WO2022102353A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2022102353A1
WO2022102353A1 PCT/JP2021/038566 JP2021038566W WO2022102353A1 WO 2022102353 A1 WO2022102353 A1 WO 2022102353A1 JP 2021038566 W JP2021038566 W JP 2021038566W WO 2022102353 A1 WO2022102353 A1 WO 2022102353A1
Authority
WO
WIPO (PCT)
Prior art keywords
memory cell
layer
wiring
metal wiring
selection line
Prior art date
Application number
PCT/JP2021/038566
Other languages
English (en)
French (fr)
Inventor
晴彦 寺田
國權 曾
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
台湾積體電路製造股▲ふん▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社, 台湾積體電路製造股▲ふん▼有限公司 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US18/245,746 priority Critical patent/US20230361035A1/en
Priority to CN202180072735.3A priority patent/CN116746294A/zh
Publication of WO2022102353A1 publication Critical patent/WO2022102353A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • H01L23/5283Cross-sectional geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/84Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8416Electrodes adapted for supplying ionic species

Definitions

  • This disclosure relates to a semiconductor device capable of storing information.
  • Patent Document 1 discloses a memory device having one storage layer or two storage layers.
  • semiconductor devices are desired to be easy to manufacture, and further improvement in ease of manufacture is expected.
  • the semiconductor device includes a first memory cell layer, a second memory cell layer, and a first wiring layer.
  • the first memory cell layer includes a first selection line extending in the first direction, a second selection line extending in the second direction, the first selection line, and the second selection line. Includes a first connected memory cell.
  • the second memory cell layer is provided above the first memory cell layer, and has a third selection line extending in the first direction and a fourth selection line extending in the second direction. , The third selection line and a second memory cell connected to the fourth selection line.
  • the first wiring layer is provided between the first memory cell layer and the second memory cell layer, and includes the first metal wiring.
  • a first memory cell layer and a second memory cell layer are provided.
  • the first memory cell layer is provided with a first selection line, a second selection line, and a first memory cell
  • the second memory cell layer is provided with a third selection line and a fourth selection line.
  • a line and a second memory cell are provided.
  • a first wiring layer including a first metal wiring is provided between the first memory cell layer and the second memory cell layer.
  • FIG. 7 It is a block diagram which shows one structural example of the semiconductor device which concerns on one Embodiment of this disclosure. It is explanatory drawing which shows one configuration example of the memory part shown in FIG. It is explanatory drawing which shows an example of the layer structure of the memory part which concerns on 1st Embodiment. It is another explanatory diagram which shows an example of the layer structure of the memory part which concerns on 1st Embodiment. It is a circuit diagram which shows one configuration example of the memory cell shown in FIG. It is a characteristic diagram which shows one characteristic example of the memory element shown in FIG. It is explanatory drawing which shows an example of the layout of the connection part shown in FIG. It is another explanatory diagram showing an example of the layout of the connection part shown in FIG. 7.
  • FIG. 1 shows a configuration example of a semiconductor device (semiconductor device 1) according to the first embodiment.
  • the semiconductor device 1 includes a memory unit 10 and a peripheral circuit unit 80.
  • the memory unit 10 is a so-called cross-point type memory, which is a non-volatile memory.
  • the memory unit 10 has a plurality of memory cell arrays 20, a plurality of word line drive units 30, and a plurality of bit line drive units 40.
  • the memory cell array 20 has memory cells arranged in an array. As will be described later, the memory cell array 20 has a plurality of word lines WL, a plurality of bit BL lines, and a plurality of memory cells MC. Each of the plurality of memory cells MC is connected to any one of the plurality of word lines WL and any one of the plurality of bit lines BL.
  • the word line driving unit 30 is configured to drive a plurality of word line WLs.
  • the bit line driving unit 40 is configured to drive a plurality of bit line BLs.
  • the peripheral circuit unit 80 includes various circuits related to the operation of the memory unit 10. Specifically, the peripheral circuit unit 80 includes, for example, a power supply circuit that generates a selective voltage Vsel and a non-selective voltage Vinh, which will be described later, a reference voltage generation circuit that generates a reference voltage Vref used when performing a read operation, and the like. Includes.
  • the peripheral circuit unit 80 is not limited to this, and may further include, for example, an oscillation circuit and a delay circuit that define the operation speed and operation timing of the memory unit 10.
  • the semiconductor device 1 is provided with a memory unit 10 and a peripheral circuit unit 80, but the present invention is not limited to this, and a logic circuit unit is further provided to mount a logic circuit and a non-volatile memory in a mixed manner. (Embedded) may be used.
  • FIG. 2 shows an example of a configuration of the memory unit 10.
  • a plurality of memory cell arrays 20 are arranged side by side in the memory unit 10 in the X direction and the Y direction.
  • the memory cell array 20 and the word line drive unit 30 are arranged alternately.
  • a part of the memory cell array 20 is arranged so as to overlap a part of the word line driving unit 30.
  • the memory cell array 20 and the bit line driving unit 40 are arranged alternately.
  • the memory cell array 20 and the bit line driving unit 40 are arranged so as not to overlap each other.
  • the memory cell array 20 is provided with a plurality of word lines WL extending in the X direction and a plurality of bit lines BL extending in the Y direction.
  • FIGS. 3 and 4 show an example of the layer structure in the memory unit 10.
  • the memory unit 10 has six wiring layers LM (wiring layers LM1 to LM6) and two memory cell layers LMC (memory cell layers LMC1 and LMC2). Metal wirings M1 to M6 are formed on the six wiring layers LM, respectively.
  • the two memory cell layers LMC form the memory cell array 20. These layers include the wiring layer LM1, the wiring layer LM2, the wiring layer LM3, the wiring layer LM4, the memory cell layer LMC1, and the wiring layer on the semiconductor substrate 90 on which the word line driving unit 30 and the bit line driving unit 40 are formed.
  • the LM5, the memory cell layer LMC2, and the wiring layer LM6 are formed in this order with the insulating layer interposed therebetween.
  • a plurality of word lines WL (word line WL1), a plurality of memory cells MC (memory cell MC1), a plurality of bit lines BL (bit lines BL1), and a plurality of memory cells MC (memory cell MC2) are used.
  • a plurality of word line WLs (word line WL2) are formed.
  • the word lines WL1 and WL2 and the bit lines BL1 are configured by using, for example, tungsten (W). As shown in FIG.
  • the word lines WL1 and WL2 are provided so as to extend in the X direction and line up in the Y direction in the XY plane, and the bit lines BL1 extend in the Y direction and line up in the X direction. It is provided as follows.
  • the plurality of bit lines BL1 are formed on the selection line layer on the selection line layer on which the plurality of word lines WL1 are formed, and the plurality of word lines WL2 are formed on the selection line layer on which the plurality of word lines BL1 are formed. It is formed in the selection line layer of. With this configuration, the plurality of word lines WL1 and the plurality of bit lines BL1 intersect each other in the XY plane.
  • the plurality of memory cells MC1 are formed in a storage layer between the selection line layer in which the plurality of word lines WL1 are formed and the selection line layer in which the plurality of bit lines BL1 are formed. Similarly, in the XY plane, the plurality of bit lines BL1 and the plurality of word lines WL2 intersect each other. The plurality of memory cells MC2 are formed in a storage layer between the selection line layer in which the plurality of bit lines BL1 are formed and the selection line layer in which the plurality of word lines WL2 are formed.
  • a plurality of word lines WL (word line WL3), a plurality of memory cells MC (memory cell MC3), a plurality of bit line BLs (bit lines BL2), and a plurality of memory cells MC (memory cell MC4).
  • word line WL3 a plurality of word lines WL
  • a plurality of memory cells MC memory cell MC3
  • a plurality of bit line BLs bit lines BL2
  • a plurality of memory cells MC (memory cell MC4).
  • word line WL4 and the bit line BL2 are configured by using, for example, tungsten (W). As shown in FIG.
  • the word lines WL3 and WL4 are provided so as to extend in the X direction and line up in the Y direction in the XY plane, and the bit lines BL2 extend in the Y direction and line up in the X direction. It is provided as follows.
  • the plurality of bit lines BL2 are formed on the selection line layer on the selection line layer on which the plurality of word lines WL3 are formed, and the plurality of word lines WL4 are formed on the selection line layer on which the plurality of word lines BL2 are formed. It is formed in the selection line layer of. With this configuration, the plurality of word lines WL3 and the plurality of bit lines BL2 intersect each other in the XY plane.
  • the plurality of memory cells MC3 are formed in a storage layer between the selection line layer in which the plurality of word lines WL3 are formed and the selection line layer in which the plurality of bit lines BL2 are formed. Similarly, in the XY plane, the plurality of bit lines BL2 and the plurality of word lines WL4 intersect each other. The plurality of memory cells MC4 are formed in a storage layer between the selection line layer in which the plurality of bit lines BL2 are formed and the selection line layer in which the plurality of word lines WL4 are formed.
  • FIG. 5 shows an example of a configuration of the memory cell MC.
  • the memory cell MC has terminals TU and TL, a storage element VR, and a selection element SE.
  • the terminal TU is connected to the selection line of the word line WL and the bit line BL above the storage layer on which the memory cell MC is formed, and the terminal TL is below the storage layer on which the memory cell MC is formed. Connected to the selection line.
  • the terminal TU of the memory cell MC1 is connected to any of the plurality of bit lines BL1 and the terminal TL is connected to any of the plurality of word lines WL1. ..
  • the terminal TU of the memory cell MC2 is connected to any one of the plurality of word lines WL2, and the terminal TL is connected to any one of the plurality of bit lines BL1.
  • the terminal TU of the memory cell MC3 is connected to any of the plurality of bit lines BL2, and the terminal TL is connected to any of the plurality of word lines WL3.
  • the terminal TU of the memory cell MC4 is connected to any one of the plurality of word lines WL4, and the terminal TL is connected to any one of the plurality of bit lines BL2.
  • the storage element VR is a resistance change type storage element, and the resistance state RS changes reversibly according to the polarity of the voltage difference of the voltage applied between both ends. In other words, the storage element VR reversibly changes the resistance state RS according to the direction of the current flowing between both ends.
  • the storage element VR for example, one in which an ion source layer and a resistance changing layer are laminated can be used.
  • One end of the storage element VR is connected to the terminal TU of the memory cell MC, and the other end is connected to one end of the selection element SE.
  • FIG. 6 schematically shows the distribution of the resistance value of the storage element VR.
  • the storage element VR may have two distinguishable resistance states RS (high resistance state HRS and low resistance state LRS).
  • the high resistance state HRS is associated with the data "0"
  • the low resistance state LRS is associated with, for example, the data "1”. That is, the storage element VR functions as a storage element for storing 1-bit data. For example, changing from a high resistance state HRS to a low resistance state LRS is called “set”, and changing from a low resistance state LRS to a high resistance state HRS is called "reset".
  • the layer including the storage element VR is formed along the selection line above the layer.
  • the layer including the storage element VR is formed along the bit line BL1 as shown in FIG. 4, and in the memory cell MC2, the word line is formed as shown in FIG. Formed along the WL2, in the memory cell MC3, formed along the bit line BL2 as shown in FIG. 4, and in the memory cell MC4, formed along the word line WL4, as shown in FIG. To.
