WO2017078070A1 - 樹脂組成物ならびにそれを含む光学レンズ、シートおよびフィルム - Google Patents

樹脂組成物ならびにそれを含む光学レンズ、シートおよびフィルム Download PDF

Info

Publication number
WO2017078070A1
WO2017078070A1 PCT/JP2016/082609 JP2016082609W WO2017078070A1 WO 2017078070 A1 WO2017078070 A1 WO 2017078070A1 JP 2016082609 W JP2016082609 W JP 2016082609W WO 2017078070 A1 WO2017078070 A1 WO 2017078070A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
carbon atoms
group
general formula
resin
Prior art date
Application number
PCT/JP2016/082609
Other languages
English (en)
French (fr)
Inventor
加藤 宣之
近藤 光輝
宗憲 白武
健太朗 石原
晃司 廣瀬
慎也 池田
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020187014622A priority Critical patent/KR20180079364A/ko
Priority to US15/770,888 priority patent/US10634819B2/en
Priority to CN201680063611.8A priority patent/CN108350262B/zh
Priority to JP2017548808A priority patent/JP7211705B2/ja
Publication of WO2017078070A1 publication Critical patent/WO2017078070A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/045Aromatic polycarbonates containing aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/307General preparatory processes using carbonates and phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/02Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Definitions

  • the present invention relates to a resin composition containing a resin having a specific fluorene structure, and an optical lens, sheet and film containing the same.
  • Optical glass or optical transparent resin is used as a material for optical elements used in the optical systems of various cameras such as cameras, film-integrated cameras, and video cameras.
  • Optical glass is excellent in heat resistance, transparency, dimensional stability, chemical resistance, etc., and there are many types of optical glass with various refractive indexes and Abbe numbers, but the material cost is high and the molding process The problem is that the productivity is poor and the productivity is low.
  • processing to an aspheric lens used for aberration correction is a serious obstacle to practical use because it requires extremely high technology and high cost.
  • optical lenses made of optical transparent resins can be mass-produced by injection molding, and have the advantage of being easy to manufacture aspherical lenses, Currently used as a camera lens.
  • the optical transparent resin include polycarbonate made of bisphenol A, polymethyl methacrylate, and amorphous polyolefin.
  • polycarbonate resins are also used as sheets or films for optical applications. Sheets and films made of polycarbonate resin have high transparency and heat resistance, and are therefore suitably used for front protective sheets and light guide sheets of liquid crystal display devices.
  • Patent Document 1 describes that use of a dicarboxylic acid having a fluorene structure as a raw material in a polyester resin is effective in reducing birefringence.
  • Patent Document 2 resins having various optical properties such as a high refractive index and a low Abbe number have also been developed.
  • electronic devices such as digital cameras, smartphones, tablets, and the like have become widespread, and various models have been released, and the cameras mounted on these devices are also becoming more functional (for example, higher pixels, lower F values).
  • a high-refractive-index and small lens is required, and an aspheric lens is often used in designing a lens unit.
  • a sheet or film excellent in formability is also required. In order to obtain such a precise lens and a sheet or film excellent in formability, not only optical properties but also resins having good fluidity and strength are required.
  • an object of the present invention is to provide a resin composition excellent in fluidity and strength.
  • a resin composition containing a resin having a specific fluorene structure and further containing a predetermined amount of a polymer and / or compound having a vinyl group at the terminal is excellent in fluidity and strength. It was.
  • the present invention is as follows, for example.
  • a resin containing a repeating unit derived from a compound represented by the following general formula (1) (excluding a polymer having a terminal structure represented by the following general formula (A)); A polymer having a terminal structure represented by the following general formula (A) and / or a compound represented by the following general formula (B):
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxyl group having 1 to 20 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a cycloalkoxyl having 5 to 20 carbon atoms.
  • a resin composition comprising: The H 1 -NMR spectrum of the resin composition is Satisfy the relationship Resin composition.
  • the resin containing a repeating unit derived from the compound represented by the general formula (1) is a resin comprising a repeating unit derived from the compound represented by the general formula (1). Resin composition.
  • the resin further includes a repeating unit derived from a compound represented by the following general formula (2).
  • R 6 and R 7 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxyl group having 1 to 20 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a cycloalkoxyl having 5 to 20 carbon atoms.
  • Y is each independently an optionally branched alkylene group having 2 to 6 carbon atoms, a cycloalkylene group having 6 to 10 carbon atoms, or an arylene group having 6 to 10 carbon atoms
  • the H 1 -NMR spectrum of the resin composition is The resin composition according to any one of [1] to [6], which satisfies the relationship: [8] Resin containing a repeating unit derived from a compound represented by the following general formula (1) and a repeating unit represented by the following general formula (3) (however, a terminal structure represented by the following general formula (A)) And a polymer having a terminal structure represented by the following general formula (C)): Polymer having a terminal structure represented by the following general formula (A), compound represented by the following general formula (B), polymer having a terminal structure represented by the following general formula (C), and / or the following general formula A compound represented by (D) and [In the formulas (1), (3), (A), (B), (C) and (D), R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxyl group having 1 to 20 carbon atoms, a cycloalkyl group having 5 to 20 carbon
  • a resin composition comprising: The H 1 -NMR spectrum of the resin composition is Satisfy the relationship Resin composition.
