WO2022163674A1 - 熱可塑性樹脂及びそれを含む光学レンズ - Google Patents

熱可塑性樹脂及びそれを含む光学レンズ Download PDF

Info

Publication number
WO2022163674A1
WO2022163674A1 PCT/JP2022/002759 JP2022002759W WO2022163674A1 WO 2022163674 A1 WO2022163674 A1 WO 2022163674A1 JP 2022002759 W JP2022002759 W JP 2022002759W WO 2022163674 A1 WO2022163674 A1 WO 2022163674A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
thermoplastic resin
carbon atoms
diacetal
optionally substituted
Prior art date
Application number
PCT/JP2022/002759
Other languages
English (en)
French (fr)
Inventor
宣之 加藤
克吏 西森
篤志 茂木
龍展 緒方
祐太郎 原田
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN202280011315.9A priority Critical patent/CN116829618A/zh
Priority to JP2022578430A priority patent/JPWO2022163674A1/ja
Priority to EP22745894.0A priority patent/EP4286448A4/en
Priority to US18/273,105 priority patent/US20240166867A1/en
Priority to KR1020237010328A priority patent/KR20230132439A/ko
Publication of WO2022163674A1 publication Critical patent/WO2022163674A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/307General preparatory processes using carbonates and phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/64Polyesters containing both carboxylic ester groups and carbonate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/16Aliphatic-aromatic or araliphatic polycarbonates
    • C08G64/1608Aliphatic-aromatic or araliphatic polycarbonates saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/156Heterocyclic compounds having oxygen in the ring having two oxygen atoms in the ring
    • C08K5/1575Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Definitions