  • the selection element SE (FIG. 5) has bidirectional diode characteristics. Specifically, the selection element SE is in a conduction state (on state) when the absolute value of the voltage difference of the voltage applied between both ends is larger than the predetermined voltage difference, and the absolute value of the voltage difference is predetermined. When it is smaller than the voltage difference, it becomes a non-conducting state (off state).
  • One end of the selection element SE is connected to the other end of the storage element VR, and the other end is connected to the TL terminal of the memory cell MC.
  • a selective voltage Vsel of 6 V is applied to the terminal TU, and a selective voltage Vsel of, for example, 0 V is applied to the terminal TL.
  • the selection element SE is turned on, and as shown in FIG. 5, a set current Iset flows from the terminal TU toward the terminal TL, and the storage element VR is set.
  • a selective voltage Vsel of 6 V is applied to the terminal TL, and a selective voltage Vsel of, for example, 0 V is applied to the terminal TU.
  • the selection element SE is turned on, the reset current Irst flows from the terminal TL toward the terminal TU, and the storage element VR is reset.
  • a selective voltage Vsel of 5 V is applied to the terminal TU
  • a selective voltage Vsel of, for example, 1 V is applied to the terminal TL.
  • the sense current Isns flows from the terminal TU toward the terminal TL.
  • a sense amplifier (not shown) provided in the word line drive unit 30 has come to determine the resistance state RS of the storage element VR by comparing the voltage generated in the memory cell MC with the reference voltage Vref. There is.
  • the word line drive unit 30 (FIG. 2) is connected to a plurality of word line WLs via the connection unit 31.
  • the word line WL in the memory cell array 20 is connected to either one of the two connecting portions 31 sandwiching the memory cell array 20 in the X direction.
  • the connection portion 31 includes a metal wiring M4, a via V4, a metal wiring M5, a via V5, a metal wiring M6, and vias VWL1 to VWL4.
  • the via V4 connects the metal wiring M4 and the metal wiring M5, the via VWL1 connects the word wire WL1 and the metal wiring M5, and the via VWL2 connects the word wire WL2 and the metal wiring M5.
  • the vias VWL1, metal wiring M5, and vias V4 connected to each other, shown on the left side in FIG. 3, are integrally formed using copper (Cu) by a so-called dual damascene process.
  • the via VWL1 and the via V4 are formed together with the metal wiring M5 by this dual damascene process, and are formed so as to connect the metal wiring M5 and the word wire WL1 and the metal wiring M4 under the metal wiring M5, respectively, and thus are also called down vias.
  • the vias VWL2, metal wiring M5, and vias V4 connected to each other, shown on the right side in FIG. 3, are integrally formed using copper (Cu) by a so-called dual damascene process.
  • the via V5 connects the metal wiring M5 and the metal wiring M6, the via VWL3 connects the word wire WL3 and the metal wiring M6, and the via VWL4 connects the word wire WL4 and the wiring layer M6.
  • the vias VWL3, metal wiring M6, and vias V5 connected to each other shown on the left side in FIG. 3 are integrally formed using copper (Cu) by a so-called dual damascene process.
  • the vias VWL4, metal wiring M6, and vias V5 connected to each other, shown on the right side in FIG. 3, are integrally formed using copper (Cu) by a so-called dual damascene process.
  • FIG. 7 shows a part of the layout pattern of the connection portion 31.
  • the layout pattern of the connecting portion 31 is one in which the patterns PT3 shown in FIG. 7 are arranged side by side in the Y direction.
  • FIG. 7 shows the patterns of the word lines WL1 and WL2, the metal wirings M4 and M5, and the vias V4 and VWL1 and VWL2.
  • the pattern of the word line WL3 can be the same as the pattern of the word line WL1, and the pattern of the word line WL4 can be the same as the pattern of the word line WL2.
  • the pattern of the metal wiring M6 can be the same as the pattern of the metal wiring M5.
  • the pattern of the via VWL3 can be the same as the pattern of the via VWL1, and the pattern of the via VWL4 can be the same as the pattern of the via VWL2.
  • FIG. 8 shows an example of connection between the word line WL and the word line driving unit 30 in the connection unit 31.
  • the layout pattern shown in FIG. 8 shows the vicinity of the left end of the pattern PT3 shown in FIG. 7.
  • the word line WL1 is connected to the metal wiring M4 connected to the word line drive unit 30 via the via VWL1, the metal wiring M5, and the via V4.
  • the word line WL2 is connected to the metal wiring M4 connected to the word line drive unit 30 via the via VWL2, the metal wiring M5, and the via V4.
  • the word wire WL3 is connected to the metal wiring M4 connected to the word wire drive unit 30 via the via VWL3, the metal wiring M6, the via V5, the metal wiring M5, and the via V4.
  • the word line WL4 is connected to the metal wiring M4 connected to the word line drive unit 30 via the via VWL4, the metal wiring M6, the via V5, the metal wiring M5, and the via V4.
  • the bit line drive unit 40 (FIG. 2) is connected to a plurality of bit line BLs via the connection unit 41.
  • the bit line BL in the memory cell array 20 is connected to either one of the two connecting portions 41 sandwiching the memory cell array 20 in the Y direction.
  • the connection portion 41 includes a metal wiring M4, a via V4, a metal wiring M5, a via V5, a metal wiring M6, and vias VBL1 and VBL2.
  • the via V4 connects the metal wiring M4 and the metal wiring M5, and the via VBL1 connects the bit wire BL1 and the metal wiring M5.
  • the vias VBL1, the metal wiring M5, and the vias V4 connected to each other shown on the left side in FIG. 4 are integrally formed using copper (Cu) by a so-called dual damascene process.
  • the via V5 connects the metal wiring M5 and the metal wiring M6, and the via VBL2 connects the bit wire BL2 and the metal wiring M6.
  • the vias VBL2, metal wiring M6, and vias V5 connected to each other shown on the right side in FIG. 4 are integrally formed by using copper (Cu) by a so-called dual damascene process.
  • FIG. 9 shows a part of the layout pattern of the connection portion 41.
  • the patterns PT4 shown in FIG. 9 are arranged side by side in the X direction.
  • FIG. 9 shows the patterns of the bit wires BL1 and BL2, the metal wirings M5 and M6, and the vias V4, V5, VBL1 and VBL2.
  • the pattern of the bit line BL2 can be the same as the pattern of the bit line BL1.
  • the pattern of the via VBL2 can be the same as the pattern of the via VBL1.
  • FIG. 10 shows an example of connection between the bit line BL and the bit line driving unit 40 in the connection unit 41.
  • the bit wire BL1 is connected to the metal wiring M4 (not shown) connected to the bit wire driving unit 40 via the via VBL1, the metal wiring M5, and the via V4.
  • the bit wire BL2 is connected to the metal wiring M4 (not shown) connected to the bit wire driving unit 40 via the via VBL2, the metal wiring M6, the via V5, the metal wiring M5, and the via V4.
  • the word line WL1 is connected to the word line WL3 via the via VWL1, the metal wiring M5, the via V5, the metal wiring M6, and the via VWL3.
  • the word lines WL1 and WL3 are collectively driven by the word line driving unit 30.
  • the bit line BL1 is not connected to the bit line BL2.
  • the bit lines BL1 and BL2 are individually driven by the bit line driving unit 40. In this way, the word lines WL1 and WL3 are connected to each other, but the bitch lines BL1 and BL2 are driven individually, so that the memory cells MC1 and MC3 can be driven individually.
  • the word line WL2 is connected to the word line WL4 via the via VWL2, the metal wiring M5, the via V5, the metal wiring M6, and the via VWL4.
  • the word lines WL2 and WL4 are collectively driven by the word line driving unit 30.
  • the bit line BL2 is not connected to the bit line BL1.
  • the bit lines BL1 and BL2 are individually driven by the bit line driving unit 40.
  • the word lines WL2 and WL4 are connected to each other, but the bit lines BL1 and BL3 are driven individually, so that the memory cells MC2 and MC4 can be driven individually. ..
  • the memory cell layer LMC1 corresponds to a specific example of the "first memory cell layer” in the present disclosure.
  • the word line WL1 corresponds to a specific example of the "first selection line” in the present disclosure.
  • the bit line BL1 corresponds to a specific example of the "second selection line” in the present disclosure.
  • the memory cell layer LMC2 corresponds to a specific example of the "second memory cell layer” in the present disclosure.
  • the word line WL3 corresponds to a specific example of the "third selection line” in the present disclosure.
  • the bit line BL2 corresponds to a specific example of the "fourth selection line” in the present disclosure.
  • the wiring layer LM5 corresponds to a specific example of the "first wiring layer” in the present disclosure.
  • the wiring layer LM4 corresponds to a specific example of the "second wiring layer” in the present disclosure.
  • the wiring layer LM6 corresponds to a specific example of the "third wiring layer” in the present disclosure.
  • the via VWL1 corresponds to a specific example of the "first via” in the present disclosure.
  • the via VWL3 corresponds to a specific example of the "third via” in the present disclosure.
  • the word line drive unit 30 corresponds to a specific example of the "drive circuit” in the present disclosure.
  • the via VBL1 corresponds to a specific example of the "fifth via” in the present disclosure.
  • the via VBL2 corresponds to a specific example of the "sixth via” in the present disclosure.
  • the memory unit 10 stores information.
  • the memory cell MC provided in the memory cell array 20 stores information.
  • the word line driving unit 30 drives a plurality of word line WLs provided in the memory cell array 20.
  • the bit line driving unit 40 drives a plurality of bit line BLs provided in the memory cell array 20.
  • the word line drive unit 30 and the bit line drive unit 40 apply a selective voltage Vsel of, for example, 6 V to the terminal TU of the memory cell MC, and apply a selective voltage Vsel of, for example, 0 V to the terminal TL, whereby the memory cell MC thereof is applied. To set.
  • the word line drive unit 30 and the bit line drive unit 40 apply a selective voltage Vsel of, for example, 6 V to the terminal TL of the memory cell MC, and apply a selective voltage Vsel of, for example, 0 V to the terminal TU, thereby causing the memory thereof. Reset the cell MC. Further, the word line drive unit 30 and the bit line drive unit 40 apply a selective voltage Vsel of, for example, 5 V to the terminal TU of the memory cell MC, and apply a selective voltage Vsel of, for example, 1 V to the terminal TL, thereby causing the memory thereof. Read information from cell MC.
  • the memory cell layer LMC1, the wiring layer M5, and the memory cell layer LMC2 are provided.
  • the memory cell layer LMC1 is provided with a word line WL extending in the X direction, a bit line BL extending in the Y direction, and a memory cell MC connected to the word line WL and the bit line BL.
  • the memory cell layer LMC2 is provided with a word line WL extending in the X direction, a bit line BL extending in the Y direction, and a memory cell MC connected to the word line WL and the bit line BL.
  • the wiring layer M5 is provided between the two memory cell layers LMC1 and LMC2. This makes it easier to manufacture the semiconductor device 1.
  • the wiring layer is not provided between the two memory cell layers, four storage layers are provided in one memory cell layer LMC as in the memory unit 10R shown in FIG.
  • This may make it difficult to manufacture the semiconductor device.
  • the number of layers included in the memory cell layer LMC increases, it may be difficult to manufacture a semiconductor device.
  • the memory cell layer LMC is thick, the heights of the vias V4 and VWL1 are increased, so that the aspect ratio of these vias is increased, and as a result, the yield may be lowered, for example.
  • the via V4 having a high aspect ratio and the via VWL3 having a low aspect ratio are formed by the same dual damascene process, the difference in aspect ratio is large, so that the yield may decrease, for example. As a result, it may be difficult to manufacture the semiconductor device.
  • the wiring layer M5 is provided between the memory cell layer LMC1 and the memory cell layer LMC2.
  • the memory cell layer LMC1 can be provided with two storage layers out of the four storage layers, and the memory cell layer LMC2 can be provided with the remaining two storage layers. That is, since the number of layers included in each of the memory cell layers LMC1 and LMC2 can be reduced, the semiconductor device 1 can be easily manufactured. Further, as shown in FIGS. 3 and 4, since the memory cell layers LMC1 and LMC2 can be thinned, the heights of the vias V4 and V5 can be lowered, so that the decrease in yield can be suppressed.
  • the difference between the aspect ratio of the via V4 and the aspect ratio of the via VWL2 can be reduced, and the difference between the aspect ratio of the via V5 and the aspect ratio of the via VWL4 can be reduced, so that the decrease in yield can be suppressed. Can be done. As a result, the semiconductor device 1 can be easily manufactured.
