WO2021136490A1 - 一种富锂锰基材料及其制备方法和应用 - Google Patents

一种富锂锰基材料及其制备方法和应用 Download PDF

Info

Publication number
WO2021136490A1
WO2021136490A1 PCT/CN2020/142040 CN2020142040W WO2021136490A1 WO 2021136490 A1 WO2021136490 A1 WO 2021136490A1 CN 2020142040 W CN2020142040 W CN 2020142040W WO 2021136490 A1 WO2021136490 A1 WO 2021136490A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
mixing
salt
rich manganese
coating layer
Prior art date
Application number
PCT/CN2020/142040
Other languages
English (en)
French (fr)
Inventor
王俊
刘亚飞
陈彦彬
Original Assignee
北京当升材料科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京当升材料科技股份有限公司 filed Critical 北京当升材料科技股份有限公司
Priority to US17/767,246 priority Critical patent/US20220393155A1/en
Priority to EP20910925.5A priority patent/EP4027408A4/en
Publication of WO2021136490A1 publication Critical patent/WO2021136490A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of lithium-ion batteries, in particular to a lithium-rich manganese-based material, a method for preparing a lithium-rich manganese-based material, and a lithium-rich manganese-based material prepared by the method.
  • the lithium-rich manganese-based material is Application in lithium-ion batteries.
  • lithium-ion batteries are widely used in electric vehicles, energy storage power stations, communications and Digital electronic products and other markets.
  • the positive electrode as the core key material of the lithium-ion battery, directly determines the technical performance level of the battery.
  • commercial cathode materials mainly include layered LiMO 2 (M is Ni, Co, Mn, etc.), spinel-type LiMn 2 O 4 and olivine-type LiFePO 4 .
  • LiCoO 2 has a high cost
  • LiMn 2 O 4 with a spinel structure is prone to crystalline transformation Jahn-Teller effect and dissolution of manganese ions during recycling, resulting in rapid battery capacity decay and poor high-temperature performance
  • Layered cathode material LiNi 1-xy Co x Mn y O 2 due to the synergistic effect of Ni, Co, Mn, which reduces material cost and improves performance, but the actual specific capacity has not made a big breakthrough, and it has been difficult to meet people's needs .
  • the layered lithium-rich manganese-based material has attracted wide attention due to its high specific capacity (>250mAh/g), high safety and low price, and has become a new generation of power-type lithium-ion battery cathode material with the most development potential. .
  • the material will transform from a layered structure to a spinel structure during the cycle, resulting in severe voltage attenuation, lowering the energy density of the material, and increasing the difficulty of the battery management system, which seriously hinders its commercial application process.
  • the purpose of the present invention is to provide a new lithium-rich manganese-based material to overcome the defects that the lithium-rich manganese-based material in the prior art is prone to structural transformation during the cycle, resulting in voltage attenuation and lowering the energy density of the material.
  • the first aspect of the present invention provides a lithium-rich manganese-based material, which includes a substrate and a coating layer covering the surface of the substrate;
  • the matrix contains a substance with the chemical formula Li 1.2+x [(Mn 1-abc Co a Ni b M c ) 1-d M′ d ] 0.8-x O 2 , where -0.2 ⁇ x ⁇ 0.3, 0 ⁇ a ⁇ 0.3, 0 ⁇ b ⁇ 0.3, 0 ⁇ c ⁇ 0.1, 0 ⁇ d ⁇ 0.1, M and M'are each independently selected from Al, B, Ba, Ce, Cr, Cu, Fe, K, La, Mg At least one element of, Mo, Na, Nb, Os, Pr, Re, Ru, Sc, Sr, Sm, Ta, Ti, V, W, Y, Yb, Zn, Zr;
  • the coating layer contains a substance with the chemical formula Li u (Li 1-v- ⁇ N v N′ ⁇ )O 2 , where 0.8 ⁇ u ⁇ 1.2, 0.6 ⁇ v ⁇ 0.9, 0 ⁇ 0.1, N selected At least one element selected from Mn, Co, Ni, Fe, Ru, and Mo; N′ is selected from Al, B, Ba, Ce, Cr, Co, Cu, Fe, K, La, Mg, Mn, Mo, Na , Nb, Ni, Os, Pr, Re, Ru, Sc, Sr, Sm, Ta, Ti, V, W, Y, Yb, Zn, Zr at least one element;
  • the weight ratio of the content of the matrix to the coating layer is 100:0.01-10.
  • the second aspect of the present invention provides a method for preparing a lithium-rich manganese-based material, the method comprising:
  • the matrix material A and the coating layer material B are first mixed to obtain a lithium-rich manganese-based material
  • the chemical formula of the matrix material A is Li 1.2+x [(Mn 1-abc Co a Ni b M c ) 1-d M′ d ] 0.8-x O 2 where -0.2 ⁇ x ⁇ 0.3, 0 ⁇ a ⁇ 0.3, 0 ⁇ b ⁇ 0.3, 0 ⁇ c ⁇ 0.1, 0 ⁇ d ⁇ 0.1, M and M'are each independently selected from Al, B, Ba, Ce, Cr, Cu, Fe, K, La, Mg At least one element of, Mo, Na, Nb, Os, Pr, Re, Ru, Sc, Sr, Sm, Ta, Ti, V, W, Y, Yb, Zn, Zr;
  • the chemical formula of the coating material B is Li u (Li 1-v- ⁇ N v N′ ⁇ )O 2 , where 0.8 ⁇ u ⁇ 1.2, 0.6 ⁇ v ⁇ 0.9, 0 ⁇ 0.1, N is selected from at least one element of Mn, Co, Ni, Fe, Ru, and Mo; N′ is selected from Al, B, Ba, Ce, Cr, Co, Cu, Fe, K, La, Mg, Mn, Mo At least one element of, Na, Nb, Ni, Os, Pr, Re, Ru, Sc, Sr, Sm, Ta, Ti, V, W, Y, Yb, Zn, Zr;
  • the weight ratio of the amount of the base material A and the coating material B is 100:0.01-10.
  • the third aspect of the present invention provides a lithium-rich manganese-based material prepared by the method described in the foregoing second aspect.
  • the fourth aspect of the present invention provides the application of the aforementioned lithium-rich manganese-based materials in lithium-ion batteries.
  • the technical solution provided by the present invention has at least the following advantages:
  • the lithium-rich manganese-based material provided by the present invention has a relatively high charge-discharge specific capacity, high first-effect performance and excellent rate performance.
  • the lithium-rich manganese-based material provided by the present invention has excellent cycle performance, has a stable structure during electrochemical cycling, and has excellent structural stability.
  • the lithium-rich manganese-based cathode material provided by the present invention has the advantage of large tap density, which is further beneficial to increase the volumetric energy density of the battery.
  • the preparation method provided by the present invention has simple process, no pollution, simple introduction of doping elements and coating layer, controllable process, and is suitable for industrialized production.
  • Figure 1 is a graph of XRD test results of materials prepared in Example 1 and Comparative Example 1-2;
  • Example 2 is a scanning electron microscope image of the lithium-rich manganese-based material prepared in Example 1;
  • Example 4 is a graph of the rate performance test results of the lithium-rich manganese-based material prepared in Example 1;
  • Figure 5 is a test diagram of the cycle performance of the materials prepared in Example 1 and Comparative Example 1-2;
  • Fig. 6 is a graph of the average voltage of the materials prepared in Example 1 and Comparative Example 1 during cycling.
  • the first aspect of the present invention provides a lithium-rich manganese-based material, which includes a substrate and a coating layer covering the surface of the substrate;
  • the matrix contains a substance with the chemical formula Li 1.2+x [(Mn 1-abc Co a Ni b M c ) 1-d M′ d ] 0.8-x O 2 , where -0.2 ⁇ x ⁇ 0.3, 0 ⁇ a ⁇ 0.3, 0 ⁇ b ⁇ 0.3, 0 ⁇ c ⁇ 0.1, 0 ⁇ d ⁇ 0.1, M and M'are each independently selected from Al, B, Ba, Ce, Cr, Cu, Fe, K, La, Mg At least one element of, Mo, Na, Nb, Os, Pr, Re, Ru, Sc, Sr, Sm, Ta, Ti, V, W, Y, Yb, Zn, Zr;
  • the coating layer contains a substance with the chemical formula Li u (Li 1-v- ⁇ N v N′ ⁇ )O 2 , where 0.8 ⁇ u ⁇ 1.2, 0.6 ⁇ v ⁇ 0.9, 0 ⁇ 0.1, N selected At least one element selected from Mn, Co, Ni, Fe, Ru, and Mo; N′ is selected from Al, B, Ba, Ce, Cr, Co, Cu, Fe, K, La, Mg, Mn, Mo, Na , Nb, Ni, Os, Pr, Re, Ru, Sc, Sr, Sm, Ta, Ti, V, W, Y, Yb, Zn, Zr at least one element;
  • the weight ratio of the content of the matrix to the coating layer is 100:0.01-10.
  • the coating includes the coating layer attached to the surface of the substrate.
  • the median particle size D 50 of the material is 6-20 ⁇ m.
  • the specific surface area of the material is 2-7.5 m 2 /g.
  • the second aspect of the present invention provides a method for preparing a lithium-rich manganese-based material, the method comprising:
  • the matrix material A and the coating layer material B are first mixed to obtain a lithium-rich manganese-based material
  • the chemical formula of the matrix material A is Li 1.2+x [(Mn 1-abc Co a Ni b M c ) 1-d M′ d ] 0.8-x O 2 where -0.2 ⁇ x ⁇ 0.3, 0 ⁇ a ⁇ 0.3, 0 ⁇ b ⁇ 0.3, 0 ⁇ c ⁇ 0.1, 0 ⁇ d ⁇ 0.1, M and M'are each independently selected from Al, B, Ba, Ce, Cr, Cu, Fe, K, La, Mg At least one element of, Mo, Na, Nb, Os, Pr, Re, Ru, Sc, Sr, Sm, Ta, Ti, V, W, Y, Yb, Zn, Zr;