  • the present invention relates to a thermoplastic resin and an optical lens containing the same. More particularly, the present invention relates to polycarbonate resins or polyester carbonate resins and optical lenses containing the same.
  • Optical glass or optical resin is used as the material for the optical lenses used in the optical systems of various cameras such as cameras, film-integrated cameras, and video cameras.
  • Optical glass is excellent in heat resistance, transparency, dimensional stability, chemical resistance, etc., but has problems of high material cost, poor moldability, and low productivity.
  • optical lenses made of optical resins have the advantage that they can be mass-produced by injection molding, and polycarbonate, polyester carbonate, polyester resin, etc. are used as high refractive index materials for camera lenses.
  • Patent Documents 1 to 5 When optical resins are used as optical lenses, heat resistance, transparency, low water absorption, chemical resistance, low birefringence, resistance to moist heat, etc. are required in addition to optical properties such as refractive index and Abbe number. Especially in recent years, there has been a demand for optical lenses having a high refractive index and high heat resistance, and various resins have been developed (Patent Documents 1 to 5).
  • thermoplastic resins made from diol compounds having a cyclic acetal structure have excellent optical properties and impact resistance, and are useful as various optical resins.
  • diol compounds having a cyclic acetal structure eg, spiroglycol
  • An object of the present invention is to provide a thermoplastic resin excellent in optical properties such as refractive index and Abbe's number, as well as excellent in heat resistance, and an optical lens using the same.
  • the present inventors found that the refractive index
  • the inventors have found that it is possible to obtain a thermoplastic resin which is excellent in optical properties such as , and Abbe's number, and which is also excellent in heat resistance, and have completed the present invention.
  • thermoplastic resin containing a structural unit (A) derived from a monomer represented by the following general formula (1) R 1 is the same or different and each represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a phenyl group, or a linear or branched alkyl group having 1 to 4 carbon atoms.
  • Ring A is a fluorine atom, a chlorine atom, a bromine atom, a phenyl group, a linear or branched alkoxy group having 1 to 6 carbon atoms, and a linear or branched alkyl group having 1 to 6 carbon atoms.
  • thermoplastic resin according to ⁇ 1> above which is a polycarbonate resin or a polyester carbonate resin.
  • R 1 in the general formula (1) is the same or different and is respectively a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group and a sec-butyl group;
  • the ring A is a linear or branched alkoxy group having 1 to 6 carbon atoms and a linear or branched alkyl group having 1 to 6 carbon atoms
  • R 1 is a methyl group or an ethyl group, and ring A is substituted with 1 to 4 groups selected from the group consisting of a methyl group and an ethyl group;
  • R 2 is the same or different and each is a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a phenyl group, a linear or branched alkoxy group having 1 to 6 carbon atoms, or a Represents 1 to 6 linear or branched alkyl groups.
  • R 1 is the same as above.
  • R 2 is the same or different and each is a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a phenyl group, a linear or branched alkoxy group having 1 to 6 carbon atoms, or a Represents 1 to 6 linear or branched alkyl groups.
  • R 1 is the same as above.
  • ⁇ 9> The thermoplastic resin according to ⁇ 1> or ⁇ 2> above, wherein the monomer represented by the general formula (1) is a monomer represented by the following general formula (1c).
  • R 2 is the same or different and each is a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a phenyl group, a linear or branched alkoxy group having 1 to 6 carbon atoms, or a Represents 1 to 6 linear or branched alkyl groups.
  • R 1 is the same as above.
  • the thermoplastic resin contains a monomer-derived structural unit (B) represented by the following formula (2) and/or a monomer-derived structural unit (C) represented by the following formula (3).
  • the thermoplastic resin according to any one of ⁇ 1> to ⁇ 9>.
  • R a and R b each independently represents a hydrogen atom, a halogen atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, or an alkoxyl group having 1 to 20 carbon atoms which may have a substituent.
  • a and B each independently represents an optionally substituted alkylene group having 1 to 5 carbon atoms, m and n each independently represent an integer of 0 to 6, a and b each independently
  • Mw polystyrene equivalent weight average molecular weight
  • R 1 is the same or different and each represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a phenyl group, or a linear or branched alkyl group having 1 to 4 carbon atoms.
  • Ring A is a fluorine atom, a chlorine atom, a bromine atom, a phenyl group, a linear or branched alkoxy group having 1 to 6 carbon atoms, and a linear or branched alkyl group having 1 to 6 carbon atoms. represents a benzene ring optionally substituted with 1 to 4 groups selected from the group consisting of; ] ⁇ 19> An optical member comprising the thermoplastic resin according to any one of ⁇ 1> to ⁇ 17> above or the thermoplastic resin composition according to ⁇ 20> above. ⁇ 20> An optical lens comprising the thermoplastic resin according to any one of ⁇ 1> to ⁇ 17> or the thermoplastic resin composition according to ⁇ 18>. ⁇ 21> An optical film comprising the thermoplastic resin according to any one of ⁇ 1> to ⁇ 17> above or the thermoplastic resin composition according to ⁇ 18> above.
  • thermoplastic resin excellent in optical properties such as refractive index and Abbe's number, as well as excellent in heat resistance, and an optical lens containing the same.
  • thermoplastic resin containing a monomer-derived structural unit (A) represented by the following general formula (1).
  • each R 1 is the same or different and represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a phenyl group, or a linear or branched alkyl group having 1 to 4 carbon atoms.
  • Ring A is a fluorine atom, a chlorine atom, a bromine atom, a phenyl group, a linear or branched alkoxy group having 1 to 6 carbon atoms, and a linear or branched alkyl group having 1 to 6 carbon atoms.
  • R 1 is the same or different and each represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a phenyl group, or a linear or branched alkyl group having 1 to 4 carbon atoms. , but straight-chain or branched-chain alkyl groups having 1 to 4 carbon atoms are preferred.
  • the linear or branched alkyl group having 1 to 4 carbon atoms represented by R 1 is not particularly limited, and examples thereof include methyl group, ethyl group, n-propyl group, iso-propyl group, n- Alkyl groups such as a butyl group, an iso-butyl group, a sec-butyl group, and a tert-butyl group can be mentioned. Among them, methyl group, ethyl group, iso-butyl group and tert-butyl group are preferred, methyl group and ethyl group are more preferred, and methyl group is particularly preferred.
  • Ring A means that two acetal groups are bonded to each other at the ortho-position, meta-position or para-position on the benzene ring.
  • Ring A includes the following structures. [In the formula, ring A is the same as described above. ]
  • ring A is selected from the group consisting of a linear or branched alkoxy group having 1 to 6 carbon atoms and a linear or branched alkyl group having 1 to 6 carbon atoms.
  • a benzene ring optionally substituted with 1 to 4 groups is preferred.
  • linear or branched alkoxy group having 1 to 6 carbon atoms is not particularly limited, and examples thereof include methoxy group, ethoxy group, n-propyloxy group, isopropyloxy group, n- butyloxy group, isobutyloxy group, sec-butyloxy group, tert-butyloxy group and the like. Among these, methoxy group, ethoxy group, isopropyloxy group, isobutyloxy group and tert-butyloxy group are preferred.
  • linear or branched alkyl group having 1 to 6 carbon atoms is not particularly limited, and examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group and n-butyl group. , isobutyl group, sec-butyl group, tert-butyl group and the like. Among these, preferred are methyl group, ethyl group, isopropyl group, isobutyl group and tert-butyl group.
  • Ring A is particularly preferably an unsubstituted benzene ring, that is, a divalent phenylene group having the following structure.
  • the compound represented by general formula (1) is considered to exist in multiple stereoisomers based on the configuration of the carbon atom to which the hydroxymethyl group in the two acetal groups and R 1 are bonded. These isomers may be used singly or as a mixture.
  • R 2 is the same or different and each is a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a phenyl group, a linear or branched alkoxy group having 1 to 6 carbon atoms, or a Represents 1 to 6 linear or branched alkyl groups.
  • R 1 is the same as above.
  • R 1 is preferably a linear or branched alkyl group having 1 to 4 carbon atoms, such as methyl group, ethyl group, n-propyl group, isopropyl group, n- Examples include butyl, isobutyl, sec-butyl and tert-butyl groups. Among these, preferred are methyl group, ethyl group, isobutyl group and tert-butyl group.
  • R 2 is preferably a hydrogen atom, a linear or branched alkoxy group having 1 to 6 carbon atoms, or a linear or branched alkyl group having 1 to 6 carbon atoms. be.
  • a hydrogen atom is particularly preferred as R 2 .
  • the “linear or branched alkoxy group having 1 to 4 carbon atoms” represented by R 2 is not particularly limited, and examples thereof include methoxy group, ethoxy group, n-propyloxy group, isopropyloxy group, n -butyloxy group, isobutyloxy group, sec-butyloxy group, tert-butyloxy group and the like. Among these, methoxy group, ethoxy group, isopropyloxy group, isobutyloxy group and tert-butyloxy group are preferred.
  • the “linear or branched alkyl group having 1 to 6 carbon atoms” represented by R 2 is not particularly limited, and examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group and the like. Among these, preferred are methyl group, ethyl group, isopropyl group, isobutyl group and tert-butyl group.
  • the compound represented by the general formula (1a) may have isomers such as the following isomer A, isomer B, or isomer C. These isomers may be used singly or as a mixture. [In the formula, R 1 and R 2 are the same as above. ]
  • the isomer ratio is determined by gas chromatography (GC) analysis using the method described in the Examples, and the area percentage method. can be obtained by Each isomer usually has its own unique peak by GC analysis. The isomer content can be expressed as a percentage of the peak area of each isomer with respect to the total peak area of the cyclic diol compound. The percentage ratio of each isomer can be defined as the isomer ratio.
  • GC analysis can also be performed after trimethylsilylating the hydroxyl group of the cyclic diol compound of the present invention using N,O-bis(trimethylsilyl)trifluoroacetamide or the like.
  • the compound represented by general formula (1a) is considered to have isomers such as isomer (1a-A), isomer (1a-B), or isomer (1a-C) as described above. Two or three isomeric peaks were detected in the GC analysis, which are believed to be isomer (1a-A), isomer (1a-B), or isomer (1a-C).
  • the compound represented by formula (1a) include isophthalaldehyde trimethylolpropane diacetal, isophthalaldehyde trimethylol ethane diacetal, 5-methylisophthalaldehyde trimethylol ethane diacetal, 4-methyl isophthalaldehyde trimethylolethane diacetal, 4-chloroisophthalaldehyde trimethylolethane diacetal, 5-chloroisophthalaldehyde trimethylolethane diacetal, 5-bromoisophthalaldehyde trimethylolethane diacetal, 4-bromoisophthalaldehyde trimethylolethane diacetal Acetal, 2-bromoisophthalaldehyde trimethylolethane diacetal, 4,6-dimethylisophthalaldehyde trimethylolethane diacetal, 2,4-dimethylisophthalaldehyde trimethylolethane diacetal, 2,5-dich
  • Preferred compounds among them are isophthalaldehyde trimethylolpropane diacetal, isophthalaldehyde trimethylolethane diacetal, 5-methylisophthalaldehyde trimethylol ethane diacetal, 5-methylisophthalaldehyde trimethylolpropane diacetal, 4-methylisophthalaldehyde trimethylolpropane diacetal, Methylolpropane diacetal, 4-methylisophthalaldehyde trimethylolethane diacetal, etc., and particularly preferred compounds include isophthalaldehyde trimethylolpropane diacetal, isophthalaldehyde trimethylolethane diacetal, and the like.
  • Preferred R 1 in general formula (1b) is the same as preferred R 1 in general formula (1a).
  • Preferred R 2 in general formula (1b) is the same as preferred R 2 in general formula (1a).
  • the compound represented by the general formula (1b) may have isomers such as the following isomer (1b-A), isomer (1b-B), or isomer (1b-C). . These isomers may be used singly or as a mixture. [In the formula, R 1 and R 2 are the same as above. ]
  • the isomer ratio is determined by gas chromatography (GC) analysis using the method described in the Examples, and the area percentage method. can be obtained by Each isomer usually has its own unique peak by GC analysis. The isomer content can be expressed as a percentage of the peak area of each isomer with respect to the total peak area of the cyclic diol compound. The percentage ratio of each isomer can be defined as the isomer ratio.
  • GC analysis can also be performed after trimethylsilylating the hydroxyl group of the cyclic diol compound of the present invention using N,O-bis(trimethylsilyl)trifluoroacetamide or the like.
  • the compound represented by general formula (1b) is considered to have isomers such as isomer (1b-A), isomer (1b-B), or isomer (1b-C) as described above. Two or three isomeric peaks were detected in the GC analysis, and these are considered isomer (1b-A), isomer (1b-B), or isomer (1b-C).
  • Specific examples of the compound represented by the general formula (1b) include terephthalaldehyde trimethylolpropane diacetal, terephthalaldehyde trimethylolethane diacetal, 2-methylterephthalaldehyde trimethylolethane diacetal, 3-methyl Terephthalaldehyde trimethylolethane diacetal, 3-chloroterephthalaldehyde trimethylolethane diacetal, 2-chloroterephthalaldehyde trimethylolethane diacetal, 2-bromoterephthalaldehyde trimethylolethane diacetal, 3-bromoterephthalaldehyde trimethylolethane diacetal Acetal, 3,6-dimethylterephthalaldehyde trimethylolethane diacetal, 2,3-dimethylterephthalaldehyde trimethylolethane diacetal, 2,5-dichloroterephthalaldehyde trimethylolethane diacetal,
  • Preferred compounds among them are terephthalaldehyde trimethylolpropane diacetal, terephthalaldehyde trimethylolethane diacetal, 2-methylterephthalaldehyde trimethylolethane diacetal, 2-methylterephthalaldehyde trimethylolpropane diacetal, 3-methylterephthalaldehyde trimethylolpropane diacetal, Methylolpropane diacetal, 3-methylterephthalaldehyde trimethylolethane diacetal, etc.
  • particularly preferred compounds include terephthalaldehyde trimethylolpropane diacetal, terephthalaldehyde trimethylolethane diacetal, and the like.
  • Preferred R 1 in general formula (1c) is the same as preferred R 1 in general formula (1a).
  • Preferred R 2 in general formula (1c) is the same as preferred R 2 in general formula (1a).
  • the compound represented by the general formula (1c) may have isomers such as the following isomer (1c-A), isomer (1c-B), or isomer (1c-C). . These isomers may be used singly or as a mixture. [In the formula, R 1 and R 2 are the same as above. ]
  • the isomer ratio is determined by gas chromatography (GC) analysis using the method described in the Examples, and the area percentage method. can be obtained by Each isomer usually has its own unique peak by GC analysis. The isomer content can be expressed as a percentage of the peak area of each isomer with respect to the total peak area of the cyclic diol compound. The percentage ratio of each isomer can be defined as the isomer ratio.
  • GC analysis can also be performed after trimethylsilylating the hydroxyl group of the cyclic diol compound of the present invention using N,O-bis(trimethylsilyl)trifluoroacetamide or the like.
  • the compound represented by general formula (1c) may have isomers such as isomer (1c-A), isomer (1c-B), or isomer (1c-C) as described above. Two or three isomeric peaks were detected in the GC analysis, and these are considered isomer (1c-A), isomer (1c-B), or isomer (1c-C).
  • Specific examples of the compound represented by general formula (1c) include ortho-phthalaldehyde trimethylolpropane diacetal, ortho-phthalaldehyde trimethylol ethane diacetal, 3-methyl ortho-phthalaldehyde trimethylol ethane diacetal, 4-methylorthophthalaldehyde trimethylolethane diacetal, 3-chloroorthophthalaldehyde trimethylolethane diacetal, 3-bromoorthophthalaldehyde trimethylolethane diacetal, 3,6-dimethylorthophthalaldehyde trimethylolethane diacetal, 3,4-dimethylorthophthalaldehyde trimethylolethane diacetal, 3,5-dimethylorthophthalaldehyde trimethylolethane diacetal, 4,5-dimethylorthophthalaldehyde trimethylolethane diacetal, 3,6-dichloroorthophthalaldehyde
  • preferred compounds are ortho-phthalaldehyde trimethylolpropane diacetal, ortho-phthalaldehyde trimethylol ethane diacetal, 3-methyl ortho-phthalaldehyde trimethylol ethane diacetal, 3-methyl ortho-phthalaldehyde trimethylol propane diacetal, 4- methyl orthophthalaldehyde trimethylolpropane diacetal, 4-methyl orthophthalaldehyde trimethylol ethane diacetal, etc.
  • particularly preferred compounds are ortho phthalaldehyde trimethylol propane diacetal, ortho phthalaldehyde trimethylol ethane diacetal, etc. mentioned.
  • the method for producing the compound represented by the general formula (1) is not particularly limited. ) and a compound represented by (acetalization reaction). [In the formula, R 1 and ring A are the same as above. ] Specifically, the compound represented by the general formula (1) is obtained by reacting the compound represented by the general formula (3) with the compound represented by the general formula (4) in the presence of an acidic catalyst ( acetalization reaction).
  • the reaction can usually be carried out in a solvent (eg, toluene, etc.).
  • the solvent can be heated under reflux, and the reaction can be carried out while the water produced is azeotropically removed with the solvent.
  • the acidic catalyst is not particularly limited as long as it has a catalytic action, and known acidic catalysts are used.
  • mineral acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid
  • organic acids such as p-toluenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, trifluoroacetic acid, trifluoromethanesulfonic acid
  • cation exchange resins zeolites, silica.
  • the amount of the compound represented by the general formula (4) to be used is usually about 0.5 to 3 mol, preferably 0.8 to 2 mol, per 1 mol of the compound represented by the general formula (3). on the order of moles.
  • the compound represented by the general formula (1a), the compound represented by the general formula (1b), and the compound represented by the general formula (1c), which are included in the compound represented by the general formula (1), are also ⁇ It can be produced in the same manner as in reaction scheme 1>.
  • the compound represented by the general formula (1a) is a compound represented by the following general formula (3a) and the compound represented by the following general formula (4), as shown in the following ⁇ reaction formula 2>. , can be produced by a reaction (acetalization reaction) in the presence of an acidic catalyst. [In the formula, R 1 and R 2 are the same as above. ]
  • the compound represented by the general formula (1b) is obtained by combining a compound represented by the following general formula (3b) and a compound represented by the following general formula (4), as shown in ⁇ Reaction formula 3> below. , can be produced by a reaction (acetalization reaction) in the presence of an acidic catalyst.
  • acetalization reaction acetalization reaction
  • the compound represented by the general formula (1c) is a compound represented by the following general formula (3c) and the compound represented by the following general formula (4), as shown in the following ⁇ reaction formula 4>. , can be produced by a reaction (acetalization reaction) in the presence of an acidic catalyst. [In the formula, R 1 and R 2 are the same as above. ]
  • thermoplastic resin of one embodiment of the present invention is not particularly limited, such as polyester resin, polycarbonate resin, polyester carbonate resin, epoxy resin, polyurethane resin, polyacrylic acid ester resin, polymethacrylic acid ester resin, etc., polycarbonate resin or It is preferably a polyester carbonate resin, more preferably contains a structural unit (A) represented by the following formula, and at least one of structural units (A1), (A2) and (A3) represented by the following formula is particularly preferred.
  • R 1 and ring A have the same definitions as those in the general formula (1).
  • [In the formula, R 1 and R 2 have the same definitions as those in the general formula (1a).
  • [In the formula, R 1 and R 2 have the same definitions as in the general formula (1b).
  • [In the formula, R 1 and R 2 have the same definitions as in the general formula (1c). ]
  • the ratio of the structural unit (A) represented by the above formula to all structural units is not particularly limited, but it is preferably 1 to 80 mol% of all structural units. , more preferably 1 to 60 mol %, particularly preferably 5 to 50 mol %. That is, the thermoplastic resin of one embodiment of the present invention is derived from an aliphatic dihydroxy compound that is generally used as a structural unit of polycarbonate resins and polyester carbonate resins, in addition to the structural unit (A) represented by the above formula. and structural units derived from aromatic dihydroxy compounds.
  • various aliphatic dihydroxy compounds can be mentioned, and in particular, 1,4-cyclohexanedimethanol, tricyclodecanedimethanol, 1,3-adamantanedimethanol, 2,2-bis( 4-hydroxycyclohexyl)-propane, 3,9-bis(2-hydroxy-1,1-dimethylethyl)-2,4,8,10-tetraoxaspiro[5.5]undecane, 2-(5-ethyl -5-hydroxymethyl-1,3-dioxan-2-yl)-2-methylpropan-1-ol, isosorbide, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, etc.
  • aromatic dihydroxy compounds can be mentioned, but in particular 2,2-bis(4-hydroxyphenyl)propane [bisphenol A], bis(4-hydroxyphenyl)methane, 1,1-bis( 4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane, 4,4'-dihydroxydiphenyl, bis(4-hydroxyphenyl)cycloalkane, bis(4-hydroxyphenyl) ) oxide, bis(4-hydroxyphenyl)sulfide, bis(4-hydroxyphenyl)sulfone, bis(4-hydroxyphenyl)sulfoxide, and bis(4-hydroxyphenyl)ketone, bisphenoxyethanolfluorene, and the like.
  • bisphenol A 2,2-bis(4-hydroxyphenyl)propane
  • 1,1-bis( 4-hydroxyphenyl)ethane 1,1-bis( 4-hydroxyphenyl)ethane
  • thermoplastic resin of one embodiment of the present invention preferably contains a monomer-derived structural unit (B) represented by the following formula (2).
  • R a and R b are each independently a halogen atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, or an optionally substituted C 1 to 20 alkoxyl group, optionally substituted cycloalkyl group having 5 to 20 carbon atoms, cycloalkoxyl group having optionally substituted carbon atoms of 5 to 20, optionally substituted carbon number 6 to 20 aryl groups, optionally substituted C 6 to 20 heteroaryl groups containing one or more hetero ring atoms selected from O, N and S, having substituents is selected from the group consisting of an aryloxy group having 6 to 20 carbon atoms, and —C ⁇ C—R h .
  • R h is an optionally substituted aryl group having 6 to 20 carbon atoms, or an optionally substituted carbon containing one or more heterocyclic atoms selected from O, N and S represents a heteroaryl group of numbers 6 to 20;
  • R a and R b preferably contain one or more heterocyclic atoms selected from a hydrogen atom, an optionally substituted aryl group having 6 to 20 carbon atoms, O, N and S, substituted a heteroaryl group having 6 to 20 carbon atoms which may have a group, more preferably a hydrogen atom, an aryl group having 6 to 20 carbon atoms which may have a substituent, still more preferably hydrogen It is an aryl group having 6 to 12 carbon atoms which may have atoms and substituents.
  • X is a single bond or represents a fluorene group which may have a substituent. X is preferably a single bond or an optionally substituted fluorene group having 12 to 20 carbon atoms in total.
  • a and B are each independently an optionally substituted alkylene group having 1 to 5 carbon atoms, preferably an alkylene group having 2 or 3 carbon atoms.
  • m and n are each independently an integer of 0 to 6, preferably an integer of 0 to 3, more preferably 0 or 1.
  • a and b are each independently an integer of 0 to 10, preferably an integer of 1 to 3, more preferably 1 or 2.
  • structural unit (B) examples include those derived from 2,2'-bis(2-hydroxyethoxy)-1,1'-binaphthalene (BNE), DPBHBNA, and the like.
  • thermoplastic resin of one embodiment of the present invention preferably has a monomer-derived structural unit (C) represented by the following formula (3).
  • R c and R d are each independently a halogen atom, an optionally substituted C 1-20 alkyl group, an optionally substituted C 1-20 An alkoxyl group, an optionally substituted cycloalkyl group having 5 to 20 carbon atoms, a cycloalkoxyl group having 5 to 20 carbon atoms which may have a substituent, and optionally having a substituent It is selected from the group consisting of aryl groups having 6 to 20 carbon atoms.
  • R c and R d preferably contain one or more heterocyclic atoms selected from a hydrogen atom, an optionally substituted aryl group having 6 to 20 carbon atoms, O, N and S, substituted a heteroaryl group having 6 to 20 carbon atoms which may have a group, more preferably a hydrogen atom, an aryl group having 6 to 20 carbon atoms which may have a substituent, still more preferably hydrogen It is an aryl group having 6 to 12 carbon atoms which may have atoms and substituents.
  • Y 1 is a single bond, an optionally substituted fluorene group, or a structural formula represented by the following formulas (4) to (10), preferably It is a single bond or a structural formula represented by the following formula (4).
  • R 61 , R 62 , R 71 and R 72 are each independently a hydrogen atom, a halogen atom, or an optionally substituted alkyl group having 1 to 20 carbon atoms.
  • r and s are each independently an integer of 0 to 5000.
  • a and B are each independently an optionally substituted alkylene group having 1 to 5 carbon atoms, preferably an alkylene group having 2 or 3 carbon atoms.
  • p and q are each independently an integer of 0 to 4, preferably 0 or 1.
  • a and b are each independently an integer of 0 to 10, preferably an integer of 0 to 5, more preferably an integer of 0 to 2. For example, 0 or 1.
  • structural unit (C) examples include BPEF (9,9-bis(4-(2-hydroxyethoxy)phenyl)fluorene), BPPEF (9,9-bis(4-(2-hydroxyethoxy)-3- phenylphenyl)fluorene), 9,9-bis[6-(2-hydroxyethoxy)naphthalen-2-yl]fluorene (BNEF), bisphenol A, bisphenol AP, bisphenol AF, bisphenol B, bisphenol BP, bisphenol C, bis (4-hydroxyphenyl)-2,2-dichloroethylene, bisphenol E, bisphenol F, bisphenol G, bisphenol M, bisphenol S, bisphenol P, bisphenol PH, bisphenol TMC, bisphenol P-AP (4,4'-(1- phenylethylidene) bisphenol), bisphenol P-CDE (4,4'-cyclododecylidene bisphenol), bisphenol P-HTG (4,4'-(3,3,5-trimethylcyclohexylidene
