WO2017078073A1 - ポリカーボネート樹脂 - Google Patents

ポリカーボネート樹脂 Download PDF

Info

Publication number
WO2017078073A1
WO2017078073A1 PCT/JP2016/082613 JP2016082613W WO2017078073A1 WO 2017078073 A1 WO2017078073 A1 WO 2017078073A1 JP 2016082613 W JP2016082613 W JP 2016082613W WO 2017078073 A1 WO2017078073 A1 WO 2017078073A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate resin
formula
carbon atoms
group
hydrogen atom
Prior art date
Application number
PCT/JP2016/082613
Other languages
English (en)
French (fr)
Inventor
加藤 宣之
近藤 光輝
宗憲 白武
健太朗 石原
晃司 廣瀬
慎也 池田
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to US15/769,010 priority Critical patent/US10556987B2/en
Priority to JP2017548810A priority patent/JPWO2017078073A1/ja
Priority to KR1020187014564A priority patent/KR102556128B1/ko
Priority to CN201680062450.0A priority patent/CN108350161B/zh
Publication of WO2017078073A1 publication Critical patent/WO2017078073A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/305General preparatory processes using carbonates and alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates

Definitions

  • the present invention relates to a polycarbonate resin having high thermal stability.
  • plastic lenses are preferably used rather than glass lenses.
  • a plastic lens can cope with various shapes such as a thin shape and an aspherical surface, is inexpensive, and is easily mass-produced by injection molding.
  • High-performance resins that can replace glass for optical lenses have been developed, and various monomers have been studied as raw materials.
  • bisphenol A was the mainstream, but a polymer using a monomer having a fluorene skeleton such as 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene (BPEF) was developed (Patent Document 1). And 2).
  • polycarbonate resin has a much larger thermal expansion (linear expansion coefficient) than glass, and strain (for example, residual strain after molding). Cause. Accordingly, there is a need for a polycarbonate resin that is useful as an optical material and has little thermal expansion (low linear expansion coefficient).
  • An object of the present invention is to provide a polycarbonate resin that is useful as an optical material and has little expansion due to heat (low linear expansion coefficient).
  • the present inventors have found that the thermal expansion is small (that is, the coefficient of linear expansion is small) by suppressing the content of the oligomer having a specific structure contained in the polycarbonate resin to a specific amount. It has been found that a high polycarbonate resin can be obtained. That is, the present invention is as follows. ⁇ 1> A polycarbonate resin containing 1 to 99.5% by weight of repeating units represented by the following formula (A), wherein the oligomers represented by the following formulas (1) to (4) are 2.5 in total. It is the said polycarbonate resin contained by the capacity
  • R 1 and R 2 each independently represents a hydrogen atom, a phenyl group, an alkyl group having 1 to 6 carbon atoms, or an alkyloxy group having 1 to 6 carbon atoms.
  • R 1 and R 2 each independently represents a hydrogen atom, a phenyl group, an alkyl group having 1 to 6 carbon atoms, or an alkyloxy group having 1 to 6 carbon atoms. Represents an integer of 1 to 4.
  • R 1 and R 2 each independently represents a hydrogen atom, a phenyl group, an alkyl group having 1 to 6 carbon atoms, or an alkyloxy group having 1 to 6 carbon atoms.
  • R 1 and R 2 each independently represents a hydrogen atom, a phenyl group, an alkyl group having 1 to 6 carbon atoms, or an alkyloxy group having 1 to 6 carbon atoms.
  • R 1 and R 2 each independently represents a hydrogen atom, a phenyl group, an alkyl group having 1 to 6 carbon atoms, or an alkyloxy group having 1 to 6 carbon atoms, k being Represents an integer of 2 to 4.
  • R 1 and R 2 each independently represent a polycarbonate resin according to the above ⁇ 1>, which represents a hydrogen atom or a phenyl group.
  • ⁇ 4> The total content of the linear oligomers represented by the formulas (1) to (3) is 1.5% by weight or less, and the content of the cyclic oligomer represented by the formula (4) is 0.00.
  • ⁇ 5> The polycarbonate resin according to any one of ⁇ 1> to ⁇ 4>, further including a repeating unit represented by the following formula (B).
  • ⁇ 6> The above ⁇ 5>, wherein the repeating unit represented by the formula (A) and the repeating unit represented by the formula (B) are contained at a molar ratio of 10:90 to 90:10. Polycarbonate resin.
  • ⁇ 7> The polycarbonate resin according to any one of ⁇ 1> to ⁇ 6>, wherein the linear expansion coefficient is 6.5 ⁇ 10 ⁇ 5 to 7.0 ⁇ 10 ⁇ 5 / ° C.
  • ⁇ 8> An optical film using the polycarbonate resin according to any one of ⁇ 1> to ⁇ 7>.
  • ⁇ 9> An optical lens using the polycarbonate resin according to any one of ⁇ 1> to ⁇ 7>.
  • the polycarbonate resin is represented by the following formula (A):
  • R 1 and R 2 each independently represents a hydrogen atom, a phenyl group, an alkyl group having 1 to 6 carbon atoms, or an alkyloxy group having 1 to 6 carbon atoms.
  • R 1 and R 2 each independently represents a hydrogen atom, a phenyl group, an alkyl group having 1 to 6 carbon atoms, or an alkyloxy group having 1 to 6 carbon atoms.
  • R 1 and R 2 each independently represents a hydrogen atom, a phenyl group, an alkyl group having 1 to 6 carbon atoms, or an alkyloxy group having 1 to 6 carbon atoms. Represents an integer of 1 to 6.
  • R 1 and R 2 each independently represents a hydrogen atom, a phenyl group, an alkyl group having 1 to 6 carbon atoms, or an alkyloxy group having 1 to 6 carbon atoms.
  • R 1 and R 2 each independently represents a hydrogen atom, a phenyl group, an alkyl group having 1 to 6 carbon atoms, or an alkyloxy group having 1 to 6 carbon atoms, k being Represents an integer of 2 to 4.
  • the polycarbonate resin of the present invention has a low coefficient of thermal linear expansion and little shrinkage after molding, a stable molded product can be obtained by injection molding.
  • the molar ratio of the raw materials used in Examples 1 to 3 and Comparative Example 1 (diphenyl carbonate / 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene) and the linear expansion coefficient of the obtained polycarbonate resin
  • . 6 is a graph showing the relationship between the amount of oligomer 2 (oligomer represented by formula (2)) contained in the polycarbonate resins obtained in Examples 1 to 3 and Comparative Example 1 and the linear expansion coefficient of the polycarbonate resin. .
  • 6 is a graph showing the relationship between the amount of oligomer 3 (oligomer represented by formula (3)) contained in the polycarbonate resins obtained in Examples 1 to 3 and Comparative Example 1 and the linear expansion coefficient of the polycarbonate resin.
  • . 6 is a graph showing the relationship between the amount of cyclic oligomer (oligomer represented by the formula (4)) contained in the polycarbonate resins obtained in Examples 1 to 3 and Comparative Example 1 and the linear expansion coefficient of the polycarbonate resin.
  • the total amount of linear oligomers contained in the polycarbonate resins obtained in Examples 1 to 3 and Comparative Example 1 total of oligomers represented by the formulas (1) to (3)), the linear expansion coefficient of the polycarbonate resins, It is a graph which shows the relationship.
  • the present invention relates to a polycarbonate resin containing 1 to 99.5% by weight of the repeating unit represented by the formula (A), wherein the oligomers represented by the following formulas (1) to (4) are 2.
  • the polycarbonate resin is contained in a volume of 5% by weight or less.
  • R 1 and R 2 each independently represent a hydrogen atom, a phenyl group, an alkyl group having 1 to 6 carbon atoms, or an alkyloxy group having 1 to 6 carbon atoms, Represents a hydrogen atom or a phenyl group.
  • n represents an integer of 1 to 4, preferably an integer of 1 to 3.
  • examples of the alkyl group having 1 to 6 carbon atoms include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, cyclopropyl Preferred examples include a group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group and the like.
  • examples of the alkyloxy group having 1 to 6 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group, Preferred examples include a cyclopropoxy group, a cyclobutoxy group, and a cyclopentoxy group.
  • R 1 and R 2 each independently represent a hydrogen atom, a phenyl group, an alkyl group having 1 to 6 carbon atoms, or an alkyloxy group having 1 to 6 carbon atoms, Represents a hydrogen atom or a phenyl group.
  • R 1 and R 2 in Formula (2) has the same meaning as R 1 and R 2 in the formula (1).
  • R 1 and R 2 each independently represent a hydrogen atom, a phenyl group, an alkyl group having 1 to 6 carbon atoms, or an alkyloxy group having 1 to 6 carbon atoms, Represents a hydrogen atom or a phenyl group.
  • l represents an integer of 1 to 5, preferably an integer of 1 to 3.
  • R 1 and R 2 in Formula (3) has the same meaning as R 1 and R 2 in the formula (1).
  • R 1 and R 2 each independently represent a hydrogen atom, a phenyl group, an alkyl group having 1 to 6 carbon atoms, or an alkyloxy group having 1 to 6 carbon atoms, Represents a hydrogen atom or a phenyl group.
  • k represents an integer of 2 to 4.
  • R 1 and R 2 in Formula (4) has the same meaning as R 1 and R 2 in the formula (1).
  • the polycarbonate resin of the present invention preferably contains oligomers represented by the above formulas (1) to (4) in a total capacity of 0.6% by weight or more. More preferably, the oligomers represented by the formulas (1) to (4) are 0.8 to 2.5% by weight in total, more preferably 1.0 to 2.2% by weight, and particularly preferably 1.0%. Contains in a volume of up to 2.0% by weight. Further, the polycarbonate resin of the present invention has a total content of linear oligomers represented by the above formulas (1) to (3) of 1.5% by weight or less, and the cyclic oligomer represented by the above formula (4). The content of is preferably 0.6% by weight or less.
  • the present inventors can reduce the linear expansion coefficient by containing the oligomers represented by the above formulas (1) to (4) in a total volume of 2.5% by weight or less, and as a result, It has been found that a polycarbonate resin having high thermal stability can be obtained.
  • Examples of a method for bringing the oligomers represented by the formulas (1) to (4) into a total volume of 2.5% by weight or less include, for example, the molar ratio of raw materials (diphenyl carbonate / 9,9-bis (4- ( Examples thereof include a method of adjusting 2-hydroxyethoxy) phenyl) fluorene), a method of adjusting reaction temperature, a method of adjusting by catalyst type, and a method of adjusting the amount of catalyst.
  • the molar ratio of the raw materials (diphenyl carbonate / 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene) is preferably 1.05 or less.
  • the polycarbonate resin of the present invention preferably has a linear expansion coefficient of 6.5 ⁇ 10 ⁇ 5 to 7.0 ⁇ 10 ⁇ 5 / ° C., and 6.6 ⁇ 10 ⁇ 5 to 6.8 ⁇ 10 ⁇ 5 / More preferably, it is ° C.
  • the linear expansion coefficient is less than 6.5 ⁇ 10 ⁇ 5 / ° C.
  • the bondability with other resins to be laminated may deteriorate
  • the linear expansion coefficient is 7 If it exceeds 0.0 ⁇ 10 ⁇ 5 / ° C., the heat resistance is deteriorated and thermal deformation may occur when the molded product is used.
  • the performance as an optical material may fall. For example, when the lens is molded as an optical lens, the resolution of the lens may be reduced.
  • the method described in Examples described later can be employed as a method for measuring the linear expansion coefficient.
  • the polycarbonate resin of the present invention preferably contains 50 to 99.0% by weight, more preferably 80 to 99.0% by weight of the repeating unit represented by the formula (A).
  • the repeating unit represented by the formula (A) is a structural unit derived from a compound represented by the following formula (A ′).
  • each structural unit is bonded via a carbonate bond.
  • R 1 and R 2 are each independently a hydrogen atom, a phenyl group, an alkyl group having 1 to 6 carbon atoms, or an alkyloxy group having 1 to 6 carbon atoms.
  • R 1 and R 2 in formula (A) and formula (A ') has the same meaning as R 1 and R 2 in the formula (1).
  • Examples of the compound represented by the formula (A ′) include 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3- Methylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3,5-dimethylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-tert-butylphenyl ) Fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-isopropylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3-cyclohexylphenyl) fluorene, 9,9 -Bis (4- (2-hydroxyethoxy) -3-phenylphenyl) fluorene is exemplified. Of these, 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene is preferably used