  • the chemical formula of the coating material B is Li u (Li 1-v- ⁇ N v N′ ⁇ )O 2 , where 0.8 ⁇ u ⁇ 1.2, 0.6 ⁇ v ⁇ 0.9, 0 ⁇ 0.1, N is selected from at least one element of Mn, Co, Ni, Fe, Ru, and Mo; N′ is selected from Al, B, Ba, Ce, Cr, Co, Cu, Fe, K, La, Mg, Mn, Mo At least one element of, Na, Nb, Ni, Os, Pr, Re, Ru, Sc, Sr, Sm, Ta, Ti, V, W, Y, Yb, Zn, Zr;
  • the weight ratio of the amount of the base material A and the coating material B is 100:0.01-10.
  • the coating material B coats the surface of the base material A to form the lithium-rich manganese-based material.
  • the median diameter D 50 of the lithium-rich manganese-based material is 6-20 ⁇ m.
  • the specific surface area of the lithium-rich manganese-based material is 2-7.5 m 2 /g.
  • the first mixing is performed in an oxygen-containing atmosphere, and the conditions of the first mixing include: a temperature of 300-1000° C., and a time of 2-15 h.
  • the method further includes preparing the matrix material A through the following steps:
  • the components in the component C are mixed for a second time to obtain a matrix precursor, and the component C contains the first complexing agent, the first precipitating agent and the manganese salt, And the component C optionally further contains at least one of a cobalt salt, a nickel salt and a first dopant, and the first dopant contains the element M;
  • component D contains the first lithium salt, and the component D optionally contains Contains a second dopant, and the second dopant contains the element M′;
  • M and M' are each independently selected from Al, B, Ba, Ce, Cr, Cu, Fe, K, La, Mg, Mo, Na, Nb, Os, Pr, Re, Ru, Sc, Sr, Sm At least one element of, Ta, Ti, V, W, Y, Yb, Zn, Zr;
  • the manganese salt, the cobalt salt, the nickel salt, the first dopant, the first lithium salt and the second dopant are used in an amount such that the chemical formula of the matrix material A obtained is Li 1.2+x [(Mn 1-abc Co a Ni b M c ) 1-d M′ d ] 0.8-x O 2 where -0.2 ⁇ x ⁇ 0.3, 0 ⁇ a ⁇ 0.3, 0 ⁇ b ⁇ 0.3, 0 ⁇ c ⁇ 0.1, 0 ⁇ d ⁇ 0.1.
  • the second mixing is performed in a reactor, and the conditions of the second mixing include: a temperature of 20-60° C., a time of 6-30 h, a rotation speed of 300-1000 rpm, and a pH The value is 7-12.
  • the third mixing is performed in an oxygen-containing atmosphere
  • the conditions for the third mixing include: first performing the first reaction under the first conditions to obtain Reactants, and then subject the reactants to a second reaction under second conditions.
  • the first conditions include: a temperature of 300-600°C, and a holding time of 1-6h; and the second conditions include: a temperature of 650 -1000°C, the holding time is 4-20h.
  • step (2) the third mixing is performed in an oxygen-containing atmosphere, and the conditions of the third mixing include: a temperature of 300-1000°C, and a holding time of 1-20h.
  • the manganese salt, the cobalt salt, and the nickel salt are each independently selected from at least one of sulfate, nitrate, chloride, acetate, and citrate
  • the manganese salt is selected from at least one of manganese sulfate, manganese cobaltate, manganese chloride, manganese acetate, and manganese citrate
  • the cobalt salt is selected from cobalt sulfate, cobalt cobaltate, cobalt chloride, and cobalt acetate
  • the nickel salt is selected from at least one of nickel sulfate, nickel cobaltate, nickel chloride, nickel acetate, and nickel citrate.
  • the first dopant refers to at least one of oxides, phosphates, fluorides, and carbonates containing the element M.
  • the second dopant refers to at least one of oxides, phosphates, fluorides, and carbonates containing the element M′.
  • the first complexing agent is selected from at least one of ammonia, salicylic acid, ammonium sulfate, and ammonium chloride.
  • the first precipitation agent is selected from at least one of sodium hydroxide, potassium hydroxide, sodium carbonate, and potassium carbonate.
  • the amount of the first complexing agent and the first precipitating agent is such that the pH of the system during the second mixing in step (1) is 7-12.
  • the first lithium salt is selected from at least one of lithium nitrate, lithium chloride, lithium hydroxide, and lithium carbonate.
  • the method further includes preparing the coating material B by the following steps:
  • component E contains a second complexing agent, a second precipitating agent, and The metal salt of the element N, and the component E optionally further contains a third dopant, and the third dopant contains the element N′;
  • the element N is selected from at least one of Mn, Co, Ni, Fe, Ru, and Mo;
  • the element N′ is selected from Al, B, Ba, Ce, Cr, Co, Cu, Fe, K, La, At least one of Mg, Mn, Mo, Na, Nb, Ni, Os, Pr, Re, Ru, Sc, Sr, Sm, Ta, Ti, V, W, Y, Yb, Zn, Zr;
  • the total amount of the second lithium salt and the third lithium salt, the amount of the metal salt and the third dopant are such that the chemical formula of the coating material B obtained is Li u (Li 1- v- ⁇ N v N ' ⁇ ) O 2, where, 0.8 ⁇ u ⁇ 1.2,0.6 ⁇ v ⁇ 0.9,0 ⁇ 0.1.
  • the fourth mixing is carried out in a reactor, and the conditions of the fourth mixing include: a temperature of 20-50° C., a time of 5-15 h, a rotational speed of 300-1000 rpm, and a pH of The value is 7-12.
  • the fifth mixing conditions include: performing in an oxygen-containing atmosphere, the temperature is 600-1000° C., and the time is 4-20 h.
  • the sixth mixing conditions include: performing in an oxygen-containing atmosphere, at a temperature of 300-700° C., and a time of 2-20 h.
  • the metal salt containing the element N is selected from at least one of sulfate, nitrate, chloride, acetate, and citrate.
  • the sodium salt is selected from at least one of sodium sulfate, sodium nitrate, sodium chloride, sodium acetate, and sodium citrate.
  • the second lithium salt and the third lithium salt are each independently selected from at least one of lithium nitrate, lithium chloride, lithium hydroxide, and lithium carbonate.
  • the third dopant refers to at least one of oxides, phosphates, fluorides, and carbonates containing the element N′.
  • the second complexing agent is selected from at least one of ammonia, salicylic acid, ammonium sulfate, and ammonium chloride.
  • the second precipitation agent is selected from at least one of sodium hydroxide, potassium hydroxide, sodium carbonate, and potassium carbonate.
  • the amount of the second complexing agent and the second precipitating agent is such that the pH of the system during the fourth mixing is 7-12.
  • step (b) the coating layer precursor based on the total number of moles of the N element and the N′ element contained therein and the sodium salt based on the sodium element contained therein
  • the molar ratio of dosage is 1:0.8-1.4.
  • step (b) the coating layer precursor based on the total number of moles of the N element and the N′ element contained therein and the second lithium based on the lithium element contained therein
  • the molar ratio of the amount of salt is 1:0.1-0.5.
  • the method according to the second aspect of the present invention includes:
  • component C In the presence of the first solvent, the components in component C are subjected to a second mixing to obtain a matrix precursor, the component C contains a first complexing agent, a first precipitating agent and a manganese salt, and optionally, the component C further contains at least one of a cobalt salt, a nickel salt and a first dopant, and the first dopant contains the element M;
  • S2 Perform the third mixing of the matrix precursor and the components in component D to obtain matrix material A, the component D contains the first lithium salt, and the component D optionally also contains A second dopant, the second dopant contains the element M′;
  • the components in the component E are mixed for the fourth time to obtain a precursor of the coating layer.
  • the component E contains the second complexing agent, the second precipitating agent, and the The metal salt of the element N, and the component E optionally further contains a third dopant, and the third dopant contains the element N′;
  • S6 Perform a first mixing of the base material A and the coating layer material B to obtain a lithium-rich manganese-based material.
  • the method described in the second aspect of the present invention also includes post-processing methods known in the art such as suction filtration, washing, drying, crushing, and screening. limit.
  • the third aspect of the present invention provides a lithium-rich manganese-based material prepared by the method described in the foregoing second aspect.
  • the fourth aspect of the present invention provides the application of the aforementioned lithium-rich manganese-based materials in lithium-ion batteries.
  • the room temperature in the present invention refers to 25 ⁇ 2°C.
  • Phase test Tested by a 9kw X-ray diffractometer of SmartLab from Rigaku Corporation;