  • the wiring layer M5 and the via VWL1 are formed by using a dual damascene process. That is, the wiring layer M5 and the via VWL1 are integrally made of the same material. This makes it easier to manufacture the semiconductor device 1. That is, for example, when the metal wiring M4 and the word wire WL1 are directly connected by a via, this via cannot be formed by a commonly used dual damascene process. In this case, for example, a via is formed on the metal wiring M4, and a word line WL1 is formed on the layer above the via. The via formed in this way is also called an up via.
  • the semiconductor device 1 since it is necessary to form this via using an uncommon manufacturing process, it may be costly, the yield may be lowered, and it becomes difficult to manufacture. On the other hand, in the semiconductor device 1, since these vias are formed by using a commonly used dual damascene process, the cost can be reduced and the possibility that the yield is lowered can be reduced.
  • the wiring layer M5 and the via VWL1 have been described as examples, but the wiring layer M5 and the via VWL2, the wiring layer M6 and the via VWL3, the wiring layer M6 and the via VWL4, the wiring layer M5 and the via VBL1, the wiring layer M6 and The same applies to the via VBL2. As a result, the semiconductor device 1 can be easily manufactured.
  • the layout of the line WL3, the memory cell MC3, the bit line BL2, the memory cell MC4, the word line WL4, the via VWL3, the VWL4, and the VBL2 can be the same.
  • the number of masks used in the semiconductor manufacturing process can be reduced, so that the manufacturing cost can be reduced.
  • the semiconductor device 1 can be easily manufactured.
  • the wiring layer and the via are integrally configured with the same material by using the dual damascene process, so that the semiconductor device can be easily manufactured.
  • the number of masks can be reduced, so that the semiconductor device can be easily manufactured.
  • the word line WL1 and the word line WL3 are connected to each other, and the word line WL2 and the word line WL4 are connected to each other. Not limited to.
  • the word line WL1 and the word line WL3 are not connected to each other, and the word lines WL2 and WL4 are not connected to each other. You may do so.
  • the semiconductor device 2 includes a memory unit 110 and a peripheral circuit unit 80, as in the semiconductor device 1 (FIG. 1) according to the first embodiment.
  • the memory unit 110 includes a plurality of memory cell arrays 120, a plurality of word line drive units 130, and a plurality of bit line drive units 140. And have.
  • the arrangement of the plurality of memory cell array 120, the plurality of word line drive units 130, and the plurality of bit line drive units 140 is such that the plurality of memory cell array 20, the plurality of word line drive units 30, and the plurality of word line drive units 30 according to the first embodiment. This is the same as the arrangement of the plurality of bit line driving units 40 (FIG. 2).
  • FIGS. 13 and 14 show an example of the layer structure in the memory unit 110.
  • a plurality of word line WL (word line WL1), a plurality of memory cell MC (memory cell MC1), and a plurality of bit line BL (bit line BL1) are formed in the memory cell layer LMC1.
  • the word line WL1 is provided so as to extend in the X direction and line up in the Y direction in the XY plane, and the bit line BL1 extends in the Y direction and line up in the X direction. It will be provided.
  • the plurality of bit lines BL1 are formed in the selection line layer above the selection line layer in which the plurality of word lines WL1 are formed.
  • the plurality of word lines WL1 and the plurality of bit lines BL1 intersect each other in the XY plane.
  • the plurality of memory cells MC1 are formed in a storage layer between the selection line layer in which the plurality of word lines WL1 are formed and the selection line layer in which the plurality of bit lines BL1 are formed.
  • a plurality of word line WL (word line WL2), a plurality of memory cell MC (memory cell MC2), and a plurality of bit line BL (bit line BL2) are formed in the memory cell layer LMC2.
  • the word line WL2 is provided so as to extend in the X direction and line up in the Y direction in the XY plane, and the bit line BL2 extends in the Y direction and line up in the X direction. It will be provided.
  • the plurality of bit lines BL2 are formed in the selection line layer above the selection line layer in which the plurality of word lines WL2 are formed.
  • the plurality of word lines WL2 and the plurality of bit lines BL2 intersect each other in the XY plane.
  • the plurality of memory cells MC2 are formed in a storage layer between the selection line layer in which the plurality of word lines WL2 are formed and the selection line layer in which the plurality of bit lines BL2 are formed.
  • the word line drive unit 130 is connected to a plurality of word line WLs via the connection unit 131 as in the case of the first embodiment (FIG. 2).
  • the connection portion 131 includes a metal wiring M4, a via V4, a metal wiring M5, a via V5, a metal wiring M6, and vias VWL1 and VWL2.
  • Via VWL1, metal wiring M5, and via V4 connected to each other are integrally formed using copper (Cu) by a so-called dual damascene process.
  • the via VWL2, the metal wiring M6, and the via V5 connected to each other are integrally formed using copper (Cu) by a so-called dual damascene process.
  • FIG. 15 shows a part of the layout pattern of the connection portion 131.
  • the pattern PT13 shown in FIG. 15 is arranged side by side in the Y direction.
  • FIG. 15 shows the patterns of word lines WL1, WL2, metal wirings M4, M5, and vias V4, V5, VWL1, VWL2.
  • the pattern of the word line WL2 can be the same as the pattern of the word line WL1, and the pattern of the via VWL2 can be the same as the pattern of the via VWL1.
  • the word line WL1 is connected to the metal wiring M4 connected to the word line drive unit 130 via the via VWL1, the metal wiring M5, and the via V4.
  • the word wire WL2 is connected to the metal wiring M4 connected to the word wire drive unit 130 via the via VWL2, the metal wiring M6, the via V5, the metal wiring M5, and the via V4.
  • the bit line drive unit 140 is connected to a plurality of bit line BLs via the connection unit 141, as in the case of the first embodiment (FIG. 2).
  • the connection portion 141 includes a metal wiring M4, a via V4, a metal wiring M5, a via V5, a metal wiring M6, and vias VBL1 and VBL2.
  • Via VBL1, metal wiring M5, and via V4 connected to each other are integrally formed using copper (Cu) by a so-called dual damascene process.
  • the vias VBL2, metal wiring M6, and vias V5 connected to each other are integrally formed using copper (Cu) by a so-called dual damascene process.
  • FIG. 16 shows a part of the layout pattern of the connection portion 141.
  • the layout pattern of the connecting portion 141 is one in which the patterns PT14 shown in FIG. 16 are arranged side by side in the X direction.
  • FIG. 16 shows the patterns of the bit wire BL1, the metal wirings M4 and M5, and the vias V4 and VBL1.
  • the pattern of the bit line BL2 can be the same as the pattern of the bit line BL1.
  • the pattern of the metal wiring M6 can be the same as the pattern of the metal wiring M5.
  • the pattern of the via V5 can be the same as the pattern of the via V4, and the pattern of the via VBL2 can be the same as the pattern of the via VBL1.
  • FIG. 17 shows an example of connection between the bit line BL and the bit line driving unit 140 in the connection unit 141.
  • the bit wire BL1 is connected to the metal wiring M4 connected to the bit wire driving unit 140 via the via VBL1, the metal wiring M5, and the via V4.
  • the bit wire BL2 is connected to the metal wiring M4 connected to the bit wire driving unit 140 via the via VBL2, the metal wiring M6, the via V5, the metal wiring M5, and the via V4.
  • the bit wire BL1 is connected to the bit wire BL2 via the via VBL1, the metal wiring M5, the via V5, the metal wiring M6, and the via VBL2.
  • the bit lines BL1 and BL2 are collectively driven by the bit line driving unit 140.
  • the word line WL1 is not connected to the word line WL2.
  • the word line WL1 and WL2 are individually driven by the word line driving unit 130. In this way, the bit lines BL1 and BL2 are connected to each other, but since the word lines WL1 and WL2 are driven individually, the memory cells MC1 and MC2 can be driven individually.
  • one storage layer is provided in the memory cell layer LMC1
  • one storage layer is provided in the memory cell layer LMC2
  • the wiring layer M5 is provided between the two memory cell layers LMC1 and LMC2. .. Even in this case, the semiconductor device 1 can be easily manufactured as compared with the case where two storage layers are provided in one memory cell layer LMC.
  • the wiring layer and the via are integrally made of the same material by using the dual damascene process, so that the semiconductor device is configured. 1 can be easily manufactured.
  • the layout of the vias VWL2 and VBL2 can be the same. As a result, the number of masks used in the semiconductor manufacturing process can be reduced, so that the manufacturing cost can be reduced. As a result, the semiconductor device 2 can be easily manufactured.
  • the wiring layer is provided between the two memory cell layers, it is possible to facilitate the manufacture of the semiconductor device.
  • the wiring layer and the via are integrally configured with the same material by using the dual damascene process, so that the semiconductor device can be easily manufactured.
  • the number of masks can be reduced, so that the semiconductor device can be easily manufactured.
  • bit wire BL1 and the bit wire BL2 are connected to each other in the connection portion 141, but the present invention is not limited thereto. Instead of this, for example, as in the memory unit 110A shown in FIG. 18, the bit line BL1 and the bit line BL2 may not be connected to each other in the connection unit 141A.
  • two memory cell layers LMCs are provided, but the present invention is not limited to this, and instead, for example, three or more memory cell layers LMCs may be provided. good. It is desirable to provide a wiring layer between these memory cell layers LMCs.
  • this technology can be configured as follows. According to this technique having the following configuration, it is possible to facilitate the manufacture of a semiconductor device.
  • a first memory cell layer including a memory cell of A third selection line provided above the first memory cell layer and extending in the first direction, a fourth selection line extending in the second direction, and the third selection line.
  • a second memory cell layer including the second memory cell connected to the fourth selection line, and A semiconductor device provided between the first memory cell layer and the second memory cell layer and provided with a first wiring layer including a first metal wiring.
  • the semiconductor device according to (1) above further comprising a first via for connecting the above.
  • the first selection of the first metal wiring and the first memory cell layer which is provided below the first wiring layer and is made of the same material as the first metal wiring.
  • the semiconductor device according to (1) or (2) above further comprising a first via for connecting the wire.
  • the third metal wiring and the first metal wiring are provided between the third wiring layer and the first wiring layer, and are configured integrally with the third metal wiring.
  • a fourth via provided between the third wiring layer and the first wiring layer, and Further provided with a drive circuit provided below the first memory cell layer and driving the third selection line of the second memory cell layer.
  • the first wiring layer includes a fourth metal wiring connected to the drive circuit.
  • the third via provided between the third wiring layer and the first wiring layer in the plane including the first direction and the second direction, and the first.
  • a fifth via provided below the first wiring layer and A sixth via provided between the third wiring layer and the first wiring layer is further provided.
  • the first wiring layer includes a fifth metal wiring.
  • the third wiring layer includes a sixth metal wiring.
  • the fifth via is configured integrally with the fifth metal wiring, and connects the fifth metal wiring and the second selection line.
  • the sixth via is configured integrally with the sixth metal wiring, and connects the sixth metal wiring and the fourth selection line.
  • the first selection line in the first memory cell layer and the third selection line in the second memory cell layer in the plane including the first direction and the second direction. Are placed in the same position, In the plane including the first direction and the second direction, the second selection line in the first memory cell layer and the fourth selection line in the second memory cell layer are the same.
  • the first memory cell layer further includes a fifth wiring extending in the first direction and a third memory cell connected to the second selection line and the fifth wiring.
  • the second memory cell layer further includes a sixth wiring extending in the first direction, a fourth selection line, and a fourth memory cell connected to the sixth wiring.