  • the thermoplastic resin of one embodiment of the present invention essentially comprises the structural unit (A), but includes a polymer containing the structural unit (B) and not containing the structural unit (C), a structural unit (C) containing the structural unit ( In addition to polymers not containing B), copolymers having the structural unit (B) and the structural unit (C), mixtures of polymers having the structural unit (B) and polymers having the structural unit (C), A combination of these may be used.
  • the polymer containing the structural unit (C) and not containing the structural unit (B) include those having structural units of the following formulas (I-1) to (I-3).
  • Examples of copolymers having structural units (C) include those having structural units of the following formulas (II-1) to (II-4).
  • m and n are each an integer of 1 to 10, preferably an integer of 1 to 5, more preferably 1;
  • the number of repeating units in formula (I-3) is an integer of 1 to 10, preferably an integer of 1 to 5, more preferably 1.
  • the polymer having a plurality of types of structural units both a block copolymer having a large value of m and n, for example, 100 or more, and a random copolymer can be employed, but a random copolymer is preferable. More preferably, random copolymers in which the values of m and n are 1 are used.
  • m and n are each independently an integer of 1 to 10, preferably an integer of 1 to 5, more preferably 1.
  • a block copolymer having a large value of m and n for example, 100 or more, and a random copolymer can be employed, but a random copolymer is preferable. More preferably, random copolymers in which the values of m and n are 1 are used.
  • the molar ratio of the structural unit (B) to the structural unit (C) is preferably from 1:99 to 99:1, more preferably from 10:90 to 90:10.
  • the mass ratio of the polymer having the structural unit (B) and the polymer having the structural unit (C) is preferably 1:99 to 99:1, preferably 10:90 to 90:10. 15:85 to 85:15 is more preferred, and 30:70 to 70:30 is particularly preferred.
  • the thermoplastic resin of one embodiment of the present invention also preferably contains structural units derived from at least one monomer selected from the following monomer group.
  • R 1 and R 2 each independently represent a hydrogen atom, a methyl group or an ethyl group
  • R 3 and R 4 each independently represent a hydrogen atom, a methyl group, an ethyl group or a represents an alkylene glycol of ⁇ 5.
  • the polycarbonate resin of a preferred embodiment of the present invention contains alcohol-based compounds such as phenol-based compounds that may be produced as by-products during production, and diol components or carbonic acid diesters that remain unreacted as impurities.
  • Alcoholic compounds such as phenolic compounds and carbonic acid diesters, which are impurities, can cause a decrease in strength and generation of odor when formed into a molded article.
  • the content of the remaining phenolic compound is preferably 3000 mass ppm or less, more preferably 1000 mass ppm or less, and particularly preferably 300 mass ppm or less based on 100 mass% of the polycarbonate resin.
  • the content of the remaining diol component is preferably 1000 mass ppm or less, more preferably 100 mass ppm or less, and particularly preferably 10 mass ppm or less based on 100 mass% of the polycarbonate resin.
  • the content of the remaining carbonic acid diester is preferably 1000 mass ppm or less, more preferably 100 mass ppm or less, and particularly preferably 10 mass ppm or less based on 100 mass% of the polycarbonate resin.
  • it is preferable that the content of compounds such as phenol and t-butylphenol is small, and the content of these compounds is preferably within the above range.
  • the content of the phenolic compound remaining in the polycarbonate resin can be measured by a method of analyzing the phenolic compound extracted from the polycarbonate resin using gas chromatography.
  • the content of the alcohol-based compound remaining in the polycarbonate resin can also be measured by a method of analyzing the alcohol-based compound extracted from the polycarbonate resin using gas chromatography.
  • the contents of diol components and carbonic acid diesters remaining in the polycarbonate resin can also be measured by extracting these compounds from the polycarbonate resin and analyzing them using gas chromatography.
  • the content of by-product alcoholic compounds such as phenolic compounds, diol components, and carbonic acid diesters may be reduced to the extent that they are not detected. good too.
  • the amount is very small, the plasticity can be improved when the resin is melted.
  • each of the remaining phenolic compound, diol component, or diester carbonate is, for example, 0.01 mass ppm or more, 0.1 mass ppm or more, or 1 mass ppm or more with respect to 100 mass% of the polycarbonate resin.
  • the content of the remaining alcohol compound may be, for example, 0.01 mass ppm or more, 0.1 mass ppm or more, or 1 mass ppm or more with respect to 100 mass% of the polycarbonate resin.
  • by-product alcoholic compounds such as phenolic compounds, diol components, and carbonic acid diesters in the polycarbonate resin are adjusted so as to fall within the above ranges by appropriately adjusting the polycondensation conditions and equipment settings. It is possible. It can also be adjusted by the conditions of the extrusion process after polycondensation.
  • the residual amount of by-product alcoholic compounds such as phenolic compounds is related to the type of carbonic acid diester used in the polymerization of polycarbonate resin, the polymerization reaction temperature and polymerization pressure, and the like. By adjusting these, the residual amount of by-product alcoholic compounds such as phenolic compounds can be reduced.
  • the content of the remaining by-product alcohol-based compound in the obtained polycarbonate resin is preferably 3000 mass ppm or less with respect to the polycarbonate resin (100 mass %).
  • the content of the remaining alcohol-based compound is preferably 3000 mass ppm or less, more preferably 1000 mass ppm or less, and particularly preferably 300 mass ppm or less based on 100 mass% of the polycarbonate resin.
  • thermoplastic resin ⁇ Physical properties of thermoplastic resin> (1) Refractive index (nD)
  • one of the characteristics of the thermoplastic resin is that it has a high refractive index. is more preferable, and 1.600 to 1.650 is particularly preferable.
  • the refractive index can be measured by the method described in Examples below.
  • the Abbe number of the thermoplastic resin is preferably 25.0 to 33.0, more preferably 25.5 to 32.0, and 26.0 to 30.0. is particularly preferred. In the present invention, the Abbe number can be measured by the method described in Examples below.
  • one of the characteristics of the thermoplastic resin is high heat resistance, and the glass transition temperature (Tg) is preferably 135 to 200 ° C., and at 140 to 180 ° C. 140 to 170°C is particularly preferred.
  • the glass transition temperature can be measured by the method described in Examples below.
  • the polystyrene equivalent weight average molecular weight of the thermoplastic resin is preferably 10,000 to 200,000, more preferably 10,000 to 100,000, and 10,000 to 80,000 is particularly preferred.
  • thermoplastic resin composition Another embodiment of the invention is a thermoplastic resin composition comprising the thermoplastic resin described above and an additive.
  • the thermoplastic resin composition of the present embodiment can be used in combination with a resin other than the thermoplastic resin of the present invention containing the above-described structural unit (A) within a range that does not impair the desired effects of the present embodiment.
  • Such resins include, but are not limited to, polycarbonate resins, polyester resins, polyester carbonate resins, (meth)acrylic resins, polyamide resins, polystyrene resins, cycloolefin resins, acrylonitrile-butadiene-styrene copolymer resins, chloride At least one resin selected from the group consisting of vinyl resins, polyphenylene ether resins, polysulfone resins, polyacetal resins and methyl methacrylate-styrene copolymer resins can be used. Various known ones can be used as these, and they can be added to the thermoplastic resin composition singly or in combination of two or more.
  • the thermoplastic resin composition preferably contains an antioxidant as the additive.
  • an antioxidant it is preferable to contain at least one of a phenolic antioxidant and a phosphite antioxidant.
  • phenolic antioxidants 1,3,5-tris(3,5-di-tert-butyl-4-hydroxyphenylmethyl)-2,4,6-trimethylbenzene, 1,3,5-tris(3 ,5-di-tert-butyl-4-hydroxybenzyl)-1,3,5-triazine e-2,4,6(1H,3H,5H)-trione, 4,4′,4′′-(1 -methylpropanyl-3-ylidene)tris(6-tert-butyl-m-cresol), 6,6'-di-tert-butyl-4,4'-butylidenedi-m-cresol, ocladecyl 3-(3, 5-di-tert-butyl-4-hydroxyphenyl)propionate, pentaery
  • Phosphite antioxidants such as 2-ethylhexyldiphenylphosphite, isodecyldiphenylphosphite, triisodecylphosphite, triphenylphosphite, 3,9-bis(octadecyloxy)-2,4,8,10- Tetraoxy-3,9-diphosphaspiro[5.5]undecane, 3,9-bis(2,6-di-tert-butyl-4-methylphenoxy)-2,4,8,10-tetraoxa- 3,9-diphosphaspiro[5.5]undecane, 2,2′-methylenebis(4,6-di-tert-butylphenyl) 2-ethylhexylphosphite, tris(2,4-ditert-butylphenyl ) phosphite, tris(nonylphenyl)phosphite, tetra-C12-15-alky
  • the antioxidant is preferably contained in an amount of 1 ppm to 3000 ppm by weight based on the total weight of the resin composition.
  • the content of the antioxidant in the thermoplastic resin composition is more preferably 50 ppm to 2500 ppm by weight, more preferably 100 ppm to 2000 ppm by weight, and particularly preferably 150 ppm to 1500 ppm by weight. and more preferably 200 ppm to 1200 ppm by weight.
  • the thermoplastic resin composition preferably contains a release agent as the additive.
  • release agents include ester compounds such as glycerin fatty acid esters such as mono- and diglycerides of glycerin fatty acid, glycol fatty acid esters such as propylene glycol fatty acid esters and sorbitan fatty acid esters, higher alcohol fatty acid esters, aliphatic polyhydric alcohols and aliphatic carboxylic acids. Full esters with acids, mono fatty acid esters, and the like can be mentioned.
  • ester of an aliphatic polyhydric alcohol and an aliphatic carboxylic acid is used as the release agent, either a monoester, a full ester, or the like can be used.
  • release agents include the following. Sorbitan fatty acid esters such as sorbitan stearate, sorbitan laurate, sorbitan oleate, sorbitan trioleate, sorbitan tribehenate, sorbitan stearate, sorbitan tristearate, sorbitan caprylate; Propylene glycol fatty acid esters such as propylene glycol monostearate, propylene glycol monooleate, propylene glycol monobehenate, propylene glycol monolaurate, and propylene glycol monopalmitate; Higher alcohol fatty acid esters such as stearyl stearate; Glycerin monostearate, glycerin mono-12-hydroxystearate and other glycerin monohydroxystearate, glycerin monooleate, glycerin monobehenate, glycerin monocaprylate, glycerin monocaprate, glycerin monolaurate and other monogly
  • the release agent is preferably contained in an amount of 1 ppm to 5000 ppm by weight based on the total weight of the resin composition.
  • the content of the release agent in the thermoplastic resin composition is more preferably 50 ppm to 4000 ppm by weight, still more preferably 100 ppm to 3500 ppm by weight, and particularly preferably 500 ppm to 13000 ppm by weight. and more preferably 1000 ppm to 2500 ppm by weight.
  • additives may be added to the thermoplastic resin composition in addition to the antioxidant and release agent described above.
  • additives that may be contained in the thermoplastic resin composition include compounding agents, catalyst deactivators, heat stabilizers, plasticizers, fillers, ultraviolet absorbers, rust inhibitors, dispersants, antifoaming agents, leveling agents, Examples include flame retardants, lubricants, dyes, pigments, bluing agents, nucleating agents, and clarifying agents.
  • the content of additives other than antioxidants and release agents in the thermoplastic resin composition is preferably 10 wt ppm to 5.0 wt %, more preferably 100 wt ppm to 2.0 wt %. and more preferably 1000 ppm by weight to 1.0% by weight, but not limited thereto.
  • the above additives may adversely affect the transmittance and should not be added in excess, eg the total amount added is within the above range.
  • thermoplastic resin composition containing a modifier represented by the following general formula (1) and a thermoplastic resin.
  • R 1 and ring A have the same definitions as in general formula (1) above. That is, the novel cyclic diol compound represented by general formula (1) can also be used as a modifier.
  • the above mass ratio may preferably be from 99:1 to 70:30, more preferably from 98:2 to 70:30, for example 99:1, 98:2, 97:3, 96: 4, 95:5, 94:6, 93:7, 92:8, 91:9, 90:10, 85:15, 80:20, 75:25, 70:30, and the like.
  • the mass ratio of the thermoplastic resin to the modifier is within the above range, it is possible to provide a resin composition with high fluidity and good moldability.
  • thermoplastic resin or thermoplastic resin composition (hereinafter simply referred to as "resin composition") of the present invention can be suitably used for optical members.
  • An embodiment of the present invention provides an optical member containing the resin composition of the present invention.
  • optical members include optical discs, transparent conductive substrates, optical cards, sheets, films, optical fibers, lenses, prisms, optical films, substrates, optical filters, hard coat films, etc. It is not limited to these.
  • the resin composition of the present invention has a high fluidity and can be molded by a casting method, so it is particularly suitable for manufacturing thin optical members.
  • the optical member produced using the resin composition of the present invention may be an optical lens.
  • the optical member produced using the resin composition of the present invention may be an optical film.
  • an optical member containing the resin composition of the present invention is produced by injection molding, it is preferable to perform molding under the conditions of a cylinder temperature of 260 to 350°C and a mold temperature of 90 to 170°C. More preferably, molding is carried out under conditions of a cylinder temperature of 270 to 320°C and a mold temperature of 100 to 160°C. If the cylinder temperature is higher than 350°C, the resin composition will decompose and color, and if it is lower than 260°C, the melt viscosity will be high and molding will be difficult. Moreover, when the mold temperature is higher than 170° C., it tends to be difficult to remove the molded piece made of the resin composition from the mold.
  • the mold temperature is less than 90° C.
  • the resin will harden too quickly in the mold during molding, making it difficult to control the shape of the molded piece, or the mold applied to the mold will not be sufficiently transferred. It is easy to become difficult.
  • the resin composition can be suitably used for optical lenses.
  • Optical lenses manufactured using the resin composition of the present invention have a high refractive index and excellent heat resistance, so conventionally, expensive high refractive index glass lenses have been used for telescopes, binoculars, television projectors, and the like. It can be used in various fields and is extremely useful.
  • R 1 and R 2 each independently represent a hydrogen atom, a methyl group or an ethyl group
  • R 3 and R 4 each independently represent a hydrogen atom, a methyl group, an ethyl group or a represents an alkylene glycol of ⁇ 5.
  • a lens molded from a resin containing a structural unit derived from any of the monomers of the above formulas can be superimposed and used as a lens unit.
  • the optical lens of the present invention is preferably implemented in the form of an aspherical lens if necessary.
  • Aspherical lenses can eliminate spherical aberration with a single lens, so there is no need to combine multiple spherical lenses to remove spherical aberration, which helps reduce weight and molding costs. be possible. Therefore, aspherical lenses are particularly useful as camera lenses among optical lenses.
  • the optical lens of the present invention is particularly useful as a material for thin, compact, and complicated-shaped optical lenses because of its high molding fluidity.
  • the thickness of the central portion is preferably 0.05 to 3.0 mm, more preferably 0.05 to 2.0 mm, still more preferably 0.1 to 2.0 mm.
  • the diameter is preferably 1.0 mm to 20.0 mm, more preferably 1.0 to 10.0 mm, still more preferably 3.0 to 10.0 mm.
  • the lens is a meniscus lens having a convex surface on one side and a concave surface on the other side.
  • the optical lens of the present invention can be molded by any method such as mold molding, cutting, polishing, laser processing, electrical discharge machining, and etching. Among these, mold molding is more preferable from the viewpoint of manufacturing cost.
  • the resin composition can be suitably used for optical films.
  • the optical film produced using the polycarbonate resin of the present invention is excellent in transparency and heat resistance, and thus is suitably used for films for liquid crystal substrates, optical memory cards, and the like.
  • the molding environment must naturally be a low-dust environment, preferably class 6 or less, more preferably class 5 or less.
  • ⁇ Melting point> The melting point of the cyclic diol compound was measured using a differential calorimeter DSC6220 manufactured by SII Nanotechnology. 10.7 mg of the sample was placed in an aluminum pan manufactured by the same company, sealed, and heated from 30° C. to 200° C. at a rate of 10° C./min under a nitrogen stream of 50 ml/min to observe an endothermic peak. The temperature indicated by the peak top was taken as the melting point.
  • IR spectrum ⁇ Infrared absorption spectrum (IR spectrum)>
  • the IR spectrum of the cyclic diol compound was measured by the ATR method (attenuated total reflection method) using an infrared spectrometer (Spectrum 400 manufactured by PerkinElmer Japan Co., Ltd.).
  • Tg Glass transition temperature
  • ⁇ Weight average molecular weight (Mw)> The weight average molecular weight of the resin was measured by a gel permeation chromatography (GPC) method and calculated in terms of standard polystyrene.
  • the equipment, column, and measurement conditions used are as follows.
  • ⁇ GPC device HLC-8420GPC manufactured by Tosoh Corporation ⁇ Column: TSKgel SuperHM-M ⁇ 3 manufactured by Tosoh Corporation TSKgel guard column SuperH-H ⁇ 1 manufactured by Tosoh Corporation TSKgel SuperH-RC ⁇ 1 manufactured by Tosoh Corporation ⁇ Detector: RI detector ⁇ Standard polystyrene: standard polystyrene kit PStQuick C manufactured by Tosoh Corporation - Sample solution: 0.2% by mass tetrahydrofuran solution It was filtered through a syringe filter (GL chromatodisc, pore size 0.45 ⁇ m, manufactured by GL Sciences Inc.) and then injected into the column. ⁇ Eluent: tetrahydrofuran ⁇ Eluent flow rate: 0.6 mL / min ⁇ Column temperature: 40°C
  • the reaction mixture was returned to room temperature, neutralized with 1 g of triethylamine, 59 ml of toluene was distilled off under reduced pressure, 100 g of ion-exchanged water was added, and the mixture was cooled with ice water.
  • the produced crystals were separated by filtration, and the obtained crystals were first rinsed twice with 50 ml of ion-exchanged water and then rinsed twice with 100 ml of hot water at 60°C. Finally, it was rinsed twice with 50 ml of deionized water.
  • the wet crystals were dried at 80° C. under reduced pressure to obtain 26.7 g (0.08 mol) of isophthalaldehyde trimethylolethane diacetal with a purity of 99.7 GC area %.
  • the crystal melting point was 165.9°C.
  • IR spectrum was measured for the obtained isophthalaldehyde trimethylolethane diacetal, and it was confirmed that the obtained compound was isophthalaldehyde trimethylolethane diacetal.
  • the reaction mixture was returned to room temperature, neutralized with 1 g of triethylamine, 60 ml of toluene was distilled off under reduced pressure, 150 g of ion-exchanged water was added, and the mixture was cooled with ice water.
  • the produced crystals were separated by filtration, and the obtained crystals were first rinsed twice with 50 ml of ion-exchanged water and then rinsed twice with 100 ml of hot water at 60°C. Finally, it was rinsed twice with 50 ml of deionized water.
  • the wet crystals were dried at 80° C. under reduced pressure to obtain isophthalaldehyde trimethylolpropane diacetal with a purity of 92.7 GC area %.
  • IR spectrum was measured for the obtained isophthalaldehyde trimethylolpropane diacetal, and it was confirmed that the obtained compound was isophthalaldehyde trimethylolpropane diacetal.
  • the reaction mixture was returned to room temperature, neutralized with 1 g of triethylamine, 50 ml of toluene was distilled off under reduced pressure conditions, 100 g of ion-exchanged water was added, and the mixture was cooled with ice water.
  • the produced crystals were separated by filtration, and the obtained crystals were first rinsed twice with 50 ml of ion-exchanged water and then rinsed twice with 50 ml of hot water at 60°C.
  • the wet crystals were dried at 100° C. under reduced pressure to obtain 30.4 g (0.09 mol) of terephthalaldehyde trimethylolethane diacetal with a purity of 99.7 GC area %.
  • the melting point of the crystal was 247.3°C.
  • IR spectrum was measured for the obtained terephthalaldehyde trimethylolethane diacetal, and it was confirmed that the obtained compound was terephthalaldehyde trimethylolethane diacetal.
  • the reaction mixture was returned to room temperature, neutralized with 1 g of triethylamine, 50 ml of toluene was distilled off under reduced pressure, 150 g of ion-exchanged water was added, and the mixture was cooled with ice water.
  • the produced crystals were separated by filtration, and the obtained crystals were first rinsed twice with 50 ml of ion-exchanged water and then rinsed twice with 50 ml of hot water at 60°C.
  • terephthalaldehyde trimethylolpropane diacetal with a purity of 96.9 GC area % was obtained.
  • IR spectrum was measured for the obtained terephthalaldehyde trimethylolpropane diacetal, and it was confirmed that the obtained compound was terephthalaldehyde trimethylolpropane diacetal.
  • Example 1 As raw materials, 22.6470 g (0.0516 mol) of 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene (BPEF) represented by the following structural formula, isophthalaldehyde tri Methylolethane diacetal (hereinafter referred to as compound 1) 7.4982 g (0.0222 mol), diphenyl carbonate (DPC) 16.2833 g (0.0760 mol) and sodium hydrogen carbonate 0.6201 ⁇ 10 -4 g (0 .7381 ⁇ 10 ⁇ 6 mol) was placed in a 300 mL reactor equipped with a stirrer and distiller, and the system was set to a nitrogen atmosphere of 101.3 kPa.
  • BPEF 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene
  • This reactor was immersed in an oil bath heated to 200° C. to initiate the transesterification reaction. Stirring was started 5 minutes after the start of the reaction, and after 20 minutes the pressure was reduced from 101.3 kPa to 26.66 kPa over 10 minutes. The temperature was raised to 210° C. while reducing the pressure, and the temperature was raised to 220° C. 60 minutes after the start of the reaction. After reducing the pressure and maintaining the pressure for 30 minutes, nitrogen gas was introduced into the reaction system and the pressure was returned to 101.3 kPa to obtain a polycarbonate resin.
  • the obtained polycarbonate resin had a refractive index of 1.6125, an Abbe number of 25.98, a Tg of 142° C., and a polystyrene equivalent weight average molecular weight (Mw) of 34,459.
  • Table 1 shows the content of the diol compound as a raw material and the physical properties of the obtained resin.
  • Example 2 As raw materials, 24.9709 g (0.0738 mol) of compound 1, 16.2833 g (0.0760 mol) of diphenyl carbonate (DPC) and 0.6201 ⁇ 10 ⁇ 4 g (0.7381 ⁇ 10 ⁇ 6 ) of sodium bicarbonate A polycarbonate resin was obtained in the same manner as in Example 1, except that mol) was used. The resulting polycarbonate resin had a refractive index of 1.536, an Abbe number of 38.01, a Tg of 134° C., and a polystyrene-equivalent weight average molecular weight (Mw) of 34,425. Table 1 below shows the content of the diol compound as a raw material and the physical properties of the obtained resin.
  • DPC diphenyl carbonate
  • Mw polystyrene-equivalent weight average molecular weight
  • Example 3 As raw materials, 20.9233 g (0.0477 mol) of 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene (BPEF) represented by the following structural formula, terephthalaldehyde tri 6.9132 g (0.0204 mol) of methylolethane diacetal (hereinafter referred to as compound 2), 15.0581 g (0.0703 mol) of diphenyl carbonate (DPC) and 0.5725 ⁇ 10 ⁇ 4 g (0.0703 mol) of sodium hydrogen carbonate .6814 ⁇ 10 ⁇ 6 mol) was placed in a 300 mL reactor equipped with a stirrer and distiller, and the system was set to a nitrogen atmosphere of 101.3 kPa.
  • BPEF 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene
  • This reactor was immersed in an oil bath heated to 200° C. to initiate the transesterification reaction. Stirring was started 5 minutes after the start of the reaction, and after 20 minutes the pressure was reduced from 101.3 kPa to 26.66 kPa over 10 minutes. The temperature was raised to 210°C while reducing the pressure, and the temperature was raised to 220°C 70 minutes after the start of the reaction. After 90 minutes, the pressure was reduced to 20.00 kPa over 10 minutes, and the temperature was raised to 240°C and to 0 kPa. After reducing the pressure and maintaining the pressure for 30 minutes, nitrogen gas was introduced into the reaction system and the pressure was returned to 101.3 kPa to obtain a polycarbonate resin.
  • the obtained polycarbonate resin had a refractive index of 1.6095, an Abbe number of 26.09, a Tg of 153° C., and a polystyrene-equivalent weight average molecular weight (Mw) of 16,844.
  • Table 1 below shows the content of the diol compound as a raw material and the physical properties of the obtained resin.
  • Example 4 A polycarbonate resin was obtained in the same manner as in Example 3, except that the amounts shown in Table 1 below were changed. The physical properties of the obtained resin are shown in Table 1 below.
  • the obtained polycarbonate resin had a refractive index of 1.5998, an Abbe number of 26.53, a Tg of 134° C., and a polystyrene-equivalent weight average molecular weight (Mw) of 39,000.
  • Table 1 below shows the content of the diol compound as a raw material and the physical properties of the obtained resin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明によれば、下記一般式(1)で表されるモノマー由来の構成単位(A)を含む熱可塑性樹脂を提供することができる。 [式中、R1は、同一又は異なって、それぞれ、水素原子、フッ素原子、塩素原子、臭素原子、フェニル基又は炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基を示す。環Aは、フッ素原子、塩素原子、臭素原子、フェニル基、炭素数1~6の直鎖状若しくは分岐鎖状のアルコキシ基、及び炭素数1~6の直鎖状若しくは分岐鎖状のアルキル基からなる群から選択される1~4個の基で置換されていてもよいベンゼン環を示す。]

