法,其将钠盐、镍盐和M盐的盐溶液混合,并在高温高压的条件下进行反应后烧结,得到层状结构的Na xNi yM 1-yO 2正极材料,提高了材料的容量和循环性能。CN108899538A提供了一种三元钠离子电池正极材料及其制备方法,其将含有二价镍盐、二价钴盐和二价锰盐的盐溶液与碱溶液混合,进行共沉淀反应,然后进行预烧,烧结后加入钠源和钛源再次煅烧,得到了具有良好的循环稳定性以及放电电压平台的三元钠离子电池正极材料。CN109607624B将可溶性碳酸盐、锰盐,以及钴盐加入水中搅拌反应,生成沉淀后加入氢氧化钠进行烧结,得到 具有层状-隧道复合结构的钠离子电池正极材料,其制备工艺步骤少,操作简单,提高了正极材料的容量。
现有技术中的钠离子电池过渡金属层状氧化物包括了单金属氧化物、双金属氧化物和多金属氧化物,对于单金属氧化物锰酸钠而言,虽然其容量较高,但是循环过程中材料内阻较大、极化严重,Mn 3+八面体化合物通常会表现出较强的Jahn-Teller效应,导致材料容量衰减较快、循环性能不理想;而多金属镍铁锰层状氧化物正极材料具有较好的空气稳定性以及常压下优异的循环稳定性,但其克容量偏低,阻碍了其在高能量密度电池领域的应用。
综上,制备一种具有较高比容量和良好的循环稳定性的钠离子电池正极材料对钠离子电池的研究和发展有着重要意义。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
针对现有技术中存在的问题,本申请的目的在于提供一种层状氧化物正极材料及其制备方法和钠离子电池,本申请的层状氧化物正极材料呈核壳结构,内核包括高锰含量的Na xMn aM 1-aO 2,外壳包括Na xNi bMn cFe dO 2,内核和外壳协同作用,能够防止Mn溶解,降低反应过程中材料与电解液的副反应,提高层状氧化物正极材料的放电容量和循环性能。
为达到此申请目的,本申请采用以下技术方案:
第一方面,本申请提供了一种层状氧化物正极材料,所述层状氧化物正极材料包括内核和包覆在所述内核表面的外壳,所述内核包括Na xMn aM 1-aO 2,所述外壳包括Na xNi bMn cFe dO 2,其中,0.7<x≤0.9,0.8≤a<1,0.2≤b<0.5,0.2≤c <0.6,0.2≤d≤0.5,M包括Ni、Ti、Fe和Cu中的任意一种或至少两种的组合。
本申请中,0.7<x≤0.9,例如可以是0.71、0.72、0.75、0.78、0.8、0.82、0.85、0.88或0.9等,0.8≤a<1,例如可以是0.8、0.82、0.84、0.86、0.88、0.9、0.92、0.94、0.96、0.98或0.99等,0.2≤b<0.5,例如可以是0.2、0.25、0.3、0.35、0.4、0.45或0.49等,0.2≤c<0.6,例如可以是0.2、0.25、0.3、0.35、0.4、0.45、0.5、0.55或0.59等,0.2≤d≤0.5,例如可以是0.2、0.25、0.3、0.35、0.4、0.45或0.5等。
本申请制备的层状氧化物正极材料具有核壳结构,内核的含有高锰含量的Na xMn aM 1-aO 2,外壳包括Na xNi bMn cFe dO 2,内核材料能够为正极提供较高的比容量,外壳能有效阻隔Na xMn aM 1-aO 2与电解液接触,避免了Mn的溶解,降低了反应过程中材料与电解液的副反应的发生;同时,核壳材料之间相互协同作用,能提高材料的综合电化学性能,特别是放电容量和循环性能。
本申请提供的正极材料Ni含量较少且不含Co稀贵金属,具有价格低廉且制备方法简单等优势,在储能等领域具有较好的应用前景。
可选地,所述层状氧化物正极材料的D50粒径为3~15μm,例如可以是3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm、11μm、12μm、13μm、14μm或15μm等。
可选地,所述外壳的厚度为所述层状氧化物正极材料的D50粒径的5~10%,例如可以是5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%或10%等。
需要说明的是,本申请中外壳的厚度指外壳在层状氧化物正极材料中的平均厚度;例如当层状氧化物层为球体时,若其D50粒径为10μm,内核D50粒 径为8μm,则其外壳在横截面上厚度方向所占的总长度为2μm,即外壳的厚度为1μm。
本申请中,通过优化层状氧化物正极材料的尺寸,并调整外壳的厚度,能够提高钠电正极材料的结构稳定性,进一步提高材料的循环稳定性和热稳定性。
第二方面,本申请提供了一种根据第一方面所述的层状氧化物正极材料的制备方法,所述制备方法包括:
(1)将第一盐溶液、沉淀剂和络合剂混合进行第一共沉淀反应,得到内核前驱体,加入第二盐溶液进行第二共沉淀反应,在所述内核前驱体表面生成外壳前驱体,得到氢氧化物前驱体;
所述内核前驱体包括Mn aM 1-a(OH) 2,所述外壳前驱体包括Ni bMn cFe d(OH) 2
(2)将所述氢氧化物前驱体和钠源混合并烧结,得到层状氧化物正极材料。
