WO2022091996A1 - 熱可塑性樹脂及びそれを含む光学レンズ - Google Patents

熱可塑性樹脂及びそれを含む光学レンズ Download PDF

Info

Publication number
WO2022091996A1
WO2022091996A1 PCT/JP2021/039216 JP2021039216W WO2022091996A1 WO 2022091996 A1 WO2022091996 A1 WO 2022091996A1 JP 2021039216 W JP2021039216 W JP 2021039216W WO 2022091996 A1 WO2022091996 A1 WO 2022091996A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
thermoplastic resin
carbon atoms
substituent
general formula
Prior art date
Application number
PCT/JP2021/039216
Other languages
English (en)
French (fr)
Inventor
宣之 加藤
慎也 池田
篤志 茂木
龍展 緒方
祐太郎 原田
克吏 西森
健太朗 石原
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to US18/033,163 priority Critical patent/US20230399510A1/en
Priority to JP2022559106A priority patent/JPWO2022091996A1/ja
Priority to KR1020237013713A priority patent/KR20230097012A/ko
Priority to CN202180068323.2A priority patent/CN116323753A/zh
Priority to EP21886114.4A priority patent/EP4239010A4/en
Publication of WO2022091996A1 publication Critical patent/WO2022091996A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/64Polyesters containing both carboxylic ester groups and carbonate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • C08G64/0208Aliphatic polycarbonates saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/16Aliphatic-aromatic or araliphatic polycarbonates
    • C08G64/1608Aliphatic-aromatic or araliphatic polycarbonates saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/305General preparatory processes using carbonates and alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/156Heterocyclic compounds having oxygen in the ring having two oxygen atoms in the ring
    • C08K5/1575Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • C08L69/005Polyester-carbonates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Definitions