Description

熱可塑性樹脂及びそれを含む光学レンズ
 本発明は、熱可塑性樹脂及びそれを含む光学レンズに関する。より詳細には、本発明は、ポリカーボネート樹脂又はポリエステルカーボネート樹脂及びそれを含む光学レンズに関する。
 カメラ、フィルム一体型カメラ、ビデオカメラ等の各種カメラの光学系に使用される光学レンズの材料として、光学ガラスあるいは光学用樹脂が使用されている。光学ガラスは、耐熱性、透明性、寸法安定性、耐薬品性等に優れるが、材料コストが高く、成形加工性が悪く、生産性が低いという問題点を有している。
 一方、光学用樹脂からなる光学レンズは、射出成形により大量生産が可能であるという利点を有しており、カメラレンズ用高屈折率材料としてポリカーボネート、ポリエステルカーボネート、ポリエステル樹脂等が使用されている。
 光学用樹脂を光学レンズとして用いる場合、屈折率やアッベ数などの光学特性に加えて、耐熱性、透明性、低吸水性、耐薬品性、低複屈折、耐湿熱性等が求められる。特に近年、高屈折率及び高耐熱性を有する光学レンズが求められており、様々な樹脂の開発が行われている(特許文献1~5)。
 一方、環状アセタール構造を有するジオール化合物(例えばスピログリコール)を原料とする熱可塑性樹脂は、優れた光学特性と耐衝撃性を有し、各種の光学用樹脂として有用である。しかし、様々な成型加工や使用環境の広がりから、光学特性を損なわずに、さらなる耐熱性の向上が求められていた。
特開2018-2893号公報 特開2018-2894号公報 特開2018-2895号公報 特開2018-59074号公報 WO2017/078073
 本発明は、屈折率やアッベ数などの光学特性に優れ、かつ、耐熱性にも優れた熱可塑性樹脂及びそれを用いた光学レンズを提供することを課題とする。
 本発明者らは、従来の課題を解決すべく鋭意検討を重ねた結果、環状アセタール構造を有するジオール化合物中に芳香族環を導入した特定の構造を有するモノマーを原料とすることにより、屈折率やアッベ数などの光学特性に優れ、かつ、耐熱性にも優れた熱可塑性樹脂が得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の態様を含む。
<1> 下記一般式(1)で表されるモノマー由来の構成単位(A)を含む熱可塑性樹脂である。
Figure JPOXMLDOC01-appb-C000010
[式中、Rは、同一又は異なって、それぞれ、水素原子、フッ素原子、塩素原子、臭素原子、フェニル基又は炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基を示す。環Aは、フッ素原子、塩素原子、臭素原子、フェニル基、炭素数1~6の直鎖状若しくは分岐鎖状のアルコキシ基、及び炭素数1~6の直鎖状若しくは分岐鎖状のアルキル基からなる群から選択される1~4個の基で置換されていてもよいベンゼン環を示す。]
<2> ポリカーボネート樹脂又はポリエステルカーボネート樹脂である、上記<1>に記載の熱可塑性樹脂である。
<3> 前記一般式(1)におけるRが、同一又は異なって、それぞれ、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基又はフェニル基である、上記<1>又は<2>に記載の熱可塑性樹脂である。
<4> 前記一般式(1)において、Rが、同一又は異なって、それぞれ、メチル基又はエチル基である、上記<3>に記載の熱可塑性樹脂である。
<5> 前記一般式(1)において、環Aが、炭素数1~6の直鎖状若しくは分岐鎖状のアルコキシ基、及び炭素数1~6の直鎖状若しくは分岐鎖状のアルキル基からなる群から選択される1~4個の基で置換されていてもよいベンゼン環である、上記<1>から<4>のいずれかに記載の熱可塑性樹脂である。
<6> 前記一般式(1)において、Rが、メチル基又はエチル基であり、環Aが、メチル基及びエチル基からなる群から選択される1~4個の基で置換されていてもよいベンゼン環である、上記<1>から<5>のいずれかに記載の熱可塑性樹脂である。
<7> 前記一般式(1)で表されるモノマーが、下記一般式(1a)で表されるモノマーである、上記<1>又は<2>に記載の熱可塑性樹脂である。
Figure JPOXMLDOC01-appb-C000011
[式中、Rは、同一又は異なって、それぞれ、水素原子、フッ素原子、塩素原子、臭素原子、フェニル基、炭素数1~6の直鎖状若しくは分岐鎖状のアルコキシ基、又は炭素数1~6の直鎖状若しくは分岐鎖状のアルキル基を示す。Rは、前記に同じ。]
<8> 前記一般式(1)で表されるモノマーが、下記一般式(1b)で表されるモノマーである、上記<1>又は<2>に記載の熱可塑性樹脂である。
Figure JPOXMLDOC01-appb-C000012
[式中、Rは、同一又は異なって、それぞれ、水素原子、フッ素原子、塩素原子、臭素原子、フェニル基、炭素数1~6の直鎖状若しくは分岐鎖状のアルコキシ基、又は炭素数1~6の直鎖状若しくは分岐鎖状のアルキル基を示す。Rは、前記に同じ。]
<9> 前記一般式(1)で表されるモノマーが、下記一般式(1c)で表されるモノマーである、上記<1>又は<2>に記載の熱可塑性樹脂である。
Figure JPOXMLDOC01-appb-C000013
[式中、Rは、同一又は異なって、それぞれ、水素原子、フッ素原子、塩素原子、臭素原子、フェニル基、炭素数1~6の直鎖状若しくは分岐鎖状のアルコキシ基、又は炭素数1~6の直鎖状若しくは分岐鎖状のアルキル基を示す。Rは、前記に同じ。]
<10> 前記熱可塑性樹脂が、下記式(2)で表されるモノマー由来の構成単位(B)及び/又は下記式(3)で表されるモノマー由来の構成単位(C)を含む、上記<1>から<9>のいずれかに記載の熱可塑性樹脂である。
Figure JPOXMLDOC01-appb-C000014
(式(2)中、
 R及びRは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよい炭素数1~20のアルキル基、置換基を有してもよい炭素数1~20のアルコキシル基、置換基を有してもよい炭素数5~20のシクロアルキル基、置換基を有してもよい炭素数5~20のシクロアルコキシル基、置換基を有してもよい炭素数6~20のアリール基、O、N及びSから選択される1つ以上のヘテロ環原子を含む、置換基を有してもよい炭素数6~20のヘテロアリール基、置換基を有してもよい炭素数6~20のアリールオキシ基、及び、-C≡C-Rからなる群より選択され、
 Rは置換基を有してもよい炭素数6~20のアリール基、又は、O、N及びSから選択される1つ以上のヘテロ環原子を含む、置換基を有してもよい炭素数6~20のヘテロアリール基を表し、
 Xは、単結合であるか、又は置換基を有してもよいフルオレン基を表し、
 A及びBは、それぞれ独立に、置換基を有してもよい炭素数1~5のアルキレン基を表し、
 m及びnは、それぞれ独立に、0~6の整数を表し、
 a及びbは、それぞれ独立に、0~10の整数を表す。)
Figure JPOXMLDOC01-appb-C000015
(式(3)中、
 R及びRは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよい炭素数1~20のアルキル基、置換基を有してもよい炭素数1~20のアルコキシル基、置換基を有してもよい炭素数5~20のシクロアルキル基、置換基を有してもよい炭素数5~20のシクロアルコキシル基、及び、置換基を有してもよい炭素数6~20のアリール基からなる群より選択され、
 Yは、単結合、置換基を有してもよいフルオレン基、又は下記式(4)~(10)で表される構造式のうちいずれかであり、
Figure JPOXMLDOC01-appb-C000016
(式(4)~(10)中、
 R61、R62、R71及びR72は、それぞれ独立して、水素原子、ハロゲン原子、置換基を有してもよい炭素数1~20のアルキル基、又は、置換基を有してもよい炭素数6~30のアリール基を表すか、あるいは、R61及びR62、又はR71及びR72が互いに結合して形成する、置換基を有してもよい炭素数1~20の炭素環又は複素環を表し、
 r及びsは、それぞれ独立して、0~5000の整数を表す。)
 A及びBは、それぞれ独立に、置換基を有してもよい炭素数1~5のアルキレン基を表し、
 p及びqは、それぞれ独立に、0~4の整数を表し、
 a及びbは、それぞれ独立に、0~10の整数を表す。)
<11> 前記式(2)及び式(3)において、前記A及びBが、それぞれ独立に、炭素数2又は3のアルキレン基を表す、上記<10>に記載の熱可塑性樹脂である。
<12> 前記熱可塑性樹脂が、少なくとも、BPEF,BNE,BNEF及びDPBHBNAのいずれかに由来する構成単位を含む、上記<10>又は<11>に記載の熱可塑性樹脂である。
<13> 前記熱可塑性樹脂が、更に、下記のモノマー群から選択される少なくとも一つのモノマーに由来する構成単位を含む、上記<1>から<12>のいずれかに記載の熱可塑性樹脂である。
Figure JPOXMLDOC01-appb-C000017
(上記式中、R及びRは、それぞれ独立に、水素原子、メチル基又はエチル基を表し、R及びRは、それぞれ独立に、水素原子、メチル基、エチル基又は炭素数2~5のアルキレングリコールを表す。)
<14> 前記熱可塑性樹脂のポリスチレン換算の重量平均分子量(Mw)が、10,000~200,000である、上記<1>から<13>のいずれかに記載の熱可塑性樹脂である。
<15> 前記熱可塑性樹脂の屈折率(nD)が、1.599~1.750である、上記<1>から<14>のいずれかに記載の熱可塑性樹脂である。
<16> 前記熱可塑性樹脂のアッベ数(ν)が、25.0~33.0である、上記<1>から<15>のいずれかに記載の熱可塑性樹脂である。
<17> 前記熱可塑性樹脂のガラス転移温度が、135~200℃である、上記<1>から<16>のいずれかに記載の熱可塑性樹脂である。
<18> 下記一般式(1)で表される改質剤と熱可塑性樹脂とを含む、熱可塑性樹脂組成物である。
Figure JPOXMLDOC01-appb-C000018
[式中、Rは、同一又は異なって、それぞれ、水素原子、フッ素原子、塩素原子、臭素原子、フェニル基又は炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基を示す。環Aは、フッ素原子、塩素原子、臭素原子、フェニル基、炭素数1~6の直鎖状若しくは分岐鎖状のアルコキシ基、及び炭素数1~6の直鎖状若しくは分岐鎖状のアルキル基からなる群から選択される1~4個の基で置換されていてもよいベンゼン環を示す。]
<19> 上記<1>から<17>のいずれかに記載の熱可塑性樹脂又は上記<20>に記載の熱可塑性樹脂組成物を含む、光学部材である。
<20> 上記<1>から<17>のいずれかに記載の熱可塑性樹脂又は上記<18>に記載の熱可塑性樹脂組成物を含む、光学レンズである。
<21> 上記<1>から<17>のいずれかに記載の熱可塑性樹脂又は上記<18>に記載の熱可塑性樹脂組成物を含む、光学フィルムである。
 本発明によれば、屈折率やアッベ数などの光学特性に優れ、かつ、耐熱性にも優れた熱可塑性樹脂及びそれを含む光学レンズを提供することができる。
 以下、本発明について合成例や実施例等を例示して詳細に説明するが、本発明は例示される合成例や実施例等に限定されるものではなく、本発明の内容を大きく逸脱しない範囲であれば任意の方法に変更して行うこともできる。
<熱可塑性樹脂>
 本発明の一実施形態は、下記一般式(1)で表されるモノマー由来の構成単位(A)を含む熱可塑性樹脂である。
Figure JPOXMLDOC01-appb-C000019
 式中、Rは、同一又は異なって、それぞれ、水素原子、フッ素原子、塩素原子、臭素原子、フェニル基又は炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基を示す。環Aは、フッ素原子、塩素原子、臭素原子、フェニル基、炭素数1~6の直鎖状若しくは分岐鎖状のアルコキシ基、及び炭素数1~6の直鎖状若しくは分岐鎖状のアルキル基からなる群から選択される1~4個の基で置換されていてもよいベンゼン環を示す。
 一般式(1)において、Rは、同一又は異なって、それぞれ、水素原子、フッ素原子、塩素原子、臭素原子、フェニル基又は炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基を示すが、炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基が好ましい。Rで表される炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基としては、特に制限ないが、例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基等のアルキル基が挙げられる。このうち好ましくは、メチル基、エチル基、iso-ブチル基、tert-ブチル基であり、より好ましくはメチル基及びエチル基であり、特に好ましくはメチル基である。
 一般式(1)において、環Aは、2つのアセタール基が互いにベンゼン環上のオルト位、メタ位又はパラ位に結合していることを意味する。具体的には、環Aは下記の構造を包含する。
Figure JPOXMLDOC01-appb-C000020
[式中、環Aは前記に同じ。]
 一般式(1)において、環Aは、炭素数1~6の直鎖状若しくは分岐鎖状のアルコキシ基、及び炭素数1~6の直鎖状若しくは分岐鎖状のアルキル基からなる群から選択される1~4個の基で置換されていてもよいベンゼン環であることが好ましい。
 置換基である「炭素数1~6の直鎖状若しくは分岐鎖状のアルコキシ基」としては、特に制限はなく、例えば、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、イソブチルオキシ基、sec-ブチルオキシ基、tert-ブチルオキシ基等が挙げられる。このうち好ましくは、メトキシ基、エトキシ基、イソプロピルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基である。
 置換基である「炭素数1~6の直鎖状若しくは分岐鎖状のアルキル基」としては、特に制限はなく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等が挙げられる。このうち好ましくは、メチル基、エチル基、イソプロピル基、イソブチル基、tert-ブチル基である。
 環Aとして特に好ましくは、置換基を有しないベンゼン環、即ち、下記構造を有する2価のフェニレン基である。
Figure JPOXMLDOC01-appb-C000021
 一般式(1)で表される化合物は、2つのアセタール基中のヒドロキシメチル基及びRが結合する炭素原子の立体配置に基づいて、複数の立体異性体の存在が考えられる。これらの異性体はそれぞれ単独でも混合物でもよい。
 一般式(1)で表される化合物に包含される、環A上の2つのアセタール基の置換位置に基づき分類した3つの化合物、つまり、以下の一般式(1a)、一般式(1b)及び一般式(1c)で表される化合物について、具体的に説明する。
 一般式(1a)で表される化合物は下記の通りである。
Figure JPOXMLDOC01-appb-C000022
[式中、Rは、同一又は異なって、それぞれ、水素原子、フッ素原子、塩素原子、臭素原子、フェニル基、炭素数1~6の直鎖状若しくは分岐鎖状のアルコキシ基、又は炭素数1~6の直鎖状若しくは分岐鎖状のアルキル基を示す。Rは、前記に同じ。]
 一般式(1a)において、Rとして好ましくは、炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基であり、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基が挙げられる。このうち好ましくは、メチル基、エチル基、イソブチル基、tert-ブチル基である。
 一般式(1a)において、Rとして好ましくは、水素原子、炭素数1~6の直鎖状若しくは分岐鎖状のアルコキシ基又は炭素数1~6の直鎖状若しくは分岐鎖状のアルキル基である。Rとして特に好ましくは水素原子である。
 Rで示される「炭素数1~4の直鎖状若しくは分岐鎖状のアルコキシ基」としては、特に制限はなく、例えば、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、イソブチルオキシ基、sec-ブチルオキシ基、tert-ブチルオキシ基等が挙げられる。このうち好ましくは、メトキシ基、エトキシ基、イソプロピルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基である。
 Rで示される「炭素数1~6の直鎖状若しくは分岐鎖状のアルキル基」としては、特に制限はなく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等が挙げられる。このうち好ましくは、メチル基、エチル基、イソプロピル基、イソブチル基、tert-ブチル基である。
 一般式(1a)で表される化合物は、以下のような異性体A、異性体B、又は異性体Cなどの異性体の存在が考えられる。これらの異性体は、それぞれ単独でも混合物でも良い。
Figure JPOXMLDOC01-appb-C000023
[式中、R及びRは前記に同じ。]
 一般式(1a)で表される化合物が2以上の異性体の混合物である場合、異性体比率は、実施例に記載の手法を用いて、ガスクロマトグラフィー(GC)分析を行い、面積百分率法により求めることができる。各異性体は、通常、GC分析によりそれぞれ特有のピークを有している。異性体の含有割合は、環式ジオール化合物の全ピーク面積に対する、各異性体のピーク面積の百分率で表すことができる。当該各異性体の百分率の比率を異性体比率とすることができる。本発明における環式ジオール化合物をN,O-ビス(トリメチルシリル)トリフルオロアセトアミド等を用いて水酸基をトリメチルシリル化した後、GC分析を行うこともできる。
 一般式(1a)で表される化合物は、上記のような異性体(1a-A)、異性体(1a-B)、又は異性体(1a-C)などの異性体の存在が考えられる。GC分析で検出された異性体ピークは2本又は3本であり、これらは異性体(1a-A)、異性体(1a-B)、又は異性体(1a-C)と考えられる。GC分析による異性体比率は、異性体(1a-A):異性体(1a-B):異性体(1a-C)=10~1:10~1:1の範囲とすることができる。
 一般式(1a)で表される化合物の具体的な例としては、例えば、イソフタルアルデヒドトリメチロールプロパンジアセタール、イソフタルアルデヒドトリメチロールエタンジアセタール、5-メチルイソフタルアルデヒドトリメチロールエタンジアセタール、4-メチルイソフタルアルデヒドトリメチロールエタンジアセタール、4-クロロイソフタルアルデヒドトリメチロールエタンジアセタール、5-クロロイソフタルアルデヒドトリメチロールエタンジアセタール、5-ブロモイソフタルアルデヒドトリメチロールエタンジアセタール、4-ブロモイソフタルアルデヒドトリメチロールエタンジアセタール、2-ブロモイソフタルアルデヒドトリメチロールエタンジアセタール、4,6-ジメチルイソフタルアルデヒドトリメチロールエタンジアセタール、2,4-ジメチルイソフタルアルデヒドトリメチロールエタンジアセタール、2,5-ジクロロイソフタルアルデヒドトリメチロールエタンジアセタール、4,6-ジクロロイソフタルアルデヒドトリメチロールエタンジアセタール、4,6-ジブロモイソフタルアルデヒドトリメチロールエタンジアセタール、2,5-ジブロモイソフタルアルデヒドトリメチロールエタンジアセタール、5-tert-ブチルイソフタルアルデヒドトリメチロールエタンジアセタール、2,4,5,6-テトラフルオロイソフタルアルデヒドトリメチロールエタンジアセタール、5-(ブロモメチル)イソフタルアルデヒドトリメチロールエタンジアセタール、4-イソプロピルイソフタルアルデヒドトリメチロールエタンジアセタール、4,6-ジイソプロピルイソフタルアルデヒドトリメチロールエタンジアセタール、2-ブロモ-5-tert-ブチルイソフタルアルデヒドトリメチロールエタンジアセタール、4-フェニルイソフタルアルデヒドトリメチロールエタンジアセタール、5-フェニルイソフタルアルデヒドトリメチロールエタンジアセタール、4-フェニル-6-メチルイソフタルアルデヒドトリメチロールエタンジアセタール、4,5-ジエチル-6-メチルイソフタルアルデヒドトリメチロールエタンジアセタール、5-ヘキシルイソフタルアルデヒドトリメチロールエタンジアセタール、4-ヘキシルイソフタルアルデヒドトリメチロールエタンジアセタール、5-ブチルオキシイソフタルアルデヒドトリメチロールエタンジアセタール、2-メトキシイソフタルアルデヒドトリメチロールエタンジアセタール、4-メトキシイソフタルアルデヒドトリメチロールエタンジアセタール、5-メトキシイソフタルアルデヒドトリメチロールエタンジアセタール、2-メトキシ-4-メチルイソフタルアルデヒドトリメチロールエタンジアセタール、2-メチル-4-メトキシイソフタルアルデヒドトリメチロールエタンジアセタール、2-メトキシ-5-メチルイソフタルアルデヒドトリメチロールエタンジアセタール、4-メチル-6-メトキシイソフタルアルデヒドトリメチロールエタンジアセタール、4,6-ジメトキシイソフタルアルデヒドトリメチロールエタンジアセタール、2-メトキシ-4-エチルイソフタルアルデヒドトリメチロールエタンジアセタール、4,6-ジメチル-2-メトキシイソフタルアルデヒドトリメチロールエタンジアセタール、2,4-ジメトキシ-6-メチルイソフタルアルデヒドトリメチロールエタンジアセタール、2,4-ジメチル-6-メトキシイソフタルアルデヒドトリメチロールエタンジアセタール、4-エチル-5-メチル-6-メトキシイソフタルアルデヒドトリメチロールエタンジアセタール、5-メチルイソフタルアルデヒドトリメチロールプロパンジアセタール、4-メチルイソフタルアルデヒドトリメチロールプロパンジアセタール、4-クロロイソフタルアルデヒドトリメチロールプロパンジアセタール、5-クロロイソフタルアルデヒドトリメチロールプロパンジアセタール、5-ブロモイソフタルアルデヒドトリメチロールプロパンジアセタール、4-ブロモイソフタルアルデヒドトリメチロールプロパンジアセタール、2-ブロモイソフタルアルデヒドトリメチロールプロパンジアセタール、4,6-ジメチルイソフタルアルデヒドトリメチロールプロパンジアセタール、2,4-ジメチルイソフタルアルデヒドトリメチロールプロパンジアセタール、2,5-ジクロロイソフタルアルデヒドトリメチロールプロパンジアセタール、4,6-ジクロロイソフタルアルデヒドトリメチロールプロパンジアセタール、4,6-ジブロモイソフタルアルデヒドトリメチロールプロパンジアセタール、2,5-ジブロモイソフタルアルデヒドトリメチロールプロパンジアセタール、5-tert-ブチルイソフタルアルデヒドトリメチロールプロパンジアセタール、2,4,5,6-テトラフルオロイソフタルアルデヒドトリメチロールプロパンジアセタール、アセタール、4-イソプロピルイソフタルアルデヒドトリメチロールプロパンジアセタール、4,6-ジイソプロピルイソフタルアルデヒドトリメチロールプロパンジアセタール、2-ブロモ-5-tert-ブチルイソフタルアルデヒドトリメチロールプロパンジアセタール、4-フェニルイソフタルアルデヒドトリメチロールプロパンジアセタール、5-フェニルイソフタルアルデヒドトリメチロールプロパンジアセタール、4-フェニル-6-メチルイソフタルアルデヒドトリメチロールプロパンジアセタール、4,5-ジエチル-6-メチルイソフタルアルデヒドトリメチロールプロパンジアセタール、5-ヘキシルイソフタルアルデヒドトリメチロールプロパンジアセタール、4-ヘキシルイソフタルアルデヒドトリメチロールプロパンジアセタール、5-ブチルオキシイソフタルアルデヒドトリメチロールプロパンジアセタール、2-メトキシイソフタルアルデヒドトリメチロールプロパンジアセタール、4-メトキシイソフタルアルデヒドトリメチロールプロパンジアセタール、5-メトキシイソフタルアルデヒドトリメチロールプロパンジアセタール、2-メトキシ-4-メチルイソフタルアルデヒドトリメチロールプロパンジアセタール、2-メチル-4-メトキシイソフタルアルデヒドトリメチロールプロパンジアセタール、2-メトキシ-5-メチルイソフタルアルデヒドトリメチロールプロパンジアセタール、4-メチル-6-メトキシイソフタルアルデヒドトリメチロールプロパンジアセタール、4,6-ジメトキシイソフタルアルデヒドトリメチロールプロパンジアセタール、2-メトキシ-4-エチルイソフタルアルデヒドトリメチロールプロパンジアセタール、4,6-ジメチル-2-メトキシイソフタルアルデヒドトリメチロールプロパンジアセタール、2,4-ジメトキシ-6-メチルイソフタルアルデヒドトリメチロールプロパンジアセタール、2,4-ジメチル-6-メトキシイソフタルアルデヒドトリメチロールプロパンジアセタール、4-エチル-5-メチル-6-メトキシイソフタルアルデヒドトリメチロールプロパンジアセタール等が挙げられる。その中でも好ましい化合物は、イソフタルアルデヒドトリメチロールプロパンジアセタール、イソフタルアルデヒドトリメチロールエタンジアセタール、5-メチルイソフタルアルデヒドトリメチロールエタンジアセタール、5-メチルイソフタルアルデヒドトリメチロールプロパンジアセタール、4-メチルイソフタルアルデヒドトリメチロールプロパンジアセタール、4-メチルイソフタルアルデヒドトリメチロールエタンジアセタール等が挙げられ、特に好ましい化合物は、イソフタルアルデヒドトリメチロールプロパンジアセタール、イソフタルアルデヒドトリメチロールエタンジアセタール等が挙げられる。
 一般式(1b)で表される化合物は下記の通りである。
Figure JPOXMLDOC01-appb-C000024
[式中、R及びRは、前記に同じ。]
 一般式(1b)における好ましいRとしては、一般式(1a)における好ましいRと同じである。また、一般式(1b)における好ましいRとしては、一般式(1a)における好ましいRと同じである。
 一般式(1b)で表される化合物は、以下のような異性体(1b-A)、異性体(1b-B)、又は異性体(1b-C)などの異性体の存在が考えらえる。これらの異性体は、それぞれ単独でも混合物でも良い。
Figure JPOXMLDOC01-appb-C000025
[式中、R及びRは、前記に同じ。]
 一般式(1b)で表される化合物が2以上の異性体の混合物である場合、異性体比率は、実施例に記載の手法を用いて、ガスクロマトグラフィー(GC)分析を行い、面積百分率法により求めることができる。各異性体は、通常、GC分析によりそれぞれ特有のピークを有している。異性体の含有割合は、環式ジオール化合物の全ピーク面積に対する、各異性体のピーク面積の百分率で表すことができる。当該各異性体の百分率の比率を異性体比率とすることができる。本発明における環式ジオール化合物をN,O-ビス(トリメチルシリル)トリフルオロアセトアミド等を用いて水酸基をトリメチルシリル化した後、GC分析を行うこともできる。
 一般式(1b)で表される化合物は、上記のような異性体(1b-A)、異性体(1b-B)、又は異性体(1b-C)などの異性体の存在が考えられる。GC分析で検出された異性体ピークは2本又は3本であり、これらは異性体(1b-A)、異性体(1b-B)、又は異性体(1b-C)と考えられる。GC分析による異性体比率は、異性体(1b-A):異性体(1b-B):異性体(1b-C)=10~1:10~1:1の範囲とすることができる。