本申请采用两步进料、两步共沉淀的方式,生成核壳结构的氢氧化物前驱体,并通过加入钠源烧结,得到层状氧化物正极材料,制备方法简单,材料的形貌和尺寸可控性强,制备得到的层状氧化物正极材料具有较高的比容量和良好的循环稳定性。
需要说明的是,本申请中在进行第二次共沉淀时,可直接加入第二盐溶液,并在原有的沉淀剂和络合剂的作用下进行共沉淀反应,也可再次加入一定量的沉淀剂和络合剂,进行共沉淀反应。
可选地,所述内核前驱体的D50粒径为所述氢氧化物前驱体的D50粒径的80~90%,例如可以是80%、81%、82%、83%、84%、85%、86%、87%、88%、89%或90%等。
本申请中,进行共沉淀时,在内核前驱体生长到目标尺寸粒径的80~90%时 再次投料进行第二共沉淀反应,能够有效调控壳的成分和厚度。
可选地,所述第一盐溶液中包括摩尔比为a:(1-a)的Mn和M。
可选地,所述第二盐溶液中包括摩尔比为b:c:d的Ni、Mn和Fe。
可选地,所述第一盐溶液和第二盐溶液中盐的种类独立地为氯化盐、草酸盐、硫酸盐和硝酸盐中的任意一种或至少两种的组合,例如可以是氯化盐和硝酸盐的组合,草酸盐和硫酸盐的组合,硫酸盐和硝酸盐的组合,氯化盐、草酸盐和硫酸盐的组合,或氯化盐、草酸盐、硫酸盐和硝酸盐的组合等。
本申请中,“独立地”意思为二者的选择互不干扰,例如,所述第一盐溶液和第二盐溶液中盐的种类独立地为氯化盐、草酸盐、硫酸盐和硝酸盐中的任意一种或至少两种的组合,指当第一盐溶液中的盐的种类为氯化盐时,第二盐溶液中盐的种类可以为氯化盐,可以为草酸盐,也可以为硫酸盐和硝酸盐的组合等,第一盐溶液和第二盐溶液中盐的种类的选择互不干扰。
可选地,所述第一盐溶液和第二盐溶液的浓度独立地为80~120g/L,例如可以是80g/L、85g/L、90g/L、95g/L、100g/L、105g/L、110g/L、115g/L或120g/L等。
可选地,所述沉淀剂包括氢氧化钠水溶液。
可选地,以所述沉淀剂的质量为100%计,所述沉淀剂中溶质的质量分数为20~40%,例如可以是20%、22%、24%、26%、28%、30%、32%、34%、36%、38%或40%等。
可选地,所述络合剂包括氨水、草酸、乳酸、草酸钠和EDTA溶液中的任意一种或至少两种的组合,例如可以是草酸和乳酸的组合,草酸钠和EDTA溶液的组合,氨水和草酸钠的组合,或草酸、乳酸、草酸钠和EDTA溶液的组合 等。
可选地,以所述络合剂的体积为基准,所述络合剂的浓度为8~10mol/L,例如可以是8mol/L、8.2mol/L、8.4mol/L、8.6mol/L、8.8mol/L、9mol/L、9.2mol/L、9.4mol/L、9.6mol/L、9.8mol/L或10mol/L等。
作为本申请所述制备方法的可选技术方案,所述第一共沉淀和第二共沉淀的温度独立地为40~70℃,例如可以是40℃、45℃、50℃、55℃、60℃、65℃或70℃等。
可选地,所述第一共沉淀和第二共沉淀的pH值独立地为9.5~11.5,例如可以是9.5、9.8、10、10.2、10.5、10.8、11、11.2或11.5等。
本申请中在合适的温度和pH值下进行共沉淀反应,能够提高前驱体的球形度、结晶性。
可选地,以所述第一共沉淀的溶液和所述第二共沉淀的溶液的体积为基准,所述络合剂的浓度独立地为0.1~0.5mol/L,例如可以是0.1mol/L、0.2mol/L、0.3mol/L、0.4mol/L或0.5mol/L等,共沉淀的溶液中含有合适浓度的络合剂,有利于控制前驱体的生长速度,提高前驱体的球形度。
可选地,所述第一共沉淀和第二共沉淀的转速独立地为320~380rpm/min,例如可以是320rpm/min、330rpm/min、340rpm/min、350rpm/min、360rpm/min、370rpm/min或380rpm/min等。
可选地,所述第二共沉淀后、烧结前,还包括陈化、过滤、洗涤和干燥的步骤。
可选地,所述干燥的温度为100~120℃,例如可以是100℃、102℃、104℃、106℃、108℃、110℃、112℃、114℃、116℃、118℃或120℃等。
示例性地,所述干燥的方式包括回转窑干燥、微波干燥、盘干机干燥和箱式炉干燥中的任意一种或至少两种的混合干燥。
可选地,所述钠源中的Na和所述氢氧化物前驱体中的Ni、Mn、Fe和M的总和的摩尔比为0.7~0.9,例如可以是0.7、0.75、0.8、0.85或0.9等。
可选地,所述钠源包括氢氧化钠、碳酸钠、草酸钠、氯化钠和硝酸钠中的任意一种或至少两种的组合,例如可以是氢氧化钠和碳酸钠的组合,草酸钠和氯化钠的组合,氯化钠和硝酸钠的组合,或氢氧化钠、碳酸钠、草酸钠、氯化钠和硝酸钠的组合等。
作为本申请所述制备方法的可选技术方案,所述烧结包括第一烧结和第二烧结。
可选地,所述第一烧结的温度为450~550℃,例如可以是450℃、460℃、470℃、480℃、490℃、500℃、510℃、520℃、530℃、540℃或550℃等。
可选地,所述第一烧结的时间为4~6h,例如可以是4h、4.5h、5h、5.5h或6h等。
可选地,所述第一烧结的升温速率为3~5℃/min,例如可以是3℃/min、3.5℃/min、4℃/min、4.5℃/min或5℃/min等。