Abstract

本開示の一実施形態に係る半導体装置は、第1の方向に延伸する第1の選択線と、第2の方向に延伸する第2の選択線と、前記第1の選択線および前記第2の選択線に接続された第1のメモリセルとを含む第1のメモリセル層と、第1のメモリセル層よりも上に設けられ、前記第1の方向に延伸する第3の選択線と、前記第2の方向に延伸する第4の選択線と、前記第3の選択線および前記第4の選択線に接続された第2のメモリセルとを含む第2のメモリセル層と、第1のメモリセル層と前記第2のメモリセル層との間に設けられ、第1の金属配線を含む第1の配線層とを備える。

Description

半導体装置
 本開示は、情報を記憶可能な半導体装置に関する。
 近年、例えばフラッシュメモリに比べてより高速にデータアクセスを行うことができる、抵抗変化型メモリを用いた不揮発性メモリデバイスが注目されている。例えば、特許文献1には、1つの記憶層または2つの記憶層を有するメモリデバイスが開示されている。
特開2018-200967号公報
 ところで、一般に、半導体装置では、製造しやすいことが望まれており、さらなる製造しやすさの向上が期待されている。
 製造しやすい半導体装置を提供することが望ましい。
 本開示の一実施の形態における半導体装置は、第1のメモリセル層と、第2のメモリセル層と、第1の配線層とを備えている。第1のメモリセル層は、第1の方向に延伸する第1の選択線と、第2の方向に延伸する第2の選択線と、前記第1の選択線および前記第2の選択線に接続された第1のメモリセルとを含んでいる。第2のメモリセル層は、第1のメモリセル層よりも上に設けられ、前記第1の方向に延伸する第3の選択線と、前記第2の方向に延伸する第4の選択線と、前記第3の選択線および前記第4の選択線に接続された第2のメモリセルとを含んでいる。第1の配線層は、第1のメモリセル層と前記第2のメモリセル層との間に設けられ、第1の金属配線を含んでいる。
 本開示の一実施の形態における半導体装置では、第1のメモリセル層および第2のメモリセル層が設けられる。第1のメモリセル層には、第1の選択線、第2の選択線、および第1のメモリセルが設けられ、第2のメモリセル層には、第3の選択線、第4の選択線、および第2のメモリセルが設けられる。第1のメモリセル層および第2のメモリセル層の間には、第1の金属配線を含む第1の配線層が設けられる。
本開示の一実施の形態に係る半導体装置の一構成例を表すブロック図である。 図1に示したメモリ部の一構成例を表す説明図である。 第1の実施の形態に係るメモリ部の層構成の一例を表す説明図である。 第1の実施の形態に係るメモリ部の層構成の一例を表す他の説明図である。 図3に示したメモリセルの一構成例を表す回路図である。 図5に示した記憶素子の一特性例を表す特性図である。 図3に示した接続部のレイアウトの一例を表す説明図である。 図7に示した接続部のレイアウトの一例を表す他の説明図である。 図4に示した接続部のレイアウトの一例を表す説明図である。 図9に示した接続部のレイアウトの一例を表す他の説明図である。 比較例に係るメモリ部の層構成の一例を表す説明図である。 第1の実施の形態の変形例に係るメモリ部の層構成の一例を表す説明図である。 第2の実施の形態に係るメモリ部の層構成の一例を表す説明図である。 第2の実施の形態に係るメモリ部の層構成の一例を表す他の説明図である。 図13に示した接続部のレイアウトの一例を表す説明図である。 図14に示した接続部のレイアウトの一例を表す説明図である。 図16に示した接続部のレイアウトの一例を表す他の説明図である。 第2の実施の形態の変形例に係るメモリ部の層構成の一例を表す説明図である。
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.第1の実施の形態(4つの記憶層を有する例)
2.第2の実施の形態(2つの記憶層を有する例)
<1.第1の実施の形態>
[構成例]
 図1は、第1の実施の形態に係る半導体装置(半導体装置1)の一構成例を表すものである。半導体装置1は、メモリ部10と、周辺回路部80とを備えている。
 メモリ部10は、いわゆるクロスポイント型のメモリであり、不揮発性のメモリである。メモリ部10は、複数のメモリセルアレイ20と、複数のワード線駆動部30と、複数のビット線駆動部40とを有している。メモリセルアレイ20は、メモリセルがアレイ状に配置されたものである。メモリセルアレイ20は、後述するように、複数のワード線WLと、複数のビットBL線と、複数のメモリセルMCとを有している。複数のメモリセルMCのそれぞれは、複数のワード線WLのいずれか1つと、複数のビット線BLのいずれか1つとに接続される。ワード線駆動部30は、複数のワード線WLを駆動するように構成される。ビット線駆動部40は、複数のビット線BLを駆動するように構成される。
 周辺回路部80は、メモリ部10の動作に関連する様々な回路を含むものである。具体的には、周辺回路部80は、例えば、後述する選択電圧Vselおよび非選択電圧Vinhを生成する電源回路や、読出動作を行う際に使用する参照電圧Vrefを生成する参照電圧生成回路などを含んでいる。なお、これに限定されるものではなく、周辺回路部80は、さらに、例えば、メモリ部10の動作速度および動作タイミングを規定する発振回路および遅延回路を含んでいてもよい。
 なお、この例では、半導体装置1に、メモリ部10および周辺回路部80を設けたが、これに限定されるものではなく、さらに論理回路部を設け、論理回路と不揮発性のメモリとを混載(エンベデッド)してもよい。
 図2は、メモリ部10の一構成例を表すものである。メモリ部10には、複数のメモリセルアレイ20が、X方向およびY方向に並設される。X方向において、メモリセルアレイ20およびワード線駆動部30は、交互に配置される。この例では、メモリセルアレイ20の一部は、ワード線駆動部30の一部と重なるように配置される。Y方向において、メモリセルアレイ20およびビット線駆動部40は、交互に配置される。この例では、メモリセルアレイ20およびビット線駆動部40は、互いに重ならないように配置される。メモリセルアレイ20には、X方向に延伸する複数のワード線WL、およびY方向に延伸する複数のビット線BLが設けられている。
 図3,4は、メモリ部10における層構成の一例を表すものである。メモリ部10は、6つの配線層LM(配線層LM1~LM6)と、2つのメモリセル層LMC(メモリセル層LMC1、LMC2)とを有している。6つの配線層LMには、メタル配線M1~M6がそれぞれ形成される。2つのメモリセル層LMCは、メモリセルアレイ20を構成する。これらの層は、ワード線駆動部30およびビット線駆動部40が形成された半導体基板90の上に、配線層LM1、配線層LM2、配線層LM3、配線層LM4、メモリセル層LMC1、配線層LM5、メモリセル層LMC2、配線層LM6の順に、それぞれ絶縁層を挟んで形成される。
 メモリセル層LMC1には、複数のワード線WL(ワード線WL1)、複数のメモリセルMC(メモリセルMC1)、複数のビット線BL(ビット線BL1)、複数のメモリセルMC(メモリセルMC2)、および複数のワード線WL(ワード線WL2)が形成される。ワード線WL1,WL2およびビット線BL1は、例えばタングステン(W)を用いて構成される。図2に示したように、ワード線WL1,WL2は、XY面内において、X方向に延伸するとともにY方向に並ぶように設けられ、ビット線BL1は、Y方向に延伸するとともにX方向に並ぶように設けられる。複数のビット線BL1は、複数のワード線WL1が形成された選択線層の上の選択線層に形成され、複数のワード線WL2は、複数のビット線BL1が形成された選択線層の上の選択線層に形成される。この構成により、XY面内において、複数のワード線WL1および複数のビット線BL1は互いに交差する。複数のメモリセルMC1は、複数のワード線WL1が形成された選択線層と複数のビット線BL1が形成された選択線層との間の記憶層に形成される。同様に、XY面内において、複数のビット線BL1および複数のワード線WL2は互いに交差する。複数のメモリセルMC2は、複数のビット線BL1が形成された選択線層と複数のワード線WL2が形成された選択線層との間の記憶層に形成される。
 メモリセル層LMC2には、複数のワード線WL(ワード線WL3)、複数のメモリセルMC(メモリセルMC3)、複数のビット線BL(ビット線BL2)、複数のメモリセルMC(メモリセルMC4)、および複数のワード線WL(ワード線WL4)が形成される。ワード線WL3,WL4およびビット線BL2は、例えばタングステン(W)を用いて構成される。図2に示したように、ワード線WL3,WL4は、XY面内において、X方向に延伸するとともにY方向に並ぶように設けられ、ビット線BL2は、Y方向に延伸するとともにX方向に並ぶように設けられる。複数のビット線BL2は、複数のワード線WL3が形成された選択線層の上の選択線層に形成され、複数のワード線WL4は、複数のビット線BL2が形成された選択線層の上の選択線層に形成される。この構成により、XY面内において、複数のワード線WL3および複数のビット線BL2は互いに交差する。複数のメモリセルMC3は、複数のワード線WL3が形成された選択線層と複数のビット線BL2が形成された選択線層との間の記憶層に形成される。同様に、XY面内において、複数のビット線BL2および複数のワード線WL4は互いに交差する。複数のメモリセルMC4は、複数のビット線BL2が形成された選択線層と複数のワード線WL4が形成された選択線層との間の記憶層に形成される。
 図5は、メモリセルMCの一構成例を表すものである。メモリセルMCは、端子TU,TLと、記憶素子VRと、選択素子SEとを有している。
 端子TUは、ワード線WLおよびビット線BLのうち、そのメモリセルMCが形成された記憶層の上の選択線に接続され、端子TLは、そのメモリセルMCが形成された記憶層の下の選択線に接続される。この例では、図3,4に示したように、メモリセルMC1の端子TUは、複数のビット線BL1のいずれかに接続され、端子TLは、複数のワード線WL1のいずれかに接続される。メモリセルMC2の端子TUは、複数のワード線WL2のいずれかに接続され、端子TLは、複数のビット線BL1のいずれかに接続される。メモリセルMC3の端子TUは、複数のビット線BL2のいずれかに接続され、端子TLは、複数のワード線WL3のいずれかに接続される。メモリセルMC4の端子TUは、複数のワード線WL4のいずれかに接続され、端子TLは、複数のビット線BL2のいずれかに接続される。
 記憶素子VRは、抵抗変化型の記憶素子であり、両端間に印加される電圧の電圧差の極性に応じて、可逆的に抵抗状態RSが変化するものである。言い換えれば、記憶素子VRは、両端間に流れる電流の方向に応じて、可逆的に抵抗状態RSが変化するようになっている。記憶素子VRは、例えば、イオン源層および抵抗変化層が積層されたものを用いることができる。記憶素子VRの一端は、メモリセルMCの端子TUに接続され、他端は選択素子SEの一端に接続される。
 図6は、記憶素子VRの抵抗値の分布を模式的に表すものである。記憶素子VRは、識別可能な2つの抵抗状態RS(高抵抗状態HRSおよび低抵抗状態LRS)を取り得る。この例では、高抵抗状態HRSは、データ“0”に対応づけられ、低抵抗状態LRSは、例えば、データ“1”に対応づけられている。すなわち、記憶素子VRは、1ビットのデータを記憶する記憶素子として機能する。例えば、高抵抗状態HRSから低抵抗状態LRSへ変化させることを“セット”と呼び、低抵抗状態LRSから高抵抗状態HRSへ変化させることを“リセット”と呼ぶ。
 図3,4に示したように、記憶素子VRを含む層は、その上の選択線に沿って形成される。具体的には、記憶素子VRを含む層は、メモリセルMC1では、図4に示したように、ビット線BL1に沿って形成され、メモリセルMC2では、図3に示したように、ワード線WL2に沿って形成され、メモリセルMC3では、図4に示したように、ビット線BL2に沿って形成され、メモリセルMC4では、図3に示したように、ワード線WL4に沿って形成される。
 選択素子SE(図5)は、双方向ダイオード特性を有するものである。具体的には、選択素子SEは、両端間に印加される電圧の電圧差の絶対値が所定の電圧差よりも大きい場合に導通状態(オン状態)になり、電圧差の絶対値が所定の電圧差よりも小さい場合に非導通状態(オフ状態)になるものである。選択素子SEの一端は記憶素子VRの他端に接続され、他端はメモリセルMCのTL端子に接続される。
 メモリセルMCをセットする場合には、端子TUに例えば6Vの選択電圧Vselを印加するとともに、端子TLに例えば0Vの選択電圧Vselを印加する。これにより、選択素子SEがオン状態になり、図5に示したように、端子TUから端子TLに向かってセット電流Isetが流れ、記憶素子VRがセットされる。メモリセルMCをリセットする場合には、端子TLに例えば6Vの選択電圧Vselを印加するとともに、端子TUに例えば0Vの選択電圧Vselを印加する。これにより、選択素子SEがオン状態になり、端子TLから端子TUに向かってリセット電流Irstが流れ、記憶素子VRがリセットされる。また、メモリセルMCに対して読出動作を行う場合には、端子TUに例えば5Vの選択電圧Vselを印加するとともに、端子TLに例えば1Vの選択電圧Vselを印加する。これにより、端子TUから端子TLに向かってセンス電流Isnsが流れる。そして、ワード線駆動部30に設けられた図示しないセンスアンプが、このメモリセルMCにおいて発生する電圧と参照電圧Vrefとを比較することにより、記憶素子VRの抵抗状態RSを判別するようになっている。
 ワード線駆動部30(図2)は、接続部31を介して、複数のワード線WLに接続される。メモリセルアレイ20におけるワード線WLは、X方向において、そのメモリセルアレイ20を挟む2つの接続部31のどちらか一方に接続される。
