WO2023195504A1 - 熱可塑性樹脂及びそれを含む光学レンズ - Google Patents

熱可塑性樹脂及びそれを含む光学レンズ Download PDF

Info

Publication number
WO2023195504A1
WO2023195504A1 PCT/JP2023/014161 JP2023014161W WO2023195504A1 WO 2023195504 A1 WO2023195504 A1 WO 2023195504A1 JP 2023014161 W JP2023014161 W JP 2023014161W WO 2023195504 A1 WO2023195504 A1 WO 2023195504A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
thermoplastic resin
carbon atoms
substituent
general formula
Prior art date
Application number
PCT/JP2023/014161
Other languages
English (en)
French (fr)
Inventor
宣之 加藤
克吏 西森
篤志 茂木
健太朗 石原
鈴木 章子 村田
淳広 佐藤
駿 石川
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Publication of WO2023195504A1 publication Critical patent/WO2023195504A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/19Hydroxy compounds containing aromatic rings
    • C08G63/193Hydroxy compounds containing aromatic rings containing two or more aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/64Polyesters containing both carboxylic ester groups and carbonate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics

Definitions

  • the present invention relates to a thermoplastic resin and an optical lens containing the same. More specifically, the present invention relates to a polycarbonate resin, a polyester carbonate resin, or a polyester resin, and an optical lens containing the same.
  • Optical glass or optical resin is used as a material for optical lenses used in the optical systems of various cameras such as cameras, film-integrated cameras, and video cameras.
  • Optical glass has excellent heat resistance, transparency, dimensional stability, chemical resistance, etc., but has the problems of high material cost, poor moldability, and low productivity.
  • optical lenses made of optical resins have the advantage that they can be mass-produced by injection molding, and polycarbonate, polyester carbonate, polyester resins, etc. are used as high refractive index materials for camera lenses.
  • Patent Documents 1 to 5 When using optical resin as an optical lens, in addition to optical properties such as refractive index and Abbe number, heat resistance, transparency, low water absorption, chemical resistance, low birefringence, and heat and humidity resistance are required. Particularly in recent years, there has been a demand for optical lenses with high refractive index and high heat resistance, and various resins have been developed (Patent Documents 1 to 5).
  • An object of the present invention is to provide a thermoplastic resin that has excellent optical properties such as refractive index, Abbe's number, and photoelastic coefficient while maintaining heat resistance suitable for use, and an optical lens using the same.
  • thermoplastic resin with excellent optical properties such as refractive index, Abbe number, and photoelastic coefficient, as well as excellent heat resistance, could be obtained by using a monomer having the structure as a raw material, and completed the present invention. I ended up doing it.
  • thermoplastic resin containing a structural unit (A) derived from a monomer represented by the following general formula (1) (In the formula, R 1 each independently represents an aryl group having 6 to 14 carbon atoms or an aralkyl group having 7 to 17 carbon atoms, and R 2 each independently represents a hydrogen atom, a carbon number 6 to 14 aryl group or an aralkyl group having 7 to 17 carbon atoms, each a independently represents 0 or an integer from 1 to 3, and R 3 each independently represents -OH or -O-( CH 2 ) n -OH, where n represents an integer from 1 to 4.) ⁇ 2>
  • n independently represents an integer from 1 to 4. ⁇ 5> The thermoplastic resin according to ⁇ 1> above, wherein the monomer represented by the general formula (1) is a monomer represented by the following formula (15).
  • thermoplastic resin according to any one of ⁇ 1> to ⁇ 5> above, wherein the thermoplastic resin is a polycarbonate resin, a polyester carbonate resin, or a polyester resin.
  • the thermoplastic resin contains a structural unit (B) derived from a monomer represented by the following general formula (6) and/or a structural unit (C) derived from a monomer represented by the following general formula (7). , the thermoplastic resin according to any one of ⁇ 1> to ⁇ 6> above.
  • R a and R b each independently represent a hydrogen atom, a halogen atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, and an optionally substituted alkoxyl group having 1 to 20 carbon atoms.
  • a cycloalkyl group having 5 to 20 carbon atoms which may have a substituent a cycloalkyl group having 5 to 20 carbon atoms which may have a substituent
  • a cycloalkyl group having 5 to 20 carbon atoms which may have a substituent and a cycloalkyl group having 6 to 20 carbon atoms which may have a substituent
  • R h is an aryl group having 6 to 20 carbon atoms which may have a substituent, or a carbon atom which may have a substituent and contains one or more heterocyclic atoms selected from O, N and S.
  • X is a single bond or represents a fluorene group which may have a substituent
  • a and B each independently represent an alkylene group having 1 to 5 carbon atoms which may have a substituent
  • m and n each independently represent an integer from 0 to 6
  • a and b each independently represent an integer from 0 to 10.
  • R c and R d each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms which may have a substituent, and an alkoxyl group having 1 to 20 carbon atoms which may have a substituent.
  • a cycloalkyl group having 5 to 20 carbon atoms which may have a substituent a cycloalkyl group having 5 to 20 carbon atoms which may have a substituent
  • Y 1 is a single bond, a fluorene group which may have a substituent, or a structural formula represented by the following formulas (8) to (14), (In formulas (8) to (14), R 61 , R 62 , R 71 and R 72 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms which may have a substituent, or a substituent A carbon atom having 1 to 20 carbon atoms and optionally having a substituent, which represents an aryl group having 6 to 30 carbon atoms, or is formed by combining R 61 and R 62 or R
  • thermoplastic resin represents a ring or heterocycle, r and s each independently represent an integer from 0 to 5000.
  • a and B each independently represent an alkylene group having 1 to 5 carbon atoms which may have a substituent, p and q each independently represent an integer from 0 to 4, a and b each independently represent an integer from 0 to 10.
  • ⁇ 8> The thermoplastic resin according to ⁇ 7> above, wherein in the general formula (6) and general formula (7), A and B each independently represent an alkylene group having 2 or 3 carbon atoms. .
  • thermoplastic resin according to ⁇ 7> or ⁇ 8> above wherein the thermoplastic resin contains at least a structural unit derived from any one of BPEF, BNE, BNEF, and DPBHBNA.
  • thermoplastic resin according to any one of ⁇ 1> to ⁇ 9> above further including a structural unit derived from at least one monomer selected from the following monomer group. .
  • R 1 and R 2 each independently represent a hydrogen atom, a methyl group, or an ethyl group
  • R 3 and R 4 each independently represent a hydrogen atom, a methyl group, an ethyl group, or a carbon number 2 ⁇ 5 alkylene glycol
  • Mw polystyrene equivalent weight average molecular weight
  • nD refractive index
  • An optical lens comprising the thermoplastic resin according to any one of ⁇ 1> to ⁇ 15> above.
  • thermoplastic resin that has excellent optical properties such as refractive index, Abbe's number, and photoelastic coefficient while maintaining heat resistance suitable for use, and an optical lens containing the thermoplastic resin.
  • FIG. 2 is a diagram showing a chart of differential scanning calorimetry (DSC) data of crystals of the compound obtained in Synthesis Example 2.
  • FIG. 2 is a diagram showing a chart of powder X-ray diffraction (PXRD) measurement of crystals of the compound obtained in Synthesis Example 2.
  • DSC differential scanning calorimetry
  • PXRD powder X-ray diffraction
  • thermoplastic resin containing a structural unit (A) derived from a monomer represented by the following general formula (1).
  • R 1 each independently represents an aryl group having 6 to 14 carbon atoms or an aralkyl group having 7 to 17 carbon atoms
  • R 2 each independently represents a hydrogen atom, a hydrogen atom or a carbon number 6 to 14 represents an aryl group or an aralkyl group having 7 to 17 carbon atoms
  • R 3 each independently represents -OH or -O-(CH 2 ) n -OH, where n represents an integer of 1 to 4.
  • R 1 in the general formula (1) each independently represents an aryl group having 6 to 14 carbon atoms or an aralkyl group having 7 to 17 carbon atoms;
  • An aryl group or an aralkyl group having 7 to 13 carbon atoms is preferable, each independently an aryl group having 6 to 14 carbon atoms or an aralkyl group having 7 to 11 carbon atoms is more preferable, each independently having 7 to 13 carbon atoms.
  • Aryl groups having 6 to 14 carbon atoms are more preferred, and aryl groups each independently having 6 to 10 carbon atoms are particularly preferred.
  • aryl group having 6 to 14 carbon atoms examples include phenyl group, naphthyl group, anthryl group, phenanthryl group, etc. Among them, phenyl group and naphthyl group are preferable, and phenyl group is more preferable.
  • Examples of aralkyl groups having 7 to 17 carbon atoms include benzyl group, phenethyl group, 1-methyl-1-phenylethyl group, naphthalen-1-yl-methyl group, naphthalen-2-yl-methyl group, 1-methyl- Examples include 1-(1-naphthyl)ethyl group, 1-methyl-1-(2-naphthyl)ethyl group, anthracen-9-yl-methyl group, phenanthren-9-yl-methyl group, among others, benzyl group, 1-methyl-1-phenylethyl group, naphthalen-1-yl-methyl group, naphthalen-2-yl-methyl group are preferable, benzyl group, naphthalen-1-yl-methyl group, naphthalen-2-yl- A methyl group is more preferred, and a benzyl group is even more preferred.
  • R 1 in general formula (1) it is particularly preferable that both R 1 are
  • R 2 in the general formula (1) each independently represents a hydrogen atom, an aryl group having 6 to 14 carbon atoms, or an aralkyl group having 7 to 17 carbon atoms, and among them, each independently represents a hydrogen atom, An aryl group having 6 to 10 carbon atoms or an aralkyl group having 7 to 13 carbon atoms is preferable, and each independently a hydrogen atom, an aryl group having 6 to 10 carbon atoms, or an aralkyl group having 7 to 11 carbon atoms is more preferable. preferable.
  • the aryl group having 6 to 14 carbon atoms include phenyl group, naphthyl group, anthryl group, phenanthryl group, etc.
  • phenyl group and naphthyl group are preferable, and phenyl group is more preferable.
  • aralkyl groups having 7 to 17 carbon atoms include benzyl group, phenethyl group, 1-methyl-1-phenylethyl group, naphthalen-1-yl-methyl group, naphthalen-2-yl-methyl group, 1-methyl- Examples include 1-(1-naphthyl)ethyl group, 1-methyl-1-(2-naphthyl)ethyl group, anthracen-9-yl-methyl group, phenanthren-9-yl-methyl group, among others, benzyl group, 1-methyl-1-phenylethyl group, naphthalen-1-yl-methyl group, naphthalen-2-yl-methyl group are preferred, benzyl group, naphthalen-1-yl-methyl group, naphthalen-2-yl- A methyl group is more preferred, and
  • a in general formula (1) each independently represents 0 or an integer of 1 to 3, each independently preferably 0, 1 or 2, each independently more preferably 0 or 1, and 0 is More preferred.
  • a in the general formula (1) represents an integer of 1 to 3, it is preferable that at least one R 2 is bonded to the ortho position of R 3 .
  • R 3 in general formula (1) each independently represents -OH or -O-(CH 2 ) n -OH.
  • a compound in which R 3 in general formula (1) is -OH is a compound represented by general formula (1A) (compound 1A).
  • R 1 , R 2 and a have the same definitions as in general formula (1).
  • a compound in which R 3 in general formula (1) is -O-(CH 2 ) n -OH is a compound represented by general formula (1B) (compound 1B).
  • R 1 , R 2 , a and n have the same definitions as in general formula (1).
  • Each n in the general formula (1B) independently represents an integer of 1 to 4, preferably an integer of 2 to 4, more preferably 2 or 3, and particularly preferably 2.
  • ⁇ Monomer manufacturing method-1> Regarding the 1,3-bis(1-methyl-1-phenylethyl)benzene compound represented by the general formula (1) in the present invention, there are no particular limitations on the starting materials and production method.
  • the method for producing compound 1A involves reacting a phenol compound represented by general formula (2) with ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethyl-1,3-benzenedimethanol, as exemplified by the reaction formula below. Examples include manufacturing methods.
  • R 1 , R 2 and a are the same as defined in general formula (1).
  • the phenol compound represented by the general formula (2) includes, for example, 2-phenylphenol, 2-(1-naphthyl)phenol, 2-(2-naphthyl)phenol, 2-(9-anthracenyl) Phenol, 2-(9-phenanthryl)phenol, 2,6-diphenylphenol, 2-benzylphenol, 2-(1-methyl-1-phenylethyl)phenol, 2-(1-naphthylmethyl)phenol, 2-( 2-naphthylmethyl)phenol, 2-(9-anthracenylmethyl)phenol, 2-(9-phenanthrylmethyl)phenol, 2-phenyl-6-benzylphenol, 2-phenyl-6-(1-methoxyphenol) thyl-1-phenylethyl)phenol, 2-phenyl-6-(1-naphthylmethyl)phenol, 2-phenyl-6-(2-naphthylmethyl)phenol, 2-(1-naphthyl)phenol,
  • the amount of the phenol compound represented by general formula (2) is 5 to 5 to 1 mole of ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethyl-1,3-benzenedimethanol.
  • the amount is preferably in the range of 12 mols, more preferably 7 to 10 mols, and even more preferably 8 mols.
  • the above manufacturing method is preferably carried out in the presence of an acid catalyst.
  • Preferred acid catalysts include concentrated hydrochloric acid, sulfuric acid, hydrochloric acid gas, etc. Among them, it is more preferable to use hydrochloric acid gas until the reaction solution is saturated.
  • the reaction is usually carried out in the presence of a solvent. There are no particular limitations on the solvent as long as it does not inhibit the reaction. Since Compound 1A is easily soluble in various solvents, various solvents can be used. Among these, alcohols with good solubility in the phenolic compound represented by general formula (2) are preferred, alcohols having 1 to 10 carbon atoms are more preferred, methanol, ethanol, propanol, and isopropanol are even more preferred, and methanol is particularly preferred.
  • solvents can be used alone or in combination.
  • the amount of solvent used is not particularly limited as long as it does not interfere with the reaction, but it is usually in the range of 1 to 5 times the weight of ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethyl-1,3-benzenedimethanol. It is preferably used in a range of 1 to 3 times by weight, more preferably in a range of 1 to 2 times by weight.
  • the above manufacturing method may be carried out either in the air or in an inert gas atmosphere, but in order to suppress coloring of the reaction product, an inert gas atmosphere such as nitrogen or argon is preferable.
  • the reaction temperature is usually in the range of 20 to 40°C, preferably in the range of 25 to 30°C.
  • the reaction may be carried out under normal pressure conditions, increased pressure conditions, or reduced pressure conditions, but it is preferable to carry out the reaction under normal pressure conditions.
  • Compound 1A can be obtained from the reaction mixture by separating and purifying the obtained reaction mixture according to a conventional method. For example, in order to neutralize the acid catalyst, an alkaline aqueous solution such as a sodium hydroxide aqueous solution or an ammonia aqueous solution is added to the reaction completed liquid to neutralize the acid catalyst. The neutralized reaction mixture is allowed to stand, and if necessary, a solvent that separates from water is added to separate and remove the aqueous layer.
  • the target compound 1A can be obtained as a residual liquid.
  • Examples of the method for producing compound 1B include a method in which a compound represented by general formula (1A) and an alkylene oxylating agent are reacted.
  • the reaction formula when carbonates represented by general formula (3) are used as the alkylene oxylating agent is illustrated.
  • R 1 , R 2 , a and n are the same as defined in general formula (1).
  • the compound 1A represented by the general formula (1A) can be a compound obtained by the above production method-1.
  • alkylene oxylating agents include carbonates represented by general formula (3) such as ethylene carbonate, and halogenated alcohols such as 2-chloroethanol and 3-chloro-1-propanol, depending on the target compound. Can be used.
  • carbonates represented by the general formula (3) are used as the alkylene oxylating agent will be described below.
  • the raw material molar ratio of compound 1A and carbonates is usually in the range of about 1/2 to 1/5, preferably in the range of about 1/2 to 1/4, and more preferably in the range of about 1/2 to 1/4. is in the range of about 1/2 to 1/3.
  • a basic catalyst during the reaction, and generally known ones can be used as the basic catalyst. Specifically, quaternary ammonium salts such as tetraethylammonium bromide and tetramethylammonium chloride, alkali metal halides such as potassium hydroxide, potassium iodide, and sodium bromide, and triorganophosphines such as triphenylphosphine and tributylphosphine.
  • quaternary ammonium salts such as tetraethylammonium bromide and tetramethylammonium chloride
  • alkali metal halides such as potassium hydroxide, potassium iodide, and sodium bromide
  • triorganophosphines such as triphenylphosphine and tributylphosphine.
  • Examples include amine catalysts such as compounds, 1-methylimidazole, and alkali catalysts such as potassium carbonate, calcium carbonate, magnesium carbonate, magnesium hydroxide, calcium hydroxide, sodium hydroxide, sodium hydrogen carbonate, sodium methoxy, and sodium phenoxy.
  • alkali catalysts such as potassium carbonate, calcium carbonate, magnesium carbonate, magnesium hydroxide, calcium hydroxide, sodium hydroxide, sodium hydrogen carbonate, sodium methoxy, and sodium phenoxy.
  • These basic catalysts may be used alone or in combination of two or more types.
  • the amount of the basic catalyst used is 0.001 to 10% by weight, preferably 0.01 to 1% by weight, based on the compound 1A represented by the general formula (1A).
  • reaction solvent various known reaction-inactive solvents can be used.
  • reaction solvents include aromatic hydrocarbons such as toluene and xylene, ether solvents such as tetrahydrofuran, dioxane, and 1,2-dimethoxyethane, ketone solvents such as acetone and methyl isobutyl ketone, chloroform, and 1,2-dimethoxyethane.
  • Halogenated hydrocarbons such as dichloroethane, aliphatic alcohols such as butanol and ethylene glycol, and polar solvents such as dimethylformamide and dimethyl sulfoxide.
  • amount of the reaction solvent used is preferably in the range of 0.5 to 10 times, more preferably 0.5 to 5 times by weight, relative to Compound 1A.