可选地,所述第二烧结的温度为600~800℃,例如可以是600℃、620℃、640℃、660℃、680℃、700℃、720℃、740℃、760℃、780℃或800℃等。
可选地,所述第二烧结的时间为10~16h,例如可以是10h、11h、12h、13h、14h、15h或16h等。
可选地,所述第二烧结的升温速率为3~5℃/min,例如可以是3℃/min、3.5℃/min、4℃/min、4.5℃/min或5℃/min等。
本申请中,通过在合适的温度和时间下进行两步烧结,有利于高温烧结过程中钠离子的扩散,减少材料表面残钠。
作为本申请所述制备方法的可选技术方案,所述制备方法包括:
(1)将第一盐溶液、沉淀剂和络合剂混合进行第一共沉淀反应,第一盐溶液中包括摩尔比为a:(1-a)的Mn和M,得到内核前驱体,再加入第二盐溶液进行第二共沉淀反应,所述第二盐溶液包括摩尔比为b:c:d的Ni、Mn和Fe,在所述内核前驱体表面生成外壳前驱体,得到氢氧化物前驱体;
所述第一共沉淀和第二共沉淀的温度独立地为40~70℃,所述第一共沉淀和第二共沉淀的pH值独立地为9.5~11.5,以所述第一共沉淀的溶液和所述第二共沉淀的溶液的体积为基准,所述络合剂的浓度独立地为0.1~0.5mol/L,所述内核前驱体包括Mn aM 1-a(OH) 2,所述外壳前驱体包括Ni bMn cFe d(OH) 2,所述内核前驱体的D50粒径为所述氢氧化物前驱体的D50粒径的80~90%;
(2)将所述氢氧化物前驱体和钠源混合,在450~550℃烧结4~6h后,在600~800℃再次烧结10~16h,得到层状氧化物正极材料。
第三方面,本申请提供了一种钠离子电池,所述钠离子电池的正极中包括根据第一方面所述的层状氧化物正极材料。
采用本申请的层状氧化物正极材料制备得到的钠离子电池,具有较高的比容量和较好的循环稳定性,展现出优异的综合电化学性能。
相对于现有技术,本申请具有以下有益效果:
(1)本申请制备的层状氧化物正极材料具有核壳结构,内核的含有高锰含量的Na xMn aM 1-aO 2,外壳包括Na xNi bMn cFe dO 2,内核材料能够为正极提供较高的比容量,外壳能有效阻隔Na xMn aM 1-aO 2与电解液接触,避免了Mn的溶解, 降低了反应过程中材料与电解液的副反应的发生;同时,核壳材料之间相互协同作用,能提高材料的综合电化学性能,特别是放电容量和循环性能。
(2)本申请提供的正极材料Ni含量较少且不含Co稀贵金属,具有价格低廉且制备方法简单等优势,在储能等领域具有较好的应用前景。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
图1是本申请的实施例1制备得到的氢氧化物前驱体的截面SEM图。
图2是本申请的实施例1制备得到的氢氧化物前驱体中Ni元素的切面分布图。
图3是本申请的实施例1制备得到的层状氧化物正极材料的SEM图。
具体实施方式
下面通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
实施例1
本实施例提供了一种层状氧化物正极材料,包括内核Na 0.8Mn 0.85Cu 0.15O 2和包覆在内核表面的外壳Na 0.8Ni 0.33Fe 0.33Mn 0.33O 2,外壳的厚度为1μm,层状氧化物正极材料的D50粒径为12μm。
本实施例还提供了上述层状氧化物正极材料的制备方法,包括:
(1)依次称取硫酸锰和硫酸铜,使锰、铜的摩尔比为0.85:0.15,制成98g/L 的第一盐溶液;依次称取硫酸锰、硫酸亚铁和硫酸镍,使镍、铁、锰的摩尔比为0.33:0.33:0.33,制成98g/L的第二盐溶液,将氢氧化钠配制成质量分数为25%的沉淀剂,将氨水配制成浓度为8.5mol/L的络合剂;
(2)将第一盐溶液、沉淀剂和络合剂同时并流加入反应釜中进行第一共沉淀反应,控制反应的温度为60℃,pH为10.5,氨水浓度为0.34mol/L,反应釜转速为350rmp,当粒径达到10μm后,停止通入第一盐溶液,加入第二盐溶液进行反应,当粒径到达12μm后,陈化静置12h、过滤、去离子水洗涤2次、在100℃干燥10h得到内核前驱体为Mn 0.85Cu 0.15(OH) 2、外壳前驱体为Ni 0.33Fe 0.33Mn 0.33(OH) 2的核壳结构的氢氧化物前驱体;
(3)将步骤(2)得到氢氧化物前驱体与碳酸钠按照Na和过渡金属(Ni、Fe、Mn和Cu)的摩尔比为0.8:1均匀混合,在空气气氛下,以3℃/min的升温速率加热至500℃保温5h,再以3℃/min的升温速率加热至700℃保温15h,自然冷却,得到内核为Na 0.8Mn 0.85Cu 0.15O 2、外壳为Na 0.8Ni 0.33Fe 0.33Mn 0.33O 2的核壳结构的层状氧化物正极材料。
实施例2
本实施例提供了一种层状氧化物正极材料,包括内核Na 0.8Mn 0.8Ni 0.2O 2和包覆在内核表面的外壳Na 0.8Ni 0.33Fe 0.33Mn 0.33O 2,外壳的厚度为0.8μm,层状氧化物正极材料的D50粒径为8μm。
本实施例还提供了上述层状氧化物正极材料的制备方法,包括:
(1)依次称取硫酸锰和硫酸镍,使锰、镍的摩尔比为0.8:0.2,制成105g/L的第一盐溶液;依次称取硫酸锰、硫酸亚铁和硫酸镍,使镍、铁、锰的摩尔比为0.33:0.33:0.33,制成98g/L的第二盐溶液,将氢氧化钠配制成质量分数为30% 的沉淀剂,将氨水配制成浓度为9mol/L的络合剂;
(2)将第一盐溶液、沉淀剂和络合剂同时并流加入反应釜中进行第一共沉淀反应,控制反应的温度为70℃,pH为10,氨水浓度为0.3mol/L,反应釜转速为380rmp,当粒径达到6.4μm后,停止通入第一盐溶液,加入第二盐溶液进行反应,当粒径到达8μm后,陈化静置12h、过滤、去离子水洗涤2次、在110℃干燥10h得到内核前驱体为Mn 0.8Ni 0.2(OH) 2、外壳前驱体为Ni 0.33Fe 0.33Mn 0.33(OH) 2的核壳结构的氢氧化物前驱体,其截面SEM图和切面Ni元素分布图分别如图1和图2所示;
(3)将步骤(2)得到氢氧化物前驱体与碳酸钠按照Na和过渡金属(Ni、Fe、Mn和Cu)的摩尔比为0.85:1均匀混合,在空气气氛下,以3℃/min的升温速率加热至550℃保温4h,再以3℃/min的升温速率加热至650℃保温16h,自然冷却,得到内核为Na 0.8Mn 0.85Cu 0.15O 2、外壳为Na 0.8Ni 0.33Fe 0.33Mn 0.33O 2的核壳结构的层状氧化物正极材料,其SEM图如图3所示。
实施例3
本实施例提供了一种层状氧化物正极材料,包括内核Na 0.8Mn 0.85Cu 0.15O 2和包覆在内核表面的外壳Na 0.8Ni 0.33Fe 0.33Mn 0.33O 2,外壳的厚度为1.5μm,层状氧化物正极材料的D50粒径为15μm。
本实施例还提供了上述层状氧化物正极材料的制备方法,包括:
(1)依次称取硫酸锰和硫酸铜,使锰、铜的摩尔比为0.85:0.15,制成80g/L的第一盐溶液;依次称取硫酸锰、硫酸亚铁和硫酸镍,使镍、铁、锰的摩尔比为0.33:0.33:0.33,制成80g/L的第二盐溶液,将氢氧化钠配制成质量分数为35%的沉淀剂,将氨水配制成浓度为8.5mol/L的络合剂;
(2)将第一盐溶液、沉淀剂和络合剂同时并流加入反应釜中进行第一共沉淀反应,控制反应的温度为55℃,pH为11,氨水浓度为0.4mol/L,反应釜转速为380rmp,当粒径达到12μm后,停止通入第一盐溶液,加入第二盐溶液进行反应,当粒径到达15μm后,陈化静置12h、过滤、去离子水洗涤2次、在100℃干燥10h得到内核前驱体为Mn 0.85Cu 0.15(OH) 2、外壳前驱体为Ni 0.33Fe 0.33Mn 0.33(OH) 2的核壳结构的氢氧化物前驱体;
(3)将步骤(2)得到氢氧化物前驱体与碳酸钠按照Na和过渡金属(Ni、Fe、Mn和Cu)的摩尔比为0.8:1均匀混合,在空气气氛下,以3℃/min的升温速率加热至500℃保温5h,再以3℃/min的升温速率加热至700℃保温15h,自然冷却,得到内核为Na 0.8Mn 0.85Cu 0.15O 2、外壳为Na 0.8Ni 0.33Fe 0.33Mn 0.33O 2的核壳结构的层状氧化物正极材料。
实施例4
除步骤(2)中,当粒径达到9μm后,再停止通入第一盐溶液,加入第二盐溶液进行反应,使外壳的厚度为层状氧化物正极材料的D50粒径的15%外,其余均与实施例1相同。
实施例5
除步骤(2)中,当粒径达到11μm后,再停止通入第一盐溶液,加入第二盐溶液进行反应,使外壳的厚度为层状氧化物正极材料的D50粒径的3%外,其余均与实施例1相同。
实施例6
除第一共沉淀和第二共沉淀的pH均替换为8.5外,其余均与实施例1相同。
实施例7
除第一共沉淀和第二共沉淀的pH均替换为12外,其余均与实施例1相同。
实施例8
除步骤(2)中将共沉淀反应时氨水(络合剂)的浓度替换为0.09mol/L外,其余均与实施例1相同。
实施例9
除步骤(2)中将共沉淀反应时氨水(络合剂)的浓度替换为0.6mol/L外,其余均与实施例1相同。
实施例10
除将步骤(3)中第一烧结的温度500℃替换为400℃外,其余均与实施例1相同。
实施例11
除将步骤(3)中第一烧结的温度500℃替换为600℃外,其余均与实施例1相同。
实施例12
除将步骤(3)中第二烧结的温度700℃替换为550℃外,其余均与实施例1相同。
实施例13
除将步骤(3)中第二烧结的温度700℃替换为850℃外,其余均与实施例1相同。
对比例1
除步骤(2)中只通入第一盐溶液,不通入第二盐溶液外,其余均与实施例1相同;
本对比例制备得到D50粒径为12μm的Na 0.8Mn 0.85Cu 0.15O 2正极材料。
对比例2
除步骤(2)中只通入第二盐溶液,不通入第一盐溶液外,其余均与实施例1相同;
本对比例制备得到D50粒径为12μm的Na 0.8Ni 0.33Fe 0.33Mn 0.33O 2正极材料。
对比例3
除不通入第一盐溶液和第二盐溶液,只通入浓度为98g/L的硫酸锰溶液外,其余均与实施例1相同;
本对比例制备得到D50粒径为12μm的Na 0.8MnO 2正极材料。
一、钠离子电池的制备
