JP2009004725A - 抵抗変化型不揮発性記憶装置 - Google Patents

抵抗変化型不揮発性記憶装置 Download PDF

Info

Publication number
JP2009004725A
JP2009004725A JP2007247038A JP2007247038A JP2009004725A JP 2009004725 A JP2009004725 A JP 2009004725A JP 2007247038 A JP2007247038 A JP 2007247038A JP 2007247038 A JP2007247038 A JP 2007247038A JP 2009004725 A JP2009004725 A JP 2009004725A
Authority
JP
Japan
Prior art keywords
bit line
memory cell
layer
word line
variable resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007247038A
Other languages
English (en)
Inventor
Ryotaro Azuma
亮太郎 東
Kazuhiko Shimakawa
一彦 島川
Satoru Fujii
覚 藤井
Yoshihiko Kanzawa
好彦 神澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007247038A priority Critical patent/JP2009004725A/ja
Publication of JP2009004725A publication Critical patent/JP2009004725A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Abstract

【課題】抵抗変化型素子を用いた不揮発性記憶装置について、非選択メモリセルの漏れ電流を十分に低減できるよう、アレイサイズが小さく、かつ、レイアウト面積が増大しない構造を実現する。
【解決手段】複数のメモリセルが配置されたメモリセルアレイを備え、各メモリセルMCは、X方向に延びたビット線BLと、X方向とは異なるY方向に延びたワード線WLとが交差する位置に、それぞれ、ビット線とワード線とに挟まれて形成されている。メモリセルMCのY方向の配置ピッチは、複数のX方向に延びたビット線の各配線幅L1とその各配線間隔S1の和であるL1+S1で表され、メモリセルMCのX方向の配置ピッチは、複数のY方向に延びたワード線の各配線幅L2とその各配線間隔S2の和であるL2+S2で表されるとき、メモリセルMCのX方向の配置ピッチXとY方向の配置ピッチYが異なるように配置されている。
【選択図】図14