  • the above manufacturing method may be carried out either in the air or in an inert gas atmosphere, but in order to suppress coloring of the reaction product, an inert gas atmosphere such as nitrogen or argon is preferable.
  • the reaction temperature is not particularly limited as long as the reaction proceeds, but the reaction is usually carried out under heating.
  • reaction time depends on the reaction temperature, the carbonates used, the amount and type of basic catalyst, etc., but is usually carried out for about 3 to 24 hours. In this reaction, the time when the generation of carbon dioxide gas has stopped can be used as a guideline for the end of the reaction.
  • Compound 1B can be obtained from the reaction mixture by separating and purifying the obtained reaction mixture according to a conventional method.
  • acid-containing water eg, hydrochloric acid, sulfuric acid
  • acetic acid e.g., propionic acid, etc. This neutralization step may be performed after the hydrolysis step described below is performed.
  • the hydrolysis step of carbonates by adding water.
  • the amount of water used is in the range of 1 to 10 times the amount of carbonate used in the above reaction by mole.
  • the temperature may be lower than the boiling point of the reaction liquid, but is usually in the range from room temperature to lower than the boiling point of the reaction liquid. Specifically, the lower limit is 10°C or higher, more preferably 20°C or higher.
  • the upper limit depends on the boiling point of the solvent used, it is preferably 150°C or less.
  • add a solvent that separates from water as needed wash the oil layer multiple times with water, separate and remove the water layer, and remove low-boiling substances such as the solvent by distilling it under reduced pressure from the obtained oil layer.
  • post-treatment operations such as washing with water, crystallization, filtration, distillation, separation by column chromatography, etc., and drying can be performed.
  • further purification by distillation, recrystallization, or column chromatography may be performed according to conventional methods.
  • the crystal of 1,3-bis[1-methyl-1-(4-(2-hydroxyethoxy)-3-phenylphenyl)ethyl]benzene represented by the above formula (15) has an endothermic peak determined by differential scanning calorimetry.
  • the peak top temperature of is in the range of 134 to 140°C, more preferably in the range of 135 to 139°C, and particularly preferably in the range of 136 to 139°C. Furthermore, crystals of 1,3-bis[1-methyl-1-(4-(2-hydroxyethoxy)-3-phenylphenyl)ethyl]benzene represented by the above formula (15) can be obtained by Cu-K ⁇ radiation. In the powder X-ray diffraction peak pattern, diffraction peaks are found at diffraction angles 2 ⁇ of 7.9 ⁇ 0.2°, 10.8 ⁇ 0.2°, 16.3 ⁇ 0.2° and 18.6 ⁇ 0.2°. There is.
  • the purity of the crystals of 1,3-bis[1-methyl-1-(4-(2-hydroxyethoxy)-3-phenylphenyl)ethyl]benzene represented by the above formula (15) is determined by liquid chromatography analysis. In terms of area percentage, it is preferably 90% or more, more preferably 93% or more, even more preferably 95% or more, and particularly preferably 98% or more.
  • Crystals of the compound represented by the above formula (15) can be obtained by precipitating the compound from a solution dissolved in a chain aliphatic ketone solvent having 5 to 8 carbon atoms.
  • the compound used here can be one obtained by the method described above.
  • the compound When precipitating the compound represented by the above formula (15) from a solution dissolved in a chain aliphatic ketone solvent having 5 to 8 carbon atoms, the compound may be precipitated by cooling the solution or distilling off the solvent of the solution.
  • a chain or cyclic aliphatic hydrocarbon solvent having 5 to 10 carbon atoms may be mixed with a solution of the compound in a chain aliphatic ketone solvent having 5 to 8 carbon atoms.
  • chain aliphatic ketone solvents having 5 to 8 carbon atoms include diethyl ketone (5 carbon atoms), methyl isobutyl ketone (6 carbon atoms), methyl amyl ketone (7 carbon atoms), and methylhexyl ketone (7 carbon atoms). 8), among which methyl isobutyl ketone and methyl amyl ketone are preferred.
  • the solution can be washed with water to remove water-soluble impurities such as salts before crystallization.
  • the amount of the chain aliphatic ketone solvent to be used is preferably in the range of 1 to 7 times the weight of the compound represented by the above formula (15), and 1.5 to 6 times the weight of the compound represented by formula (15). It is more preferable that the amount is in the range of 2 to 5 times the weight.
  • the chain or cyclic aliphatic hydrocarbon solvent having 5 to 10 carbon atoms pentane, hexane, heptane, octane, isooctane, cyclopentane, cyclohexane, etc. can be used. Cyclic aliphatic hydrocarbon solvents are preferred, and cyclopentane or cyclohexane are more preferred.
  • the amount of the aliphatic hydrocarbon solvent to be used is preferably in the range of 1 to 10 times by weight, and in the range of 1 to 7 times by weight, relative to the amount of the compound represented by formula (15) above. More preferably, the amount is in the range of 1 to 5 times by weight.
  • the temperature at which the chain or cyclic aliphatic hydrocarbon solvent having 5 to 10 carbon atoms is mixed with the chain aliphatic ketone solution having 5 to 8 carbon atoms of the compound represented by the above formula (15) is determined by the temperature used.
  • the temperature is preferably in the range of 60 to 120°C, more preferably in the range of 60 to 100°C, and even more preferably in the range of 60 to 90°C.
  • the temperature at which crystals of the compound represented by formula (15) begin to precipitate is preferably in the range of 10 to 50°C, more preferably in the range of 15 to 40°C.
  • the crystals obtained by the above method may be isolated by a conventional method, for example, the crystals can be isolated by centrifugal filtration. Moreover, it is preferable to further wash the crystals with a solvent. The used solvent can be removed by drying the obtained crystals.
  • thermoplastic resin in one embodiment of the present invention includes, but is not particularly limited to, polyester resin, polycarbonate resin, polyester carbonate resin, epoxy resin, polyurethane resin, polyacrylate resin, polymethacrylate resin, etc., but polycarbonate resin, It is preferably a polyester carbonate resin or a polyester resin, and more preferably contains a structural unit (A) represented by the following formula.
  • R 1 , R 2 , and a are the same as defined in general formula (1).
  • the ratio of the structural unit (A) represented by the above formula to all structural units is not particularly limited, but it is preferably 1 to 80 mol% of all structural units. , more preferably 1 to 60 mol%, particularly preferably 5 to 50 mol%.
  • the thermoplastic resin of one embodiment of the present invention is derived from an aliphatic dihydroxy compound generally used as a structural unit of polycarbonate resin or polyester carbonate resin. It can include a structural unit derived from an aromatic dihydroxy compound or a structural unit derived from an aromatic dihydroxy compound.
  • various aliphatic dihydroxy compounds can be mentioned, but in particular, 1,4-cyclohexanedimethanol, tricyclodecane dimethanol, 1,3-adamantanedimethanol, 2,2-bis( 4-hydroxycyclohexyl)-propane, 3,9-bis(2-hydroxy-1,1-dimethylethyl)-2,4,8,10-tetraoxaspiro[5.5]undecane, 2-(5-ethyl) -5-hydroxymethyl-1,3-dioxan-2-yl)-2-methylpropan-1-ol, isosorbide, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, etc.
  • aromatic dihydroxy compounds can be mentioned, but in particular, 2,2-bis(4-hydroxyphenyl)propane [bisphenol A], bis(4-hydroxyphenyl)methane, and 1,1-bis( 4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane, 4,4'-dihydroxydiphenyl, bis(4-hydroxyphenyl)cycloalkane, bis(4-hydroxyphenyl) ) oxide, bis(4-hydroxyphenyl) sulfide, bis(4-hydroxyphenyl) sulfone, bis(4-hydroxyphenyl) sulfoxide, bis(4-hydroxyphenyl) ketone, bisphenoxyethanolfluorene, and the like.
  • thermoplastic resin of one Embodiment of this invention contains the structural unit (B) derived from the monomer represented by the following general formula (6).
  • R a and R b each independently represent a halogen atom, an alkyl group having 1 to 20 carbon atoms which may have a substituent, and a carbon number 1 to 20 which may have a substituent.
  • R h is an aryl group having 6 to 20 carbon atoms which may have a substituent, or a carbon atom which may have a substituent and contains one or more heterocyclic atoms selected from O, N and S.
  • R a and R b preferably contain a hydrogen atom, an aryl group having 6 to 20 carbon atoms which may have a substituent, and one or more heterocyclic atoms selected from O, N, and S.
  • a heteroaryl group having 6 to 20 carbon atoms which may have a group, more preferably a hydrogen atom, an aryl group having 6 to 20 carbon atoms which may have a substituent, and even more preferably a hydrogen atom. It is an aryl group having 6 to 12 carbon atoms which may have an atom or a substituent.
  • X represents a single bond or a fluorene group which may have a substituent.
  • X is preferably a single bond or a fluorene group which may have a substituent having 12 to 20 carbon atoms in total.
  • a and B are each independently an alkylene group having 1 to 5 carbon atoms which may have a substituent, preferably an alkylene group having 2 or 3 carbon atoms.
  • m and n are each independently an integer of 0 to 6, preferably an integer of 0 to 3, and more preferably 0 or 1.
  • a and b are each independently an integer of 0 to 10, preferably an integer of 1 to 3, and more preferably 1 or 2.
  • structural unit (B) examples include those derived from 2,2'-bis(2-hydroxyethoxy)-1,1'-binaphthalene (BNE), DPBHBNA, and the like.
  • thermoplastic resin of one embodiment of the present invention has a structural unit (C) derived from a monomer represented by the following general formula (7).
  • R c and R d each independently represent a halogen atom, an alkyl group having 1 to 20 carbon atoms which may have a substituent, and a carbon number 1 to 20 which may have a substituent.
  • R c and R d preferably contain a hydrogen atom, an aryl group having 6 to 20 carbon atoms which may have a substituent, and one or more heterocyclic atoms selected from O, N, and S.
  • a heteroaryl group having 6 to 20 carbon atoms which may have a group, more preferably a hydrogen atom, an aryl group having 6 to 20 carbon atoms which may have a substituent, and even more preferably a hydrogen atom. It is an aryl group having 6 to 12 carbon atoms which may have an atom or a substituent.
  • Y 1 is a single bond, a fluorene group which may have a substituent, or a structural formula represented by the following formulas (8) to (14), and is preferably , a single bond, or a structural formula represented by the following formula (8).
  • R 61 , R 62 , R 71 and R 72 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 20 carbon atoms which may have a substituent. , or represents an aryl group having 6 to 30 carbon atoms which may have a substituent, or has a substituent formed by R 61 and R 62 or R 71 and R 72 bonding to each other. represents a carbon ring or heterocycle having 1 to 20 carbon atoms.
  • r and s are each independently an integer of 0 to 5000.
  • a and B are each independently an alkylene group having 1 to 5 carbon atoms which may have a substituent, preferably an alkylene group having 2 or 3 carbon atoms.
  • p and q are each independently an integer of 0 to 4, preferably 0 or 1.
  • a and b are each independently an integer of 0 to 10, preferably an integer of 0 to 5, more preferably an integer of 0 to 2, for example, 0 or 1.
  • structural unit (C) examples include BPEF (9,9-bis(4-(2-hydroxyethoxy)phenyl)fluorene), BPPEF(9,9-bis(4-(2-hydroxyethoxy)-3- (phenylphenyl)fluorene), 9,9-bis[6-(2-hydroxyethoxy)naphthalen-2-yl]fluorene (BNEF), bisphenol A, bisphenol AP, bisphenol AF, bisphenol B, bisphenol BP, bisphenol C, bisphenol (4-hydroxyphenyl)-2,2-dichloroethylene, bisphenol E, bisphenol F, bisphenol G, bisphenol M, bisphenol S, bisphenol P, bisphenol PH, bisphenol TMC, bisphenol P-AP (4,4'-(1- phenylethylidene) bisphenol), bisphenol P-CDE (4,4'-cyclododecylidene bisphenol), bisphenol P-HTG (4,4'-(3,3,5-trimethylcyclohexylid)
  • the thermoplastic resin of one embodiment of the present invention includes a polymer that includes the structural unit (A) as an essential component, but contains the structural unit (B) and does not contain the structural unit (C), and a polymer that contains the structural unit (C) and does not contain the structural unit (C).
  • a polymer that includes the structural unit (A) as an essential component but contains the structural unit (B) and does not contain the structural unit (C)
  • a polymer that contains the structural unit (C) and does not contain the structural unit (C) In addition to polymers that do not contain B), copolymers having the structural unit (B) and the structural unit (C), mixtures of polymers having the structural unit (B) and polymers having the structural unit (C), A combination of these may also be used.
  • Examples of polymers containing the structural unit (C) but not the structural unit (B) include those having the structural units of the following formulas (I-1) to (I-3), in which the structural unit (B) and Examples of the copolymer having the structural unit (C) include those having the structural units of the following formulas (II-1) to (II-4).
  • m and n are each an integer of 1 to 10, preferably an integer of 1 to 5, more preferably 1
  • the number of repeating units of formula (I-3) is an integer of 1 to 10, preferably an integer of 1 to 5, and more preferably 1.
  • both block copolymers and random copolymers in which the values of m and n are large, for example, 100 or more can be employed, but random copolymers are preferable. More preferably, a random copolymer in which the values of m and n are 1 is used.
  • m and n are each independently an integer of 1 to 10, preferably an integer of 1 to 5, and more preferably 1.
  • polymers having multiple types of structural units both block copolymers and random copolymers in which the values of m and n (or m, n, and l) are large, for example, 100 or more, can be adopted.
  • a random copolymer is preferred, and more preferably a random copolymer in which the values of m and n (or m, n, and l) are 1 is used.
  • the molar ratio of the structural unit (B) and the structural unit (C) is preferably 1:99 to 99:1, more preferably 10:90 to 90:10, and 15 :85 to 85:15 is more preferable, and 30:70 to 70:30 is particularly preferable.
  • the mass ratio of the polymer having the structural unit (B) to the polymer having the structural unit (C) is preferably 1:99 to 99:1, and preferably 10:90 to 90:10. The ratio is more preferably 15:85 to 85:15, and particularly preferably 30:70 to 70:30.
  • the thermoplastic resin of one embodiment of the present invention also preferably contains a structural unit derived from at least one monomer selected from the following monomer group.
  • R 1 and R 2 each independently represent a hydrogen atom, a methyl group, or an ethyl group
  • R 3 and R 4 each independently represent a hydrogen atom, a methyl group, an ethyl group, or a carbon number 2 ⁇ 5 alkylene glycol
  • the thermoplastic resin of one embodiment of the present invention has a structural unit (D) derived from a monomer represented by the following general formula (16).
  • the content of the structural unit (D) derived from the monomer represented by general formula (16) is preferably 1 to 50 mol%, more preferably 1 to 30 mol%, of all the structural units. More preferred.
  • L 1 each independently represents a divalent linking group
  • R 3 and R 4 each independently represent a halogen atom or a substituent having 1 to 20 carbon atoms which may contain an aromatic group
  • j3 and j4 each independently represent an integer from 0 to 4
  • t represents an integer of 0 or 1.
  • L 1 each independently represents a divalent linking group.
  • L 1 is preferably an alkylene group having 1 to 12 carbon atoms which may have a substituent, more preferably an alkylene group having 1 to 5 carbon atoms, and an alkylene group having 2 or 3 carbon atoms. It is more preferable that it is, and it is especially preferable that it is an ethylene group.
  • substituents for the alkylene group of L 1 include alkyl groups, cycloalkyl groups, aryl groups, alkoxyl groups, and combinations thereof. Specific examples of these groups include methyl groups, ethyl groups, n-propyl groups. , isopropyl group, phenyl group, methoxy group, ethoxy group, etc.
  • R 3 and R 4 each independently represent a halogen atom or a substituent having 1 to 20 carbon atoms which may contain an aromatic group.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom
  • examples of a substituent having 1 to 20 carbon atoms that may contain an aromatic group include a methyl group, a phenyl group, a naphthyl group, a thienyl group
  • Examples of the naphthyl group include 1-naphthyl group and 2-naphthyl group
  • examples of the thienyl group include 2-thienyl group and 3-thienyl group.
  • examples of the benzothienyl group include a 2-benzo[b]thienyl group and a 3-benzo[b]thienyl group. These groups may further have a substituent, and such substituents include, for example, those described above as substituents for the alkylene group of L1 , but are not limited thereto. do not have.
  • j3 and j4 each independently represent an integer from 0 to 4.
  • j3 and j4 are preferably integers of 0 to 2, more preferably 0 or 1, and particularly preferably 0.
  • t represents an integer of 0 or 1, and is preferably 1.
  • the monomer represented by the general formula (16) preferably has a structure represented by the following formula (16').
  • alcoholic compounds such as phenolic compounds that may be produced as by-products during production, diol components or carbonic acid diesters that remain unreacted are present as impurities.
  • Impurities such as alcoholic compounds such as phenolic compounds and diester carbonate may cause a decrease in strength or the generation of odor when formed into a molded product, so it is preferable that their content is as small as possible.
  • the content of the remaining phenolic compound is preferably 3000 mass ppm or less, more preferably 1000 mass ppm or less, particularly preferably 300 mass ppm or less, based on 100 mass % of the polycarbonate resin.
  • the content of the remaining diol component is preferably 1000 mass ppm or less, more preferably 100 mass ppm or less, particularly preferably 10 mass ppm or less, based on 100 mass % of the polycarbonate resin.
  • the content of the remaining diester carbonate is preferably 1000 mass ppm or less, more preferably 100 mass ppm or less, particularly preferably 10 mass ppm or less, based on 100 mass % of the polycarbonate resin.
  • the content of compounds such as phenol and t-butylphenol is small, and it is preferable that the content of these compounds is within the above range.