  • an aromatic dihydroxy compound or an aliphatic dihydroxy compound can be used in combination.
  • the repeating unit represented by the formula (B) is a structural unit derived from the compound represented by the formula (B ′).
  • the polycarbonate resin of the present invention preferably contains the repeating unit represented by the formula (A) and the repeating unit represented by the formula (B) in a molar ratio of 10:90 to 90:10. 30:70 to 70:30 in a molar ratio is more preferable.
  • the repeating unit represented by the formula (B) is contained in the above range, the refractive index is improved, the Abbe number is lowered, the Tg is lowered, and the moldability is improved.
  • a preferred polystyrene-reduced weight average molecular weight (Mw) of the polycarbonate resin of the present invention is 20,000 to 60,000. More preferably, the polystyrene equivalent weight average molecular weight (Mw) is 25,000 to 50,000, and particularly preferably 26,000 to 35,000. If Mw is less than 20,000, the molded product becomes brittle, which is not preferable. If Mw is larger than 60,000, the melt viscosity becomes high, so that it becomes difficult to take out the resin from the mold at the time of molding, and further, the fluidity becomes worse and it becomes difficult to perform injection molding in the molten state.
  • the preferred glass transition temperature (Tg) is 95 to 180 ° C, more preferably 110 to 170 ° C, still more preferably 115 to 160 ° C, and particularly preferably. Is 130-145 ° C.
  • Tg is lower than 95 ° C.
  • the melting temperature of the resin becomes high and the resin is likely to be decomposed or colored, which is not preferable.
  • the glass transition temperature of resin is too high, in a general-purpose mold temperature controller, the difference between the mold temperature and the resin glass transition temperature becomes large. Therefore, in applications where strict surface accuracy is required for products, it is difficult and undesirable to use a resin having a glass transition temperature that is too high.
  • the polycarbonate resin of the present invention has a 5% weight loss temperature (Td) measured at a temperature rising rate of 10 ° C./min as 350 ° C. or more as an index of thermal stability to withstand heating during injection molding. preferable.
  • Td 5% weight loss temperature
  • the phenol content in the polycarbonate resin is preferably 0.1 to 3000 ppm, more preferably 0.1 to 2000 ppm, and 1 to 1000 ppm, 1 to 800 ppm, 1 to 500 ppm, or 1 to 300 ppm. Is particularly preferred.
  • the carbonic acid diester content in the polycarbonate resin is preferably from 0.1 to 1000 ppm, more preferably from 0.1 to 500 ppm, and particularly preferably from 1 to 100 ppm.
  • an antioxidant a release agent, an ultraviolet absorber, a fluidity modifier, a crystal nucleating agent, a reinforcing agent, a dye, an antistatic agent, an antibacterial agent, or the like may be added to the polycarbonate resin of the present invention.
  • the polycarbonate resin of the present invention comprises a compound represented by the formula (A ′) and a carbonate precursor such as a carbonic acid diester in the presence of a basic compound catalyst or a transesterification catalyst or a mixed catalyst comprising both, or no catalyst. Below, it can manufacture by a melt polycondensation method.
  • Examples of the carbonic acid diester used in this reaction include diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate, and dicyclohexyl carbonate. Of these, diphenyl carbonate is particularly preferred.
  • the carbonic acid diester is preferably used in a ratio of 0.97 to 1.05 mol, more preferably 0.98 to 1.04 mol, per 1 mol of the total of dihydroxy compounds. When the amount of the carbonic acid diester is outside these ranges, problems such as the resin not reaching the desired molecular weight, unreacted raw materials remaining in the resin, and optical properties may be deteriorated.
  • Examples of basic compound catalysts include alkali metal compounds, alkaline earth metal compounds, and nitrogen-containing compounds.
  • alkali metal compound examples include organic acid salts, inorganic salts, oxides, hydroxides, hydrides, and alkoxides of alkali metals.
  • alkaline earth metal compound examples include organic acid salts, inorganic salts, oxides, hydroxides, hydrides or alkoxides of alkaline earth metal compounds.
  • magnesium hydroxide, calcium acetate, strontium acetate, barium acetate, magnesium stearate, calcium stearate, calcium benzoate, magnesium phenyl phosphate and the like are used.
  • nitrogen-containing compound examples include quaternary ammonium hydroxide and salts thereof, amines and the like.
  • quaternary ammonium hydroxides having an alkyl group, an aryl group, and the like such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, and trimethylbenzylammonium hydroxide;
  • Tertiary amines such as triethylamine, dimethylbenzylamine and triphenylamine; secondary amines such as diethylamine and dibutylamine; primary amines such as propylamine and butylamine; 2-methylimidazole, 2-phenylimidazole and benzimidazole Imidazoles such as ammonia, tetramethylammonium borohydride, tetrabutylammonium borohydride, te
  • salts of zinc, tin, zirconium, lead, etc. are preferably used, and these can be used alone or in combination.
  • transesterification catalyst examples include zinc acetate, zinc benzoate, zinc 2-ethylhexanoate, tin (II) chloride, tin (IV) chloride, tin (II) acetate, tin (IV) acetate, and dibutyltin.
  • Dilaurate, dibutyltin oxide, dibutyltin dimethoxide, zirconium acetylacetonate, zirconium oxyacetate, zirconium tetrabutoxide, lead (II) acetate, lead (IV) acetate and the like are used.
  • catalysts are used in a ratio of 1 ⁇ 10 ⁇ 9 to 1 ⁇ 10 ⁇ 3 mol, preferably 1 ⁇ 10 ⁇ 7 to 1 ⁇ 10 ⁇ 4 mol, relative to a total of 1 mol of the dihydroxy compound. .
  • Two or more types of catalysts may be used in combination.
  • the catalyst itself may be added as it is, or it may be added after being dissolved in a solvent such as water or phenol.
  • the melt polycondensation method is a method in which melt polycondensation is carried out using the above-mentioned raw materials and catalysts under heating and further under normal pressure or reduced pressure while removing by-products by transesterification.
  • the catalyst may be present together with the raw materials from the beginning of the reaction, or may be added during the reaction.
  • the melt polycondensation in this composition system is carried out by a method in which the compound represented by the formula (A ') and the carbonic acid diester are melted in a reaction vessel and then polymerized while distilling the produced monohydroxy compound.
  • the reaction temperature varies depending on the boiling point of the produced monohydroxy compound, but is usually in the range of 120 to 350 ° C.
  • the reaction is decompressed from the beginning, and the reaction is completed while distilling out the produced monohydroxy compound.
  • a transesterification catalyst can also be used to accelerate the reaction.
  • the melt polycondensation reaction may be carried out continuously or batchwise.
  • the reaction equipment used for the reaction is a horizontal type equipped with paddle blades, lattice blades, glasses blades, etc., even if it is a vertical type equipped with vertical stirring blades, Max blend stirring blades, helical ribbon type stirring blades, etc. Or an extruder type equipped with a screw. In view of the viscosity of the polymer, it is preferable to use these reactors in appropriate combination.
  • the catalyst may be removed or deactivated after the polymerization reaction in order to maintain thermal stability and hydrolysis stability, but it is not always necessary to deactivate.
  • a method for deactivation of the catalyst by adding a known acidic substance can be preferably carried out.
  • the acidic substance include esters such as butyl benzoate; aromatic sulfonic acids such as p-toluenesulfonic acid; aromatic sulfonic acid esters such as butyl p-toluenesulfonate and hexyl p-toluenesulfonate.
  • Phosphoric acids such as phosphorous acid, phosphoric acid, phosphonic acid; triphenyl phosphite, monophenyl phosphite, diphenyl phosphite, diethyl phosphite, di-n-propyl phosphite, diphosphorous acid Phosphorous esters such as n-butyl, di-n-hexyl phosphite, dioctyl phosphite, monooctyl phosphite; triphenyl phosphate, diphenyl phosphate, monophenyl phosphate, dibutyl phosphate, phosphoric acid Phosphate esters such as dioctyl and monooctyl phosphate; Phosphonic acids such as diphenylphosphonic acid, dioctylphosphonic acid and dibutylphosphonic acid Phosphonates such as diethyl phenylphosphonate; pho
  • p-toluene or butyl sulfonate is particularly preferable.
  • These deactivators are used in an amount of 0.01 to 50 times mol, preferably 0.3 to 20 times mol for the amount of catalyst. When the amount is less than 0.01 times the amount of the catalyst, the deactivation effect is insufficient, which is not preferable. Moreover, when it is more than 50 times mole with respect to the amount of catalyst, since the heat resistance of resin falls and it becomes easy to color a molded object, it is unpreferable.
  • the addition of the deactivator can be carried out by kneading and may be either a continuous type or a batch type.
  • the temperature at the time of kneading is preferably 200 to 350 ° C, more preferably 230 to 300 ° C, and particularly preferably 250 to 270 ° C.
  • the kneader is preferably an extruder if it is a continuous type, and a lab plast mill and a kneader are preferably used if it is a batch type. Examples of the extruder include a single screw extruder, a twin screw extruder, and a multi-screw extruder.
  • the extruder can be appropriately provided with a gear pump for stably quantifying the resin discharge amount.
  • the atmospheric pressure for melt kneading of the resin composition is not particularly limited, and normal pressure or reduced pressure, for example, pressure of normal pressure (760 mmHg) to 0.1 mmHg is used to prevent oxidation, decomposition products, removal of low-boiling components such as phenol. It is preferable from the viewpoint.
  • the extruder may be a vent type or a no vent type, but is preferably a vent type extruder from the viewpoint of improving the quality of the extruded product.
  • the pressure at the vent port may be normal pressure or reduced pressure, but may be, for example, normal pressure (760 mmHg) to 0.1 mmHg, preferably 100 to 0.1 mmHg.
  • the pressure is about 50 to 0.1 mmHg from the viewpoint of prevention of oxidation, decomposition products, decomposition products, and removal of low-boiling components such as phenol.
  • hydrogen devolatilization may be performed for the purpose of more efficiently reducing low-boiling components such as phenol.
  • the kneading of the deactivator may be performed immediately after the completion of the polymerization reaction, or may be performed after pelletizing the polymerized resin.
  • other additives antioxidants, mold release agents, UV absorbers, fluidity modifiers, crystal nucleating agents, reinforcing agents, dyes, antistatic agents, antibacterial agents, etc. It can be added in a similar manner.
  • the temperature during devolatilization is preferably 230 to 300 ° C, more preferably 250 to 270 ° C.
  • a horizontal apparatus equipped with a stirring blade having excellent surface renewability, such as a paddle blade, a lattice blade, or a glasses blade, or a thin film evaporator is preferably used.
  • the polycarbonate resin of the present invention is desired to have as little foreign matter content as possible, and filtration of the molten raw material, filtration of the catalyst solution, and the like are suitably performed.
  • the filter mesh is preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less.
  • generate is implemented suitably.
  • the mesh of the polymer filter is preferably 100 ⁇ m or less, more preferably 30 ⁇ m or less.
  • the step of collecting the resin pellets must be a low dust environment, and is preferably class 6 or less, more preferably class 5 or less.
  • An optical lens manufactured using the polycarbonate resin according to the embodiment has a high refractive index and excellent heat resistance, and thus, conventionally, an expensive high refractive index glass lens such as a telescope, binoculars, and a TV projector has been used. It can be used in the field and is extremely useful. If necessary, it is preferably used in the form of an aspheric lens. Since an aspherical lens can substantially eliminate spherical aberration with a single lens, there is no need to remove spherical aberration by combining a plurality of spherical lenses, which reduces weight and reduces production costs. It becomes possible. Therefore, the aspherical lens is particularly useful as a camera lens among optical lenses.