  • the H 1 -NMR spectrum is Or The resin composition according to [8], which satisfies the relationship: [10]
  • the H 1 -NMR spectrum is The resin composition according to [8] or [9], which satisfies the relationship: [11]
  • n in the general formulas (1), (A), and (B) is 1.
  • the compound represented by the general formula (1) is 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene or 9,9-bis (4- (2-hydroxyethoxy) -3.
  • the molar ratio of the repeating unit derived from the compound represented by the general formula (1) to the repeating unit derived from the compound represented by the general formula (3) is 20
  • a resin composition having excellent fluidity and strength can be provided.
  • FIG. 2 is an H 1 -NMR chart of the resin composition produced in Example 1.
  • FIG. 3 is an H 1 -NMR chart of the resin composition produced in Example 2.
  • FIG. 3 is an H 1 -NMR chart of the resin composition produced in Example 3.
  • FIG. 4 is an H 1 -NMR chart of the resin composition produced in Example 4.
  • FIG. 6 is an H 1 -NMR chart of the resin composition produced in Example 5.
  • FIG. 3 is an H 1 -NMR chart of a resin composition produced in Comparative Example 1.
  • FIG. 3 is an H 1 -NMR chart of a resin composition produced in Comparative Example 2.
  • FIG. 3 is an H 1 -NMR chart of a resin composition produced in Comparative Example 2.
  • the resin composition of the present invention is a resin containing a repeating unit derived from a compound represented by the following general formula (1) (hereinafter also referred to as resin (a)) (however, represented by the following general formula (A)) Except for polymers having terminal structures), and A polymer having a terminal structure represented by the following general formula (A) and / or a compound represented by the following general formula (B).
  • the total content of the polymer having the terminal structure represented by the general formula (A) and / or the compound represented by the general formula (B) in the resin composition is measured by the H 1 -NMR spectrum of the resin composition. In such a case, the amount satisfies the following relationship.
  • the polymer having a terminal structure represented by the formula (A) and the compound represented by the formula (B) are by-products that can be produced when the resin (a) is produced by a polymerization reaction.
  • the value calculated by the above formula (I) is preferably 0.03 to 0.9, more preferably 0.03 to 0.7, and particularly preferably 0.1 to 0.5.
  • the vinyl group located at the terminal of the formulas (A) and (B) is referred to as “fluorene-based vinyl end group”, and the value calculated by the formula (I) is referred to as “fluorene-based vinyl end group amount”.
  • the “integral value of proton peak” and the “peak integral value” mean the NMR spectrum ( 1 H-NMR spectrum) of the hydrogen nucleus 1 H measured by NMR (nuclear magnetic resonance) spectroscopy. It is the area value of the signal of the NMR spectrum, that is, the integral value.
  • NMR spectroscopy is a measurement method that focuses on the nuclei of a substance and can quantitatively measure the nuclei themselves that constitute each molecule. That is, in the case of 1 H-NMR, the integrated value of the observed signal indicates the abundance of 1 H in the molecule.
  • the assignment of 1 H was estimated from the chemical shift value of the 1 H-NMR spectrum, and the integrated value of the 1 H signal was determined for each chemical shift value.
  • a polymer having a specific fluorene structure that is, the resin (a)
  • a polymer having a terminal structure represented by the general formula (A) that is, a polymer having a terminal structure represented by the general formula (A)
  • the present inventors have found that a resin composition containing a predetermined amount of a compound having a vinyl group at the end (that is, a compound represented by the general formula (B)) is excellent in fluidity and strength. Since the resin composition excellent in fluidity and strength is excellent in moldability, it is suitable as a material for precise members.
  • the resin composition of the present invention is suitable as a material for sheets and films used for optical lenses in digital cameras, smartphones, tablets, etc., front protective sheets (films) for liquid crystal display devices, light guide sheets (films), and the like. Can be used. Moreover, it is suitable also as a material of the sheet
  • the reason why the resin composition of the present invention is excellent in fluidity and strength is not clear, but is presumed as follows.
  • the structure at the end of a compound tends to affect the physical properties of the resin composition for the amount of the compound present.
  • the presence of the polymer represented by the formula (A) having a carbon-carbon double bond at the terminal makes it difficult for rotation at the molecular level around the bond axis of the double bond. . This is presumed to contribute to improving the strength of the molded body.