  • the electrochemical performance of the lithium-rich manganese-based materials prepared below is tested by a 2025 button cell.
  • the preparation process of the 2032 button battery is:
  • pole pieces Preparation of pole pieces: mix lithium-rich manganese-based materials, carbon black, polyvinylidene fluoride with an appropriate amount of N-methylpyrrolidone at a mass ratio of 80:10:10 to form a uniform slurry, and coat it on the aluminum foil. Drying at 120° C., rolling, and punching to prepare a positive electrode sheet with a diameter of 11 mm, wherein the loading amount of the lithium-rich manganese-based material is 7 mg/cm 2 .
  • a lithium sheet is used as the negative electrode
  • a polypropylene microporous membrane is used as the diaphragm (Celgard2400)
  • 1M LiPF 6 /EC+DMC is used as the electrolyte to assemble a 2025 button battery.
  • S1 Dissolve manganese sulfate, nickel sulfate, and cobalt sulfate according to the molar ratio of manganese, cobalt, and nickel at a ratio of 4:1:1 to obtain a mixed salt solution with a concentration of 2mol/L, and dissolve sodium carbonate to a concentration of 2mol/L
  • the precipitant solution dissolve ammonia into a complexing agent solution with a concentration of 3mol/L.
  • Lithium carbonate and the matrix precursor prepared by S1 are uniformly mixed according to the molar ratio of Li/(Ni+Co+Mn) of 1.5:1, and the temperature is increased from room temperature to 450°C in an air atmosphere, and the temperature is kept for 4h, Then the temperature is raised to 850°C, and the temperature is kept for 10 hours for the third mixing, and then crushed and sieved, the matrix material A;
  • S3 Dissolve manganese sulfate, nickel sulfate, and cobalt sulfate in a ratio of 4:1:1 molar ratio of manganese, cobalt, and nickel to obtain a mixed salt solution with a concentration of 2mol/L, and dissolve sodium carbonate to a concentration of 2mol/L
  • the precipitant solution dissolve ammonia into a complexing agent solution with a concentration of 3mol/L.
  • the molar ratio of Na element of the intermediate product of the layer is 1.2, heated from room temperature to 400°C in an air atmosphere, and kept for 5 hours for the sixth mixing, after natural cooling, fully crushed and sieved to obtain coating material B;
  • Example 2 In a similar manner to Example 1, the difference is: the formula and process parameters used are different, as shown in Table 1, and the rest are the same as in Example 1, and the lithium-rich manganese-based material is prepared.
  • the ratio and the amount ratio are both molar ratios.
  • the matrix material A is prepared.
  • the coating material B is prepared.
  • step (6) the coating layer material B and the matrix material A are mixed in a mass ratio of 15:100 to obtain a lithium-rich manganese-based material.
  • composition of the material prepared in the above example is shown in Table 2.
  • the present invention tested the XRD of the lithium-rich manganese-based materials prepared in the above examples, and exemplarily provided the XRD results of Example 1, Comparative Example 1, and Comparative Example 2, as shown in FIG. 1, from the XRD in FIG. It can be seen that the first peak position of Comparative Example 1 is about 18.7°, and the characteristic peak of the lithium-rich material appears at 20-25°.
  • the arrangement of oxygen atom layers in the unit cell of the lithium-rich manganese-based material of this structure is ABCABC arrangement, the biggest problem of this structure is the instability during the cycle, which leads to serious voltage attenuation; from the XRD in Figure 1, it can be seen that the first peak position of Comparative Example 2 is about 18.2°, and the other peaks are relatively first.
  • the peak intensity is weak, and the oxygen atomic layer arrangement in the unit cell of this structure is the ABACABAC arrangement; it can be seen from the XRD of Figure 1 that there is a split peak between 18-19° in Example 1, which illustrates the richness provided by the present invention.
  • the lithium manganese-based material is a two-phase composite structure of the matrix material A and the coating material B.
  • the present invention tested the scanning electron microscope images of the lithium-rich manganese-based materials prepared in the above examples, and exemplarily provided SEM images of Example 1 and Comparative Example 1. The results are shown in Figures 2 and 3, respectively. It can be seen from the comparison between Fig. 2 and Fig. 3 that the coating material B of the lithium-rich manganese-based material provided by the present invention in Fig. 2 successfully coats the base material A; it can be seen from Fig. 3 that the base material A is a primary particle The secondary spherical structure formed.
  • the present invention tested the median diameter D 50 , tap density and specific surface area of the lithium-rich manganese-based materials prepared in the above examples, and the specific results are shown in Table 3.
  • Example 1 11.9 1.80 6.3
  • Example 2 12.5 1.90 3.2
  • Example 3 11.1 1.76 6.1
  • Example 4 13.3 1.91 2.8
  • Example 5 14.5 1.85 3.1
  • Example 6 12.0 1.81
  • Example 7 11.5 1.88 4.5
  • Example 8 11.6 1.75 6.1
  • Example 9 12.0 1.83 4.5
  • Example 10 12.5 1.88 4.0 Comparative example 1 10.1 1.7 7.7 Comparative example 2 5.2 1.6 12.8 Comparative example 3 12.5 1.8 5.8
  • the lithium-rich manganese-based material provided by the present invention has a higher tap density and a lower specific surface area than its base material A and coating layer material B.
  • the present invention tested the electrochemical properties of the materials prepared by the above examples, including the first charge and discharge capacity, the first efficiency, the cycle performance and the rate performance, and the specific test results are shown in Table 4.
  • Example 1 From the comparison between Example 1 and Comparative Example 1, it can be seen that the lithium-rich manganese-based material provided by the present invention, compared to the matrix material A prepared in Comparative Example 1, has a discharge specific capacity of 36 mAh/g at 0.1C, which is the first time the efficiency is improved. 8%, the 100-week capacity retention rate is increased by 24.3%, and the average voltage attenuation is reduced by 150 mV. It can be seen that the lithium-rich manganese-based material provided by the present invention significantly improves the performance of the matrix material A in the prior art.
  • Example 1 From the comparison of the results of Example 1 and Comparative Example 2, it can be seen that compared with the coating layer material B prepared in Comparative Example 2, the specific discharge capacity of the lithium-rich manganese-based material provided by the present invention at 0.1C is increased by 35mAh/g, The efficiency is increased by 18% for the first time. It can be seen that the lithium-rich manganese-based material provided by the present invention significantly improves the performance of the coating material B in the prior art.
  • the present invention exemplarily provides a graph of the rate performance test results of the lithium-rich manganese-based material prepared in Example 1. As shown in FIG. 4, it can be seen from FIG. 4 that the lithium-rich manganese-based material provided by the present invention has excellent Magnification performance.
  • the present invention exemplarily provides graphs of the cycle performance test results of the materials of Example 1 and Comparative Examples 1-2. As shown in FIG. 5, the lithium-rich manganese-based material provided by the present invention has excellent cycle performance and is compared with the single Compared with the materials of Comparative Example 1 and Comparative Example 2, the materials have higher specific discharge capacity.
  • the present invention exemplarily provides the average voltage diagrams of the materials prepared in Example 1 and Comparative Example 1 during the cycling process.
  • FIG. 6 it can be seen from FIG. 6 that the lithium-rich manganese-based material provided by the present invention is cycling 100%.
  • the average pressure drop after the second cycle was 170 mV
  • the average pressure drop of the matrix material A of Comparative Example 1 after 100 cycles was 320 mV, further indicating that the lithium-rich manganese-based material provided by the present invention has excellent cycle performance and structural stability.
  • the lithium-rich manganese-based positive electrode material provided by the present invention has a relatively high charge-discharge specific capacity, high first-efficiency performance, excellent rate performance and cycle performance.
  • the overall performance of the lithium-rich manganese-based material provided by the present invention is further improved compared to its separate base material A and coating layer material B.