 一般式(1b)で表される化合物の具体的な例としては、例えば、テレフタルアルデヒドトリメチロールプロパンジアセタール、テレフタルアルデヒドトリメチロールエタンジアセタール、2-メチルテレフタルアルデヒドトリメチロールエタンジアセタール、3-メチルテレフタルアルデヒドトリメチロールエタンジアセタール、3-クロロテレフタルアルデヒドトリメチロールエタンジアセタール、2-クロロテレフタルアルデヒドトリメチロールエタンジアセタール、2-ブロモテレフタルアルデヒドトリメチロールエタンジアセタール、3-ブロモテレフタルアルデヒドトリメチロールエタンジアセタール、3,6-ジメチルテレフタルアルデヒドトリメチロールエタンジアセタール、2,3-ジメチルテレフタルアルデヒドトリメチロールエタンジアセタール、2,5-ジクロロテレフタルアルデヒドトリメチロールエタンジアセタール、3,6-ジクロロテレフタルアルデヒドトリメチロールエタンジアセタール、3,6-ジブロモテレフタルアルデヒドトリメチロールエタンジアセタール、2,5-ジブロモテレフタルアルデヒドトリメチロールエタンジアセタール、2-tert-ブチルテレフタルアルデヒドトリメチロールエタンジアセタール、2,3,5,6-テトラフルオロテレフタルアルデヒドトリメチロールエタンジアセタール、3-イソプロピルテレフタルアルデヒドトリメチロールエタンジアセタール、3,6-ジイソプロピルテレフタルアルデヒドトリメチロールエタンジアセタール、2-ブロモ-5-tert-ブチルテレフタルアルデヒドトリメチロールエタンジアセタール、3-フェニルテレフタルアルデヒドトリメチロールエタンジアセタール、2-フェニルテレフタルアルデヒドトリメチロールエタンジアセタール、3-フェニル-6-メチルテレフタルアルデヒドトリメチロールエタンジアセタール、3,5-ジエチル-6-メチルテレフタルアルデヒドトリメチロールエタンジアセタール、2-ヘキシルテレフタルアルデヒドトリメチロールエタンジアセタール、3-ヘキシルテレフタルアルデヒドトリメチロールエタンジアセタール、2-ブチルオキシテレフタルアルデヒドトリメチロールエタンジアセタール、3-メトキシテレフタルアルデヒドトリメチロールエタンジアセタール、2-メトキシテレフタルアルデヒドトリメチロールエタンジアセタール、2-メトキシ-3-メチルテレフタルアルデヒドトリメチロールエタンジアセタール、2-メチル-3-メトキシテレフタルアルデヒドトリメチロールエタンジアセタール、2-メトキシ-5-メチルテレフタルアルデヒドトリメチロールエタンジアセタール、3-メチル-6-メトキシテレフタルアルデヒドトリメチロールエタンジアセタール、3,6-ジメトキシテレフタルアルデヒドトリメチロールエタンジアセタール、2-メトキシ-3-エチルテレフタルアルデヒドトリメチロールエタンジアセタール、3,6-ジメチル-2-メトキシテレフタルアルデヒドトリメチロールエタンジアセタール、2,3-ジメトキシ-6-メチルテレフタルアルデヒドトリメチロールエタンジアセタール、2,3-ジメチル-6-メトキシテレフタルアルデヒドトリメチロールエタンジアセタール、3-エチル-5-メチル-6-メトキシテレフタルアルデヒドトリメチロールエタンジアセタール、2-メチルテレフタルアルデヒドトリメチロールプロパンジアセタール、3-メチルテレフタルアルデヒドトリメチロールプロパンジアセタール、3-クロロテレフタルアルデヒドトリメチロールプロパンジアセタール、2-クロロテレフタルアルデヒドトリメチロールプロパンジアセタール、2-ブロモテレフタルアルデヒドトリメチロールプロパンジアセタール、3-ブロモテレフタルアルデヒドトリメチロールプロパンジアセタール、3,6-ジメチルテレフタルアルデヒドトリメチロールプロパンジアセタール、2,3-ジメチルテレフタルアルデヒドトリメチロールプロパンジアセタール、2,5-ジクロロテレフタルアルデヒドトリメチロールプロパンジアセタール、3,6-ジクロロテレフタルアルデヒドトリメチロールプロパンジアセタール、3,6-ジブロモテレフタルアルデヒドトリメチロールプロパンジアセタール、2,5-ジブロモテレフタルアルデヒドトリメチロールプロパンジアセタール、2-tert-ブチルテレフタルアルデヒドトリメチロールプロパンジアセタール、2,3,5,6-テトラフルオロテレフタルアルデヒドトリメチロールプロパンジアセタール、3-イソプロピルテレフタルアルデヒドトリメチロールプロパンジアセタール、3,6-ジイソプロピルテレフタルアルデヒドトリメチロールプロパンジアセタール、2-ブロモ-5-tert-ブチルテレフタルアルデヒドトリメチロールプロパンジアセタール、3-フェニルテレフタルアルデヒドトリメチロールプロパンジアセタール、2-フェニルテレフタルアルデヒドトリメチロールプロパンジアセタール、3-フェニル-6-メチルテレフタルアルデヒドトリメチロールプロパンジアセタール、3,5-ジエチル-6-メチルテレフタルアルデヒドトリメチロールプロパンジアセタール、2-ヘキシルテレフタルアルデヒドトリメチロールプロパンジアセタール、3-ヘキシルテレフタルアルデヒドトリメチロールプロパンジアセタール、2-ブチルオキシテレフタルアルデヒドトリメチロールプロパンジアセタール、3-メトキシテレフタルアルデヒドトリメチロールプロパンジアセタール、2-メトキシテレフタルアルデヒドトリメチロールプロパンジアセタール、2-メトキシ-3-メチルテレフタルアルデヒドトリメチロールプロパンジアセタール、2-メチル-3-メトキシテレフタルアルデヒドトリメチロールプロパンジアセタール、3-メチル-6-メトキシテレフタルアルデヒドトリメチロールプロパンジアセタール、3,6-ジメトキシテレフタルアルデヒドトリメチロールプロパンジアセタール、2-メトキシ-3-エチルテレフタルアルデヒドトリメチロールプロパンジアセタール、2-メトキシ-5-メチルテレフタルアルデヒドトリメチロールプロパンジアセタール、3,6-ジメチル-2-メトキシテレフタルアルデヒドトリメチロールプロパンジアセタール、2,3-ジメトキシ-6-メチルテレフタルアルデヒドトリメチロールプロパンジアセタール、2,3-ジメチル-6-メトキシテレフタルアルデヒドトリメチロールプロパンジアセタール、3-エチル-5-メチル-6-メトキシテレフタルアルデヒドトリメチロールプロパンジアセタール等が挙げられる。その中でも好ましい化合物は、テレフタルアルデヒドトリメチロールプロパンジアセタール、テレフタルアルデヒドトリメチロールエタンジアセタール、2-メチルテレフタルアルデヒドトリメチロールエタンジアセタール、2-メチルテレフタルアルデヒドトリメチロールプロパンジアセタール、3-メチルテレフタルアルデヒドトリメチロールプロパンジアセタール、3-メチルテレフタルアルデヒドトリメチロールエタンジアセタール等が挙げられ、特に好ましい化合物は、テレフタルアルデヒドトリメチロールプロパンジアセタール、テレフタルアルデヒドトリメチロールエタンジアセタール等が挙げられる。
 一般式(1c)で表される化合物は下記の通りである。
Figure JPOXMLDOC01-appb-C000026
[式中、R及びRは、前記に同じ。]
 一般式(1c)における好ましいRとしては、一般式(1a)における好ましいRと同じである。また、一般式(1c)における好ましいRとしては、一般式(1a)における好ましいRと同じである。
 一般式(1c)で表される化合物は、以下のような異性体(1c-A)、異性体(1c-B)、又は異性体(1c-C)などの異性体の存在が考えらえる。これらの異性体は、それぞれ単独でも混合物でも良い。
Figure JPOXMLDOC01-appb-C000027
[式中、R及びRは、前記に同じ。]
 一般式(1c)で表される化合物が2以上の異性体の混合物である場合、異性体比率は、実施例に記載の手法を用いて、ガスクロマトグラフィー(GC)分析を行い、面積百分率法により求めることができる。各異性体は、通常、GC分析によりそれぞれ特有のピークを有している。異性体の含有割合は、環式ジオール化合物の全ピーク面積に対する、各異性体のピーク面積の百分率で表すことができる。当該各異性体の百分率の比率を異性体比率とすることができる。本発明における環式ジオール化合物をN,O-ビス(トリメチルシリル)トリフルオロアセトアミド等を用いて水酸基をトリメチルシリル化した後、GC分析を行うこともできる。
 一般式(1c)で表される化合物は、上記のような異性体(1c-A)、異性体(1c-B)、又は異性体(1c-C)などの異性体の存在が考えられる。GC分析で検出された異性体ピークは2本又は3本であり、これらは異性体(1c-A)、異性体(1c-B)、又は異性体(1c-C)と考えられる。GC分析による異性体比率は、異性体(1c-A):異性体(1c-B):異性体(1c-C)=10~1:10~1:1の範囲とすることができる。
 一般式(1c)で表される化合物の具体的な例としては、例えば、オルトフタルアルデヒドトリメチロールプロパンジアセタール、オルトフタルアルデヒドトリメチロールエタンジアセタール、3-メチルオルトフタルアルデヒドトリメチロールエタンジアセタール、4-メチルオルトフタルアルデヒドトリメチロールエタンジアセタール、3-クロロオルトフタルアルデヒドトリメチロールエタンジアセタール、3-ブロモオルトフタルアルデヒドトリメチロールエタンジアセタール、3,6-ジメチルオルトフタルアルデヒドトリメチロールエタンジアセタール、3,4-ジメチルオルトフタルアルデヒドトリメチロールエタンジアセタール、3,5-ジメチルオルトフタルアルデヒドトリメチロールエタンジアセタール、4,5-ジメチルオルトフタルアルデヒドトリメチロールエタンジアセタール、3,6-ジクロロオルトフタルアルデヒドトリメチロールエタンジアセタール、3,6-ジブロモオルトフタルアルデヒドトリメチロールエタンジアセタール、3,6-ジエチル-4-メチルオルトフタルアルデヒドトリメチロールエタンジアセタール、3-ヘキシルオルトフタルアルデヒドトリメチロールエタンジアセタール、3-ブチルオキシオルトフタルアルデヒドトリメチロールエタンジアセタール、3-メトキシオルトフタルアルデヒドトリメチロールエタンジアセタール、3-メトキシ-6-メチルオルトフタルアルデヒドトリメチロールエタンジアセタール、3-メチル-6-メトキシオルトフタルアルデヒドトリメチロールエタンジアセタール、3,6-ジメトキシオルトフタルアルデヒドトリメチロールエタンジアセタール、3-メトキシ-6-エチルオルトフタルアルデヒドトリメチロールエタンジアセタール、3,6-ジメチル-4-メトキシオルトフタルアルデヒドトリメチロールエタンジアセタール、3,6-ジメトキシ-4-メチルオルトフタルアルデヒドトリメチロールエタンジアセタール、3-メチルオルトフタルアルデヒドトリメチロールプロパンジアセタール、4-メチルオルトフタルアルデヒドトリメチロールプロパンジアセタール、3-クロロオルトフタルアルデヒドトリメチロールプロパンジアセタール、3-ブロモオルトフタルアルデヒドトリメチロールプロパンジアセタール、3,6-ジメチルオルトフタルアルデヒドトリメチロールプロパンジアセタール、3,4-ジメチルオルトフタルアルデヒドトリメチロールプロパンジアセタール、3,5-ジメチルオルトフタルアルデヒドトリメチロールプロパンジアセタール、4,5-ジメチルオルトフタルアルデヒドトリメチロールプロパンジアセタール、3,6-ジクロロオルトフタルアルデヒドトリメチロールプロパンジアセタール、3,6-ジブロモオルトフタルアルデヒドトリメチロールプロパンジアセタール、3,6-ジエチル-4-メチルオルトフタルアルデヒドトリメチロールプロパンジアセタール、3-ヘキシルオルトフタルアルデヒドトリメチロールプロパンジアセタール、3-ブチルオキシオルトフタルアルデヒドトリメチロールプロパンジアセタール、3-メトキシオルトフタルアルデヒドトリメチロールプロパンジアセタール、3-メトキシ-6-メチルオルトフタルアルデヒドトリメチロールプロパンジアセタール、3-メチル-6-メトキシオルトフタルアルデヒドトリメチロールプロパンジアセタール、3,6-ジメトキシオルトフタルアルデヒドトリメチロールプロパンジアセタール、3-メトキシ-6-エチルオルトフタルアルデヒドトリメチロールプロパンジアセタール、3,6-ジメチル-4-メトキシオルトフタルアルデヒドトリメチロールプロパンジアセタール、3,6-ジメトキシ-4-メチルオルトフタルアルデヒドトリメチロールプロパンジアセタール等が挙げられる。その中でも好ましい化合物は、オルトフタルアルデヒドトリメチロールプロパンジアセタール、オルトフタルアルデヒドトリメチロールエタンジアセタール、3-メチルオルトフタルアルデヒドトリメチロールエタンジアセタール、3-メチルオルトフタルアルデヒドトリメチロールプロパンジアセタール、4-メチルオルトフタルアルデヒドトリメチロールプロパンジアセタール、4-メチルオルトフタルアルデヒドトリメチロールエタンジアセタール等が挙げられ、特に好ましい化合物は、オルトフタルアルデヒドトリメチロールプロパンジアセタール、オルトフタルアルデヒドトリメチロールエタンジアセタール等が挙げられる。
 一般式(1)で表される化合物の製造方法は特に限定はなく、例えば、下記の<反応式1>に示すように、下記一般式(3)で表される化合物と下記一般式(4)で表される化合物とを反応(アセタール化反応)させる工程を経て製造することができる。
Figure JPOXMLDOC01-appb-C000028
[式中、R及び環Aは、前記に同じ。]
 具体的には、一般式(1)で表される化合物は、一般式(3)で表される化合物と、一般式(4)で表される化合物とを、酸性触媒の存在下で反応(アセタール化反応)させることにより製造することができる。
 反応は、通常、溶媒(例えば、トルエン等)中で実施することができる。溶媒を加熱還流し、生成する水を溶媒と共沸させて除去しながら反応させることができる。酸性触媒としては、触媒作用があれば特に限定されず、公知の酸性触媒が使用される。例えば、塩酸、硫酸、硝酸及びリン酸等の鉱酸;p-トルエンスルホン酸、メタンスルホン酸、エタンスルホン酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸等の有機酸;陽イオン交換樹脂、ゼオライト、シリカアルミナ、ヘトロポリ酸(例えば、リンタングステン酸、リンモリブデン酸等)等の固体酸;その他、各種ルイス酸等が挙げられる。
 一般式(4)で表される化合物の使用量は、一般式(3)で表される化合物1モルに対し、通常、0.5~3モル程度であり、好ましくは、0.8~2モル程度である。
 一般式(1)で表される化合物に包含される、一般式(1a)で表される化合物、一般式(1b)で表される化合物、及び一般式(1c)で表される化合物も<反応式1>と同様にして製造することができる。
 一般式(1a)で表される化合物は、下記の<反応式2>に示すように、下記一般式(3a)で表される化合物と、下記一般式(4)で表される化合物とを、酸性触媒の存在下で反応(アセタール化反応)させることにより製造することができる。
Figure JPOXMLDOC01-appb-C000029
[式中、R及びRは、前記に同じ。]
 一般式(1b)で表される化合物は、下記の<反応式3>に示すように、下記一般式(3b)で表される化合物と、下記一般式(4)で表される化合物とを、酸性触媒の存在下で反応(アセタール化反応)させることにより製造することができる。
Figure JPOXMLDOC01-appb-C000030
[式中、R及びRは、前記に同じ。]
 一般式(1c)で表される化合物は、下記の<反応式4>に示すように、下記一般式(3c)で表される化合物と、下記一般式(4)で表される化合物とを、酸性触媒の存在下で反応(アセタール化反応)させることにより製造することができる。
Figure JPOXMLDOC01-appb-C000031
[式中、R及びRは、前記に同じ。]
 本発明の一実施形態の熱可塑性樹脂は、ポリエステル樹脂、ポリカーボネート樹脂、ポリエステルカーボネート樹脂、エポキシ樹脂、ポリウレタン樹脂、ポリアクリル酸エステル樹脂、ポリメタクリル酸エステル樹脂等、特に制限はないが、ポリカーボネート樹脂又はポリエステルカーボネート樹脂であることが好ましく、下記式で表される構成単位(A)を含むことがより好ましく、下記式で表される構成単位(A1)、(A2)及び(A3)の少なくとも一つを含むことが特に好ましい。
Figure JPOXMLDOC01-appb-C000032
[式中、R及び環Aは、前記一般式(1)におけるものと同義である。]
Figure JPOXMLDOC01-appb-C000033
[式中、R及びRは、前記一般式(1a)におけるものと同義である。]
Figure JPOXMLDOC01-appb-C000034
[式中、R及びRは、前記一般式(1b)におけるものと同義である。]
Figure JPOXMLDOC01-appb-C000035
[式中、R及びRは、前記一般式(1c)におけるものと同義である。]
 本発明の一実施形態の熱可塑性樹脂において、全構成単位に占める上記式で表される構成単位(A)の割合は特に限定されないが、全構成単位中1~80モル%であることが好ましく、1~60モル%であることがより好ましく、5~50モル%であることが特に好ましい。
 つまり、本発明の一実施形態の熱可塑性樹脂は、上記式で表される構成単位(A)以外にも、一般的にポリカーボネート樹脂やポリエステルカーボネート樹脂の構成単位として用いられる脂肪族ジヒドロキシ化合物から誘導される構成単位や芳香族ジヒドロキシ化合物から誘導される構成単位を含むことができる。
 具体的には、脂肪族ジヒドロキシ化合物としては、様々なものが挙げられるが、特に、1,4-シクロヘキサンジメタノール、トリシクロデカンジメタノール、1,3-アダマンタンジメタノール、2,2-ビス(4-ヒドロキシシクロヘキシル)-プロパン、3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、2-(5-エチル-5-ヒドロキシメチル-1,3-ジオキサン-2-イル)-2-メチルプロパン-1-オール、イソソルビド、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール等が挙げられる。
 芳香族ジヒドロキシ化合物としては、様々なものを挙げることができるが、特に2,2-ビス(4-ヒドロキシフェニル)プロパン〔ビスフェノールA〕、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、4,4’-ジヒドロキシジフェニル、ビス(4-ヒドロキシフェニル)シクロアルカン、ビス(4-ヒドロキシフェニル)オキシド、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)スルホキシド、及びビス(4-ヒドロキシフェニル)ケトン、ビスフェノキシエタノールフルオレン等を挙げることができる。
 また、本発明の一実施形態の熱可塑性樹脂は、下記式(2)で表されるモノマー由来の構成単位(B)を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000036
 式(2)において、R及びRは、それぞれ独立に、ハロゲン原子、置換基を有してもよい炭素数1~20のアルキル基、置換基を有してもよい炭素数1~20のアルコキシル基、置換基を有してもよい炭素数5~20のシクロアルキル基、置換基を有してもよい炭素数5~20のシクロアルコキシル基、置換基を有してもよい炭素数6~20のアリール基、O、N及びSから選択される1つ以上のヘテロ環原子を含む、置換基を有してもよい炭素数6~20のヘテロアリール基、置換基を有してもよい炭素数6~20のアリールオキシ基、及び、-C≡C-Rからなる群より選択される。Rは置換基を有してもよい炭素数6~20のアリール基、又は、O、N及びSから選択される1つ以上のヘテロ環原子を含む、置換基を有してもよい炭素数6~20のヘテロアリール基を表す。
 R及びRは、好ましくは、水素原子、置換基を有してもよい炭素数6~20のアリール基、O、N及びSから選択される1つ以上のヘテロ環原子を含む、置換基を有してもよい炭素数6~20のヘテロアリール基であり、より好ましくは、水素原子、置換基を有してもよい炭素数6~20のアリール基であり、さらに好ましくは、水素原子、置換基を有してもよい炭素数6~12のアリール基である。
 式(2)において、Xは、単結合であるか、又は置換基を有してもよいフルオレン基を表す。Xは、好ましくは、単結合、又は、合計炭素数が12~20の置換基を有してもよいフルオレン基である。
 式(2)において、A及びBは、それぞれ独立に、置換基を有してもよい炭素数1~5のアルキレン基であり、好ましくは、炭素数2又は3のアルキレン基である。
 式(2)において、m及びnは、それぞれ独立に、0~6の整数であり、好ましくは0~3の整数であり、より好ましくは0又は1である。
 式(2)において、a及びbは、それぞれ独立に、0~10の整数であり、好ましくは1~3の整数であり、より好ましくは1又は2である。
 構成単位(B)の具体例として、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレン(BNE),DPBHBNA等に由来するものが挙げられる。
Figure JPOXMLDOC01-appb-C000037
 また、本発明の一実施形態の熱可塑性樹脂は、下記式(3)で表されるモノマー由来の構成単位(C)を有することが好ましい。
Figure JPOXMLDOC01-appb-C000038
 式(3)において、R及びRは、それぞれ独立に、ハロゲン原子、置換基を有してもよい炭素数1~20のアルキル基、置換基を有してもよい炭素数1~20のアルコキシル基、置換基を有してもよい炭素数5~20のシクロアルキル基、置換基を有してもよい炭素数5~20のシクロアルコキシル基、及び、置換基を有してもよい炭素数6~20のアリール基からなる群より選択される。
 R及びRは、好ましくは、水素原子、置換基を有してもよい炭素数6~20のアリール基、O、N及びSから選択される1つ以上のヘテロ環原子を含む、置換基を有してもよい炭素数6~20のヘテロアリール基であり、より好ましくは、水素原子、置換基を有してもよい炭素数6~20のアリール基であり、さらに好ましくは、水素原子、置換基を有してもよい炭素数6~12のアリール基である。
 式(3)において、Yは、単結合、置換基を有してもよいフルオレン基、又は下記式(4)~(10)で表される構造式のうちいずれかであり、好ましくは、単結合、又は、下記式(4)で表される構造式である。
Figure JPOXMLDOC01-appb-C000039
 式(4)~(10)中、R61、R62、R71及びR72は、それぞれ独立して、水素原子、ハロゲン原子、置換基を有してもよい炭素数1~20のアルキル基、又は、置換基を有してもよい炭素数6~30のアリール基を表すか、あるいは、R61及びR62、又はR71及びR72が互いに結合して形成する、置換基を有してもよい炭素数1~20の炭素環又は複素環を表す。
 式(4)~(10)において、r及びsは、それぞれ独立して、0~5000の整数である。
 上記式(3)において、A及びBは、それぞれ独立に、置換基を有してもよい炭素数1~5のアルキレン基であり、好ましくは、炭素数2又は3のアルキレン基である。上記式(3)において、p及びqは、それぞれ独立に、0~4の整数であり、好ましくは0又は1である。また、上記式(3)において、a及びbは、それぞれ独立に、0~10の整数であり、好ましくは0~5の整数であり、より好ましくは0~2の整数であり、例えば、0又は1である。
 構成単位(C)の具体例として、BPEF(9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン)、BPPEF(9,9-ビス(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)フルオレン)、9,9-ビス[6-(2-ヒドロキシエトキシ)ナフタレン-2-イル]フルオレン(BNEF)、ビスフェノールA、ビスフェノールAP、ビスフェノールAF、ビスフェノールB、ビスフェノールBP、ビスフェノールC、ビス(4-ヒドロキシフェニル)-2,2-ジクロロエチレン、ビスフェノールE、ビスフェノールF、ビスフェノールG、ビスフェノールM、ビスフェノールS、ビスフェノールP、ビスフェノールPH、ビスフェノールTMC、ビスフェノールP-AP(4,4’-(1-フェニルエチリデン)ビスフェノール)、ビスフェノールP-CDE(4,4’-シクロドデシリデンビスフェノール)、ビスフェノールP-HTG(4,4’-(3,3,5-トリメチルシクロへキシリデン)ビスフェノール)、ビスフェノールP-MIBK(4,4’-(1,3-ジメチルブチリデン)ビスフェノール)、ビスフェノールPEO-FL(ビスフェノキシエタノールフルオレン)、ビスフェノールP-3MZ(4-[1-(4-ヒドロキシフェニル)-3-メチルシクロヘキシル]フェノール)、ビスフェノールOC-FL(4,4’-[1-[4-[1-(4-ヒドロキシフェニル)-1-メチルエチル]フェニル]エチリデン]ビスフェノール)、ビスフェノールZ、BP-2EO(2,2’-[[1,1’-ビフェニル]-4,4’-ジイルビス(オキシ)ビスエタノール)、S-BOC(4,4’-(1-メチルエチリデン)ビス(2-メチルフェノール)、)TrisP-HAP(4,4’,4’’-エチリデントリスフェノール)等に由来するものが挙げられる。これらの中でも、構成単位(C)として、BPEF又はBNEFに由来するものが好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000040
 本発明の一実施形態の熱可塑性樹脂は、構成単位(A)を必須とするが、構成単位(B)を含み構成単位(C)を含まないポリマー、構成単位(C)を含み構成単位(B)を含まないポリマーの他にも、構成単位(B)と構成単位(C)とを有する共重合体、構成単位(B)を有するポリマーと構成単位(C)を有するポリマーとの混合物、これらの組み合わせであってもよい。構成単位(C)を含み構成単位(B)を含まないポリマーとして、例えば、下記の式(I-1)~(I-3)の構成単位を有するものが挙げられ、構成単位(B)と構成単位(C)とを有する共重合体として、例えば、下記の式(II-1)~(II-4)の構成単位を有するものが挙げられる。
Figure JPOXMLDOC01-appb-C000041
(式(I-1)中、m及びnは、それぞれ、1~10の整数であり、好ましくは1~5の整数であり、より好ましくは1であり、
 式(I-3)の繰り返し単位数は、1~10の整数であり、好ましくは1~5の整数であり、より好ましくは1である。)
 また、複数の種類の構成単位を有するポリマーとして、m及びnの値が例えば100以上と大きいブロック共重合体、及び、ランダム共重合体のいずれもが採用できるものの、ランダム共重合体が好ましく、より好ましくは、m及びnの値が1であるランダム共重合体が用いられる。
Figure JPOXMLDOC01-appb-C000042
(式(II-1)~(II-4)中、m及びnは、それぞれ独立して、1~10の整数であり、好ましくは1~5の整数であり、より好ましくは1である。)
 また、複数の種類の構成単位を有するポリマーとして、m及びnの値が例えば100以上と大きいブロック共重合体、及び、ランダム共重合体のいずれもが採用できるものの、ランダム共重合体が好ましく、より好ましくは、m及びnの値が1であるランダム共重合体が用いられる。
 共重合体において、構成単位(B)と構成単位(C)とのモル比は、1:99~99:1であることが好ましく、10:90~90:10であることがより好ましく、15:85~85:15であることがさらに好ましく、30:70~70:30であることが特に好ましい。また、混合物においては、構成単位(B)を有するポリマーと構成単位(C)を有するポリマーとの質量比が、1:99~99:1であることが好ましく、10:90~90:10であることがより好ましく、15:85~85:15であることがさらに好ましく、30:70~70:30であることが特に好ましい。
 本発明の一実施形態の熱可塑性樹脂は、更に、下記のモノマー群から選択される少なくとも一つのモノマーに由来する構成単位を含むものも好ましい。
Figure JPOXMLDOC01-appb-C000043
(上記式中、R及びRは、それぞれ独立に、水素原子、メチル基又はエチル基を表し、R及びRは、それぞれ独立に、水素原子、メチル基、エチル基又は炭素数2~5のアルキレングリコールを表す。)
 本発明の好ましい一実施形態のポリカーボネート樹脂には、製造時に副生成物として生じ得るフェノール系化合物などのアルコール系化合物や、反応せずに残存したジオール成分又は炭酸ジエステルが不純物として存在している場合がある。
 不純物であるフェノール系化合物などのアルコール系化合物や炭酸ジエステルは、成形体としたときの強度低下や、臭気発生の原因ともなり得るため、これらの含有量は極力少ない程好ましい。
 残存するフェノール系化合物の含有量は、ポリカーボネート樹脂100質量%に対して、好ましくは3000質量ppm以下、より好ましくは1000質量ppm以下、特に好ましくは300質量ppm以下である。
 残存するジオール成分の含有量は、ポリカーボネート樹脂100質量%に対して、好ましくは1000質量ppm以下、より好ましくは100質量ppm以下、特に好ましくは10質量ppm以下である。
 残存する炭酸ジエステルの含有量は、ポリカーボネート樹脂100質量%に対して、好ましくは1000質量ppm以下、より好ましくは100質量ppm以下、特に好ましくは10質量ppm以下である。
 特に、フェノール、t-ブチルフェノールなどの化合物の含有量が、少ないことが好ましく、これらの化合物が上記範囲内であることが好ましい。
 ポリカーボネート樹脂中に残存するフェノール系化合物の含有量は、ポリカーボネート樹脂から抽出したフェノール系化合物を、ガスクロマトグラフィーを用いて分析する手法により測定することができる。
 ポリカーボネート樹脂中に残存するアルコール系化合物の含有量についても、ポリカーボネート樹脂から抽出したアルコール系化合物を、ガスクロマトグラフィーを用いて分析する手法により測定することができる。
 ポリカーボネート樹脂中に残存するジオール成分、炭酸ジエステルの含有量も、ポリカーボネート樹脂からこれらの化合物を抽出し、ガスクロマトグラフィーを用いて分析する手法により測定することができる。
 フェノール系化合物などの副生アルコール系化合物、ジオール成分及び炭酸ジエステルの含有量は、検出されないほど低減してもよいが、生産性の観点から、効果を損なわない範囲で、わずかに含有していてもよい。また、わずかな量であれば、樹脂溶融時に可塑性を良好とすることもできる。
 残存するフェノール系化合物、ジオール成分又は炭酸ジエステルのそれぞれの含有量は、ポリカーボネート樹脂100質量%に対して、例えば、0.01質量ppm以上、0.1質量ppm以上、又は1質量ppm以上であってもよい。
 残存するアルコール系化合物の含有量は、ポリカーボネート樹脂100質量%に対して、例えば、0.01質量ppm以上、0.1質量ppm以上、又は1質量ppm以上であってもよい。
 なお、ポリカーボネート樹脂中のフェノール系化合物などの副生アルコール系化合物、ジオール成分及び炭酸ジエステルの含有量は、重縮合の条件や装置の設定を適宜調整することで、上記範囲となるように調節することは可能である。また、重縮合後の押出工程の条件によっても調節可能である。
 例えば、フェノール系化合物などの副生アルコール系化合物の残存量は、ポリカーボネート樹脂の重合に用いる炭酸ジエステルの種類や、重合反応温度および重合圧力等に関係する。これらを調整することでフェノール系化合物などの副生アルコール系化合物の残存量を低減し得る。
 例えば、炭酸ジエチルなどの炭酸ジアルキルを用いてポリカーボネート樹脂を製造した場合、分子量が上がりにくく、低分子量のポリカーボネートとなり、副生するアルキルアルコール系化合物の含有量が高くなる傾向にある。このようなアルキルアルコールは揮発性が高く、ポリカーボネート樹脂中に残存すると、樹脂の成形性が悪化する傾向にある。また、フェノール系化合物などの副生アルコール系化合物の残存量が多いと、樹脂の成形時に、臭気の問題が生じる可能性や、コンパウンド時に樹脂骨格の開裂反応が進行して分子量の低下が生じる可能性がある。したがって、得られたポリカーボネート樹脂中の残存する副生アルコール系化合物の含有量が、ポリカーボネート樹脂(100質量%)に対して、3000質量ppm以下であることが好ましい。残存するアルコール系化合物の含有量は、ポリカーボネート樹脂100質量%に対して、好ましくは3000質量ppm以下、より好ましくは1000質量ppm以下、特に好ましくは300質量ppm以下である。
<熱可塑性樹脂の物性>
(1)屈折率(nD)
 本発明の一実施形態において、熱可塑性樹脂は高屈折率であることが特徴の一つであり、屈折率は、1.599~1.750であることが好ましく、1.599~1.650であることがより好ましく、1.600~1.650であることが特に好ましい。本発明において屈折率は、後述する実施例に記載の方法で測定することができる。
(2)アッベ数(ν)
 本発明の一実施形態において、熱可塑性樹脂のアッベ数は、25.0~33.0であることが好ましく、25.5~32.0であることがより好ましく、26.0~30.0であることが特に好ましい。本発明においてアッベ数は、後述する実施例に記載の方法で測定することができる。
(3)ガラス転移温度(Tg)