  • the optical lens is molded by an arbitrary method such as an injection molding method, a compression molding method, or an injection compression molding method.
  • an injection molding method such as an injection molding method, a compression molding method, or an injection compression molding method.
  • the molding environment must naturally be a low dust environment, preferably class 6 or less, more preferably class 5 or less.
  • the polycarbonate resin of the embodiment has high fluidity, it can be an optical lens having a thin and small size and a complicated shape.
  • the thickness of the central portion is 0.05 to 3.0 mm, more preferably 0.05 to 2.0 mm, and still more preferably 0.1 to 2.0 mm.
  • the diameter is 1.0 mm to 20.0 mm, more preferably 1.0 to 10.0 mm, and still more preferably 3.0 to 10.0 mm.
  • it is preferably a meniscus lens having a convex shape on one side and a concave surface on the single side.
  • optical film Since the optical film manufactured using the polycarbonate resin according to the embodiment is excellent in transparency and heat resistance, it is suitably used for a film for a liquid crystal substrate, an optical memory card, and the like.
  • the molding environment In order to avoid contamination of foreign matter to the optical film as much as possible, the molding environment must naturally be a low dust environment, preferably class 6 or less, more preferably class 5 or less.
  • the polycarbonate resin of the present invention may be in the form of a resin composition containing a plurality of types of resins. That is, the polycarbonate resin composition contains at least a polycarbonate resin containing 1 to 99.5% by weight of the repeating unit represented by the formula (A).
  • the polycarbonate resin composition may contain other resins in addition to the polycarbonate resin of the present invention as long as the characteristics of the present invention are not impaired.
  • other resins that may be included in the polycarbonate resin composition include the following: Polyethylene, polypropylene, polyvinyl chloride, polystyrene, (meth) acrylic resin, ABS resin, polyamide, polyacetal, polycarbonate (but not the polycarbonate resin of the present invention), polyphenylene ether, polyester, polyphenylene sulfide, polyimide, polyethersulfone, Polyetheretherketone, fluororesin, cycloolefin polymer, ethylene / vinyl acetate copolymer, epoxy resin, silicone resin, phenol resin, unsaturated polyester resin, polyurethane.
  • the content of other resins that may be contained in the polycarbonate resin composition is preferably 20 parts by mass or less, and more preferably 10 parts by mass or less, based on the mass of the polycarbonate resin of the present invention. When there is too much content of other resin, compatibility will worsen and the transparency of a resin composition may fall.
  • the polycarbonate resin composition contains, as impurities, phenol produced when each resin constituting the composition is produced and carbonic diester remaining without reacting.
  • the phenol content in the polycarbonate resin composition is preferably 0.1 to 3000 ppm, more preferably 0.1 to 2000 ppm, 1 to 1000 ppm, 1 to 800 ppm, 1 to 500 ppm, or 1 to 300 ppm. It is particularly preferred.
  • the carbonic acid diester content in the polycarbonate resin composition is preferably from 0.1 to 1000 ppm, more preferably from 0.1 to 500 ppm, and particularly preferably from 1 to 100 ppm.
  • BPEF 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene
  • thermomechanical analyzer (TMA100) manufactured by Seiko Denshi Kogyo Co., Ltd.
  • a load of 50 mN is applied based on JIS K7197, and the temperature is increased at a rate of 10 ° C./min.
  • the average coefficient of linear expansion during was obtained.
  • Example 1 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene (hereinafter sometimes abbreviated as “BPEF”) having the following structure; 19.260 kg (43.921 mol), diphenyl carbonate (hereinafter referred to as “BPEF”) 9.780 kg (45.655 mol), and sodium hydrogen carbonate; 2.21 ⁇ 10 ⁇ 2 g (2.63 ⁇ 10 ⁇ 4 mol) were stirred and distilled. The reactor was placed in the attached 50 liter reactor and purged with nitrogen, and then heated to 205 ° C. over 1 hour under a nitrogen atmosphere of 760 Torr and stirred.
  • BPEF 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene
  • the degree of vacuum was adjusted to 150 Torr over 15 minutes, and held at 205 ° C. and 150 Torr for 20 minutes to conduct a transesterification reaction. Further, the temperature was raised to 240 ° C. at a rate of 37.5 ° C./hr, and held at 240 ° C. and 150 Torr for 10 minutes. Thereafter, the pressure was adjusted to 120 Torr over 10 minutes, and maintained at 240 ° C. and 120 Torr for 70 minutes. Thereafter, the pressure was adjusted to 100 Torr over 10 minutes and held at 240 ° C. and 100 Torr for 10 minutes. The polymerization reaction was further carried out with stirring for 10 minutes under the conditions of 240 Torr and 1 Torr over 40 minutes.
  • Table 1 shows the Mw, the amount of each oligomer, and the linear expansion coefficient of the obtained resin. Further, details of each oligomer amount, that is, contents for each value of n, m, l, k in the formulas (1) to (4) are shown in Table 2. Further, the relationship between the molar ratio of the raw materials used and the linear expansion coefficient is shown in FIG. 1, and the relationship between the amount of each oligomer and the linear expansion coefficient is shown in FIGS.
  • Example 2 In Example 1, BPEF: 20.40 kg (45.700 mol), DPC: 10.271 kg (47.947 mol), sodium hydrogen carbonate; 2.30 ⁇ 10 ⁇ 2 g (2.74 ⁇ 10 ⁇ 4 mol) Except for the change to), the same operation as in Example 1 was performed to obtain a polycarbonate resin.
  • Table 1 shows the Mw, the amount of each oligomer, and the linear expansion coefficient of the obtained resin. Further, details of each oligomer amount, that is, contents for each value of n, m, l, k in the formulas (1) to (4) are shown in Table 2. Further, the relationship between the molar ratio of the raw materials used and the linear expansion coefficient is shown in FIG. 1, and the relationship between the amount of each oligomer and the linear expansion coefficient is shown in FIGS.
  • Example 3 In Example 1, BPEF; 18.700 kg (42.644 mol), DPC; 9.120 kg (42.574 mol), sodium hydrogen carbonate; 2.21 ⁇ 10 ⁇ 2 g (2.56 ⁇ 10 ⁇ 4 mol) Except for the change to), the same operation as in Example 1 was performed to obtain a polycarbonate resin.
  • Table 1 shows the Mw, the amount of each oligomer, and the linear expansion coefficient of the obtained resin. Further, details of each oligomer amount, that is, contents for each value of n, m, l, k in the formulas (1) to (4) are shown in Table 2. Further, the relationship between the molar ratio of the raw materials used and the linear expansion coefficient is shown in FIG. 1, and the relationship between the amount of each oligomer and the linear expansion coefficient is shown in FIGS.
  • Example 1 (Comparative Example 1) In Example 1, BPEF; 18.700 kg (42.644 mol), DPC; 9.68 kg (45.188 mol), sodium hydrogen carbonate; 2.21 ⁇ 10 ⁇ 2 g (2.56 ⁇ 10 ⁇ 4 mol) Except for the change to), the same operation as in Example 1 was performed to obtain a polycarbonate resin.
  • Table 1 shows the Mw, the amount of each oligomer, and the linear expansion coefficient of the obtained resin. Further, details of each oligomer amount, that is, contents for each value of n, m, l, k in the formulas (1) to (4) are shown in Table 2. Further, the relationship between the molar ratio of the raw materials used and the linear expansion coefficient is shown in FIG. 1, and the relationship between the amount of each oligomer and the linear expansion coefficient is shown in FIGS.
  • Oligomer 1 Oligomer represented by formula (1)
  • Oligomer 2 Oligomer represented by formula (2)
  • Oligomer 3 Oligomer represented by formula (3)
  • Linear oligomer total represented by formulas (1) to (3) Total oligomers to be formed
  • Cyclic oligomer Oligomer represented by formula (4)
  • the linear expansion coefficients of the polycarbonate resins obtained in Examples 1 to 3 are as low as 6.6 ⁇ 10 ⁇ 5 to 6.9 ⁇ 10 ⁇ 5 / ° C., indicating that the thermal stability is excellent.
  • the polycarbonate resin obtained in Comparative Example 1 has a high coefficient of linear expansion of 7.1 ⁇ 10 ⁇ 5 / ° C., which is inferior in thermal stability as compared with the polycarbonate resins obtained in Examples 1 to 3. I understand. From FIG. 1 of the present application, the molar ratio of raw materials (diphenyl carbonate / 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene) is preferably 1.05 or less. From FIG.
  • the total content of the linear oligomers represented by the formulas (1) to (3) is preferably 1.5% by weight or less. Furthermore, from FIG. 5 of the present application, the content of the cyclic oligomer represented by the formula (4) is preferably 0.6% by weight or less.
  • Example 4 In Example 1, BPEF: 9.630 kg (21.961 mol), DPC: 9.650 kg (45.048 mol), sodium hydrogen carbonate; 2.21 ⁇ 10 ⁇ 2 g (2.63 ⁇ 10 ⁇ 4 mol)
  • BHEBN 2,2′-bis (2-hydroxyethoxy) -1,1′-binaphthalene having the following structure; 8.000 kg (21. Except for adding 365 mol), the same operation as in Example 1 was performed to obtain a polycarbonate resin.
  • Table 3 shows the Mw, the amount of each oligomer, and the linear expansion coefficient of the obtained resin.
  • Example 5 (Example 5) In Example 4, BPEF: 10.500 kg (23.945 mol), BHEBN; 10.110 kg (27.000 mol), DPC; 11.4600 kg (53.497 mol), sodium hydrogen carbonate; 2.21 ⁇ 10 Except for changing to ⁇ 2 g (2.63 ⁇ 10 ⁇ 4 mol), the same operation as in Example 4 was performed to obtain a polycarbonate resin. Table 3 shows the Mw, the amount of each oligomer, and the linear expansion coefficient of the obtained resin.
  • Example 6 In Example 4, BPEF; 9.120 kg (20.798 mol), BHEBN; 10.000 kg (26.707 mol), DPC; 10.170 kg (47.475 mol), sodium hydrogen carbonate; 2.21 ⁇ 10 Except for changing to ⁇ 2 g (2.63 ⁇ 10 ⁇ 4 mol), the same operation as in Example 4 was performed to obtain a polycarbonate resin. Table 3 shows the Mw, the amount of each oligomer, and the linear expansion coefficient of the obtained resin.
  • Example 7 In Example 4, instead of BPEF, 9,9-bis (4- (2-hydroxyethoxy) -3-phenylphenyl) fluorene (hereinafter sometimes abbreviated as “BPPEF”) having the following structure; 000 kg (22.007 mol), BHEBN; 8.000 kg (21.365 mol), DPC; 9.650 kg (45.048 mol), sodium hydrogen carbonate; 2.21 ⁇ 10 ⁇ 2 g (2 Except for changing to .63 ⁇ 10 ⁇ 4 mol), the same operation as in Example 4 was performed to obtain a polycarbonate resin. Table 4 shows the Mw, the amount of each oligomer, and the linear expansion coefficient of the obtained resin.
  • BPPEF 9,9-bis (4- (2-hydroxyethoxy) -3-phenylphenyl) fluorene
  • Example 8 In Example 7, BPPEF; 14.200 kg (24.038 mol), BHEBN; 10.110 kg (27.000 mol), DPC; 11.460 kg (53.497 mol), sodium hydrogen carbonate; 2.21 ⁇ 10
  • a polycarbonate resin was obtained in the same manner as in Example 7 except that the amount was changed to -2 g (2.63 ⁇ 10 ⁇ 4 mol).
  • Table 4 shows the Mw, the amount of each oligomer, and the linear expansion coefficient of the obtained resin.
  • Example 9 In Example 7, BPPEF: 12.300 kg (20.822 mol), BHEBN; 10.000 kg (26.707 mol), DPC; 10.170 kg (47.475 mol), sodium hydrogen carbonate; 2.21 ⁇ 10
  • a polycarbonate resin was obtained in the same manner as in Example 7 except that the amount was changed to -2 g (2.63 ⁇ 10 ⁇ 4 mol).
  • Table 4 shows the Mw, the amount of each oligomer, and the linear expansion coefficient of the obtained resin.
  • This molded piece is inserted into the second lens unit consisting of four lenses, and the lens unit is heated to 30 ° C and 100 ° C and then cooled to 30 ° C.
  • the lens unit is placed on a resolution projector and evaluated by visual observation of the resolution. did. In the evaluation, the resolution was not changed, the outer peripheral portion was blurred, and the image blurring was remarkable as a whole.
  • the optical lens made of polycarbonate resin obtained in Examples 1, 2, 4, 5, 7 and 8 is ⁇
  • the optical lens made of polycarbonate resin obtained in Examples 3, 6 and 9 is ⁇ .
  • the optical lens made of the polycarbonate resin obtained in Example 1 was x.
  • the polycarbonate resin of the present invention is useful as an optical material such as an optical film or an optical lens because it has little thermal expansion (low linear expansion coefficient).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明によれば、下記式(A)で表される繰り返し単位を1~99.5重量%含有するポリカーボネート樹脂であって、特定の構造を有するオリゴマーを合計で2.5重量%以下の容量で含有する、前記ポリカーボネート樹脂を提供することができる。(式(A)中、R及びRは、それぞれ独立に、水素原子、フェニル基、炭素原子数1~6のアルキル基、又は炭素原子数1~6のアルキルオキシ基を表す。)