  • the present invention relates to a thermoplastic resin and an optical lens containing the same. More specifically, the present invention relates to a polycarbonate resin or a polyester carbonate resin and an optical lens containing the same.
  • Optical glass or optical resin is used as the material of the optical lens used in the optical system of various cameras such as cameras, film-integrated cameras, and video cameras.
  • Optical glass is excellent in heat resistance, transparency, dimensional stability, chemical resistance, etc., but has problems that the material cost is high, the molding processability is poor, and the productivity is low.
  • an optical lens made of an optical resin has an advantage that it can be mass-produced by injection molding, and polycarbonate, polyester carbonate, polyester resin and the like are used as high refractive index materials for camera lenses.
  • Patent Documents 1 to 5 When an optical resin is used as an optical lens, heat resistance, transparency, low water absorption, chemical resistance, low birefringence, moisture heat resistance, etc. are required in addition to optical characteristics such as refractive index and Abbe number. Particularly in recent years, optical lenses having a high refractive index and high heat resistance have been demanded, and various resins have been developed (Patent Documents 1 to 5).
  • the aliphatic resin generally has a lower glass transition temperature than the aromatic resin and has a problem in terms of heat resistance. Therefore, it has been desired to develop a resin having a high glass transition temperature and a large amount of an aliphatic component having excellent heat resistance as compared with a conventional aliphatic resin while maintaining excellent optical characteristics.
  • Japanese Unexamined Patent Publication No. 2018-2893 Japanese Unexamined Patent Publication No. 2018-2894 Japanese Unexamined Patent Publication No. 2018-2895 Japanese Unexamined Patent Publication No. 2018-59074 WO2017 / 078073
  • An object of the present invention is to provide a resin having a large amount of aliphatic components, which is excellent in optical characteristics such as refractive index and Abbe number, and also in heat resistance, and an optical lens using the same.
  • the present inventors have excellent optical properties such as refractive index and Abbe number and heat resistance by using an aliphatic monomer having a specific structure as a raw material.
  • thermoplastic resin containing a structural unit (A) derived from a monomer represented by the following general formula (1) R 1 and R 11 independently represent a hydrogen atom, an aryl group having 6 to 12 carbon atoms, or a linear or branched alkyl group having 1 to 4 carbon atoms.
  • X represents any of the following general formulas (a) to (d).
  • the asterisk indicates a binding site.
  • R 21 to R 57 are independent hydrogen atoms, fluorine atoms, chlorine atoms, bromine atoms, and direct sequences having 1 to 4 carbon atoms.
  • thermoplastic resin according to ⁇ 1> above which is a polycarbonate resin or a polyester carbonate resin.
  • R 1 and R 11 in the general formula (1) are independently linear or branched alkyl groups having 1 to 4 carbon atoms. It is a thermoplastic resin of.
  • X in the general formula (1) is selected from the group consisting of a phenyl group, a biphenyl group, a 1-naphthyl group, and a 2-naphthyl group. It is a thermoplastic resin of. ⁇ 5>
  • the monomer represented by the general formula (1) is composed of only the isomer B represented by the following formula or a mixture of the isomer B and the isomer A represented by the following formula.
  • thermoplastic resin according to ⁇ 5> above, wherein the isomer ratio of the isomer A to the isomer B is A: B 0: 100 to 99: 1.
  • the thermoplastic resin contains a structural unit (B) derived from a monomer represented by the following general formula (2) and / or a structural unit (C) derived from a monomer represented by the following general formula (3).
  • R a and R b are independently hydrogen atom, halogen atom, an alkyl group having 1 to 20 carbon atoms which may have a substituent, and an alkoxyl group having 1 to 20 carbon atoms which may have a substituent.
  • a cycloalkyl group having 5 to 20 carbon atoms which may have a substituent a cycloalkenyl group having 5 to 20 carbon atoms which may have a substituent, and 6 to 20 carbon atoms which may have a substituent.
  • R h is an aryl group having 6 to 20 carbon atoms which may have a substituent, or a carbon which may have a substituent and contains one or more heterocyclic atoms selected from O, N and S.
  • X represents a fluorene group that is single bond or may have a substituent.
  • a and B each independently represent an alkylene group having 1 to 5 carbon atoms which may have a substituent.
  • m and n each independently represent an integer of 0 to 6.
  • a and b each independently represent an integer of 0 to 10.
  • R c and R d are independently hydrogen atom, halogen atom, an alkyl group having 1 to 20 carbon atoms which may have a substituent, and an alkoxyl group having 1 to 20 carbon atoms which may have a substituent.
  • a cycloalkyl group having 5 to 20 carbon atoms which may have a substituent a cycloalkenyl group having 5 to 20 carbon atoms which may have a substituent, and 6 carbon atoms which may have a substituent.
  • R 61 , R 62 , R 71 and R 72 may independently have a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, or a substituent.
  • a and B each independently represent an alkylene group having 1 to 5 carbon atoms which may have a substituent.
  • p and q each independently represent an integer of 0 to 4, respectively.
  • a and b each independently represent an integer of 0 to 10.
  • ⁇ 8> The thermoplastic resin according to ⁇ 7>, wherein in the general formulas (2) and (3), A and B independently represent an alkylene group having 2 or 3 carbon atoms, respectively. ..
  • thermoplastic resin according to ⁇ 7> or ⁇ 8> above wherein the thermoplastic resin contains at least a structural unit derived from any one of BPEF, BNE, BNEF and DPBHBNA.
  • thermoplastic resin Represents alkylene glycol of ⁇ 5)
  • thermoplastic resin according to any one of ⁇ 1> to ⁇ 10> above, wherein the polystyrene-equivalent weight average molecular weight (Mw) of the thermoplastic resin is 10,000 to 200,000.
  • Mw polystyrene-equivalent weight average molecular weight
  • thermoplastic resin according to any one of ⁇ 1> to ⁇ 11>, wherein the thermoplastic resin has a refractive index (nD) of 1.599 to 1.750.
  • nD refractive index
  • thermoplastic resin has an Abbe number ( ⁇ ) of 25.0 to 33.0.
  • thermoplastic resin according to any one of ⁇ 1> to ⁇ 13>, wherein the thermoplastic resin has a glass transition temperature of 135 to 200 ° C.
  • R 1 and R 11 independently represent a hydrogen atom, an aryl group having 6 to 12 carbon atoms, or a linear or branched alkyl group having 1 to 4 carbon atoms.
  • X represents any of the following general formulas (a) to (d).
  • the asterisk indicates a binding site.
  • R 21 to R 57 are independent hydrogen atoms, fluorine atoms, chlorine atoms, bromine atoms, and direct sequences having 1 to 4 carbon atoms. It represents a chain or branched alkyl group, or a linear or branched alkoxy group having 1 to 7 carbon atoms.)
  • An optical member comprising the thermoplastic resin according to any one of ⁇ 1> to ⁇ 14> or the thermoplastic resin composition according to ⁇ 15>.
  • An optical lens comprising the thermoplastic resin according to any one of ⁇ 1> to ⁇ 14> or the thermoplastic resin composition according to ⁇ 15>.
  • ⁇ 18> An optical film containing the thermoplastic resin according to any one of ⁇ 1> to ⁇ 14> or the thermoplastic resin composition according to ⁇ 15>.
  • the present invention it is possible to provide a resin having a large amount of aliphatic components and an optical lens containing the same, which has excellent optical characteristics such as refractive index and Abbe number and also has excellent heat resistance.
  • thermoplastic resin containing a structural unit (A) derived from a monomer represented by the following general formula (1).
  • R 1 and R 11 are each independently a hydrogen atom, an aryl group having 6 to 12 carbon atoms (preferably 6 to 10 carbon atoms, more preferably 6 carbon atoms), or 1 carbon atom.
  • X represents any of the following general formulas (a) to (d).
  • the asterisk indicates a binding site.
  • R 21 to R 57 are independently hydrogen atom, fluorine atom, chlorine atom, bromine atom, linear or branched alkyl group having 1 to 4 carbon atoms, or linear chain having 1 to 7 carbon atoms. Alternatively, it represents a branched alkoxy group.
  • the linear or branched alkyl group having 1 to 4 carbon atoms represented by R 1 and R 11 is not particularly limited, and is, for example, a methyl group, an ethyl group, or n-.
  • alkyl groups such as propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group and tert-butyl group.
  • a methyl group, an ethyl group, an isobutyl group and a tert-butyl group are preferable, and an ethyl group and a methyl group are particularly preferable.
  • a phenyl group is particularly preferable as the aryl group having 6 to 12 carbon atoms represented by R 1 and R 11 .
  • X is represented by any of the general formulas (a) to (d), and is represented by R 21 to R 57 , which is a linear or branched alkyl having 1 to 4 carbon atoms.
  • the group is not particularly limited, and examples thereof include alkyl groups such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • the linear or branched alkoxy group having 1 to 7 carbon atoms is not particularly limited, and examples thereof include an alkoxy group such as a methoxy group and an ethoxy group.
  • X is a phenyl group (general formula (a)), a biphenyl group (general formula (b)), a 1-naphthyl group (general formula (c)), and a 2-naphthyl group (general formula (d)). )) Is preferably mentioned. Of these, a phenyl group is more preferable.
  • cyclic diol compounds represented by the general formula (1) specifically preferable structural formulas include, for example, the following.
  • cyclic diol compound represented by the general formula (1) examples include 5-phenyl-1,3-cyclohexanedionetrimethylolpropanediacetal and 5- (4-methylphenyl) -1,3-. Cyclohexanedionetrimethylolpropanediacetal, 5- (4-ethylphenyl) -1,3-cyclohexanedionetrimethylolpropanediacetal, 5- (3,4-dimethylphenyl) -1,3-cyclohexanedionetrimethylolpropanedi Acetal, 5- (2,4-dimethylphenyl) -1,3-cyclohexanedionetrimethylolpropanediacetal, 5- (3-fluoro-4-methylphenyl) -1,3-cyclohexanedionetrimethylolpropanediacetal, 5- (4-isopropylphenyl) -1,3-cyclohexanedionetrimethylolpropanedia
  • preferable compounds are 5-phenyl-1,3-cyclohexanedione trimethylolpropane diacetal, 5-phenyl-1,3-cyclohexanedione trimethylol ethanediacetal, 5- (4-tert-butylphenyl)-.
  • the cyclic diol compound represented by the general formula (1) is preferably composed of only the isomer B represented by the following formula or a mixture of the isomer B and the isomer A represented by the following formula. Further, as another isomer, isomer C represented by the following formula can be mentioned.
  • R 1 , R 11 and X have the same meaning as those in the general formula (1).
  • the isomer ratio can be determined by gas chromatography (GC) analysis and the area percentage method.
  • the novel cyclic diol compound represented by the general formula (1) can be produced, for example, as shown in the following reaction formula (I).
  • reaction formula (I)> [In the formula, R 1 , R 11 and X are synonymous with those in the general formula (1). ]
  • a 1,3-cyclohexanedione compound having a substituent X at the 5-position is used as a method for producing a novel cyclic diol compound represented by the general formula (1).
  • An example is a production method in which a 2-hydroxymethyl-1,3-propanediol compound having a substituent R 1 or R 11 at the 2-position is acetalized in a toluene solvent in the presence of an acidic catalyst.
  • the 1,3-cyclohexanedione compound having the substituent X at the 5-position (the compound of the following formula (3)) is the compound represented by the general formula (5) as shown in the following reaction formula (II). It can be produced by reacting the compound represented by the general formula (6) in the presence of a base and then treating with an acid.
  • reaction equation (II)> [In the formula, R 3 represents the same or different alkyl groups having 1 to 3 carbon atoms, respectively. X is the same as above. ]
  • Examples of the alkyl group having 1 to 3 carbon atoms represented by R 3 include a methyl group, an ethyl group, an isopropyl group and the like.
  • This reaction is carried out according to or according to a known method, for example, Chemistry-A European Journal (2017), 23 (49), 11757-11760, Zhurnal Obshchei Khimii (1957), 27. 3087-92, etc. can do.
  • thermoplastic resin according to the embodiment of the present invention is not particularly limited, such as polyester resin, polycarbonate resin, polyester carbonate resin, epoxy resin, polyurethane resin, polyacrylic acid ester resin, polymethacrylic acid ester resin, etc., but polycarbonate resin or It is preferably a polyester carbonate resin, and more preferably contains a structural unit (A) represented by the following formula. [In the formula, R 1 , R 11 and X are synonymous with those in the general formula (1). ]
  • the ratio of the structural unit (A) represented by the above formula to all the structural units is not particularly limited, but is preferably 1 to 80 mol% in all the structural units. It is more preferably 1 to 60 mol%, and particularly preferably 5 to 50 mol%. That is, the thermoplastic resin of one embodiment of the present invention is derived from an aliphatic dihydroxy compound generally used as a constituent unit of a polycarbonate resin or a polyester carbonate resin in addition to the constituent unit (A) represented by the above formula. It may contain a constituent unit to be made or a constituent unit derived from an aromatic dihydroxy compound.
  • aliphatic dihydroxy compound examples include 1,4-cyclohexanedimethanol, tricyclodecanedimethanol, 1,3-adamantandimethanol, and 2,2-bis ().
  • 4-Hydroxycyclohexyl) -propane 3,9-bis (2-hydroxy-1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane, 2- (5-ethyl) -5-Hydroxymethyl-1,3-dioxane-2-yl) -2-methylpropane-1-ol, isosorbide, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, etc.
  • aromatic dihydroxy compound examples include various ones, and in particular, 2,2-bis (4-hydroxyphenyl) propane [bisphenol A], bis (4-hydroxyphenyl) methane, and 1,1-bis ( 4-Hydroxyphenyl) ethane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 4,4'-dihydroxydiphenyl, bis (4-hydroxyphenyl) cycloalkhan, bis (4-hydroxyphenyl) ) Oxide, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) ketone, bisphenoxyethanol fluorene and the like.
  • the thermoplastic resin of one embodiment of the present invention contains a structural unit (B) derived from a monomer represented by the following general formula (2).
  • Ra and R b independently have a halogen atom, an alkyl group having 1 to 20 carbon atoms which may have a substituent, and 1 to 20 carbon atoms which may have a substituent.
  • Hetaryl group having 6 to 20 carbon atoms which may have a substituent, including one or more heterocyclic atoms selected from 6 to 20 aryl groups, O, N and S. It is selected from the group consisting of an aryloxy group having 6 to 20 carbon atoms and —C ⁇ C —Rh.
  • R h is an aryl group having 6 to 20 carbon atoms which may have a substituent, or a carbon which may have a substituent and contains one or more heterocyclic atoms selected from O, N and S. Represents a heteroaryl group of number 6-20.
  • R a and R b are substituted, preferably comprising a hydrogen atom, an aryl group having 6 to 20 carbon atoms which may have a substituent, and one or more heterocyclic atoms selected from O, N and S. It is a heteroaryl group having 6 to 20 carbon atoms which may have a group, more preferably a hydrogen atom, an aryl group having 6 to 20 carbon atoms which may have a substituent, and even more preferably hydrogen. It is an aryl group having 6 to 12 carbon atoms which may have an atom or a substituent.
  • X represents a fluorene group which is a single bond or may have a substituent.
  • X is preferably a single bond or a fluorene group which may have a substituent having a total carbon number of 12 to 20.
  • a and B are alkylene groups having 1 to 5 carbon atoms which may independently have substituents, and are preferably alkylene groups having 2 or 3 carbon atoms.
  • m and n are independently integers of 0 to 6, preferably 0 to 3, and more preferably 0 or 1.
  • a and b are independently integers of 0 to 10, preferably integers of 1 to 3, and more preferably 1 or 2.
  • structural unit (B) examples include those derived from 2,2'-bis (2-hydroxyethoxy) -1,1'-binaphthalene (BNE), DPBHBNA and the like.
  • the thermoplastic resin of one embodiment of the present invention has a structural unit (C) derived from a monomer represented by the following general formula (3).
  • R c and R d are independently a halogen atom, an alkyl group having 1 to 20 carbon atoms which may have a substituent, and 1 to 1 carbon atoms which may have a substituent. It may have 20 alkoxyl groups, a cycloalkyl group having 5 to 20 carbon atoms which may have a substituent, a cycloalkenyl group which may have a substituent and may have 5 to 20 carbon atoms, and a substituent.
  • R c and R d are substituted, preferably comprising a hydrogen atom, an aryl group having 6 to 20 carbon atoms which may have a substituent, and one or more heterocyclic atoms selected from O, N and S. It is a heteroaryl group having 6 to 20 carbon atoms which may have a group, more preferably a hydrogen atom, an aryl group having 6 to 20 carbon atoms which may have a substituent, and even more preferably hydrogen. It is an aryl group having 6 to 12 carbon atoms which may have an atom or a substituent.
  • Y 1 is either a single bond, a fluorene group which may have a substituent, or a structural formula represented by the following formulas (4) to (10), and is preferable.
  • Single bond or a structural formula represented by the following formula (4).
  • R 61 , R 62 , R 71 and R 72 are each independently an alkyl group having 1 to 20 carbon atoms which may have a hydrogen atom, a halogen atom and a substituent. , Or an aryl group having 6 to 30 carbon atoms which may have a substituent, or has a substituent formed by bonding R 61 and R 62 , or R 71 and R 72 to each other. It represents a carbon ring or a heterocycle having 1 to 20 carbon atoms which may be used.
  • r and s are independently integers of 0 to 5000.
  • a and B are alkylene groups having 1 to 5 carbon atoms which may independently have substituents, and are preferably alkylene groups having 2 or 3 carbon atoms.
  • p and q are independently integers of 0 to 4, preferably 0 or 1.
  • a and b are independently integers of 0 to 10, preferably an integer of 0 to 5, and more preferably an integer of 0 to 2, for example. It is 0 or 1.
  • structural unit (C) examples include BPEF (9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene) and BPPEF (9,9-bis (4- (2-hydroxyethoxy) -3- (2-hydroxyethoxy) -3-).
  • Phenylphenyl) Fluoren 9,9-bis [6- (2-hydroxyethoxy) naphthalene-2-yl] Fluoren (BNEF), bisphenol A, bisphenol AP, bisphenol AF, bisphenol B, bisphenol BP, bisphenol C, bis (4-Hydroxyphenyl) -2,2-dichloroethylene, bisphenol E, bisphenol F, bisphenol G, bisphenol M, bisphenol S, bisphenol P, bisphenol PH, bisphenol TMC, bisphenol P-AP (4,4'-(1-) Bisphenol), Bisphenol P-CDE (4,4'-Cyclododecylidene Bisphenol), Bisphenol P-HTG (4,4'-(3,3,5-trimethylcyclohexylidene) Bisphenol), Bisphenol P -MIBK (4,4'-(1,3-dimethylbutylidene) bisphenol), bisphenol PEO-FL (bisphenoloxyethanol fluorene), bisphenol P-3MZ (4- [1-
  • the thermoplastic resin of one embodiment of the present invention requires a constituent unit (A), but contains a polymer containing the constituent unit (B) and not containing the constituent unit (C), and a constituent unit (C) including the constituent unit (C).
  • a copolymer having a structural unit (B) and a structural unit (C) a mixture of a polymer having a structural unit (B) and a polymer having a structural unit (C)
  • the polymer containing the constituent unit (C) and not containing the constituent unit (B) include those having the constituent units of the following formulas (I-1) to (I-3), which are referred to as the constituent unit (B).
  • Examples of the copolymer having the structural unit (C) include those having the structural units of the following formulas (II-1) to (II-4).
  • m and n are integers of 1 to 10, preferably integers of 1 to 5, and more preferably 1 respectively.
  • the number of repeating units in the formula (I-3) is an integer of 1 to 10, preferably an integer of 1 to 5, and more preferably 1.
  • a polymer having a plurality of types of structural units either a block copolymer having a large value of m and n, for example, 100 or more, or a random copolymer can be adopted, but a random copolymer is preferable.
  • a random copolymer having m and n values of 1 is used.
  • m and n are independently integers of 1 to 10, preferably integers of 1 to 5, and more preferably 1.
  • a polymer having a plurality of types of structural units either a block copolymer having a large value of m and n, for example, 100 or more, or a random copolymer can be adopted, but a random copolymer is preferable. More preferably, a random copolymer having m and n values of 1 is used.
  • the molar ratio of the structural unit (B) to the structural unit (C) is preferably 1:99 to 99: 1, more preferably 10:90 to 90:10, and 15 : 85 to 85:15 is more preferable, and 30:70 to 70:30 is particularly preferable.
  • the mass ratio of the polymer having the structural unit (B) to the polymer having the structural unit (C) is preferably 1:99 to 99: 1, preferably 10:90 to 90:10. It is more preferably 15:85 to 85:15, and particularly preferably 30:70 to 70:30.
  • thermoplastic resin of one embodiment of the present invention further preferably contains a structural unit derived from at least one monomer selected from the following monomer group.
  • R 1 and R 2 independently represent a hydrogen atom, a methyl group or an ethyl group
  • R 3 and R 4 independently represent a hydrogen atom, a methyl group, an ethyl group or 2 carbon atoms, respectively.
  • the polycarbonate resin of one preferred embodiment of the present invention contains alcohol compounds such as phenol compounds which may be produced as by-products during production, and diol components or carbonic acid diesters remaining without reaction as impurities.
  • Alcohol-based compounds such as phenol-based compounds and carbonic acid diesters, which are impurities, may cause a decrease in strength and generation of odor when formed into a molded product. Therefore, it is preferable that the content thereof is as small as possible.
  • the content of the remaining phenolic compound is preferably 3000% by mass or less, more preferably 1000% by mass or less, and particularly preferably 300% by mass or less, based on 100% by mass of the polycarbonate resin.