Description

本発明は、いわゆる抵抗変化型素子を用いて構成されたメモリセルを有する不揮発性記憶装置に関するものである。
近年、いわゆる抵抗変化型素子を用いて構成されたメモリセルを有する不揮発性記憶装置の研究開発が進んでいる。抵抗変化型素子とは、電気的信号に応じて抵抗値の変化が生じる性質を有し、この抵抗値の変化によって情報を記憶することが可能な素子のことをいう。
また、抵抗変化型素子を用いたメモリセルについて、その1つにいわゆるクロスポイント構造が用いられる。クロスポイント構造では、直交するように配置されたビット線とワード線との交点の位置に、ビット線とワード線とに挟まれて、各メモリセルが構成される。
特許文献1では、双方向性を有する可変抵抗体をメモリセルとして用いた不揮発性記憶装置が示されている。その中で、非選択セルに流れるいわゆる漏れ電流を低減することを目的として、メモリセルのダイオードに双方向非線形素子として例えばバリスタを用いることが開示されている。また、クロスポイント構造についても開示されている。
特許文献2では、多層構造を有する3次元クロスポイント型可変抵抗メモリアレイを備えた不揮発性記憶装置が示されている。
非特許文献1では、可変抵抗膜と単方向ダイオードとを組み合わせたメモリセル構造が開示されている。また、多層構造についても開示されている。
特開2006−203098号公報(図2,図5) 特開2005−311322号公報(図4) I. G. Baek、外、「Multi-layer Cross-point Binary Oxide Resistive Memory(OxRRAM) for Post-NAND Storage Application」、IEDM2005(IEEE international ELECTRON DEVICES meeting 2005)、769-772、Session 31(Fig.7、Fig.11)、2005年12月5日
メモリセルアレイの設計に対して、相矛盾する2つの要求がある。アレイ単位はできるだけ大きくしたいという要求と、アレイ単位はできるだけ小さくしたいという要求である。すなわち、チップ面積を小さくするためには、アレイ単位をなるべく大きくして周辺回路の面積を小さくすることが望まれる。一方、非選択メモリセルの漏れ電流を低減するためには、アレイ単位はなるべく小さくすることが好ましい。また、アレイ単位を小さくすることによって、高速化、低消費電力化や冗長救済の効率化などが可能になる。
また、クロスポイント構造では、非選択メモリセルの漏れ電流を低減することが、読み出し動作や書き込み動作において重要課題となる。特に、例えば、正電圧印加による高抵抗状態化、負電圧印加による低抵抗状態化のような双方向電圧印加によって抵抗変化が生じる双方向型抵抗変化素子の場合、単方向型抵抗変化素子の場合に通常行われる逆バイアス印加による積極的な漏れ電流の低減方法を採ることができない。このため、特定の動作バイアス条件における双方向ダイオードのON/OFF特性に依存して漏れ電流量が決まることになり、これに基づいて必然的にアレイサイズが定まることになる。現状予想されるダイオード特性から判断すると、アレイサイズは相当小さくする必要があり、したがって、メモリセルアレイを多分割することが必要となる。ところが、ただ単にメモリセルアレイを多分割すると、レイアウト面積が大幅に増大してしまうことになり、好ましくない。
前記の問題に鑑み、本発明は、抵抗変化型素子を用いた不揮発性記憶装置について、非選択メモリセルの漏れ電流を十分に低減できるよう、アレイサイズが小さく、かつ、レイアウト面積が増大しない構造を実現することを目的とする。
上記目的を達成するために、本発明の抵抗変化型不揮発性記憶装置は、
電気的信号に基づいて可逆的に抵抗値が変化する抵抗変化型素子を有するメモリセルを備えた抵抗変化型不揮発性記憶装置であって、
基板と、前記基板の上に形成されており、複数の前記メモリセルが配置されたメモリセルアレイとを備え、
前記メモリセルアレイにおいて、
前記各メモリセルは、X方向に延びたビット線と、前記X方向とは異なるY方向に延びたワード線とが交差する位置に、それぞれ、当該ビット線と当該ワード線とに挟まれて形成され、
前記メモリセルのY方向の配置ピッチは、複数のX方向に延びたビット線の各配線幅L1とその各配線間隔S1の和であるL1+S1で表され、
前記メモリセルのX方向の配置ピッチは、複数のY方向に延びたワード線の各配線幅L2とその各配線間隔S2の和であるL2+S2で表され、
前記メモリセルのX方向の配置ピッチとY方向の配置ピッチが異なることを特徴とする。
前記メモリセルアレイにおいて、X方向のメモリセル配置個数N1とY方向のメモリセル配置個数N2との関係が、N2>N1であるとき、前記メモリセルのX方向の配置ピッチであるL2+S2は前記メモリセルのY方向の配置ピッチL1+S1より大きいことが好ましい。
また、前記メモリセルにおいて、X方向に延びたビット線の配線間隔S1はY方向に延びたワード線の配線間隔S2と等しく、Y方向に延びたワード線の配線幅L2はX方向に延びたビット線の配線幅L1より大きいことが好ましい。
また、X方向に延びたビット線と、Y方向に延びたワード線との交点位置に形成される前記メモリセルは、その平面形状において、X方向のサイズがY方向のサイズよりも大きいことが好ましい。この際のメモリセルの形状としては、長方形または長円形とすることができる。
前記メモリセルが有する抵抗変化型素子は、少なくとも、タンタル酸化物TaOx(ただし、0<x<2.5)を含むものであることが好ましい。
前記メモリセルが有する抵抗変化型素子は、TaOxで表現される組成を有する第1のタンタル酸化物層と、TaOyで表現される組成を有する第2のタンタル酸化物層とを少なくとも一部に有する積層構造であって、前記TaOxと前記TaOyは、0≦x<2.5、およびx<yを満足するように構成されていることが好ましい。
また、本発明の抵抗変化型不揮発性記憶装置は、X方向に延びて形成されたビット線と、Y方向に延びて形成されたワード線が互いに複数層形成され、
前記ビット線が形成された層と前記ワード線が形成された層とは交互に積層され、
前記各メモリセルは、前記各層に形成されたビット線と前記各層に形成されたワード線との交差する位置に、それぞれ、当該ビット線と当該ワード線とに挟まれて形成された
多層構造にて実現することもできる。
また、本発明の抵抗変化型不揮発性記憶装置は、X方向に延びて形成されたビット線と、Y方向に延びて形成されたワード線が互いに複数層形成され、
前記ビット線が形成された層と前記ワード線が形成された層とは交互に積層され、
前記各メモリセルは、前記各層に形成されたビット線と前記各層に形成されたワード線との交差する位置に、それぞれ、当該ビット線と当該ワード線とに挟まれて形成され
層が重なる方向であるZ方向に揃ったビット線群毎に構成された、ワード線が共通の複数の基本アレイ面が、前記Y方向に並んで配置されており、
前記各基本アレイ面において、偶数層のビット線が共通に接続されており、かつ、奇数層のビット線が共通に接続されており、
前記抵抗変化型不揮発性記憶装置は、さらに、
グローバルビット線と、
前記各基本アレイ面毎に設けられた第1および第2の選択スイッチ素子とを備え、
前記第1の選択スイッチ素子は、当該基本アレイ面に係るグローバルビット線と、当該基本アレイ面において共通に接続された偶数層のビット線との電気的な接続/非接続を、偶数層選択信号に従って切替制御するものであり、
前記第2の選択スイッチ素子は、当該基本アレイ面に係るグローバルビット線と、当該基本アレイ面において共通に接続された奇数層のビット線との電気的な接続/非接続を、奇数層選択信号に従って切替制御することにて実現することができる。
本発明によると、メモリセルアレイが多分割された抵抗変化型不揮発性記憶装置を、小さなレイアウト面積で、実現することができる。
以下、本発明の実施形態について、図面を参照して詳細に説明する。
図1(a)は本実施形態におけるメモリセル(クロスポイントメモリセル)の回路図である。図1(a)に示すように、本実施形態では、双方向型メモリセルを前提とする。双方向型メモリセルは、抵抗変化が双方向において生じる抵抗変化型素子1と、この抵抗変化型素子1に直列に接続された双方向ダイオード素子2とによって構成されている。抵抗変化型素子1は、低抵抗状態と高抵抗状態とになり得るものであり、電気的信号に基づいて可逆的に抵抗値が変化することにより情報を記憶することができる。すなわち、低抵抗状態のときに印加電圧が所定の第1の電圧を越えたとき、高抵抗状態に変化し、高抵抗状態のときに第1の電圧印加方向とは反対方向への印加電圧が所定の第2の電圧を越えたとき、低抵抗状態に変化する双方向性を有する。双方向ダイオード素子2は、印加電圧に対して非線形な電流特性を有し、かつ双方向に電流が流れる双方向性を有する。ビット線とワード線との間に設けられた双方向型メモリセルによって、1ビットの記憶素子が実現される。
なお、本発明に係る構成は、図1(b)に示すような単方向型メモリセルや、図1(c)に示すような抵抗変化型素子のみで構成したダイオードレスメモリセルを採用することも可能である。
図2はメモリセルを含む立体構造を示す概念図である。図2(a)はいわゆる単層クロスポイントメモリセルの立体構造であり、直交するように配置されたビット線とワード線との交点の位置に、ビット線とワード線とに挟まれて、メモリセルMCが構成されている。図2(b)はいわゆる多層クロスポイントメモリセルの立体構造であり、図2(a)の単層クロスポイントメモリセルが積み重ねられた構造になっている。