Description

ポリカーボネート樹脂
 本発明は、熱安定性の高いポリカーボネート樹脂に関する。
 近年、デジタルカメラ、スマートフォン、タブレットなどの電子機器が普及し、小型のカメラモジュールの需要が伸びている。これらのカメラモジュールにはガラスレンズより、プラスチックレンズが好適に用いられている。その理由としては、プラスチックレンズであれば、薄型、非球面など様々な形に対応可能であり、安価で、しかも、射出成型によって大量生産が容易なためである。
 光学レンズのためにガラスの代替となる高機能な樹脂が開発され、その原料としても様々なモノマーが検討されてきた。以前は、ビスフェノールAが主流であったが、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン(BPEF)などフルオレン骨格をもつモノマーを用いたポリマーが開発された(特許文献1及び2)。これらフルオレン骨格を有する樹脂は屈折率が高く、光学材料に好適であるが、ポリカーボネート樹脂はガラスに比べてはるかに熱による膨張が大きく(線膨張係数)、歪(例えば、成型後の残留歪)の原因となる。従って、光学材料として有用であり、熱による膨張が少ない(線膨張係数が小さい)ポリカーボネート樹脂が求められている。
国際公開第2014/073496号 国際公開第2011/010741号
 本発明は、光学材料として有用であり、熱による膨張が少ない(線膨張係数が小さい)ポリカーボネート樹脂を提供することを目的とする。
 本発明者らは鋭意研究した結果、ポリカーボネート樹脂に含まれる特定の構造を有するオリゴマーの含有量を特定量まで抑えることによって、熱による膨張が少なく(即ち、線膨張係数が小さく)熱安定性の高いポリカーボネート樹脂が得られることを見出した。即ち、本発明は以下の通りである。
<1> 下記式(A)で表される繰り返し単位を1~99.5重量%含有するポリカーボネート樹脂であって、下記式(1)~(4)で表されるオリゴマーを合計で2.5重量%以下の容量で含有する、前記ポリカーボネート樹脂である。
Figure JPOXMLDOC01-appb-C000012
(式(A)中、R及びRは、それぞれ独立に、水素原子、フェニル基、炭素原子数1~6のアルキル基、又は炭素原子数1~6のアルキルオキシ基を表す。)
Figure JPOXMLDOC01-appb-C000013
(式(1)中、R及びRは、それぞれ独立に、水素原子、フェニル基、炭素原子数1~6のアルキル基、又は炭素原子数1~6のアルキルオキシ基を表す。nは、1~4の整数を表す。)
Figure JPOXMLDOC01-appb-C000014
(式(2)中、R及びRは、それぞれ独立に、水素原子、フェニル基、炭素原子数1~6のアルキル基、又は炭素原子数1~6のアルキルオキシ基を表す。mは、1~6の整数を表す。)
Figure JPOXMLDOC01-appb-C000015
(式(3)中、R及びRは、それぞれ独立に、水素原子、フェニル基、炭素原子数1~6のアルキル基、又は炭素原子数1~6のアルキルオキシ基を表す。lは、1~5の整数を表す。)
Figure JPOXMLDOC01-appb-C000016
(式(4)中、R及びRは、それぞれ独立に、水素原子、フェニル基、炭素原子数1~6のアルキル基、又は炭素原子数1~6のアルキルオキシ基を表す。kは、2~4の整数を表す。)
<2> 式(A)中、R及びRは、それぞれ独立に、水素原子またはフェニル基を表す、上記<1>に記載のポリカーボネート樹脂である。
<3> 前記式(1)~(4)で表されるオリゴマーを合計で0.6重量%以上の容量で含有する、上記<1>または<2>に記載のポリカーボネート樹脂である。
<4> 前記式(1)~(3)で表される線形オリゴマーの含有量の合計が1.5重量%以下であり、前記式(4)で表される環状オリゴマーの含有量が0.6重量%以下である、上記<1>から<3>のいずれかに記載のポリカーボネート樹脂である。
<5> 更に、下記式(B)で表される繰り返し単位を含有する、上記<1>から<4>のいずれかに記載のポリカーボネート樹脂である。
Figure JPOXMLDOC01-appb-C000017
<6> 前記式(A)で表される繰り返し単位と、前記式(B)で表される繰り返し単位とを、10:90~90:10のモル比で含有する、上記<5>に記載のポリカーボネート樹脂である。
<7> 線膨張係数が6.5×10-5~7.0×10-5/℃である、上記<1>から<6>のいずれかに記載のポリカーボネート樹脂である。
<8> 上記<1>から<7>のいずれかに記載のポリカーボネート樹脂を用いた光学フィルムである。
<9> 上記<1>から<7>のいずれかに記載のポリカーボネート樹脂を用いた光学レンズである。
<10> ポリカーボネート樹脂に含まれる下記式(1)~(4)で表されるオリゴマーを合計で2.5重量%以下の容量に調整する方法であって、該ポリカーボネート樹脂が下記式(A)で表される繰り返し単位を1~99.5重量%含有する、前記方法である。
Figure JPOXMLDOC01-appb-C000018
(式(A)中、R及びRは、それぞれ独立に、水素原子、フェニル基、炭素原子数1~6のアルキル基、又は炭素原子数1~6のアルキルオキシ基を表す。)
Figure JPOXMLDOC01-appb-C000019
(式(1)中、R及びRは、それぞれ独立に、水素原子、フェニル基、炭素原子数1~6のアルキル基、又は炭素原子数1~6のアルキルオキシ基を表す。nは、1~4の整数を表す。)
Figure JPOXMLDOC01-appb-C000020
(式(2)中、R及びRは、それぞれ独立に、水素原子、フェニル基、炭素原子数1~6のアルキル基、又は炭素原子数1~6のアルキルオキシ基を表す。mは、1~6の整数を表す。)
Figure JPOXMLDOC01-appb-C000021
(式(3)中、R及びRは、それぞれ独立に、水素原子、フェニル基、炭素原子数1~6のアルキル基、又は炭素原子数1~6のアルキルオキシ基を表す。lは、1~5の整数を表す。)
Figure JPOXMLDOC01-appb-C000022
(式(4)中、R及びRは、それぞれ独立に、水素原子、フェニル基、炭素原子数1~6のアルキル基、又は炭素原子数1~6のアルキルオキシ基を表す。kは、2~4の整数を表す。)
 本発明のポリカーボネート樹脂は、熱線膨張係数が低く、成型後の収縮が少ないため、射出成型によって安定した成型品を得ることが出来る。
実施例1~3と比較例1で使用した原料のモル比(ジフェニルカーボネート/9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン)と、得られたポリカーボネート樹脂の線膨張係数との関係を示すグラフである。 実施例1~3と比較例1で得られたポリカーボネート樹脂に含まれるオリゴマー1(式(1)で表されるオリゴマー)の量と、該ポリカーボネート樹脂の線膨張係数との関係を示すグラフである。 実施例1~3と比較例1で得られたポリカーボネート樹脂に含まれるオリゴマー2(式(2)で表されるオリゴマー)の量と、該ポリカーボネート樹脂の線膨張係数との関係を示すグラフである。 実施例1~3と比較例1で得られたポリカーボネート樹脂に含まれるオリゴマー3(式(3)で表されるオリゴマー)の量と、該ポリカーボネート樹脂の線膨張係数との関係を示すグラフである。 実施例1~3と比較例1で得られたポリカーボネート樹脂に含まれる環状オリゴマー(式(4)で表されるオリゴマー)の量と、該ポリカーボネート樹脂の線膨張係数との関係を示すグラフである。 実施例1~3と比較例1で得られたポリカーボネート樹脂に含まれる線形オリゴマーの合計(式(1)~(3)で表されるオリゴマーの合計)量と、該ポリカーボネート樹脂の線膨張係数との関係を示すグラフである。
 以下、本発明を詳細に説明する。
 本発明は、前記式(A)で表される繰り返し単位を1~99.5重量%含有するポリカーボネート樹脂であって、下記式(1)~(4)で表されるオリゴマーを合計で2.5重量%以下の容量で含有する、前記ポリカーボネート樹脂である。
Figure JPOXMLDOC01-appb-C000023
 式(1)中、R及びRは、それぞれ独立に、水素原子、フェニル基、炭素原子数1~6のアルキル基、又は炭素原子数1~6のアルキルオキシ基を表し、好ましくは、水素原子またはフェニル基を表す。nは、1~4の整数を表し、好ましくは1~3の整数を表す。
 RおよびRにおいて、炭素数1~6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などが好ましく挙げられる。
 RおよびRにおいて、炭素数1~6のアルキルオキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、シクロプロポキシ基、シクロブトキシ基、シクロペントキシ基などが好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000024
 式(2)中、R及びRは、それぞれ独立に、水素原子、フェニル基、炭素原子数1~6のアルキル基、又は炭素原子数1~6のアルキルオキシ基を表し、好ましくは、水素原子またはフェニル基を表す。mは、1~6の整数を表し、好ましくは1~3の整数を表す。ここで、式(2)におけるR及びRは、式(1)におけるR及びRと同義である。
Figure JPOXMLDOC01-appb-C000025
 式(3)中、R及びRは、それぞれ独立に、水素原子、フェニル基、炭素原子数1~6のアルキル基、又は炭素原子数1~6のアルキルオキシ基を表し、好ましくは、水素原子またはフェニル基を表す。lは、1~5の整数を表し、好ましくは1~3の整数を表す。ここで、式(3)におけるR及びRは、式(1)におけるR及びRと同義である。
Figure JPOXMLDOC01-appb-C000026
 式(4)中、R及びRは、それぞれ独立に、水素原子、フェニル基、炭素原子数1~6のアルキル基、又は炭素原子数1~6のアルキルオキシ基を表し、好ましくは、水素原子またはフェニル基を表す。kは、2~4の整数を表す。ここで、式(4)におけるR及びRは、式(1)におけるR及びRと同義である。
 本発明のポリカーボネート樹脂は、前記式(1)~(4)で表されるオリゴマーを合計で0.6重量%以上の容量で含有することが好ましい。より好ましくは、前記式(1)~(4)で表されるオリゴマーを合計で0.8~2.5重量%、更に好ましくは1.0~2.2重量%、特に好ましくは1.0~2.0重量%の容量で含有する。
 更に、本発明のポリカーボネート樹脂は、前記式(1)~(3)で表される線形オリゴマーの含有量の合計が1.5重量%以下であり、前記式(4)で表される環状オリゴマーの含有量が0.6重量%以下であることが好ましい。
 本発明において、オリゴマー含有量の測定方法としては、後述する実施例に記載した方法を採用することができる。
 本発明者らは、前記式(1)~(4)で表されるオリゴマーを合計で2.5重量%以下の容量で含有することにより、線膨張係数を低くすることができ、その結果、熱安定性の高いポリカーボネート樹脂が得られることを見出した。
 前記式(1)~(4)で表されるオリゴマーを合計で2.5重量%以下の容量にする方法としては、例えば、原料のモル比(ジフェニルカーボネート/9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン)を調整する方法、反応温度を調整する方法、触媒種により調整する方法、触媒量を調整する方法などが挙げられる。
 前記原料のモル比(ジフェニルカーボネート/9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン)は、1.05以下が好ましい。