  • the content of the phenolic compound remaining in the polycarbonate resin can be measured by a method of analyzing the phenolic compound extracted from the polycarbonate resin using gas chromatography.
  • the content of alcohol compounds remaining in the polycarbonate resin can also be measured by a method of analyzing alcohol compounds extracted from the polycarbonate resin using gas chromatography.
  • the content of diol components and diester carbonate remaining in the polycarbonate resin can also be measured by extracting these compounds from the polycarbonate resin and analyzing them using gas chromatography.
  • the content of by-product alcoholic compounds such as phenolic compounds, diol components, and carbonic acid diesters may be reduced to such an extent that they are not detected, but from the viewpoint of productivity, they may be contained in small amounts as long as they do not impair the effectiveness. Good too. In addition, if the amount is small, plasticity can be improved when the resin is melted.
  • each of the remaining phenolic compound, diol component, or carbonic acid diester is, for example, 0.01 mass ppm or more, 0.1 mass ppm or more, or 1 mass ppm or more based on 100 mass % of the polycarbonate resin. You can.
  • the content of the remaining alcoholic compound may be, for example, 0.01 mass ppm or more, 0.1 mass ppm or more, or 1 mass ppm or more based on 100 mass % of the polycarbonate resin.
  • the content of by-product alcohol compounds such as phenolic compounds, diol components, and carbonic acid diesters in the polycarbonate resin is adjusted to be within the above range by appropriately adjusting the polycondensation conditions and equipment settings. It is possible. Moreover, it can also be adjusted by the conditions of the extrusion step after polycondensation.
  • the remaining amount of by-product alcoholic compounds such as phenolic compounds is related to the type of carbonic acid diester used in the polymerization of the polycarbonate resin, the polymerization reaction temperature, the polymerization pressure, and the like. By adjusting these, the residual amount of by-product alcohol compounds such as phenol compounds can be reduced.
  • the content of the remaining by-product alcoholic compound in the obtained polycarbonate resin is 3000 mass ppm or less based on the polycarbonate resin (100 mass %).
  • the content of the remaining alcoholic compound is preferably 3000 mass ppm or less, more preferably 1000 mass ppm or less, particularly preferably 300 mass ppm or less, based on 100 mass % of the polycarbonate resin.
  • thermoplastic resin ⁇ Physical properties of thermoplastic resin> (1) Refractive index (nD)
  • one of the characteristics of the thermoplastic resin is that it has a high refractive index, and the refractive index is preferably 1.600 to 1.700, and preferably 1.626 to 1.700. It is more preferable that it is, and it is especially preferable that it is 1.630 to 1.650.
  • the refractive index can be measured by the method described in Examples below.
  • the Abbe number of the thermoplastic resin is preferably 22.0 to 26.0, more preferably 23.0 to 26.0, and more preferably 23.0 to 24.7. It is particularly preferable that In the present invention, the Abbe number can be measured by the method described in the Examples below.
  • one of the characteristics of the thermoplastic resin is that it has high heat resistance
  • the glass transition temperature (Tg) is preferably 70 to 200°C, and preferably 100 to 200°C.
  • the temperature is more preferably from 100 to 150°C, even more preferably from 125 to 150°C, even more preferably from 125 to 145°C, and especially from 125 to 140°C. preferable.
  • the glass transition temperature can be measured by the method described in the Examples below.
  • the weight average molecular weight of the thermoplastic resin in terms of polystyrene is preferably 10,000 to 100,000, more preferably 10,000 to 80,000, and more preferably 10,000 to 100,000. Particularly preferred is 60,000.
  • one of the characteristics of the thermoplastic resin is that it has a low photoelastic coefficient, and the photoelastic coefficient is preferably 25 to 45, and preferably 25 to 38. It is more preferable that it is, and it is especially preferable that it is 30-38.
  • the photoelastic coefficient can be measured by the method described in Examples below.
  • thermoplastic resin composition containing the above-mentioned thermoplastic resin and an additive.
  • the thermoplastic resin composition of the present embodiment may contain resins other than the thermoplastic resin of the present invention containing the above-mentioned structural unit (A), as long as the desired effects of the present embodiment are not impaired.
  • resins include, but are not limited to, polycarbonate resins, polyester resins, polyester carbonate resins, (meth)acrylic resins, polyamide resins, polystyrene resins, cycloolefin resins, acrylonitrile-butadiene-styrene copolymer resins, and chlorinated resins.
  • Examples include at least one resin selected from the group consisting of vinyl resin, polyphenylene ether resin, polysulfone resin, polyacetal resin, and methyl methacrylate-styrene copolymer resin.
  • Various known ones can be used, and one type can be used alone or two or more types can be used in combination to add to the thermoplastic resin composition.
  • the thermoplastic resin composition preferably contains an antioxidant as the additive. It is preferable that the antioxidant includes at least one of a phenolic antioxidant and a phosphite antioxidant.
  • a phenolic antioxidant 1,3,5-tris(3,5-di-tert-butyl-4-hydroxyphenylmethyl)-2,4,6-trimethylbenzene, 1,3,5-tris(3 ,5-di-tert-butyl-4-hydroxybenzyl)-1,3,5-triazinee-2,4,6(1H,3H,5H)-trione, 4,4',4''-(1 -methylpropanyl-3-ylidene)tris(6-tert-butyl-m-cresol), 6,6'-di-tert-butyl-4,4'-butylidenedi-m-cresol, ocladecyl 3-(3, 5-di-tert-butyl-4-hydroxyphenyl)propionate, pentaeryth, 1,2,4
  • phosphite antioxidant 2-ethylhexyldiphenylphosphite, isodecyldiphenylphosphite, triisodecylphosphite, triphenylphosphite, 3,9-bis(octadecyloxy)-2,4,8,10- Tetraoxy-3,9-diphosphaspiro[5.5]undecane, 3,9-bis(2,6-di-tert-butyl-4-methylphenoxy)-2,4,8,10-tetraoxa- 3,9-diphosphaspiro[5.5]undecane, 2,2'-methylenbis(4,6-di-tert-butylphenyl)2-ethylhexylphosphite, tris(2,4-di-tert-butylphenyl) ) phosphite, tris(nonylphenyl)phos
  • the antioxidant is preferably contained in an amount of 1 ppm to 3000 ppm by weight based on the total weight of the resin composition.
  • the content of the antioxidant in the thermoplastic resin composition is more preferably 50 weight ppm to 2500 weight ppm, still more preferably 100 weight ppm to 2000 weight ppm, particularly preferably 150 weight ppm to 1500 weight ppm. and even more preferably from 200 ppm to 1200 ppm by weight.
  • the thermoplastic resin composition preferably contains a mold release agent as the additive.
  • a mold release agent ester compounds such as glycerin fatty acid esters such as mono- and diglycerides of glycerin fatty acids, glycol fatty acid esters such as propylene glycol fatty acid esters and sorbitan fatty acid esters, higher alcohol fatty acid esters, aliphatic polyhydric alcohols and aliphatic carboxyls are used. Examples include full esters with acids and monofatty acid esters. When using an ester of an aliphatic polyhydric alcohol and an aliphatic carboxylic acid as a mold release agent, any of monoesters, full esters, etc.
  • mold release agents include the following. namely, sorbitan fatty acid esters such as sorbitan stearate, sorbitan laurate, sorbitan oleate, sorbitan triolate, sorbitan tribehenate, sorbitan stearate, sorbitan tristearate, sorbitan caprylate; Propylene glycol fatty acid esters such as propylene glycol monostearate, propylene glycol monooleate, propylene glycol monobehenate, propylene glycol monolaurate, and propylene glycol monopalmitate; Higher alcohol fatty acid esters such as stearyl stearate; Monoglycerides such as glycerin monostearate, glycerin mono-12-hydroxystearate, glycerin monohydroxystearate, glycerin monooleate, glycerin monobehenate, gly
  • the mold release agent is preferably contained in an amount of 1 ppm to 5000 ppm by weight based on the total weight of the resin composition.
  • the content of the mold release agent in the thermoplastic resin composition is more preferably 50 weight ppm to 4000 weight ppm, still more preferably 100 weight ppm to 3500 weight ppm, particularly preferably 500 weight ppm to 13000 weight ppm. and even more preferably from 1000 ppm to 2500 ppm by weight.
  • additives may be added to the thermoplastic resin composition.
  • additives that the thermoplastic resin composition may contain include compounding agents, catalyst deactivators, heat stabilizers, plasticizers, fillers, ultraviolet absorbers, rust preventives, dispersants, antifoaming agents, leveling agents, Examples include flame retardants, lubricants, dyes, pigments, bluing agents, nucleating agents, and clarifying agents.
  • the content of other additives other than the antioxidant and mold release agent in the thermoplastic resin composition is preferably 10 weight ppm to 5.0 weight %, more preferably 100 weight ppm to 2.0 weight %.
  • the content is more preferably 1000 ppm to 1.0% by weight, but is not limited thereto.
  • the above-mentioned additives may have an adverse effect on the transmittance, so it is preferable not to add them in excess, for example, the total amount added is within the above-mentioned range.
  • thermoplastic resin or thermoplastic resin composition (hereinafter simply referred to as "resin composition") of the present invention can be suitably used for optical members.
  • an optical member containing the resin composition of the present invention is provided.
  • optical members include optical discs, transparent conductive substrates, optical cards, sheets, films, optical fibers, lenses, prisms, optical films, substrates, optical filters, hard coat films, etc. Not limited to these.
  • the resin composition of the present invention has high fluidity and can be molded by a casting method, so it is particularly suitable for manufacturing thin optical members.
  • the optical member manufactured using the resin composition of the present invention may be an optical lens.
  • the optical member manufactured using the resin composition of the present invention may be an optical film.
  • the molding When producing an optical member containing the resin composition of the present invention by injection molding, it is preferable to perform the molding under conditions of a cylinder temperature of 260 to 350°C and a mold temperature of 90 to 170°C. More preferably, the molding is performed under the conditions of a cylinder temperature of 270 to 320°C and a mold temperature of 100 to 160°C. If the cylinder temperature is higher than 350°C, the resin composition will decompose and become colored, and if it is lower than 260°C, the melt viscosity will be high and molding will likely become difficult. Further, if the mold temperature is higher than 170° C., it is likely to be difficult to take out the molded piece made of the resin composition from the mold.
  • the resin will solidify too quickly in the mold during molding, making it difficult to control the shape of the molded piece, or making it difficult to sufficiently transfer the imprinting pattern on the mold. can easily become difficult.
  • the resin composition can be suitably used for optical lenses.
  • the optical lens manufactured using the resin composition of the present invention has a high refractive index and is excellent in heat resistance, so expensive high refractive index glass lenses were conventionally used in telescopes, binoculars, television projectors, etc. It can be used in various fields and is extremely useful.
  • a lens molded from a resin containing a structural unit derived from any of the monomers of the above formulas can be stacked and used as a lens unit.
  • the optical lens of the present invention is preferably implemented in the form of an aspherical lens, if necessary.
  • Aspherical lenses can reduce spherical aberration to virtually zero with a single lens, so there is no need to remove spherical aberration by combining multiple spherical lenses, which reduces weight and molding costs. It becomes possible. Therefore, aspherical lenses are particularly useful as camera lenses among optical lenses.
  • the optical lens of the present invention has high molding fluidity, it is particularly useful as a material for optical lenses that are thin, small, and have complex shapes.
  • the thickness at the center is preferably 0.05 to 3.0 mm, more preferably 0.05 to 2.0 mm, and even more preferably 0.1 to 2.0 mm.
  • the diameter is preferably 1.0 mm to 20.0 mm, more preferably 1.0 to 10.0 mm, and still more preferably 3.0 to 10.0 mm.
  • the lens is a meniscus lens in which one side is convex and the other side is concave.
  • the optical lens of the present invention can be formed by any method such as molding, cutting, polishing, laser machining, electrical discharge machining, and etching. Among these, mold molding is more preferable from the viewpoint of manufacturing cost.
  • the resin composition can be suitably used for an optical film.
  • the optical film manufactured using the polycarbonate resin of the present invention has excellent transparency and heat resistance, and is therefore suitably used for films for liquid crystal substrates, optical memory cards, and the like.
  • the molding environment In order to avoid contamination of foreign matter into the optical film as much as possible, the molding environment must naturally be a low-dust environment, preferably class 6 or lower, more preferably class 5 or lower.
  • NMR analysis Measuring device Fourier transform nuclear magnetic resonance AVANCE III HD 400 (manufactured by BRUKER) The measurement sample was dissolved in deuterated chloroform (CDCl 3 ), and 13 C-NMR and 1 H-NMR spectra were measured.
  • Refractive index Measuring device Refractometer (manufactured by Kyoto Electronics Industry Co., Ltd.: RA-500) Tetrahydrofuran solutions (concentrations of 30%, 20%, and 10%) of measurement samples were prepared, and the refractive index was measured using a refractometer. From the obtained results, the relationship between concentration and refractive index was derived, and the value at 100% concentration was calculated by extrapolation, and this value was taken as the refractive index of the measurement sample.
  • Refractometer manufactured by Kyoto Electronics Industry Co., Ltd.: RA-500
  • Tetrahydrofuran solutions concentration of 30%, 20%, and 10%
  • Powder X-ray diffraction method (PXRD) 0.1 g of the compound obtained in the synthesis example was filled into the sample filling part of a glass test plate, and the measurement was performed using the following apparatus and the following conditions.
  • Refractive index (nD) Based on JIS B 7071-2:2018, polycarbonate resin was molded to obtain a V block and used as a test piece. The refractive index was measured at 23° C. using a refractometer (KPR-3000 manufactured by Shimadzu Corporation).
  • reaction solution was neutralized with an aqueous sodium hydroxide solution, and the separated aqueous layer was removed.
  • the reaction solution was neutralized with an aqueous sodium hydroxide solution, and the separated aqueous layer was removed.
  • the mixture was allowed to stand and the separated aqueous layer was removed. Thereafter, the obtained oil layer was washed with water twice at an internal temperature of 75° C. to remove sodium chloride produced by neutralization.
  • toluene and 2-phenylphenol in the flask were distilled off under heating and reduced pressure conditions (final flask internal temperature 270°C, internal pressure 0.6 kPa). Thereafter, the residue in the flask was taken out.
  • the yield of the target product in the obtained solid was 89 mol % based on the raw material ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethyl-1,3-benzenedimethanol.
  • the purity measured by high performance liquid chromatography was 91.9%.
  • compound A 1,3-bis[1-methyl-1-(4-hydroxy-3-phenylphenyl)ethyl]benzene (hereinafter referred to as "compound A”) synthesized in Synthesis Example 1 was contained in 36.9 g of the obtained distillation residue. ) was included. The crude yield of compound A based on ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethyl-1,3-benzenedimethanol was 94 mol%.
  • the obtained crystals were determined to be the target compound 1,3-bis[1-methyl-1-(4-(2-hydroxyethoxy)-3-phenylphenyl)ethyl]benzene (hereinafter referred to as "compound B") by NMR analysis. ).
  • the yield of Compound B based on the amount of Compound A used was 77 mol%.
  • 44.3 g of the obtained crystals of compound B (34.0 g as compound B) and 132.9 g of methyl isobutyl ketone were added to a 500 ml four-necked flask equipped with a reflux device, and the temperature of the liquid in the flask was adjusted. The solids were completely dissolved by heating to 75° C. and stirring.
  • DSC Differential scanning calorimetry
  • Table 1 shows the diffraction angle 2 ⁇ (°) of the diffraction peaks that appeared in the powder X-ray diffraction (PXRD) measurement of the crystals of the obtained compound and the peaks with a relative integrated intensity of 30 or more based on the peak with the largest integrated intensity. Shown below.
  • a PXRD measurement chart is shown in FIG.
  • Example 1 As raw materials, 16.694 g (0.0381 mol) of 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene (BPEF), 4-(1- ⁇ 3-[1 -(4-hydroxy-3-phenylphenyl)-isopropyl]phenyl ⁇ -isopropyl)-2-phenylphenol (also known as 1,3-bis[1-methyl-1-(4-hydroxy-3-phenylphenyl)ethyl) ] 8.1361 g (0.0163 mol) of benzene (abbreviation: BisOPP-M), 12.000 g (0.0560 mol) of diphenyl carbonate (DPC), and 20 ⁇ l of a 2.5 ⁇ 10 -2 mol/liter aqueous solution of sodium hydrogen carbonate.
  • BPEF 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene
  • Example 2 A polycarbonate resin was obtained in the same manner as in Example 1, except that the amounts of raw materials charged were as shown in Table 2. Table 1 shows the physical properties of the obtained resin.
  • Examples 3-4 Comparative Example 2
  • a polycarbonate resin was obtained in the same manner as in Example 1, except that the amounts of raw materials charged were as shown in Table 4.
  • Table 3 shows the physical properties of the obtained resin.
  • BCFL 9,9-bis(4-hydroxy-3-methylphenyl)fluorene
  • Step 2 After blowing phosgene, 1.45 g of p-tert-butylphenol (PTBP) dissolved in 50 ml of dichloromethane was added, stirred vigorously for 7 minutes to emulsify, and then 0.5 ml of triethylamine was added as a polymerization catalyst and polymerized for 30 minutes. I let it happen.
  • TEBAC triethylbenzylammonium chloride
  • a polycarbonate resin was obtained in the same manner. Table 5 shows the physical properties of the obtained resin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明によれば、下記一般式(1)で表されるモノマー由来の構成単位(A)を含む熱可塑性樹脂を提供することができる。 (式中、R1は、各々独立して炭素原子数6~14のアリール基又は炭素原子数7~17のアラルキル基を示し、R2は、各々独立して水素原子、炭素原子数6~14のアリール基又は炭素原子数7~17のアラルキル基を示し、aは、各々独立して0又は1~3の整数を示し、R3は、各々独立して-OH、又は-O-(CH2)n-OHを示し、nは、1~4の整数を示す。)