Abstract

本发明涉及锂离子电池技术领域,公开了一种富锂锰基材料及其制备方法和应用,该材料包括基体以及包覆在所述基体表面的包覆层;所述基体中含有化学式为Li 1.2+x[(Mn 1-a-b-cCo aNi bM c) 1-dM' d] 0.8-xO 2的物质,所述包覆层含有化学式为Li u(Li 1-v-γN vN' γ)O 2的物质,在所述材料中,所述基体与所述包覆层的含量重量比为100:0.01-10。本发明提供的富锂锰基正极材料表现出优异的循环性能、高的充放电比容量性能和高的首效性能等。

Description

一种富锂锰基材料及其制备方法和应用
相关申请的交叉引用
本申请要求2019年12月31日提交的中国专利申请201911422090.2的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及锂离子电池技术领域,具体涉及一种富锂锰基材料、一种制备富锂锰基材料的方法及由该方法制备得到的富锂锰基材料、所述富锂锰基材料在锂离子电池中的应用。
背景技术
近年来,新能源汽车作为应对环境污染和能源危机的国家战略新兴产业,呈现出蓬勃发展的良好局面,锂离子电池作为综合性能优异的新能源载体广泛应用于电动汽车、储能电站、通讯及数码电子产品等市场。
在锂离子电池中,正极作为锂离子电池的核心关键材料,直接决定着电池的技术性能水平。随着各应用领域对锂离子电池能量密度要求的不断提高,商业化的正极材料主要包括层状LiMO 2(M为Ni、Co、Mn等),尖晶石型LiMn 2O 4和橄榄石型LiFePO 4。其中,LiCoO 2成本高,尖晶石结构的LiMn 2O 4在循环使用过程中容易发生晶型转变Jahn-Teller(姜-泰勒)效应和锰离子的溶解,导致电池容量衰减快,高温性能差;层状正极材料LiNi 1-x-yCo xMn yO 2由于Ni、Co、Mn的协同效应,使材料成本降低、性能提升,但实际比容量并没有很大的突破,已难以满足人们的需求。
而层状富锂锰基材料凭借其高比容量(>250mAh/g)、高安全性和价格便宜等优点,受到人们的广泛关注,成为最具发展潜力的新一代动力型锂离子电池正极材料。但是,该材料在循环过程中会由层状结构向尖晶石结构转变,导致严重的电压衰减,使材料的能量密度降低,同时加大了电池管理系统的难度,严重阻碍了其商业化应用进程。
因此,开发一种具有高比容量、高安全性同时具有优异循环性能的富锂锰基正极材料具有非常重要的意义。
发明内容
本发明的目的是为了提供一种新的富锂锰基材料,以克服现有技术中富锂锰基材料存在的循环过程中易发生结构转变,导致电压衰减,使材料的能量密度降低的缺陷。
为了实现上述目的,本发明第一方面提供一种富锂锰基材料,该材料包括基体以及包覆在所述基体表面的包覆层;
所述基体中含有化学式为Li 1.2+x[(Mn 1-a-b-cCo aNi bM c) 1-dM′ d] 0.8-xO 2的物质,其中,-0.2≤x≤0.3,0≤a≤0.3,0≤b≤0.3,0≤c≤0.1,0≤d≤0.1,M和M'各自独立地选自Al、B、Ba、Ce、Cr、Cu、Fe、K、La、Mg、Mo、Na、Nb、Os、Pr、Re、Ru、Sc、Sr、Sm、Ta、Ti、V、W、Y、Yb、Zn、Zr中的至少一种元素;
所述包覆层含有化学式为Li u(Li 1-v-γN vN′ γ)O 2的物质,其中,0.8≤u<1.2,0.6≤v≤0.9,0≤γ≤0.1,N选自Mn、Co、Ni、Fe、Ru、Mo中的至少一种元素;N′选自Al、B、Ba、Ce、Cr、Co、Cu、Fe、K、La、Mg、Mn、Mo、Na、Nb、Ni、Os、Pr、Re、Ru、Sc、Sr、Sm、Ta、Ti、V、W、Y、Yb、Zn、Zr中的至少一种元素;
在所述材料中,所述基体与所述包覆层的含量重量比为100:0.01-10。
本发明第二方面提供一种制备富锂锰基材料的方法,该方法包括:
将基体物质A与包覆层物质B进行第一混合,得到富锂锰基材料;
其中,所述基体物质A的化学式为Li 1.2+x[(Mn 1-a-b-cCo aNi bM c) 1-dM′ d] 0.8-xO 2其中,-0.2≤x≤0.3,0≤a≤0.3,0≤b≤0.3,0≤c≤0.1,0≤d≤0.1,M和M'各自独立地选自Al、B、Ba、Ce、Cr、Cu、Fe、K、La、Mg、Mo、Na、Nb、Os、Pr、Re、Ru、Sc、Sr、Sm、Ta、Ti、V、W、Y、Yb、Zn、Zr中的至少一种元素;
所述包覆层物质B的化学式为Li u(Li 1-v-γN vN′ γ)O 2的物质,其中,0.8≤u<1.2,0.6≤v≤0.9,0≤γ≤0.1,N选自Mn、Co、Ni、Fe、Ru、Mo中的至少一种元素;N′选自Al、B、Ba、Ce、Cr、Co、Cu、Fe、K、La、Mg、Mn、Mo、Na、Nb、Ni、Os、Pr、Re、Ru、Sc、Sr、Sm、Ta、Ti、V、W、Y、Yb、Zn、Zr中的至 少一种元素;
所述基体物质A和所述包覆层物质B的用量重量比为100:0.01-10。
本发明第三方面提供由前述第二方面所述的方法制备得到的富锂锰基材料。
本发明第四方面提供前述富锂锰基材料在锂离子电池中的应用。
本发明提供的技术方案与现有技术相比,至少具有如下优点:
1、本发明提供的富锂锰基材料具有较高的充放电比容量、高的首效性能和优异的倍率性能。
2、本发明提供的富锂锰基材料具有优异的循环性能,在电化学循环过程中结构稳定,具有优异的结构稳定性。
3、本发明提供的富锂锰基正极材料具有振实密度大的优点,进一步有利于提高电池的体积能量密度。
4、本发明提供的制备方法工艺简单、无污染,掺杂元素和包覆层引入方式简单,过程可控,适合产业化生产。
附图说明
图1是实施例1和对比例1-2制备得到的材料的XRD测试结果图;
图2是实施例1制备得到的富锂锰基材料的扫描电子显微镜图;
图3是对比例1制备得到的基体物质A的扫描电子显微镜图;
图4是实施例1制备得到的富锂锰基材料的倍率性能测试结果图;
图5是实施例1和对比例1-2制备得到材料的循环性能测试图;
图6是实施例1和对比例1制备的材料在循环过程的平均电压图。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
如前所述,本发明第一方面提供了一种富锂锰基材料,该材料包括基体以 及包覆在所述基体表面的包覆层;
所述基体中含有化学式为Li 1.2+x[(Mn 1-a-b-cCo aNi bM c) 1-dM′ d] 0.8-xO 2的物质,其中,-0.2≤x≤0.3,0≤a≤0.3,0≤b≤0.3,0≤c≤0.1,0≤d≤0.1,M和M'各自独立地选自Al、B、Ba、Ce、Cr、Cu、Fe、K、La、Mg、Mo、Na、Nb、Os、Pr、Re、Ru、Sc、Sr、Sm、Ta、Ti、V、W、Y、Yb、Zn、Zr中的至少一种元素;
所述包覆层含有化学式为Li u(Li 1-v-γN vN′ γ)O 2的物质,其中,0.8≤u<1.2,0.6≤v≤0.9,0≤γ≤0.1,N选自Mn、Co、Ni、Fe、Ru、Mo中的至少一种元素;N′选自Al、B、Ba、Ce、Cr、Co、Cu、Fe、K、La、Mg、Mn、Mo、Na、Nb、Ni、Os、Pr、Re、Ru、Sc、Sr、Sm、Ta、Ti、V、W、Y、Yb、Zn、Zr中的至少一种元素;
在所述材料中,所述基体与所述包覆层的含量重量比为100:0.01-10。
本发明中,所述包覆包括所述包覆层附着在所述基体表面。
优选地,所述材料的中值粒径D 50为6-20μm。
优选地,所述材料的比表面积为2-7.5m 2/g。
如前所述,本发明第二方面提供了一种制备富锂锰基材料的方法,该方法包括:
将基体物质A与包覆层物质B进行第一混合,得到富锂锰基材料;
其中,所述基体物质A的化学式为Li 1.2+x[(Mn 1-a-b-cCo aNi bM c) 1-dM′ d] 0.8-xO 2其中,-0.2≤x≤0.3,0≤a≤0.3,0≤b≤0.3,0≤c≤0.1,0≤d≤0.1,M和M'各自独立地选自Al、B、Ba、Ce、Cr、Cu、Fe、K、La、Mg、Mo、Na、Nb、Os、Pr、Re、Ru、Sc、Sr、Sm、Ta、Ti、V、W、Y、Yb、Zn、Zr中的至少一种元素;