図3(a)は本実施形態におけるメモリセルの断面構造の一例である。図3(a)において、下部配線11および上部配線12は、一方がビット線であり、他方がワード線である。そして、下部配線11と上部配線12との間に、下部電極13、ダイオード素子14(双方向ダイオード素子2に相当)、内部電極15、TaO膜16(抵抗変化型素子1に相当)、および上部電極17が、順に形成されている。なお、TaO膜16に関しては、タンタル酸化物をTaOと表した場合に、0<x<2.5であることが少なくとも必要である。特に、本実施形態におけるTaO膜は、O/Ta=0.5/1の組成比近傍であることが望ましい。
図3(b)は本実施形態におけるメモリセルの断面構造の他の例であり、TaO膜が2層構造になったものである。すなわち、TaO膜16に代えて、第1のTaO酸化物層(TaO)16aと第2のTaO酸化物層(TaO)16bが形成されている。ここで、0≦x<2.5、およびx<yを満足することが好ましい。より好適には、第2のTaO酸化物層(TaO)16bが上部電極17に接しており、膜厚が3nm以下であり、かつ、1≦x≦2.1およびy≧2.3を満足することが好ましい。
図3(c)および(d)は本実施形態におけるメモリセルの断面構造の他の例である。図3(c)では、内部電極15が省かれており、図3(d)では、さらに下部電極13および上部電極17が省かれ、下部配線11、上部配線12が各々下部電極、上部電極も兼用している。また、図3(e)は図1(c)のダイオードレスメモリセルの断面構造の一例である。なお、図3(c),(d)および(e)においても、図3(b)と同様に、TaO膜16を2層構造にすることも可能である。なお、図3は、ダイオード素子の上に抵抗変化型素子を配置する構造で示しているが、抵抗変化型素子の上にダイオード素子を配置する構成にしてもよい。
図4は本実施形態におけるメモリセルの電流−電圧の関係を示すグラフである。図4のグラフは図1(a)の回路図に対応する。図4において、横軸はビット線−ワード線間にかかる電圧、縦軸はメモリセルに流れる電流である。また、「LRセル」はメモリセルが低抵抗状態である場合、「HRセル」はメモリセルが高抵抗状態である場合を表す。図4に示すように、いまメモリセルが低抵抗状態である(LRセル)ものとすると、電圧が上昇して「2V」程度を超えたとき、電流が大きく増加する。電圧がさらに上昇して「4V」に近くなったとき、メモリセルの抵抗値が変化して高抵抗状態になり(HRセル)、電流が大きく減少する。一方、電圧が低下して「−4V」程度を下回ったとき、メモリセルの抵抗値が変化して低抵抗状態になり(LRセル)、電流が大きく増加する。このように、抵抗変化が双方向において生じる。
図5は本実施形態に係る抵抗変化型不揮発性記憶装置におけるメモリセルアレイの構成を示す回路図である。図5において、ビット線が延びる方向をX方向、ワード線が延びる方向をY方向、ビット線やワード線の層が重なる方向をZ方向としている。
図5において、ビット線BLはX方向に延び、複数の層(図5では5層)に形成されており、ワード線WLはY方向に延び、ビット線の間の各層(図5では4層)に形成されている。そして、メモリセルアレイ100において、ビット線BLとワード線WLとの交点位置に、各メモリセルMCが当該ビット線BLと当該ワード線WLとに挟まれて形成されている。なお、図の簡略化のために、メモリセルMCの一部およびワード線の一部については図示を省略している。
そして、Z方向に揃った各層のビット線BL群毎に、ワード線WLとの間に形成されたメモリセルMCによって、基本アレイ面0〜3がそれぞれ構成されている。各基本アレイ面0〜3において、ワード線WLは共通である。図5の例では、各基本アレイ面0〜3において、メモリセルMCがX方向に32個、Z方向に8個、配置されている。またメモリセルアレイ100は、Y方向に並ぶ4個の基本アレイ面0〜3によって構成されている。ただし、基本アレイ面におけるメモリセルの個数や、Y方向に並ぶ基本アレイ面の個数は、これに限定されるものではない。
そして、各基本アレイ面0〜3において、偶数層のビット線BLが共通に接続されており(BL_e0〜BL_e3)、また、奇数層のビット線BLが共通に接続されている(BL_o0〜BL_o3)。
さらに、グローバルビット線GBL000〜GBL003がY方向に延びて形成されている。また、各基本アレイ面0〜3毎に、第1の選択スイッチ素子101〜104および第2の選択スイッチ素子111〜114がそれぞれ設けられている。図5では、第1の選択スイッチ素子101〜104および第2の選択スイッチ素子111〜114は、n型MOSトランジスタによって構成されているものとしている。
第1の選択スイッチ素子101〜104は、当該基本アレイ面に係るグローバルビット線GBL000〜GBL003と、当該基本アレイ面において共通に接続された偶数層のビット線BL_e0〜BL_e3との電気的な接続/非接続を、偶数層選択信号BLs_e0に従って切替制御する。第2の選択スイッチ素子111〜114は、当該基本アレイ面に係るグローバルビット線GBL000〜GBL003と、当該基本アレイ面において共通に接続された奇数層のビット線BL_o0〜BL_o3との電気的な接続/非接続を、奇数層選択信号BLs_o0に従って切替制御する。
この構成により、上述した多層クロスポイント構造が実現されている。加えて、ビット線BLとグローバルビット線GBLを用いた階層ビット線方式が実現されている。さらに、各基本アレイ面0〜3において、偶数層のビット線BLおよび奇数層のビット線BLをそれぞれ共通に接続することによって、階層ビット線方式を実現するための選択スイッチ素子の数を2個に減らすことができる。これにより、アレイサイズの小さなメモリセルアレイを、レイアウト面積を増大させることなく、実現することができる。
図6は1個の基本アレイ面を単層構造に展開した等価回路を示す図である。図6に示すように、メモリセルMCが32個ずつ8層分並んだ基本アレイ面は、メモリセルMCが128個ずつ2層分並んだアレイと等価となり、偶数層のビット線BLおよび奇数層のビット線BLをそれぞれ共通接続してもよいことが理解できる。
図7は図5のメモリセルアレイ100とその周辺回路を示す回路図である。図7において、グローバルビット線デコーダ/ドライバー122はグローバルビット線GBLを駆動制御する。サブビット線選択回路123はアドレス信号A0〜Axに応じて、偶数層選択信号BLs_e0および奇数層選択信号BLs_o0を制御する。ワード線デコーダ/ドライバー121は各ワード線WLを駆動制御する。
図8は抵抗変化型不揮発性記憶装置の主要部を示す回路図である。図8に示すように、実際の装置では、図5に示すメモリセルアレイ100が複数個配置されることによって、メモリアレイ200が構成される。図8の例では、メモリセルアレイ100が(n+1)×16個、配置されている。ワード線デコーダ/ドライバー201は各ワード線WLを駆動制御し、グローバルビット線デコーダ/ドライバー202は各グローバルビット線GBLを駆動制御する。サブビット線選択回路203はアドレス信号A0〜Axに応じて、各メモリセルアレイ100に対する偶数層選択信号BLs_e0〜BLs_enおよび奇数層選択信号BLs_o0〜BLs_onを制御する。
図9は抵抗変化型不揮発性記憶装置の全体構成を示す回路図である。図9において、主要部300が図8に示す構成に相当している。
図9において、アドレス入力回路211は、消去サイクル、書込みサイクルまたは読出しサイクルの間、外部からのアドレス信号を一時的にラッチし、ラッチしたアドレス信号をサブビット線選択回路203、グローバルビット線デコーダ/ドライバー202、およびワード線デコーダ/ドライバー201へ出力する。制御回路212は、複数の入力信号を受けて、消去サイクル、書込みサイクル、読出しサイクル、およびスタンバイ時の状態を表す信号を、サブビット線選択回路203、グローバルビット線デコーダ/ドライバー202、ワード線デコーダ/ドライバー201、書込み回路214、およびデータ入出力回路215へそれぞれに相応した信号として出力する。また制御回路212は、消去サイクル、書込みサイクル、および読出しサイクル時の消去、書込み、または読出しパルス発生トリガー信号を書込みパルス発生回路213へ出力する。書込みパルス発生回路213は、消去サイクル、書込みサイクル、および読出しサイクル内の各消去、書込み、または読出し時間パルスを任意の期間(tp_E,tp_P,tp_R)発生し、グローバルビット線デコーダ/ドライバー202およびワード線デコーダ/ドライバー201へ出力する。
図10は図5等に示すメモリセルアレイの動作タイミング図である。メモリセルアレイの動作は、図10に示すように、消去サイクル、書込みサイクル、読み出しサイクルおよびスタンバイの4つに大きく分けられる。
まず書込みサイクルについて説明する。書込みサイクルでは、選択されたメモリセルの抵抗変化型素子が、高抵抗状態から低抵抗状態に、あるいは低抵抗状態から高抵抗状態に変化する。まず、選択されたグローバルビット線(図10ではGBL000)に、書込み電圧Vwが印加される。これ以外の非選択グローバルビット線には書込み電圧Vwは印加されない。また、ビット線選択信号(偶数層選択信号および奇数層選択信号)のうち、選択されたビット線選択信号(図10ではBLs_e0)が、電圧Vselに変化する。これ以外の非選択のビット線選択信号は変化しない。
図5において、偶数層選択信号BLs_e0が電圧Vselに変化したことによって、n型トランジスタである第1の選択スイッチ素子101〜104がオンする。そして、グローバルビット線GBL000に書込み電圧Vwが印加されているので、基本アレイ面0における共通に接続された偶数層ビット線BL_e0に電圧Vwが加わる。すなわち、ビット線BL_e0が選択ビット線となる。これ以外の非選択ビット線には電圧Vwは加わらない。