将上述实施例和对比例中制备得到的正极材料与导电炭黑和聚偏氟乙烯案子质量比90:5:5混合均匀,并置于高速搅拌器磨具内,加入适量的N-甲基吡咯烷酮后,以3000rpm的速度搅拌10min得到粘度合适的浆料,并将其涂覆在干净的集流体上,并置入真空干燥箱干燥24h;将干燥好的极片碾压到合适的厚度后,冲成直径为10mm的极片,并与隔膜,电池壳在真空环境下干燥12h;最后在手套箱中以钠片作为对电极,组装成2025型扣式电池。
二、电化学性能测试
采用蓝电CT2001A型电化学测试仪进行充放电测试,电压范围2.5~4.0V,测试电流密度为0.2C,循环圈数为50圈,记录电池的初始比容量和循环50圈后的比容量,将循环50圈后的比容量除以初始比容量,得到50圈后容量保持率,实验结果见表1。
表1
序号 初始比容量(mAh g -1) 50圈后容量保持率(%)
实施例1 160.3 84.1
实施例2 159.3 84.5
实施例3 161.2 85.1
实施例4 158.1 82.2
实施例5 159.5 82.1
实施例6 158.1 80.2
实施例7 157.2 81.3
实施例8 157.3 80.4
实施例9 156.6 82.2
实施例10 158.2 80.1
实施例11 159.9 80.9
实施例12 157.2 75.8
实施例13 157.3 78.9
对比例1 155.2 71.1
对比例2 150.3 83.2
对比例3 158.2 50.1
综上实施例1-13可知,本申请的层状氧化物正极材料呈核壳结构,内核包括高锰含量的Na xMn aM 1-aO 2,外壳包括Na xNi bMn cFe dO 2,内核和外壳协同作用,能够防止Mn溶解,降低反应过程中材料与电解液的副反应,提高层状氧化物正极材料的放电容量和循环性能。
通过实施例1和实施例4-5的对比可知,本申请中通过控制内核和外壳的粒径,充分发挥核壳之间的协同作用,提高了材料的初始比容量和循环性能。实施例4中外壳偏厚,会导致材料容量偏低、循环性能下降;实施例5中外壳偏薄,导致材料循环性能下降,因此,实施例1的容量更高、循环性能更好。
通过实施例1与实施例6-9的对比可知,本申请中通过控制两次共沉淀反应的反应条件以及络合剂的浓度,能够进一步优化材料结构稳定性,实施例6-7 中pH值过高或偏低,都会导致材料循环性能不理想,实施例8-9中络合剂过高或偏低,都会导致材料循环性能不理想,因此,与实施例6-9相比,实施例1的容量更高、循环性能更好。
通过实施例1与实施例10-13的对比可知,本申请中通过两步烧结,并进一步优化第一烧结的第二烧结的温度,能够减少材料的残钠;与实施例10-13相比,实施例1的循环性能更好。
通过实施例1与对比例1-3的对比可知,本申请中单独使用Na 0.8Mn 0.85Cu 0.15O 2正极材料、Na 0.8Ni 0.33Fe 0.33Mn 0.33O 2正极材料或Na 0.8MnO 2正极材料,均无法实现本申请中核壳协同增效提高材料比容量和循环性能的作用;对比例1采用Na 0.8Mn 0.85Cu 0.15O 2正极材料,锰易溶损在电解液中,影响了材料的比容量和循环稳定性,因此对比例的初始比容量和50圈后容保持率均显著差于实施例1;对比例2中采用Na 0.8Ni 0.33Fe 0.33Mn 0.33O 2正极材料,其初始比容量比本申请低10mAh g -1,效果显著差于本申请;对比例3中Na 0.8MnO 2正极材料虽然初始比容量比实施例1相差不大,但是其50圈后容量保持率仅有50.1%,循环性能极差;综上,对比例1-3的综合电化学性能均显著差于本申请。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,均落在本申请的保护范围和公开范围之内。

Claims (13)

  1. 一种层状氧化物正极材料,其中,所述层状氧化物正极材料包括内核和包覆在所述内核表面的外壳,所述内核包括Na xMn aM 1-aO 2,所述外壳包括Na xNi bMn cFe dO 2,其中,0.7<x≤0.9,0.8≤a<1,0.2≤b<0.5,0.2≤c<0.6,0.2≤d≤0.5,M包括Ni、Ti、Fe和Cu中的任意一种或至少两种的组合。
  2. 根据权利要求1所述的层状氧化物正极材料,其中,所述层状氧化物正极材料的D50粒径为3~15μm。
  3. 根据权利要求1所述的层状氧化物正极材料,其中,所述外壳的厚度为所述层状氧化物正极材料的D50粒径的5~10%。
  4. 一种根据权利要求1或2或3所述的层状氧化物正极材料的制备方法,其中,所述制备方法包括:
    (1)将第一盐溶液、沉淀剂和络合剂混合进行第一共沉淀反应,得到内核前驱体,加入第二盐溶液进行第二共沉淀反应,在所述内核前驱体表面生成外壳前驱体,得到氢氧化物前驱体;
    所述内核前驱体包括Mn aM 1-a(OH) 2,所述外壳前驱体包括Ni bMn cFe d(OH) 2
    (2)将所述氢氧化物前驱体和钠源混合并烧结,得到层状氧化物正极材料。
  5. 根据权利要求4所述的制备方法,其中,所述内核前驱体的D50粒径为所述氢氧化物前驱体的D50粒径的80~90%。
  6. 根据权利要求4或5所述的制备方法,其中,所述第一盐溶液中包括摩尔比为a:(1-a)的Mn和M;