所述包覆层物质B的化学式为Li u(Li 1-v-γN vN′ γ)O 2的物质,其中,0.8≤u<1.2,0.6≤v≤0.9,0≤γ≤0.1,N选自Mn、Co、Ni、Fe、Ru、Mo中的至少一种元素;N′选自Al、B、Ba、Ce、Cr、Co、Cu、Fe、K、La、Mg、Mn、Mo、Na、Nb、Ni、Os、Pr、Re、Ru、Sc、Sr、Sm、Ta、Ti、V、W、Y、Yb、Zn、Zr中的至少一种元素;
所述基体物质A和所述包覆层物质B的用量重量比为100:0.01-10。
根据本发明第二方面所述的方法,所述包覆层物质B包覆在所述基体物质A表面形成所述富锂锰基材料。
优选地,根据本发明第二方面所述的方法,所述富锂锰基材料的中值粒径D 50为6-20μm。
优选地,根据本发明第二方面所述的方法,所述富锂锰基材料的比表面积为2-7.5m 2/g。
优选地,所述第一混合在含氧气氛中进行,所述第一混合的条件包括:温度为300-1000℃,时间为2-15h。
根据本发明一种优选的具体实施方式,该方法还包括通过以下步骤制备所述基体物质A:
(1)在第一溶剂存在下,将组分C中的各组分进行第二混合,得到基体前驱体,所述组分C中含有第一络合剂、第一沉淀剂和锰盐,且所述组分C中任选还含有钴盐、镍盐和第一掺杂剂中的至少一种,所述第一掺杂剂中含有所述元素M;
(2)将所述基体前驱体与组分D中的各组分进行第三混合,得到基体物质A,所述组分D中含有第一锂盐,且所述组分D中任选还含有第二掺杂剂,所述第二掺杂剂中含有所述元素M′;
其中,M和M'各自独立地选自Al、B、Ba、Ce、Cr、Cu、Fe、K、La、Mg、Mo、Na、Nb、Os、Pr、Re、Ru、Sc、Sr、Sm、Ta、Ti、V、W、Y、Yb、Zn、Zr中的至少一种元素;
所述锰盐、所述钴盐、所述镍盐、所述第一掺杂剂、所述第一锂盐和所述第二掺杂剂的用量使得得到的所述基体物质A的化学式为Li 1.2+x[(Mn 1-a-b-cCo aNi bM c) 1-dM′ d] 0.8-xO 2其中,-0.2≤x≤0.3,0≤a≤0.3,0≤b≤0.3,0≤c≤0.1,0≤d≤0.1。
优选地,在步骤(1)中,所述第二混合在反应釜中进行,所述第二混合的条件包括:温度为20-60℃,时间为6-30h,转速为300-1000rpm,pH值为7-12。
根据本发明一种优选的具体实施方式,在步骤(2)中,所述第三混合在含氧气氛中进行,所述第三混合的条件包括:先在第一条件下进行第一反应得到反应物,再将所述反应物在第二条件下进行第二反应,所述第一条件包括:温度为 300-600℃,保温时间为1-6h;所述第二条件包括:温度为650-1000℃,保温时间为4-20h。
根据本发明另一种优选的具体实施方式,在步骤(2)中,所述第三混合在含氧气氛中进行,所述第三混合的条件包括:温度为300-1000℃,保温时间为1-20h。
优选地,在步骤(1)中,所述锰盐、所述钴盐、所述镍盐各自独立地选自硫酸盐、硝酸盐、氯化物、乙酸盐和柠檬酸盐中的至少一种,例如所述锰盐选自硫酸锰、钴酸锰、氯化锰、乙酸锰、柠檬酸锰中的至少一种;所述钴盐选自硫酸钴、钴酸钴、氯化钴、乙酸钴、柠檬酸钴中的至少一种;所述镍盐选自硫酸镍、钴酸镍、氯化镍、乙酸镍、柠檬酸镍中的至少一种。
优选地,所述第一掺杂剂是指含有所述元素M的氧化物、磷酸盐、氟化物和碳酸盐中的至少一种。
优选地,所述第二掺杂剂是指含有所述元素M′的氧化物、磷酸盐、氟化物和碳酸盐中的至少一种。
优选地,所述第一络合剂选自氨水、水杨酸、硫酸铵、氯化铵中的至少一种。
优选地,所述第一沉淀剂选自氢氧化钠、氢氧化钾、碳酸钠、碳酸钾中的至少一种。
本发明中,所述第一络合剂和所述第一沉淀剂的用量使得在步骤(1)进行所述第二混合时体系的pH值为7-12即可。
优选地,在步骤(2)中,所述第一锂盐选自硝酸锂、氯化锂、氢氧化锂和碳酸锂中的至少一种。
根据本发明另一种优选的具体实施方式,该方法还包括通过以下步骤制备所述包覆层物质B:
(a)在第二溶剂存在下,将组分E中的各组分进行第四混合,得到包覆层前驱体,所述组分E中含有第二络合剂、第二沉淀剂和含有所述元素N的金属盐,且所述组分E中任选还含有第三掺杂剂,所述第三掺杂剂中含有所述元素N′;
(b)将所述包覆层前驱体与钠盐和第二锂盐进行第五混合,得到包覆层中间产物;
(c)将所述包覆层中间产物与第三锂盐进行第六混合,得到包覆层物质B;
所述元素N选自Mn、Co、Ni、Fe、Ru、Mo中的至少一种;所述元素N′选自Al、B、Ba、Ce、Cr、Co、Cu、Fe、K、La、Mg、Mn、Mo、Na、Nb、Ni、Os、Pr、Re、Ru、Sc、Sr、Sm、Ta、Ti、V、W、Y、Yb、Zn、Zr中的至少一种;
所述第二锂盐和所述第三锂盐的总用量、所述金属盐和所述第三掺杂剂的用量使得得到的所述包覆层物质B的化学式为Li u(Li 1-v-γN vN′ γ)O 2,其中,0.8≤u<1.2,0.6≤v≤0.9,0≤γ≤0.1。
优选地,在步骤(a)中,所述第四混合在反应釜中进行,所述第四混合的条件包括:温度为20-50℃,时间为5-15h,转速为300-1000rpm,pH值为7-12。
优选地,在步骤(b)中,所述第五混合的条件包括:在含氧气氛中进行,温度为600-1000℃,时间为4-20h。
优选地,在步骤(c)中,所述第六混合的条件包括:在含氧气氛中进行,温度为300-700℃,时间为2-20h。
优选地,在步骤(a)中,所述含有所述元素N的金属盐选自硫酸盐、硝酸盐、氯化物、乙酸盐、柠檬酸盐中的至少一种。
优选地,在步骤(b)中,所述钠盐选自硫酸钠、硝酸钠、氯化钠、乙酸钠、柠檬酸钠中的至少一种。
优选地,所述第二锂盐和所述第三锂盐各自独立地选自硝酸锂、氯化锂、氢氧化锂、碳酸锂中的至少一种。
优选地,所述第三掺杂剂是指含有所述元素N′的氧化物、磷酸盐、氟化物和碳酸盐中的至少一种。
优选地,所述第二络合剂选自氨水、水杨酸、硫酸铵、氯化铵中的至少一种。
优选地,所述第二沉淀剂选自氢氧化钠、氢氧化钾、碳酸钠、碳酸钾中的至少一种。
优选地,在步骤(a)中,所述第二络合剂和所述第二沉淀剂的用量使得进行所述第四混合时的体系的pH值为7-12即可。
优选地,在步骤(b)中,以其中含有的所述N元素和所述N′元素的摩尔 总数计的所述包覆层前驱体与以其中含有的钠元素计的所述钠盐的用量摩尔比为1:0.8-1.4。
优选地,在步骤(b)中,以其中含有的所述N元素和所述N′元素的摩尔总数计的所述包覆层前驱体与以其中含有的锂元素计的所述第二锂盐的用量摩尔比为1:0.1-0.5。
根据本发明再一种优选的具体实施方式,本发明第二方面所述的方法包括:
S1:在第一溶剂存在下,将组分C中的各组分进行第二混合,得到基体前驱体,所述组分C中含有第一络合剂、第一沉淀剂和锰盐,且所述组分C中任选还含有钴盐、镍盐和第一掺杂剂中的至少一种,所述第一掺杂剂中含有所述元素M;
S2:将所述基体前驱体与组分D中的各组分进行第三混合,得到基体物质A,所述组分D中含有第一锂盐,且所述组分D中任选还含有第二掺杂剂,所述第二掺杂剂中含有所述元素M′;
S3:在第二溶剂存在下,将组分E中的各组分进行第四混合,得到包覆层前驱体,所述组分E中含有第二络合剂、第二沉淀剂和含有所述元素N的金属盐,且所述组分E中任选还含有第三掺杂剂,所述第三掺杂剂中含有所述元素N′;
S4:将所述包覆层前驱体与第二锂盐和钠盐进行第五混合,得到包覆层中间产物;
S5:将所述包覆层中间产物与第三锂盐进行第六混合,得到包覆层物质B;
S6:将所述基体物质A与所述包覆层物质B进行第一混合,得到富锂锰基材料。
本发明第二方面所述的方法还包括抽滤、洗涤、干燥、破碎、筛分等本领域公知的后处理手段,本发明在此不再赘述,本领域技术人员不应理解为对本发明的限制。
如前所述,本发明第三方面提供由前述第二方面所述的方法制备得到的富锂锰基材料。
如前所述,本发明第四方面提供前述富锂锰基材料在锂离子电池中的应用。
以下将通过实例对本发明进行详细描述。
以下实例中,在没有特别说明的情况下,所有原料均为市售品。
在没有特别说明的情况下,本发明所述室温是指25±2℃。
以下实例中,涉及到的性能是通过以下方式得到的:
(1)物相测试:通过日本理学公司的SmartLab 9kw型号的X射线衍射仪测试得到的;
(2)形貌测试:通过日本日立HITACHI公司的S-4800型号的扫描电子显微镜测试得到的;
(3)中值粒径D 50:通过Marvern公司Hydro 2000mu型号的激光粒度仪测试得到的;
(4)比表面积:通过美国Micromertics公司的Tristar II3020型号的比表面测试仪测试得到的;
(5)振实密度:通过百特公司的BT-30型号的振实密度测试仪测试得到;