 本発明のポリカーボネート樹脂は、線膨張係数が6.5×10-5~7.0×10-5/℃であることが好ましく、6.6×10-5~6.8×10-5/℃であることがより好ましい。線膨張係数が6.5×10-5/℃未満であると、光学レンズまたは光学フィルムとして使用する際に、積層する他の樹脂との接合性が悪化する場合があり、線膨張係数が7.0×10-5/℃を超えると、耐熱性が悪化し成形品を使用する際に熱変形が生じる場合がある。また、光学材料としての性能が低下する場合がある。例えば光学レンズとして成型した際にレンズの解像力が低下する場合がある。
 本発明において、線膨張係数の測定方法としては、後述する実施例に記載した方法を採用することができる。
 本発明のポリカーボネート樹脂は、好ましくは前記式(A)で表される繰り返し単位を50~99.0重量%含有し、より好ましくは80~99.0重量%含有する。
 ここで、前記式(A)で表される繰り返し単位は、下記式(A’)で表される化合物に由来する構成単位である。本発明のポリカーボネート樹脂において、各構成単位は、カーボネート結合を介して結合される。
Figure JPOXMLDOC01-appb-C000027
 式(A)及び式(A’)中、R及びRは、それぞれ独立に、水素原子、フェニル基、炭素原子数1~6のアルキル基、又は炭素原子数1~6のアルキルオキシ基を表し、好ましくは、水素原子またはフェニル基を表す。ここで、式(A)及び式(A’)におけるR及びRは、式(1)におけるR及びRと同義である。
 式(A’)で表される化合物の例としては、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-メチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3,5-ジメチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-tert-ブチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-イソプロピルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-シクロヘキシルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)フルオレンが例示される。中でも9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンが好適に使用される。
 本発明において、ジヒドロキシ成分としては、式(A’)で表される化合物に加えて、芳香族ジヒドロキシ化合物や脂肪族ジヒドロキシ化合物を併用することができる。
 芳香族ジヒドロキシ化合物や脂肪族ジヒドロキシ化合物として、例えば、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレン[=BHEBN]、4,4-ビス(4-ヒドロキシフェニル)プロパン[=ビスフェノールA]、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン[=ビスフェノールAP]、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン[=ビスフェノールAF]、2,2-ビス(4-ヒドロキシフェニル)ブタン[=ビスフェノールB]、ビス(4-ヒドロキシフェニル)ジフェニルメタン[=ビスフェノールBP]、ビス(4-ヒドロキシ-3-メチルフェニル)プロパン[=ビスフェノールC]、1,1-ビス(4-ヒドロキシフェニル)エタン[=ビスフェノールE]、ビス(4-ヒドロキシフェニル)メタン[=ビスフェノールF]、ビス(2-ヒドロキシフェニル)メタン、2,2-ビス(4-ヒドロキシ-3-イソプロピルフェニル)プロパン[=ビスフェノールG]、1,3-ビス(2-(4-ヒドロキシフェニル)-2-プロピル)ベンゼン[=ビスフェノールM]、ビス(4-ヒドロキシフェニル)スルホン[=ビスフェノールS]、1,4-ビス(2-(4-ヒドロキシフェニル)-2-プロピル)ベンゼン[=ビスフェノールP]、ビス(4-ヒドロキシ-3-フェニルフェニル]プロパン[=ビスフェノールPH]、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン[=ビスフェノールTMC]、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン[=ビスフェノールZ]、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサン(ビスフェノールOCZ)、4,4-ビスフェノール等が例示される。これらの化合物のうち、特に好ましい化合物は、下記式(B’)で表される2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレン[=BHEBN]である。
Figure JPOXMLDOC01-appb-C000028
 ここで、前記式(B)で表される繰り返し単位は、上記式(B’)で表される化合物に由来する構成単位である。
 本発明のポリカーボネート樹脂は、前記式(A)で表される繰り返し単位と、前記式(B)で表される繰り返し単位とを、10:90~90:10のモル比で含有することが好ましく、30:70~70:30のモル比で含有することがより好ましい。前記式(B)で表される繰り返し単位を上記の範囲で含有すると、屈折率が向上し、アッベ数が低下し、Tgが低くなり、成型性が向上するため好ましい。
 本発明のポリカーボネート樹脂の好ましいポリスチレン換算重量平均分子量(Mw)は、20,000~60,000である。より好ましくは、ポリスチレン換算重量平均分子量(Mw)は25,000~50,000であり、特に好ましくは26,000~35,000である。
 Mwが20,000より小さいと、成形体が脆くなるため好ましくない。Mwが60,000より大きいと、溶融粘度が高くなるため成形時に金型からの樹脂の取り出しが困難になり、更には流動性が悪くなり溶融状態で射出成形しにくくなるため好ましくない。
 本発明のポリカーボネート樹脂を射出成形に使用する場合、好ましいガラス転移温度(Tg)は95~180℃であり、より好ましくは110~170℃であり、さらに好ましくは115~160℃であり、特に好ましくは130~145℃である。Tgが95℃より低いと、使用温度範囲が狭くなるため好ましくない。また180℃を超えると、樹脂の溶融温度が高くなり、樹脂の分解や着色が発生しやすくなるため好ましくない。また、樹脂のガラス転移温度が高すぎる場合、汎用の金型温調機では、金型温度と樹脂ガラス転移温度の差が大きくなってしまう。そのため、製品に厳密な面精度が求められる用途においては、ガラス転移温度が高すぎる樹脂の使用は難しく、好ましくない。
 本発明のポリカーボネート樹脂は、射出成形時の加熱に耐えるための熱安定性の指標として、昇温速度10℃/minにて測定した5%重量減少温度(Td)が350℃以上であることが好ましい。5%重量減少温度が350℃より低い場合は、成形の際の熱分解が激しく、良好な成形体を得ることが困難となるため好ましくない。
 ポリカーボネート樹脂には、製造時に生成するフェノールや、反応せずに残存した炭酸ジエステルが不純物として存在する。ポリカーボネート樹脂中のフェノール含量は、0.1~3000ppmであることが好ましく、0.1~2000ppmであることがより好ましく、1~1000ppm、1~800ppm、1~500ppm、または1~300ppmであることが特に好ましい。また、ポリカーボネート樹脂中の炭酸ジエステル含量は、0.1~1000ppmであることが好ましく、0.1~500ppmであることがより好ましく、1~100ppmであることが特に好ましい。ポリカーボネート樹脂中に含まれるフェノールおよび炭酸ジエステルの量を調節することにより、目的に応じた物性を有する樹脂を得ることができる。フェノールおよび炭酸ジエステルの含量の調節は、重縮合の条件や装置を変更することにより適宜行うことができる。また、重縮合後の押出工程の条件によっても調節可能である。
 フェノールまたは炭酸ジエステルの含量が上記範囲を上回ると、得られる樹脂成形体の強度が落ちたり、臭気が発生する等の問題が生じ得る。一方、フェノールまたは炭酸ジエステルの含量が上記範囲を下回ると、樹脂溶融時の可塑性が低下する虞がある。
 さらに本発明のポリカーボネート樹脂には、酸化防止剤、離型剤、紫外線吸収剤、流動性改質剤、結晶核剤、強化剤、染料、帯電防止剤あるいは抗菌剤等を添加してもよい。
 本発明のポリカーボネート樹脂は、式(A’)で表される化合物、および炭酸ジエステルなどのカーボネート前駆物質を、塩基性化合物触媒もしくはエステル交換触媒またはその双方からなる混合触媒の存在下、あるいは無触媒下において、溶融重縮合法により製造することができる。
 この反応に用いられる炭酸ジエステルとしては、ジフェニルカーボネート、ジトリールカーボネート、ビス(クロロフェニル)カーボネート、m-クレジルカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジシクロヘキシルカーボネート等が挙げられる。これらの中でも特に、ジフェニルカーボネートが好ましい。炭酸ジエステルは、ジヒドロキシ化合物の合計1モルに対して0.97~1.05 モルの比率で用いられることが好ましく、更に好ましくは0.98~1.04モルの比率である。炭酸ジエステルの量がこれら範囲を外れた場合、樹脂が所望の分子量に到達しない、未反応の原料が樹脂中に残存して光学特性が低下する等の問題が生じ得る。
 塩基性化合物触媒としては、特にアルカリ金属化合物、アルカリ土類金属化合物、および含窒素化合物等が挙げられる。
 アルカリ金属化合物としては、例えばアルカリ金属の有機酸塩、無機塩、酸化物、水酸化物、水素化物又はアルコキシド等が挙げられる。具体的には、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化リチウム、炭酸水素ナトリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸セシウム、酢酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸セシウム、ステアリン酸リチウム、水素化ホウ素ナトリウム、フェニル化ホウ素ナトリウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸セシウム、安息香酸リチウム、リン酸水素二ナトリウム、リン酸水素二カリウム、リン酸水素二リチウム、フェニルリン酸二ナトリウム、ビスフェノールAの二ナトリウム塩、二カリウム塩、二セシウム塩もしくは二リチウム塩、フェノールのナトリウム塩、カリウム塩、セシウム塩もしくはリチウム塩等が用いられる。これらのうち、触媒活性が高く、純度の高いものが安価で流通している炭酸水素ナトリウムが好ましい。
 アルカリ土類金属化合物としては、例えばアルカリ土類金属化合物の有機酸塩、無機塩、酸化物、水酸化物、水素化物又はアルコキシド等が挙げられる。具体的には、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム、炭酸水素マグネシウム、炭酸水素カルシウム、炭酸水素ストロンチウム、炭酸水素バリウム、炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム、酢酸マグネシウム、酢酸カルシウム、酢酸ストロンチウム、酢酸バリウム、ステアリン酸マグネシウム、ステアリン酸カルシウム、安息香酸カルシウム、フェニルリン酸マグネシウム等が用いられる。