  • the content of the remaining diol component is preferably 1000% by mass or less, more preferably 100% by mass or less, and particularly preferably 10% by mass or less, based on 100% by mass of the polycarbonate resin.
  • the content of the residual carbonic acid diester is preferably 1000% by mass or less, more preferably 100% by mass or less, and particularly preferably 10% by mass or less, based on 100% by mass of the polycarbonate resin.
  • the content of compounds such as phenol and t-butylphenol is preferably low, and these compounds are preferably within the above range.
  • the content of the phenolic compound remaining in the polycarbonate resin can be measured by a method of analyzing the phenolic compound extracted from the polycarbonate resin by using gas chromatography.
  • the content of the alcohol-based compound remaining in the polycarbonate resin can also be measured by a method of analyzing the alcohol-based compound extracted from the polycarbonate resin by using gas chromatography.
  • the content of the diol component and the carbonic acid diester remaining in the polycarbonate resin can also be measured by a method of extracting these compounds from the polycarbonate resin and analyzing them using gas chromatography.
  • the content of by-product alcohol compounds such as phenolic compounds, diol components and carbonic acid diesters may be reduced to the extent that they are not detected, but from the viewpoint of productivity, they are contained in a small amount within a range that does not impair the effect. May be good. Further, if the amount is small, the plasticity can be improved when the resin is melted.
  • each of the remaining phenolic compound, diol component or carbonic acid diester is, for example, 0.01% by mass or more, 0.1% by mass or more, or 1% by mass or more with respect to 100% by mass of the polycarbonate resin. You may.
  • the content of the remaining alcohol-based compound may be, for example, 0.01 mass ppm or more, 0.1 mass ppm or more, or 1 mass ppm or more with respect to 100 mass% of the polycarbonate resin.
  • the content of by-product alcohol compounds such as phenol compounds, diol components and carbonic acid diesters in the polycarbonate resin is adjusted to be within the above range by appropriately adjusting the conditions of polycondensation and the settings of the apparatus. It is possible. It can also be adjusted by the conditions of the extrusion process after polycondensation.
  • the residual amount of a by-product alcohol compound such as a phenol compound is related to the type of carbonic acid diester used for the polymerization of the polycarbonate resin, the polymerization reaction temperature, the polymerization pressure, and the like. By adjusting these, the residual amount of by-product alcohol compounds such as phenol compounds can be reduced.
  • the content of the residual by-product alcohol compound in the obtained polycarbonate resin is preferably 3000% by mass or less with respect to the polycarbonate resin (100% by mass).
  • the content of the remaining alcohol-based compound is preferably 3000 mass ppm or less, more preferably 1000 mass ppm or less, and particularly preferably 300 mass ppm or less, based on 100 mass% of the polycarbonate resin.
  • thermoplastic resin is characterized by having a high refractive index, and the refractive index is preferably 1.500 to 1.750, preferably 1.599 to 1.750. It is more preferably 1.599 to 1.650, and particularly preferably 1.600 to 1.650.
  • the refractive index can be measured by the method described in Examples described later.
  • the Abbe number of the thermoplastic resin is preferably 20.0 to 55.0, more preferably 25.0 to 33.0, and 25.5 to 32.0. Is more preferable, and 26.0 to 30.0 is particularly preferable. In the present invention, the Abbe number can be measured by the method described in Examples described later.
  • the thermoplastic resin is characterized by having high heat resistance, and the glass transition temperature (Tg) is preferably 135 to 200 ° C., preferably 140 to 180 ° C. It is more preferable to have it, and it is particularly preferable that the temperature is 140 to 170 ° C. In the present invention, the glass transition temperature can be measured by the method described in Examples described later.
  • the polystyrene-equivalent weight average molecular weight of the thermoplastic resin is preferably 10,000 to 200,000, more preferably 10,000 to 100,000 to 10,000. It is particularly preferably 80,000.
  • thermoplastic resin composition containing the above-mentioned thermoplastic resin and additives.
  • a resin other than the thermoplastic resin of the present invention containing the above-mentioned structural unit (A) can be used in combination as long as the desired effect of the present embodiment is not impaired.
  • Such resins are not particularly limited, but are, for example, polycarbonate resins, polyester resins, polyester carbonate resins, (meth) acrylic resins, polyamide resins, polystyrene resins, cycloolefin resins, acrylonitrile-butadiene-styrene copolymer resins, chlorides.
  • thermoplastic resin composition examples thereof include at least one resin selected from the group consisting of vinyl resin, polyphenylene ether resin, polysulfone resin, polyacetal resin and methylmethacrylate-styrene copolymer resin.
  • resins selected from the group consisting of vinyl resin, polyphenylene ether resin, polysulfone resin, polyacetal resin and methylmethacrylate-styrene copolymer resin.
  • Various known substances can be used, and one type can be added to the thermoplastic resin composition alone or in combination of two or more types.
  • the thermoplastic resin composition preferably contains an antioxidant as the above additive.
  • an antioxidant it is preferable to contain at least one of a phenol-based antioxidant and a phosphite-based antioxidant.
  • phenolic antioxidants 1,3,5-tris (3,5-di-tert-butyl-4-hydroxyphenylmethyl) -2,4,6-trimethylbenzene, 1,3,5-tris (3) , 5-Di-tert-butyl-4-hydroxybenzyl) -1,3,5-triazine e-2,4,6 (1H, 3H, 5H) -trion, 4,4', 4''-(1) -Methylpropanol-3-iriden) Tris (6-tert-butyl-m-cresol), 6,6'-di-tert-butyl-4,4'-butylidenedi-m-cresol, ocradecil 3- (3, 5-Di-tert-butyl-4-hydroxyphenyl) propionate,
  • antioxidant Bis (2,6-di-tert-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane.
  • the antioxidant only one of the above may be used, or a mixture of two or more may be used.
  • the antioxidant is contained in an amount of 1 wt ppm to 3000 wt ppm based on the total weight of the resin composition.
  • the content of the antioxidant in the thermoplastic resin composition is more preferably 50% by weight to 2500% by weight, still more preferably 100% by weight to 2000% by weight, and particularly preferably 150% by weight to 1500% by weight. It is more preferably 200% by weight ppm to 1200% by weight ppm.
  • the thermoplastic resin composition preferably contains a mold release agent as the above additive.
  • ester compounds for example, glycerin fatty acid esters such as mono-diglycerides of glycerin fatty acids, glycol fatty acid esters such as propylene glycol fatty acid esters and sorbitan fatty acid esters, higher alcohol fatty acid esters, aliphatic polyhydric alcohols and aliphatic carboxylics. Examples thereof include full esters with acids and monofatty acid esters.
  • the release agent When an ester of an aliphatic polyhydric alcohol and an aliphatic carboxylic acid is used as the release agent, either a monoester, a full ester or the like can be adopted, but for example, a full ester such as a monoester may be used.
  • Specific examples of the release agent include the following.
  • sorbitan fatty acid esters such as sorbitan stearate, sorbitan laurate, sorbitan oleate, sorbitan triolate, sorbitan tribehenate, sorbitan stearate, sorbitan tristearate, and sorbitan caprilate;
  • Propylene glycol fatty acid esters such as propylene glycol monostearate, propylene glycol monooleate, propylene glycol monobehenate, propylene glycol monolaurate, propylene glycol monopalmitate; Stearyl Stearate and other higher alcohol fatty acid esters; Glycerin monostearate, glycerin mono12-hydroxystearate, etc.
  • Glycerin fatty acid ester monoglyceride including mono-diglyceride such as distearate, glycerin mono-dibehenate, glycerin mono-diolate; Glycerin Diacetomono Laurate and other glycerin fatty acid esters Acetylated monoglyceride; Glycerin fatty acid ester organic acid monoglyceride such as citric acid fatty acid monoglyceride, succinic acid fatty acid monoglyceride, diacetyl tartrate fatty acid monoglyceride; Diglycerin stearate, diglycerin laurate, diglycerin laurate, diglycerin monostearate, diglycerin monolaurate, digly
  • the mold release agent is preferably contained in an amount of 1 wt ppm to 5000 wt ppm based on the total weight of the resin composition.
  • the content of the release agent in the thermoplastic resin composition is more preferably 50% by weight to 4000% by weight, still more preferably 100% by weight to 3500% by weight, and particularly preferably 500% by weight to 13000% by weight. It is more preferably 1000% by weight ppm to 2500% by weight ppm.
  • thermoplastic resin composition may contain, compounding agents, catalyst deactivating agents, heat stabilizers, plasticizers, fillers, ultraviolet absorbers, rust preventives, dispersants, defoaming agents, leveling agents, etc. Flame retardants, lubricants, dyes, pigments, brewing agents, nucleating agents, clearing agents and the like can be mentioned.
  • the content of other additives other than the antioxidant and the mold release agent in the thermoplastic resin composition is preferably 10% by weight to 5.0% by weight, more preferably 100% by weight to 2.0% by weight.
  • the above-mentioned additives may adversely affect the transmittance, and it is preferable not to add them in an excessive amount.
  • the total amount of the additives added is within the above-mentioned range.
  • the catalyst may be removed or deactivated in order to maintain thermal stability and hydrolysis stability after the completion of the polymerization reaction, but it is not always necessary to deactivate the catalyst. not.
  • a method for inactivating the catalyst by adding a known acidic substance can be preferably carried out.
  • the acidic substance include esters such as butyl benzoate; aromatic sulfonic acids such as p-toluenesulfonic acid; aromatic sulfonic acid esters such as butyl p-toluenesulfonate and hexyl p-toluenesulfonic acid.
  • Phosphates such as phosphite, phosphoric acid, phosphonic acid
  • triphenyl phosphite monophenyl phosphite, diphenyl phosphite, diethyl phosphite, din-propyl phosphite, diphosphate diphosphate
  • Subphosphate esters such as n-butyl, din-hexyl phosphite, dioctyl phosphite, monooctyl phosphite
  • triphenyl phosphate diphenyl phosphate, monophenyl phosphate, dibutyl phosphate, phosphoric acid.
  • Phosphoric acid esters such as dioctyl and monooctyl phosphate; phosphonic acids such as diphenylphosphonic acid, dioctylphosphonic acid and dibutylphosphonic acid; phosphonic acid esters such as diethylphenylphosphonate; triphenylphosphine and bis (diphenylphosphino) Hosphins such as ethane; boric acids such as boric acid and phenylboric acid; aromatic sulfonates such as tetrabutylphosphonium salt of dodecylbenzene sulfonic acid; organic halides such as chloride chloride, benzoyl chloride and p-toluenesulfonic acid chloride.
  • Alkyl sulfate such as dimethyl sulfate; organic halides such as benzyl chloride are preferably used. From the viewpoint of the effect of the deactivating agent, stability to the resin, and the like, p-toluene or butyl sulfonate is particularly preferable.
  • These deactivating agents are used in an amount of 0.01 to 50 times, preferably 0.3 to 20 times by mole, based on the amount of the catalyst. If it is less than 0.01 times the molar amount of the catalyst amount, the deactivation effect becomes insufficient, which is not preferable.
  • the amount is more than 50 times the molar amount with respect to the amount of the catalyst, the heat resistance of the resin is lowered and the molded product is easily colored, which is not preferable.
  • the kneading of the deactivating agent may be carried out immediately after the completion of the polymerization reaction, or may be carried out after pelletizing the polymerized resin. In addition to the deactivating agent, other additives can be added in the same manner.
  • thermoplastic resin composition containing a modifier represented by the following general formula (1) and a thermoplastic resin.
  • R 1 , R 11 and X are synonymous with those in the general formula (1) described above. That is, the novel cyclic diol compound represented by the general formula (1) can also be used as a modifier.
  • the above mass ratio may be preferably 99: 1 to 70:30, more preferably 98: 2 to 70:30, and may be, for example, 99: 1, 98: 2, 97: 3, 96 :. It may be 4, 95: 5, 94: 6, 93: 7, 92: 8, 91: 9, 90:10, 85:15, 80:20, 75:25, 70:30, and the like.
  • the mass ratio of the thermoplastic resin and the modifier is within the above range, it is possible to provide a resin composition having high flowability and good moldability.
  • thermoplastic resin or the thermoplastic resin composition of the present invention can be suitably used for an optical member.
  • an optical member containing the resin composition of the present invention is provided.
  • the optical member includes an optical disk, a transparent conductive substrate, an optical card, a sheet, a film, an optical fiber, a lens, a prism, an optical film, a substrate, an optical filter, a hard coat film, and the like. Not limited to these. Since the resin composition of the present invention can be molded by a casting method with high flow rate, it is particularly suitable for manufacturing a thin optical member.
  • the optical member manufactured by using the resin composition of the present invention may be an optical lens.
  • the optical lenses in addition to the lens of the smartphone, specific examples include a lens of an in-vehicle camera, a lens for goggles for VR (virtual reality) or MR (composite reality), a lens for a security camera, and the like.
  • the optical member produced by using the resin composition of the present invention may be an optical film.
  • the optical member containing the resin composition of the present invention is manufactured by injection molding, it is preferable to mold it under the conditions of a cylinder temperature of 260 to 350 ° C. and a mold temperature of 90 to 170 ° C. More preferably, molding is performed under the conditions of a cylinder temperature of 270 to 320 ° C. and a mold temperature of 100 to 160 ° C.
  • the cylinder temperature is higher than 350 ° C.
  • the resin composition is decomposed and colored
  • the melt viscosity is high and molding tends to be difficult.
  • the mold temperature is higher than 170 ° C., it tends to be difficult to remove the molded piece made of the resin composition from the mold.
  • the resin hardens too quickly in the mold at the time of molding, making it difficult to control the shape of the molded piece, or sufficiently transferring the mold attached to the mold. Is easy to become difficult.
  • the resin composition can be suitably used for an optical lens. Since the optical lens manufactured by using the resin composition of the present invention has a high refractive index and excellent heat resistance, an expensive high refractive index glass lens such as a telescope, binoculars, and a television projector has been conventionally used. It can be used in the field and is extremely useful.
  • R 1 and R 2 independently represent a hydrogen atom, a methyl group or an ethyl group
  • R 3 and R 4 independently represent a hydrogen atom, a methyl group, an ethyl group or 2 carbon atoms, respectively.
  • the optical lens of the present invention preferably uses the shape of an aspherical lens as needed. Since it is possible to eliminate spherical aberration with a single lens for aspherical lenses, it is not necessary to remove spherical aberration by combining multiple spherical lenses, resulting in weight reduction and reduction of molding costs. It will be possible. Therefore, the aspherical lens is particularly useful as a camera lens among optical lenses.
  • the optical lens of the present invention has high molding fluidity, it is particularly useful as a material for an optical lens having a thin wall, a small size, and a complicated shape.
  • the thickness of the central portion is preferably 0.05 to 3.0 mm, more preferably 0.05 to 2.0 mm, and further preferably 0.1 to 2.0 mm.
  • the diameter is preferably 1.0 mm to 20.0 mm, more preferably 1.0 to 10.0 mm, and even more preferably 3.0 to 10.0 mm.
  • the shape is a meniscus lens having one side convex and one side concave.
  • the optical lens of the present invention is molded by an arbitrary method such as mold molding, cutting, polishing, laser processing, electric discharge machining, and etching. Among these, mold molding is more preferable from the viewpoint of manufacturing cost.
  • the resin composition can be suitably used for an optical film.
  • the optical film produced by using the polycarbonate resin of the present invention is excellent in transparency and heat resistance, and is therefore suitably used for a film for a liquid crystal substrate, an optical memory card, and the like.
  • the molding environment must naturally be a low dust environment, preferably class 6 or less, and more preferably class 5 or less.
  • Refractive index (nD) Based on JIS B 7071-2: 2018, a polycarbonate resin was molded to obtain a V block, which was used as a test piece. It was measured with a refractive index meter (KPR-3000 manufactured by Shimadzu Corporation) at 23 ° C.
  • Tg Glass transition temperature It was measured by a differential heat scanning calorimeter (X-DSC7000 manufactured by Hitachi High-Tech Science Co., Ltd.) based on JIS K7121-1987 with a temperature rise program of 10 ° C./min.
  • Weight average molecular weight (Mw) The weight average molecular weight of the resin was measured by gel permeation chromatography (GPC) and calculated in terms of standard polystyrene.
  • GPC gel permeation chromatography
  • the equipment used, columns, and measurement conditions are as follows.
  • -GPC device HLC-8420GPC manufactured by Tosoh Corporation -Column: Tosoh Co., Ltd., TSKgel SuperHM-M x 3 Tosoh Co., Ltd., TSKgel guardgroup SuperH-H x 1 Tosoh Co., Ltd., TSKgel SuperH-RC x 1-Detector: RI detector -Standard polystyrene: Standard polystyrene kit PStQuick C manufactured by Tosoh Corporation -Sample solution: 0.2 mass% tetrahydrofuran solution-Eluent: Tetrahydrofuran-Eluent flow rate: 0.6 mL / min -Column temperature: 40
  • the reaction mixture was returned to room temperature, neutralized with 125 ml of saturated aqueous sodium hydrogen carbonate solution, 125 ml of toluene was added, and the mixture was separated into an aqueous layer and an organic layer.
  • the separated organic layer was washed with 125 ml of warm water at 40 ° C.
  • the organic layer was set at 40 ° C. and 50 mmHg, and the solvent was removed by an evaporator.
  • the remaining organic layer (125 g) was stirred at room temperature and crystals were taken out. Toluene was used as the rinsing solution and the precipitated crystals were filtered off.
  • the obtained organic phase was washed successively with saturated aqueous sodium hydrogen carbonate solution and saturated aqueous sodium chloride solution, and concentrated under reduced pressure to obtain 65.1 g of a pale yellow liquid having a purity of 90.7 GC area%.
  • the obtained crude reaction was subjected to simple distillation under reduced pressure at 141 to 145 ° C. and 0.1 to 0.2 kPa to obtain 35.4 g of a pale yellow liquid having a purity of 98.8 GC area%.
  • Example 1 As a raw material, 2,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene (BPEF) 23.5810 g (0.0538 mol) represented by the following structural formula, 5-phenyl obtained in Synthesis Example 1 -1,3-Cyclohexanedionetrimethylol propandiacetal 9.6899 g (0.0230 mol), diphenyl carbonate (DPC) 16.9474 g (0.0791 mol) and sodium hydrogen carbonate 1.29071 ⁇ 10 -4 g (1) .53638 ⁇ 10-6 mol) was placed in a 300 mL reactor equipped with a stirrer and a distiller, and the inside of the system was set to a nitrogen atmosphere of 101.3 kPa.
  • BPEF 2,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene
  • the reactor was immersed in an oil bath heated to 200 ° C. to start the transesterification reaction. Stirring was started 5 minutes after the start of the reaction, and the pressure was reduced from 101.3 kPa to 26.66 kPa over 10 minutes after 20 minutes.
  • the temperature is heated to 210 ° C. while reducing the pressure, the temperature is raised to 220 ° C. 70 minutes after the start of the reaction, the pressure is reduced to 20.00 kPa over 80 minutes to 30 minutes, the temperature is raised to 240 ° C., and 0.
  • nitrogen gas was introduced into the reaction system and the temperature was returned to 101.3 kPa to obtain a polycarbonate resin.
  • the obtained polycarbonate resin had a refractive index of 1.6076, an Abbe number of 27.46, a Tg of 144 ° C., and a polystyrene-equivalent weight average molecular weight (Mw) of 37,000.
  • the content of the diol compound as a raw material and the physical characteristics of the obtained resin are shown in Table 1 below.
  • Example 2 As raw materials, BPEF 25.4506 g (0.0580 mol), 5-phenyl-1,3-cyclohexanedionetrimethylol propandiacetal 6.0881 g (0.0145 mol) obtained in Synthesis Example 2, DPC 16.0044 g. A polycarbonate resin was obtained in the same manner as in Example 1 except that (0.0747 mol) and 425154 ⁇ 10 -7 g (3.65573 ⁇ 10 -5 mol) of sodium hydrogen carbonate were used.
  • the obtained polycarbonate resin had a refractive index of 1.6125, an Abbe number of 26.02, a Tg of 148 ° C., and a polystyrene-equivalent weight average molecular weight (Mw) of 40,000.
  • the content of the diol compound as a raw material and the physical characteristics of the obtained resin are shown in Table 1 below.
  • Example 3 As a raw material, BPEF 23.3726 g (0.0533 mol), 5- (4-t-butyl) -phenyl-1,3-cyclohexanedione trimethylolpropane diacetal 6.5309 g (0. Polycarbonate in the same manner as in Example 1 except that 0129 mol), DPC 14.6156 g (0.0682 mol) and sodium hydrogen carbonate 4.25154 ⁇ 10-7 g (3.65573 ⁇ 10-5 mol) were used. Obtained resin.
  • the obtained polycarbonate resin had a refractive index of 1.6119, an Abbe number of 26.35, a Tg of 146 ° C., and a polystyrene-equivalent weight average molecular weight (Mw) of 37,000.
  • the content of the diol compound as a raw material and the physical characteristics of the obtained resin are shown in Table 1 below.
  • the obtained polycarbonate resin had a refractive index of 1.5998, an Abbe number of 26.53, a Tg of 134 ° C., and a polystyrene-equivalent weight average molecular weight (Mw) of 39,000.
  • the content of the diol compound as a raw material and the physical characteristics of the obtained resin are shown in Table 1 below. From the results in Table 1, Examples 1 to 3 using the novel cyclic diol compound represented by the general formula (1) are more than Comparative Example 1 using the conventional cyclic diol compound spiroglycol. It can be seen that a resin having a high refractive index (nD) and glass transition temperature and having excellent heat resistance as well as optical properties and a large amount of aliphatic components can be obtained.