そして、選択ワード線(図10ではWL00000)の電圧をV0から0Vに変化させる。これ以外の非選択ワード線は電圧V0のままとする。これにより、選択ビット線BL_e0と選択ワード線WL00000との間に挟まれたメモリセルMCに電圧Vwが加わり、これにより、このメモリセルMCの抵抗値が変化する。
消去サイクルでは、基本的な動作は書込みサイクルと同様であるが、選択されたメモリセルMCに逆方向の電圧Veが加わる点が異なる。すなわち、選択グローバルビット線GBL000の電圧は0Vのままなので、ビット線選択信号BLs_e0が電圧Vselに変化したとき、選択ビット線BL_e0の電圧は0Vになる。一方、選択ワード線WL00000の電圧はV0から消去電圧Veに変化する。この結果、選択ビット線BL_e0と選択ワード線WL00000との間に挟まれたメモリセルMCに、書込みサイクルとは逆方向の電圧Veが加わり、これによって、このメモリセルMCの抵抗値が変化する。
読出しサイクルでは、基本的な動作は書込みサイクルと同様であるが、選択されたメモリセルMCに、書込み電圧Vwよりも小さい読み出し電圧(Vr−Vr0)が加わる点が異なる。すなわち、選択グローバルビット線GBL000の電圧は電圧Vrに変化するので、ビット線選択信号BLs_e0が電圧Vselに変化したとき、選択ビット線BL_e0の電圧はVrになる。一方、選択ワード線WL00000の電圧はV0からVr0に変化する。この結果、選択ビット線BL_e0と選択ワード線WL00000との間に挟まれたメモリセルMCに電圧(Vr−Vr0)が加わり、これによって、このメモリセルMCの抵抗変化型素子が高抵抗状態か低抵抗状態かの読み出しを行うことができる。
<メモリセルアレイの物理的構造>
図11は本実施形態に係るメモリセルアレイの物理的構造を示す図である。図11(a)は平面図であり、図11(b)は断面図である。図11(a)において、左右方向がビット線BLの延びるX方向、上下方向がワード線WLの延びるY方向であり、紙面に直交する方向がZ方向である。図11(b)において、左右方向がビット線BLの延びるX方向、上下方向がZ方向、紙面に直交する方向がワード線WLの延びるY方向である。
図11に示す物理的構造では、基板3の上に、複数のメモリセルMCが配置されたメモリセルアレイが形成されている。そして、グローバルビット線GBL0〜GBL3は、最下層のビット線BLのさらに下層(第1配線層)において、Y方向に延びて形成されている。また、第1および第2の選択スイッチ素子はMOSFETによって構成されており、グローバルビット線GBL0〜GBL3のさらに下の、基板3に形成された拡散層105およびゲート106によって、構成されている。グローバルビット線GBL0〜GBL3と拡散層105とは、第1コンタクトを介して、接続されている。
また、各基本アレイ面0〜3において、偶数層の各ビット線BLは、ワード線層とビット線層との間にそれぞれ設けられたコンタクト107を介して、共通に接続されている(BL_e0〜BL_e3)。同様に、奇数層の各ビット線BLは、ワード線層とビット線層との間にそれぞれ設けられたコンタクト108を介して、共通に接続されている(BL_o0〜BL_o3)。そして、共通に接続された偶数層のビット線BL_e0〜BL_e3は、それぞれ、第3コンタクト(コンタクト131)を介して第2配線に接続されており、共通に接続された奇数層のビット線BL_o0〜BL_o3は、それぞれ、第3コンタクト(コンタクト132)を介して第2配線に接続されている。
第1および第2の選択スイッチ素子を構成する拡散層105は、第1コンタクト、第1配線および第2コンタクトを介して、第2配線に接続されている。そして第2配線によって、共通に接続された偶数層のビット線BL_e0〜BL_e3、および共通に接続された奇数層のビット線BL_o0〜BL_o3と、拡散層105とが電気的に接続されている。
図12および図13は図11に示す物理的構造を各層毎に分解した平面図である。図12および図13を用いて、本実施形態に係るメモリセルアレイの物理的構造をさらに詳細に説明する。
図12(a)は第1および第2の選択スイッチ素子を構成する拡散層およびゲートから第1コンタクトまでが形成された状態を示す図である。図12(a)に示すように、図5に示した第1の選択スイッチ素子101〜104および第2の選択スイッチ素子111〜114が、拡散層105およびゲート106からなるMOSFETによって構成されている。また、基本アレイ面0に係る第1および第2の選択スイッチ素子101,111を構成するMOSFETは、ソースまたはドレインとなる拡散領域の一方を共有し、MOSFETペアを構成している。同様に、基本アレイ面1に係る第1および第2の選択スイッチ素子102,112、基本アレイ面2に係る第1および第2の選択スイッチ素子103,113、および基本アレイ面3に係る第1および第2の選択スイッチ素子104,114もそれぞれ、拡散領域を共有し、MOSFETペアを構成している。
4個のMOSFETペアは、ゲート長方向がY方向に一致するように配置されており、かつ、X方向に並べられている。なお、MOSFETペアの個数は基本アレイ面の数に相当しており、基本アレイ面がn(nは2以上の整数)個のとき、MOSFETペアはn個並べられることになる。
また、MOSFETペアのゲートは互いに接続されており、偶数層選択ゲート106aと奇数層選択ゲート106bとが形成されている。偶数層選択ゲート106aには偶数層選択信号BLs_e0が与えられ、奇数層選択ゲート106bには奇数層選択信号BLs_o0が与えられる。
また、各MOSFETペアにおいて共有された拡散領域には、グローバルビット線GBL0〜GBL3と接続するための第1コンタクト(コンタクト141等)がそれぞれ形成されている。また、第1の選択スイッチ素子101〜104の他方の拡散領域には、共通に接続された偶数層のビット線BL_e0〜BL_e3と接続するための第1コンタクト(コンタクト142等)がそれぞれ形成されており、第2の選択スイッチ素子111〜114の他方の拡散領域には、共通に接続された奇数層のビット線BL_o0〜BL_o3と接続するための第1コンタクト(コンタクト143等)がそれぞれ形成されている。
図12(b)は図12(a)の構造上に、グローバルビット線を含む第1配線と第2コンタクトが形成された状態を示す図である。図12(b)に示すように、グローバルビット線GBL0〜GBL3はそれぞれ、Y方向に延びており、各MOSFETペアの共有化された拡散領域と第1コンタクト(コンタクト141等)によって接続されている。また、第1の選択スイッチ素子101〜104の他方の拡散領域と第1コンタクトを介して接続された配線(配線144等)が、設けられている。そしてこの配線に、共通に接続された偶数層のビット線BL_e0〜BL_e3と接続するための第2コンタクト(コンタクト145等)が形成されている。さらに、第2の選択スイッチ素子111〜114の他方の拡散領域と第1コンタクトを介して接続された配線(配線146等)が設けられている。そしてこの配線に、共通に接続された奇数層のビット線BL_o0〜BL_o3と接続するための第2コンタクト(コンタクト147等)が形成されている。
図12(c)は図12(b)の構造上に、第2配線と第3コンタクトが形成された状態を示す図である。図12(c)に示すように、4個のコンタクト131が左端に並んで配置されており、また、別の4個のコンタクト132が右端に並んで配置されている。そして、コンタクト131と、第1の選択スイッチ素子101〜104の他方の拡散領域に接続されている第2コンタクト(コンタクト145等)とを接続するように、配線(配線148等)が設けられている。また、コンタクト132と、第2の選択スイッチ素子111〜114の他方の拡散領域に接続されている第2コンタクト(コンタクト147等)とを接続するように、配線(配線149等)が設けられている。これにより、コンタクト131はそれぞれ、第1の選択スイッチ素子101〜104の共有されていない方の拡散領域に接続されたことになり、コンタクト132はそれぞれ、第2の選択スイッチ素子111〜114の共有されていない方の拡散領域に接続されたことになる。
図13(a)は図12(c)の構造上に形成された偶数層のビット線を示す図である。図13(a)に示すように、偶数層のビット線BLは、ワード線層とビット線層との間にそれぞれ設けられたコンタクト107を介して共通に接続されており(BL_e0〜BL_e3)、さらに図12(c)に示したコンタクト131に接続されている。なお、図13(a)や他の平面図において、メモリセルMCは矩形で表されているが、実際の仕上がり寸法では円形状になる。
図13(b)は図12(c)の構造上に形成されたワード線を示す図である。また、図13(b)では、メモリセルMC1ビットのサイズ(ピッチ)を破線の矩形で示している。ここでは、X方向(ビット線方向)のピッチとY方向(ワード線方向)のピッチとが等しくなっている。
図13(c)は図12(c)の構造上に形成された奇数層のビット線を示す図である。図13(c)に示すように、奇数層のビット線BLは、ワード線層とビット線層との間にそれぞれ設けられたコンタクト108を介して共通に接続されており(BL_o0〜BL_o3)、さらに図12(c)に示したコンタクト132に接続されている。
なお、上述した物理的構造を採用した場合、偶数層のビット線を接続するためのコンタクト107,131を設けるための領域、および、奇数層のビット線を接続するためのコンタクト108,132を設けるための領域の分だけ、レイアウト面積が増加する。いま、X方向におけるメモリセルピッチおよびビアピッチ(コンタクト領域の長さ)をともに0.48μmとする。この場合、例えばX方向におけるメモリセルの個数が32であるとき、コンタクト領域が占める割合は、
(0.48×2)/(0.48×32+0.48×2)=5.9%