 含窒素化合物としては、例えば4級アンモニウムヒドロキシドおよびそれらの塩、アミン類等が挙げられる。具体的には、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド等のアルキル基、アリール基等を有する4級アンモニウムヒドロキシド類;トリエチルアミン、ジメチルベンジルアミン、トリフェニルアミン等の3級アミン類;ジエチルアミン、ジブチルアミン等の2級アミン類;プロピルアミン、ブチルアミン等の1級アミン類;2-メチルイミダゾール、2-フェニルイミダゾール、ベンゾイミダゾール等のイミダゾール類;あるいは、アンモニア、テトラメチルアンモニウムボロハイドライド、テトラブチルアンモニウムボロハイドライド、テトラブチルアンモニウムテトラフェニルボレート、テトラフェニルアンモニウムテトラフェニルボレート等の塩基もしくは塩基性塩等が用いられる。
 エステル交換触媒としては、亜鉛、スズ、ジルコニウム、鉛等の塩が好ましく用いられ、これらは単独もしくは組み合わせて用いることができる。
 エステル交換触媒としては、具体的には、酢酸亜鉛、安息香酸亜鉛、2-エチルヘキサン酸亜鉛、塩化スズ(II)、塩化スズ(IV)、酢酸スズ(II)、酢酸スズ(IV)、ジブチルスズジラウレート、ジブチルスズオキサイド、ジブチルスズジメトキシド、ジルコニウムアセチルアセトナート、オキシ酢酸ジルコニウム、ジルコニウムテトラブトキシド、酢酸鉛(II)、酢酸鉛(IV)等が用いられる。
 これらの触媒は、ジヒドロキシ化合物の合計1モルに対して、1×10-9~1×10-3モルの比率で、好ましくは1×10-7~1×10-4モルの比率で用いられる。
 触媒は、2種類以上を併用してもよい。また、触媒自体をそのまま添加してもよく、あるいは、水やフェノール等の溶媒に溶解してから添加してもよい。
 溶融重縮合法は、前記の原料および触媒を用いて、加熱下で、さらに常圧または減圧下で、エステル交換反応により副生成物を除去しながら溶融重縮合を行うものである。触媒は、原料と共に反応の最初から存在させてもよく、あるいは、反応の途中で添加してもよい。
 本組成系での溶融重縮合は、式(A’)で表される化合物および炭酸ジエステルを反応容器中で溶融後、生成するモノヒドロキシ化合物を留出させながら重合する方法により行われる。反応温度は生成するモノヒドロキシ化合物の沸点などにより異なるが、通常120~350℃の範囲である。反応はその初期から減圧にして、生成するモノヒドロキシ化合物を留出させながら反応を完結させる。また、反応を促進するために、エステル交換触媒を使用することもできる。
 溶融重縮合反応は、連続式で行っても良く、またバッチ式で行ってもよい。反応を行うに際して用いられる反応装置は、錨型攪拌翼、マックスブレンド攪拌翼、ヘリカルリボン型攪拌翼等を装備した縦型であっても、パドル翼、格子翼、メガネ翼等を装備した横型であっても、スクリューを装備した押出機型であってもよい。また、重合物の粘度を勘案してこれらの反応装置を適宜組み合わせて使用することが好適に実施される。
 本発明のポリカーボネート樹脂の製造方法では、重合反応終了後、熱安定性および加水分解安定性を保持するために、触媒を除去もしくは失活させてもよいが、必ずしも失活させる必要はない。失活させる場合、公知の酸性物質の添加による触媒の失活のための方法を好適に実施できる。酸性物質としては、具体的には、安息香酸ブチル等のエステル類;p-トルエンスルホン酸等の芳香族スルホン酸類;p-トルエンスルホン酸ブチル、p-トルエンスルホン酸ヘキシル等の芳香族スルホン酸エステル類;亜リン酸、リン酸、ホスホン酸等のリン酸類;亜リン酸トリフェニル、亜リン酸モノフェニル、亜リン酸ジフェニル、亜リン酸ジエチル、亜リン酸ジn-プロピル、亜リン酸ジn-ブチル、亜リン酸ジn-ヘキシル、亜リン酸ジオクチル、亜リン酸モノオクチル等の亜リン酸エステル類;リン酸トリフェニル、リン酸ジフェニル、リン酸モノフェニル、リン酸ジブチル、リン酸ジオクチル、リン酸モノオクチル等のリン酸エステル類;ジフェニルホスホン酸、ジオクチルホスホン酸、ジブチルホスホン酸等のホスホン酸類;フェニルホスホン酸ジエチル等のホスホン酸エステル類;トリフェニルホスフィン、ビス(ジフェニルホスフィノ)エタン等のホスフィン類;ホウ酸、フェニルホウ酸等のホウ酸類;ドデシルベンゼンスルホン酸テトラブチルホスホニウム塩等の芳香族スルホン酸塩類;ステアリン酸クロライド、塩化ベンゾイル、p-トルエンスルホン酸クロライド等の有機ハロゲン化物;ジメチル硫酸等のアルキル硫酸;塩化ベンジル等の有機ハロゲン化物等が好適に用いられる。失活剤の効果、樹脂に対する安定性等の観点から、p-トルエンまたはスルホン酸ブチルが特に好ましい。これらの失活剤は、触媒量に対して0.01~50倍モル、好ましくは0.3~20倍モル使用される。触媒量に対して0.01倍モルより少ないと、失活効果が不充分となり好ましくない。また、触媒量に対して50倍モルより多いと、樹脂の耐熱性が低下し、成形体が着色しやすくなるため好ましくない。
 上記失活剤の添加は、混練により行うことができ、連続式、バッチ式のどちらでもよい。混練時の温度は、200~350℃が好ましく、230~300℃がより好ましく、250~270℃が特に好ましい。混練機は、連続式ならば押出し機が好適であり、バッチ式ならばラボプラストミル、ニーダーが好適に使用される。押出機としては、例えば、単軸押出機、二軸押出機、多軸押出機等が挙げられる。押出機には、適宜、樹脂吐出量を安定定量化する為のギアポンプなどを設けることができる。樹脂組成物の溶融混練の雰囲気圧力は特に制限されず、常圧または減圧、例えば、常圧(760mmHg)~0.1mmHgの圧力が、酸化防止、分解物、フェノールなどの低沸点成分の除去の観点で好ましい。押出機はベント式であってもノーベント式であってもよいが、押出製品の品質向上の点から、好ましくはベント式押出機である。ベント口の圧力(ベント圧力)は、常圧であっても減圧であってもよいが、例えば、常圧(760mmHg)~0.1mmHgの圧力であってよく、好ましくは、100~0.1mmHg程度の圧力、より好ましくは酸化防止、分解物、フェノールなどの低沸点成分の除去の観点で50~0.1mmHg程度の圧力とする。また、フェノールなどの低沸点成分をより効率的に減少する目的で、水添脱揮してもよい。
 失活剤の混練は、重合反応終了後すぐに行ってもよく、あるいは、重合後の樹脂をペレット化してから行ってもよい。また、失活剤の他、その他の添加剤(酸化防止剤、離型剤、紫外線吸収剤、流動性改質剤、結晶核剤、強化剤、染料、帯電防止剤あるいは抗菌剤等)も、同様の方法で添加することができる。
 触媒失活後(失活剤を添加しない場合には、重合反応終了後)、ポリマー中の低沸点化合物を、0.1~1mmHgの圧力、200~350℃の温度で脱揮除去する工程を設けても良い。脱揮除去の際の温度は、好ましくは230~300℃、より好ましくは250~270℃である。この工程には、パドル翼、格子翼、メガネ翼等、表面更新能の優れた攪拌翼を備えた横型装置、あるいは薄膜蒸発器が好適に用いられる。
 本発明のポリカーボネート樹脂は、異物含有量が極力少ないことが望まれ、溶融原料の濾過、触媒液の濾過等が好適に実施される。フィルターのメッシュは、5μm以下であることが好ましく、より好ましくは1μm以下である。さらに、生成する樹脂のポリマーフィルターによる濾過が好適に実施される。ポリマーフィルターのメッシュは、100μm以下であることが好ましく、より好ましくは30μm以下である。また、樹脂ペレットを採取する工程は当然低ダスト環境でなければならず、クラス6以下であることが好ましく、より好ましくはクラス5以下である。
(光学レンズ)
 実施形態に係るポリカーボネート樹脂を用いて製造される光学レンズは、高屈折率であり、耐熱性に優れるため、望遠鏡、双眼鏡、テレビプロジェクター等、従来、高価な高屈折率ガラスレンズが用いられていた分野に用いることができ、極めて有用である。必要に応じて、非球面レンズの形で用いることが好ましい。非球面レンズは、1枚のレンズで球面収差を実質的にゼロとすることが可能であるため、複数の球面レンズの組み合わせによって球面収差を取り除く必要がなく、軽量化および生産コストの低減化が可能になる。従って、非球面レンズは、光学レンズの中でも特にカメラレンズとして有用である。
 光学レンズは、例えば射出成形法、圧縮成形法、射出圧縮成形法など任意の方法により成形される。実施形態に係るポリカーボネート樹脂を使用することにより、ガラスレンズでは技術的に加工の困難な高屈折率低複屈折非球面レンズをより簡便に得ることができる。
 光学レンズへの異物の混入を極力避けるため、成形環境も当然低ダスト環境でなければならず、クラス6以下であることが好ましく、より好ましくはクラス5以下である。
 また、実施形態のポリカーボネート樹脂は、流動性が高いため、薄肉小型で複雑な形状である光学レンズとなり得る。具体的なレンズサイズとして、中心部の厚みが0.05~3.0mm、より好ましくは0.05~2.0mm、さらに好ましくは0.1~2.0mmである。また、直径が1.0mm~20.0mm、より好ましくは1.0~10.0mm、さらに好ましくは3.0~10.0mmである。また、その形状として片面が凸、片面が凹であるメニスカスレンズであることが好ましい。
(光学フィルム)
 実施形態に係るポリカーボネート樹脂を用いて製造される光学フィルムは、透明性および耐熱性に優れるため、液晶基板用フィルム、光メモリーカード等に好適に使用される。
 光学フィルムへの異物の混入を極力避けるため、成形環境も当然低ダスト環境でなければならず、クラス6以下であることが好ましく、より好ましくはクラス5以下である。
(ポリカーボネート樹脂組成物)
 本発明のポリカーボネート樹脂は、複数種の樹脂を含む樹脂組成物の形態であってもよい。すなわち、ポリカーボネート樹脂組成物は、少なくとも、前記式(A)で表される繰り返し単位を1~99.5重量%含有するポリカーボネート樹脂を含む。
 ポリカーボネート樹脂組成物は、本発明のポリカーボネート樹脂に加えて、本発明の特性を損なわない範囲において他の樹脂を含んでも良い。ポリカーボネート樹脂組成物に含まれても良い他の樹脂として、以下のものが例示される:
 ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、(メタ)クリル樹脂、ABS樹脂、ポリアミド、ポリアセタール、ポリカーボネート(ただし本発明のポリカーボネート樹脂でないもの)、ポリフェニレンエーテル、ポリエステル、ポリフェニレンサルファイド、ポリイミド、ポリエーテルサルホン、ポリエーテルエーテルケトン、フッ素樹脂、シクロオレフィンポリマー、エチレン・酢酸ビニル共重合体、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ポリウレタン。
 ポリカーボネート樹脂組成物に含まれても良い他の樹脂の含量は、本発明のポリカーボネート樹脂の質量に対して、20質量部以下が好ましく、10質量部以下がさらに好ましい。他の樹脂の含量が多すぎると、相溶性が悪くなり、樹脂組成物の透明性が低下する場合がある。
 ポリカーボネート樹脂組成物には、組成物を構成する各樹脂を製造する際に生成するフェノールや、反応せずに残存した炭酸ジエステルが不純物として存在する。ポリカーボネート樹脂組成物中のフェノール含量は、0.1~3000ppmであることが好ましく、0.1~2000ppmであることがより好ましく、1~1000ppm、1~800ppm、1~500ppm、または1~300ppmであることが特に好ましい。また、ポリカーボネート樹脂組成物中の炭酸ジエステル含量は、0.1~1000ppmであることが好ましく、0.1~500ppmであることがより好ましく、1~100ppmであることが特に好ましい。ポリカーボネート樹脂組成物中に含まれるフェノールおよび炭酸ジエステルの量を調節することにより、目的に応じた物性を有する樹脂組成物を得ることができる。フェノールおよび炭酸ジエステルの含量の調節は、重縮合の条件や装置を変更することにより適宜行うことができる。また、重縮合後の押出工程の条件を変更することによっても調節可能である。