  • the presence of the compound represented by the formula (B) can impart minute plasticity to the resin composition, and as a result, it is presumed that the fluidity of the resin is improved.
  • the resin composition of the present invention has good mold releasability, there are also advantages that there are few mold stains at the time of injection molding, the shape stability of the injection molded product is excellent, and there is little coloring.
  • the amount of the polymer and compound having a vinyl group at the end in the resin composition controls the resin raw material used, the reaction temperature during polymerization, the reaction time, the degree of vacuum, the molar ratio, the shape of the reaction kettle, the type of stirring blade, etc.
  • the desired range can be adjusted.
  • the final temperature during the polymerization reaction to 220 ° C. or higher, preferably 220 ° C. or higher and lower than 300 ° C., more preferably 240 ° C. or higher and lower than 300 ° C., particularly preferably 240 ° C. to 280 ° C.
  • a resin composition containing a predetermined amount of a group-containing polymer and compound and having excellent fluidity and strength can be obtained.
  • R 1 and R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxyl group having 1 to 20 carbon atoms, or 5 to 5 carbon atoms. It is selected from a cycloalkyl group having 20 carbon atoms, a cycloalkoxyl group having 5 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, and a halogen atom.
  • a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 12 carbon atoms is preferable, and a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, sec- A butyl group, a tert-butyl group, a cyclohepta group, a cyclopropyl group, or a phenyl group is more preferable, a hydrogen atom, a methyl group, or a phenyl group is particularly preferable, and a hydrogen atom or a phenyl group is most preferable.
  • X is independently an optionally branched alkylene group having 2 to 6 carbon atoms, preferably an alkylene group having 2 to 4 carbon atoms, more preferably an ethylene group or a propylene group, and particularly preferably Is an ethylene group.
  • Hv and Hf are each a hydrogen atom.
  • n is each independently an integer of 1 to 5, preferably an integer of 1 to 3, more preferably an integer of 1 to 2, and particularly preferably 1.
  • the polymer chain represented by * includes a repeating unit derived from the compound represented by the general formula (1).
  • the resin (a) contains a repeating unit represented by the general formula (2) or a repeating unit represented by the general formula (3) described later, the polymer chain of * contains these repeating units. obtain.
  • BPEF 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene
  • BPEF 9,9-bis (4- (2-hydroxyethoxy) -3-phenylphenyl) fluorene
  • BPPEF 9,9-bis (4- (2-hydroxyethoxy) -3-phenylphenyl fluorene
  • the ratio of the repeating unit derived from the compound represented by the formula (1) in the resin (a) is 50 mol% or more with respect to all repeating units constituting the resin (a) (excluding the carbonate bond portion and the ester bond portion). Is more preferable, 80 mol% or more is preferable, 90 mol% or more is particularly preferable, and 100 mol% is most preferable.
  • the resin (a) may contain a repeating unit other than the repeating unit derived from the compound represented by the formula (1).
  • a resin comprising a repeating unit derived from a compound represented by the following general formula (1) (excluding a polymer having a terminal structure represented by the following general formula (A)) , A polymer having a terminal structure represented by the following general formula (A) and / or a compound represented by the following general formula (B):
  • a resin composition is provided.
  • the definition of each substituent in Formula (1), (A) and (B) is as above-mentioned, and a preferable substituent and a preferable compound are also as above-mentioned.
  • the polymer chain represented by * in the formula (A) includes a repeating unit derived from the compound represented by the formula (1) and is composed of a repeating unit derived from the compound represented by the formula (1). Is preferred.
  • the “resin comprising a repeating unit derived from the compound represented by the general formula (1) (polymer chain)” means that the repeating unit excluding the carbonate bond portion and the ester bond portion in the resin is represented by the general formula (1). It consists of repeating units derived from the compound. That is, when the resin is a polycarbonate resin, the “resin composed of a repeating unit derived from the compound represented by the general formula (1)” means a repeating unit derived from the compound represented by the general formula (1) and a carbonate bond.
  • a polycarbonate resin (polymer chain) consisting of a part is meant.
  • the resin when the resin is an ester resin, it means an ester resin (polymer chain) composed of a repeating unit derived from the compound represented by the general formula (1) and an ester bond portion, and the resin is a polyester carbonate resin. In some cases, it means a polyester carbonate resin (polymer chain) comprising a repeating unit derived from the compound represented by the general formula (1), a polycarbonate bond portion and an ester bond portion.
  • the polycarbonate linkage moiety is derived from phosgene or a carbonic acid diester
  • the ester linkage moiety is derived from a dicarboxylic acid or a derivative thereof.
  • the total content of the polymer having the terminal structure represented by the general formula (A) and the compound represented by the general formula (B) is H 1 -NMR of the resin composition.