    可选地,所述第二盐溶液中包括摩尔比为b:c:d的Ni、Mn和Fe;
    可选地,所述第一盐溶液和第二盐溶液中盐的种类独立地为氯化盐、草酸盐、硫酸盐和硝酸盐中的任意一种或至少两种的组合;
    可选地,所述第一盐溶液和第二盐溶液的浓度独立地为80~120g/L;
    可选地,所述沉淀剂包括氢氧化钠水溶液;
    可选地,以所述沉淀剂的质量为100%计,所述沉淀剂中溶质的质量分数为20~40%。
  7. 根据权利要求4或5所述的制备方法,其中,所述络合剂包括氨水、草酸、乳酸、草酸钠和EDTA溶液中的任意一种或至少两种的组合;
    可选地,以所述络合剂的体积为基准,所述络合剂的浓度为8~10mol/L。
  8. 根据权利要求4-7任一项所述的制备方法,其中,所述第一共沉淀和第二共沉淀的温度独立地为40~70℃;
    可选可选可选地,所述第一共沉淀和第二共沉淀的转速独立地为320~380rpm/min;
    可选地,所述第二共沉淀后、烧结前,还包括陈化、过滤、洗涤和干燥的步骤;
    可选地,所述干燥的温度为100~120℃。
  9. 根据权利要求4-7任一项所述的制备方法,其中,所述第一共沉淀和第二共沉淀的pH值独立地为9.5~11.5;
    可选地,以所述第一共沉淀的溶液和所述第二共沉淀的溶液的体积为基准,所述络合剂的浓度独立地为0.1~0.5mol/L。
  10. 根据权利要求4-9任一项所述的制备方法,其中,所述钠源中的Na和所述氢氧化物前驱体中的Ni、Mn、Fe和M的总和的摩尔比为0.7~0.9;
    可选地,所述钠源包括氢氧化钠、碳酸钠、草酸钠、氯化钠和硝酸钠中的任意一种或至少两种的组合。
  11. 根据权利要求4-10任一项所述的制备方法,其中,所述烧结包括第一烧结和第二烧结;
    可选地,所述第一烧结的温度为450~550℃;
    可选地,所述第一烧结的时间为4~6h;
    可选地,所述第一烧结的升温速率为3~5℃/min;
    可选地,所述第二烧结的温度为600~800℃;
    可选地,所述第二烧结的时间为10~16h;
    可选地,所述第二烧结的升温速率为3~5℃/min。
  12. 根据权利要求4-11任一项所述的制备方法,其中,所述制备方法包括:
    (1)将第一盐溶液、沉淀剂和络合剂混合进行第一共沉淀反应,所述第一盐溶液中包括摩尔比为a:(1-a)的Mn和M,得到内核前驱体,再加入第二盐溶液进行第二共沉淀反应,所述第二盐溶液包括摩尔比为b:c:d的Ni、Mn和Fe,在所述内核前驱体表面生成外壳前驱体,得到氢氧化物前驱体;
    所述第一共沉淀和第二共沉淀的温度独立地为40~70℃,所述第一共沉淀和第二共沉淀的pH值独立地为9.5~11.5,以所述第一共沉淀的溶液和所述第二共沉淀的溶液的体积为基准,所述络合剂的浓度独立地为0.1~0.5mol/L,所述内核前驱体包括Mn aM 1-a(OH) 2,所述外壳前驱体包括Ni bMn cFe d(OH) 2,所述内核前驱体的D50粒径为所述氢氧化物前驱体的D50粒径的80~90%;
    (2)将所述氢氧化物前驱体和钠源混合,在450~550℃烧结4~6h后,在600~800℃再次烧结10~16h,得到层状氧化物正极材料。
  13. 一种钠离子电池,其中,所述钠离子电池的正极中包括根据权利要求1或2或3所述的层状氧化物正极材料。
PCT/CN2022/140550 2022-08-09 2022-12-21 一种层状氧化物正极材料及其制备方法和钠离子电池 WO2024031913A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210950001.7 2022-08-09
CN202210950001.7A CN115148978A (zh) 2022-08-09 2022-08-09 一种层状氧化物正极材料及其制备方法和钠离子电池

Publications (1)

Publication Number Publication Date
WO2024031913A1 true WO2024031913A1 (zh) 2024-02-15

Family

ID=83413476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140550 WO2024031913A1 (zh) 2022-08-09 2022-12-21 一种层状氧化物正极材料及其制备方法和钠离子电池

Country Status (2)

Country Link
CN (1) CN115148978A (zh)
WO (1) WO2024031913A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117756195A (zh) * 2024-02-22 2024-03-26 贵州振华新材料股份有限公司 一种预钠处理的铜锌基钠离子电池正极材料及其制备方法