 接続部31は、図3に示したように、メタル配線M4と、ビアV4と、メタル配線M5と、ビアV5と、メタル配線M6と、ビアVWL1~VWL4とを含んでいる。ビアV4は、メタル配線M4とメタル配線M5とを接続し、ビアVWL1は、ワード線WL1とメタル配線M5とを接続し、ビアVWL2は、ワード線WL2とメタル配線M5とを接続する。図3において左側に示した、互いに接続されたビアVWL1、メタル配線M5、およびビアV4は、いわゆるデュアルダマシンプロセスにより、銅(Cu)を用いて、一体として形成される。ビアVWL1およびビアV4は、このデュアルダマシンプロセスによりメタル配線M5とともに形成され、メタル配線M5とその下層にあるワード線WL1およびメタル配線M4とをそれぞれ接続するように形成されるので、ダウンビアとも呼ばれる。同様に、図3において右側に示した、互いに接続されたビアVWL2、メタル配線M5、およびビアV4は、いわゆるデュアルダマシンプロセスにより、銅(Cu)を用いて、一体として形成される。ビアV5は、メタル配線M5とメタル配線M6とを接続し、ビアVWL3は、ワード線WL3とメタル配線M6とを接続し、ビアVWL4は、ワード線WL4と配線層M6とを接続する。図3において左側に示した、互いに接続されたビアVWL3、メタル配線M6、およびビアV5は、いわゆるデュアルダマシンプロセスにより、銅(Cu)を用いて、一体として形成される。同様に、図3において右側に示した、互いに接続されたビアVWL4、メタル配線M6、およびビアV5は、いわゆるデュアルダマシンプロセスにより、銅(Cu)を用いて、一体として形成される。
 図7は、接続部31のレイアウトパターンの一部を表すものである。接続部31のレイアウトパターンは、図7に示したパターンPT3がY方向に並設されたものである。この図7は、ワード線WL1,WL2、メタル配線M4,M5、およびビアV4,VWL1,VWL2のパターンを示している。この接続部31において、ワード線WL3のパターンは、ワード線WL1のパターンと同じにすることができ、ワード線WL4のパターンはワード線WL2のパターンと同じにすることができる。メタル配線M6のパターンは、メタル配線M5のパターンと同じにすることができる。ビアVWL3のパターンは、ビアVWL1のパターンと同じにすることができ、ビアVWL4のパターンは、ビアVWL2のパターンと同じにすることができる。
 図8は、接続部31におけるワード線WLとワード線駆動部30の接続例を表すものである。この図8に示したレイアウトパターンは、図7に示したパターンPT3の左端付近を示している。ワード線WL1は、ビアVWL1、メタル配線M5、ビアV4を介して、ワード線駆動部30に接続されたメタル配線M4に接続される。ワード線WL2は、ビアVWL2、メタル配線M5、ビアV4を介して、ワード線駆動部30に接続されたメタル配線M4に接続される。ワード線WL3は、ビアVWL3、メタル配線M6、ビアV5、メタル配線M5、ビアV4を介して、ワード線駆動部30に接続されたメタル配線M4に接続される。ワード線WL4は、ビアVWL4、メタル配線M6、ビアV5、メタル配線M5、ビアV4を介して、ワード線駆動部30に接続されたメタル配線M4に接続される。
 ビット線駆動部40(図2)は、接続部41を介して、複数のビット線BLに接続される。メモリセルアレイ20におけるビット線BLは、Y方向において、そのメモリセルアレイ20を挟む2つの接続部41のどちらか一方に接続される。
 接続部41は、図4に示したように、メタル配線M4と、ビアV4と、メタル配線M5と、ビアV5と、メタル配線M6と、ビアVBL1,VBL2とを含んでいる。ビアV4は、メタル配線M4とメタル配線M5とを接続し、ビアVBL1は、ビット線BL1とメタル配線M5とを接続する。図4において左側に示した、互いに接続されたビアVBL1、メタル配線M5、およびビアV4は、いわゆるデュアルダマシンプロセスにより、銅(Cu)を用いて、一体として形成される。ビアV5は、メタル配線M5とメタル配線M6とを接続し、ビアVBL2は、ビット線BL2とメタル配線M6とを接続する。図4において右側に示した、互いに接続されたビアVBL2、メタル配線M6、およびビアV5は、いわゆるデュアルダマシンプロセスにより、銅(Cu)を用いて、一体として形成される。
 図9は、接続部41のレイアウトパターンの一部を表すものである。接続部41のレイアウトパターンは、図9に示したパターンPT4がX方向に並設されたものである。この図9は、ビット線BL1,BL2、メタル配線M5,M6、ビアV4,V5,VBL1,VBL2のパターンを示している。この接続部41において、ビット線BL2のパターンは、ビット線BL1のパターンと同じにすることができる。ビアVBL2のパターンは、ビアVBL1のパターンと同じにすることができる。
 図10は、接続部41におけるビット線BLとビット線駆動部40の接続例を表すものである。ビット線BL1は、ビアVBL1、メタル配線M5、ビアV4を介して、ビット線駆動部40に接続されたメタル配線M4(図示せず)に接続される。ビット線BL2は、ビアVBL2、メタル配線M6、ビアV5、メタル配線M5、ビアV4を介して、ビット線駆動部40に接続されたメタル配線M4(図示せず)に接続される。
 この例では、図3に示したように、ワード線WL1は、ビアVWL1、メタル配線M5、ビアV5、メタル配線M6、およびビアVWL3を介して、ワード線WL3と接続される。これにより、ワード線WL1,WL3は、ワード線駆動部30によりまとめて駆動される。一方、図4に示したように、ビット線BL1は、ビット線BL2とは接続されていない。これにより、ビット線BL1,BL2は、ビット線駆動部40により個別に駆動される。このように、ワード線WL1,WL3は互いに接続されているが、ビッチ線BL1,BL2は個別に駆動されるので、メモリセルMC1,MC3は、個別に駆動させることができる。
 同様に、図3に示したように、ワード線WL2は、ビアVWL2、メタル配線M5、ビアV5、メタル配線M6、およびビアVWL4を介して、ワード線WL4と接続される。これにより、ワード線WL2,WL4は、ワード線駆動部30によりまとめて駆動される。一方、図4に示したように、ビット線BL2は、ビット線BL1とは接続されていない。これにより、ビット線BL1,BL2は、ビット線駆動部40により個別に駆動される。このように、ワード線WL2,WL4は互いに接続されているが、ビット線BL1,BL3は個別に駆動されるので、メモリセルMC2,MC4は、個別に駆動されることができるようになっている。
 ここで、メモリセル層LMC1は、本開示における「第1のメモリセル層」の一具体例に対応する。ワード線WL1は、本開示における「第1の選択線」の一具体例に対応する。ビット線BL1は、本開示における「第2の選択線」の一具体例に対応する。メモリセル層LMC2は、本開示における「第2のメモリセル層」の一具体例に対応する。ワード線WL3は、本開示における「第3の選択線」の一具体例に対応する。ビット線BL2は、本開示における「第4の選択線」の一具体例に対応する。配線層LM5は、本開示における「第1の配線層」の一具体例に対応する。配線層LM4は、本開示における「第2の配線層」の一具体例に対応する。配線層LM6は、本開示における「第3の配線層」の一具体例に対応する。ビアVWL1は、本開示における「第1のビア」の一具体例に対応する。ビアVWL3は、本開示における「第3のビア」の一具体例に対応する。ワード線駆動部30は、本開示における「駆動回路」の一具体例に対応する。ビアVBL1は、本開示における「第5のビア」の一具体例に対応する。ビアVBL2は、本開示における「第6のビア」の一具体例に対応する。
[動作および作用]
 続いて、本実施の形態の半導体装置1の動作および作用について説明する。
(全体動作概要)
 まず、図1,2を参照して、半導体装置1の全体動作概要を説明する。メモリ部10は、情報を記憶する。メモリ部10において、メモリセルアレイ20に設けられたメモリセルMCは、情報を記憶する。ワード線駆動部30は、メモリセルアレイ20に設けられた複数のワード線WLを駆動する。ビット線駆動部40は、メモリセルアレイ20に設けられた複数のビット線BLを駆動する。ワード線駆動部30およびビット線駆動部40は、メモリセルMCの端子TUに例えば6Vの選択電圧Vselを印加するとともに、端子TLに例えば0Vの選択電圧Vselを印加することにより、そのメモリセルMCをセットする。また、ワード線駆動部30およびビット線駆動部40は、メモリセルMCの端子TLに例えば6Vの選択電圧Vselを印加するとともに、端子TUに例えば0Vの選択電圧Vselを印加することにより、そのメモリセルMCをリセットする。また、ワード線駆動部30およびビット線駆動部40は、メモリセルMCの端子TUに例えば5Vの選択電圧Vselを印加するとともに、端子TLに例えば1Vの選択電圧Vselを印加することにより、そのメモリセルMCから情報を読み出す。
(作用)
 半導体装置1では、メモリセル層LMC1と、配線層M5と、メモリセル層LMC2とを設けるようにした。メモリセル層LMC1には、X方向に延伸するワード線WLと、Y方向に延伸するビット線BLと、ワード線WLおよびビット線BLに接続されたメモリセルMCとを設けるようにした。また、メモリセル層LMC2には、X方向に延伸するワード線WLと、Y方向に延伸するビット線BLと、ワード線WLおよびビット線BLに接続されたメモリセルMCとを設けるようにした。そして、配線層M5を、2つのメモリセル層LMC1,LMC2の間に設けるようにした。これにより、半導体装置1を製造しやすくすることができる。
 すなわち、例えば、2つのメモリセル層の間に配線層を設けない場合には、図11に示すメモリ部10Rのように、1つのメモリセル層LMCに、4つの記憶層を設けることになる。これにより、半導体装置の製造がしにくくなるおそれがある。具体的には、このメモリセル層LMCに含まれる層の数が増えるので、半導体装置を製造しにくくなり得る。また、例えば、メモリセル層LMCが厚いので、ビアV4,VWL1の高さが高くなるので、これらのビアのアスペクト比が高くなってしまい、その結果、例えば、歩留まりが低下するおそれがある。また、アスペクト比が高いビアV4およびアスペクト比が低いビアVWL3が、同じデュアルダマシンプロセスで形成されるので、アスペクト比の差が大きいため、例えば、歩留まりが低下するおそれがある。その結果、半導体装置を製造しにくくなるおそれがある。
 一方、半導体装置1では、配線層M5を、メモリセル層LMC1とメモリセル層LMC2との間に設けるようにした。これにより、メモリセル層LMC1に、4つの記憶層のうちの2つの記憶層を設け、メモリセル層LMC2に、残りの2つの記憶層を設けることができる。すなわち、メモリセル層LMC1,LMC2のそれぞれにおいて、含まれる層の数を減らすことができるので、半導体装置1を製造しやすくすることができる。また、図3,4に示したように、メモリセル層LMC1,LMC2を薄くすることができるので、ビアV4,V5の高さを低くすることができるため、歩留まりの低下を抑えることができる。また、ビアV4のアスペクト比およびビアVWL2のアスペクト比の差を小さくすることができるとともに、ビアV5のアスペクト比およびビアVWL4のアスペクト比の差を小さくすることができるので、歩留まりの低下を抑えることができる。その結果、半導体装置1を製造しやすくすることができる。
 また、半導体装置1では、例えば、配線層M5およびビアVWL1を、デュアルダマシンプロセスを用いて形成するようにした。すなわち、配線層M5およびビアVWL1を同じ材料で一体として構成するようにした。これにより、半導体装置1を製造しやすくすることができる。すなわち、例えば、メタル配線M4とワード線WL1とをビアで直接接続するようにした場合には、このビアを、一般的に使用されるデュアルダマシンプロセスで形成することはできない。この場合、例えば、メタル配線M4の上にビアを形成し、そのビアの上の層にワード線WL1を形成する。このようにして形成されたビアは、アップビアとも呼ばれる。この場合には、一般的でない製造プロセスを用いてこのビアを形成する必要があるので、コストがかかるおそれや、歩留まりが低下するおそれがあり、製造しにくくなってしまう。一方、半導体装置1では、これらのビアを、一般的に使用されるデュアルダマシンプロセスを用いて形成したので、コストを低減することができるとともに、歩留まりが低下するおそれを低減することができる。以上では、配線層M5およびビアVWL1を例に挙げて説明したが、配線層M5およびビアVWL2、配線層M6およびビアVWL3、配線層M6およびビアVWL4、配線層M5およびビアVBL1、配線層M6およびビアVBL2についても同様である。その結果、半導体装置1を製造しやすくすることができる。
 また、半導体装置1では、メモリセル層LMC1におけるワード線WL1、メモリセルMC1、ビット線BL1、メモリセルMC2、ワード線WL2、およびビアVWL1,VWL2,ビアVBL1のレイアウトと、メモリセル層LMC2におけるワード線WL3、メモリセルMC3、ビット線BL2、メモリセルMC4、ワード線WL4、ビアVWL3,VWL4,VBL2のレイアウトとをそれぞれ同じにすることができる。これにより、半導体製造工程において使用するマスクの数を減らすことができるので、製造コストを削減することができる。その結果、半導体装置1を製造しやすくすることができる。
[効果]
 以上のように本実施の形態では、配線層を2つのメモリセル層の間に設けるようにしたので、半導体装置を製造しやすくすることができる。
 本実施の形態では、例えば配線層およびビアを、デュアルダマシンプロセスを用いて、同じ材料で一体として構成するようにしたので、半導体装置を製造しやすくすることができる。
 本実施の形態では、マスクの数を減らすことができるので、半導体装置を製造しやすくすることができる。
[変形例1-1]
 上記実施の形態では、図3,8に示したように、接続部31において、ワード線WL1とワード線WL3とを互いに接続するとともに、ワード線WL2とワード線WL4とを互いに接続したが、これに限定されるものではない。これに代えて、例えば、図12に示すメモリ部10Aのように、接続部31Aにおいて、ワード線WL1とワード線WL3とを互いに接続しないようにするとともに、ワード線WL2,WL4とを互いに接続しないようにしてもよい。