 本発明の一実施形態において、熱可塑性樹脂は、高耐熱性であることが特徴の一つであり、ガラス転移温度(Tg)は、135~200℃であることが好ましく、140~180℃であることがより好ましく、140~170℃であることが特に好ましい。本発明においてガラス転移温度は、後述する実施例に記載の方法で測定することができる。
(4)ポリスチレン換算重量平均分子量(Mw)
 本発明の一実施形態において、熱可塑性樹脂のポリスチレン換算重量平均分子量は、10,000~200,000であることが好ましく、10,000~100,000であることがより好ましく、10,000~80,000であることが特に好ましい。
<熱可塑性樹脂組成物>
 本発明の別の実施形態は、上述した熱可塑性樹脂と添加剤とを含む熱可塑性樹脂組成物である。本実施形態の熱可塑性樹脂組成物は、本実施形態の所望とする効果を損なわない範囲で、上述した構成単位(A)を含む本発明の熱可塑性樹脂以外の樹脂を併用することができる。そのような樹脂としては、特に限定されないが、例えば、ポリカーボネート樹脂、ポリエステル樹脂、ポリエステルカーボネート樹脂、(メタ)アクリル樹脂、ポリアミド樹脂、ポリスチレン樹脂、シクロオレフィン樹脂、アクリロニトリル-ブタジエン-スチレン共重合樹脂、塩化ビニル樹脂、ポリフェニレンエーテル樹脂、ポリスルホン樹脂、ポリアセタール樹脂及びメチルメタクリレート-スチレン共重合樹脂からなる群より選択される少なくとも1つの樹脂が挙げられる。これらは種々既知のものを用いることができ、1種を単独で又は2種以上を併用して熱可塑性樹脂組成物に加えることができる。
[酸化防止剤]
 熱可塑性樹脂組成物は、上記添加剤として酸化防止剤を含むことが好ましい。
 酸化防止剤として、フェノール系酸化防止剤及びホスファイト系酸化防止剤の少なくとも一方を含むことが好ましい。
 フェノール系酸化防止剤として、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニルメチル)-2,4,6-トリメチルベンゼン、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジンe-2,4,6(1H,3H,5H)-トリオン、4,4’,4’’-(1-メチルプロパニル-3-イリデン)トリス(6-tert-ブチル-m-クレゾール)、6,6’-ジ-tert-ブチル-4,4’-ブチリデンジ-m-クレゾール、オクラデシル3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、ペンタエリスリトール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,9-ビス{2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1-ジメチルエチル}-2,4,8,10-テトラオキソスピロ[5.5]ウンデカン、ペンタエリスリトール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]等が挙げられ、好ましくは、ペンタエリスリトール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]である。
 ホスファイト系酸化防止剤として、2-エチルヘキシルジフェニルフォスファイト、イソデシルジフェニルフォスファイト、トリイソデシルフォスファイト、トリフェニルフォスファイト、3,9-ビス(オクタデシルオキシ)-2,4,8,10-テトラオキシ-3,9-ジフォスファスピロ[5.5]ウンデカン、3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジフォスファスピロ[5.5]ウンデカン、2,2’-メチルエンビス(4,6-ジ-tert-ブチルフェニル)2-エチルヘキシルフォスファイト、トリス(2,4-ジtert-ブチルフェニル)フォスファイト、トリス(ノニルフェニル)フォスファイト、テトラ-C12-15-アルキル(プロパン-2,2-ジイルビス(4,1-フェニルエン))ビス(フォスファイト)、3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジフォスファスピロ[5.5]ウンデカン等が挙げられ、好ましくは、3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジフォスファスピロ[5.5]ウンデカンである。
 酸化防止剤として、上述のいずれか1種類のみを用いても、2種類以上の混合物を用いてもよい。
 熱可塑性樹脂組成物において、酸化防止剤は、樹脂組成物の全重量を基準として1重量ppm~3000重量ppm含まれることが好ましい。熱可塑性樹脂組成物における酸化防止剤の含有量は、より好ましくは50重量ppm~2500重量ppmであり、さらに好ましくは100重量ppm~2000重量ppmであり、特に好ましくは150重量ppm~1500重量ppmであり、より一段と好ましくは200重量ppm~1200重量ppmである。
[離型剤]
 熱可塑性樹脂組成物は、上記添加剤として離型剤を含むことが好ましい。
 離型剤として、エステル化合物、例えば、グリセリン脂肪酸のモノ・ジグリセリド等のグリセリン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ソルビタン脂肪酸エステル等のグリコール脂肪酸エステル、高級アルコール脂肪酸エステル、脂肪族多価アルコールと脂肪族カルボン酸とのフルエステルあるいはモノ脂肪酸エステル等が挙げられる。離型剤として、脂肪族多価アルコールと脂肪族カルボン酸とのエステルを用いる場合、モノエステル、フルエステル等、いずれも採用できるが、例えばモノエステル等のフルエステル以外であってもよい。
 離型剤の具体例として、以下のものが挙げられる。
 すなわち、ソルビタン ステアレート、ソルビタン ラウレート、ソルビタン オレート、ソルビタン トリオレート、ソルビタン トリベヘネート、ソルビタン ステアレート、ソルビタン トリステアレート、ソルビタン カプリレート等のソルビタン脂肪酸エステル;
 プロピレングリコール モノステアレート、プロピレングリコール モノオレート、プロピレングリコール モノベヘネート、プロピレングリコール モノラウレート、プロピレングリコール モノパルミテート等のプロピレングリコール脂肪酸エステル;
 ステアリル ステアレート等の高級アルコール脂肪酸エステル;
 グリセリン モノステアレート、グリセリン モノ12-ヒドロキシステアレート等のグリセリン モノヒドロキシステアレート、グリセリン モノオレート、グリセリン モノベヘネート、グリセリン モノカプリレート、グリセリン モノカプレート、グリセリン モノラウレート等のモノグリセライド:グリセリンモノ・ジステアレート、グリセリンモノ・ジステアレート、グリセリンモノ・ジベヘネート、グリセリンモノ・ジオレート等のモノ・ジグリセライド:を含む、グリセリン脂肪酸エステルモノグリセライド;
 グリセリン ジアセトモノ ラウレート等のグリセリン脂肪酸エステルアセチル化モノグリセライド;
 クエン酸脂肪酸 モノグリセライド、コハク酸脂肪酸 モノグリセライド、ジアセチル酒石酸脂肪酸 モノグリセライド等のグリセリン脂肪酸エステル有機酸モノグリセライド;
 ジグリセリン ステアレート、ジグリセリン ラウレート、ジグリセリン オレート、ジグリセリン モノステアレート、ジグリセリン モノラウレート、ジグリセリン モノミリステート、ジグリセリン モノオレート、テトラグリセリン ステアレート、デカグリセリン ラウレート、デカグリセリン オレート、ポリグリセリン ポリリシノレート等のポリグリセリン脂肪酸エステル等が挙げられる。
 熱可塑性樹脂組成物において、離型剤は、樹脂組成物の全重量を基準として1重量ppm~5000重量ppm含まれることが好ましい。熱可塑性樹脂組成物における離型剤の含有量は、より好ましくは50重量ppm~4000重量ppmであり、さらに好ましくは100重量ppm~3500重量ppmであり、特に好ましくは500重量ppm~13000重量ppmであり、より一段と好ましくは1000重量ppm~2500重量ppmである。
[その他の添加剤]
 熱可塑性樹脂組成物には、上述の酸化防止剤及び離型剤以外にも、その他の添加剤を加えてもよい。例えば、熱可塑性樹脂組成物が含み得る添加剤として、配合剤、触媒失活剤、熱安定剤、可塑剤、充填剤、紫外線吸収剤、防錆剤、分散剤、消泡剤、レベリング剤、難燃剤、滑剤、染料、顔料、ブルーイング剤、核剤、透明化剤等が挙げられる。
 熱可塑性樹脂組成物における酸化防止剤及び離型剤以外のその他の添加剤の含有量は、好ましくは10重量ppm~5.0重量%であり、より好ましくは100重量ppm~2.0重量%であり、さらに好ましくは1000重量ppm~1.0重量%であるが、これには限定されない。
 上述の添加剤は、透過率に悪影響を与える可能性があり、過剰に添加しないことが好ましく、例えば、合計の添加量は上述の範囲内である。
 更に、本発明の別の実施形態は、下記一般式(1)で表される改質剤と熱可塑性樹脂とを含む、熱可塑性樹脂組成物である。
Figure JPOXMLDOC01-appb-C000044
 一般式(1)中、R及び環Aは、上述した一般式(1)におけるものと同義である。つまり、一般式(1)で表される新規な環式ジオール化合物は、改質剤として用いることもできる。
 本発明の一実施形態において、上記の改質剤は、熱可塑性樹脂と改質剤との質量比が、熱可塑性樹脂:改質剤=99.9:0.1~70:30となるように配合することができる。上記の質量比は、好ましくは99:1~70:30であってよく、より好ましくは98:2~70:30であってよく、例えば99:1、98:2、97:3、96:4、95:5、94:6、93:7、92:8、91:9、90:10、85:15、80:20、75:25、70:30などであってよい。本発明において、熱可塑性樹脂と改質剤との質量比が上記の範囲にあれば、高流動で成形性が良い樹脂組成物を提供することができる。
<光学部材>
 本発明の熱可塑性樹脂又は熱可塑性樹脂組成物(以下、単に「樹脂組成物」と略す)は、光学部材に好適に用いることができる。本発明の一実施形態において、本発明の樹脂組成物を含む光学部材が提供される。本発明の一実施形態において、光学部材には、光ディスク、透明導電性基板、光カード、シート、フィルム、光ファイバー、レンズ、プリズム、光学膜、基盤、光学フィルター、ハードコート膜等が含まれるが、これらに限定されない。本発明の樹脂組成物は、高流動でキャスト法による成形が可能であるため、特に薄型の光学部材の製造に好適である。本発明の好ましい実施形態において、本発明の樹脂組成物を用いて製造される光学部材は、光学レンズであってよい。本発明の別の好ましい実施形態において、本発明の樹脂組成物を用いて製造される光学部材は、光学フィルムであってよい。
 本発明の樹脂組成物を含む光学部材を射出成形で製造する場合、シリンダー温度260~350℃、金型温度90~170℃の条件にて成形することが好ましい。さらに好ましくは、シリンダー温度270~320℃、金型温度100~160℃の条件にて成形することが好ましい。シリンダー温度が350℃より高い場合では、樹脂組成物が分解着色し、260℃より低い場合では、溶融粘度が高く成形が困難になりやすい。また、金型温度が170℃より高い場合では、樹脂組成物からなる成形片が金型から取り出すことが困難になりやすい。他方、金型温度が、90℃未満では、成形時の金型内で樹脂が早く固まり過ぎて成形片の形状が制御しにくくなったり、金型に付された賦型を十分に転写することが困難になったりしやすい。
<光学レンズ>
 本発明の一実施形態において、樹脂組成物は、光学レンズに好適に用いることができる。本発明の樹脂組成物を用いて製造される光学レンズは、高屈折率であり、耐熱性に優れるため、望遠鏡、双眼鏡、テレビプロジェクター等、従来、高価な高屈折率ガラスレンズが用いられていた分野に用いることができ、極めて有用である。
 例えばスマートフォンのレンズでは、構成単位(A)を含む熱可塑性樹脂から成形されたレンズと、式(II-1)~(II-4)のいずれかの構成単位を含む樹脂、あるいは、
Figure JPOXMLDOC01-appb-C000045
(上記式中、R及びRは、それぞれ独立に、水素原子、メチル基又はエチル基を表し、R及びRは、それぞれ独立に、水素原子、メチル基、エチル基又は炭素数2~5のアルキレングリコールを表す。)
上記式のいずれかのモノマーに由来する構成単位を含む樹脂から成形されたレンズとを、重ね合わせてレンズユニットとして用いることができる。
 本発明の光学レンズは、必要に応じて非球面レンズの形を用いることが好適に実施される。非球面レンズは、1枚のレンズで球面収差を実質的にゼロとすることが可能であるため、複数の球面レンズの組み合わせで球面収差を取り除く必要が無く、軽量化及び成形コストの低減化が可能になる。したがって、非球面レンズは、光学レンズの中でも特にカメラレンズとして有用である。
 また、本発明の光学レンズは、成形流動性が高いため、薄肉小型で複雑な形状である光学レンズの材料として特に有用である。具体的なレンズサイズとして、中心部の厚みが0.05~3.0mmであることが好ましく、より好ましくは0.05~2.0mm、さらに好ましくは0.1~2.0mmである。また、直径が1.0mm~20.0mmであることが好ましく、より好ましくは1.0~10.0mm、さらに好ましくは、3.0~10.0mmである。また、その形状として片面が凸、片面が凹であるメニスカスレンズであることが好ましい。
 本発明の光学レンズは、金型成形、切削、研磨、レーザー加工、放電加工、エッチングなど任意の方法により成形される。この中でも、製造コストの面から金型成形がより好ましい。
<光学フィルム>
 本発明の一実施形態において、樹脂組成物は、光学フィルムに好適に用いることができる。特に、本発明のポリカーボネート樹脂を用いて製造される光学フィルムは、透明性及び耐熱性に優れるため、液晶基板用フィルム、光メモリーカード等に好適に使用される。
 光学フィルムへの異物の混入を極力避けるため、成形環境も当然低ダスト環境でなければならず、クラス6以下であることが好ましく、より好ましくはクラス5以下である。
 以下に本発明の実施例を比較例と共に示し、発明の内容を詳細に示すが、本発明はこれら実施例に限定されるものではない。
<使用化合物>
・イソフタルアルデヒド:東京化成工業株式会社製
・テレフタルアルデヒド:東京化成工業株式会社製
・オルトフタルアルデヒド:東京化成工業株式会社製
・p-トルエンスルホン酸一水和物:ナカライテスク株式会社製
・トリメチロールエタン、及びトリメチロールプロパン:東京化成工業株式会社製
・ビスフェノキシエタノールフルオレン(BPEF):東京化成工業株式会社製
・ジフェニルカーボネート:東京化成工業株式会社製
<ガスクロマトグラフィー(GC)による分析>
 環式ジオール化合物の純度は、下記の条件及び方法にてガスクロマトグラフィー(GC)分析を行い、面積百分率法より求めた。
(サンプル調整)
 環式ジオール化合物0.5gにメタノール50mlを加えて室温で振り混ぜ、環式ジオール化合物のメタノール溶液を調製し、分析用サンプルとした。
[測定条件]
 機器:島津製作所製 GC-2020
 カラム:アジレント・テクノロジー株式会社製DB-1 30m×0.25mm×0.25μm
 カラム温度:80℃(保持時間5min)-昇温速度10℃/min-320℃(保持時間5min)
 インジェクション温度/検出器温度:300℃/325℃
 スプリット比:30
 カラム流量1.17ml/min
 パージ流量10.0ml/min
 検出器:FID
 キャリアガス:ヘリウム
 ガス線速度:30cm/sec
 注入量:1μl
<融点>
 環式ジオール化合物の融点は、エスアイアイ・ナノテクノロジー社製示差熱量測定装置DSC6220を用いて測定した。試料10.7mgを同社製アルミパンに入れて密封し、50ml/分の窒素気流下、昇温速度10℃/分で30℃から200℃まで昇温して、吸熱ピークを観測した。そのピークトップが示した温度を融点とした。
<赤外吸収スペクトル(IRスペクトル)>
 環式ジオール化合物のIRスペクトルは、赤外分光分析装置(株式会社パーキンエルマージャパン製Spectrum400)を用い、ATR法(減衰全反射法)で行った。
<屈折率(nD)>
 JIS B 7071-2:2018に基づき、ポリカーボネート樹脂を成形してVブロックを得て試験片とした。23℃にて屈折率計(島津製作所製KPR-3000)で測定した。
<アッベ数(ν)>
 屈折率測定で用いたものと同様の試験片(Vブロック)を用い、屈折率計を用い、23℃下での波長486nm、589nm、656nmの屈折率を測定し、下記式を用いてアッベ数を算出した。
   ν=(nD-1)/(nF-nC)
   nD:波長589nmでの屈折率
   nC:波長656nmでの屈折率
   nF:波長486nmでの屈折率
<ガラス転移温度(Tg)>
 JIS K7121―1987に基づき示差熱走査熱量分析計(株式会社日立ハイテクサイエンス製 X-DSC7000)により、10℃/分の昇温プログラムにて測定した。
<重量平均分子量(Mw)>
 樹脂の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)法によって測定し、標準ポリスチレン換算で算出した。使用装置、カラム、及び測定条件は以下の通りである。
 ・GPC装置:東ソー(株)製、HLC-8420GPC
 ・カラム:東ソー(株)製、TSKgel SuperHM-M ×3本
      東ソー(株)製、TSKgel guardcolumn SuperH-H ×1本
      東ソー(株)製、TSKgel SuperH-RC ×1本
 ・検出器:RI検出器
 ・標準ポリスチレン:東ソー(株)製、標準ポリスチレンキット PStQuick C
 ・試料溶液:0.2質量%テトラヒドロフラン溶液
 シリンジフィルター(ジーエルサイエンス株式会社製、GLクロマトディスク、孔径0.45μm)にてろ過してからカラムへ注入した。
 ・溶離液:テトラヒドロフラン
 ・溶離液流速:0.6mL/min
 ・カラム温度:40℃
[合成例1]
 攪拌機、温度計、冷却管付きディーンスタークを装着した500MLの4つ口フラスコにイソフタルアルデヒド13.4g(0.1mol)、p-トルエンスルホン酸一水和物0.67g、トリメチロールエタン26.4g(0.22mol)、トルエン60ml、N、N-ジメチルホルムアミド60mlを加えた後、昇温し、還流条件下で、生成水を抜きながら約6時間攪拌した。反応混合物を室温に戻し、トリエチルアミン1gで中和後、トルエンを減圧条件下で59ml留去した後、イオン交換水100gを追加し、氷水で冷却した。生成した結晶を濾別し、得られた結晶をまずイオン交換水50mlで二回リンスした後、60℃温水100mlで二回リンスした。最後にイオン交換水50mlで二回リンスした。湿結晶を80℃で、減圧乾燥することにより、純度99.7GC面積%のイソフタルアルデヒドトリメチロールエタンジアセタールを26.7g(0.08mol)得た。結晶の融点165.9℃であった。
 得られたイソフタルアルデヒドトリメチロールエタンジアセタールについて、IRスペクトルを測定し、得られた化合物がイソフタルアルデヒドトリメチロールエタンジアセタールであることを確認した。
IR(cm-1):653,690,714,803,891,962,982,1007,1024,1043,1100,1164,1378,2866,2955,3349
[合成例2]
 攪拌機、温度計、冷却管付きディーンスタークを装着した500MLの4つ口フラスコにイソフタルアルデヒド13.4g(0.1mol)、p-トルエンスルホン酸一水和物0.67g、トリメチロールプロパン29.5g(0.22mol)、トルエン60ml、N、N-ジメチルホルムアミド60mlを加えた後、昇温し、還流条件下で、生成水を抜きながら約8時間攪拌した。反応混合物を室温に戻し、トリエチルアミン1gで中和後、トルエンを減圧条件下で60ml留去した後、イオン交換水150gを追加し、氷水で冷却した。生成した結晶を濾別し、得られた結晶をまずイオン交換水50mlで二回リンスした後、60℃温水100mlで二回リンスした。最後にイオン交換水50mlで二回リンスした。湿結晶を80℃で減圧乾燥することにより、純度92.7GC面積%のイソフタルアルデヒドトリメチロールプロパンジアセタールを得た。得られた結晶はイソプロピルアルコール60gを加えて加熱溶解し、イソプロピルアルコール40gを留去後100mlの水を加えた。析出した結晶を濾別し、結晶をイオン交換水50mlで二回リンスした後、湿結晶を80℃で減圧乾燥することにより、純度98.5GC面積%のイソフタルアルデヒドトリメチロールプロパンジアセタールを27.0g(0.07mol)得た。結晶の融点95.5℃であった。
 得られたイソフタルアルデヒドトリメチロールプロパンジアセタールについて、IRスペクトルを測定し、得られた化合物がイソフタルアルデヒドトリメチロールプロパンジアセタールであることを確認した。
IR(cm-1):712,803,933,971,1030,1101,1165,1377,2859,2962,3374
[合成例3]
 攪拌機、温度計、冷却管付きディーンスタークを装着した500MLの4つ口フラスコにテレフタルアルデヒド13.4g(0.1mol)、p-トルエンスルホン酸一水和物0.67g、トリメチロールエタン26.4g(0.22mol)、トルエン60ml、N、N-ジメチルホルムアミド60mlを加えた後、昇温し、還流条件下で、生成水を抜きながら約6時間攪拌した。反応混合物を室温に戻し、トリエチルアミン1gで中和後、トルエンを減圧条件下で50ml留去した後、イオン交換水100gを追加し、氷水で冷却した。生成した結晶を濾別し、得られた結晶をまずイオン交換水50mlで二回リンスした後、60℃温水50mlで二回リンスした。湿結晶を100℃で、減圧乾燥することにより、純度99.7GC面積%のテレフタルアルデヒドトリメチロールエタンジアセタールを30.4g(0.09mol)得た。結晶の融点は247.3℃であった。
 得られたテレフタルアルデヒドトリメチロールエタンジアセタールについて、IRスペクトルを測定し、得られた化合物がテレフタルアルデヒドトリメチロールエタンジアセタールであることを確認した。
IR(cm-1):656,778,804,918,964,977,993,1016,1042,1094,1374,2844,2933,2959,3413
[合成例4]
 攪拌機、温度計、冷却管付きディーンスタークを装着した500MLの4つ口フラスコにテレフタルアルデヒド13.4g(0.1mol)、p-トルエンスルホン酸一水和物0.67g、トリメチロールプロパン26.4g(0.2mol)、トルエン60ml、N、N-ジメチルホルムアミド60mlを加えた後、昇温し、還流条件下で、生成水を抜きながら約10時間攪拌した。反応混合物を室温に戻し、トリエチルアミン1gで中和後、トルエンを減圧条件下で50ml留去した後、イオン交換水150gを追加し、氷水で冷却した。生成した結晶を濾別し、得られた結晶をまずイオン交換水50mlで二回リンスした後、60℃温水50mlで二回リンスした。湿結晶を100℃で減圧乾燥することにより、純度96.9GC面積%のテレフタルアルデヒドトリメチロールプロパンジアセタールを得た。得られた結晶はイソプロピルアルコール140gを加えて加熱溶解し、イソプロピルアルコールを留去後析出した結晶を濾別し、結晶をイオン交換水50mlで二回リンスした後、湿結晶を100℃で減圧乾燥することにより、純度97.0GC面積%のテレフタルアルデヒドトリメチロールプロパンジアセタールを30.0g(0.08mol)得た。結晶の融点は187.2℃であった。
 得られたテレフタルアルデヒドトリメチロールプロパンジアセタールについて、IRスペクトルを測定し、得られた化合物がテレフタルアルデヒドトリメチロールプロパンジアセタールであることを確認した。
IR(cm-1):801,971,1000,1018,1099,1379,2855,2928,2967,3355
[合成例5]
 攪拌機、温度計、冷却管付きディーンスタークを装着した1000MLの4つ口フラスコにオルトフタルアルデヒド40.2g(0.3mol)、p-トルエンスルホン酸一水和物1.0g、トリメチロールエタン75.6g(0.63mol)、キシレン180ml、N-メチルピロリドン180mlを加えた後、昇温し、還流条件下で、生成水を抜きながら約4時間攪拌した。キシレンを減圧条件下で170ml留去した後、反応混合物を室温に戻し、飽和炭酸水素ナトリウム25mlで中和後、イオン交換水400gを追加した。酢酸エチル100mlを追加し、有機層と水層を分液ロートにて分離した。分取した水層へ酢酸エチルを100ml追加し、有機層と水層を分取する操作を合計2回行った。得られた有機層をロータリーエバポレーターにて有機層を濃縮し、純度99.2%(GC面積百分率)のオルトフタルアルデヒドトリメチロールエタンジアセタールを90.2g(0.27mol)得た。
 得られたオルトフタルアルデヒドトリメチロールエタンジアセタールについて、IRスペクトルを測定し、得られた化合物がオルトフタルアルデヒドトリメチロールエタンジアセタールであることを確認した。
IR(cm-1):663,698,760,920,948,969,1003,1021,1042,1082,1099,1203,1386,1455,2850,2955,3414
(実施例1)
 原料として、下記構造式で表される9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(BPEF)22.6470g(0.0516モル)、合成例1で得られたイソフタルアルデヒドトリメチロールエタンジアセタール(以下、化合物1とする)7.4982g(0.0222モル)、ジフェニルカーボネート(DPC)16.2833g(0.0760モル)及び炭酸水素ナトリウム0.6201×10-4g(0.7381×10-6モル)を撹拌機及び留出装置付きの300mL反応器に入れ、系内を窒素雰囲気101.3kPaに設定した。この反応器を200℃に加熱したオイルバスに浸けエステル交換反応を開始した。反応開始から5分後に攪拌を開始し、20分後、10分かけて101.3kPaから26.66kPaまで減圧した。減圧しながら温度を210℃まで加熱し、反応開始後60分で220℃まで昇温し、80分後から10分かけて20.00kPaまで減圧し、温度を240℃まで昇温させるとともに0kPaまで減圧したのち30分間保持した後、反応系内に窒素ガスを導入し、101.3kPaに戻し、ポリカーボネート樹脂を得た。
 得られたポリカーボネート樹脂の屈折率は1.6125、アッベ数は25.98、Tgは142℃、ポリスチレン換算重量平均分子量(Mw)は34459であった。原料であるジオール化合物の含有量と得られた樹脂の物性を下記表1に示す。
(実施例2)
 原料として、化合物1を24.9709g(0.0738モル)、ジフェニルカーボネート(DPC)16.2833g(0.0760モル)及び炭酸水素ナトリウム0.6201×10-4g(0.7381×10-6モル)を用いた以外は実施例1と同様にしてポリカーボネート樹脂を得た。
 得られたポリカーボネート樹脂の屈折率は1.536、アッベ数は38.01、Tgは134℃、ポリスチレン換算重量平均分子量(Mw)は34425であった。原料であるジオール化合物の含有量と得られた樹脂の物性を下記表1に示す。
(実施例3)
 原料として、下記構造式で表される9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(BPEF)20.9233g(0.0477モル)、合成例3で得られたテレフタルアルデヒドトリメチロールエタンジアセタール(以下、化合物2とする)6.9132g(0.0204モル)、ジフェニルカーボネート(DPC)15.0581g(0.0703モル)及び炭酸水素ナトリウム0.5725×10-4g(0.6814×10-6モル)を撹拌機及び留出装置付きの300mL反応器に入れ、系内を窒素雰囲気101.3kPaに設定した。この反応器を200℃に加熱したオイルバスに浸けエステル交換反応を開始した。反応開始から5分後に攪拌を開始し、20分後、10分かけて101.3kPaから26.66kPaまで減圧した。減圧しながら温度を210℃まで加熱し、反応開始後70分で220℃まで昇温し、90分後から10分かけて20.00kPaまで減圧し、温度を240℃まで昇温させるとともに0kPaまで減圧したのち30分間保持した後、反応系内に窒素ガスを導入し、101.3kPaに戻し、ポリカーボネート樹脂を得た。
 得られたポリカーボネート樹脂の屈折率は1.6095、アッベ数は26.09、Tgは153℃、ポリスチレン換算重量平均分子量(Mw)は16844であった。原料であるジオール化合物の含有量と得られた樹脂の物性を下記表1に示す。
(実施例4)
 下記表1に示す量に変更した以外は、実施例3と同様にポリカーボネート樹脂を得た。得られた樹脂の物性を下記表1に示す。
(比較例1)
 原料として、BPEF 42.5953g(0.0971モル)、下記構造式で表されるスピログリコール(3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン)(SPG)12.6658g(0.0416モル)、DPC 30.6188g(0.1429モル)及び炭酸水素ナトリウム1.1656×10-4g(1.3874×10-6モル)を用いた以外は実施例1と同様にしてポリカーボネート樹脂を得た。
 得られたポリカーボネート樹脂の屈折率は1.5998、アッベ数は26.53、Tgは134℃、ポリスチレン換算重量平均分子量(Mw)は39,000であった。原料であるジオール化合物の含有量と得られた樹脂の物性を下記表1に示す。
(比較例2)
 原料として、スピログリコール(3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン)(SPG)42.2300g(0.0416モル)、DPC 30.6188g(0.1429モル)及び炭酸水素ナトリウム1.1656×10-4g(1.3874×10-6モル)を用いた以外は実施例1と同様にして反応を試みたが、反応中に結晶化してしまい、ポリカーボネート樹脂は得られなかった。
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-T000047
※試料溶液調製後、不溶物の存在を目視にて確認した。シリンジフィルター(ジーエルサイエンス株式会社製、GLクロマトディスク、孔径0.45μm)にてろ過してからカラムへ注入したため、溶解部分のみのデータである。
 