CN118073552A (zh) * 2024-04-19 2024-05-24 内蒙古工业大学 一种钠离子电池正极材料及其制备方法和应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115148978A (zh) * 2022-08-09 2022-10-04 格林美股份有限公司 一种层状氧化物正极材料及其制备方法和钠离子电池
CN115403079B (zh) * 2022-10-17 2024-04-02 宁波容百新能源科技股份有限公司 一种正极前驱体材料及其制备方法和应用
CN115991506A (zh) * 2022-12-21 2023-04-21 广东佳纳能源科技有限公司 一种钠离子电池用正极前驱体及其制备方法和应用
CN115954463B (zh) * 2023-03-09 2023-05-23 江苏正力新能电池技术有限公司 钠离子电池层状氧化物复合材料及其制备方法、正极片和钠离子电池
CN116565182B (zh) * 2023-07-06 2023-09-08 溧阳中科海钠科技有限责任公司 钠离子电池复合正极材料及其制备方法、正极极片和钠离子电池
CN116969520A (zh) * 2023-07-19 2023-10-31 荆门市格林美新材料有限公司 一种钠电前驱体及其制备方法和应用
CN116826162A (zh) * 2023-08-28 2023-09-29 河南新太行电源股份有限公司 一种固态钠离子电池及其制备方法
CN117023662B (zh) * 2023-10-09 2024-01-23 浙江帕瓦新能源股份有限公司 一种浓度梯度多壳结构的钠离子电池正极材料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150333325A1 (en) * 2012-11-19 2015-11-19 Iucf-Hyu(Industry-University Cooperation Foundation Hanyang University) Manufacturing method of positive active material precursor for sodium rechargeable batteries, positive active material precursor for sodium rechargeable batteries made by the same, and manufacturing method of positive active material for sodium rechargeable batteries, positive active material for sodium rechargeable batteries made by the same
CN109449418A (zh) * 2018-11-05 2019-03-08 中南大学 具有核壳结构的复合钠离子正极材料及其制备方法
CN110277540A (zh) * 2018-03-14 2019-09-24 中国科学院物理研究所 一种核壳结构钠离子电池正极材料及其制备方法和用途
CN111082058A (zh) * 2019-12-20 2020-04-28 华南理工大学 一种Nasicon结构磷酸钛钠表面修饰P2型锰基钠离子电池正极材料及其制备方法
WO2022126253A1 (fr) * 2020-12-14 2022-06-23 HYDRO-QUéBEC Matériaux d'électrode comprenant un oxyde lamellaire de métaux enrobé d'un oxyde de métaux de type tunnel, électrodes les comprenant et leur utilisation en électrochimie
CN115148978A (zh) * 2022-08-09 2022-10-04 格林美股份有限公司 一种层状氧化物正极材料及其制备方法和钠离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150333325A1 (en) * 2012-11-19 2015-11-19 Iucf-Hyu(Industry-University Cooperation Foundation Hanyang University) Manufacturing method of positive active material precursor for sodium rechargeable batteries, positive active material precursor for sodium rechargeable batteries made by the same, and manufacturing method of positive active material for sodium rechargeable batteries, positive active material for sodium rechargeable batteries made by the same