  • the spectrum is measured, it is preferably an amount that satisfies the following relationship (that is, “amount of fluorene-based vinyl end group”).
  • the amount of the fluorene-based vinyl end group calculated by the above formula (I) is preferably 0.03 to 0.9, more preferably 0.03 to 0.7, and particularly preferably 0.1 to 0. .5.
  • a resin containing a repeating unit derived from a compound represented by the following general formula (1) and a repeating unit derived from a compound represented by the following general formula (2) (hereinafter, resin ( b)) (excluding polymers having a terminal structure represented by the following general formula (A));
  • resin ( b)) (excluding polymers having a terminal structure represented by the following general formula (A));
  • a resin composition is provided.
  • the definition of each substituent in Formula (1), (A) and (B) is as above-mentioned, and a preferable substituent and a preferable compound are also as above-mentioned.
  • the polymer chain represented by * in the formula (A) includes a repeating unit derived from the compound represented by the formula (1) and a repeating unit derived from the compound represented by the formula (2). It is preferably composed of a repeating unit derived from the compound represented by 1) and a repeating unit derived from the compound represented by the formula (2).
  • a polymer chain composed of a repeating unit derived from the compound represented by the formula (1) and a repeating unit derived from the compound represented by the formula (2) means a carbonate bond portion and an ester bond in the polymer chain. It means that the repeating unit excluding the moiety consists of a repeating unit derived from the compound represented by the formula (1) and a repeating unit derived from the compound represented by the formula (2).
  • the total content of the polymer having the terminal structure represented by the general formula (A) and the compound represented by the general formula (B) is H 1 -NMR of the resin composition.
  • the spectrum is measured, it is preferably an amount that satisfies the following relationship (that is, “amount of fluorene-based vinyl end group”).
  • the amount of the fluorene-based vinyl end group calculated by the above formula (I) is preferably 0.03 to 0.9, more preferably 0.03 to 0.7, and particularly preferably 0.1 to 0. .5.
  • R 6 and R 7 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, It is selected from a 5-20 cycloalkoxyl group, an aryl group having 6-20 carbon atoms, an aryloxy group having 6-20 carbon atoms, and a halogen atom.
  • a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, and an aryl group having 6 to 15 carbon atoms are preferable, and a hydrogen atom, a methyl group, an ethyl group, a propyl group, and butyl are preferable.
  • Group, cyclohexyl group and phenyl group are more preferred, and a hydrogen atom, methyl group and phenyl group are particularly preferred.
  • Y is independently an alkylene group having 2 to 6 carbon atoms, a cycloalkylene group having 6 to 10 carbon atoms, or an arylene group having 6 to 10 carbon atoms, which may be branched.
  • alkylene groups having 2 to 6 carbon atoms are preferred, ethylene and propylene are more preferred, and ethylene is particularly preferred.
  • W is a single bond or (Wherein R 8 , R 9 , and R 14 to R 17 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a phenyl group having 6 to 10 carbon atoms) R 10 and R 11 are each independently selected from a hydrogen atom and an alkyl group having 1 to 5 carbon atoms; R 12 and R 13 are each independently a hydrogen atom and alkyl having 1 to 5 carbon atoms Group selected from the group phenyl; Z ′ is an integer from 3 to 11). W is a single bond, It is preferable that More preferably, It is particularly preferred that
  • R 8 , R 9 , and R 14 to R 17 are preferably an alkyl group having 1 to 10 carbon atoms, a phenyl group having 6 to 10 carbon atoms, or a hydrogen atom, and are a hydrogen atom, a methyl group, or a phenyl group. More preferred is a methyl group.
  • R 10 and R 11 are preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
  • R 12 and R 13 are preferably each independently a hydrogen atom.
  • Z ′ is preferably 3 to 10, more preferably 3 to 5, and particularly preferably 5.
  • p and q are each independently an integer of 0 to 5, preferably 0 to 3, more preferably 0 or 1, and particularly preferably both p and q are 0.
  • the total proportion of the repeating units derived from the compound represented by the formula (1) and the repeating units derived from the compound represented by the formula (2) is the total repeating units constituting the resin (b) (the carbonate bond portion and the ester). 40 mol% or more, preferably 50 mol% or more, more preferably 80 mol% or more, particularly preferably 90 mol% or more, and most preferably 100 mol%, excluding the binding portion).
  • the resin (b) may contain a repeating unit other than the repeating unit derived from the compound represented by the formula (1) and the repeating unit derived from the compound represented by the formula (2).
  • the molar ratio of the repeating unit derived from the compound represented by the formula (1) and the repeating unit derived from the compound represented by the formula (2) is preferably 20:80 to 99: 1, and 30:70 to 98: 2 is more preferable, and 40:60 to 95: 5 is particularly preferable.