Claims (21)

  1.  下記一般式(1)で表されるモノマー由来の構成単位(A)を含む熱可塑性樹脂。
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rは、同一又は異なって、それぞれ、水素原子、フッ素原子、塩素原子、臭素原子、フェニル基又は炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基を示す。環Aは、フッ素原子、塩素原子、臭素原子、フェニル基、炭素数1~6の直鎖状若しくは分岐鎖状のアルコキシ基、及び炭素数1~6の直鎖状若しくは分岐鎖状のアルキル基からなる群から選択される1~4個の基で置換されていてもよいベンゼン環を示す。]
  2.  ポリカーボネート樹脂又はポリエステルカーボネート樹脂である、請求項1に記載の熱可塑性樹脂。
  3.  前記一般式(1)におけるRが、同一又は異なって、それぞれ、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基又はフェニル基である、請求項1又は2に記載の熱可塑性樹脂。
  4.  前記一般式(1)において、Rが、同一又は異なって、それぞれ、メチル基又はエチル基である、請求項3に記載の熱可塑性樹脂。
  5.  前記一般式(1)において、環Aが、炭素数1~6の直鎖状若しくは分岐鎖状のアルコキシ基、及び炭素数1~6の直鎖状若しくは分岐鎖状のアルキル基からなる群から選択される1~4個の基で置換されていてもよいベンゼン環である、請求項1から4のいずれかに記載の熱可塑性樹脂。
  6.  前記一般式(1)において、Rが、メチル基又はエチル基であり、環Aが、メチル基及びエチル基からなる群から選択される1~4個の基で置換されていてもよいベンゼン環である、請求項1から5のいずれかに記載の熱可塑性樹脂。
  7.  前記一般式(1)で表されるモノマーが、下記一般式(1a)で表されるモノマーである、請求項1又は2に記載の熱可塑性樹脂。
    Figure JPOXMLDOC01-appb-C000002
    [式中、Rは、同一又は異なって、それぞれ、水素原子、フッ素原子、塩素原子、臭素原子、フェニル基、炭素数1~6の直鎖状若しくは分岐鎖状のアルコキシ基、又は炭素数1~6の直鎖状若しくは分岐鎖状のアルキル基を示す。Rは、前記に同じ。]
  8.  前記一般式(1)で表されるモノマーが、下記一般式(1b)で表されるモノマーである、請求項1又は2に記載の熱可塑性樹脂。
    Figure JPOXMLDOC01-appb-C000003
    [式中、Rは、同一又は異なって、それぞれ、水素原子、フッ素原子、塩素原子、臭素原子、フェニル基、炭素数1~6の直鎖状若しくは分岐鎖状のアルコキシ基、又は炭素数1~6の直鎖状若しくは分岐鎖状のアルキル基を示す。Rは、前記に同じ。]
  9.  前記一般式(1)で表されるモノマーが、下記一般式(1c)で表されるモノマーである、請求項1又は2に記載の熱可塑性樹脂。
    Figure JPOXMLDOC01-appb-C000004
    [式中、Rは、同一又は異なって、それぞれ、水素原子、フッ素原子、塩素原子、臭素原子、フェニル基、炭素数1~6の直鎖状若しくは分岐鎖状のアルコキシ基、又は炭素数1~6の直鎖状若しくは分岐鎖状のアルキル基を示す。Rは、前記に同じ。]
  10.  前記熱可塑性樹脂が、下記式(2)で表されるモノマー由来の構成単位(B)及び/又は下記式(3)で表されるモノマー由来の構成単位(C)を含む、請求項1から9のいずれかに記載の熱可塑性樹脂。
    Figure JPOXMLDOC01-appb-C000005
    (式(2)中、
     R及びRは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよい炭素数1~20のアルキル基、置換基を有してもよい炭素数1~20のアルコキシル基、置換基を有してもよい炭素数5~20のシクロアルキル基、置換基を有してもよい炭素数5~20のシクロアルコキシル基、置換基を有してもよい炭素数6~20のアリール基、O、N及びSから選択される1つ以上のヘテロ環原子を含む、置換基を有してもよい炭素数6~20のヘテロアリール基、置換基を有してもよい炭素数6~20のアリールオキシ基、及び、-C≡C-Rからなる群より選択され、
     Rは置換基を有してもよい炭素数6~20のアリール基、又は、O、N及びSから選択される1つ以上のヘテロ環原子を含む、置換基を有してもよい炭素数6~20のヘテロアリール基を表し、
     Xは、単結合であるか、又は置換基を有してもよいフルオレン基を表し、
     A及びBは、それぞれ独立に、置換基を有してもよい炭素数1~5のアルキレン基を表し、
     m及びnは、それぞれ独立に、0~6の整数を表し、
     a及びbは、それぞれ独立に、0~10の整数を表す。)
    Figure JPOXMLDOC01-appb-C000006
    (式(3)中、
     R及びRは、それぞれ独立に、水素原子、ハロゲン原子、置換基を有してもよい炭素数1~20のアルキル基、置換基を有してもよい炭素数1~20のアルコキシル基、置換基を有してもよい炭素数5~20のシクロアルキル基、置換基を有してもよい炭素数5~20のシクロアルコキシル基、及び、置換基を有してもよい炭素数6~20のアリール基からなる群より選択され、
     Yは、単結合、置換基を有してもよいフルオレン基、又は下記式(4)~(10)で表される構造式のうちいずれかであり、
    Figure JPOXMLDOC01-appb-C000007
    (式(4)~(10)中、
     R61、R62、R71及びR72は、それぞれ独立して、水素原子、ハロゲン原子、置換基を有してもよい炭素数1~20のアルキル基、又は、置換基を有してもよい炭素数6~30のアリール基を表すか、あるいは、R61及びR62、又はR71及びR72が互いに結合して形成する、置換基を有してもよい炭素数1~20の炭素環又は複素環を表し、
     r及びsは、それぞれ独立して、0~5000の整数を表す。)
     A及びBは、それぞれ独立に、置換基を有してもよい炭素数1~5のアルキレン基を表し、
     p及びqは、それぞれ独立に、0~4の整数を表し、
     a及びbは、それぞれ独立に、0~10の整数を表す。)
  11.  前記式(2)及び式(3)において、前記A及びBが、それぞれ独立に、炭素数2又は3のアルキレン基を表す、請求項10に記載の熱可塑性樹脂。
  12.  前記熱可塑性樹脂が、少なくとも、BPEF,BNE,BNEF及びDPBHBNAのいずれかに由来する構成単位を含む、請求項10又は11に記載の熱可塑性樹脂。
  13.  前記熱可塑性樹脂が、更に、下記のモノマー群から選択される少なくとも一つのモノマーに由来する構成単位を含む、請求項1から12のいずれかに記載の熱可塑性樹脂。
    Figure JPOXMLDOC01-appb-C000008
    (上記式中、R及びRは、それぞれ独立に、水素原子、メチル基又はエチル基を表し、R及びRは、それぞれ独立に、水素原子、メチル基、エチル基又は炭素数2~5のアルキレングリコールを表す。)
  14.  前記熱可塑性樹脂のポリスチレン換算の重量平均分子量(Mw)が、10,000~200,000である、請求項1から13のいずれかに記載の熱可塑性樹脂。
  15.  前記熱可塑性樹脂の屈折率(nD)が、1.599~1.750である、請求項1から14のいずれかに記載の熱可塑性樹脂。
  16.  前記熱可塑性樹脂のアッベ数(ν)が、25.0~33.0である、請求項1から15のいずれかに記載の熱可塑性樹脂。
  17.  前記熱可塑性樹脂のガラス転移温度が、135~200℃である、請求項1から16のいずれかに記載の熱可塑性樹脂。
  18.  下記一般式(1)で表される改質剤と熱可塑性樹脂とを含む、熱可塑性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000009
    [式中、Rは、同一又は異なって、それぞれ、水素原子、フッ素原子、塩素原子、臭素原子、フェニル基又は炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基を示す。環Aは、フッ素原子、塩素原子、臭素原子、フェニル基、炭素数1~6の直鎖状若しくは分岐鎖状のアルコキシ基、及び炭素数1~6の直鎖状若しくは分岐鎖状のアルキル基からなる群から選択される1~4個の基で置換されていてもよいベンゼン環を示す。]
  19.  請求項1から17のいずれかに記載の熱可塑性樹脂又は請求項18に記載の熱可塑性樹脂組成物を含む、光学部材。
  20.  請求項1から17のいずれかに記載の熱可塑性樹脂又は請求項18に記載の熱可塑性樹脂組成物を含む、光学レンズ。
  21.  請求項1から17のいずれかに記載の熱可塑性樹脂又は請求項18に記載の熱可塑性樹脂組成物を含む、光学フィルム。
     