CN110277540A (zh) * 2018-03-14 2019-09-24 中国科学院物理研究所 一种核壳结构钠离子电池正极材料及其制备方法和用途
CN109449418A (zh) * 2018-11-05 2019-03-08 中南大学 具有核壳结构的复合钠离子正极材料及其制备方法
CN111082058A (zh) * 2019-12-20 2020-04-28 华南理工大学 一种Nasicon结构磷酸钛钠表面修饰P2型锰基钠离子电池正极材料及其制备方法
WO2022126253A1 (fr) * 2020-12-14 2022-06-23 HYDRO-QUéBEC Matériaux d'électrode comprenant un oxyde lamellaire de métaux enrobé d'un oxyde de métaux de type tunnel, électrodes les comprenant et leur utilisation en électrochimie
CN115148978A (zh) * 2022-08-09 2022-10-04 格林美股份有限公司 一种层状氧化物正极材料及其制备方法和钠离子电池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117756195A (zh) * 2024-02-22 2024-03-26 贵州振华新材料股份有限公司 一种预钠处理的铜锌基钠离子电池正极材料及其制备方法
CN117756195B (zh) * 2024-02-22 2024-06-04 贵州振华新材料股份有限公司 一种预钠处理的铜锌基钠离子电池正极材料及其制备方法
CN118073552A (zh) * 2024-04-19 2024-05-24 内蒙古工业大学 一种钠离子电池正极材料及其制备方法和应用

Also Published As

Publication number Publication date
CN115148978A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
WO2024031913A1 (zh) 一种层状氧化物正极材料及其制备方法和钠离子电池
WO2020043135A1 (zh) 三元正极材料及其制备方法、锂离子电池
WO2022105175A1 (zh) 一种钠离子电池正极材料及其制备方法、钠离子电池
CN110380024B (zh) P3结构的钠过渡金属氧化物及其制备方法和钠离子电池
CN108847477B (zh) 一种镍钴锰酸锂三元正极材料及其制备方法
WO2023169591A1 (zh) 含钠氧化物正极材料及其制备方法与应用、正极片及其应用
WO2020043140A1 (zh) 三元正极材料及其制备方法、锂离子电池
WO2021175233A1 (zh) 一种富锂锰基材料及其制备方法和应用
CN111916687B (zh) 一种正极材料及其制备方法和锂离子电池
CN115072805A (zh) 钠离子电池正极材料前驱体及其制备方法、钠离子电池正极材料的制备方法
CN102694152B (zh) 一种负极活性材料及其制备方法和一种锂离子电池
CN112117454B (zh) 三元正极材料及其制备方法、锂离子电池和用电设备
WO2021136490A1 (zh) 一种富锂锰基材料及其制备方法和应用
CN110459764B (zh) 一种锂离子电池正极材料及其制备方法与应用
WO2022089205A1 (zh) 一种掺杂型高镍三元材料及其制备方法
CN114843469B (zh) 一种MgFe2O4改性的P2/O3型镍基层状钠离子电池正极材料及其制备方法
WO2024046508A1 (zh) 一种钴梯度高镍三元正极材料及其制备方法、锂离子电池
CN114394629A (zh) 一种钠离子电池正极材料的制备方法
CN112117452B (zh) 正极材料包覆剂及其制备方法、锂离子电池正极材料、锂离子电池和用电设备
WO2024178920A1 (zh) 三元正极材料及其制备方法和二次电池
CN110808363A (zh) 一种硅酸锂包覆的富锂锰基正极材料及其制备方法与应用
CN111592053A (zh) 一种镍基层状锂离子电池正极材料及其制备方法与应用
CN114725371A (zh) 高镍单晶正极材料及其制备方法、锂离子电池与全固态电池
CN115663134A (zh) 一种新型表面纳米包覆和梯度掺杂一体化修饰超高镍三元正极材料及其制备方法
WO2024198194A1 (zh) 一种钠离子前驱体材料及其制备方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954851

Country of ref document: EP

Kind code of ref document: A1