Abstract

本発明によれば、下記一般式(1)で表されるモノマー由来の構成単位(A)を含む熱可塑性樹脂を提供することができる。(一般式(1)中、R1及びR11は、それぞれ独立に、水素原子、炭素数6~12のアリール基、又は炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基を表し、Xは、下記一般式(a)~(d)のいずれかを表す。)(一般式(a)~(d)中、R21~R57は、それぞれ独立に、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基、又は炭素数1~7の直鎖状若しくは分岐鎖状のアルコキシ基を表す。)

Description

熱可塑性樹脂及びそれを含む光学レンズ
 本発明は、熱可塑性樹脂及びそれを含む光学レンズに関する。より詳細には、本発明は、ポリカーボネート樹脂又はポリエステルカーボネート樹脂及びそれを含む光学レンズに関する。
 カメラ、フィルム一体型カメラ、ビデオカメラ等の各種カメラの光学系に使用される光学レンズの材料として、光学ガラスあるいは光学用樹脂が使用されている。光学ガラスは、耐熱性、透明性、寸法安定性、耐薬品性等に優れるが、材料コストが高く、成形加工性が悪く、生産性が低いという問題点を有している。
 一方、光学用樹脂からなる光学レンズは、射出成形により大量生産が可能であるという利点を有しており、カメラレンズ用高屈折率材料としてポリカーボネート、ポリエステルカーボネート、ポリエステル樹脂等が使用されている。
 光学用樹脂を光学レンズとして用いる場合、屈折率やアッベ数などの光学特性に加えて、耐熱性、透明性、低吸水性、耐薬品性、低複屈折、耐湿熱性等が求められる。特に近年、高屈折率及び高耐熱性を有する光学レンズが求められており、様々な樹脂の開発が行われている(特許文献1~5)。
 一方、脂肪族成分の多い樹脂は、環境面の配慮から光学用樹脂等あらゆる分野で期待されている。しかし、脂肪族系樹脂は芳香族系樹脂に比べ一般にガラス転移温度が低く耐熱性の面で問題があった。そこで、優れた光学特性を維持しつつ、従来の脂肪族系樹脂に比べてガラス転移温度が高く耐熱性に優れた脂肪族成分の多い樹脂の開発が望まれていた。
特開2018-2893号公報 特開2018-2894号公報 特開2018-2895号公報 特開2018-59074号公報 WO2017/078073
 本発明は、屈折率やアッベ数などの光学特性に優れ、かつ、耐熱性にも優れた脂肪族成分の多い樹脂及びそれを用いた光学レンズを提供することを課題とする。
 本発明者らは、従来の課題を解決すべく鋭意検討を重ねた結果、特定の構造を有する脂肪族モノマーを原料とすることにより、屈折率やアッベ数などの光学特性に優れ、かつ、耐熱性にも優れた脂肪族成分の多い樹脂が得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の態様を含む。
<1> 下記一般式(1)で表されるモノマー由来の構成単位(A)を含む熱可塑性樹脂である。
Figure JPOXMLDOC01-appb-C000010
(一般式(1)中、R及びR11は、それぞれ独立に、水素原子、炭素数6~12のアリール基、又は炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基を表し、Xは、下記一般式(a)~(d)のいずれかを表す。)
Figure JPOXMLDOC01-appb-C000011
(一般式(a)~(d)中、星印は結合部位を示す。R21~R57は、それぞれ独立に、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基、又は炭素数1~7の直鎖状若しくは分岐鎖状のアルコキシ基を表す。)
<2> ポリカーボネート樹脂又はポリエステルカーボネート樹脂である、上記<1>に記載の熱可塑性樹脂である。
<3> 前記一般式(1)におけるR及びR11が、それぞれ独立に、炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基である、上記<1>又は<2>に記載の熱可塑性樹脂である。
<4> 前記一般式(1)におけるXが、フェニル基、ビフェニル基、1-ナフチル基、及び2-ナフチル基からなる群より選択される、上記<1>から<3>のいずれかに記載の熱可塑性樹脂である。
<5> 前記一般式(1)で表されるモノマーが、下記式で表される異性体Bのみ、あるいは異性体B及び下記式で表される異性体Aの混合物からなる、上記<1>から<4>のいずれかに記載の熱可塑性樹脂である。
Figure JPOXMLDOC01-appb-C000012
(上記式中、R、R11及びXは、一般式(1)におけるものと同義である。)
<6> 前記異性体Aと前記異性体Bとの異性体比が、A:B=0:100~99:1である、上記<5>に記載の熱可塑性樹脂である。
<7> 前記熱可塑性樹脂が、下記一般式(2)で表されるモノマー由来の構成単位(B)及び/又は下記一般式(3)で表されるモノマー由来の構成単位(C)を含む、上記<1>から<6>のいずれかに記載の熱可塑性樹脂である。
Figure JPOXMLDOC01-appb-C000013
(一般式(2)中、
 R及びRは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよい炭素数1~20のアルキル基、置換基を有してもよい炭素数1~20のアルコキシル基、置換基を有してもよい炭素数5~20のシクロアルキル基、置換基を有してもよい炭素数5~20のシクロアルコキシル基、置換基を有してもよい炭素数6~20のアリール基、O、N及びSから選択される1つ以上のヘテロ環原子を含む、置換基を有してもよい炭素数6~20のヘテロアリール基、置換基を有してもよい炭素数6~20のアリールオキシ基、及び、-C≡C-Rからなる群より選択され、
 Rは置換基を有してもよい炭素数6~20のアリール基、又は、O、N及びSから選択される1つ以上のヘテロ環原子を含む、置換基を有してもよい炭素数6~20のヘテロアリール基を表し、
 Xは、単結合であるか、又は置換基を有してもよいフルオレン基を表し、
 A及びBは、それぞれ独立に、置換基を有してもよい炭素数1~5のアルキレン基を表し、
 m及びnは、それぞれ独立に、0~6の整数を表し、
 a及びbは、それぞれ独立に、0~10の整数を表す。)
Figure JPOXMLDOC01-appb-C000014
(一般式(3)中、
 R及びRは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよい炭素数1~20のアルキル基、置換基を有してもよい炭素数1~20のアルコキシル基、置換基を有してもよい炭素数5~20のシクロアルキル基、置換基を有してもよい炭素数5~20のシクロアルコキシル基、及び、置換基を有してもよい炭素数6~20のアリール基からなる群より選択され、
 Yは、単結合、置換基を有してもよいフルオレン基、又は下記式(4)~(10)で表される構造式のうちいずれかであり、
Figure JPOXMLDOC01-appb-C000015
(式(4)~(10)中、
 R61、R62、R71及びR72は、それぞれ独立して、水素原子、ハロゲン原子、置換基を有してもよい炭素数1~20のアルキル基、又は、置換基を有してもよい炭素数6~30のアリール基を表すか、あるいは、R61及びR62、又はR71及びR72が互いに結合して形成する、置換基を有してもよい炭素数1~20の炭素環又は複素環を表し、
 r及びsは、それぞれ独立して、0~5000の整数を表す。)
 A及びBは、それぞれ独立に、置換基を有してもよい炭素数1~5のアルキレン基を表し、
 p及びqは、それぞれ独立に、0~4の整数を表し、
 a及びbは、それぞれ独立に、0~10の整数を表す。)
<8> 前記一般式(2)及び一般式(3)において、前記A及びBが、それぞれ独立に、炭素数2又は3のアルキレン基を表す、上記<7>に記載の熱可塑性樹脂である。
<9> 前記熱可塑性樹脂が、少なくとも、BPEF,BNE,BNEF及びDPBHBNAのいずれかに由来する構成単位を含む、上記<7>又は<8>に記載の熱可塑性樹脂である。
<10> 前記熱可塑性樹脂が、更に、下記のモノマー群から選択される少なくとも一つのモノマーに由来する構成単位を含む、上記<1>から<9>のいずれかに記載の熱可塑性樹脂である。
Figure JPOXMLDOC01-appb-C000016
(上記式中、R及びRは、それぞれ独立に、水素原子、メチル基又はエチル基を表し、R及びRは、それぞれ独立に、水素原子、メチル基、エチル基又は炭素数2~5のアルキレングリコールを表す。)
<11> 前記熱可塑性樹脂のポリスチレン換算重量平均分子量(Mw)が、10,000~200,000である、上記<1>から<10>のいずれかに記載の熱可塑性樹脂である。
<12> 前記熱可塑性樹脂の屈折率(nD)が、1.599~1.750である、上記<1>から<11>のいずれかに記載の熱可塑性樹脂である。
<13> 前記熱可塑性樹脂のアッベ数(ν)が、25.0~33.0である、上記<1>から<12>のいずれかに記載の熱可塑性樹脂である。
<14> 前記熱可塑性樹脂のガラス転移温度が、135~200℃である、上記<1>から<13>のいずれかに記載の熱可塑性樹脂である。
<15> 下記一般式(1)で表される改質剤と熱可塑性樹脂とを含む、熱可塑性樹脂組成物である。
Figure JPOXMLDOC01-appb-C000017
(一般式(1)中、R及びR11は、それぞれ独立に、水素原子、炭素数6~12のアリール基、又は炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基を表し、Xは、下記一般式(a)~(d)のいずれかを表す。)
Figure JPOXMLDOC01-appb-C000018
(一般式(a)~(d)中、星印は結合部位を示す。R21~R57は、それぞれ独立に、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基、又は炭素数1~7の直鎖状若しくは分岐鎖状のアルコキシ基を表す。)
<16> 上記<1>から<14>のいずれかに記載の熱可塑性樹脂又は上記<15>に記載の熱可塑性樹脂組成物を含む、光学部材である。
<17> 上記<1>から<14>のいずれかに記載の熱可塑性樹脂又は上記<15>に記載の熱可塑性樹脂組成物を含む、光学レンズである。
<18> 上記<1>から<14>のいずれかに記載の熱可塑性樹脂又は上記<15>に記載の熱可塑性樹脂組成物を含む、光学フィルムである。
 本発明によれば、屈折率やアッベ数などの光学特性に優れ、かつ、耐熱性にも優れた脂肪族成分の多い樹脂及びそれを含む光学レンズを提供することができる。
 以下、本発明について合成例や実施例等を例示して詳細に説明するが、本発明は例示される合成例や実施例等に限定されるものではなく、本発明の内容を大きく逸脱しない範囲であれば任意の方法に変更して行うこともできる。
<熱可塑性樹脂>
 本発明の一実施形態は、下記一般式(1)で表されるモノマー由来の構成単位(A)を含む熱可塑性樹脂である。
Figure JPOXMLDOC01-appb-C000019
 一般式(1)中、R及びR11は、それぞれ独立に、水素原子、炭素数6~12(好ましくは炭素数6~10、より好ましくは炭素数6)のアリール基、又は炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基を表し、Xは、下記一般式(a)~(d)のいずれかを表す。
Figure JPOXMLDOC01-appb-C000020
 一般式(a)~(d)中、星印は結合部位を示す。R21~R57は、それぞれ独立に、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基、又は炭素数1~7の直鎖状若しくは分岐鎖状のアルコキシ基を表す。
 一般式(a)で表される構造のうち、以下の構造が好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000021
 一般式(d)で表される構造のうち、以下の構造が好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000022
 一般式(1)において、R及びR11で表される炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基としては、特に制限ないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等のアルキル基が挙げられる。このうち好ましくは、メチル基、エチル基、イソブチル基、tert-ブチル基であり、特に好ましくは、エチル基及びメチル基である。
 一般式(1)において、R及びR11で表される炭素数6~12のアリール基としては、フェニル基が特に好ましく挙げられる。
 一般式(1)において、Xは、一般式(a)~(d)のいずれかで表され、R21~R57で表される炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基としては、特に制限ないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等のアルキル基が挙げられる。また、炭素数1~7の直鎖状若しくは分岐鎖状のアルコキシ基としては、特に制限ないが、例えば、メトキシ基、エトキシ基等のアルコキシ基が挙げられる。
 一般式(a)~(d)中、R21~R57は水素原子が好ましい。具体的には、Xは、フェニル基(一般式(a))、ビフェニル基(一般式(b))、1-ナフチル基(一般式(c))、及び2-ナフチル基(一般式(d))が好ましく挙げられる。このうちより好ましくは、フェニル基である。
 一般式(1)で表される環式ジオール化合物のうち、具体的に好ましい構造式としては例えば以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000023
 一般式(1)で表される環式ジオール化合物の具体的な例としては、5-フェニル-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(4-メチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(4-エチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(3,4-ジメチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(2,4-ジメチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(3-フルオロ-4-メチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(4-イソプロピルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(2,4,6-トリメチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(2,4,5-トリメチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(3-クロロ-4-メチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(4-ブチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(4-tert-ブチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(4-イソブチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(ペンタメチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(4-ビフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(3-ブロモ-4-メチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(4-クロロビフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(3-メチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(3,5-ジメチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(4-フルオロ-3-メチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(4-メトキシ-2,3,6-トリメチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(3-ビフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール5-(2-ブロモ-5-メチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(3,5-ジ-tert-ブチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(2-メチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(2,3-ジメチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(2,6-ジメチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(5-フルオロ-2-メチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(4-フルオロ-2-メチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(3-フルオロ-2-メチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(5-ブロモ―2-メチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(1-ナフタレン)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(2-ナフタレン)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(4-メトキシフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(4-エトキシフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(3-フルオロ-4-メトキシフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(2-フルオロ-4-メトキシフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(4-イソプロポキシフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(4-プロポキシフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(2,4-ジメトキシフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(3,4-ジメトキシフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(3-クロロ-4-メトキシフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(4-メトキシ-2,3,6-トリメチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(4-tert-ブトキシフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(2,4-ジメトキシ-3-メチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(3-エトキシ-4-メトキシフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(4-エトキシ-3-メトキシフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(2-フルオロ-4,5-ジメトキシフェニル)―1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(4-アミルオキシフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(2,4-ジエトキシフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(3,4-ジエトキシフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(2,4,5-トリメトキシフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(3,4,5-トリメトキシフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(2,3,4-トリメトキシフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(2,4,6-トリメトキシフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(2-クロロ-3,4-ジメトキシフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(4-ヘキシルオキシフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(3-ブロモ-4-メトキシフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(4-ヘプチルオキシフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(2-ブロモ-4,5-ジメトキシフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(3-ブロモ-4,5-ジメトキシフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(2-ナフチル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(4-メトキシ-1-ナフチル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(2-メトキシ-1-ナフチル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(2-エトキシ-1-ナフチル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(6-メトキシ-2-ナフチル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-フェニル-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(4-メチルフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(4-エチルフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(3,4-ジメチルフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(2,4-ジメチルフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(3-フルオロ-4-メチルフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(4-イソプロピルフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(2,4,6-トリメチルフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(2,4,5-トリメチルフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(3-クロロ-4-メチルフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(4-ブチルフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(4-tert-ブチルフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(4-イソブチルフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(ペンタメチルフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(4-ビフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(3-ブロモ-4-メチルフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(4-クロロビフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(3-メチルフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(3,5-ジメチルフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(4-フルオロ-3-メチルフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(4-メトキシ-2,3,6-トリメチルフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(3-ビフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(2-ブロモ-5-メチルフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(3,5-ジ-tert-ブチルフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(2-メチルフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(2,3-ジメチルフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(2,6-ジメチルフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(5-フルオロ-2-メチルフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(4-フルオロ-2-メチルフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(3-フルオロ-2-メチルフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(5-ブロモ-2-メチルフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(1-ナフチル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(2-ナフチル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(4-メトキシフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(4-エトキシフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(3-フルオロ-4-メトキシフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(2-フルオロ-4-メトキシフェニル)-1,