となる。すなわち、X方向におけるメモリセルの個数が十分多い場合、レイアウト面積はさほど増加しない。
図14はメモリセル周辺の物理的構造の変形例を示す図であり、図13(b)の平面図をベースにして変更を加えたものである。
図14(a)の変形例では、ワード線WLの幅を図13(b)よりも広げており、ワード線WLの幅がビット線BLの幅よりも広くなっている。あるいは、ビット線WLの幅を図13(b)よりも狭くしてもよい。ただし、ワード線WLおよびビット線BLのピッチは図13(b)から変わっておらず、よってメモリセルMCのサイズX,Yは変わっていない。
ワード線の幅を広くする理由は、ワード線の方がビット線よりも長いので、書込みや読出し時における電位降下をなるべく回避できるように、ワード線の抵抗値を下げるためである。一方、ビット線はワード線に比べて短いので、電位降下は生じにくい。このため、ビット線を細くし、セパレーションをできるだけ拡げることによって、製造時におけるパーティクルなどによる短絡欠陥による歩留り低下を防止することができる。
図14(a)の構成を実現する手段としては、まず、ワード線とビット線のマスク寸法を異なる値に設定する方法がある。または、製造プロセスにおいて、ワード線形成工程とビット線形成工程とでリソグラフィ条件を各々最適化する方法がある。リソグラフィ条件の最適化としては例えば、露光時間の長短を調整する、ワード線形成工程ではより高感度の露光装置を適用する、といった方法が考えられる。
図14(b)の変形例では、図14(a)と同様に、ワード線WLの幅をビット線BLよりも広くしている。加えて、ワード線WLのピッチを拡げている。このため、メモリセルMCのサイズが横長になっており、X方向のピッチがY方向のピッチよりも長くなっている。図14(b)の構成の目的および実現手段は、図14(a)と同様である。
図14(c)の変形例では、図14(b)に加えてさらに、メモリセルMC自体の形状を横長にしている。すなわち、メモリセルMCの形状が、X方向のサイズがY方向のサイズよりも大きい長方形になっている。ただし、実際の仕上がり形状は長円形になる。このように、メモリセルの面積を大きくすることによって、読み出し電流(特に抵抗変化型素子が低抵抗状態のときの読み出し電流)を大きくすることができるので、読み出し動作マージンを大きくとることができる。
図15もメモリセル周辺の物理的構造の変形例を示す図であり、図11(b)の断面図に変更を加えたものである。図15の変形例では、ビット線BLの厚さがワード線WLに比べて薄くなっている。図15の変形例は、上述したように、ビット線の抵抗はワード線に比べて高くすることが可能である点を踏まえたものである。これにより、メモリセルアレイ全体の高さを低く抑えることが可能になる。特に、多層化した場合の平坦性を確保しやすくなり、リソグラフィ工程などの微細加工が容易になる。また、ビット線の寄生容量を低減することもできる。
図15の構成を実現する手段としては、ビット線層の膜厚をワード線層に比べ単純に薄く形成する手段以外に、例えば、ビット線の材料をワード線の材料と異なる物にすることが考えられる。例えば、ワード線はアルミ、銅などで形成し、ビット線はタングステン、TaやTaNなどの薄膜導電材料で形成すればよい。なお、図14や図15に示す変形例は、本実施形態の多層の階層ビット線を採用したクロスポイント構造のメモリセルに限らず、単層構造の階層ビット線や、通常のクロスポイント型メモリセルにも適用してもよく、同様の効果が期待できる。
本実施形態におけるメモリセルアレイの物理的構造では、第1および第2の選択スイッチ素子となるMOSFETが、ビット線およびワード線のさらに下層に形成されている。このとき、形成されたMOSFETの領域は、Z方向に見たとき(XY平面で見たとき)、ビット線とワード線とが交差しメモリセルが配置される領域からはみ出ていないことが好ましい。すなわち、階層ビット線方式を実現するための第1および第2の選択スイッチ素子が、メモリセルアレイの面積を律速しないようにする。しかも、このようなMOSFETのレイアウトを、メモリセルのピッチ(配線ピッチ)を拡げることなく、実現することが好ましい。この方法について、図16を用いて説明する。
図16(a)に示すように、まず、第1の選択スイッチ素子を構成する偶数層選択用トランジスタと第2の選択スイッチ素子を構成する奇数層選択用トランジスタとをペアにし、ソース・ドレインの一方を共有させることを前提にする(図12(a)に示すMOSFETペアに相当)。ペアになったトランジスタのY方向の寸法をYtrとする。寸法Ytrは、デザインルールやトランジスタの耐圧仕様等に基づいて定まる。また、ビット線BLの配線ピッチ(メモリセルのY方向ピッチ)をYmとする。Ym=L(配線幅)+S(配線間隔)である。また、ワード線WLの配線ピッチをXkとする。
ここで、Ytr≦4×Ymが成り立つとき、ビット線を4本配置するものとする。すなわち、基本アレイ面を4個設ける。このとき、奇数層選択用トランジスタと偶数層選択用トランジスタは、それぞれ4個ずつ必要になる。奇数層選択用トランジスタと偶数層選択用トランジスタのペアをX方向に4組並べたときの寸法をXtrとする。寸法Xtrは、デザインルールやトランジスタの電流仕様等に基づいて定まる。そして、ワード線が占めるX方向の範囲をXmとすると、Xm>Xtrとなるようにワード線の本数を定める。図11の物理的構造では、XY平面で見たときのワード線WLの本数は32としている。
また、図16(b)は、4×Ym<Ytr≦8×Ymが成り立つ場合を示している。図16(b)の例では、ビット線を8本配置し、基本アレイ面を8個設けるものとしている。また、奇数層選択用トランジスタと偶数層選択用トランジスタのペアをX方向に8組並べて、このときの寸法XtrよりもXmが大きくなるように、ワード線の本数を定める。
なお、図16の場合以外でも、例えば、Ytr≦6×Ymが成り立つ場合には、ビット線を6本配置し、基本アレイ面を6個面設けて、奇数層選択用トランジスタと偶数層選択用トランジスタのペアをX方向に6組配置すればよい。また、8×Ym<Ytr≦16×Ymが成り立つ場合には、上と同様の考え方で、ビット線を16本配置し、基本アレイ面を16個設けて、奇数層選択用トランジスタと偶数層選択用トランジスタのペアをX方向に16組配置すればよい。
一般的には、XY平面で見たとき、ビット線の本数(基本アレイ面の数に相当)をn、ワード線の本数をkとすると、
Ytr≦n×Ym、Xtr≦Xm=k×Xk
を満たすことが好ましい。この場合、第1および第2の選択スイッチ素子を構成するトランジスタの領域が、メモリセルが配置される領域からはみ出ることがない。したがって、階層ビット線方式を実現するための第1および第2の選択スイッチ素子を、メモリセルアレイのレイアウト面積を増大させることなく配置することができる。
図17および図18は本実施形態の効果を示すための図であり、本実施形態によってビット線の漏れ電流が低減されることを示すグラフである。図17は本実施形態の構成を採用しない場合の大きなメモリアレイ(4k×4kビット)における電流−電圧特性、図18は本実施形態の構成を採用した場合の小さなメモリアレイ(32×4kビット)における電流−電圧特性である。また図17および図18において、選択したメモリセルから流れる電流値を破線で示している。
図17に示すように、大きなメモリアレイの場合、非選択メモリセルからの漏れ電流が選択メモリセルの電流を上回ってしまう。これに対して図18に示すように、本実施形態の構成によってアレイサイズを小さくした場合、非選択メモリセルからの漏れ電流が格段に小さくなる。これにより、選択メモリセルの電流を確実に検出することができる。
以上説明したように、本発明では、メモリセルアレイが多分割された抵抗変化型不揮発性記憶装置を、小さなレイアウト面積で実現することができるので、例えば、高集積かつ小面積のメモリを実現するのに有用である。
(a)は本発明の実施形態におけるメモリセルの回路図、(b)は単方向型メモリセルの回路図、(c)はダイオードレスメモリセルの回路図 (a)は単層クロスポイント構造を示す図、(b)は多層クロスポイント構造を示す図 (a)〜(d)は本発明の実施形態におけるメモリセルの断面構造の一例を示した構造断面図、(e)は図1(c)のダイオードレスメモリセルの断面構造の一例を示した構造断面図 本発明の実施形態におけるメモリセルの電流−電圧の関係を示すグラフ 本発明の実施形態に係るメモリセルアレイの構成を示す回路図 図5における基本アレイを単層構造に展開した等価回路を示す図 図5のメモリセルアレイとその周辺回路を示す回路図 図5のメモリセルアレイを複数個用いた抵抗変化型不揮発性記憶装置の主要部を示す回路図 抵抗変化型不揮発性記憶装置の全体構成を示す回路図 図5のメモリセルアレイの動作タイミング図 本発明の実施形態に係るメモリセルアレイの物理的構造を示す図であり、(a)は平面図、(b)は断面図 メモリセルアレイの物理的構造を各層毎に分解した平面図 メモリセルアレイの物理的構造を各層毎に分解した平面図 メモリセル周辺の物理的構造の変形例を示す図 メモリセル周辺の物理的構造の変形例を示す図 選択スイッチ素子の配置方法を説明するための図 大きなメモリアレイにおける電流−電圧特性を示すグラフ 本発明の実施形態の構成を採用した場合のメモリアレイにおける電流−電圧特性を示すグラフ
符号の説明
MC メモリセル
BL ビット線
WL ワード線
GBL グローバルビット線
BL_e0〜BL_e3 共通に接続された偶数層のビット線
BL_o0〜BL_o3 共通に接続された奇数層のビット線
BLs_e0 偶数層選択信号
BLs_o0 奇数層選択信号
1 抵抗変化型素子
2 ダイオード素子
3 基板
100 メモリセルアレイ
101〜104 第1の選択スイッチ素子
111〜114 第2の選択スイッチ素子