<2.第2の実施の形態>
 次に、第2の実施の形態に係る半導体装置2について説明する。本実施の形態は、メモリセル層LMC1,LMC2における、メモリセルMCの記憶層の数を変更したものである。なお、上記第1の実施の形態に係る半導体装置1と実質的に同一の構成部分には同一の符号を付し、適宜説明を省略する。
 半導体装置2は、上記第1の実施の形態に係る半導体装置1(図1)と同様に、メモリ部110と、周辺回路部80とを備えている。メモリ部110は、上記第1の実施の形態に係るメモリ部10(図1,2)と同様に、複数のメモリセルアレイ120と、複数のワード線駆動部130と、複数のビット線駆動部140とを有している。複数のメモリセルアレイ120、複数のワード線駆動部130、および複数のビット線駆動部140の配置は、上記第1の実施の形態に係る複数のメモリセルアレイ20、複数のワード線駆動部30、および複数のビット線駆動部40の配置(図2)と同様である。
 図13,14は、メモリ部110における層構成の一例を表すものである。
 メモリセル層LMC1には、複数のワード線WL(ワード線WL1)、複数のメモリセルMC(メモリセルMC1)、および複数のビット線BL(ビット線BL1)が形成される。図2に示したように、ワード線WL1は、XY面内において、X方向に延伸するとともにY方向に並ぶように設けられ、ビット線BL1は、Y方向に延伸するとともにX方向に並ぶように設けられる。複数のビット線BL1は、複数のワード線WL1が形成された選択線層の上の選択線層に形成される。この構成により、XY面内において、複数のワード線WL1および複数のビット線BL1は互いに交差する。複数のメモリセルMC1は、複数のワード線WL1が形成された選択線層と複数のビット線BL1が形成された選択線層との間の記憶層に形成される。
 メモリセル層LMC2には、複数のワード線WL(ワード線WL2)、複数のメモリセルMC(メモリセルMC2)、および複数のビット線BL(ビット線BL2)が形成される。図2に示したように、ワード線WL2は、XY面内において、X方向に延伸するとともにY方向に並ぶように設けられ、ビット線BL2は、Y方向に延伸するとともにX方向に並ぶように設けられる。複数のビット線BL2は、複数のワード線WL2が形成された選択線層の上の選択線層に形成される。この構成により、XY面内において、複数のワード線WL2および複数のビット線BL2は互いに交差する。複数のメモリセルMC2は、複数のワード線WL2が形成された選択線層と複数のビット線BL2が形成された選択線層との間の記憶層に形成される。
 ワード線駆動部130は、上記第1の実施の形態の場合(図2)と同様に、接続部131を介して、複数のワード線WLに接続される。接続部131は、図13に示したように、メタル配線M4と、ビアV4と、メタル配線M5と、ビアV5と、メタル配線M6と、ビアVWL1、VWL2とを含んでいる。互いに接続されたビアVWL1、メタル配線M5、およびビアV4は、いわゆるデュアルダマシンプロセスにより、銅(Cu)を用いて、一体として形成される。同様に、互いに接続されたビアVWL2、メタル配線M6、およびビアV5は、いわゆるデュアルダマシンプロセスにより、銅(Cu)を用いて、一体として形成される。
 図15は、接続部131のレイアウトパターンの一部を表すものである。接続部31のレイアウトパターンは、図15に示したパターンPT13がY方向に並設されたものである。この図15は、ワード線WL1,WL2、メタル配線M4,M5、およびビアV4,V5,VWL1,VWL2のパターンを示している。この接続部131において、ワード線WL2のパターンは、ワード線WL1のパターンと同じにすることができ、ビアVWL2のパターンは、ビアVWL1のパターンと同じにすることができる。
 ワード線WL1は、ビアVWL1、メタル配線M5、ビアV4を介して、ワード線駆動部130に接続されたメタル配線M4に接続される。ワード線WL2は、ビアVWL2、メタル配線M6、ビアV5、メタル配線M5、ビアV4を介して、ワード線駆動部130に接続されたメタル配線M4に接続される。
 ビット線駆動部140は、上記第1の実施の形態の場合(図2)と同様に、接続部141を介して、複数のビット線BLに接続される。接続部141は、図14に示したように、メタル配線M4と、ビアV4と、メタル配線M5と、ビアV5と、メタル配線M6と、ビアVBL1,VBL2とを含んでいる。互いに接続されたビアVBL1、メタル配線M5、およびビアV4は、いわゆるデュアルダマシンプロセスにより、銅(Cu)を用いて、一体として形成される。同様に、互いに接続されたビアVBL2、メタル配線M6、およびビアV5は、いわゆるデュアルダマシンプロセスにより、銅(Cu)を用いて、一体として形成される。
 図16は、接続部141のレイアウトパターンの一部を表すものである。接続部141のレイアウトパターンは、図16に示したパターンPT14がX方向に並設されたものである。この図16は、ビット線BL1、メタル配線M4,M5、ビアV4,VBL1のパターンを示している。この接続部141において、ビット線BL2のパターンは、ビット線BL1のパターンと同じにすることができる。メタル配線M6のパターンは、メタル配線M5のパターンと同じにすることができる。ビアV5のパターンは、ビアV4のパターンと同じにすることができ、ビアVBL2のパターンは、ビアVBL1のパターンと同じにすることができる。
 図17は、接続部141におけるビット線BLとビット線駆動部140の接続例を表すものである。ビット線BL1は、ビアVBL1、メタル配線M5、ビアV4を介して、ビット線駆動部140に接続されたメタル配線M4に接続される。ビット線BL2は、ビアVBL2、メタル配線M6、ビアV5、メタル配線M5、ビアV4を介して、ビット線駆動部140に接続されたメタル配線M4に接続される。
 この例では、図14に示したように、ビット線BL1は、ビアVBL1、メタル配線M5、ビアV5、メタル配線M6、およびビアVBL2を介して、ビット線BL2と接続される。これにより、ビット線BL1,BL2は、ビット線駆動部140によりまとめて駆動される。一方、図13に示したように、ワード線WL1は、ワード線WL2とは接続されていない。これにより、ワード線WL1,WL2は、ワード線駆動部130により個別に駆動される。このように、ビット線BL1,BL2は互いに接続されているが、ワード線WL1,WL2は個別に駆動されるので、メモリセルMC1,MC2は、個別に駆動されることができる。
 半導体装置2では、メモリセル層LMC1に1つの記憶層を設けるとともに、メモリセル層LMC2に1つの記憶層を設け、配線層M5を、2つのメモリセル層LMC1,LMC2の間に設けるようにした。この場合でも、一つのメモリセル層LMCに2つの記憶層を設ける場合に比べて、半導体装置1を製造しやすくすることができる。
 また、半導体装置2では、上記第1の実施の形態に係る半導体装置1と同様に、配線層およびビアを、デュアルダマシンプロセスを用いて、同じ材料で一体として構成するようにしたので、半導体装置1を製造しやすくすることができる。
 また、半導体装置2では、メモリセル層LMC1におけるワード線WL1、メモリセルMC1、ビット線BL1、およびビアVWL1,VBL1のレイアウトと、メモリセル層LMC2におけるワード線WL2、メモリセルMC2、ビット線BL2、ビアVWL2,VBL2のレイアウトとをそれぞれ同じにすることができる。これにより、半導体製造工程において使用するマスクの数を減らすことができるので、製造コストを削減することができる。その結果、半導体装置2を製造しやすくすることができる。
 以上のように本実施の形態では、配線層を2つのメモリセル層の間に設けるようにしたので、半導体装置を製造しやすくすることができる。
 本実施の形態では、例えば配線層およびビアを、デュアルダマシンプロセスを用いて、同じ材料で一体として構成するようにしたので、半導体装置を製造しやすくすることができる。
 本実施の形態では、マスクの数を減らすことができるので、半導体装置を製造しやすくすることができる。
[変形例2-1]
 上記実施の形態では、図14,17に示したように、接続部141において、ビット線BL1とビット線BL2とを互いに接続したが、これに限定されるものではない。これに代えて、例えば、図18に示すメモリ部110Aのように、接続部141Aにおいて、ビット線BL1とビット線BL2とを互いに接続しないようにしてもよい。
 以上、いくつかの実施の形態および変形例を挙げて本技術を説明したが、本技術はこれらの実施の形態等には限定されず、種々の変形が可能である。
 例えば、上記の各実施の形態等では、2つのメモリセル層LMCを設けたが、これに限定されるものではなく、これに代えて、例えば、3つ以上のメモリセル層LMCを設けてもよい。これらのメモリセル層LMCの間には、配線層を設けることが望ましい。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
 なお、本技術は以下のような構成とすることができる。以下の構成の本技術によれば、半導体装置を製造しやすくすることができる。
(1)第1の方向に延伸する第1の選択線と、第2の方向に延伸する第2の選択線と、前記第1の選択線および前記第2の選択線に接続された第1のメモリセルとを含む第1のメモリセル層と、
 前記第1のメモリセル層よりも上に設けられ、前記第1の方向に延伸する第3の選択線と、前記第2の方向に延伸する第4の選択線と、前記第3の選択線および前記第4の選択線に接続された第2のメモリセルとを含む第2のメモリセル層と、
 前記第1のメモリセル層と前記第2のメモリセル層との間に設けられ、第1の金属配線を含む第1の配線層と
 を備えた半導体装置。
(2)前記第1の配線層よりも下に設けられ、前記第1の金属配線と一体として構成され、前記第1の金属配線と前記第1のメモリセル層の前記第1の選択線とを接続する第1のビアとをさらに備えた
 前記(1)に記載の半導体装置。
(3)前記第1の配線層よりも下に設けられ、前記第1の金属配線と同じ材料により構成され、前記第1の金属配線と、前記第1のメモリセル層の前記第1の選択線とを接続する第1のビアとをさらに備えた
 前記(1)または(2)に記載の半導体装置。
(4)前記第1のメモリセル層よりも下に設けられた第2の金属配線を含む第2の配線層と、
 前記第1の配線層と前記第2の配線層との間に設けられ、前記第1の金属配線と一体として構成され、前記第1の金属配線と前記第2の金属配線とを接続する第2のビアと、
 前記第2の配線層よりも下に設けられ、前記第2の金属配線に接続され、前記第1のメモリセル層の前記第1の選択線を駆動する駆動回路と
 をさらに備えた
 前記(2)または(3)に記載の半導体装置。
(5)前記第2のメモリセル層よりも上に設けられた第3の金属配線を含む第3の配線層と、
 前記第3の配線層と前記第1の配線層との間に設けられ、前記第3の金属配線と一体として構成され、前記第3の金属配線と前記第2のメモリセル層の前記第3の選択線とを接続する第3のビアと
 をさらに備えた
 前記(2)から(4)のいずれかに記載の半導体装置。
(6)前記第3の配線層と前記第1の配線層との間に設けられ、前記第3の金属配線と一体として構成され、前記第3の金属配線と前記第1の金属配線とを接続する第4のビアをさらに備えた
 前記(5)に記載の半導体装置。
(7)前記第3の配線層と前記第1の配線層との間に設けられた第4のビアと、
 前記第1のメモリセル層よりも下に設けられ、前記第2のメモリセル層の前記第3の選択線を駆動する駆動回路と
 をさらに備え、
 前記第1の配線層は、前記駆動回路に接続された第4の金属配線を含み、
 前記第4のビアは、前記第3の金属配線と一体として構成され、前記第3の金属配線と前記第4の金属配線とを接続する
 前記(5)に記載の半導体装置。
(8)前記第1の方向および前記第2の方向を含む面内において、前記第3の配線層と前記第1の配線層との間に設けられた前記第3のビア、および前記第1の配線層よりも下に設けられた前記第1のビアは、同じ位置に配置された
 前記(5)から(7)のいずれかに記載の半導体装置。
(9)前記第1の配線層よりも下に設けられた第5のビアと、
 前記第3の配線層と前記第1の配線層との間に設けられた第6のビアと
 をさらに備え、
 前記第1の配線層は第5の金属配線を含み、
 前記第3の配線層は第6の金属配線を含み、
 前記第5のビアは、前記第5の金属配線と一体として構成され、前記第5の金属配線と前記第2の選択線とを接続し、
 前記第6のビアは、前記第6の金属配線と一体として構成され、前記第6の金属配線と前記第4の選択線とを接続し、
 前記第1の方向および前記第2の方向を含む面内において、前記第5のビアおよび前記第6のビアは、同じ位置に配置された
 前記(8)に記載の半導体装置。
(10)前記第1の方向および前記第2の方向を含む面内において、前記第1のメモリセル層における前記第1の選択線、および前記第2のメモリセル層における前記第3の選択線は、同じ位置に配置され、
 前記第1の方向および前記第2の方向を含む面内において、前記第1のメモリセル層における前記第2の選択線、および前記第2のメモリセル層における前記第4の選択線は、同じ位置に配置された
 前記(1)から(9)のいずれかに記載の半導体装置。
(11)前記第1のメモリセル層は、さらに、前記第1の方向に延伸する第5の配線と、前記第2の選択線および前記第5の配線に接続された第3のメモリセルとを含み、
 前記第2のメモリセル層は、さらに、前記第1の方向に延伸する第6の配線と、前記第4の選択線および前記第6の配線に接続された第4のメモリセルとを含む
 前記(1)から(10)のいずれかに記載の半導体装置。
 本出願は、日本国特許庁において2020年11月10日に出願された日本特許出願番号2020-187190号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (11)