3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(4-イソプロポキシフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(4-プロポキシフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(2,4-ジメトキシフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(3,4-ジメトキシフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(3-クロロ-4-メトキシフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(4-メトキシ-2,3,6-トリメチルフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(4-tert-ブトキシフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(2,4-ジメトキシ-3-メチルフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(3-エトキシ-4-メトキシフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(4-エトキシ-3-メトキシフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(2-フルオロ-4,5-ジメトキシフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(4-アミルオキシフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(2,4-ジエトキシフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(3,4-ジエトキシフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(2,4,5-トリメトキシフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(3,4,5-トリメトキシフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(2,3,4-トリメトキシフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(2,4,6-トリメトキシフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(2-クロロ-3,4-ジメトキシフェニル)-1,3-シクロヘキサンジオントリメチロ-ルエタンジアセタール、5-(4-ヘキシルオキシフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(3-ブロモ-4-メトキシフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(4-ヘプチルオキシフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(2-ブロモ-4,5-ジメトキシフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(3-ブロモ-4,5-ジメトキシフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(4-メトキシ-1-ナフチル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(2-メトキシ-1-ナフチル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(2-エトキシ-1-ナフチル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(6-メトキシ-2-ナフチル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール等が挙げられる。
 それらの中でも好ましい化合物は、5-フェニル-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-フェニル-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(4-tert-ブチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(2,4,6-トリメチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(2,4-ジメチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(4-メチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(3,4-ジメチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(4-メトキシフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(4-イソプロピルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(4-イソブチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(4-tert-ブチルフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(4-ビフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(4-ビフェニル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(1-ナフチル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(1-ナフチル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタール、5-(2-ナフチル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール、5-(2-ナフチル)-1,3-シクロヘキサンジオントリメチロールエタンジアセタールであり、さらに好ましい化合物としては、5-フェニル-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール及び5-フェニル-1,3-シクロヘキサンジオントリメチロールエタンジアセタールである。
 一般式(1)で表される環式ジオール化合物は、下記式で表される異性体Bのみ、あるいは異性体B及び下記式で表される異性体Aの混合物からなることが好ましい。また、その他の異性体として下記式で表される異性体Cが挙げられる。
Figure JPOXMLDOC01-appb-C000024
 上記式中、R、R11及びXは、一般式(1)におけるものと同義である。
 本発明の一実施形態において、前記異性体Aと前記異性体Bとの異性体比は、A:B=0:100~99:1であることが好ましく、0:100~50:50であることがより好ましく、20:80~50:50であることが特に好ましい。なお、異性体比は、ガスクロマトグラフィー(GC)分析を行い、面積百分率法により求めることができる。
 一般式(1)で表される新規な環式ジオール化合物は、例えば、下記反応式(I)に示すようにして製造することができる。
<反応式(I)>
Figure JPOXMLDOC01-appb-C000025
[式中、R、R11及びXは、前記一般式(1)におけるものと同義である。]
 上記の反応式(I)に示すように、一般式(1)で表される新規な環式ジオール化合物の製造方法としては、5位に置換基Xを有する1,3-シクロヘキサンジオン化合物と、2位に置換基R又はR11を有する2-ヒドロキシメチル-1,3-プロパンジオール化合物とをトルエン溶媒中、酸性触媒存在下でアセタール化反応する製造方法が例示される。
 上記の5位に置換基Xを有する1,3-シクロヘキサンジオン化合物(下記式(3)の化合物)は、下記反応式(II)に示すように、一般式(5)で表される化合物と一般式(6)で表される化合物とを、塩基の存在下に反応させた後、酸で処理することにより製造することができる。
<反応式(II)>
Figure JPOXMLDOC01-appb-C000026
[式中、Rは、同一又は異なって、それぞれ、炭素数1~3のアルキル基を示す。Xは前記に同じ。]
 Rで示される炭素数1~3のアルキル基としては、例えば、メチル基、エチル基、イソプロピル基等が挙げられる。
 本反応は、公知の方法、例えば、Chemistry - A Eurpean Journal (2017), 23(49), 11757-11760、Zhurnal Obshchei Khimii (1957), 27. 3087-92等に記載の方法に従い又は準じて実施することができる。
 本発明の一実施形態の熱可塑性樹脂は、ポリエステル樹脂、ポリカーボネート樹脂、ポリエステルカーボネート樹脂、エポキシ樹脂、ポリウレタン樹脂、ポリアクリル酸エステル樹脂、ポリメタクリル酸エステル樹脂等、特に制限はないが、ポリカーボネート樹脂又はポリエステルカーボネート樹脂であることが好ましく、下記式で表される構成単位(A)を含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000027
[式中、R、R11及びXは、前記一般式(1)におけるものと同義である。]
 本発明の一実施形態の熱可塑性樹脂において、全構成単位に占める上記式で表される構成単位(A)の割合は特に限定されないが、全構成単位中1~80モル%であることが好ましく、1~60モル%であることがより好ましく、5~50モル%であることが特に好ましい。
 つまり、本発明の一実施形態の熱可塑性樹脂は、上記式で表される構成単位(A)以外にも、一般的にポリカーボネート樹脂やポリエステルカーボネート樹脂の構成単位として用いられる脂肪族ジヒドロキシ化合物から誘導される構成単位や芳香族ジヒドロキシ化合物から誘導される構成単位を含むことができる。
 具体的には、脂肪族ジヒドロキシ化合物としては、様々なものが挙げられるが、特に、1,4-シクロヘキサンジメタノール、トリシクロデカンジメタノール、1,3-アダマンタンジメタノール、2,2-ビス(4-ヒドロキシシクロヘキシル)-プロパン、3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、2-(5-エチル-5-ヒドロキシメチル-1,3-ジオキサン-2-イル)-2-メチルプロパン-1-オール、イソソルビド、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール等が挙げられる。
 芳香族ジヒドロキシ化合物としては、様々なものを挙げることができるが、特に2,2-ビス(4-ヒドロキシフェニル)プロパン〔ビスフェノールA〕、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、4,4’-ジヒドロキシジフェニル、ビス(4-ヒドロキシフェニル)シクロアルカン、ビス(4-ヒドロキシフェニル)オキシド、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)スルホキシド、及びビス(4-ヒドロキシフェニル)ケトン、ビスフェノキシエタノールフルオレン等を挙げることができる。
 また、本発明の一実施形態の熱可塑性樹脂は、下記一般式(2)で表されるモノマー由来の構成単位(B)を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000028
 一般式(2)において、R及びRは、それぞれ独立に、ハロゲン原子、置換基を有してもよい炭素数1~20のアルキル基、置換基を有してもよい炭素数1~20のアルコキシル基、置換基を有してもよい炭素数5~20のシクロアルキル基、置換基を有してもよい炭素数5~20のシクロアルコキシル基、置換基を有してもよい炭素数6~20のアリール基、O、N及びSから選択される1つ以上のヘテロ環原子を含む、置換基を有してもよい炭素数6~20のヘテロアリール基、置換基を有してもよい炭素数6~20のアリールオキシ基、及び、-C≡C-Rからなる群より選択される。Rは置換基を有してもよい炭素数6~20のアリール基、又は、O、N及びSから選択される1つ以上のヘテロ環原子を含む、置換基を有してもよい炭素数6~20のヘテロアリール基を表す。
 R及びRは、好ましくは、水素原子、置換基を有してもよい炭素数6~20のアリール基、O、N及びSから選択される1つ以上のヘテロ環原子を含む、置換基を有してもよい炭素数6~20のヘテロアリール基であり、より好ましくは、水素原子、置換基を有してもよい炭素数6~20のアリール基であり、さらに好ましくは、水素原子、置換基を有してもよい炭素数6~12のアリール基である。
 一般式(2)において、Xは、単結合であるか、又は置換基を有してもよいフルオレン基を表す。Xは、好ましくは、単結合、又は、合計炭素数が12~20の置換基を有してもよいフルオレン基である。
 一般式(2)において、A及びBは、それぞれ独立に、置換基を有してもよい炭素数1~5のアルキレン基であり、好ましくは、炭素数2又は3のアルキレン基である。
 一般式(2)において、m及びnは、それぞれ独立に、0~6の整数であり、好ましくは0~3の整数であり、より好ましくは0又は1である。
 一般式(2)において、a及びbは、それぞれ独立に、0~10の整数であり、好ましくは1~3の整数であり、より好ましくは1又は2である。
 構成単位(B)の具体例として、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレン(BNE),DPBHBNA等に由来するものが挙げられる。
Figure JPOXMLDOC01-appb-C000029
 また、本発明の一実施形態の熱可塑性樹脂は、下記一般式(3)で表されるモノマー由来の構成単位(C)を有することが好ましい。
Figure JPOXMLDOC01-appb-C000030
 一般式(3)において、R及びRは、それぞれ独立に、ハロゲン原子、置換基を有してもよい炭素数1~20のアルキル基、置換基を有してもよい炭素数1~20のアルコキシル基、置換基を有してもよい炭素数5~20のシクロアルキル基、置換基を有してもよい炭素数5~20のシクロアルコキシル基、及び、置換基を有してもよい炭素数6~20のアリール基からなる群より選択される。
 R及びRは、好ましくは、水素原子、置換基を有してもよい炭素数6~20のアリール基、O、N及びSから選択される1つ以上のヘテロ環原子を含む、置換基を有してもよい炭素数6~20のヘテロアリール基であり、より好ましくは、水素原子、置換基を有してもよい炭素数6~20のアリール基であり、さらに好ましくは、水素原子、置換基を有してもよい炭素数6~12のアリール基である。
 一般式(3)において、Yは、単結合、置換基を有してもよいフルオレン基、又は下記式(4)~(10)で表される構造式のうちいずれかであり、好ましくは、単結合、又は、下記式(4)で表される構造式である。
Figure JPOXMLDOC01-appb-C000031
 式(4)~(10)中、R61、R62、R71及びR72は、それぞれ独立して、水素原子、ハロゲン原子、置換基を有してもよい炭素数1~20のアルキル基、又は、置換基を有してもよい炭素数6~30のアリール基を表すか、あるいは、R61及びR62、又はR71及びR72が互いに結合して形成する、置換基を有してもよい炭素数1~20の炭素環又は複素環を表す。
 式(4)~(10)において、r及びsは、それぞれ独立して、0~5000の整数である。
 上記一般式(3)において、A及びBは、それぞれ独立に、置換基を有してもよい炭素数1~5のアルキレン基であり、好ましくは、炭素数2又は3のアルキレン基である。上記一般式(3)において、p及びqは、それぞれ独立に、0~4の整数であり、好ましくは0又は1である。また、上記一般式(3)において、a及びbは、それぞれ独立に、0~10の整数であり、好ましくは0~5の整数であり、より好ましくは0~2の整数であり、例えば、0又は1である。
 構成単位(C)の具体例として、BPEF(9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン)、BPPEF(9,9-ビス(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)フルオレン)、9,9-ビス[6-(2-ヒドロキシエトキシ)ナフタレン-2-イル]フルオレン(BNEF)、ビスフェノールA、ビスフェノールAP、ビスフェノールAF、ビスフェノールB、ビスフェノールBP、ビスフェノールC、ビス(4-ヒドロキシフェニル)-2,2-ジクロロエチレン、ビスフェノールE、ビスフェノールF、ビスフェノールG、ビスフェノールM、ビスフェノールS、ビスフェノールP、ビスフェノールPH、ビスフェノールTMC、ビスフェノールP-AP(4,4’-(1-フェニルエチリデン)ビスフェノール)、ビスフェノールP-CDE(4,4’-シクロドデシリデンビスフェノール)、ビスフェノールP-HTG(4,4’-(3,3,5-トリメチルシクロへキシリデン)ビスフェノール)、ビスフェノールP-MIBK(4,4’-(1,3-ジメチルブチリデン)ビスフェノール)、ビスフェノールPEO-FL(ビスフェノキシエタノールフルオレン)、ビスフェノールP-3MZ(4-[1-(4-ヒドロキシフェニル)-3-メチルシクロヘキシル]フェノール)、ビスフェノールOC-FL(4,4’-[1-[4-[1-(4-ヒドロキシフェニル)-1-メチルエチル]フェニル]エチリデン]ビスフェノール)、ビスフェノールZ、BP-2EO(2,2’-[[1,1’-ビフェニル]-4,4’-ジイルビス(オキシ)ビスエタノール)、S-BOC(4,4’-(1-メチルエチリデン)ビス(2-メチルフェノール)、)TrisP-HAP(4,4’,4’’-エチリデントリスフェノール)等に由来するものが挙げられる。これらの中でも、構成単位(C)として、BPEF又はBNEFに由来するものが好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000032
 本発明の一実施形態の熱可塑性樹脂は、構成単位(A)を必須とするが、構成単位(B)を含み構成単位(C)を含まないポリマー、構成単位(C)を含み構成単位(B)を含まないポリマーの他にも、構成単位(B)と構成単位(C)とを有する共重合体、構成単位(B)を有するポリマーと構成単位(C)を有するポリマーとの混合物、これらの組み合わせであってもよい。構成単位(C)を含み構成単位(B)を含まないポリマーとして、例えば、下記の式(I-1)~(I-3)の構成単位を有するものが挙げられ、構成単位(B)と構成単位(C)とを有する共重合体として、例えば、下記の式(II-1)~(II-4)の構成単位を有するものが挙げられる。
Figure JPOXMLDOC01-appb-C000033
(式(I-1)中、m及びnは、それぞれ、1~10の整数であり、好ましくは1~5の整数であり、より好ましくは1であり、
 式(I-3)の繰り返し単位数は、1~10の整数であり、好ましくは1~5の整数であり、より好ましくは1である。)
 また、複数の種類の構成単位を有するポリマーとして、m及びnの値が例えば100以上と大きいブロック共重合体、及び、ランダム共重合体のいずれもが採用できるものの、ランダム共重合体が好ましく、より好ましくは、m及びnの値が1であるランダム共重合体が用いられる。
Figure JPOXMLDOC01-appb-C000034
(式(II-1)~(II-4)中、m及びnは、それぞれ独立して、1~10の整数であり、好ましくは1~5の整数であり、より好ましくは1である。)
 また、複数の種類の構成単位を有するポリマーとして、m及びnの値が例えば100以上と大きいブロック共重合体、及び、ランダム共重合体のいずれもが採用できるものの、ランダム共重合体が好ましく、より好ましくは、m及びnの値が1であるランダム共重合体が用いられる。
 共重合体において、構成単位(B)と構成単位(C)とのモル比は、1:99~99:1であることが好ましく、10:90~90:10であることがより好ましく、15:85~85:15であることがさらに好ましく、30:70~70:30であることが特に好ましい。また、混合物においては、構成単位(B)を有するポリマーと構成単位(C)を有するポリマーとの質量比が、1:99~99:1であることが好ましく、10:90~90:10であることがより好ましく、15:85~85:15であることがさらに好ましく、30:70~70:30であることが特に好ましい。
 本発明の一実施形態の熱可塑性樹脂は、更に、下記のモノマー群から選択される少なくとも一つのモノマーに由来する構成単位を含むものも好ましい。
Figure JPOXMLDOC01-appb-C000035
(上記式中、R及びRは、それぞれ独立に、水素原子、メチル基又はエチル基を表し、R及びRは、それぞれ独立に、水素原子、メチル基、エチル基又は炭素数2~5のアルキレングリコールを表す。)
 本発明の好ましい一実施形態のポリカーボネート樹脂には、製造時に副生成物として生じ得るフェノール系化合物などのアルコール系化合物や、反応せずに残存したジオール成分又は炭酸ジエステルが不純物として存在している場合がある。
 不純物であるフェノール系化合物などのアルコール系化合物や炭酸ジエステルは、成形体としたときの強度低下や、臭気発生の原因ともなり得るため、これらの含有量は極力少ない程好ましい。
 残存するフェノール系化合物の含有量は、ポリカーボネート樹脂100質量%に対して、好ましくは3000質量ppm以下、より好ましくは1000質量ppm以下、特に好ましくは300質量ppm以下である。
 残存するジオール成分の含有量は、ポリカーボネート樹脂100質量%に対して、好ましくは1000質量ppm以下、より好ましくは100質量ppm以下、特に好ましくは10質量ppm以下である。
 残存する炭酸ジエステルの含有量は、ポリカーボネート樹脂100質量%に対して、好ましくは1000質量ppm以下、より好ましくは100質量ppm以下、特に好ましくは10質量ppm以下である。
 特に、フェノール、t-ブチルフェノールなどの化合物の含有量が、少ないことが好ましく、これらの化合物が上記範囲内であることが好ましい。
 ポリカーボネート樹脂中に残存するフェノール系化合物の含有量は、ポリカーボネート樹脂から抽出したフェノール系化合物を、ガスクロマトグラフィーを用いて分析する手法により測定することができる。
 ポリカーボネート樹脂中に残存するアルコール系化合物の含有量についても、ポリカーボネート樹脂から抽出したアルコール系化合物を、ガスクロマトグラフィーを用いて分析する手法により測定することができる。
 ポリカーボネート樹脂中に残存するジオール成分、炭酸ジエステルの含有量も、ポリカーボネート樹脂からこれらの化合物を抽出し、ガスクロマトグラフィーを用いて分析する手法により測定することができる。
 フェノール系化合物などの副生アルコール系化合物、ジオール成分及び炭酸ジエステルの含有量は、検出されないほど低減してもよいが、生産性の観点から、効果を損なわない範囲で、わずかに含有していてもよい。また、わずかな量であれば、樹脂溶融時に可塑性を良好とすることもできる。
 残存するフェノール系化合物、ジオール成分又は炭酸ジエステルのそれぞれの含有量は、ポリカーボネート樹脂100質量%に対して、例えば、0.01質量ppm以上、0.1質量ppm以上、又は1質量ppm以上であってもよい。
 残存するアルコール系化合物の含有量は、ポリカーボネート樹脂100質量%に対して、例えば、0.01質量ppm以上、0.1質量ppm以上、又は1質量ppm以上であってもよい。
 なお、ポリカーボネート樹脂中のフェノール系化合物などの副生アルコール系化合物、ジオール成分及び炭酸ジエステルの含有量は、重縮合の条件や装置の設定を適宜調整することで、上記範囲となるように調節することは可能である。また、重縮合後の押出工程の条件によっても調節可能である。
 例えば、フェノール系化合物などの副生アルコール系化合物の残存量は、ポリカーボネート樹脂の重合に用いる炭酸ジエステルの種類や、重合反応温度および重合圧力等に関係する。これらを調整することでフェノール系化合物などの副生アルコール系化合物の残存量を低減し得る。
 例えば、炭酸ジエチルなどの炭酸ジアルキルを用いてポリカーボネート樹脂を製造した場合、分子量が上がりにくく、低分子量のポリカーボネートとなり、副生するアルキルアルコール系化合物の含有量が高くなる傾向にある。このようなアルキルアルコールは揮発性が高く、ポリカーボネート樹脂中に残存すると、樹脂の成形性が悪化する傾向にある。また、フェノール系化合物などの副生アルコール系化合物の残存量が多いと、樹脂の成形時に、臭気の問題が生じる可能性や、コンパウンド時に樹脂骨格の開裂反応が進行して分子量の低下が生じる可能性がある。したがって、得られたポリカーボネート樹脂中の残存する副生アルコール系化合物の含有量が、ポリカーボネート樹脂(100質量%)に対して、3000質量ppm以下であることが好ましい。残存するアルコール系化合物の含有量は、ポリカーボネート樹脂100質量%に対して、好ましくは3000質量ppm以下、より好ましくは1000質量ppm以下、特に好ましくは300質量ppm以下である。
<熱可塑性樹脂の物性>
(1)屈折率(nD)
 本発明の一実施形態において、熱可塑性樹脂は高屈折率であることが特徴の一つであり、屈折率は、1.500~1.750であることが好ましく、1.599~1.750であることがより好ましく、1.599~1.650であることが更に好ましく、1.600~1.650であることが特に好ましい。本発明において屈折率は、後述する実施例に記載の方法で測定することができる。
(2)アッベ数(ν)
 本発明の一実施形態において、熱可塑性樹脂のアッベ数は、20.0~55.0であることが好ましく、25.0~33.0であることがより好ましく、25.5~32.0であることが更に好ましく、26.0~30.0であることが特に好ましい。本発明においてアッベ数は、後述する実施例に記載の方法で測定することができる。
(3)ガラス転移温度(Tg)
 本発明の一実施形態において、熱可塑性樹脂は、高耐熱性であることが特徴の一つであり、ガラス転移温度(Tg)は、135~200℃であることが好ましく、140~180℃であることがより好ましく、140~170℃であることが特に好ましい。本発明においてガラス転移温度は、後述する実施例に記載の方法で測定することができる。
(4)ポリスチレン換算重量平均分子量(Mw)
 本発明の一実施形態において、熱可塑性樹脂のポリスチレン換算重量平均分子量は、10,000~200,000であることが好ましく、10,000~100,000であることがより好ましく、10,000~80,000であることが特に好ましい。
<熱可塑性樹脂組成物>