  • a resin containing a repeating unit derived from a compound represented by the following general formula (1) and a repeating unit represented by the following general formula (3) (hereinafter also referred to as resin (c)) (However, a polymer having a terminal structure represented by the following general formula (A) and a polymer having a terminal structure represented by the following general formula (C) are excluded);
  • polymer having a terminal structure represented by the following general formula (A), compound represented by the following general formula (B), polymer having a terminal structure represented by the following general formula (C), and / or the following general formula A compound represented by (D) and A resin composition is provided.
  • each substituent in the formulas (1), (A) and (B) is as described above, and preferable substituents and preferable compounds are also as described above.
  • the polymer chain represented by * in the formulas (A) and (C) includes a repeating unit derived from the compound represented by the formula (1) and a repeating unit derived from the compound represented by the formula (3). It preferably includes a repeating unit derived from the compound represented by the formula (1) and a repeating unit derived from the compound represented by the formula (3).
  • a polymer chain composed of a repeating unit derived from the compound represented by the formula (1) and a repeating unit derived from the compound represented by the formula (2) means a carbonate bond portion and an ester bond in the polymer chain. It means that the repeating unit excluding the moiety consists of a repeating unit derived from the compound represented by the formula (1) and a repeating unit derived from the compound represented by the formula (2).
  • Z is each independently an alkylene group having 2 to 6 carbon atoms which may be branched.
  • An alkylene group having 2 to 4 carbon atoms is preferable, an ethylene group or a propylene group is more preferable, and an ethylene group is particularly preferable.
  • m is each independently an integer of 1 to 5, preferably an integer of 1 to 3, more preferably an integer of 1 to 2, and particularly preferably 1.
  • Ho is a hydrogen atom.
  • Examples of the compound represented by the formula (3) include 2,2′-bis (hydroxymethoxy) -1,1′-binaphthalene, 2,2′-bis (2-hydroxyethoxy) -1,1′-binaphthalene, Examples include 2,2′-bis (3-hydroxypropyloxy) -1,1′-binaphthalene, 2,2′-bis (4-hydroxybutoxy) -1,1′-binaphthalene and the like. Among these, 2,2′-bis (2-hydroxyethoxy) -1,1′-binaphthalene (hereinafter also referred to as BHEBN) is preferably used.
  • the total content of the polymer having the terminal structure represented by the general formula (A) and the compound represented by the general formula (B) is H 1 -NMR of the resin composition.
  • the spectrum is preferably an amount that satisfies the following relationship (that is, “amount of fluorene-based vinyl end group”).
  • the amount of the fluorene vinyl end group calculated by the formula (II) or (III) is preferably 0.03 to 0.9, more preferably 0.03 to 0.7, and particularly preferably 0.8. 1 to 0.5.
  • Hr in the repeating unit derived from the compound of the formula (1) means all hydrogen atoms contained in X of the formula (1), and “the repeating unit derived from the compound of the formula (3)”. “Hs” in represents all hydrogen atoms contained in Z in formula (3).
  • X and Z are ethylene groups, the positions of Hr and Hs are as follows.
  • the total content of the polymer having a terminal structure represented by the general formula (C) and the compound represented by the general formula (D) is H 1 -NMR of the resin composition.
  • an amount that satisfies the following relationship is preferable.
  • the vinyl group located at the terminal of the formulas (C) and (D) is referred to as “binaphthol-based vinyl terminal group”, and the value calculated by the formula (IV) is referred to as “binaphthol-based vinyl terminal group amount”.
  • the value calculated by the above formula (IV) is preferably 0.3 to 1.0, more preferably 0.3 to 0.9, and particularly preferably 0.3 to 0.6.
  • the total content of the compound, the polymer having a terminal structure represented by the general formula (C) and the compound represented by the general formula (D) is as follows when the H 1 -NMR spectrum of the resin composition is measured.
  • An amount that satisfies the relationship is preferable (that is, “amount of fluorene-based vinyl end groups” + “amount of binaphthol-based vinyl end groups”). That is, the sum of either formula (II) or (III) and formula (IV) is represented by formula (V).
  • the value calculated by the above formula (V) is preferably 0.1 to 2.0, more preferably 0.3 to 1.8, still more preferably 0.4 to 1.4, particularly preferably Is 0.4 to 1.0.
  • the total proportion of the repeating units derived from the compound represented by the formula (1) and the repeating units derived from the compound represented by the formula (3) is the total repeating units constituting the resin (c) (the carbonate bond portion and the ester). 40 mol% or more, preferably 50 mol% or more, more preferably 80 mol% or more, particularly preferably 90 mol% or more, and most preferably 100 mol%, excluding the binding portion).
  • the resin (c) may contain a repeating unit other than the repeating unit derived from the compound represented by the formula (1) and the repeating unit derived from the compound represented by the formula (3).