Description

熱可塑性樹脂及びそれを含む光学レンズ
 本発明は、熱可塑性樹脂及びそれを含む光学レンズに関する。より詳細には、本発明は、ポリカーボネート樹脂、ポリエステルカーボネート樹脂、又はポリエステル樹脂、及びそれを含む光学レンズに関する。
 カメラ、フィルム一体型カメラ、ビデオカメラ等の各種カメラの光学系に使用される光学レンズの材料として、光学ガラスあるいは光学用樹脂が使用されている。光学ガラスは、耐熱性、透明性、寸法安定性、耐薬品性等に優れるが、材料コストが高く、成形加工性が悪く、生産性が低いという問題点を有している。
 一方、光学用樹脂からなる光学レンズは、射出成形により大量生産が可能であるという利点を有しており、カメラレンズ用高屈折率材料としてポリカーボネート、ポリエステルカーボネート、ポリエステル樹脂等が使用されている。
 光学用樹脂を光学レンズとして用いる場合、屈折率やアッベ数などの光学特性に加えて、耐熱性、透明性、低吸水性、耐薬品性、低複屈折、耐湿熱性等が求められる。特に近年、高屈折率及び高耐熱性を有する光学レンズが求められており、様々な樹脂の開発が行われている(特許文献1~5)。
特開2018-2893号公報 特開2018-2894号公報 特開2018-2895号公報 特開2018-59074号公報 WO2017/078073
 本発明は、使用に耐える耐熱性を保持しつつ、屈折率やアッベ数や光弾性係数などの光学特性に優れた熱可塑性樹脂及びそれを用いた光学レンズを提供することを課題とする。
 本発明者らは、従来の課題を解決すべく鋭意検討を重ねた結果、1,3-ビス(1-メチル-1-フェニルエチル)ベンゼン化合物中に特定のアリール基又はアラルキル基を導入した特定の構造を有するモノマーを原料とすることにより、屈折率やアッベ数や光弾性係数などの光学特性に優れ、かつ、耐熱性にも優れた熱可塑性樹脂が得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の態様を含む。
<1> 下記一般式(1)で表されるモノマー由来の構成単位(A)を含む熱可塑性樹脂である。
Figure JPOXMLDOC01-appb-C000010
(式中、Rは、各々独立して炭素原子数6~14のアリール基又は炭素原子数7~17のアラルキル基を示し、Rは、各々独立して水素原子、炭素原子数6~14のアリール基又は炭素原子数7~17のアラルキル基を示し、aは、各々独立して0又は1~3の整数を示し、Rは、各々独立して-OH、又は-O-(CH-OHを示し、nは、1~4の整数を示す。)
<2> 前記一般式(1)で表されるモノマーが、下記式(1A)で表されるモノマーである、上記<1>に記載の熱可塑性樹脂である。
Figure JPOXMLDOC01-appb-C000011
(式中、R、R及びaは一般式(1)と同じ定義である。)
<3> 前記一般式(1)で表されるモノマーが、下記式(5)で表されるモノマーである、上記<1>に記載の熱可塑性樹脂である。
Figure JPOXMLDOC01-appb-C000012
<4> 前記一般式(1)で表されるモノマーが、下記式(1B)で表されるモノマーである、上記<1>に記載の熱可塑性樹脂である。
Figure JPOXMLDOC01-appb-C000013
(式中、R、R及びaは一般式(1)と同じ定義であり、nは独立して1~4の整数を示す。)
<5> 前記一般式(1)で表されるモノマーが、下記式(15)で表されるモノマーである、上記<1>に記載の熱可塑性樹脂である。
Figure JPOXMLDOC01-appb-C000014
<6> 前記熱可塑性樹脂が、ポリカーボネート樹脂、ポリエステルカーボネート樹脂、又はポリエステル樹脂である、上記<1>から<5>のいずれかに記載の熱可塑性樹脂である。
<7> 前記熱可塑性樹脂が、下記一般式(6)で表されるモノマー由来の構成単位(B)及び/又は下記一般式(7)で表されるモノマー由来の構成単位(C)を含む、上記<1>から<6>のいずれかに記載の熱可塑性樹脂である。
Figure JPOXMLDOC01-appb-C000015
(一般式(6)中、
 R及びRは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよい炭素数1~20のアルキル基、置換基を有してもよい炭素数1~20のアルコキシル基、置換基を有してもよい炭素数5~20のシクロアルキル基、置換基を有してもよい炭素数5~20のシクロアルコキシル基、置換基を有してもよい炭素数6~20のアリール基、O、N及びSから選択される1つ以上のヘテロ環原子を含む、置換基を有してもよい炭素数6~20のヘテロアリール基、置換基を有してもよい炭素数6~20のアリールオキシ基、及び、-C≡C-Rからなる群より選択され、
 Rは置換基を有してもよい炭素数6~20のアリール基、又は、O、N及びSから選択される1つ以上のヘテロ環原子を含む、置換基を有してもよい炭素数6~20のヘテロアリール基を表し、
 Xは、単結合であるか、又は置換基を有してもよいフルオレン基を表し、
 A及びBは、それぞれ独立に、置換基を有してもよい炭素数1~5のアルキレン基を表し、
 m及びnは、それぞれ独立に、0~6の整数を表し、
 a及びbは、それぞれ独立に、0~10の整数を表す。)
Figure JPOXMLDOC01-appb-C000016
(一般式(7)中、
 R及びRは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよい炭素数1~20のアルキル基、置換基を有してもよい炭素数1~20のアルコキシル基、置換基を有してもよい炭素数5~20のシクロアルキル基、置換基を有してもよい炭素数5~20のシクロアルコキシル基、及び、置換基を有してもよい炭素数6~20のアリール基からなる群より選択され、
 Yは、単結合、置換基を有してもよいフルオレン基、又は下記式(8)~(14)で表される構造式のうちいずれかであり、
Figure JPOXMLDOC01-appb-C000017
(式(8)~(14)中、
 R61、R62、R71及びR72は、それぞれ独立して、水素原子、ハロゲン原子、置換基を有してもよい炭素数1~20のアルキル基、又は、置換基を有してもよい炭素数6~30のアリール基を表すか、あるいは、R61及びR62、又はR71及びR72が互いに結合して形成する、置換基を有してもよい炭素数1~20の炭素環又は複素環を表し、
 r及びsは、それぞれ独立して、0~5000の整数を表す。)
 A及びBは、それぞれ独立に、置換基を有してもよい炭素数1~5のアルキレン基を表し、
 p及びqは、それぞれ独立に、0~4の整数を表し、
 a及びbは、それぞれ独立に、0~10の整数を表す。)
<8> 前記一般式(6)及び一般式(7)において、前記A及びBが、それぞれ独立に、炭素数2又は3のアルキレン基を表す、上記<7>に記載の熱可塑性樹脂である。
<9> 前記熱可塑性樹脂が、少なくとも、BPEF,BNE,BNEF及びDPBHBNAのいずれかに由来する構成単位を含む、上記<7>又は<8>に記載の熱可塑性樹脂である。
<10> 前記熱可塑性樹脂が、更に、下記のモノマー群から選択される少なくとも一つのモノマーに由来する構成単位を含む、上記<1>から<9>のいずれかに記載の熱可塑性樹脂である。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-I000019
(上記式中、R及びRは、それぞれ独立に、水素原子、メチル基又はエチル基を表し、R及びRは、それぞれ独立に、水素原子、メチル基、エチル基又は炭素数2~5のアルキレングリコールを表す。)
<11> 前記熱可塑性樹脂のポリスチレン換算の重量平均分子量(Mw)が、10,000~100,000である、上記<1>から<10>のいずれかに記載の熱可塑性樹脂である。
<12> 前記熱可塑性樹脂の屈折率(nD)が、1.600~1.700である、上記<1>から<11>のいずれかに記載の熱可塑性樹脂である。
<13> 前記熱可塑性樹脂のアッベ数(ν)が、22.0~26.0である、上記<1>から<12>のいずれかに記載の熱可塑性樹脂である。
<14> 前記熱可塑性樹脂のガラス転移温度が、70~200℃である、上記<1>から<13>のいずれかに記載の熱可塑性樹脂である。
<15> 前記熱可塑性樹脂の光弾性係数が、25~45である、上記<1>から<14>のいずれかに記載の熱可塑性樹脂である。
<16> 上記<1>~<15>のいずれかに記載の熱可塑性樹脂を含む、光学レンズである。
 本発明によれば、使用に耐える耐熱性を保持しつつ、屈折率やアッベ数や光弾性係数などの光学特性に優れた熱可塑性樹脂及びそれを含む光学レンズを提供することができる。
合成例2において得られた化合物の結晶の示差走査熱量分析(DSC) データのチャートを示す図である。 合成例2において得られた化合物の結晶の粉末X線回折(PXRD) 測定のチャートを示す図である。
 以下、本発明について合成例や実施例等を例示して詳細に説明するが、本発明は例示される合成例や実施例等に限定されるものではなく、本発明の内容を大きく逸脱しない範囲であれば任意の方法に変更して行うこともできる。
<熱可塑性樹脂>
 本発明の一実施形態は、下記一般式(1)で表されるモノマー由来の構成単位(A)を含む熱可塑性樹脂である。
Figure JPOXMLDOC01-appb-C000020
 式中、Rは、各々独立して炭素原子数6~14のアリール基又は炭素原子数7~17のアラルキル基を示し、Rは、各々独立して水素原子、炭素原子数6~14のアリール基又は炭素原子数7~17のアラルキル基を示し、aは、各々独立して0又は1~3の整数を示し、Rは、各々独立して-OH、又は-O-(CH-OHを示し、nは、1~4の整数を示す。
(一般式(1)中のR
 一般式(1)中のRは、各々独立して炭素原子数6~14のアリール基又は炭素原子数7~17のアラルキル基を示すが、中でも、各々独立して炭素原子数6~14のアリール基又は炭素原子数7~13のアラルキル基が好ましく、各々独立して炭素原子数6~14のアリール基又は炭素原子数7~11のアラルキル基がより好ましく、各々独立して炭素原子数6~14のアリール基がさらに好ましく、各々独立して炭素原子数6~10のアリール基が特に好ましい。
 炭素原子数6~14のアリール基としては、例えば、フェニル基、ナフチル基、アントリル基、フェナントリル基等が挙げられるが、中でも、フェニル基、ナフチル基が好ましく、フェニル基がより好ましい。
 炭素原子数7~17のアラルキル基としては、ベンジル基、フェネチル基、1-メチル-1-フェニルエチル基、ナフタレン-1-イル-メチル基、ナフタレン-2-イル-メチル基、1-メチル-1-(1-ナフチル)エチル基、1-メチル-1-(2-ナフチル)エチル基、アントラセン-9-イル-メチル基、フェナントレン-9-イル-メチル基等が挙げられるが、中でも、ベンジル基、1-メチル-1-フェニルエチル基、ナフタレン-1-イル-メチル基、ナフタレン-2-イル-メチル基が好ましく、ベンジル基、ナフタレン-1-イル-メチル基、ナフタレン-2-イル-メチル基がより好ましく、ベンジル基がさらに好ましい。
 一般式(1)中のRとしては、2つのR共にフェニル基であることが特に好ましい。
(一般式(1)中のR
 一般式(1)中のRは、各々独立して水素原子、炭素原子数6~14のアリール基又は炭素原子数7~17のアラルキル基を示すが、中でも、各々独立して水素原子、炭素原子数6~10のアリール基又は炭素原子数7~13のアラルキル基が好ましく、各々独立して水素原子、炭素原子数6~10のアリール基又は炭素原子数7~11のアラルキル基がより好ましい。
 炭素原子数6~14のアリール基としては、例えば、フェニル基、ナフチル基、アントリル基、フェナントリル基等が挙げられるが、中でも、フェニル基、ナフチル基が好ましく、フェニル基がより好ましい。
 炭素原子数7~17のアラルキル基としては、ベンジル基、フェネチル基、1-メチル-1-フェニルエチル基、ナフタレン-1-イル-メチル基、ナフタレン-2-イル-メチル基、1-メチル-1-(1-ナフチル)エチル基、1-メチル-1-(2-ナフチル)エチル基、アントラセン-9-イル-メチル基、フェナントレン-9-イル-メチル基等が挙げられるが、中でも、ベンジル基、1-メチル-1-フェニルエチル基、ナフタレン-1-イル-メチル基、ナフタレン-2-イル-メチル基が好ましく、ベンジル基、ナフタレン-1-イル-メチル基、ナフタレン-2-イル-メチル基がより好ましく、ベンジル基がさらに好ましい。
 一般式(1)中のaは、各々独立して0又は1~3の整数を示すが、各々独立して0、1又は2が好ましく、各々独立して0又は1がより好ましく、0がさらに好ましい。一般式(1)中のaが1~3の整数を示す場合は、Rのオルソ位に少なくとも1つのRが結合していることが好ましい。
(一般式(1)中のR
 一般式(1)中のRは、各々独立して-OH、又は-O-(CH-OHを示す。
 一般式(1)におけるRが-OHである場合の化合物は、一般式(1A)で表される化合物(化合物1A)である。
Figure JPOXMLDOC01-appb-C000021
 式中、R、R及びaは一般式(1)と同じ定義である。
 一般式(1)におけるRが-O-(CH-OHである場合の化合物は、一般式(1B)で表される化合物(化合物1B)である。
Figure JPOXMLDOC01-appb-C000022
 式中、R、R、a及びnは一般式(1)と同じ定義である。
 一般式(1B)中のnは、各々独立して1~4の整数を示すが、中でも、2~4の整数が好ましく、2又は3がより好ましく、2が特に好ましい。
 本発明における、一般式(1)で表される1,3-ビス(1-メチル-1-フェニルエチル)ベンゼン化合物のうち、化合物1Aの具体例を示す。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
<モノマーの製造方法-1>
 本発明における一般式(1)で表される1,3-ビス(1-メチル-1-フェニルエチル)ベンゼン化合物については、その製造における出発原料、製造方法について特に制限はない。
 化合物1Aの製造方法は、下記反応式で例示するとおり、一般式(2)で表されるフェノール化合物とα,α,α’,α’-テトラメチル-1,3-ベンゼンジメタノールを反応させる製造方法が挙げられる。
Figure JPOXMLDOC01-appb-C000026
 式中、R、R及びaは一般式(1)の定義と同じである。
 一般式(2)で表されるフェノール化合物として、具体的には、例えば、2-フェニルフェノール、2-(1-ナフチル)フェノール、2-(2-ナフチル)フェノール、2-(9-アントラセニル)フェノール、2-(9-フェナントリル)フェノール、2,6-ジフェニルフェノール、2-ベンジルフェノール、2-(1-メチル-1-フェニルエチル)フェノール、2-(1-ナフチルメチル)フェノール、2-(2-ナフチルメチル)フェノール、2-(9-アントラセニルメチル)フェノール、2-(9-フェナントリルメチル)フェノール、2-フェニル-6-ベンジルフェノール、2-フェニル-6-(1-メ チル-1‐フェニルエチル)フェノール、2-フェニル-6-(1-ナフチルメチル)フェノール、2-フェニル-6-(2-ナフチルメチル)フェノール、2-(1-ナフチル)-6-ベンジルフェノール、2-(1-ナフチル)-6-(1-メチル-1‐フェニルエチル)フェノール、2-(1-ナフチル)-6-(1-ナフチルメチル)フェノール、2-(1-ナフチル)-6-(2-ナフチルメチル)フェノール、2-(2-ナフチル)-6-ベンジルフェノール、2-(2-ナフチル)-6-(1-メチル-1‐フェニルエチル)フェノール、2-(2-ナフチル)-6-(1-ナフチルメチル)フェノール、2-(2-ナフチル)-6-(2-ナフチルメチル)フェノール等が挙げられる。
 上記製造方法において、一般式(2)で表されるフェノール化合物の使用量としては、α,α,α’,α’-テトラメチル-1,3-ベンゼンジメタノール1モルに対して、5~12モルの範囲であることが好ましく、7~10モルの範囲であることがより好ましく、8モルであることがさらに好ましい。
 上記製造方法は、酸触媒の存在下で実施することが好ましい。好ましい酸触媒としては、濃塩酸、硫酸、塩酸ガス等が挙げられ、中でも塩酸ガスを反応液中に飽和するまで使用することがより好ましい。
 反応は通常、溶媒の存在下に行われる。溶媒としては、反応を阻害しないものであれば特に制限はない。化合物1Aは、種々の溶媒に易溶であるため、各種溶媒を使用することが可能である。中でも、一般式(2)で表されるフェノール化合物に対する溶解性が良好なアルコール類が好ましく、炭素数1~10のアルコールがより好ましく、メタノール、エタノール、プロパノール、イソプロパノールがさらに好ましく、メタノールが特に好ましい。これらの溶媒は単独又は組み合わせて用いることができる。
 また、溶媒の使用量は反応に支障なければ特に制限はないが、通常、α,α,α’,α’-テトラメチル-1,3-ベンゼンジメタノールに対し1~5重量倍の範囲で用いることが好ましく、1~3重量倍の範囲で用いることがより好ましく、1~2重量倍の範囲で用いることがさらに好ましい。
 上記製造方法は、大気雰囲気下、あるいは、不活性ガス雰囲気下のいずれで行ってもよいが、反応生成物の着色等を抑制するために、窒素、アルゴン等の不活性ガス雰囲気下が好ましい。
 反応温度は、通常20~40℃の範囲であり、25~30℃の範囲であることが好ましい。
 反応圧力は常圧条件下で行ってもよく、また、加圧条件下でも、あるいは減圧条件下で行ってもよいが、常圧条件下で行うことが好ましい。
 得られた反応終了混合物は、常法に準じて、分離・精製することにより反応混合物から化合物1Aを得ることができる。例えば、反応終了液に、酸触媒を中和するために、水酸化ナトリウム水溶液、アンモニア水溶液等のアルカリ水溶液を加えて、酸触媒を中和する。中和した反応混合液を静置し、必要に応じて水と分離する溶媒を加えて、水層を分離除去する。必要に応じて得られた油層に蒸留水を加え、撹拌して水洗した後、水層を分離除去する操作を1回乃至複数回繰り返し行い中和塩を除去する。得られた油層から残存原料や溶媒を留去することにより残液として目的物である化合物1Aを得ることができる。
 本発明における、一般式(1)で表される1,3-ビス(1-メチル-1-フェニルエチル)ベンゼン化合物の化合物1Bの具体例を示す。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-I000030
<モノマーの製造方法-2>
 化合物1Bの製造方法としては、一般式(1A)で表される化合物とアルキレンオキシ化剤を反応させる製造方法が挙げられる。アルキレンオキシ化剤として、一般式(3)で表されるカーボネート類を使用した場合の反応式を例示する。
Figure JPOXMLDOC01-appb-C000031
 式中、R、R、a及びnは一般式(1)の定義と同じである。
 上記製造方法において、一般式(1A)で表される化合物1Aは、上述の製造方法-1により得られた化合物を用いることができる。アルキレンオキシ化剤としては、例えば、エチレンカーボネート等の一般式(3)で表されるカーボネート類や、2-クロロエタノール、3-クロロ-1-プロパノールなどのハロゲン化アルコールを、目的化合物に応じて用いることができる。
 上記製造方法において、アルキレンオキシ化剤として一般式(3)で表されるカーボネート類を使用する場合について、以下説明する。
 化合物1Aとカーボネート類の原料モル比は、化合物1A/カーボネート類が、通常は1/2~1/5程度の範囲であり、好ましくは1/2~1/4程度の範囲であり、さらに好ましくは1/2~1/3程度の範囲である。
 上記製造方法において、反応時に塩基性触媒を使用することが好ましく、その塩基性触媒としては、一般に公知のものを用いることができる。具体的には、テトラエチルアンモニウムブロマイド、テトラメチルアンモニウムクロライド等の4級アンモニウム塩、水酸化カリウム、ヨウ化カリウム、臭化ナトリウム等のハロゲン化アルカリ金属塩、トリフェニルホスフィン、トリブチルホスフィン等のトリオルガノホスフィン化合物、1-メチルイミダゾール等のアミン触媒、炭酸カリウム、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、水酸化カルシウム、水酸化ナトリウム、炭酸水素ナトリウム、メトキシナトリウム、フェノキシナトリウム等のアルカリ触媒を例示できる。これらの塩基性触媒は、単独で用いても2種類以上を併用してもよい。
 この塩基性触媒の使用量としては、一般式(1A)で表される化合物1Aの0.001~10重量%であり、好ましくは0.01~1重量%である。
 カーボネート類を過剰量使用することで反応を無溶媒で行うことも可能であるが、経済性や操作性の観点から、通常は有機溶媒を用いて行うことが好ましい。
 反応溶媒を用いる場合、反応不活性な各種公知の溶媒を使用することができる。かかる反応溶媒としては、例えば、トルエン、キシレン等の芳香族炭化水素、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン等のエーテル系溶媒、アセトン、メチルイソブチルケトン等のケトン系溶媒、クロロホルム、1,2-ジクロルエタン等のハロゲン化炭化水素、ブタノール、エチレングリコール等の脂肪族アルコール、ジメチルホルムアミド、ジメチルスルホキシド等の極性溶媒等が挙げられる。
 反応溶媒の使用量に関しては特に制限はないが、化合物1Aに対して、0.5~10重量倍の範囲であることが好ましく、0.5~5重量倍の範囲であることがより好ましい。
 上記製造方法は、大気雰囲気下、あるいは、不活性ガス雰囲気下のいずれで行ってもよいが、反応生成物の着色等を抑制するために、窒素、アルゴン等の不活性ガス雰囲気下が好ましい。
 反応温度は反応が進行する温度であれば特に限定はされないが、通常は加熱下に行われる。例えば、100℃~250℃で行われ、好ましくは溶媒の還流下で行われる。
 反応時間は、反応温度、使用するカーボネート類、塩基性触媒の量と種類等によるが、通常は3~24時間程度にて行われる。当該反応においては、炭酸ガスの発生がおさまった時点を反応終了の目安とすることができる。
 得られた反応終了混合物は、常法に準じて、分離・精製することにより、反応混合物から化合物1Bを得ることができる。
 塩基性触媒を用いる場合は、これに酸含有水(例えば、塩酸、硫酸)や酢酸、プロピオン酸等を加えて中和する。後述の加水分解工程を行った後にこの中和工程を行ってもよい。
 この反応では、カーボネート類を過剰量加えているため、反応終了後も反応液中にカーボネート類が残存しているため、この状態で加熱等処理を行うと、副反応が進行し、目的化合物である化合物1Bの純度及び収量が低下する恐れがあることから、水を添加してカーボネート類の加水分解工程を行うことが好ましい。使用する水の量としては、上記反応で使用したカーボネート類の量に対して、1~10モル倍の範囲である。