(6)电化学性能测试:
以下制备的富锂锰基材料的电化学性能是通过2025型扣式电池测试的。
2032型扣式电池的制备过程为:
制备极片:将富锂锰基材料、炭黑、聚偏二氟乙烯按质量比为80:10:10与适量的N-甲基吡咯烷酮充分混合形成均匀的浆料,涂覆在铝箔上于120℃烘干、辊压、冲剪,制成直径为11mm的正极片,其中,所述富锂锰基材料的负载量为7mg/cm 2
组装电池:在充有氩气的手套箱内,以锂片为负极,聚丙烯微孔膜为隔膜(Celgard2400),1M的LiPF 6/EC+DMC为电解液组装成2025型扣式电池。
电化学性能测试:
采用新威电池测试系统对扣式电池在25℃进行电化学性能测试,1C的充放电电流密度为250mA/g:
a、将制备得到的扣式电池在2.0-4.6V、0.1C下进行充放电测试,评估材料的首次充放电比容量和首次效率;
b、将制备得到的扣式电池在2.0-4.6V、在0.2C下循环100次,评估材料的循环性能和压降;
c、将制备得到的扣式电池在2.0-4.6V、分别在0.1C、0.2C、0.5C、1C下进行充放电测试,评估材料的倍率性能。
实施例1
S1:将硫酸锰、硫酸镍、硫酸钴按照锰、钴、镍元素摩尔比为4:1:1的比例溶解得到浓度为2mol/L的混合盐溶液,将碳酸钠溶解成浓度为2mol/L的沉淀剂溶液;将氨水溶解成浓度为3mol/L的络合剂溶液。将沉淀剂溶液、络合剂溶液、100L的混合盐溶液一起并流加入到反应釜中,在温度为45℃、pH值为8.5、搅拌转速为700rpm下进行第二混合20h,然后将前驱体浆料经过抽滤、洗涤,滤饼在105℃烘干后筛分,得到基体前驱体;
S2:将碳酸锂与S1制备的所述基体前驱体按照Li/(Ni+Co+Mn)的摩尔比为1.5:1的比例混合均匀,在空气气氛中从室温升温至450℃,保温4h,再升温至850℃,保温10h进行第三混合,然后经过破碎、筛分,基体物质A;
S3:将硫酸锰、硫酸镍、硫酸钴按照锰、钴、镍元素摩尔比为4:1:1的比例溶解得到浓度为2mol/L的混合盐溶液,将碳酸钠溶解成浓度为2mol/L的沉淀剂溶液;将氨水溶解成浓度为3mol/L的络合剂溶液。将100L的混合盐溶液、沉淀剂溶液、络合剂溶液一起并流加入到反应釜中,在温度为45℃、pH值为8.5、搅拌转速为700rpm下进行第四混合10h,然后将前驱体浆料经过抽滤、洗涤,滤饼在105℃烘干,筛分,得到包覆层前驱体;
S4:将碳酸钠、碳酸锂与S3制备的所述包覆层前驱体按照Na/(Ni+Co+Mn)的摩尔比为1.04:1,Li/(Ni+Co+Mn)的摩尔比=0.25:1在空气中从室温加热到800℃,保温10h进行第五混合,自然冷却,经过破碎、筛分,得到包覆层中间产物;
S5:将硝酸锂和氯化锂的混合物(其中硝酸锂和氯化锂的摩尔比=1:4)与S4制备的所述包覆层中间产物按照锂盐混合物中Li元素与所述包覆层中间产物Na元素的摩尔比为1.2,在空气气氛下从室温加热到400℃,并保温5h进行第六混合,自然冷却后,充分破碎、过筛,得包覆层物质B;
S6:将S5制备得到所述包覆层物质B与S2制备的所述基体物质A按照质量比为1:100,在空气气氛中从室温加热到450℃,并保温10h进行第一混合,自然冷却,得到富锂锰基材料。
实施例2-10
采用与实施例1相似的方式,不同的是:采用的配方和工艺参数不同,具 体见表1,其余均与实施例1相同,制备得到富锂锰基材料。
表1
Figure PCTCN2020142040-appb-000001
Figure PCTCN2020142040-appb-000002
Figure PCTCN2020142040-appb-000003
表1(续表)
Figure PCTCN2020142040-appb-000004
Figure PCTCN2020142040-appb-000005
表1中,在无特别说明的情况下,所述比例和用量比均为摩尔比。
对比例1
采用与实施例1相同的S1和S2步骤,制备得到基体物质A。
对比例2
采用与实施例1相同的S3、S4和S5步骤,制备得到包覆层物质B。
对比例3
采用与实施例1相似的方式,不同的是,在步骤(6)中,包覆层物质B与基体物质A按照质量比为15:100进行混合,得到富锂锰基材料。
以上实例制备得到的材料的组成,具体如表2所示。
表2
Figure PCTCN2020142040-appb-000006
测试例
(1)XRD测试
本发明测试了以上实例制备得到的富锂锰基材料的XRD,并且示例性地提供了实施例1、对比例1和对比例2的XRD结果,如图1所示,从图1的XRD 中能够看出对比例1的第一出峰位置约为18.7°,并在20-25°出现富锂材料的特征峰,该结构的富锂锰基材料的晶胞中的氧原子层排列方式为ABCABC排列,该结构的最大问题就是循环过程中不稳定,导致严重的电压衰减;从图1的XRD中能够看出对比例2的第一出峰位置约为18.2°,其它峰相较第一峰强度较弱,该结构晶胞中的氧原子层排列方式为ABACABAC排列;从图1的XRD中能够看出实施例1在18-19°之间出现一个分裂峰,说明本发明提供的富锂锰基材料是基体物质A和包覆层物质B两相的复合结构。
(2)形貌测试
本发明测试了以上实例制备得到的富锂锰基材料的扫描电子显微镜图像,并且示例性地提供了实施例1和对比例1的SEM图片,结果分别如图2和图3所示,从图2和图3对比能够看出,图2中本发明提供的富锂锰基材料,包覆层物质B成功地对基体物质A进行了包覆;从图3能够看出基体物质A为一次颗粒形成的二次球形结构。
(3)物性测试
本发明测试了以上实例制备得到的富锂锰基材料的中值粒径D 50、振实密度和比表面积,具体结果见表3所示。
表3
样品来源 中值粒径D50/μm 振实密度/g/cm 3 比表面积/m 2/g
实施例1 11.9 1.80 6.3
实施例2 12.5 1.90 3.2
实施例3 11.1 1.76 6.1
实施例4 13.3 1.91 2.8
实施例5 14.5 1.85 3.1
实施例6 12.0 1.81 4.2
实施例7 11.5 1.88 4.5
实施例8 11.6 1.75 6.1
实施例9 12.0 1.83 4.5
实施例10 12.5 1.88 4.0
对比例1 10.1 1.7 7.7
对比例2 5.2 1.6 12.8
对比例3 12.5 1.8 5.8
从表2结果能够看出,本发明提供的富锂锰基材料与其基体材料A和包覆层材料B相比具有更高的振实密度和更低的比表面积。
(4)电化学性能测试
本发明测试了以上实例制备得到的材料的电化学性能,包括首次充放电容量、首次效率、循环性能和倍率性能,具体测试结果见表4。
表4
Figure PCTCN2020142040-appb-000007
从实施例1和对比例1对比能够看出,本发明提供的富锂锰基材料,相比于对比例1制备的基体物质A,在0.1C放电比容量提高了36mAh/g,首次效率提高8%,100周的容量保持率提高24.3%,平均电压衰减减小了150mV,由此可见,本发明提供的富锂锰基材料明显改善了现有技术中基体物质A的性能。
从实施例1和对比例2的结果对比能够看出,相比于对比例2制备的包覆层材料B,本发明提供的富锂锰基材料在0.1C放电比容量提高了35mAh/g,首次效率提高18%,由此可见,本发明提供的富锂锰基材料明显改善了现有技术中包覆层物质B的性能。
本发明示例性地提供了实施例1制备得到的富锂锰基材料的倍率性能测试结果图,如图4所示,从图4能够看出,本发明提供的富锂锰基材料具有优异的倍率性能。
本发明示例性地提供了实施例1和对比例1-2的材料的循环性能测试结果图,如图5所示,本发明提供的富锂锰基材料具有优异的循环性能,且与单独的对比例1和对比例2的材料相比,具有更高的放电比容量。
本发明示例性地提供了实施例1和对比例1制备的材料在循环过程的平均电压图,如图6所示,从图6能够看出,本发明提供的富锂锰基材料在循环100 次后的平均压降为170mV,对比例1的基体物质A在循环100次后的平均压降为320mV,进一步说明本发明提供的富锂锰基材料具有优异的循环性能和结构稳定性。
由上述结果能够看出,本发明提供的富锂锰基正极材料具有较高的充放电比容量、高的首效性能、优异的倍率性能和循环性能。特别地,本发明提供的富锂锰基材料的综合性能与其单独的基体材料A和包覆层材料B相比,都得到了进一步的提高。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (10)