Claims (9)

  1. 電気的信号に基づいて可逆的に抵抗値が変化する抵抗変化型素子を有するメモリセルを備えた抵抗変化型不揮発性記憶装置であって、
    基板と、
    前記基板の上に形成されており、複数の前記メモリセルが配置されたメモリセルアレイとを備え、
    前記メモリセルアレイにおいて、
    前記各メモリセルは、X方向に延びたビット線と、前記X方向とは異なるY方向に延びたワード線とが交差する位置に、それぞれ、当該ビット線と当該ワード線とに挟まれて形成され、
    前記メモリセルのY方向の配置ピッチは、複数のX方向に延びたビット線の各配線幅L1とその各配線間隔S1の和であるL1+S1で表され、
    前記メモリセルのX方向の配置ピッチは、複数のY方向に延びたワード線の各配線幅L2とその各配線間隔S2の和であるL2+S2で表され、
    前記メモリセルのX方向の配置ピッチとY方向の配置ピッチが異なる
    ことを特徴とする抵抗変化型不揮発性記憶装置。
  2. 前記メモリセルアレイにおいて、X方向のメモリセル配置個数N1とY方向のメモリセル配置個数N2との関係が、N2>N1であるとき、前記メモリセルのX方向の配置ピッチであるL2+S2は前記メモリセルのY方向の配置ピッチL1+S1より大きいことを特徴とする請求項1に記載の抵抗変化型不揮発性記憶装置。
  3. 前記メモリセルにおいて、X方向に延びたビット線の配線間隔S1はY方向に延びたワード線の配線間隔S2と等しく、Y方向に延びたワード線の配線幅L2はX方向に延びたビット線の配線幅L1より大きいことを特徴とする請求項2に記載の抵抗変化型不揮発性記憶装置。
  4. X方向に延びたビット線と、Y方向に延びたワード線との交点位置に形成される前記メモリセルは、その平面形状において、X方向のサイズがY方向のサイズよりも大きいことを特徴とする請求項3記載の抵抗変化型不揮発性記憶装置。
  5. 前記メモリセルは、長方形または長円形であることを特徴とする請求項4記載の抵抗変化型不揮発性記憶装置。
  6. 前記メモリセルが有する抵抗変化型素子は、少なくとも、タンタル酸化物TaOx(ただし、0<x<2.5)を含むものであることを特徴とする請求項1に記載の抵抗変化型不揮発性記憶装置。
  7. 前記メモリセルが有する抵抗変化型素子は、TaOxで表現される組成を有する第1のタンタル酸化物層と、TaOyで表現される組成を有する第2のタンタル酸化物層とを少なくとも一部に有する積層構造であって、前記TaOxと前記TaOyは、0≦x<2.5、およびx<yを満足するように構成されていることを特徴とする請求項1に記載の抵抗変化型不揮発性記憶装置。
  8. X方向に延びて形成されたビット線と、Y方向に延びて形成されたワード線が互いに複数層形成され、
    前記ビット線が形成された層と前記ワード線が形成された層とは交互に積層され、
    前記各メモリセルは、前記各層に形成されたビット線と前記各層に形成されたワード線との交差する位置に、それぞれ、当該ビット線と当該ワード線とに挟まれて形成された
    ことを特徴とする請求項1記載の抵抗変化型不揮発性記憶装置。
  9. X方向に延びて形成されたビット線と、Y方向に延びて形成されたワード線が互いに複数層形成され、
    前記ビット線が形成された層と前記ワード線が形成された層とは交互に積層され、
    前記各メモリセルは、前記各層に形成されたビット線と前記各層に形成されたワード線との交差する位置に、それぞれ、当該ビット線と当該ワード線とに挟まれて形成され
    層が重なる方向であるZ方向に揃ったビット線群毎に構成された、ワード線が共通の複数の基本アレイ面が、前記Y方向に並んで配置されており、
    前記各基本アレイ面において、偶数層のビット線が共通に接続されており、かつ、奇数層のビット線が共通に接続されており、
    前記抵抗変化型不揮発性記憶装置は、さらに、
    グローバルビット線と、
    前記各基本アレイ面毎に設けられた第1および第2の選択スイッチ素子とを備え、
    前記第1の選択スイッチ素子は、当該基本アレイ面に係るグローバルビット線と、当該基本アレイ面において共通に接続された偶数層のビット線との電気的な接続/非接続を、偶数層選択信号に従って切替制御するものであり、
    前記第2の選択スイッチ素子は、当該基本アレイ面に係るグローバルビット線と、当該基本アレイ面において共通に接続された奇数層のビット線との電気的な接続/非接続を、奇数層選択信号に従って切替制御するものである
    ことを特徴とする請求項1記載の抵抗変化型不揮発性記憶装置。
JP2007247038A 2007-09-25 2007-09-25 抵抗変化型不揮発性記憶装置 Pending JP2009004725A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007247038A JP2009004725A (ja) 2007-09-25 2007-09-25 抵抗変化型不揮発性記憶装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007247038A JP2009004725A (ja) 2007-09-25 2007-09-25 抵抗変化型不揮発性記憶装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007164545 Division 2007-06-22 2007-06-22