 温度としては、反応液の沸点未満であればよいが、通常、室温から反応液の沸点未満の範囲である。具体的には、下限は10℃以上、より好ましくは20℃以上である。上限は使用する溶媒の沸点にもよるが、150℃以下であることが好ましい。
 その後、必要に応じて水と分離する溶媒を加えてから、油層を複数回水洗し、水層を分離除去し、得られた油層から減圧下で溶媒等の低沸点物を留出させて除去し、水洗、晶析、ろ過、蒸留、カラムクロマトグラフィー等による分離、乾燥等の後処理操作を行うことができる。さらに純度を高めるため、常法に準じて、さらに、蒸留や再結晶、カラムクロマトグラフィーによる精製を行ってもよい。
 本発明における、化合物1Bのうち、下記式(15)で表される1,3-ビス[1-メチル-1-(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)エチル]ベンゼンの結晶は、結晶性を有する固体として取り扱うことができることから、熱可塑性樹脂の工業的な製造に当り、取り扱い性や輸送性に優れるため、非常に有用である。
Figure JPOXMLDOC01-appb-C000032
 上記式(15)で表される1,3-ビス[1-メチル-1-(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)エチル]ベンゼンの結晶は、示差走査熱量分析による吸熱ピークのピークトップ温度は、134~140℃の範囲にあり、135~139℃の範囲であることがより好ましく、136~139℃の範囲にあることが特に好ましい。
 また、上記式(15)で表される1,3-ビス[1-メチル-1-(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)エチル]ベンゼンの結晶は、Cu-Kα線による粉末X線回折ピークパターンにおいて、回折角2θが7.9±0.2°、10.8±0.2°、16.3±0.2°及び18.6±0.2°に回折ピークがある。それに加え、回折角2θが12.8±0.2°、 14.9±0.2°、20.2±0.2°、24.1±0.2°にピークを有していてもよい。
 上記式(15)で表される1,3-ビス[1-メチル-1-(4-(2-ヒドロキシエトキシ)-3-フェ ニルフェニル)エチル]ベンゼンの結晶の純度は、液体クロマトグラフィー分析による面積百分率において、90%以上であることが好ましく、93%以上であることがより好ましく、95%以上であることがさらに好ましく、98%以上であることが特に好ましい。
 上記式(15)で表される化合物の結晶は、該化合物を炭素原子数5~8の鎖状脂肪族ケトン溶媒に溶解した溶液から析出させることにより得ることができる。ここで用いる該化合物は上述の方法により得たものを使用することができる。上記式(15)で表される化合物を炭素原子数5~8の鎖状脂肪族ケトン溶媒に溶解した溶液から析出させる際、溶液の冷却や溶液の溶媒を留去させることにより析出させることもできるが、炭素原子数5~10の鎖状若しくは環状の脂肪族炭化水素溶媒を炭素原子数5~8の鎖状脂肪族ケトン溶媒の該化合物を溶解した溶液に混合した溶液として、必要に応じて、さらに該化合物の溶液の溶解度を下げるために溶液を冷却して、析出させることが好ましい。
 炭素原子数5~8の鎖状脂肪族ケトン溶媒としては、ジエチルケトン(炭素原子数5)、メチルイソブチルケトン(炭素原子数6)、メチルアミルケトン(炭素原子数7)、メチルヘキシルケトン(炭素原子数8)等を用いることができ、その中でも、メチルイソブチルケトン、メチルアミルケトンが好ましい。このような有機溶媒を用いることで、結晶を析出させる前に溶液を水で洗浄し、塩などの水溶性の不純物を除去することもできる。
 その鎖状脂肪族ケトン溶媒の使用量としては、上記式(15)で表される化合物の重量に対して、1~7重量倍の範囲であることが好ましく、1.5~6重量倍の範囲であることがより好ましく、2~5重量倍の範囲であることがさらに好ましい。
 炭素原子数5~10の鎖状若しくは環状の脂肪族炭化水素溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン、イソオクタン、シクロペンタン、シクロヘキサン等を用いることができ、その中でも炭素原子数5~10の環状の脂肪族炭化水素溶媒が好ましく、シクロペンタン又はシクロヘキサンがより好ましい。
 その脂肪族炭化水素溶媒の使用量としては、上記式(15)で表される化合物の量に対して、1~10重量倍の範囲であることが好ましく、1~7重量倍の範囲であることがより好ましく、1~5重量倍の範囲であることがさらに好ましい。
 上記式(15)で表される化合物の炭素原子数5~8の鎖状脂肪族ケトン溶液に、炭素原子数5~10の鎖状若しくは環状の脂肪族炭化水素溶媒を混合する温度は、使用する鎖状脂肪族ケトン溶液にもよるが、60~120℃の範囲であることが好ましく、60~100℃の範囲であることがより好ましく、60~90℃の範囲であることがさらに好ましい。
 上記式(15)で表される化合物の結晶を析出させ始める温度としては、10~50℃の範囲であることが好ましく、15~40℃の範囲であることがより好ましい。
 上述の方法により得られた結晶の単離は常法に従えば良く、例えば、遠心ろ過等により結晶を単離することが出来る。また、さらに結晶を溶媒で洗浄することが好ましい。得られた結晶は乾燥することにより、使用した溶媒の除去をすることができる。
 本発明の一実施形態の熱可塑性樹脂は、ポリエステル樹脂、ポリカーボネート樹脂、ポリエステルカーボネート樹脂、エポキシ樹脂、ポリウレタン樹脂、ポリアクリル酸エステル樹脂、ポリメタクリル酸エステル樹脂等、特に制限はないが、ポリカーボネート樹脂、ポリエステルカーボネート樹脂又はポリエステル樹脂であることが好ましく、下記式で表される構成単位(A)を含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000033
 式中、R、R、及びaは一般式(1)の定義と同じである。
 本発明の一実施形態の熱可塑性樹脂において、全構成単位に占める上記式で表される構成単位(A)の割合は特に限定されないが、全構成単位中1~80モル%であることが好ましく、1~60モル%であることがより好ましく、5~50モル%であることが特に好ましい。
 つまり、本発明の一実施形態の熱可塑性樹脂は、上記式で表される構成単位(A)以外にも、一般的にポリカーボネート樹脂やポリエステルカーボネート樹脂の構成単位として用いられる脂肪族ジヒドロキシ化合物から誘導される構成単位や芳香族ジヒドロキシ化合物から誘導される構成単位を含むことができる。
 具体的には、脂肪族ジヒドロキシ化合物としては、様々なものが挙げられるが、特に、1,4-シクロヘキサンジメタノール、トリシクロデカンジメタノール、1,3-アダマンタンジメタノール、2,2-ビス(4-ヒドロキシシクロヘキシル)-プロパン、3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、2-(5-エチル-5-ヒドロキシメチル-1,3-ジオキサン-2-イル)-2-メチルプロパン-1-オール、イソソルビド、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール等が挙げられる。
 芳香族ジヒドロキシ化合物としては、様々なものを挙げることができるが、特に2,2-ビス(4-ヒドロキシフェニル)プロパン〔ビスフェノールA〕、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、4,4’-ジヒドロキシジフェニル、ビス(4-ヒドロキシフェニル)シクロアルカン、ビス(4-ヒドロキシフェニル)オキシド、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)スルホキシド、及びビス(4-ヒドロキシフェニル)ケトン、ビスフェノキシエタノールフルオレン等を挙げることができる。
 また、本発明の一実施形態の熱可塑性樹脂は、下記一般式(6)で表されるモノマー由来の構成単位(B)を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000034
 一般式(6)において、R及びRは、それぞれ独立に、ハロゲン原子、置換基を有してもよい炭素数1~20のアルキル基、置換基を有してもよい炭素数1~20のアルコキシル基、置換基を有してもよい炭素数5~20のシクロアルキル基、置換基を有してもよい炭素数5~20のシクロアルコキシル基、置換基を有してもよい炭素数6~20のアリール基、O、N及びSから選択される1つ以上のヘテロ環原子を含む、置換基を有してもよい炭素数6~20のヘテロアリール基、置換基を有してもよい炭素数6~20のアリールオキシ基、及び、-C≡C-Rからなる群より選択される。Rは置換基を有してもよい炭素数6~20のアリール基、又は、O、N及びSから選択される1つ以上のヘテロ環原子を含む、置換基を有してもよい炭素数6~20のヘテロアリール基を表す。
 R及びRは、好ましくは、水素原子、置換基を有してもよい炭素数6~20のアリール基、O、N及びSから選択される1つ以上のヘテロ環原子を含む、置換基を有してもよい炭素数6~20のヘテロアリール基であり、より好ましくは、水素原子、置換基を有してもよい炭素数6~20のアリール基であり、さらに好ましくは、水素原子、置換基を有してもよい炭素数6~12のアリール基である。
 一般式(6)において、Xは、単結合であるか、又は置換基を有してもよいフルオレン基を表す。Xは、好ましくは、単結合、又は、合計炭素数が12~20の置換基を有してもよいフルオレン基である。
 一般式(6)において、A及びBは、それぞれ独立に、置換基を有してもよい炭素数1~5のアルキレン基であり、好ましくは、炭素数2又は3のアルキレン基である。
 一般式(6)において、m及びnは、それぞれ独立に、0~6の整数であり、好ましくは0~3の整数であり、より好ましくは0又は1である。
 一般式(6)において、a及びbは、それぞれ独立に、0~10の整数であり、好ましくは1~3の整数であり、より好ましくは1又は2である。
 構成単位(B)の具体例として、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレン(BNE),DPBHBNA等に由来するものが挙げられる。
Figure JPOXMLDOC01-appb-C000035
 また、本発明の一実施形態の熱可塑性樹脂は、下記一般式(7)で表されるモノマー由来の構成単位(C)を有することが好ましい。
Figure JPOXMLDOC01-appb-C000036
 一般式(7)において、R及びRは、それぞれ独立に、ハロゲン原子、置換基を有してもよい炭素数1~20のアルキル基、置換基を有してもよい炭素数1~20のアルコキシル基、置換基を有してもよい炭素数5~20のシクロアルキル基、置換基を有してもよい炭素数5~20のシクロアルコキシル基、及び、置換基を有してもよい炭素数6~20のアリール基からなる群より選択される。
 R及びRは、好ましくは、水素原子、置換基を有してもよい炭素数6~20のアリール基、O、N及びSから選択される1つ以上のヘテロ環原子を含む、置換基を有してもよい炭素数6~20のヘテロアリール基であり、より好ましくは、水素原子、置換基を有してもよい炭素数6~20のアリール基であり、さらに好ましくは、水素原子、置換基を有してもよい炭素数6~12のアリール基である。
 一般式(7)において、Yは、単結合、置換基を有してもよいフルオレン基、又は下記式(8)~(14)で表される構造式のうちいずれかであり、好ましくは、単結合、又は、下記式(8)で表される構造式である。
Figure JPOXMLDOC01-appb-C000037
 式(8)~(14)中、R61、R62、R71及びR72は、それぞれ独立して、水素原子、ハロゲン原子、置換基を有してもよい炭素数1~20のアルキル基、又は、置換基を有してもよい炭素数6~30のアリール基を表すか、あるいは、R61及びR62、又はR71及びR72が互いに結合して形成する、置換基を有してもよい炭素数1~20の炭素環又は複素環を表す。
 式(8)~(14)において、r及びsは、それぞれ独立して、0~5000の整数である。
 上記一般式(7)において、A及びBは、それぞれ独立に、置換基を有してもよい炭素数1~5のアルキレン基であり、好ましくは、炭素数2又は3のアルキレン基である。上記一般式(7)において、p及びqは、それぞれ独立に、0~4の整数であり、好ましくは0又は1である。また、上記一般式(7)において、a及びbは、それぞれ独立に、0~10の整数であり、好ましくは0~5の整数であり、より好ましくは0~2の整数であり、例えば、0又は1である。
 構成単位(C)の具体例として、BPEF(9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン)、BPPEF(9,9-ビス(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)フルオレン)、9,9-ビス[6-(2-ヒドロキシエトキシ)ナフタレン-2-イル]フルオレン(BNEF)、ビスフェノールA、ビスフェノールAP、ビスフェノールAF、ビスフェノールB、ビスフェノールBP、ビスフェノールC、ビス(4-ヒドロキシフェニル)-2,2-ジクロロエチレン、ビスフェノールE、ビスフェノールF、ビスフェノールG、ビスフェノールM、ビスフェノールS、ビスフェノールP、ビスフェノールPH、ビスフェノールTMC、ビスフェノールP-AP(4,4’-(1-フェニルエチリデン)ビスフェノール)、ビスフェノールP-CDE(4,4’-シクロドデシリデンビスフェノール)、ビスフェノールP-HTG(4,4’-(3,3,5-トリメチルシクロへキシリデン)ビスフェノール)、ビスフェノールP-MIBK(4,4’-(1,3-ジメチルブチリデン)ビスフェノール)、ビスフェノールPEO-FL(ビスフェノキシエタノールフルオレン)、ビスフェノールP-3MZ(4-[1-(4-ヒドロキシフェニル)-3-メチルシクロヘキシル]フェノール)、ビスフェノールOC-FL(4,4’-[1-[4-[1-(4-ヒドロキシフェニル)-1-メチルエチル]フェニル]エチリデン]ビスフェノール)、ビスフェノールZ、BP-2EO(2,2’-[[1,1’-ビフェニル]-4,4’-ジイルビス(オキシ)ビスエタノール)、S-BOC(4,4’-(1-メチルエチリデン)ビス(2-メチルフェノール))、TrisP-HAP(4,4’,4’’-エチリデントリスフェノール)、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン(BPAP)、1,1-ビス(4-ヒドロキシフェニル)シクロドデカン(HPCD)、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(BPZ)、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン(BCFL)、ビス(4-ヒドロキシフェニル)ジフェニルメタン(BPBP)、1,3-ビス(1-メチル-1-フェニルエチル)ベンゼン(BPM)等に由来するものが挙げられる。これらの中でも、構成単位(C)として、BPEF、BNEF、又はBCFLに由来するものが好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000038
 本発明の一実施形態の熱可塑性樹脂は、構成単位(A)を必須とするが、構成単位(B)を含み構成単位(C)を含まないポリマー、構成単位(C)を含み構成単位(B)を含まないポリマーの他にも、構成単位(B)と構成単位(C)とを有する共重合体、構成単位(B)を有するポリマーと構成単位(C)を有するポリマーとの混合物、これらの組み合わせであってもよい。構成単位(C)を含み構成単位(B)を含まないポリマーとして、例えば、下記の式(I-1)~(I-3)の構成単位を有するものが挙げられ、構成単位(B)と構成単位(C)とを有する共重合体として、例えば、下記の式(II-1)~(II-4)の構成単位を有するものが挙げられる。
Figure JPOXMLDOC01-appb-C000039
(式(I-1)中、m及びnは、それぞれ、1~10の整数であり、好ましくは1~5の整数であり、より好ましくは1であり、
 式(I-3)の繰り返し単位数は、1~10の整数であり、好ましくは1~5の整数であり、より好ましくは1である。)
 また、複数の種類の構成単位を有するポリマーとして、m及びnの値が例えば100以上と大きいブロック共重合体、及び、ランダム共重合体のいずれもが採用できるものの、ランダム共重合体が好ましく、より好ましくは、m及びnの値が1であるランダム共重合体が用いられる。
Figure JPOXMLDOC01-appb-C000040
(式(II-1)~(II-4)中、m及びnは、それぞれ独立して、1~10の整数であり、好ましくは1~5の整数であり、より好ましくは1である。)
 また、複数の種類の構成単位を有するポリマーとして、m及びn(またはm、n及びl)の値が例えば100以上と大きいブロック共重合体、及び、ランダム共重合体のいずれもが採用できるものの、ランダム共重合体が好ましく、より好ましくは、m及びn(またはm、n及びl)の値が1であるランダム共重合体が用いられる。
 共重合体において、構成単位(B)と構成単位(C)とのモル比は、1:99~99:1であることが好ましく、10:90~90:10であることがより好ましく、15:85~85:15であることがさらに好ましく、30:70~70:30であることが特に好ましい。また、混合物においては、構成単位(B)を有するポリマーと構成単位(C)を有するポリマーとの質量比が、1:99~99:1であることが好ましく、10:90~90:10であることがより好ましく、15:85~85:15であることがさらに好ましく、30:70~70:30であることが特に好ましい。
 本発明の一実施形態の熱可塑性樹脂は、更に、下記のモノマー群から選択される少なくとも一つのモノマーに由来する構成単位を含むものも好ましい。
Figure JPOXMLDOC01-appb-C000041
(上記式中、R及びRは、それぞれ独立に、水素原子、メチル基又はエチル基を表し、R及びRは、それぞれ独立に、水素原子、メチル基、エチル基又は炭素数2~5のアルキレングリコールを表す。)
 また、本発明の一実施形態の熱可塑性樹脂は、下記一般式(16)で表されるモノマー由来の構成単位(D)を有することが好ましい。この場合、一般式(16)で表されるモノマー由来の構成単位(D)の含有量は、全構成単位中、1~50モル%であることが好ましく、1~30モル%であることがより好ましい。
Figure JPOXMLDOC01-appb-C000042
 一般式(16)において、
 Lは、それぞれ独立に、2価の連結基を表し;
 RおよびRは、それぞれ独立に、ハロゲン原子、または芳香族基を含んでいてもよい炭素数1~20の置換基を表し;
 j3およびj4は、それぞれ独立に、0~4の整数を表し;
 tは、0または1の整数を表す。
 上記一般式(16)において、Lは、それぞれ独立に、2価の連結基を表す。Lは、置換基を有していてもよい炭素数1~12のアルキレン基であることが好ましく、炭素数1~5のアルキレン基であることがより好ましく、炭素数2または3のアルキレン基であることがさらに好ましく、エチレン基であることが特に好ましい。Lのアルキレン基の置換基としては、アルキル基、シクロアルキル基、アリール基、アルコキシル基およびこれらの組合せが挙げられ、これらの基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、フェニル基、メトキシ基、エトキシ基などが挙げられる。
 RおよびRは、存在する場合、それぞれ独立に、ハロゲン原子、または芳香族基を含んでいてもよい炭素数1~20の置換基を表す。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子などが挙げられ、芳香族基を含んでいてもよい炭素数1~20の置換基としては、メチル基、フェニル基、ナフチル基、チエニル基、ベンゾチエニル基などが挙げられる。ナフチル基としては、1-ナフチル基、2-ナフチル基などが挙げられ、チエニル基としては、2-チエニル基、3-チエニル基などが挙げられる。また、ベンゾチエニル基としては、2-ベンゾ[b]チエニル基、3-ベンゾ[b]チエニル基などが挙げられる。これらの基は、さらに置換基を有していてもよく、そのような置換基としては、例えば上記でLのアルキレン基の置換基として記載したものが挙げられるが、それに限定されるものではない。
 j3およびj4は、それぞれ独立に、0~4の整数を表す。j3およびj4は、0~2の整数であることが好ましく、0または1であることがより好ましく、0であることが特に好ましい。
 tは、0または1の整数を表し、1であることが好ましい。
 一般式(16)で表されるモノマーは、好ましくは以下の式(16’)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000043
 本発明の好ましい一実施形態のポリカーボネート樹脂には、製造時に副生成物として生じ得るフェノール系化合物などのアルコール系化合物や、反応せずに残存したジオール成分又は炭酸ジエステルが不純物として存在している場合がある。
 不純物であるフェノール系化合物などのアルコール系化合物や炭酸ジエステルは、成形体としたときの強度低下や、臭気発生の原因ともなり得るため、これらの含有量は極力少ない程好ましい。
 残存するフェノール系化合物の含有量は、ポリカーボネート樹脂100質量%に対して、好ましくは3000質量ppm以下、より好ましくは1000質量ppm以下、特に好ましくは300質量ppm以下である。
 残存するジオール成分の含有量は、ポリカーボネート樹脂100質量%に対して、好ましくは1000質量ppm以下、より好ましくは100質量ppm以下、特に好ましくは10質量ppm以下である。
 残存する炭酸ジエステルの含有量は、ポリカーボネート樹脂100質量%に対して、好ましくは1000質量ppm以下、より好ましくは100質量ppm以下、特に好ましくは10質量ppm以下である。
 特に、フェノール、t-ブチルフェノールなどの化合物の含有量が、少ないことが好ましく、これらの化合物が上記範囲内であることが好ましい。
 ポリカーボネート樹脂中に残存するフェノール系化合物の含有量は、ポリカーボネート樹脂から抽出したフェノール系化合物を、ガスクロマトグラフィーを用いて分析する手法により測定することができる。