 フェノールまたは炭酸ジエステルの含量が上記範囲を上回ると、得られる樹脂成形体の強度が落ちたり、臭気が発生する等の問題が生じ得る。一方、フェノールまたは炭酸ジエステルの含量が上記範囲を下回ると、樹脂溶融時の可塑性が低下する虞がある。
  以下、実施例により本実施形態を更に詳細に説明するが、本実施形態はこれらの実施例に限定されるものではない。
<ポリスチレン換算重量平均分子量(Mw)>
 ゲル浸透クロマトグラフ(GPC)を用い、テトラヒドロフランを展開溶媒として、既知の分子量(分子量分布=1)の標準ポリスチレンを用いて検量線を作成した。この検量線に基づいて、GPCのリテンションタイムから以下で得られたポリカーボネート樹脂のMwを算出した。
<オリゴマー含有量の測定>
分析試料の調整:
 試料3gをジクロロメタン30mlに溶解し、アセトン250mlへ滴下、攪拌して樹脂成分を再沈殿させた。沈殿をNo.5Cのろ紙でろ過して、ろ液からエバポレーターにより溶媒を除去して、オリゴマーを含む固形物を得た。該固形物にアセトン6mLを加えてオリゴマーを含む固形物を溶解し、さらにアセニトリル6mlを加え、分析試料とした。
検量線の作成:
 9,9‐ビス(4‐(2‐ヒドロキシエトキシ)フェニル)フルオレン(BPEF)100mgにアセトニトリル/水=1/1を加えて50mlに定容した。これを標準原液としてアセトニトリル/水=1/1の溶液で適宜希釈し、BPEFとして40、100、200、400、800μg/mlの標準液を調製し、LC‐MSで分析した。作成した検量線により分析試料を定量した。
LC-MS分析条件:
装置: Waters製 LC‐Tof‐MS(XevoG2‐S)
スキャン範囲: 80‐2000、400‐4000
スキャンスピード: 0.5sec/scan
イオン化法: ESI(+)
Capillary電圧: 3kV
Samplingcone電圧: 60V
Source温度: 120℃
Desolvation温度: 350℃
カラム: AQUITY UPLC BEH C18 1.7μm、内径2.1mm、長さ100mm
溶離液: アセトニトリル/H2O/2‐プロパノール=80/20/0→20min→60/15/25(10min hold)
流量: 0.4ml/min
注入量: 1μL
検出波長: 210~400nm
温度: 40℃
<線膨張係数>
 セイコー電子工業(株)製熱機械的分析装置(TMA100)を用い、JIS K7197に基づき、50mNの荷重をかけて、昇温速度10℃/minの条件で測定を行い、30℃と50℃との間の平均の線膨張率を求めた。
(実施例1)
 下記構造を有する9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン(以下、「BPEF」と省略することがある);19.260kg(43.921モル)、ジフェニルカーボネート(以下、「DPC」と省略することがある);9.780kg(45.655モル)、および炭酸水素ナトリウム;2.21×10-2g(2.63×10-4モル)を攪拌機および留出装置付きの50リットル反応器に入れ、窒素置換を行った後、窒素雰囲気760Torrの下、1時間かけて205℃に加熱し攪拌した。
Figure JPOXMLDOC01-appb-C000029
 原料の完全溶解後、15分かけて減圧度を150Torrに調整し、205℃、150Torrの条件で20分保持し、エステル交換反応を行った。さらに37.5℃/hrの速度で240℃まで昇温し、240℃、150Torrで10分保持した。その後、10分かけて120Torrに調整し、240℃、120Torrで70分保持した。その後、10分かけて100Torrに調整し、240℃、100Torrで10分間保持した。さらに40分かけて1Torr以下とし、240、1Torrの条件下で10分間攪拌下重合反応を行った。反応終了後、反応器内に窒素を吹き込み加圧し、生成したポリカーボネート樹脂をペレタイズしながら抜き出した。得られた樹脂のMw、各オリゴマー量及び線膨張係数を表1に示す。また、各オリゴマー量の詳細、即ち、式(1)~(4)におけるn、m、l、kのそれぞれの値に対する含有量を表2に示す。更に、使用した原料のモル比と線膨張係数との関係を図1に示し、各オリゴマー量と線膨張係数との関係を図2~6に示す。
(実施例2)
 実施例1において、BPEF;20.040kg(45.700モル)、DPC;10.271kg(47.947モル)、炭酸水素ナトリウム;2.30×10-2g(2.74×10-4モル)に変更した以外は実施例1と同様の操作を行い、ポリカーボネート樹脂を得た。得られた樹脂のMw、各オリゴマー量及び線膨張係数を表1に示す。また、各オリゴマー量の詳細、即ち、式(1)~(4)におけるn、m、l、kのそれぞれの値に対する含有量を表2に示す。更に、使用した原料のモル比と線膨張係数との関係を図1に示し、各オリゴマー量と線膨張係数との関係を図2~6に示す。
(実施例3)
 実施例1において、BPEF;18.700kg(42.644モル)、DPC;9.120kg(42.574モル)、炭酸水素ナトリウム;2.21×10-2g(2.56×10-4モル)に変更した以外は実施例1と同様の操作を行い、ポリカーボネート樹脂を得た。得られた樹脂のMw、各オリゴマー量及び線膨張係数を表1に示す。また、各オリゴマー量の詳細、即ち、式(1)~(4)におけるn、m、l、kのそれぞれの値に対する含有量を表2に示す。更に、使用した原料のモル比と線膨張係数との関係を図1に示し、各オリゴマー量と線膨張係数との関係を図2~6に示す。
(比較例1)
 実施例1において、BPEF;18.700kg(42.644モル)、DPC;9.68kg(45.188モル)、炭酸水素ナトリウム;2.21×10-2g(2.56×10-4モル)に変更した以外は実施例1と同様の操作を行い、ポリカーボネート樹脂を得た。得られた樹脂のMw、各オリゴマー量及び線膨張係数を表1に示す。また、各オリゴマー量の詳細、即ち、式(1)~(4)におけるn、m、l、kのそれぞれの値に対する含有量を表2に示す。更に、使用した原料のモル比と線膨張係数との関係を図1に示し、各オリゴマー量と線膨張係数との関係を図2~6に示す。
Figure JPOXMLDOC01-appb-T000030
 オリゴマー1:式(1)で表されるオリゴマー
 オリゴマー2:式(2)で表されるオリゴマー
 オリゴマー3:式(3)で表されるオリゴマー
 線形オリゴマー合計:式(1)~(3)で表されるオリゴマーの合計
 環状オリゴマー:式(4)で表されるオリゴマー
Figure JPOXMLDOC01-appb-T000031
 実施例1~3で得られたポリカーボネート樹脂の線膨張係数は、6.6×10-5~6.9×10-5/℃と低く、熱安定性に優れることがわかる。一方、比較例1で得られたポリカーボネート樹脂の線膨張係数は、7.1×10-5/℃と高く、実施例1~3で得られたポリカーボネート樹脂と比較して熱安定性に劣ることがわかる。本願の図1より、原料のモル比(ジフェニルカーボネート/9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン)は1.05以下が好ましい。また、本願の図6より、式(1)~(3)で表される線形オリゴマーの含有量の合計は1.5重量%以下が好ましい。更に、本願の図5より、式(4)で表される環状オリゴマーの含有量は0.6重量%以下が好ましい。
(実施例4)
 実施例1において、BPEF;9.630kg(21.961モル)、DPC;9.650kg(45.048モル)、炭酸水素ナトリウム;2.21×10-2g(2.63×10-4モル)に変更し、更に、下記構造を有する2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレン(以下、「BHEBN」と省略することがある);8.000kg(21.365モル)を加えた以外は実施例1と同様の操作を行い、ポリカーボネート樹脂を得た。得られた樹脂のMw、各オリゴマー量及び線膨張係数を表3に示す。
Figure JPOXMLDOC01-appb-C000032
(実施例5)
 実施例4において、BPEF;10.500kg(23.945モル)、BHEBN;10.110kg(27.000モル)、DPC;11.4600kg(53.497モル)、炭酸水素ナトリウム;2.21×10-2g(2.63×10-4モル)に変更した以外は実施例4と同様の操作を行い、ポリカーボネート樹脂を得た。得られた樹脂のMw、各オリゴマー量及び線膨張係数を表3に示す。
(実施例6)
 実施例4において、BPEF;9.120kg(20.798モル)、BHEBN;10.000kg(26.707モル)、DPC;10.170kg(47.475モル)、炭酸水素ナトリウム;2.21×10-2g(2.63×10-4モル)に変更した以外は実施例4と同様の操作を行い、ポリカーボネート樹脂を得た。得られた樹脂のMw、各オリゴマー量及び線膨張係数を表3に示す。
Figure JPOXMLDOC01-appb-T000033
(実施例7)
 実施例4において、BPEFの代わりに、下記構造を有する9、9-ビス(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)フルオレン(以下「BPPEF」と省略することがある);13.000kg(22.007モル)を用い、更に、BHEBN;8.000kg(21.365モル)、DPC;9.650kg(45.048モル)、炭酸水素ナトリウム;2.21×10-2g(2.63×10-4モル)に変更した以外は実施例4と同様の操作を行い、ポリカーボネート樹脂を得た。得られた樹脂のMw、各オリゴマー量及び線膨張係数を表4に示す。
Figure JPOXMLDOC01-appb-C000034
(実施例8)
 実施例7において、BPPEF;14.200kg(24.038モル)、BHEBN;10.110kg(27.000モル)、DPC;11.460kg(53.497モル)、炭酸水素ナトリウム;2.21×10-2g(2.63×10-4モル)に変更した以外は実施例7と同様の操作を行い、ポリカーボネート樹脂を得た。得られた樹脂のMw、各オリゴマー量及び線膨張係数を表4に示す。
(実施例9)
 実施例7において、BPPEF;12.300kg(20.822モル)、BHEBN;10.000kg(26.707モル)、DPC;10.170kg(47.475モル)、炭酸水素ナトリウム;2.21×10-2g(2.63×10-4モル)に変更した以外は実施例7と同様の操作を行い、ポリカーボネート樹脂を得た。得られた樹脂のMw、各オリゴマー量及び線膨張係数を表4に示す。
Figure JPOXMLDOC01-appb-T000035
<光学レンズの評価>
 実施例1~9および比較例1で得られたポリカーボネート樹脂をそれぞれ用い、4枚構成からなるレンズユニットを作製し、解像力投影機(パール光学工業株式会社製RPT-201T性)での解像力を目視で観察することにより評価した。より具体的には、実施例1~9および比較例1で得られたポリカーボネート樹脂のそれぞれに対し、ファナック(株)製ROBOSHOT S‐2000i30A射出成形機を用いて直径4.7mm及び厚さ0.6mmのメニスカスレンズを射出成型した。この成型片を4枚構成からなるレンズユニットの二枚目に挿入し、30℃及び、100℃まで過熱後30℃に冷却したレンズユニットを解像力投影機に設置し、解像力を目視することにより評価した。 評価は、○解像力に変化なし、△外周部がぼけている、×全体的に画像ボケが顕著であるとした。その結果、実施例1、2、4、5、7及び8で得られたポリカーボネート樹脂からなる光学レンズは○、実施例3、6及び9で得られたポリカーボネート樹脂からなる光学レンズは△、比較例1で得られたポリカーボネート樹脂からなる光学レンズは×であった。
 本発明のポリカーボネート樹脂は、熱による膨張が少ない(線膨張係数が小さい)ため、光学フィルムや光学レンズなどの光学材料として有用である。