 本発明の別の実施形態は、上述した熱可塑性樹脂と添加剤とを含む熱可塑性樹脂組成物である。本実施形態の熱可塑性樹脂組成物は、本実施形態の所望とする効果を損なわない範囲で、上述した構成単位(A)を含む本発明の熱可塑性樹脂以外の樹脂を併用することができる。そのような樹脂としては、特に限定されないが、例えば、ポリカーボネート樹脂、ポリエステル樹脂、ポリエステルカーボネート樹脂、(メタ)アクリル樹脂、ポリアミド樹脂、ポリスチレン樹脂、シクロオレフィン樹脂、アクリロニトリル-ブタジエン-スチレン共重合樹脂、塩化ビニル樹脂、ポリフェニレンエーテル樹脂、ポリスルホン樹脂、ポリアセタール樹脂及びメチルメタクリレート-スチレン共重合樹脂からなる群より選択される少なくとも1つの樹脂が挙げられる。これらは種々既知のものを用いることができ、1種を単独で又は2種以上を併用して熱可塑性樹脂組成物に加えることができる。
[酸化防止剤]
 熱可塑性樹脂組成物は、上記添加剤として酸化防止剤を含むことが好ましい。
 酸化防止剤として、フェノール系酸化防止剤及びホスファイト系酸化防止剤の少なくとも一方を含むことが好ましい。
 フェノール系酸化防止剤として、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニルメチル)-2,4,6-トリメチルベンゼン、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジンe-2,4,6(1H,3H,5H)-トリオン、4,4’,4’’-(1-メチルプロパニル-3-イリデン)トリス(6-tert-ブチル-m-クレゾール)、6,6’-ジ-tert-ブチル-4,4’-ブチリデンジ-m-クレゾール、オクラデシル3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、ペンタエリスリトール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,9-ビス{2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1-ジメチルエチル}-2,4,8,10-テトラオキソスピロ[5.5]ウンデカン、ペンタエリスリトール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]等が挙げられ、好ましくは、ペンタエリスリトール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]である。
 ホスファイト系酸化防止剤として、2-エチルヘキシルジフェニルフォスファイト、イソデシルジフェニルフォスファイト、トリイソデシルフォスファイト、トリフェニルフォスファイト、3,9-ビス(オクタデシルオキシ)-2,4,8,10-テトラオキシ-3,9-ジフォスファスピロ[5.5]ウンデカン、3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジフォスファスピロ[5.5]ウンデカン、2,2’-メチルエンビス(4,6-ジ-tert-ブチルフェニル)2-エチルヘキシルフォスファイト、トリス(2,4-ジtert-ブチルフェニル)フォスファイト、トリス(ノニルフェニル)フォスファイト、テトラ-C12-15-アルキル(プロパン-2,2-ジイルビス(4,1-フェニルエン))ビス(フォスファイト)、3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジフォスファスピロ[5.5]ウンデカン等が挙げられ、好ましくは、3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジフォスファスピロ[5.5]ウンデカンである。
 酸化防止剤として、上述のいずれか1種類のみを用いても、2種類以上の混合物を用いてもよい。
 熱可塑性樹脂組成物において、酸化防止剤は、樹脂組成物の全重量を基準として1重量ppm~3000重量ppm含まれることが好ましい。熱可塑性樹脂組成物における酸化防止剤の含有量は、より好ましくは50重量ppm~2500重量ppmであり、さらに好ましくは100重量ppm~2000重量ppmであり、特に好ましくは150重量ppm~1500重量ppmであり、より一段と好ましくは200重量ppm~1200重量ppmである。
[離型剤]
 熱可塑性樹脂組成物は、上記添加剤として離型剤を含むことが好ましい。
 離型剤として、エステル化合物、例えば、グリセリン脂肪酸のモノ・ジグリセリド等のグリセリン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ソルビタン脂肪酸エステル等のグリコール脂肪酸エステル、高級アルコール脂肪酸エステル、脂肪族多価アルコールと脂肪族カルボン酸とのフルエステルあるいはモノ脂肪酸エステル等が挙げられる。離型剤として、脂肪族多価アルコールと脂肪族カルボン酸とのエステルを用いる場合、モノエステル、フルエステル等、いずれも採用できるが、例えばモノエステル等のフルエステル以外であってもよい。
 離型剤の具体例として、以下のものが挙げられる。
 すなわち、ソルビタン ステアレート、ソルビタン ラウレート、ソルビタン オレート、ソルビタン トリオレート、ソルビタン トリベヘネート、ソルビタン ステアレート、ソルビタン トリステアレート、ソルビタン カプリレート等のソルビタン脂肪酸エステル;
 プロピレングリコール モノステアレート、プロピレングリコール モノオレート、プロピレングリコール モノベヘネート、プロピレングリコール モノラウレート、プロピレングリコール モノパルミテート等のプロピレングリコール脂肪酸エステル;
 ステアリル ステアレート等の高級アルコール脂肪酸エステル;
 グリセリン モノステアレート、グリセリン モノ12-ヒドロキシステアレート等のグリセリン モノヒドロキシステアレート、グリセリン モノオレート、グリセリン モノベヘネート、グリセリン モノカプリレート、グリセリン モノカプレート、グリセリン モノラウレート等のモノグリセライド:グリセリンモノ・ジステアレート、グリセリンモノ・ジステアレート、グリセリンモノ・ジベヘネート、グリセリンモノ・ジオレート等のモノ・ジグリセライド:を含む、グリセリン脂肪酸エステルモノグリセライド;
 グリセリン ジアセトモノ ラウレート等のグリセリン脂肪酸エステルアセチル化モノグリセライド;
 クエン酸脂肪酸 モノグリセライド、コハク酸脂肪酸 モノグリセライド、ジアセチル酒石酸脂肪酸 モノグリセライド等のグリセリン脂肪酸エステル有機酸モノグリセライド;
 ジグリセリン ステアレート、ジグリセリン ラウレート、ジグリセリン オレート、ジグリセリン モノステアレート、ジグリセリン モノラウレート、ジグリセリン モノミリステート、ジグリセリン モノオレート、テトラグリセリン ステアレート、デカグリセリン ラウレート、デカグリセリン オレート、ポリグリセリン ポリリシノレート等のポリグリセリン脂肪酸エステル等が挙げられる。
 熱可塑性樹脂組成物において、離型剤は、樹脂組成物の全重量を基準として1重量ppm~5000重量ppm含まれることが好ましい。熱可塑性樹脂組成物における離型剤の含有量は、より好ましくは50重量ppm~4000重量ppmであり、さらに好ましくは100重量ppm~3500重量ppmであり、特に好ましくは500重量ppm~13000重量ppmであり、より一段と好ましくは1000重量ppm~2500重量ppmである。
[その他の添加剤]
 熱可塑性樹脂組成物には、上述の酸化防止剤及び離型剤以外にも、その他の添加剤を加えてもよい。例えば、熱可塑性樹脂組成物が含み得る添加剤として、配合剤、触媒失活剤、熱安定剤、可塑剤、充填剤、紫外線吸収剤、防錆剤、分散剤、消泡剤、レベリング剤、難燃剤、滑剤、染料、顔料、ブルーイング剤、核剤、透明化剤等が挙げられる。
 熱可塑性樹脂組成物における酸化防止剤及び離型剤以外のその他の添加剤の含有量は、好ましくは10重量ppm~5.0重量%であり、より好ましくは100重量ppm~2.0重量%であり、さらに好ましくは1000重量ppm~1.0重量%であるが、これには限定されない。
 上述の添加剤は、透過率に悪影響を与える可能性があり、過剰に添加しないことが好ましく、例えば、合計の添加量は上述の範囲内である。
 本発明の熱可塑性樹脂組成物の製造方法では、重合反応終了後、熱安定性および加水分解安定性を保持するために、触媒を除去もしくは失活させてもよいが、必ずしも失活させる必要はない。失活させる場合、公知の酸性物質の添加による触媒の失活のための方法を好適に実施できる。酸性物質としては、具体的には、安息香酸ブチル等のエステル類;p-トルエンスルホン酸等の芳香族スルホン酸類;p-トルエンスルホン酸ブチル、p-トルエンスルホン酸ヘキシル等の芳香族スルホン酸エステル類;亜リン酸、リン酸、ホスホン酸等のリン酸類;亜リン酸トリフェニル、亜リン酸モノフェニル、亜リン酸ジフェニル、亜リン酸ジエチル、亜リン酸ジn-プロピル、亜リン酸ジn-ブチル、亜リン酸ジn-ヘキシル、亜リン酸ジオクチル、亜リン酸モノオクチル等の亜リン酸エステル類;リン酸トリフェニル、リン酸ジフェニル、リン酸モノフェニル、リン酸ジブチル、リン酸ジオクチル、リン酸モノオクチル等のリン酸エステル類;ジフェニルホスホン酸、ジオクチルホスホン酸、ジブチルホスホン酸等のホスホン酸類;フェニルホスホン酸ジエチル等のホスホン酸エステル類;トリフェニルホスフィン、ビス(ジフェニルホスフィノ)エタン等のホスフィン類;ホウ酸、フェニルホウ酸等のホウ酸類;ドデシルベンゼンスルホン酸テトラブチルホスホニウム塩等の芳香族スルホン酸塩類;ステアリン酸クロライド、塩化ベンゾイル、p-トルエンスルホン酸クロライド等の有機ハロゲン化物;ジメチル硫酸等のアルキル硫酸;塩化ベンジル等の有機ハロゲン化物等が好適に用いられる。失活剤の効果、樹脂に対する安定性等の観点から、p-トルエンまたはスルホン酸ブチルが特に好ましい。これらの失活剤は、触媒量に対して0.01~50倍モル、好ましくは0.3~20倍モル使用される。触媒量に対して0.01倍モルより少ないと、失活効果が不充分となり好ましくない。また、触媒量に対して50倍モルより多いと、樹脂の耐熱性が低下し、成形体が着色しやすくなるため好ましくない。
 失活剤の混練は、重合反応終了後すぐに行ってもよく、あるいは、重合後の樹脂をペレット化してから行ってもよい。また、失活剤の他、その他の添加剤も、同様の方法で添加することができる。
 更に、本発明の別の実施形態は、下記一般式(1)で表される改質剤と熱可塑性樹脂とを含む、熱可塑性樹脂組成物である。
Figure JPOXMLDOC01-appb-C000036
 一般式(1)中、R、R11及びXは、上述した一般式(1)におけるものと同義である。つまり、一般式(1)で表される新規な環式ジオール化合物は、改質剤として用いることもできる。
 本発明の一実施形態において、上記の改質剤は、熱可塑性樹脂と改質剤との質量比が、熱可塑性樹脂:改質剤=99.9:0.1~70:30となるように配合することができる。上記の質量比は、好ましくは99:1~70:30であってよく、より好ましくは98:2~70:30であってよく、例えば99:1、98:2、97:3、96:4、95:5、94:6、93:7、92:8、91:9、90:10、85:15、80:20、75:25、70:30などであってよい。本発明において、熱可塑性樹脂と改質剤との質量比が上記の範囲にあれば、高流動で成形性が良い樹脂組成物を提供することができる。
<光学部材>
 本発明の熱可塑性樹脂又は熱可塑性樹脂組成物(以下、単に「樹脂組成物」と略す)は、光学部材に好適に用いることができる。本発明の一実施形態において、本発明の樹脂組成物を含む光学部材が提供される。本発明の一実施形態において、光学部材には、光ディスク、透明導電性基板、光カード、シート、フィルム、光ファイバー、レンズ、プリズム、光学膜、基盤、光学フィルター、ハードコート膜等が含まれるが、これらに限定されない。本発明の樹脂組成物は、高流動でキャスト法による成形が可能であるため、特に薄型の光学部材の製造に好適である。本発明の好ましい実施形態において、本発明の樹脂組成物を用いて製造される光学部材は、光学レンズであってよい。光学レンズの中でも、スマートフォンのレンズ以外に、具体的には、車載カメラのレンズ、VR(仮想現実)又はMR(複合現実)用のゴーグル用レンズ、防犯カメラ用レンズ等も挙げられる。本発明の別の好ましい実施形態において、本発明の樹脂組成物を用いて製造される光学部材は、光学フィルムであってよい。
 本発明の樹脂組成物を含む光学部材を射出成形で製造する場合、シリンダー温度260~350℃、金型温度90~170℃の条件にて成形することが好ましい。さらに好ましくは、シリンダー温度270~320℃、金型温度100~160℃の条件にて成形することが好ましい。シリンダー温度が350℃より高い場合では、樹脂組成物が分解着色し、260℃より低い場合では、溶融粘度が高く成形が困難になりやすい。また、金型温度が170℃より高い場合では、樹脂組成物からなる成形片が金型から取り出すことが困難になりやすい。他方、金型温度が、90℃未満では、成形時の金型内で樹脂が早く固まり過ぎて成形片の形状が制御しにくくなったり、金型に付された賦型を十分に転写することが困難になったりしやすい。
<光学レンズ>
 本発明の一実施形態において、樹脂組成物は、光学レンズに好適に用いることができる。本発明の樹脂組成物を用いて製造される光学レンズは、高屈折率であり、耐熱性に優れるため、望遠鏡、双眼鏡、テレビプロジェクター等、従来、高価な高屈折率ガラスレンズが用いられていた分野に用いることができ、極めて有用である。
 例えばスマートフォンのレンズでは、構成単位(A)を含む熱可塑性樹脂から成形されたレンズと、式(II-1)~(II-4)のいずれかの構成単位を含む樹脂、あるいは、
Figure JPOXMLDOC01-appb-C000037
(上記式中、R及びRは、それぞれ独立に、水素原子、メチル基又はエチル基を表し、R及びRは、それぞれ独立に、水素原子、メチル基、エチル基又は炭素数2~5のアルキレングリコールを表す。)
上記式のいずれかのモノマーに由来する構成単位を含む樹脂から成形されたレンズとを、重ね合わせてレンズユニットとして用いることができる。
 本発明の光学レンズは、必要に応じて非球面レンズの形を用いることが好適に実施される。非球面レンズは、1枚のレンズで球面収差を実質的にゼロとすることが可能であるため、複数の球面レンズの組み合わせで球面収差を取り除く必要が無く、軽量化及び成形コストの低減化が可能になる。したがって、非球面レンズは、光学レンズの中でも特にカメラレンズとして有用である。
 また、本発明の光学レンズは、成形流動性が高いため、薄肉小型で複雑な形状である光学レンズの材料として特に有用である。具体的なレンズサイズとして、中心部の厚みが0.05~3.0mmであることが好ましく、より好ましくは0.05~2.0mm、さらに好ましくは0.1~2.0mmである。また、直径が1.0mm~20.0mmであることが好ましく、より好ましくは1.0~10.0mm、さらに好ましくは、3.0~10.0mmである。また、その形状として片面が凸、片面が凹であるメニスカスレンズであることが好ましい。
 本発明の光学レンズは、金型成形、切削、研磨、レーザー加工、放電加工、エッチングなど任意の方法により成形される。この中でも、製造コストの面から金型成形がより好ましい。
<光学フィルム>
 本発明の一実施形態において、樹脂組成物は、光学フィルムに好適に用いることができる。特に、本発明のポリカーボネート樹脂を用いて製造される光学フィルムは、透明性及び耐熱性に優れるため、液晶基板用フィルム、光メモリーカード等に好適に使用される。
 光学フィルムへの異物の混入を極力避けるため、成形環境も当然低ダスト環境でなければならず、クラス6以下であることが好ましく、より好ましくはクラス5以下である。
 以下に本発明の実施例を比較例と共に示し、発明の内容を詳細に示すが、本発明はこれら実施例に限定されるものではない。
1)屈折率(nD)
 JIS B 7071-2:2018に基づき、ポリカーボネート樹脂を成形してVブロックを得て試験片とした。23℃にて屈折率計(島津製作所製KPR-3000)で測定した。
2)アッベ数(ν)
 屈折率測定で用いたものと同様の試験片(Vブロック)を用い、屈折率計を用い、23℃下での波長486nm、589nm、656nmの屈折率を測定し、下記式を用いてアッベ数を算出した。
   ν=(nD-1)/(nF-nC)
   nD:波長589nmでの屈折率
   nC:波長656nmでの屈折率
   nF:波長486nmでの屈折率
3)ガラス転移温度(Tg)
 JIS K7121―1987に基づき示差熱走査熱量分析計(株式会社日立ハイテクサイエンス製 X-DSC7000)により、10℃/分の昇温プログラムにて測定した。
4)重量平均分子量(Mw)
 樹脂の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)法によって測定し、標準ポリスチレン換算で算出した。使用装置、カラム、及び測定条件は以下の通りである。
 ・GPC装置:東ソー(株)製、HLC-8420GPC
 ・カラム:東ソー(株)製、TSKgel SuperHM-M ×3本
      東ソー(株)製、TSKgel guardcolumn SuperH-H ×1本
      東ソー(株)製、TSKgel SuperH-RC ×1本
 ・検出器:RI検出器
 ・標準ポリスチレン:東ソー(株)製、標準ポリスチレンキット PStQuick C
 ・試料溶液:0.2質量%テトラヒドロフラン溶液
 ・溶離液:テトラヒドロフラン
 ・溶離液流速:0.6mL/min
 ・カラム温度:40℃
[合成例1]
 冷却管付きディーンスタークを装着した300mlナスフラスコに、5-フェニル-1,3-シクロヘキサンジオン12.5g(66.4mmol)、リンタングステン酸625mg、トリメチロールプロパン21.3g(159mmol)、及びトルエン125mlを加え、攪拌子を投入した。マグネチックスターラーで攪拌しながら昇温して、トルエン還流下で、理論生成水量(132mmol、2.3g)を目途にして流出してくる生成水をディーンスタークで除去しつつ、2時間アセタール反応を行った。反応混合物を室温に戻し、飽和炭酸水素ナトリウム水溶液125mlで中和後、125mlのトルエンを加え水層と有機層に分けた。分けた有機層を40℃の温水125mlで水洗した。有機層を40℃、50mmHgに設定しエバポレーターにて溶剤を除去した。残存した有機層125gを室温で攪拌し結晶を取り出した。リンス液にはトルエンを用い析出した結晶をろ別した。その湿結晶16.0gを5mmHg、100℃条件で乾燥することにより、GC面積値99.6%の5-フェニル-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール(以下、「化合物1」とする)11.8g(28mmol)を得た。結晶の融点は135℃であった。
 得られた5-フェニル-1,3-シクロヘキサンジオントリメチロールプロパンジアセタールについて、IRスペクトル及びH-NMRスペクトルを測定し、下記特性ピークより5-フェニル-1,3-シクロヘキサンジオントリメチロールプロパンジアセタールであることを確認した。
IR(cm-1):3365,2965,2948,1474,1463,1358,1263,1253,1191,1162,1087,1061,1031,1000,969,820,756,699
H-NMR(500MHz,ppm):0.80(t,3H),0.87(t,3H),1.24(m,2H),1.33(m,2H),1.39(t,1H),1.49(d,1H),1.67(t,1H),1.96(d,2H),2.18(d,1H),2.76(d,1H),2.94(m,2H),3.70(m,10H),3.82(m,2H),7.20(m,3H),7.31(m,2H)
 なお、7.26ppm付近のピークは溶媒の重クロロホルムに由来するピークである。
 また、化合物1をLC分析した結果、下記構造式で表される異性体AのLC面積値は26.6%、下記構造式で表される異性体BのLC面積値は73.1%であり、即ち異性体比(異性体A:異性体B=27:73)であった。
Figure JPOXMLDOC01-appb-C000038
[合成例2]
 合成例1で得られた化合物1を用い、LC分析によって異性体Aの面積値が検出されなくなるまで、合成例1と同様の再結晶を繰り返して、化合物2を得た。化合物2をLC分析した結果、異性体BのLC面積値は97.0%、異性体AのLC面積値は未検出であり、即ち異性体比(異性体A:異性体B=0:100)であった。
[合成例3]
 1Lビーカーに4-t-ブチルベンズアルデヒド42.8g(264mmol)、アセトン396mlを入れ、室温にて撹拌しながら、10重量%水酸化ナトリウム水溶液264gを30℃以下の温度で、滴下した。その後、室温で2.5時間撹拌を行い、酢酸44gで中和後、アセトンを留去した。
 酢酸エチル264mlを加えて、有機相を分取した。得られた有機相は、飽和炭酸水素ナトリウム水溶液及び飽和塩化ナトリウム水溶液で順次洗浄し、減圧濃縮を行い、純度90.7GC面積%の淡黄色液体65.1gを得た。得られた反応粗物を、141~145℃、0.1~0.2kPaで減圧単蒸留を行い、純度98.8GC面積%の淡黄色液体35.4gを得た。
 温度計、窒素導入管及び冷却管を備えた500mlの4ツ口フラスコにエタノール30ml、マロン酸ジエチル17.4g(110mmol)、20重量%ナトリウムエトキシドエタノール溶液37.4g(110mmol)を入れ、室温で30分間撹拌を行った。その後、70℃まで昇温し、以下同温度で、4-t-ブチルベンジリデンアセトン20.2g(100mmol)をエタノール30mlで溶解した溶液を25分間で滴下した。その後、エタノール80mlを追加後、昇温し、還流下、2時間撹拌を行った。
 次に、10重量%水酸化ナトリウム水溶液で還流下、加水分解を2時間行い、その後、常圧から減圧下、エタノール150mlを留去した。引き続き、室温まで冷却後、20重量%塩化水素水溶液80gを加え、還流下、脱炭酸反応を4時間行った。析出した結晶を、水50mlを4回用いてリンスし、減圧乾燥して、GC純度91.3%の粗結晶25.6gを得た。続けて、酢酸エチル200mlを投入し、70℃、1時間の条件で攪拌し、析出している結晶をろ別するため酢酸エチル50mlを用いてリンスした後、100℃2時間で減圧乾燥後、純度98.9GC面積%の淡濃色固体19.7gを得た。
 温度計、窒素導入管及び水分離器付き冷却管を備えた500mlの4ツ口フラスコに5-(4-t-ブチルフェニル)-1,3-シクロヘキサンジオン12.4g(50mmol)、トリメチロールプロパン16.8g(125mmol)、リンタングステン酸625mmg、トルエン120mlを入れ、2.5時間還流温度で加熱撹拌を行った。反応終了後、室温まで冷却し、飽和炭酸水素ナトリウム水溶液50mlを加え、0.5時間撹拌を行った。その後、酢酸エチル50mlを加え、得られた有機相は、順次、温水洗浄、減圧濃縮し、ジアセタール粗物23.5gを得た。得られた粗物の精製は、トルエン90gで再結晶し、濾過・ケーキ洗浄(冷トルエン40ml)、100℃2時間の減圧乾燥後、純度98.5GC面積%の5-(4-t-ブチルフェニル)-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール(以下、「化合物3」とする)14.8gを得た。
Figure JPOXMLDOC01-appb-C000039
(実施例1)
 原料として、下記構造式で表される9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(BPEF)23.5810g(0.0538モル)、合成例1で得られた5-フェニル-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール9.6899g(0.0230モル)、ジフェニルカーボネート(DPC)16.9474g(0.0791モル)及び炭酸水素ナトリウム1.29071×10-4g(1.53638×10-6モル)を撹拌機及び留出装置付きの300mL反応器に入れ、系内を窒素雰囲気101.3kPaに設定した。この反応器を200℃に加熱したオイルバスに浸けエステル交換反応を開始した。反応開始から5分後に攪拌を開始し、20分後、10分かけて101.3kPaから26.66kPaまで減圧した。減圧しながら温度を210℃まで加熱し、反応開始後70分後で220℃まで昇温し、80分後から30分かけて20.00kPaまで減圧し、温度を240℃まで昇温させるとともに0.133kPaまで減圧したのち10分間保持した後、反応系内に窒素ガスを導入し、101.3kPaに戻し、ポリカーボネート樹脂を得た。
 得られたポリカーボネート樹脂の屈折率は1.6076、アッベ数は27.46、Tgは144℃、ポリスチレン換算重量平均分子量(Mw)は37,000であった。原料であるジオール化合物の含有量と得られた樹脂の物性を下記表1に示す。
(実施例2)
 原料として、BPEF 25.4506g(0.0580モル)、合成例2で得られた5-フェニル-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール6.0881g(0.0145モル)、DPC 16.0044g(0.0747モル)及び炭酸水素ナトリウム4.25154×10-7g(3.65573×10-5モル)を用いた以外は、実施例1と同様にしてポリカーボネート樹脂を得た。
 得られたポリカーボネート樹脂の屈折率は1.6125、アッベ数は26.02、Tgは148℃、ポリスチレン換算重量平均分子量(Mw)は40,000であった。原料であるジオール化合物の含有量と得られた樹脂の物性を下記表1に示す。
(実施例3)
 原料として、BPEF 23.3726g(0.0533モル)、合成例3で得られた5-(4-t-ブチル)-フェニル-1,3-シクロヘキサンジオントリメチロールプロパンジアセタール6.5309g(0.0129モル)、DPC 14.6156g(0.0682モル)及び炭酸水素ナトリウム4.25154×10-7g(3.65573×10-5モル)を用いた以外は、実施例1と同様にしてポリカーボネート樹脂を得た。
 得られたポリカーボネート樹脂の屈折率は1.6119、アッベ数は26.35、Tgは146℃、ポリスチレン換算重量平均分子量(Mw)は37,000であった。原料であるジオール化合物の含有量と得られた樹脂の物性を下記表1に示す。
(比較例1)
 原料として、BPEF 42.5953g(0.0971モル)、下記構造式で表されるスピログリコール(3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン)(SPG)12.6658g(0.0416モル)、DPC 30.6188g(0.1429モル)及び炭酸水素ナトリウム1.1656×10-4g(1.3874×10-6モル)を用いた以外は実施例1と同様にしてポリカーボネート樹脂を得た。
 得られたポリカーボネート樹脂の屈折率は1.5998、アッベ数は26.53、Tgは134℃、ポリスチレン換算重量平均分子量(Mw)は39,000であった。原料であるジオール化合物の含有量と得られた樹脂の物性を下記表1に示す。
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-T000041
 表1の結果より、一般式(1)で表される新規な環式ジオール化合物を用いた実施例1~3は、従来の環式ジオール化合物であるスピログリコールを用いた比較例1よりも、屈折率(nD)及びガラス転移温度が高く、光学特性だけなく耐熱性にも優れた脂肪族成分の多い樹脂が得られることがわかる。
 