 ポリカーボネート樹脂中に残存するアルコール系化合物の含有量についても、ポリカーボネート樹脂から抽出したアルコール系化合物を、ガスクロマトグラフィーを用いて分析する手法により測定することができる。
 ポリカーボネート樹脂中に残存するジオール成分、炭酸ジエステルの含有量も、ポリカーボネート樹脂からこれらの化合物を抽出し、ガスクロマトグラフィーを用いて分析する手法により測定することができる。
 フェノール系化合物などの副生アルコール系化合物、ジオール成分及び炭酸ジエステルの含有量は、検出されないほど低減してもよいが、生産性の観点から、効果を損なわない範囲で、わずかに含有していてもよい。また、わずかな量であれば、樹脂溶融時に可塑性を良好とすることもできる。
 残存するフェノール系化合物、ジオール成分又は炭酸ジエステルのそれぞれの含有量は、ポリカーボネート樹脂100質量%に対して、例えば、0.01質量ppm以上、0.1質量ppm以上、又は1質量ppm以上であってもよい。
 残存するアルコール系化合物の含有量は、ポリカーボネート樹脂100質量%に対して、例えば、0.01質量ppm以上、0.1質量ppm以上、又は1質量ppm以上であってもよい。
 なお、ポリカーボネート樹脂中のフェノール系化合物などの副生アルコール系化合物、ジオール成分及び炭酸ジエステルの含有量は、重縮合の条件や装置の設定を適宜調整することで、上記範囲となるように調節することは可能である。また、重縮合後の押出工程の条件によっても調節可能である。
 例えば、フェノール系化合物などの副生アルコール系化合物の残存量は、ポリカーボネート樹脂の重合に用いる炭酸ジエステルの種類や、重合反応温度および重合圧力等に関係する。これらを調整することでフェノール系化合物などの副生アルコール系化合物の残存量を低減し得る。
 例えば、炭酸ジエチルなどの炭酸ジアルキルを用いてポリカーボネート樹脂を製造した場合、分子量が上がりにくく、低分子量のポリカーボネートとなり、副生するアルキルアルコール系化合物の含有量が高くなる傾向にある。このようなアルキルアルコールは揮発性が高く、ポリカーボネート樹脂中に残存すると、樹脂の成形性が悪化する傾向にある。また、フェノール系化合物などの副生アルコール系化合物の残存量が多いと、樹脂の成形時に、臭気の問題が生じる可能性や、コンパウンド時に樹脂骨格の開裂反応が進行して分子量の低下が生じる可能性がある。したがって、得られたポリカーボネート樹脂中の残存する副生アルコール系化合物の含有量が、ポリカーボネート樹脂(100質量%)に対して、3000質量ppm以下であることが好ましい。残存するアルコール系化合物の含有量は、ポリカーボネート樹脂100質量%に対して、好ましくは3000質量ppm以下、より好ましくは1000質量ppm以下、特に好ましくは300質量ppm以下である。
<熱可塑性樹脂の物性>
(1)屈折率(nD)
 本発明の一実施形態において、熱可塑性樹脂は高屈折率であることが特徴の一つであり、屈折率は、1.600~1.700であることが好ましく、1.626~1.700であることがより好ましく、1.630~1.650であることが特に好ましい。本発明において屈折率は、後述する実施例に記載の方法で測定することができる。
(2)アッベ数(ν)
 本発明の一実施形態において、熱可塑性樹脂のアッベ数は、22.0~26.0であることが好ましく、23.0~26.0であることがより好ましく、23.0~24.7であることが特に好ましい。本発明においてアッベ数は、後述する実施例に記載の方法で測定することができる。
(3)ガラス転移温度(Tg)
 本発明の一実施形態において、熱可塑性樹脂は、高耐熱性であることが特徴の一つであり、ガラス転移温度(Tg)は、70~200℃であることが好ましく、100~200℃であることがより好ましく、100~150℃であることが更に好ましく、125~150℃であることが更により好ましく、125~145℃であることが更により好ましく、125~140℃であることが特に好ましい。本発明においてガラス転移温度は、後述する実施例に記載の方法で測定することができる。
(4)ポリスチレン換算重量平均分子量(Mw)
 本発明の一実施形態において、熱可塑性樹脂のポリスチレン換算重量平均分子量は、10,000~100,000であることが好ましく、10,000~80,000であることがより好ましく、10,000~60,000であることが特に好ましい。
(5)光弾性係数
 本発明の一実施形態において、熱可塑性樹脂は、光弾性係数が低いことが特徴の一つであり、光弾性係数は、25~45であることが好ましく、25~38であることがより好ましく、30~38であることが特に好ましい。本発明において光弾性係数は、後述する実施例に記載の方法で測定することができる。
<熱可塑性樹脂組成物>
 本発明の別の実施形態は、上述した熱可塑性樹脂と添加剤とを含む熱可塑性樹脂組成物である。本実施形態の熱可塑性樹脂組成物は、本実施形態の所望とする効果を損なわない範囲で、上述した構成単位(A)を含む本発明の熱可塑性樹脂以外の樹脂を併用することができる。そのような樹脂としては、特に限定されないが、例えば、ポリカーボネート樹脂、ポリエステル樹脂、ポリエステルカーボネート樹脂、(メタ)アクリル樹脂、ポリアミド樹脂、ポリスチレン樹脂、シクロオレフィン樹脂、アクリロニトリル-ブタジエン-スチレン共重合樹脂、塩化ビニル樹脂、ポリフェニレンエーテル樹脂、ポリスルホン樹脂、ポリアセタール樹脂及びメチルメタクリレート-スチレン共重合樹脂からなる群より選択される少なくとも1つの樹脂が挙げられる。これらは種々既知のものを用いることができ、1種を単独で又は2種以上を併用して熱可塑性樹脂組成物に加えることができる。
[酸化防止剤]
 熱可塑性樹脂組成物は、上記添加剤として酸化防止剤を含むことが好ましい。
 酸化防止剤として、フェノール系酸化防止剤及びホスファイト系酸化防止剤の少なくとも一方を含むことが好ましい。
 フェノール系酸化防止剤として、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニルメチル)-2,4,6-トリメチルベンゼン、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジンe-2,4,6(1H,3H,5H)-トリオン、4,4’,4’’-(1-メチルプロパニル-3-イリデン)トリス(6-tert-ブチル-m-クレゾール)、6,6’-ジ-tert-ブチル-4,4’-ブチリデンジ-m-クレゾール、オクラデシル3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、ペンタエリスリトール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,9-ビス{2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1-ジメチルエチル}-2,4,8,10-テトラオキソスピロ[5.5]ウンデカン、ペンタエリスリトール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]等が挙げられ、好ましくは、ペンタエリスリトール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]である。
 ホスファイト系酸化防止剤として、2-エチルヘキシルジフェニルフォスファイト、イソデシルジフェニルフォスファイト、トリイソデシルフォスファイト、トリフェニルフォスファイト、3,9-ビス(オクタデシルオキシ)-2,4,8,10-テトラオキシ-3,9-ジフォスファスピロ[5.5]ウンデカン、3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジフォスファスピロ[5.5]ウンデカン、2,2’-メチルエンビス(4,6-ジ-tert-ブチルフェニル)2-エチルヘキシルフォスファイト、トリス(2,4-ジtert-ブチルフェニル)フォスファイト、トリス(ノニルフェニル)フォスファイト、テトラ-C12-15-アルキル(プロパン-2,2-ジイルビス(4,1-フェニルエン))ビス(フォスファイト)、3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジフォスファスピロ[5.5]ウンデカン等が挙げられ、好ましくは、3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジフォスファスピロ[5.5]ウンデカンである。
 酸化防止剤として、上述のいずれか1種類のみを用いても、2種類以上の混合物を用いてもよい。
 熱可塑性樹脂組成物において、酸化防止剤は、樹脂組成物の全重量を基準として1重量ppm~3000重量ppm含まれることが好ましい。熱可塑性樹脂組成物における酸化防止剤の含有量は、より好ましくは50重量ppm~2500重量ppmであり、さらに好ましくは100重量ppm~2000重量ppmであり、特に好ましくは150重量ppm~1500重量ppmであり、より一段と好ましくは200重量ppm~1200重量ppmである。
[離型剤]
 熱可塑性樹脂組成物は、上記添加剤として離型剤を含むことが好ましい。
 離型剤として、エステル化合物、例えば、グリセリン脂肪酸のモノ・ジグリセリド等のグリセリン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ソルビタン脂肪酸エステル等のグリコール脂肪酸エステル、高級アルコール脂肪酸エステル、脂肪族多価アルコールと脂肪族カルボン酸とのフルエステルあるいはモノ脂肪酸エステル等が挙げられる。離型剤として、脂肪族多価アルコールと脂肪族カルボン酸とのエステルを用いる場合、モノエステル、フルエステル等、いずれも採用できるが、例えばモノエステル等のフルエステル以外であってもよい。
 離型剤の具体例として、以下のものが挙げられる。
 すなわち、ソルビタン ステアレート、ソルビタン ラウレート、ソルビタン オレート、ソルビタン トリオレート、ソルビタン トリベヘネート、ソルビタン ステアレート、ソルビタン トリステアレート、ソルビタン カプリレート等のソルビタン脂肪酸エステル;
 プロピレングリコール モノステアレート、プロピレングリコール モノオレート、プロピレングリコール モノベヘネート、プロピレングリコール モノラウレート、プロピレングリコール モノパルミテート等のプロピレングリコール脂肪酸エステル;
 ステアリル ステアレート等の高級アルコール脂肪酸エステル;
 グリセリン モノステアレート、グリセリン モノ12-ヒドロキシステアレート等のグリセリン モノヒドロキシステアレート、グリセリン モノオレート、グリセリン モノベヘネート、グリセリン モノカプリレート、グリセリン モノカプレート、グリセリン モノラウレート等のモノグリセライド:グリセリンモノ・ジステアレート、グリセリンモノ・ジステアレート、グリセリンモノ・ジベヘネート、グリセリンモノ・ジオレート等のモノ・ジグリセライド:を含む、グリセリン脂肪酸エステルモノグリセライド;
 グリセリン ジアセトモノ ラウレート等のグリセリン脂肪酸エステルアセチル化モノグリセライド;
 クエン酸脂肪酸 モノグリセライド、コハク酸脂肪酸 モノグリセライド、ジアセチル酒石酸脂肪酸 モノグリセライド等のグリセリン脂肪酸エステル有機酸モノグリセライド;
 ジグリセリン ステアレート、ジグリセリン ラウレート、ジグリセリン オレート、ジグリセリン モノステアレート、ジグリセリン モノラウレート、ジグリセリン モノミリステート、ジグリセリン モノオレート、テトラグリセリン ステアレート、デカグリセリン ラウレート、デカグリセリン オレート、ポリグリセリン ポリリシノレート等のポリグリセリン脂肪酸エステル等が挙げられる。
 熱可塑性樹脂組成物において、離型剤は、樹脂組成物の全重量を基準として1重量ppm~5000重量ppm含まれることが好ましい。熱可塑性樹脂組成物における離型剤の含有量は、より好ましくは50重量ppm~4000重量ppmであり、さらに好ましくは100重量ppm~3500重量ppmであり、特に好ましくは500重量ppm~13000重量ppmであり、より一段と好ましくは1000重量ppm~2500重量ppmである。
[その他の添加剤]
 熱可塑性樹脂組成物には、上述の酸化防止剤及び離型剤以外にも、その他の添加剤を加えてもよい。例えば、熱可塑性樹脂組成物が含み得る添加剤として、配合剤、触媒失活剤、熱安定剤、可塑剤、充填剤、紫外線吸収剤、防錆剤、分散剤、消泡剤、レベリング剤、難燃剤、滑剤、染料、顔料、ブルーイング剤、核剤、透明化剤等が挙げられる。
 熱可塑性樹脂組成物における酸化防止剤及び離型剤以外のその他の添加剤の含有量は、好ましくは10重量ppm~5.0重量%であり、より好ましくは100重量ppm~2.0重量%であり、さらに好ましくは1000重量ppm~1.0重量%であるが、これには限定されない。
 上述の添加剤は、透過率に悪影響を与える可能性があり、過剰に添加しないことが好ましく、例えば、合計の添加量は上述の範囲内である。
<光学部材>
 本発明の熱可塑性樹脂又は熱可塑性樹脂組成物(以下、単に「樹脂組成物」と略す)は、光学部材に好適に用いることができる。本発明の一実施形態において、本発明の樹脂組成物を含む光学部材が提供される。本発明の一実施形態において、光学部材には、光ディスク、透明導電性基板、光カード、シート、フィルム、光ファイバー、レンズ、プリズム、光学膜、基盤、光学フィルター、ハードコート膜等が含まれるが、これらに限定されない。本発明の樹脂組成物は、高流動でキャスト法による成形が可能であるため、特に薄型の光学部材の製造に好適である。本発明の好ましい実施形態において、本発明の樹脂組成物を用いて製造される光学部材は、光学レンズであってよい。本発明の別の好ましい実施形態において、本発明の樹脂組成物を用いて製造される光学部材は、光学フィルムであってよい。
 本発明の樹脂組成物を含む光学部材を射出成形で製造する場合、シリンダー温度260~350℃、金型温度90~170℃の条件にて成形することが好ましい。さらに好ましくは、シリンダー温度270~320℃、金型温度100~160℃の条件にて成形することが好ましい。シリンダー温度が350℃より高い場合では、樹脂組成物が分解着色し、260℃より低い場合では、溶融粘度が高く成形が困難になりやすい。また、金型温度が170℃より高い場合では、樹脂組成物からなる成形片が金型から取り出すことが困難になりやすい。他方、金型温度が、90℃未満では、成形時の金型内で樹脂が早く固まり過ぎて成形片の形状が制御しにくくなったり、金型に付された賦型を十分に転写することが困難になったりしやすい。
<光学レンズ>
 本発明の一実施形態において、樹脂組成物は、光学レンズに好適に用いることができる。本発明の樹脂組成物を用いて製造される光学レンズは、高屈折率であり、耐熱性に優れるため、望遠鏡、双眼鏡、テレビプロジェクター等、従来、高価な高屈折率ガラスレンズが用いられていた分野に用いることができ、極めて有用である。
 例えばスマートフォンのレンズでは、構成単位(A)を含む熱可塑性樹脂から成形されたレンズと、式(II-1)~(II-4)のいずれかの構成単位を含む樹脂、あるいは、
Figure JPOXMLDOC01-appb-C000044
(上記式中、R及びRは、それぞれ独立に、水素原子、メチル基又はエチル基を表し、R及びRは、それぞれ独立に、水素原子、メチル基、エチル基又は炭素数2~5のアルキレングリコールを表す。)
上記式のいずれかのモノマーに由来する構成単位を含む樹脂から成形されたレンズとを、重ね合わせてレンズユニットとして用いることができる。
 本発明の光学レンズは、必要に応じて非球面レンズの形を用いることが好適に実施される。非球面レンズは、1枚のレンズで球面収差を実質的にゼロとすることが可能であるため、複数の球面レンズの組み合わせで球面収差を取り除く必要が無く、軽量化及び成形コストの低減化が可能になる。したがって、非球面レンズは、光学レンズの中でも特にカメラレンズとして有用である。
 また、本発明の光学レンズは、成形流動性が高いため、薄肉小型で複雑な形状である光学レンズの材料として特に有用である。具体的なレンズサイズとして、中心部の厚みが0.05~3.0mmであることが好ましく、より好ましくは0.05~2.0mm、さらに好ましくは0.1~2.0mmである。また、直径が1.0mm~20.0mmであることが好ましく、より好ましくは1.0~10.0mm、さらに好ましくは、3.0~10.0mmである。また、その形状として片面が凸、片面が凹であるメニスカスレンズであることが好ましい。
 本発明の光学レンズは、金型成形、切削、研磨、レーザー加工、放電加工、エッチングなど任意の方法により成形される。この中でも、製造コストの面から金型成形がより好ましい。
<光学フィルム>
 本発明の一実施形態において、樹脂組成物は、光学フィルムに好適に用いることができる。特に、本発明のポリカーボネート樹脂を用いて製造される光学フィルムは、透明性及び耐熱性に優れるため、液晶基板用フィルム、光メモリーカード等に好適に使用される。
 光学フィルムへの異物の混入を極力避けるため、成形環境も当然低ダスト環境でなければならず、クラス6以下であることが好ましく、より好ましくはクラス5以下である。
 以下に本発明の実施例を比較例と共に示し、発明の内容を詳細に示すが、本発明はこれら実施例に限定されるものではない。得られた樹脂の物性値は、以下の方法及び装置に基づいて測定した。
1)NMR分析
 測定装置:フーリエ変換核磁気共鳴AVANCE III HD 400(BRUKER 製)
 測定サンプルを重水素化クロロホルム(CDCl)に溶解し、13C-NMR及びH-NMRスペクトルを測定した。
2)屈折率
 測定装置:屈折率計(京都電子工業(株)製:RA-500)
 測定サンプルのテトラヒドロフラン溶液(濃度30%、20%、10%溶液)を作製し、屈折率計で屈折率を測定した。得られた結果から、濃度と屈折率の関係を導き、濃度10 0%時の値を外挿法により算出し、この値を測定サンプルの屈折率とした。
3)熱分析
 合成例で得られた結晶3mgをアルミパンに秤量し、示差走査熱量測定装置(株式会社日立ハイテクサイエンス製:DSC7020)を用いて、酸化アルミニウムを対照として下記操作条件により結晶の熱分析を行った。
(操作条件)
 昇温速度:10℃/min.
 測定温度範囲:30~400℃
 測定雰囲気:開放、窒素50mL/min.
4)粉末X線回折法(PXRD)
 合成例で得られた化合物0.1gをガラス試験板の試料充填部に充填し、下記装置と下記条件により測定した。
[測定装置]
 MiniFlex600-C/(株)リガク製
[測定条件]
 X線源:CuKα
 管電圧:40kV
 管電流:15mA
 スキャン軸:2θ/θ
 モード:連続
 測定範囲:2θ=5°~90°
 ステップ:0.02°
 スピード計測時間:10°/min.
 入射スリット:0.25°
 受光スリット:13.00mm
5)重量平均分子量(Mw)
 得られた樹脂の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)法によって測定し、標準ポリスチレン換算で算出した。使用装置、カラム、及び測定条件は以下の通りである。
 ・GPC装置:東ソー(株)製、HLC-8420GPC
 ・カラム:東ソー(株)製、TSKgel SuperHM-M ×3本
      東ソー(株)製、TSKgel guardcolumn SuperH-H ×1本
      東ソー(株)製、TSKgel SuperH-RC ×1本
 ・検出器:RI検出器
 ・標準ポリスチレン:東ソー(株)製、標準ポリスチレンキット PStQuick C
 ・試料溶液:0.2質量%テトラヒドロフラン溶液
 ・溶離液:テトラヒドロフラン
 ・溶離液流速:0.6mL/min
 ・カラム温度:40℃
6)ガラス転移温度(Tg)
 JIS K7121-1987に基づき示差熱走査熱量分析計により、10℃/分の昇温プログラムにて測定した。
 示差熱走査熱量分析計:ティー・エイ・インスツルメント社製(TA Instruments)DSC2500
7)屈折率(nD)
 JIS B 7071-2:2018に基づき、ポリカーボネート樹脂を成形してVブロックを得て試験片とした。23℃にて屈折率計(島津製作所製KPR-3000)を用いて屈折率を測定した。
8)アッベ数(ν)
 屈折率測定で用いたものと同様の試験片(Vブロック)を用い、屈折率計を用い、23℃下での波長486nm、589nm、656nmの屈折率を測定し、下記式を用いてアッベ数を算出した。
   屈折率計:島津製作所製KPR-3000
   ν=(nD-1)/(nF-nC)
   nD:波長589nmでの屈折率
   nC:波長656nmでの屈折率
   nF:波長486nmでの屈折率
9)光弾性係数
 得られた樹脂をジクロロメタンに溶解し、樹脂溶液を得た。この樹脂溶液をバット上に広げ、溶媒を蒸発し、厚さ0.1mmのフィルムを得てこれをサンプル片とした。
 エリプソメータにより、光弾性係数を測定した。
 測定方法:波長633nmでの荷重変化に対する複屈折の変化を測定することにより光弾性係数を算出した。
 エリプソメータ:日本分光株式会社製 エリプソメータ M-220
[合成例1]
 1,3-ビス[1-メチル-1-(4-ヒドロキシ-3-フェニルフェニル)エチル]ベンゼンの製造
Figure JPOXMLDOC01-appb-C000045
 還流器を備えた1000mLの4つ口フラスコに2-フェニルフェノール157.7g(0.93モル)、メタノール21.0gを仕込み、フラスコ内を窒素ガスで完全に置換した後、内温35℃で、フラスコ内を塩酸ガスで完全に置換した。
 一方、別のガラス容器に、α,α,α’,α’-テトラメチル-1,3-ベンゼンジメタノール30.0g(0.15モル)と2-フェニルフェノール53.0g(0.31モル)、メタノール37.5gを仕込み、65℃に加温して溶液Aを調製した。
 4つ口フラスコの内温30℃を維持しながら塩酸ガスを吹き込み、上記溶液Aを滴下ロートにより2時間かけて滴下した。滴下終了後から内温を25℃に下げて、一晩撹拌を続けた。
 反応終了後、水酸化ナトリウム水溶液で反応液の中和を行い、分離した水層を取り除いた。トルエンを192.5g、水を45.0g添加して、内温65℃で30分間撹拌した後、静置し、分離した水層を取り除いた。その後、得られた油層の水洗操作を内温75℃で2回繰り返し、中和により生成した塩化ナトリウムを除去した。
 その後、フラスコ内のトルエン及び2-フェニルフェノールを、加熱減圧条件下で蒸留(最終フラスコの内温270℃、内圧0.6kPa)により留去した。その後、フラスコ内の残渣を取り出した。冷却して得られた固体は無色透明であった。
 上記のNMR分析により、得られた固体は目的物であることを確認した。
 