Publications (1)

Publication Number Publication Date
JP2009004725A true JP2009004725A (ja) 2009-01-08

Family

ID=40320751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007247038A Pending JP2009004725A (ja) 2007-09-25 2007-09-25 抵抗変化型不揮発性記憶装置

Country Status (1)

Country Link
JP (1) JP2009004725A (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251479A (ja) * 2009-04-14 2010-11-04 Sharp Corp 不揮発性半導体記憶装置とその製造方法
WO2011024455A1 (ja) * 2009-08-28 2011-03-03 パナソニック株式会社 半導体記憶装置及びその製造方法
JP2011192866A (ja) * 2010-03-16 2011-09-29 Toshiba Corp 半導体記憶装置及びその製造方法
WO2012001978A1 (ja) * 2010-07-01 2012-01-05 パナソニック株式会社 不揮発性記憶素子及びその製造方法
EP2417598A1 (en) * 2009-04-08 2012-02-15 Sandisk 3D LLC Three-dimensional array of re-programmable non-volatile memory elements having vertical bit lines and a double-global-bit-line architecture
JP2013510438A (ja) * 2009-11-06 2013-03-21 ラムバス・インコーポレーテッド 三次元メモリアレイ積層構造体
JP2013089662A (ja) * 2011-10-14 2013-05-13 Renesas Electronics Corp 半導体装置
US8441839B2 (en) 2010-06-03 2013-05-14 Panasonic Corporation Cross point variable resistance nonvolatile memory device
US8450713B2 (en) 2009-02-27 2013-05-28 Sharp Kabushiki Kaisha Nonvolatile semiconductor memory device and manufacturing method for same
US8502322B2 (en) 2010-03-23 2013-08-06 Kabushiki Kaisha Toshiba Nonvolatile memory device and manufacturing method thereof
US8692222B2 (en) 2010-12-27 2014-04-08 Panasonic Corporation Nonvolatile memory element and method of manufacturing the nonvolatile memory element
KR101402205B1 (ko) 2009-07-13 2014-05-30 시게이트 테크놀로지 엘엘씨 비휘발성 메모리의 계층적 교차 어레이
US8780605B2 (en) 2009-04-08 2014-07-15 Sandisk 3D Llc Three-dimensional array of re-programmable non-volatile memory elements having vertical bit lines and a single-sided word line architecture
JPWO2012140887A1 (ja) * 2011-04-14 2014-07-28 パナソニック株式会社 不揮発性記憶素子およびその製造方法
US8824191B2 (en) 2010-06-08 2014-09-02 Sandisk 3D Llc Non-volatile memory having 3D array of read/write elements and read/write circuits and method thereof
US8848418B2 (en) 2011-01-14 2014-09-30 Kabushiki Kaisha Toshiba Semiconductor memory device
US9117516B2 (en) 2013-05-10 2015-08-25 Kabushiki Kaisha Toshiba Resistance change memory
US9245629B2 (en) 2010-06-08 2016-01-26 Sandisk 3D Llc Method for non-volatile memory having 3D array of read/write elements with efficient decoding of vertical bit lines and word lines
KR101591940B1 (ko) 2009-04-23 2016-02-05 삼성전자주식회사 비휘발성 메모리 장치
JP2016111269A (ja) * 2014-12-09 2016-06-20 株式会社東芝 半導体記憶装置及びその制御方法
CN110494972A (zh) * 2017-04-11 2019-11-22 索尼半导体解决方案公司 存储设备