Claims (18)

  1.  下記一般式(1)で表されるモノマー由来の構成単位(A)を含む熱可塑性樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、R及びR11は、それぞれ独立に、水素原子、炭素数6~12のアリール基、又は炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基を表し、Xは、下記一般式(a)~(d)のいずれかを表す。)
    Figure JPOXMLDOC01-appb-C000002
    (一般式(a)~(d)中、星印は結合部位を示す。R21~R57は、それぞれ独立に、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基、又は炭素数1~7の直鎖状若しくは分岐鎖状のアルコキシ基を表す。)
  2.  ポリカーボネート樹脂又はポリエステルカーボネート樹脂である、請求項1に記載の熱可塑性樹脂。
  3.  前記一般式(1)におけるR及びR11が、それぞれ独立に、炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基である、請求項1又は2に記載の熱可塑性樹脂。
  4.  前記一般式(1)におけるXが、フェニル基、ビフェニル基、1-ナフチル基、及び2-ナフチル基からなる群より選択される、請求項1から3のいずれかに記載の熱可塑性樹脂。
  5.  前記一般式(1)で表されるモノマーが、下記式で表される異性体Bのみ、あるいは異性体B及び下記式で表される異性体Aの混合物からなる、請求項1から4のいずれかに記載の熱可塑性樹脂。
    Figure JPOXMLDOC01-appb-C000003
    (上記式中、R、R11及びXは、一般式(1)におけるものと同義である。)
  6.  前記異性体Aと前記異性体Bとの異性体比が、A:B=0:100~99:1である、請求項5に記載の熱可塑性樹脂。
  7.  前記熱可塑性樹脂が、下記一般式(2)で表されるモノマー由来の構成単位(B)及び/又は下記一般式(3)で表されるモノマー由来の構成単位(C)を含む、請求項1から6のいずれかに記載の熱可塑性樹脂。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(2)中、
     R及びRは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよい炭素数1~20のアルキル基、置換基を有してもよい炭素数1~20のアルコキシル基、置換基を有してもよい炭素数5~20のシクロアルキル基、置換基を有してもよい炭素数5~20のシクロアルコキシル基、置換基を有してもよい炭素数6~20のアリール基、O、N及びSから選択される1つ以上のヘテロ環原子を含む、置換基を有してもよい炭素数6~20のヘテロアリール基、置換基を有してもよい炭素数6~20のアリールオキシ基、及び、-C≡C-Rからなる群より選択され、
     Rは置換基を有してもよい炭素数6~20のアリール基、又は、O、N及びSから選択される1つ以上のヘテロ環原子を含む、置換基を有してもよい炭素数6~20のヘテロアリール基を表し、
     Xは、単結合であるか、又は置換基を有してもよいフルオレン基を表し、
     A及びBは、それぞれ独立に、置換基を有してもよい炭素数1~5のアルキレン基を表し、
     m及びnは、それぞれ独立に、0~6の整数を表し、
     a及びbは、それぞれ独立に、0~10の整数を表す。)
    Figure JPOXMLDOC01-appb-C000005
    (一般式(3)中、
     R及びRは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよい炭素数1~20のアルキル基、置換基を有してもよい炭素数1~20のアルコキシル基、置換基を有してもよい炭素数5~20のシクロアルキル基、置換基を有してもよい炭素数5~20のシクロアルコキシル基、及び、置換基を有してもよい炭素数6~20のアリール基からなる群より選択され、
     Yは、単結合、置換基を有してもよいフルオレン基、又は下記式(4)~(10)で表される構造式のうちいずれかであり、
    Figure JPOXMLDOC01-appb-C000006
    (式(4)~(10)中、
     R61、R62、R71及びR72は、それぞれ独立して、水素原子、ハロゲン原子、置換基を有してもよい炭素数1~20のアルキル基、又は、置換基を有してもよい炭素数6~30のアリール基を表すか、あるいは、R61及びR62、又はR71及びR72が互いに結合して形成する、置換基を有してもよい炭素数1~20の炭素環又は複素環を表し、
     r及びsは、それぞれ独立して、0~5000の整数を表す。)
     A及びBは、それぞれ独立に、置換基を有してもよい炭素数1~5のアルキレン基を表し、
     p及びqは、それぞれ独立に、0~4の整数を表し、
     a及びbは、それぞれ独立に、0~10の整数を表す。)
  8.  前記一般式(2)及び一般式(3)において、前記A及びBが、それぞれ独立に、炭素数2又は3のアルキレン基を表す、請求項7に記載の熱可塑性樹脂。
  9.  前記熱可塑性樹脂が、少なくとも、BPEF,BNE,BNEF及びDPBHBNAのいずれかに由来する構成単位を含む、請求項7又は8に記載の熱可塑性樹脂。
  10.  前記熱可塑性樹脂が、更に、下記のモノマー群から選択される少なくとも一つのモノマーに由来する構成単位を含む、請求項1から9のいずれかに記載の熱可塑性樹脂。
    Figure JPOXMLDOC01-appb-C000007
    (上記式中、R及びRは、それぞれ独立に、水素原子、メチル基又はエチル基を表し、R及びRは、それぞれ独立に、水素原子、メチル基、エチル基又は炭素数2~5のアルキレングリコールを表す。)
  11.  前記熱可塑性樹脂のポリスチレン換算の重量平均分子量(Mw)が、10,000~200,000である、請求項1から10のいずれかに記載の熱可塑性樹脂。
  12.  前記熱可塑性樹脂の屈折率(nD)が、1.599~1.750である、請求項1から11のいずれかに記載の熱可塑性樹脂。
  13.  前記熱可塑性樹脂のアッベ数(ν)が、25.0~33.0である、請求項1から12のいずれかに記載の熱可塑性樹脂。
  14.  前記熱可塑性樹脂のガラス転移温度が、135~200℃である、請求項1から13のいずれかに記載の熱可塑性樹脂。
  15.  下記一般式(1)で表される改質剤と熱可塑性樹脂とを含む、熱可塑性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000008
    (一般式(1)中、R及びR11は、それぞれ独立に、水素原子、炭素数6~12のアリール基、又は炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基を表し、Xは、下記一般式(a)~(d)のいずれかを表す。)
    Figure JPOXMLDOC01-appb-C000009
    (一般式(a)~(d)中、R21~R57は、それぞれ独立に、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基、又は炭素数1~7の直鎖状若しくは分岐鎖状のアルコキシ基を表す。)
  16.  請求項1から14のいずれかに記載の熱可塑性樹脂又は請求項15に記載の熱可塑性樹脂組成物を含む、光学部材。
  17.  請求項1から14のいずれかに記載の熱可塑性樹脂又は請求項15に記載の熱可塑性樹脂組成物を含む、光学レンズ。
  18.  請求項1から14のいずれかに記載の熱可塑性樹脂又は請求項15に記載の熱可塑性樹脂組成物を含む、光学フィルム。
     