 H-NMR(400MHz、溶媒:CDCl)δ<ppm>:1.75(s、6H)、5.32(s、1H)、7.10-7.55(m、9H).
 13C-NMR(400MHz、溶媒:CDCl)δ<ppm>:31.09、42.60、115.43、123.97、127.39、127.69、127.75、127.85、128.48、129.23、129.26、137.73、148.29、150.19、150.37.
 原料であるα,α,α’,α’-テトラメチル-1,3-ベンゼンジメタノールに対する、得られた固体は目的物の収率は、89モル%であった。
 高速液体クロマトグラフィー測定による純度は91.9%であった。
[合成例2]
 1,3-ビス[1-メチル-1-(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)エチル]ベンゼンの製造
Figure JPOXMLDOC01-appb-C000046
 還流器を備えた500mLの4つ口フラスコに3-フェニルフェノール52.6g(0.31モル)、メタノール11.8gを仕込み、フラスコ内を窒素ガスで完全に置換した後、内温35℃で、フラスコ内を塩酸ガスで完全に置換した。
 一方、別のガラス容器に、α,α,α’,α’-テトラメチル-1,3-ベンゼンジメタノール15.0g(0.08モル)と3-フェニルフェノール26.0g(0.15モル)、メタノール18.8gを仕込み、65℃に加温して溶液Aを調製した。
 4つ口フラスコの内温30℃を維持しながら塩酸ガスを吹き込み、上記溶液Aを滴下ロートにより1.5時間かけて滴下した。滴下終了後から内温を25℃に下げて、一晩撹拌を続けた。
 反応終了後、フラスコ内を窒素ガスで置換した後、水酸化ナトリウム水溶液で反応液の中和を行い、分離した水層を取り除いた。トルエンを96.2g、水を22.5g添加して内温65℃で30分間撹拌した後、静置し、分離した水層を取り除いた。その後、得られた油層の水洗操作を内温75℃で2回繰り返し、中和により生成した塩化ナトリウムを除去した。 その後、フラスコ内のトルエン及び3-フェニルフェノールを、加熱減圧条件下で蒸留(最終フラスコの内温220℃、内圧0.5kPa)により留去した。得られた蒸留残渣36.9g中に合成例1で合成した1,3-ビス[1-メチル-1-(4-ヒドロキシ-3-フェニルフェニル)エチル]ベンゼン(以下、「化合物A」という。)が含まれていることを確認した。化合物Aのα,α,α’,α’-テトラメチル-1,3-ベンゼンジメタノールに対する粗収率は94モル%であった。
 その後、フラスコ内に、エチレンカーボネート15.3g(0.17モル)、水酸化カリウム1.6g(0.03モル)、テトラブチルアンモニウムブロミド1.2g(0.004モル)、メチルイソブチルケトン110.7gを添加し、フラスコ内を窒素で置換した後、フラスコ内の液温を115℃に加温し、115℃から116℃を維持しながら5時間撹拌を行った。
 反応後、フラスコ内の液温を85℃まで下げ、反応液に純水22.9gを加えて、残存するエチレンカーボネートの加水分解処理を行った。その後、12%塩酸水8.8gを添加し、中和した後、水層を分離した。得られた油層に純水を添加して撹拌した後、水層を分離する水洗操作を5回繰り返して、中和により生成した塩化カリウムを除去した。
 その後、シクロヘキサン73.6gを添加し、フラスコ内の液を25℃まで冷却すると、結晶が析出した。析出した結晶を濾別して、溶媒を含む結晶44.6gを取得した。得られた結晶は、NMR分析により、目的物である1,3-ビス[1-メチル-1-(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)エチル]ベンゼン(以下、「化合物B」という。)であることを確認した。使用した化合物Aの量に対する化合物Bの収率は、77モル%であった。
 続けて、還流器を備えた500mlの4つ口フラスコに、得られた化合物Bの結晶44.3g(化合物Bとして34.0g)、とメチルイソブチルケトン132.9gを加え、フラスコ内の液温を75℃に加熱して、撹拌することにより固体を完全に溶解させた。その後、シクロヘキサン88.6gを添加し、フラスコ内の液を25℃まで冷却すると、結晶が析出した。析出した結晶を濾別して、減圧下に加熱して乾燥し、化合物Bの白色の結晶を取得した。
 H-NMR(400MHz、溶媒:CDCl)δ<ppm>:1.75(s、6H)、2.22(t、1H)、3.80―3.83(q、2H)、4.03-4.05(t、2H)、6.87-6.89(d、1H)、7.12―7.55(m、10H)。
 13C-NMR(400MHz、溶媒:CDCl)δ<ppm>:30.99、42.59、61.41、70.32、112.94、123.78、126.22、126.97、127.19、127.63、128.12、129.31、129.56、1、30.47、138.88、143.94、150.30、153.25。
 高速液体クロマトグラフィー測定による純度は98.8%であった。
 得られた化合物を測定サンプルとして、上記分析方法により測定した屈折率は1.611であった。
 得られた化合物の結晶の示差走査熱量分析をした結果、吸熱ピークのトップ温度は137.3℃であった。示差走査熱量分析(DSC)データを図1に示す。
 得られた化合物の結晶の粉末X線回折(PXRD)測定により現れた回折ピークの回折角2θ(°)と最も積分強度が大きいピークを基準とした相対積分強度が30以上であるピークを表1に示す。PXRD測定チャートを図2に示す。
Figure JPOXMLDOC01-appb-T000047
(実施例1)
 原料として、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(BPEF)16.694g(0.0381モル)、合成例1で得られた4-(1-{3-[1-(4-ヒドロキシ-3-フェニルフェニル)-イソプロピル]フェニル}-イソプロピル)-2-フェニルフェノール(別名:1,3-ビス[1-メチル-1-(4-ヒドロキシ-3-フェニルフェニル)エチル]ベンゼン、略称:BisOPP-M)8.1361g(0.0163モル)、ジフェニルカーボネート(DPC)12.000g(0.0560モル)及び2.5×10-2モル/リットルの炭酸水素ナトリウム水溶液20μl(5.0×10-7モル、即ち、ジヒドロキシ化合物の合計1モルに対して、9.2×10-6モル)を撹拌機及び留出装置付きの300mL反応器に入れ、系内を窒素フロー条件とした。この反応器を200℃に加熱したオイルバスに浸けエステル交換反応を開始した。140分かけて240℃まで昇温するとともに0kPaまで減圧し、30分間保持した後、反応系内に窒素ガスを導入し、101.3kPaに戻し、ポリカーボネート樹脂を得た。得られた樹脂の物性を表1に示す。
(実施例2)
 原料の仕込み量を表2に示した通りとした以外は、実施例1と同様にしてポリカーボネート樹脂を得た。得られた樹脂の物性を表1に示す。
(比較例1)
 合成例1で得られた1,3-ビス[1-メチル-1-(4-ヒドロキシ-3-フェニルフェニル)エチル]ベンゼン(略称:BisOPP-M)8.1361g(0.0163モル)の代わりに、1,3-ビス(1-メチル-1-フェニルエチル)ベンゼン(略称:BPM)5.6527g(0.0163モル)を用いた以外は、実施例1と同様にしてポリカーボネート樹脂を得た。得られた樹脂の物性を表1に示す。
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
(実施例3~4、比較例2)
 原料の仕込み量を表4に示した通りとした以外は、実施例1と同様にしてポリカーボネート樹脂を得た。得られた樹脂の物性を表3に示す。
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
(実施例5)
(工程1)
 9w/w%の水酸化ナトリウム水溶液500mlに、合成例1で得られたBisOPP-M 36.1g、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン(略称、BCFL) 63.9g、即ち、BisOPP-M:BCFL=30:70(モル%)を入れ、さらにハイドロサルファイト0.5gを加えて溶解した。この溶液に、ジクロロメタン300ml及びトリエチルベンジルアンモニウムクロリド(TEBAC:富士フイルム和光純薬株式会社製)0.1gを加え、撹拌しながら、溶液温度を20℃に設定し、さらにホスゲン47.8gを30分かけて吹き込んだ。
(工程2)
 ホスゲンの吹き込み終了後、ジクロロメタン50mlに溶解したp-tert-ブチルフェノール(PTBP)1.45gを加え、7分間激しく撹拌して乳化させたのち、重合触媒として0.5mlのトリエチルアミンを加え、30分間重合させた。
(後工程)
 重合液を水層と有機層に分離し、有機層をリン酸で中和し、洗液のpHがpH=7.0になるまで純水で水洗を繰り返した。この精製されたポリカーボネート樹脂から、有機溶媒を蒸発留去することにより、ポリカーボネート樹脂粉末を得た。このポリカーボネート樹脂粉末を120℃で24時間乾燥させ、溶媒を完全に留去させた。得られた樹脂の物性を表5に示す。
(比較例3)
 BisOPP-MをBPM 28.2g、BCFLを71.8g、即ち、BPM:BCFL=30:70(モル%)に替え、ホスゲンを37.6g、PTBTを2.04gに替える以外は、実施例5と同様にしてポリカーボネート樹脂を得た。得られた樹脂の物性を表5に示す。
Figure JPOXMLDOC01-appb-T000052