  1. 一种富锂锰基材料,其特征在于,该材料包括基体以及包覆在所述基体表面的包覆层;
    所述基体中含有化学式为Li 1.2+x[(Mn 1-a-b-cCo aNi bM c) 1-dM′ d] 0.8-xO 2的物质,其中,-0.2≤x≤0.3,0≤a≤0.3,0≤b≤0.3,0≤c≤0.1,0≤d≤0.1,M和M′各自独立地选自Al、B、Ba、Ce、Cr、Cu、Fe、K、La、Mg、Mo、Na、Nb、Os、Pr、Re、Ru、Sc、Sr、Sm、Ta、Ti、V、W、Y、Yb、Zn、Zr中的至少一种元素;
    所述包覆层含有化学式为Li u(Li 1-v-γN vN′ γ)O 2的物质,其中,0.8≤u<1.2,0.6≤v≤0.9,0≤γ≤0.1,N选自Mn、Co、Ni、Fe、Ru、Mo中的至少一种元素;N′选自Al、B、Ba、Ce、Cr、Co、Cu、Fe、K、La、Mg、Mn、Mo、Na、Nb、Ni、Os、Pr、Re、Ru、Sc、Sr、Sm、Ta、Ti、V、W、Y、Yb、Zn、Zr中的至少一种元素;
    在所述材料中,所述基体与所述包覆层的含量重量比为100∶0.01-10。
  2. 根据权利要求1所述的材料,其中,所述材料的中值粒径D 50为6-20μm;
    优选地,所述材料的比表面积为2-7.5m 2/g。
  3. 一种制备富锂锰基材料的方法,其特征在于,该方法包括:
    将基体物质A与包覆层物质B进行第一混合,得到富锂锰基材料;
    其中,所述基体物质A的化学式为Li 1.2+x[(Mn 1-a-b-cCo aNi bM c) 1-dM′ d] 0.8-xO 2其中,-0.2≤x≤0.3,0≤a≤0.3,0≤b≤0.3,0≤c≤0.1,0≤d≤0.1,M和M′各自独立地选自Al、B、Ba、Ce、Cr、Cu、Fe、K、La、Mg、Mo、Na、Nb、Os、Pr、Re、Ru、Sc、Sr、Sm、Ta、Ti、V、W、Y、Yb、Zn、Zr中的至少一种元素;
    所述包覆层物质B的化学式为Li u(Li 1-v-γN vN′ γ)O 2的物质,其中,0.8≤u<1.2,0.6≤v≤0.9,0≤γ≤0.1,N选自Mn、Co、Ni、Fe、Ru、Mo中的至少一种元素;N′选自Al、B、Ba、Ce、Cr、Co、Cu、Fe、K、La、Mg、Mn、Mo、Na、Nb、Ni、Os、Pr、Re、Ru、Sc、Sr、Sm、Ta、Ti、V、W、Y、Yb、Zn、Zr中的至少一种元素;
    所述基体物质A和所述包覆层物质B的用量重量比为100∶0.01-10;
    优选地,所述富锂锰基材料的中值粒径D 50为6-20μm;
    优选地,所述富锂锰基材料的比表面积为2-7.5m 2/g。
  4. 根据权利要求3所述的方法,其中,所述第一混合在含氧气氛中进行,所述第一混合的条件包括:温度为300-1000℃,时间为2-15h。
  5. 根据权利要求3或4所述的方法,其中,该方法还包括通过以下步骤制备所述基体物质A:
    (1)在第一溶剂存在下,将组分C中的各组分进行第二混合,得到基体前驱体,所述组分C中含有第一络合剂、第一沉淀剂和锰盐,且所述组分C中任选还含有钴盐、镍盐和第一掺杂剂中的至少一种,所述第一掺杂剂中含有所述元素M;
    (2)将所述基体前驱体与组分D中的各组分进行第三混合,得到基体物质A,所述组分D中含有第一锂盐,且所述组分D中任选还含有第二掺杂剂,所述第二掺杂剂中含有所述元素M′;
    其中,所述锰盐、所述钴盐、所述镍盐、所述第一掺杂剂、所述第一锂盐和所述第二掺杂剂的用量使得得到所述基体物质A。
  6. 根据权利要求5所述的方法,其中,在步骤(1)中,所述第二混合在反应釜中进行,所述第二混合的条件包括:温度为20-60℃,时间为6-30h,转速为300-1000rpm,pH值为7-12;
    优选地,在步骤(2)中,所述第三混合在含氧气氛中进行,所述第三混合的条件包括:先在第一条件下进行反应得到反应物,再将所述反应物在第二条件下反应,所述第一条件包括:温度为300-600℃,保温时间为1-6h;所述第二条件包括:温度为650-1000℃,保温时间为4-20h。
  7. 根据权利要求3-6中任意一项所述的方法,其中,该方法还包括通过以下步骤制备所述包覆层物质B:
    (a)在第二溶剂存在下,将组分E中的各组分进行第四混合,得到包覆层 前驱体,所述组分E中含有第二络合剂、第二沉淀剂和含有所述元素N的金属盐,且所述组分E中任选还含有第三掺杂剂,所述第三掺杂剂中含有所述元素N′;
    (b)将所述包覆层前驱体与第二锂盐和钠盐进行第五混合,得到包覆层中间产物;
    (c)将所述包覆层中间产物与第三锂盐进行第六混合,得到包覆层物质B;
    所述第二锂盐和所述第三锂盐的总用量、所述金属盐和所述第三掺杂剂的用量使得得到所述包覆层物质B。
  8. 根据权利要求7所述的方法,其中,在步骤(a)中,所述第四混合在反应釜中进行,所述第四混合的条件包括:温度为20-50℃,时间为5-15h,转速为300-1000rpm,pH值为7-12;
    优选地,在步骤(b)中,所述第五混合的条件包括:在含氧气氛中进行,温度为600-1000℃,时间为4-20h;
    优选地,在步骤(c)中,所述第六混合的条件包括:在含氧气氛中进行,温度为300-700℃,时间为2-20h。
  9. 由权利要求3-8中任意一项所述的方法制备得到的富锂锰基材料。
  10. 权利要求1-2和9中任意一项所述的富锂锰基材料在锂离子电池中的应用。
PCT/CN2020/142040 2019-12-31 2020-12-31 一种富锂锰基材料及其制备方法和应用 WO2021136490A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/767,246 US20220393155A1 (en) 2019-12-31 2020-12-31 Lithium-manganese rich material, preparation method therefor and use thereof
EP20910925.5A EP4027408A4 (en) 2019-12-31 2020-12-31 LITHIUM-RICH MANGANESE MATERIAL, METHOD FOR PREPARING IT AND APPLICATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911422090.2 2019-12-31
CN201911422090.2A CN111082029B (zh) 2019-12-31 2019-12-31 一种富锂锰基材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021136490A1 true WO2021136490A1 (zh) 2021-07-08