  1.  第1の方向に延伸する第1の選択線と、第2の方向に延伸する第2の選択線と、前記第1の選択線および前記第2の選択線に接続された第1のメモリセルとを含む第1のメモリセル層と、
     前記第1のメモリセル層よりも上に設けられ、前記第1の方向に延伸する第3の選択線と、前記第2の方向に延伸する第4の選択線と、前記第3の選択線および前記第4の選択線に接続された第2のメモリセルとを含む第2のメモリセル層と、
     前記第1のメモリセル層と前記第2のメモリセル層との間に設けられ、第1の金属配線を含む第1の配線層と
     を備えた半導体装置。
  2.  前記第1の配線層よりも下に設けられ、前記第1の金属配線と一体として構成され、前記第1の金属配線と前記第1のメモリセル層の前記第1の選択線とを接続する第1のビアとをさらに備えた
     請求項1に記載の半導体装置。
  3.  前記第1の配線層よりも下に設けられ、前記第1の金属配線と同じ材料により構成され、前記第1の金属配線と、前記第1のメモリセル層の前記第1の選択線とを接続する第1のビアとをさらに備えた
     請求項1に記載の半導体装置。
  4.  前記第1のメモリセル層よりも下に設けられた第2の金属配線を含む第2の配線層と、
     前記第1の配線層と前記第2の配線層との間に設けられ、前記第1の金属配線と一体として構成され、前記第1の金属配線と前記第2の金属配線とを接続する第2のビアと、
     前記第2の配線層よりも下に設けられ、前記第2の金属配線に接続され、前記第1のメモリセル層の前記第1の選択線を駆動する駆動回路と
     をさらに備えた
     請求項2に記載の半導体装置。
  5.  前記第2のメモリセル層よりも上に設けられた第3の金属配線を含む第3の配線層と、
     前記第3の配線層と前記第1の配線層との間に設けられ、前記第3の金属配線と一体として構成され、前記第3の金属配線と前記第2のメモリセル層の前記第3の選択線とを接続する第3のビアと
     をさらに備えた
     請求項2に記載の半導体装置。
  6.  前記第3の配線層と前記第1の配線層との間に設けられ、前記第3の金属配線と一体として構成され、前記第3の金属配線と前記第1の金属配線とを接続する第4のビアをさらに備えた
     請求項5に記載の半導体装置。
  7.  前記第3の配線層と前記第1の配線層との間に設けられた第4のビアと、
     前記第1のメモリセル層よりも下に設けられ、前記第2のメモリセル層の前記第3の選択線を駆動する駆動回路と
     をさらに備え、
     前記第1の配線層は、前記駆動回路に接続された第4の金属配線を含み、
     前記第4のビアは、前記第3の金属配線と一体として構成され、前記第3の金属配線と前記第4の金属配線とを接続する
     請求項5に記載の半導体装置。
  8.  前記第1の方向および前記第2の方向を含む面内において、前記第3の配線層と前記第1の配線層との間に設けられた前記第3のビア、および前記第1の配線層よりも下に設けられた前記第1のビアは、同じ位置に配置された
     請求項5に記載の半導体装置。
  9.  前記第1の配線層よりも下に設けられた第5のビアと、
     前記第3の配線層と前記第1の配線層との間に設けられた第6のビアと
     をさらに備え、
     前記第1の配線層は第5の金属配線を含み、
     前記第3の配線層は第6の金属配線を含み、
     前記第5のビアは、前記第5の金属配線と一体として構成され、前記第5の金属配線と前記第2の選択線とを接続し、
     前記第6のビアは、前記第6の金属配線と一体として構成され、前記第6の金属配線と前記第4の選択線とを接続し、
     前記第1の方向および前記第2の方向を含む面内において、前記第5のビアおよび前記第6のビアは、同じ位置に配置された
     請求項8に記載の半導体装置。
  10.  前記第1の方向および前記第2の方向を含む面内において、前記第1のメモリセル層における前記第1の選択線、および前記第2のメモリセル層における前記第3の選択線は、同じ位置に配置され、
     前記第1の方向および前記第2の方向を含む面内において、前記第1のメモリセル層における前記第2の選択線、および前記第2のメモリセル層における前記第4の選択線は、同じ位置に配置された
     請求項1に記載の半導体装置。
  11.  前記第1のメモリセル層は、さらに、前記第1の方向に延伸する第5の配線と、前記第2の選択線および前記第5の配線に接続された第3のメモリセルとを含み、
     前記第2のメモリセル層は、さらに、前記第1の方向に延伸する第6の配線と、前記第4の選択線および前記第6の配線に接続された第4のメモリセルとを含む
     請求項1に記載の半導体装置。
PCT/JP2021/038566 2020-11-10 2021-10-19 半導体装置 WO2022102353A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/245,746 US20230361035A1 (en) 2020-11-10 2021-10-19 Semiconductor device
CN202180072735.3A CN116746294A (zh) 2020-11-10 2021-10-19 半导体设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-187190 2020-11-10
JP2020187190A JP2022076684A (ja) 2020-11-10 2020-11-10 半導体装置