PCT/JP2022/002759 2021-01-27 2022-01-26 熱可塑性樹脂及びそれを含む光学レンズ WO2022163674A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202280011315.9A CN116829618A (zh) 2021-01-27 2022-01-26 热塑性树脂及含有该热塑性树脂的光学透镜
JP2022578430A JPWO2022163674A1 (ja) 2021-01-27 2022-01-26
EP22745894.0A EP4286448A4 (en) 2021-01-27 2022-01-26 THERMOPLASTIC RESIN AND OPTICAL LENS
US18/273,105 US20240166867A1 (en) 2021-01-27 2022-01-26 Thermoplastic resin and optical lens including same
KR1020237010328A KR20230132439A (ko) 2021-01-27 2022-01-26 열가소성 수지 및 그것을 포함하는 광학 렌즈

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-010734 2021-01-27
JP2021010734 2021-01-27
JP2021056372 2021-03-30
JP2021-056372 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022163674A1 true WO2022163674A1 (ja) 2022-08-04

Family

ID=82653571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002759 WO2022163674A1 (ja) 2021-01-27 2022-01-26 熱可塑性樹脂及びそれを含む光学レンズ

Country Status (6)

Country Link
US (1) US20240166867A1 (ja)
EP (1) EP4286448A4 (ja)
JP (1) JPWO2022163674A1 (ja)
KR (1) KR20230132439A (ja)
TW (1) TW202239807A (ja)
WO (1) WO2022163674A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026499A (ja) * 2009-07-28 2011-02-10 Teijin Chem Ltd 光弾性定数が低いポリカーボネート樹脂を用いたフィルム状物
WO2011083705A1 (ja) * 2010-01-07 2011-07-14 三菱瓦斯化学株式会社 ポリエステル樹脂及び光学レンズ
WO2011086583A2 (en) * 2010-01-15 2011-07-21 Reliance Industries Limited Novel nucleating agents for polyolefins based on acetal compounds
JP2016191722A (ja) * 2015-03-30 2016-11-10 富士フイルム株式会社 偏光板および表示装置
WO2017078073A1 (ja) 2015-11-04 2017-05-11 三菱瓦斯化学株式会社 ポリカーボネート樹脂
JP2018002894A (ja) 2016-07-04 2018-01-11 帝人株式会社 熱可塑性樹脂
JP2018002895A (ja) 2016-07-04 2018-01-11 帝人株式会社 熱可塑性樹脂
JP2018002893A (ja) 2016-07-04 2018-01-11 帝人株式会社 熱可塑性樹脂
JP2018059074A (ja) 2016-10-06 2018-04-12 大阪ガスケミカル株式会社 フルオレン骨格を有するポリエステル樹脂

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026499A (ja) * 2009-07-28 2011-02-10 Teijin Chem Ltd 光弾性定数が低いポリカーボネート樹脂を用いたフィルム状物
WO2011083705A1 (ja) * 2010-01-07 2011-07-14 三菱瓦斯化学株式会社 ポリエステル樹脂及び光学レンズ
WO2011086583A2 (en) * 2010-01-15 2011-07-21 Reliance Industries Limited Novel nucleating agents for polyolefins based on acetal compounds
JP2016191722A (ja) * 2015-03-30 2016-11-10 富士フイルム株式会社 偏光板および表示装置
WO2017078073A1 (ja) 2015-11-04 2017-05-11 三菱瓦斯化学株式会社 ポリカーボネート樹脂
JP2018002894A (ja) 2016-07-04 2018-01-11 帝人株式会社 熱可塑性樹脂
JP2018002895A (ja) 2016-07-04 2018-01-11 帝人株式会社 熱可塑性樹脂
JP2018002893A (ja) 2016-07-04 2018-01-11 帝人株式会社 熱可塑性樹脂
JP2018059074A (ja) 2016-10-06 2018-04-12 大阪ガスケミカル株式会社 フルオレン骨格を有するポリエステル樹脂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4286448A4

Also Published As

Publication number Publication date
US20240166867A1 (en) 2024-05-23
EP4286448A1 (en) 2023-12-06
KR20230132439A (ko) 2023-09-15
TW202239807A (zh) 2022-10-16
JPWO2022163674A1 (ja) 2022-08-04
EP4286448A4 (en) 2024-07-17

Similar Documents

Publication Publication Date Title
WO2023195504A1 (ja) 熱可塑性樹脂及びそれを含む光学レンズ
JP2019131824A (ja) 熱可塑性樹脂の製造方法
KR20190041544A (ko) 디하이드록시 화합물
JP2023138918A (ja) 熱可塑性樹脂及びそれを含む光学レンズ
WO2022163674A1 (ja) 熱可塑性樹脂及びそれを含む光学レンズ
CN116829618A (zh) 热塑性树脂及含有该热塑性树脂的光学透镜
WO2022270367A1 (ja) 熱可塑性樹脂及びそれを含む光学レンズ
US20230399510A1 (en) Thermoplastic resin and optical lens including same
US20230235117A1 (en) Resin composition
WO2024135717A1 (ja) 熱可塑性樹脂及びそれを含む光学レンズ
WO2024024602A1 (ja) 環式ジオール化合物から得られる樹脂、及びそれを含む光学レンズ
WO2022163684A1 (ja) 環式ジオール化合物、該化合物の製造方法及び該化合物の用途
WO2023195505A1 (ja) 熱可塑性樹脂及びそれを含む光学レンズ
WO2023068290A1 (ja) 熱可塑性樹脂組成物、成形体、熱可塑性樹脂組成物の製造方法及び透過率向上方法
WO2022034898A1 (ja) 光学材料用の熱可塑性樹脂組成物、成形体、配合剤、熱可塑性樹脂組成物の製造方法及び透過率向上方法
CN116940559A (zh) 环式二醇化合物、该化合物的制造方法和该化合物的用途
WO2023100778A1 (ja) 熱可塑性樹脂を含む光学レンズ
JP2023139355A (ja) 熱可塑性樹脂、それからなる光学部材およびジオール化合物
JP2024117294A (ja) 環式ジアルコール化合物およびその製造方法
JPWO2020162533A1 (ja) ポリカーボネート樹脂組成物及びそれを用いた光学レンズ
KR20230051196A (ko) 환식 디올 화합물, 해당 화합물의 제조 방법 및 해당 화합물의 용도
KR20240001309A (ko) 열가소성 수지 조성물 및 그것에 첨가되는 배합제
KR20240095171A (ko) 열가소성 수지 및 그것을 포함하는 광학 렌즈
JP2023155974A (ja) 熱可塑性樹脂およびその成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745894

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578430

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18273105

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280011315.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022745894

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022745894

Country of ref document: EP

Effective date: 20230828