  • the molar ratio of the repeating unit derived from the compound represented by the formula (1) and the repeating unit derived from the compound represented by the formula (3) is preferably 20:80 to 99: 1, and 30:70 to 95: 5 is more preferable, and 40:60 to 90:10 is particularly preferable.
  • a polycarbonate resin, a polyester resin, or a polyester carbonate resin is preferable, and a polycarbonate resin is more preferable. Further, these resins may have any structure of random, block and alternating copolymer. Hereinafter, the polycarbonate resin will be described in detail.
  • the polycarbonate resin means a resin in which each repeating unit constituting the resin is bonded through a carbonate bond.
  • the resin containing a repeating unit derived from the compound represented by the general formula (1) in the present invention is a polycarbonate resin, the compound represented by the general formula (1) (and optionally represented by the general formula (2)) Or a compound precursor represented by the general formula (3)) and a carbonate precursor such as a carbonic acid diester as raw materials, and in the presence of a mixed catalyst comprising a basic compound catalyst or a transesterification catalyst, or both. It can be produced by a melt polycondensation method under a catalyst.
  • Examples of the carbonic acid diester used in this reaction include diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate, and dicyclohexyl carbonate. Of these, diphenyl carbonate is particularly preferred.
  • the carbonic acid diester is preferably used in a ratio of 0.97 to 1.20 mol, more preferably 0.98 to 1.10 mol, per 1 mol of the total of dihydroxy compounds. When the amount of the carbonic acid diester is outside these ranges, problems such as the resin not reaching the desired molecular weight, unreacted raw materials remaining in the resin, and optical properties may be deteriorated.
  • Examples of basic compound catalysts include alkali metal compounds, alkaline earth metal compounds, and nitrogen-containing compounds.
  • alkali metal compound examples include organic acid salts, inorganic salts, oxides, hydroxides, hydrides, and alkoxides of alkali metals.
  • alkaline earth metal compound examples include organic acid salts, inorganic salts, oxides, hydroxides, hydrides or alkoxides of alkaline earth metal compounds.
  • magnesium hydroxide, calcium acetate, strontium acetate, barium acetate, magnesium stearate, calcium stearate, calcium benzoate, magnesium phenyl phosphate and the like are used.
  • nitrogen-containing compound examples include quaternary ammonium hydroxide and salts thereof, amines and the like.
  • quaternary ammonium hydroxides having an alkyl group, an aryl group, and the like such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, and trimethylbenzylammonium hydroxide;
  • Tertiary amines such as triethylamine, dimethylbenzylamine and triphenylamine; secondary amines such as diethylamine and dibutylamine; primary amines such as propylamine and butylamine; 2-methylimidazole, 2-phenylimidazole and benzimidazole Imidazoles such as ammonia, tetramethylammonium borohydride, tetrabutylammonium borohydride, te
  • salts of zinc, tin, zirconium, lead, etc. are preferably used, and these can be used alone or in combination.
  • transesterification catalyst examples include zinc acetate, zinc benzoate, zinc 2-ethylhexanoate, tin (II) chloride, tin (IV) chloride, tin (II) acetate, tin (IV) acetate, and dibutyltin.
  • Dilaurate, dibutyltin oxide, dibutyltin dimethoxide, zirconium acetylacetonate, zirconium oxyacetate, zirconium tetrabutoxide, lead (II) acetate, lead (IV) acetate and the like are used.
  • catalysts are used in a ratio of 1 ⁇ 10 ⁇ 9 to 1 ⁇ 10 ⁇ 3 mol, preferably 1 ⁇ 10 ⁇ 7 to 1 ⁇ 10 ⁇ 4 mol, relative to a total of 1 mol of the dihydroxy compound. .
  • Two or more types of catalysts may be used in combination.
  • the catalyst itself may be added as it is, or it may be added after being dissolved in a solvent such as water or phenol.
  • melt polycondensation is performed by transesterification using the above-described raw materials and catalyst under heating and further at normal pressure or reduced pressure. That is, it is preferable that the reaction temperature is started from ordinary temperature and normal pressure, and gradually raised to a reduced pressure while removing by-products.
  • the reaction temperature in the final stage of the reaction is preferably 220 ° C. or more and less than 300 ° C., more preferably more than 230 ° C. and 280 ° C. or less, particularly preferably 240 to 280 ° C., 240 Most preferred is ⁇ 260 ° C.
  • the degree of reduced pressure in the final stage of the reaction is preferably 100 to 0.01 Torr, more preferably 50 to 0.01 Torr, particularly preferably 5 to 0.1 Torr (for example, 1 to Most preferably, it is 0.01 Torr).
  • the catalyst may be present together with the raw materials from the beginning of the reaction, or may be added during the reaction.
  • the final stage of the reaction means a stage in which a raw material is melted and a transesterification reaction is performed, and then a polymerization reaction is performed in a reduced pressure state (for example, 100 to 0.01 Torr).