Publications (1)

Publication Number Publication Date
WO2022102353A1 true WO2022102353A1 (ja) 2022-05-19

Family

ID=81602206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038566 WO2022102353A1 (ja) 2020-11-10 2021-10-19 半導体装置

Country Status (5)

Country Link
US (1) US20230361035A1 (ja)
JP (1) JP2022076684A (ja)
CN (1) CN116746294A (ja)
TW (1) TW202226236A (ja)
WO (1) WO2022102353A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075073A1 (ja) * 2007-12-10 2009-06-18 Panasonic Corporation 不揮発性記憶装置およびその製造方法
JP2011508459A (ja) * 2007-12-31 2011-03-10 サンディスク スリーディー,エルエルシー デュアルダマシンプロセスおよびインプリントリソグラフィを用いた3次元メモリアレイ内のメモリ線およびビアの形成方法および装置
JP2011114011A (ja) * 2009-11-24 2011-06-09 Hitachi Ltd 不揮発性記憶装置およびその製造方法
JP2017005097A (ja) * 2015-06-10 2017-01-05 ソニー株式会社 メモリデバイスおよびメモリシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075073A1 (ja) * 2007-12-10 2009-06-18 Panasonic Corporation 不揮発性記憶装置およびその製造方法
JP2011508459A (ja) * 2007-12-31 2011-03-10 サンディスク スリーディー,エルエルシー デュアルダマシンプロセスおよびインプリントリソグラフィを用いた3次元メモリアレイ内のメモリ線およびビアの形成方法および装置
JP2011114011A (ja) * 2009-11-24 2011-06-09 Hitachi Ltd 不揮発性記憶装置およびその製造方法
JP2017005097A (ja) * 2015-06-10 2017-01-05 ソニー株式会社 メモリデバイスおよびメモリシステム

Also Published As

Publication number Publication date
TW202226236A (zh) 2022-07-01
JP2022076684A (ja) 2022-05-20
US20230361035A1 (en) 2023-11-09
CN116746294A (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
JP5222761B2 (ja) 抵抗変化型不揮発性記憶装置
US11800825B2 (en) Semiconductor memory device
JP7168241B2 (ja) 集積回路装置
US8253443B2 (en) Interconnection architectures for multilayer crossbar circuits
US10902913B2 (en) Semiconductor device
JP2009199713A5 (ja)
JP2009223971A (ja) 半導体記憶装置
JP2009004725A (ja) 抵抗変化型不揮発性記憶装置
JP2016167332A (ja) 記憶装置
JPWO2018173851A1 (ja) 記憶装置
JP2011142186A (ja) 抵抗変化メモリ
US9627051B2 (en) Non-volatile memory including reference signal path
WO2022102353A1 (ja) 半導体装置
US20140219004A1 (en) Nonvolatile semiconductor memory device
TW201826279A (zh) 記憶裝置及控制方法
JP2011060389A (ja) 半導体メモリ装置
US10256274B2 (en) Semiconductor memory device
JP2003196992A5 (ja)
WO2018221044A1 (ja) 半導体装置
US8072792B2 (en) Integrated circuit with resistive memory cells and method for manufacturing same
JP7420786B2 (ja) 半導体回路および電子機器
JP2021089972A (ja) 半導体記憶装置
US20210082500A1 (en) Semiconductor memory device
JP2014154201A (ja) 不揮発性半導体記憶装置
JP2022051409A (ja) 可変抵抗型記憶装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891600

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180072735.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891600

Country of ref document: EP

Kind code of ref document: A1