PCT/JP2021/039216 2020-10-27 2021-10-25 熱可塑性樹脂及びそれを含む光学レンズ WO2022091996A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/033,163 US20230399510A1 (en) 2020-10-27 2021-10-25 Thermoplastic resin and optical lens including same
JP2022559106A JPWO2022091996A1 (ja) 2020-10-27 2021-10-25
KR1020237013713A KR20230097012A (ko) 2020-10-27 2021-10-25 열가소성 수지 및 그것을 포함하는 광학 렌즈
CN202180068323.2A CN116323753A (zh) 2020-10-27 2021-10-25 热塑性树脂和含有该热塑性树脂的光学透镜
EP21886114.4A EP4239010A4 (en) 2020-10-27 2021-10-25 THERMOPLASTIC RESIN AND OPTICAL LENS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-179301 2020-10-27
JP2020179301 2020-10-27

Publications (1)

Publication Number Publication Date
WO2022091996A1 true WO2022091996A1 (ja) 2022-05-05

Family

ID=81381457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039216 WO2022091996A1 (ja) 2020-10-27 2021-10-25 熱可塑性樹脂及びそれを含む光学レンズ

Country Status (7)

Country Link
US (1) US20230399510A1 (ja)
EP (1) EP4239010A4 (ja)
JP (1) JPWO2022091996A1 (ja)
KR (1) KR20230097012A (ja)
CN (1) CN116323753A (ja)
TW (1) TW202222901A (ja)
WO (1) WO2022091996A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083172A (ja) * 2004-09-15 2006-03-30 Dongjin Semichem Co Ltd スピロ環状ケタール基を有するフォトレジスト用モノマー、ポリマーおよびこれを含むフォトレジスト組成物
WO2017078073A1 (ja) 2015-11-04 2017-05-11 三菱瓦斯化学株式会社 ポリカーボネート樹脂
JP2018002894A (ja) 2016-07-04 2018-01-11 帝人株式会社 熱可塑性樹脂
JP2018002895A (ja) 2016-07-04 2018-01-11 帝人株式会社 熱可塑性樹脂
JP2018002893A (ja) 2016-07-04 2018-01-11 帝人株式会社 熱可塑性樹脂
JP2018059074A (ja) 2016-10-06 2018-04-12 大阪ガスケミカル株式会社 フルオレン骨格を有するポリエステル樹脂
WO2018074305A1 (ja) * 2016-10-18 2018-04-26 三菱瓦斯化学株式会社 ジオール、ジオールの製造方法、ジ(メタ)アクリレートおよびジ(メタ)アクリレートの製造方法
JP2018199764A (ja) * 2017-05-26 2018-12-20 三菱瓦斯化学株式会社 ポリエステル樹脂、成形品およびポリエステル樹脂の製造方法
WO2019188114A1 (ja) * 2018-03-28 2019-10-03 三菱瓦斯化学株式会社 ポリカーボネートおよび成形体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083172A (ja) * 2004-09-15 2006-03-30 Dongjin Semichem Co Ltd スピロ環状ケタール基を有するフォトレジスト用モノマー、ポリマーおよびこれを含むフォトレジスト組成物
WO2017078073A1 (ja) 2015-11-04 2017-05-11 三菱瓦斯化学株式会社 ポリカーボネート樹脂
JP2018002894A (ja) 2016-07-04 2018-01-11 帝人株式会社 熱可塑性樹脂
JP2018002895A (ja) 2016-07-04 2018-01-11 帝人株式会社 熱可塑性樹脂
JP2018002893A (ja) 2016-07-04 2018-01-11 帝人株式会社 熱可塑性樹脂
JP2018059074A (ja) 2016-10-06 2018-04-12 大阪ガスケミカル株式会社 フルオレン骨格を有するポリエステル樹脂
WO2018074305A1 (ja) * 2016-10-18 2018-04-26 三菱瓦斯化学株式会社 ジオール、ジオールの製造方法、ジ(メタ)アクリレートおよびジ(メタ)アクリレートの製造方法
JP2018199764A (ja) * 2017-05-26 2018-12-20 三菱瓦斯化学株式会社 ポリエステル樹脂、成形品およびポリエステル樹脂の製造方法
WO2019188114A1 (ja) * 2018-03-28 2019-10-03 三菱瓦斯化学株式会社 ポリカーボネートおよび成形体

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BONJOUR OLIVIER, LIBLIKAS ILME, PEHK TÕNIS, KHAI-NGHI TRUONG, RISSANEN KARI, VARES LAURI, JANNASCH PATRIC: "Rigid biobased polycarbonates with good processability based on a spirocyclic diol derived from citric acid", GREEN CHEMISTRY, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 22, no. 12, 22 June 2020 (2020-06-22), GB , pages 3940 - 3951, XP055926261, ISSN: 1463-9262, DOI: 10.1039/D0GC00849D *
CHEMISTRY - A EUROPEAN JOURNAL, vol. 23, no. 49, 2017, pages 11757 - 11760
HUFENDIEK ANDREA, LINGIER SOPHIE, DU PREZ FILIP E.: "Thermoplastic polyacetals: chemistry from the past for a sustainable future?", POLYMER CHEMISTRY, vol. 10, no. 1, 1 January 2019 (2019-01-01), pages 9 - 33, XP055926262, ISSN: 1759-9954, DOI: 10.1039/C8PY01219A *
See also references of EP4239010A4
SOPHIE LINGIER, YANN SPIESSCHAERT, BASTIAAN DHANIS, STEFAAN DE WILDEMAN, FILIP E. DU PREZ: "Rigid Polyurethanes, Polyesters, and Polycarbonates from Renewable Ketal Monomers", MACROMOLECULES, AMERICAN CHEMICAL SOCIETY, US, vol. 50, no. 14, 25 July 2017 (2017-07-25), US , pages 5346 - 5352, XP055682466, ISSN: 0024-9297, DOI: 10.1021/acs.macromol.7b00899 *
ZHURNAL OBSHCHEI KHIMII, vol. 27, 1957, pages 3087 - 92

Also Published As

Publication number Publication date
JPWO2022091996A1 (ja) 2022-05-05
EP4239010A1 (en) 2023-09-06
US20230399510A1 (en) 2023-12-14
CN116323753A (zh) 2023-06-23
EP4239010A4 (en) 2024-04-17
TW202222901A (zh) 2022-06-16
KR20230097012A (ko) 2023-06-30

Similar Documents

Publication Publication Date Title
JP6904375B2 (ja) 熱可塑性樹脂の製造方法
TW201920353A (zh) 聚碳酸酯樹脂、其製造方法以及光學透鏡
TW202142591A (zh) 聚碳酸酯樹脂、其製造方法及光學透鏡
JP7047808B2 (ja) 熱可塑性樹脂の製造方法
KR20180133391A (ko) 폴리카보네이트 공중합체, 그것을 사용한 광학 렌즈 및 필름, 그리고 그 공중합체의 제조 방법
WO2021230085A1 (ja) ポリカーボネート樹脂、ならびにそれを用いた光学レンズおよび光学フィルム
WO2024019028A1 (ja) 熱可塑性樹脂および光学部材
WO2022091996A1 (ja) 熱可塑性樹脂及びそれを含む光学レンズ
JP2023120206A (ja) 化合物、樹脂、ポリカーボネート樹脂、および光学成形体
WO2023195504A1 (ja) 熱可塑性樹脂及びそれを含む光学レンズ
JP2023138918A (ja) 熱可塑性樹脂及びそれを含む光学レンズ
TW202239807A (zh) 熱塑性樹脂及含其之光學透鏡
CN116829618A (zh) 热塑性树脂及含有该热塑性树脂的光学透镜
WO2023100778A1 (ja) 熱可塑性樹脂を含む光学レンズ
WO2022034898A1 (ja) 光学材料用の熱可塑性樹脂組成物、成形体、配合剤、熱可塑性樹脂組成物の製造方法及び透過率向上方法
WO2022270367A1 (ja) 熱可塑性樹脂及びそれを含む光学レンズ
WO2023195505A1 (ja) 熱可塑性樹脂及びそれを含む光学レンズ
TW202328276A (zh) 熱塑性樹脂及包含此之光學透鏡
TW202328345A (zh) 熱塑性樹脂組成物、成形體、熱塑性樹脂組成物之製造方法及穿透率提升方法
CN115996931A (zh) 环式二醇化合物、该化合物的制造方法及该化合物的用途
TW202413482A (zh) 自環式二醇化合物所得之樹脂及含該樹脂之光學鏡片
KR20220161254A (ko) 수지 조성물 그리고 그것을 포함하는 광학 렌즈 및 광학 필름
WO2023085341A1 (ja) ポリエステルカーボネート樹脂並びにそれを用いた光学レンズ及び光学フィルム
WO2023085340A1 (ja) ポリカーボネート樹脂、ならびにそれを用いた光学レンズおよび光学フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886114

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559106

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021886114

Country of ref document: EP

Effective date: 20230530