Claims (10)

  1.  下記式(A)で表される繰り返し単位を1~99.5重量%含有するポリカーボネート樹脂であって、下記式(1)~(4)で表されるオリゴマーを合計で2.5重量%以下の容量で含有する、前記ポリカーボネート樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (式(A)中、R及びRは、それぞれ独立に、水素原子、フェニル基、炭素原子数1~6のアルキル基、又は炭素原子数1~6のアルキルオキシ基を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式(1)中、R及びRは、それぞれ独立に、水素原子、フェニル基、炭素原子数1~6のアルキル基、又は炭素原子数1~6のアルキルオキシ基を表す。nは、1~4の整数を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (式(2)中、R及びRは、それぞれ独立に、水素原子、フェニル基、炭素原子数1~6のアルキル基、又は炭素原子数1~6のアルキルオキシ基を表す。mは、1~6の整数を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (式(3)中、R及びRは、それぞれ独立に、水素原子、フェニル基、炭素原子数1~6のアルキル基、又は炭素原子数1~6のアルキルオキシ基を表す。lは、1~5の整数を表す。)
    Figure JPOXMLDOC01-appb-C000005
    (式(4)中、R及びRは、それぞれ独立に、水素原子、フェニル基、炭素原子数1~6のアルキル基、又は炭素原子数1~6のアルキルオキシ基を表す。kは、2~4の整数を表す。)
  2.  式(A)中、R及びRは、それぞれ独立に、水素原子またはフェニル基を表す、請求項1に記載のポリカーボネート樹脂。
  3.  前記式(1)~(4)で表されるオリゴマーを合計で0.6重量%以上の容量で含有する、請求項1または2に記載のポリカーボネート樹脂。
  4.  前記式(1)~(3)で表される線形オリゴマーの含有量の合計が1.5重量%以下であり、前記式(4)で表される環状オリゴマーの含有量が0.6重量%以下である、請求項1から3のいずれかに記載のポリカーボネート樹脂。
  5.  更に、下記式(B)で表される繰り返し単位を含有する、請求項1から4のいずれかに記載のポリカーボネート樹脂。
    Figure JPOXMLDOC01-appb-C000006
  6.  前記式(A)で表される繰り返し単位と、前記式(B)で表される繰り返し単位とを、10:90~90:10のモル比で含有する、請求項5に記載のポリカーボネート樹脂。
  7.  線膨張係数が6.5×10-5~7.0×10-5/℃である、請求項1から6のいずれかに記載のポリカーボネート樹脂。
  8.  請求項1から7のいずれかに記載のポリカーボネート樹脂を用いた光学フィルム。
  9.  請求項1から7のいずれかに記載のポリカーボネート樹脂を用いた光学レンズ。
  10.  ポリカーボネート樹脂に含まれる下記式(1)~(4)で表されるオリゴマーを合計で2.5重量%以下の容量に調整する方法であって、該ポリカーボネート樹脂が下記式(A)で表される繰り返し単位を1~99.5重量%含有する、前記方法。
    Figure JPOXMLDOC01-appb-C000007
    (式(A)中、R及びRは、それぞれ独立に、水素原子、フェニル基、炭素原子数1~6のアルキル基、又は炭素原子数1~6のアルキルオキシ基を表す。)
    Figure JPOXMLDOC01-appb-C000008
    (式(1)中、R及びRは、それぞれ独立に、水素原子、フェニル基、炭素原子数1~6のアルキル基、又は炭素原子数1~6のアルキルオキシ基を表す。nは、1~4の整数を表す。)
    Figure JPOXMLDOC01-appb-C000009
    (式(2)中、R及びRは、それぞれ独立に、水素原子、フェニル基、炭素原子数1~6のアルキル基、又は炭素原子数1~6のアルキルオキシ基を表す。mは、1~6の整数を表す。)
    Figure JPOXMLDOC01-appb-C000010
    (式(3)中、R及びRは、それぞれ独立に、水素原子、フェニル基、炭素原子数1~6のアルキル基、又は炭素原子数1~6のアルキルオキシ基を表す。lは、1~5の整数を表す。)
    Figure JPOXMLDOC01-appb-C000011
    (式(4)中、R及びRは、それぞれ独立に、水素原子、フェニル基、炭素原子数1~6のアルキル基、又は炭素原子数1~6のアルキルオキシ基を表す。kは、2~4の整数を表す。)
     
PCT/JP2016/082613 2015-11-04 2016-11-02 ポリカーボネート樹脂 WO2017078073A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/769,010 US10556987B2 (en) 2015-11-04 2016-11-02 Polycarbonate resin
JP2017548810A JPWO2017078073A1 (ja) 2015-11-04 2016-11-02 ポリカーボネート樹脂
KR1020187014564A KR102556128B1 (ko) 2015-11-04 2016-11-02 폴리카보네이트 수지
CN201680062450.0A CN108350161B (zh) 2015-11-04 2016-11-02 聚碳酸酯树脂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-216977 2015-11-04
JP2015216977 2015-11-04

Publications (1)

Publication Number Publication Date
WO2017078073A1 true WO2017078073A1 (ja) 2017-05-11

Family

ID=58662163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082613 WO2017078073A1 (ja) 2015-11-04 2016-11-02 ポリカーボネート樹脂

Country Status (6)

Country Link
US (1) US10556987B2 (ja)
JP (2) JPWO2017078073A1 (ja)
KR (1) KR102556128B1 (ja)
CN (1) CN108350161B (ja)
TW (1) TWI793064B (ja)
WO (1) WO2017078073A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261392A1 (ja) 2020-06-26 2021-12-30 三菱瓦斯化学株式会社 樹脂組成物
WO2022091996A1 (ja) 2020-10-27 2022-05-05 三菱瓦斯化学株式会社 熱可塑性樹脂及びそれを含む光学レンズ
WO2022163674A1 (ja) 2021-01-27 2022-08-04 三菱瓦斯化学株式会社 熱可塑性樹脂及びそれを含む光学レンズ
WO2022230471A1 (ja) 2021-04-26 2022-11-03 三菱瓦斯化学株式会社 熱可塑性樹脂組成物及びそれに添加される配合剤
WO2022270367A1 (ja) 2021-06-22 2022-12-29 三菱瓦斯化学株式会社 熱可塑性樹脂及びそれを含む光学レンズ
WO2023085339A1 (ja) 2021-11-12 2023-05-19 三菱瓦斯化学株式会社 熱可塑性樹脂及びそれを含む光学レンズ
WO2023100778A1 (ja) 2021-11-30 2023-06-08 三菱瓦斯化学株式会社 熱可塑性樹脂を含む光学レンズ

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11505698B2 (en) 2017-12-28 2022-11-22 Teijin Limited Polyester carbonate and method for producing polyester carbonate
CN112250852B (zh) * 2020-09-14 2023-01-13 万华化学集团股份有限公司 一种聚碳酸酯树脂、制备方法及形成的光学部件
JP7393592B1 (ja) 2022-07-15 2023-12-06 大阪ガスケミカル株式会社 フルオレン骨格を有する樹脂の解重合法、その生成物および用途
WO2024014448A1 (ja) * 2022-07-15 2024-01-18 大阪ガスケミカル株式会社 フルオレン骨格を有する樹脂の解重合法、その生成物および用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111047A (ja) * 2006-10-30 2008-05-15 Mitsubishi Gas Chem Co Inc ポリカーボネート樹脂の製造方法
JP2011026557A (ja) * 2009-06-29 2011-02-10 Mitsubishi Gas Chemical Co Inc ポリカーボネート樹脂の製造方法
WO2014073496A1 (ja) * 2012-11-07 2014-05-15 三菱瓦斯化学株式会社 ポリカーボネート樹脂、その製造方法および光学成形体
JP2014185325A (ja) * 2013-02-20 2014-10-02 Teijin Ltd ポリカーボネート共重合体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102471467B (zh) 2009-07-24 2013-07-17 帝人化成株式会社 光学透镜用聚酯碳酸酯共聚物及光学透镜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111047A (ja) * 2006-10-30 2008-05-15 Mitsubishi Gas Chem Co Inc ポリカーボネート樹脂の製造方法
JP2011026557A (ja) * 2009-06-29 2011-02-10 Mitsubishi Gas Chemical Co Inc ポリカーボネート樹脂の製造方法
WO2014073496A1 (ja) * 2012-11-07 2014-05-15 三菱瓦斯化学株式会社 ポリカーボネート樹脂、その製造方法および光学成形体
JP2014185325A (ja) * 2013-02-20 2014-10-02 Teijin Ltd ポリカーボネート共重合体

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261392A1 (ja) 2020-06-26 2021-12-30 三菱瓦斯化学株式会社 樹脂組成物
KR20230029590A (ko) 2020-06-26 2023-03-03 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물
WO2022091996A1 (ja) 2020-10-27 2022-05-05 三菱瓦斯化学株式会社 熱可塑性樹脂及びそれを含む光学レンズ
KR20230097012A (ko) 2020-10-27 2023-06-30 미츠비시 가스 가가쿠 가부시키가이샤 열가소성 수지 및 그것을 포함하는 광학 렌즈
WO2022163674A1 (ja) 2021-01-27 2022-08-04 三菱瓦斯化学株式会社 熱可塑性樹脂及びそれを含む光学レンズ
KR20230132439A (ko) 2021-01-27 2023-09-15 미츠비시 가스 가가쿠 가부시키가이샤 열가소성 수지 및 그것을 포함하는 광학 렌즈
WO2022230471A1 (ja) 2021-04-26 2022-11-03 三菱瓦斯化学株式会社 熱可塑性樹脂組成物及びそれに添加される配合剤
KR20240001309A (ko) 2021-04-26 2024-01-03 미츠비시 가스 가가쿠 가부시키가이샤 열가소성 수지 조성물 및 그것에 첨가되는 배합제
WO2022270367A1 (ja) 2021-06-22 2022-12-29 三菱瓦斯化学株式会社 熱可塑性樹脂及びそれを含む光学レンズ
KR20240022455A (ko) 2021-06-22 2024-02-20 미츠비시 가스 가가쿠 가부시키가이샤 열가소성 수지 및 그것을 포함하는 광학 렌즈
WO2023085339A1 (ja) 2021-11-12 2023-05-19 三菱瓦斯化学株式会社 熱可塑性樹脂及びそれを含む光学レンズ
WO2023100778A1 (ja) 2021-11-30 2023-06-08 三菱瓦斯化学株式会社 熱可塑性樹脂を含む光学レンズ

Also Published As

Publication number Publication date
US20190055351A1 (en) 2019-02-21
US10556987B2 (en) 2020-02-11
JP6958698B2 (ja) 2021-11-02
CN108350161B (zh) 2020-06-16
CN108350161A (zh) 2018-07-31
TWI793064B (zh) 2023-02-21
KR102556128B1 (ko) 2023-07-14
KR20180079358A (ko) 2018-07-10
JPWO2017078073A1 (ja) 2018-08-23
JP2021001346A (ja) 2021-01-07
TW201731909A (zh) 2017-09-16

Similar Documents

Publication Publication Date Title
JP6958698B2 (ja) ポリカーボネート樹脂
JP6908092B2 (ja) 重縮合で製造された樹脂および樹脂組成物
JP6904375B2 (ja) 熱可塑性樹脂の製造方法
JP6812985B2 (ja) 熱可塑性樹脂組成物およびその成形体
KR102255780B1 (ko) 폴리카보네이트 수지 조성물, 그리고 그것을 사용한 광학 재료 및 광학 렌즈
KR102159520B1 (ko) 고분자량화된 방향족 폴리카보네이트 수지의 제조 방법
KR102607476B1 (ko) 촬상 렌즈
KR102651213B1 (ko) 폴리카보네이트 수지 조성물, 그 제조 방법 및 광학 렌즈
JP2008163194A (ja) 光学フィルム用ポリカーボネート樹脂
KR102216816B1 (ko) 고분자량화된 방향족 폴리카보네이트 수지의 제조 방법
KR102159519B1 (ko) 방향족 폴리카보네이트 수지 조성물
WO2017078071A1 (ja) 樹脂組成物の製造方法
WO2017078070A1 (ja) 樹脂組成物ならびにそれを含む光学レンズ、シートおよびフィルム
JP5593865B2 (ja) ポリカーボネート樹脂の製造方法
JP5287704B2 (ja) ポリカーボネート樹脂組成物
WO2023100778A1 (ja) 熱可塑性樹脂を含む光学レンズ
JP6534793B2 (ja) ポリカーボネート樹脂および光学フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862133

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017548810

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187014564

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16862133

Country of ref document: EP

Kind code of ref document: A1