  • the melt polycondensation reaction may be carried out continuously or batchwise.
  • the reaction equipment used for the reaction is a horizontal type equipped with paddle blades, lattice blades, glasses blades, etc., even if it is a vertical type equipped with vertical stirring blades, Max blend stirring blades, helical ribbon type stirring blades, etc. Or an extruder type equipped with a screw. In view of the viscosity of the polymer, it is preferable to use these reactors in appropriate combination.
  • the catalyst may be removed or deactivated after the polymerization reaction in order to maintain thermal stability and hydrolysis stability, but it is not always necessary to deactivate.
  • a method for deactivation of the catalyst by adding a known acidic substance can be preferably carried out.
  • the acidic substance include esters such as butyl benzoate; aromatic sulfonic acids such as p-toluenesulfonic acid; aromatic sulfonic acid esters such as butyl p-toluenesulfonate and hexyl p-toluenesulfonate.
  • Phosphoric acids such as phosphorous acid, phosphoric acid, phosphonic acid; triphenyl phosphite, monophenyl phosphite, diphenyl phosphite, diethyl phosphite, di-n-propyl phosphite, diphosphorous acid Phosphorous esters such as n-butyl, di-n-hexyl phosphite, dioctyl phosphite, monooctyl phosphite; triphenyl phosphate, diphenyl phosphate, monophenyl phosphate, dibutyl phosphate, phosphoric acid Phosphate esters such as dioctyl and monooctyl phosphate; Phosphonic acids such as diphenylphosphonic acid, dioctylphosphonic acid and dibutylphosphonic acid Phosphonates such as diethyl phenylphosphonate; pho
  • p-toluene or butyl sulfonate is particularly preferable.
  • These deactivators are used in an amount of 0.01 to 50 times mol, preferably 0.3 to 20 times mol for the amount of catalyst. When the amount is less than 0.01 times the amount of the catalyst, the deactivation effect is insufficient, which is not preferable. Moreover, when it is more than 50 times mole with respect to the amount of catalyst, since the heat resistance of resin falls and it becomes easy to color a molded object, it is unpreferable.
  • the addition of the deactivator can be carried out by kneading and may be either a continuous type or a batch type.
  • the temperature at the time of kneading is preferably 200 to 350 ° C., more preferably 230 to 300 ° C., and particularly preferably 250 to 280 ° C.
  • the kneader is preferably an extruder if it is a continuous type, and a lab plast mill and a kneader are preferably used if it is a batch type. Examples of the extruder include a single screw extruder, a twin screw extruder, and a multi-screw extruder.
  • the extruder can be appropriately provided with a gear pump for stably quantifying the resin discharge amount.
  • the atmospheric pressure for melt kneading of the resin composition is not particularly limited, and normal pressure or reduced pressure, for example, pressure of normal pressure (760 mmHg) to 0.1 mmHg is used to prevent oxidation, decomposition products, removal of low-boiling components such as phenol. It is preferable from the viewpoint.
  • the extruder may be a vent type or a no vent type, but is preferably a vent type extruder from the viewpoint of improving the quality of the extruded product.
  • the pressure at the vent port may be normal pressure or reduced pressure, but may be, for example, normal pressure (760 mmHg) to 0.1 mmHg, preferably 100 to 0.1 mmHg.
  • the pressure is about 50 to 0.1 mmHg from the viewpoint of prevention of oxidation, decomposition products, decomposition products, and removal of low-boiling components such as phenol.
  • hydrogen devolatilization may be performed for the purpose of more efficiently reducing low-boiling components such as phenol.
  • the kneading of the deactivator may be performed immediately after the completion of the polymerization reaction, or may be performed after pelletizing the polymerized resin.
  • other additives antioxidants, mold release agents, UV absorbers, fluidity modifiers, crystal nucleating agents, reinforcing agents, dyes, antistatic agents, antibacterial agents, etc. It can be added in a similar manner.
  • the temperature during devolatilization removal is preferably 230 to 300 ° C, more preferably 250 to 280 ° C.
  • a horizontal apparatus equipped with a stirring blade having excellent surface renewability, such as a paddle blade, a lattice blade, or a glasses blade, or a thin film evaporator is preferably used.
  • This polycarbonate resin is desired to have as little foreign matter content as possible, and filtration of the molten raw material, filtration of the catalyst solution, and the like are suitably performed.
  • the filter mesh is preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less.
  • generate is implemented suitably.
  • the mesh of the polymer filter is preferably 100 ⁇ m or less, more preferably 30 ⁇ m or less.
  • the step of collecting the resin pellets must be a low dust environment, and is preferably class 6 or less, more preferably class 5 or less.
  • the average molecular weight Mw in terms of polystyrene of the polycarbonate resin is preferably 20000 to 200000, more preferably 25000 to 120,000, and particularly preferably 25000 to 50000.