Family

ID=70321425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142040 WO2021136490A1 (zh) 2019-12-31 2020-12-31 一种富锂锰基材料及其制备方法和应用

Country Status (4)

Country Link
US (1) US20220393155A1 (zh)
EP (1) EP4027408A4 (zh)
CN (1) CN111082029B (zh)
WO (1) WO2021136490A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111082029B (zh) * 2019-12-31 2021-08-03 北京当升材料科技股份有限公司 一种富锂锰基材料及其制备方法和应用
CN111463420B (zh) * 2020-04-29 2022-02-25 蜂巢能源科技有限公司 复合外包覆正极材料及其制备方法、正极及锂离子电池
CN113629233A (zh) * 2021-08-09 2021-11-09 清华大学深圳国际研究生院 一种p2-o3复合相富锂锰基锂离子电池正极材料及其制备方法和应用
CN116230917B (zh) * 2023-04-28 2023-08-18 山东华太新能源电池有限公司 一种海洋环境用高熵富锂层状正极材料及其制备方法
CN117276534B (zh) * 2023-11-21 2024-02-13 宜宾光原锂电材料有限公司 高循环正极材料前驱体及其制备方法与正极材料和电池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105161679A (zh) * 2015-06-30 2015-12-16 中国人民解放军国防科学技术大学 富锂正极材料及其制备方法和应用
CN107768642A (zh) * 2017-10-19 2018-03-06 中南大学 一种表面双重包覆的锂离子电池三元材料及其制备方法
CN107834050A (zh) * 2017-12-13 2018-03-23 江南大学 一种锂离子电池富锂正极材料及其改进方法
US20180108908A1 (en) * 2013-04-09 2018-04-19 Zenlabs Energy, Inc. Uniform stabilization nanocoatings for lithium rich complex metal oxides and atomic layer deposition for forming the coating
CN108091843A (zh) * 2017-12-11 2018-05-29 广东工业大学 一种核壳结构的富锂锰基复合正极材料及其制备方法
CN109390574A (zh) * 2018-10-24 2019-02-26 北京科技大学 一种核壳结构的富锂锰基正极材料的制备方法
CN109461928A (zh) * 2018-09-19 2019-03-12 北京当升材料科技股份有限公司 一种高能量密度多元正极材料及其制备方法
CN110422890A (zh) * 2019-06-25 2019-11-08 当升科技(常州)新材料有限公司 锂离子电池正极材料及其制备方法和锂离子电池正极及锂离子电池
CN111082029A (zh) * 2019-12-31 2020-04-28 北京当升材料科技股份有限公司 一种富锂锰基材料及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ520452A (en) * 2002-10-31 2005-03-24 Lg Chemical Ltd Anion containing mixed hydroxide and lithium transition metal oxide with gradient of metal composition
WO2012108513A1 (ja) * 2011-02-09 2012-08-16 旭硝子株式会社 リチウムイオン二次電池用の正極活物質の製造方法
CN102751480B (zh) * 2011-04-18 2015-09-02 河南科隆集团有限公司 一种包覆型富锂锰基材料及其制备方法
CN104022280B (zh) * 2014-06-27 2017-04-12 南通瑞翔新材料有限公司 一种高电压锂离子正极材料及其制备方法
US20170077496A1 (en) * 2015-09-11 2017-03-16 Fu Jen Catholic University Metal gradient-doped cathode material for lithium batteries and its production method
KR20180089030A (ko) * 2017-01-31 2018-08-08 주식회사 엘지화학 고전압용 리튬 코발트 산화물을 포함하는 리튬 이차전지용 양극 활물질 및 이를 제조하는 방법
CN107834041A (zh) * 2017-10-11 2018-03-23 苏州宇量电池有限公司 核壳结构高性能富锂锰基正极材料的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180108908A1 (en) * 2013-04-09 2018-04-19 Zenlabs Energy, Inc. Uniform stabilization nanocoatings for lithium rich complex metal oxides and atomic layer deposition for forming the coating
CN105161679A (zh) * 2015-06-30 2015-12-16 中国人民解放军国防科学技术大学 富锂正极材料及其制备方法和应用
CN107768642A (zh) * 2017-10-19 2018-03-06 中南大学 一种表面双重包覆的锂离子电池三元材料及其制备方法
CN108091843A (zh) * 2017-12-11 2018-05-29 广东工业大学 一种核壳结构的富锂锰基复合正极材料及其制备方法
CN107834050A (zh) * 2017-12-13 2018-03-23 江南大学 一种锂离子电池富锂正极材料及其改进方法
CN109461928A (zh) * 2018-09-19 2019-03-12 北京当升材料科技股份有限公司 一种高能量密度多元正极材料及其制备方法
CN109390574A (zh) * 2018-10-24 2019-02-26 北京科技大学 一种核壳结构的富锂锰基正极材料的制备方法
CN110422890A (zh) * 2019-06-25 2019-11-08 当升科技(常州)新材料有限公司 锂离子电池正极材料及其制备方法和锂离子电池正极及锂离子电池
CN111082029A (zh) * 2019-12-31 2020-04-28 北京当升材料科技股份有限公司 一种富锂锰基材料及其制备方法和应用

Also Published As

Publication number Publication date
EP4027408A4 (en) 2022-11-30
US20220393155A1 (en) 2022-12-08
CN111082029B (zh) 2021-08-03
CN111082029A (zh) 2020-04-28
EP4027408A1 (en) 2022-07-13

Similar Documents

Publication Publication Date Title
US11855285B2 (en) Full-gradient nickel cobalt manganese positive electrode material, ruthenium oxide coated material and preparation method thereof
CN111180690B (zh) 改性镍钴铝酸锂正极材料及其制备方法与应用
WO2021136490A1 (zh) 一种富锂锰基材料及其制备方法和应用
WO2021175233A1 (zh) 一种富锂锰基材料及其制备方法和应用
WO2023169591A1 (zh) 含钠氧化物正极材料及其制备方法与应用、正极片及其应用
CN110931768A (zh) 一种高镍类单晶锂离子电池三元正极材料及制备方法
US20150255789A1 (en) Modified Lithium Ion Battery Anode Material Having High Energy Density, and Manufacturing Method Thereof
CN111762768B (zh) 尖晶石型锰酸锂-磷酸盐复合正极材料及其制备方法
CN112928253B (zh) 一种镍锰钛复合材料及其制备方法和应用
CN111403729A (zh) 钠离子电池正极材料及其制备方法、钠离子电池
CN113871603B (zh) 一种高镍三元正极材料及其制备方法
WO2023184996A1 (zh) 一种改性高镍三元正极材料及其制备方法
CN110649230B (zh) 一种纳米铆钉核壳结构正极材料及制备方法
CN113422039A (zh) 三元系复合氧化物基体材料、三元正极材料及制备方法与由其制备的锂离子电池
CN112952056A (zh) 一种富锂锰基复合正极材料及其制备方法和应用
CN116805680A (zh) 一种复合正极材料及其制备方法和应用
CN114560510B (zh) 一种改性7系三元正极材料及其制备方法和应用
CN116014104A (zh) 富锂镍系正极材料及其制备方法、正极片与二次电池
CN113745478A (zh) 一种电极材料及其制备方法和应用
CN114430035A (zh) 锂离子电池、正极材料及其制备方法
CN117423829B (zh) 一种锂离子电池正极材料及其制备方法和应用
US11958757B2 (en) Lithium-manganese-rich material, preparation method for same, and applications thereof
WO2023115289A1 (zh) 富镍材料及其制备方法、正极片、电池及用电设备
CN116072858A (zh) 一种铌掺杂的镍钴锰铝酸锂四元材料及其制备方法和包含其的锂离子电池
CN117423829A (zh) 一种锂离子电池正极材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910925

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020910925

Country of ref document: EP

Effective date: 20220408

NENP Non-entry into the national phase

Ref country code: DE