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8450713B2 (en) 2009-02-27 2013-05-28 Sharp Kabushiki Kaisha Nonvolatile semiconductor memory device and manufacturing method for same
JP2012523649A (ja) * 2009-04-08 2012-10-04 サンディスク スリーディー,エルエルシー 垂直ビット線および片側ワード線アーキテクチャを有する再プログラミング可能な不揮発性メモリ素子の3次元アレイ
US9721653B2 (en) 2009-04-08 2017-08-01 Sandisk Technologies Llc Three-dimensional array of re-programmable non-volatile memory elements having vertical bit lines and a single-sided word line architecture
EP2417598B1 (en) * 2009-04-08 2017-03-29 SanDisk Technologies LLC Three-dimensional array of re-programmable non-volatile memory elements having vertical bit lines and a double-global-bit-line architecture
EP2417598A1 (en) * 2009-04-08 2012-02-15 Sandisk 3D LLC Three-dimensional array of re-programmable non-volatile memory elements having vertical bit lines and a double-global-bit-line architecture
US8780605B2 (en) 2009-04-08 2014-07-15 Sandisk 3D Llc Three-dimensional array of re-programmable non-volatile memory elements having vertical bit lines and a single-sided word line architecture
US9190134B2 (en) 2009-04-08 2015-11-17 Sandisk 3D Llc Three-dimensional array of re-programmable non-volatile memory elements having vertical bit lines and a single-sided word line architecture
JP2012523648A (ja) * 2009-04-08 2012-10-04 サンディスク スリーディー,エルエルシー 垂直ビット線および二重グローバルビット線アーキテクチャを有する再プログラミング可能な不揮発性メモリ素子の3次元アレイ
US9466790B2 (en) 2009-04-08 2016-10-11 Sandisk Technologies Llc Three-dimensional array of re-programmable non-volatile memory elements having vertical bit lines
JP2010251479A (ja) * 2009-04-14 2010-11-04 Sharp Corp 不揮発性半導体記憶装置とその製造方法
KR101591940B1 (ko) 2009-04-23 2016-02-05 삼성전자주식회사 비휘발성 메모리 장치
KR101402205B1 (ko) 2009-07-13 2014-05-30 시게이트 테크놀로지 엘엘씨 비휘발성 메모리의 계층적 교차 어레이
US9570682B2 (en) 2009-08-28 2017-02-14 Panasonic Intellectual Property Management Co., Ltd. Semiconductor memory device and method of manufacturing the same
WO2011024455A1 (ja) * 2009-08-28 2011-03-03 パナソニック株式会社 半導体記憶装置及びその製造方法
CN102484113A (zh) * 2009-08-28 2012-05-30 松下电器产业株式会社 半导体存储装置及其制造方法
JP5417445B2 (ja) * 2009-08-28 2014-02-12 パナソニック株式会社 半導体記憶装置の製造方法
JP2013510438A (ja) * 2009-11-06 2013-03-21 ラムバス・インコーポレーテッド 三次元メモリアレイ積層構造体
US8309958B2 (en) 2010-03-16 2012-11-13 Kabushiki Kaisha Toshiba Semiconductor memory device and method of manufacturing same
JP2011192866A (ja) * 2010-03-16 2011-09-29 Toshiba Corp 半導体記憶装置及びその製造方法
US8884444B2 (en) 2010-03-23 2014-11-11 Kabushiki Kaisha Toshiba Nonvolatile memory device and manufacturing method thereof
US8502322B2 (en) 2010-03-23 2013-08-06 Kabushiki Kaisha Toshiba Nonvolatile memory device and manufacturing method thereof
US8441839B2 (en) 2010-06-03 2013-05-14 Panasonic Corporation Cross point variable resistance nonvolatile memory device
US8824191B2 (en) 2010-06-08 2014-09-02 Sandisk 3D Llc Non-volatile memory having 3D array of read/write elements and read/write circuits and method thereof
US9245629B2 (en) 2010-06-08 2016-01-26 Sandisk 3D Llc Method for non-volatile memory having 3D array of read/write elements with efficient decoding of vertical bit lines and word lines
WO2012001978A1 (ja) * 2010-07-01 2012-01-05 パナソニック株式会社 不揮発性記憶素子及びその製造方法
US8785238B2 (en) 2010-07-01 2014-07-22 Panasonic Corporation Nonvolatile memory element and method for manufacturing same
JP5436669B2 (ja) * 2010-07-01 2014-03-05 パナソニック株式会社 不揮発性記憶素子及びその製造方法
US8692222B2 (en) 2010-12-27 2014-04-08 Panasonic Corporation Nonvolatile memory element and method of manufacturing the nonvolatile memory element
US9171615B2 (en) 2011-01-14 2015-10-27 Kabushiki Kaisha Toshiba Semiconductor memory device
US10693064B2 (en) 2011-01-14 2020-06-23 Toshiba Memory Corporation Semiconductor memory device
US11271152B2 (en) 2011-01-14 2022-03-08 Kioxia Corporation Semiconductor memory device
US9653684B2 (en) 2011-01-14 2017-05-16 Kabushiki Kaisha Toshiba Semiconductor memory device
US8848418B2 (en) 2011-01-14 2014-09-30 Kabushiki Kaisha Toshiba Semiconductor memory device
US11800825B2 (en) 2011-01-14 2023-10-24 Kioxia Corporation Semiconductor memory device
JPWO2012140887A1 (ja) * 2011-04-14 2014-07-28 パナソニック株式会社 不揮発性記憶素子およびその製造方法
US8921200B2 (en) 2011-04-14 2014-12-30 Panasonic Corporation Nonvolatile storage element and method of manufacturing thereof
JP5636092B2 (ja) * 2011-04-14 2014-12-03 パナソニック株式会社 不揮発性記憶素子およびその製造方法
JP2013089662A (ja) * 2011-10-14 2013-05-13 Renesas Electronics Corp 半導体装置
US9117516B2 (en) 2013-05-10 2015-08-25 Kabushiki Kaisha Toshiba Resistance change memory
JP2016111269A (ja) * 2014-12-09 2016-06-20 株式会社東芝 半導体記憶装置及びその制御方法
CN110494972A (zh) * 2017-04-11 2019-11-22 索尼半导体解决方案公司 存储设备

Similar Documents

Publication Publication Date Title
JP4280302B2 (ja) 抵抗変化型不揮発性記憶装置
JP2009004725A (ja) 抵抗変化型不揮発性記憶装置
JP2009199713A5 (ja)
JP5016151B2 (ja) 抵抗変化型不揮発性記憶装置
JP4445398B2 (ja) 相変化メモリ装置
JP5606479B2 (ja) 半導体記憶装置
JP4939528B2 (ja) メモリラインドライバのノンバイナリグループ用のデコーディング回路
JP5846124B2 (ja) 半導体記憶装置
JP5508944B2 (ja) 半導体記憶装置
CN110931058B (zh) 具有puc结构的存储器件
TWI549126B (zh) 半導體儲存裝置
WO2013076935A1 (ja) 抵抗変化型不揮発性記憶装置、および抵抗変化型不揮発性記憶装置のアクセス方法
JP5589577B2 (ja) 抵抗変化型メモリデバイス
JP2016167332A (ja) 記憶装置
KR20130141458A (ko) 3차원 메모리 소자 어레이를 제어하기 위한 단일-장치 드라이버 회로
JP2009099814A (ja) 半導体装置
KR102414814B1 (ko) 저항형 메모리
JP2010282673A (ja) 不揮発性半導体記憶装置
JP2020057707A (ja) 抵抗変化型ランダムアクセスメモリ
JP4903919B1 (ja) 抵抗変化型不揮発性記憶装置
US9230644B2 (en) Electronic device
US8274809B2 (en) Semiconductor storage device
US10734449B2 (en) Storage device