Claims (16)

  1.  下記一般式(1)で表されるモノマー由来の構成単位(A)を含む熱可塑性樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは、各々独立して炭素原子数6~14のアリール基又は炭素原子数7~17のアラルキル基を示し、Rは、各々独立して水素原子、炭素原子数6~14のアリール基又は炭素原子数7~17のアラルキル基を示し、aは、各々独立して0又は1~3の整数を示し、Rは、各々独立して-OH、又は-O-(CH-OHを示し、nは、1~4の整数を示す。)
  2.  前記一般式(1)で表されるモノマーが、下記式(1A)で表されるモノマーである、請求項1に記載の熱可塑性樹脂。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R、R及びaは一般式(1)と同じ定義である。)
  3.  前記一般式(1)で表されるモノマーが、下記式(5)で表されるモノマーである、請求項1に記載の熱可塑性樹脂。
    Figure JPOXMLDOC01-appb-C000003
  4.  前記一般式(1)で表されるモノマーが、下記式(1B)で表されるモノマーである、請求項1に記載の熱可塑性樹脂。
    Figure JPOXMLDOC01-appb-C000004
    (式中、R、R及びaは一般式(1)と同じ定義であり、nは独立して1~4の整数を示す。)
  5.  前記一般式(1)で表されるモノマーが、下記式(15)で表されるモノマーである、請求項1に記載の熱可塑性樹脂。
    Figure JPOXMLDOC01-appb-C000005
  6.  前記熱可塑性樹脂が、ポリカーボネート樹脂、ポリエステルカーボネート樹脂、又はポリエステル樹脂である、請求項1から6のいずれかに記載の熱可塑性樹脂。
  7.  前記熱可塑性樹脂が、下記一般式(6)で表されるモノマー由来の構成単位(B)及び/又は下記一般式(7)で表されるモノマー由来の構成単位(C)を含む、請求項1から6のいずれかに記載の熱可塑性樹脂。
    Figure JPOXMLDOC01-appb-C000006
    (一般式(6)中、
     R及びRは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよい炭素数1~20のアルキル基、置換基を有してもよい炭素数1~20のアルコキシル基、置換基を有してもよい炭素数5~20のシクロアルキル基、置換基を有してもよい炭素数5~20のシクロアルコキシル基、置換基を有してもよい炭素数6~20のアリール基、O、N及びSから選択される1つ以上のヘテロ環原子を含む、置換基を有してもよい炭素数6~20のヘテロアリール基、置換基を有してもよい炭素数6~20のアリールオキシ基、及び、-C≡C-Rからなる群より選択され、
     Rは置換基を有してもよい炭素数6~20のアリール基、又は、O、N及びSから選択される1つ以上のヘテロ環原子を含む、置換基を有してもよい炭素数6~20のヘテロアリール基を表し、
     Xは、単結合であるか、又は置換基を有してもよいフルオレン基を表し、
     A及びBは、それぞれ独立に、置換基を有してもよい炭素数1~5のアルキレン基を表し、
     m及びnは、それぞれ独立に、0~6の整数を表し、
     a及びbは、それぞれ独立に、0~10の整数を表す。)
    Figure JPOXMLDOC01-appb-C000007
    (一般式(7)中、
     R及びRは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよい炭素数1~20のアルキル基、置換基を有してもよい炭素数1~20のアルコキシル基、置換基を有してもよい炭素数5~20のシクロアルキル基、置換基を有してもよい炭素数5~20のシクロアルコキシル基、及び、置換基を有してもよい炭素数6~20のアリール基からなる群より選択され、
     Yは、単結合、置換基を有してもよいフルオレン基、又は下記式(8)~(14)で表される構造式のうちいずれかであり、
    Figure JPOXMLDOC01-appb-C000008
    (式(8)~(14)中、
     R61、R62、R71及びR72は、それぞれ独立して、水素原子、ハロゲン原子、置換基を有してもよい炭素数1~20のアルキル基、又は、置換基を有してもよい炭素数6~30のアリール基を表すか、あるいは、R61及びR62、又はR71及びR72が互いに結合して形成する、置換基を有してもよい炭素数1~20の炭素環又は複素環を表し、
     r及びsは、それぞれ独立して、0~5000の整数を表す。)
     A及びBは、それぞれ独立に、置換基を有してもよい炭素数1~5のアルキレン基を表し、
     p及びqは、それぞれ独立に、0~4の整数を表し、
     a及びbは、それぞれ独立に、0~10の整数を表す。)
  8.  前記一般式(6)及び一般式(7)において、前記A及びBが、それぞれ独立に、炭素数2又は3のアルキレン基を表す、請求項7に記載の熱可塑性樹脂。
  9.  前記熱可塑性樹脂が、少なくとも、BPEF,BNE,BNEF及びDPBHBNAのいずれかに由来する構成単位を含む、請求項7又は8に記載の熱可塑性樹脂。
  10.  前記熱可塑性樹脂が、更に、下記のモノマー群から選択される少なくとも一つのモノマーに由来する構成単位を含む、請求項1から9のいずれかに記載の熱可塑性樹脂。
    Figure JPOXMLDOC01-appb-C000009
    (上記式中、R及びRは、それぞれ独立に、水素原子、メチル基又はエチル基を表し、R及びRは、それぞれ独立に、水素原子、メチル基、エチル基又は炭素数2~5のアルキレングリコールを表す。)
  11.  前記熱可塑性樹脂のポリスチレン換算の重量平均分子量(Mw)が、10,000~100,000である、請求項1から10のいずれかに記載の熱可塑性樹脂。
  12.  前記熱可塑性樹脂の屈折率(nD)が、1.600~1.700である、請求項1から11のいずれかに記載の熱可塑性樹脂。
  13.  前記熱可塑性樹脂のアッベ数(ν)が、22.0~26.0である、請求項1から12のいずれかに記載の熱可塑性樹脂。
  14.  前記熱可塑性樹脂のガラス転移温度が、70~200℃である、請求項1から13のいずれかに記載の熱可塑性樹脂。
  15.  前記熱可塑性樹脂の光弾性係数が、25~45である、請求項1から14のいずれかに記載の熱可塑性樹脂。
  16.  請求項1~15のいずれかに記載の熱可塑性樹脂を含む、光学レンズ。 
PCT/JP2023/014161 2022-04-07 2023-04-06 熱可塑性樹脂及びそれを含む光学レンズ WO2023195504A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-063948 2022-04-07
JP2022063948 2022-04-07
JP2023-015431 2023-02-03
JP2023015431 2023-02-03

Publications (1)

Publication Number Publication Date
WO2023195504A1 true WO2023195504A1 (ja) 2023-10-12

Family

ID=88243095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014161 WO2023195504A1 (ja) 2022-04-07 2023-04-06 熱可塑性樹脂及びそれを含む光学レンズ

Country Status (2)

Country Link
TW (1) TW202346410A (ja)
WO (1) WO2023195504A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3544512A (en) * 1968-01-22 1970-12-01 Dow Chemical Co Stabilized polyolefin compositions
JPH06222581A (ja) * 1993-01-22 1994-08-12 Fuji Xerox Co Ltd 電子写真感光体
JPH07268061A (ja) * 1994-03-31 1995-10-17 Nippon Kayaku Co Ltd エポキシ樹脂、エポキシ樹脂組成物およびその硬化物
JP2000248058A (ja) * 1999-03-04 2000-09-12 Teijin Chem Ltd 芳香族ポリカーボネート共重合体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3544512A (en) * 1968-01-22 1970-12-01 Dow Chemical Co Stabilized polyolefin compositions
JPH06222581A (ja) * 1993-01-22 1994-08-12 Fuji Xerox Co Ltd 電子写真感光体
JPH07268061A (ja) * 1994-03-31 1995-10-17 Nippon Kayaku Co Ltd エポキシ樹脂、エポキシ樹脂組成物およびその硬化物
JP2000248058A (ja) * 1999-03-04 2000-09-12 Teijin Chem Ltd 芳香族ポリカーボネート共重合体

Also Published As

Publication number Publication date
TW202346410A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
TW201920353A (zh) 聚碳酸酯樹脂、其製造方法以及光學透鏡
JP2021120461A (ja) 熱可塑性樹脂の製造方法
CN111712481B (zh) 三芳基甲烷化合物
KR20240063141A (ko) (헤트)아릴 치환된 비스페놀 화합물 및 열가소성 수지
KR20240063879A (ko) (헤트)아릴 치환된 비스페놀 화합물 및 열가소성 수지
JP5895850B2 (ja) ポリカーボネート樹脂およびその製造方法
WO2023195504A1 (ja) 熱可塑性樹脂及びそれを含む光学レンズ
WO2024019028A1 (ja) 熱可塑性樹脂および光学部材
US20160023978A1 (en) 6-hydroxy-2-naphthalenyl fluorene derivatives and lens and camera module using the same
KR102528655B1 (ko) 화합물, 수지, 폴리카보네이트 수지, 및 광학 성형체
JP2023138918A (ja) 熱可塑性樹脂及びそれを含む光学レンズ
WO2023195505A1 (ja) 熱可塑性樹脂及びそれを含む光学レンズ
JP6294114B2 (ja) 芳香族−脂肪族ポリカーボネートおよび、それらからなるプラスチックレンズ
WO2024024602A1 (ja) 環式ジオール化合物から得られる樹脂、及びそれを含む光学レンズ
TW202413482A (zh) 自環式二醇化合物所得之樹脂及含該樹脂之光學鏡片
US20230399510A1 (en) Thermoplastic resin and optical lens including same
TW202239807A (zh) 熱塑性樹脂及含其之光學透鏡
CN117940399A (zh) 杂芳基或芳基取代的双酚化合物和热塑性树脂
CN116829618A (zh) 热塑性树脂及含有该热塑性树脂的光学透镜
WO2023100778A1 (ja) 熱可塑性樹脂を含む光学レンズ
CN118043298A (zh) (杂)芳基取代的双酚化合物和热塑性树脂
US20230235117A1 (en) Resin composition
TW202313766A (zh) 熱塑性樹脂及包含該樹脂之光學鏡片
WO2022230471A1 (ja) 熱可塑性樹脂組成物及びそれに添加される配合剤
TW202138360A (zh) 化合物、熱可塑性樹脂、光學構件、光學透鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784788

Country of ref document: EP

Kind code of ref document: A1