  • Mw is smaller than 20000, the resin becomes brittle, which is not preferable.
  • Mw is larger than 200,000, the melt viscosity becomes high, so that it becomes difficult to remove the resin from the mold at the time of molding, and further, the fluidity becomes poor and it becomes difficult to handle in the molten state, which is not preferable.
  • the resin composition of the present invention may contain components other than those described above.
  • a repeating unit derived from a compound other than those represented by the formulas (1) to (3) may be included. good.
  • the amount is desirably 20 mol% or less, more desirably 10 mol% or less, based on 100 mol% of the total repeating units derived from the compounds represented by formulas (1) to (3). Within this range, a high refractive index is maintained.
  • the resin composition of this invention may contain other resin in the range which does not impair the characteristic of this invention in addition to resin containing the repeating unit derived from the compound represented by Formula (1).
  • other resins include the following: Polyethylene, polypropylene, polyvinyl chloride, polystyrene, (meth) acrylic resin, ABS resin, polyamide, polyacetal, polycarbonate, polyphenylene ether, polyester, polyphenylene sulfide, polyimide, polyethersulfone, polyetheretherketone, fluororesin, cycloolefin Polymer, ethylene / vinyl acetate copolymer, epoxy resin, silicone resin, phenol resin, unsaturated polyester resin, polyurethane.
  • the content of the other resin is preferably 20 parts by mass or less and more preferably 10 parts by mass or less with respect to 100 parts by mass of the resin including the repeating unit derived from the compound represented by the formula (1).
  • compatibility will worsen and the transparency of a resin composition may fall.
  • the resin composition obtained by the method of the present invention has desired characteristics by including a predetermined amount of a compound and a polymer containing a terminal vinyl group.
  • Melt volume rate of the resin composition is preferably 30 cm 3 / 10min or more, and more preferably 32cm 3 / 10min or more.
  • the bending strength is preferably 80 MPa or more, more preferably 90 MPa or more, and particularly preferably 100 MPa or more.
  • An optical molded body can be produced using the resin composition of the present invention. Since the resin composition of the present invention has fluidity and strength suitable for molding, it is a transparent conductive substrate, optical disk, liquid crystal panel, optical lens, and optical sheet used for liquid crystal displays, organic EL displays, solar cells and the like. It can be advantageously used as a material for optical molded bodies such as optical films, optical fibers, connectors, and vapor-deposited plastic reflectors.
  • the optical molded body containing the resin composition of the present invention has a high refractive index and is excellent in formability.
  • a resin produced using a transesterification method has a branched structure in the molecular chain, and thus has a high viscosity in a low shear rate region and exhibits non-Newtonian properties. For this reason, conventionally, when a resin is molded in a low shear region, non-uniform residual strain is likely to occur, and there is a problem that warping occurs immediately after processing and deformation occurs in a high temperature environment. In addition, at the time of molding, the higher the temperature at which the resin is softened, the better the fluidity of the resin. However, since the resin composition of the present invention is excellent in fluidity and strength, the above-mentioned problems that may occur during molding can be solved. Further, the obtained molded product has a high refractive index, is excellent in formability, and is excellent in various properties required for an optical molded product such as haze, total light transmittance, and Abbe number.
  • the optical molded body is molded by an arbitrary method such as an injection molding method, a compression molding method, an extrusion molding method, or a solution casting method.
  • the resin composition of the present invention can be used by mixing with other resins such as polycarbonate resin and polyester resin.
  • antioxidants, processing stabilizers, light stabilizers, heavy metal deactivators, flame retardants, lubricants, antistatic agents, surfactants, antibacterial agents, mold release agents, UV absorbers, plasticizers, compatibilizers Such additives may be mixed.
  • Antioxidants include triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3,5-di- -Tert-butyl-4-hydroxyphenyl) propionate], pentaerythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di- tert-butyl-4-hydroxyphenyl) propionate, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, N, N-hexamethylene Bis (3,5-di-tert-butyl-4-hydroxy-hydrocinnamide), 3,5-di-te t-butyl-4-hydroxy-benzylphosphonate-diethy
  • processing stabilizers include phosphorus processing heat stabilizers and sulfur processing heat stabilizers.
  • the phosphorus processing heat stabilizer include phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid, and esters thereof.
  • triphenyl phosphite tris (nonylphenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, tris (2,6-di-tert-butylphenyl) phosphite, Tridecyl phosphite, trioctyl phosphite, trioctadecyl phosphite, didecyl monophenyl phosphite, dioctyl monophenyl phosphite, diisopropyl monophenyl phosphite, monobutyl diphenyl phosphite, monodecyl dipheny
  • Sulfur-based processing heat stabilizers include pentaerythritol-tetrakis (3-laurylthiopropionate), pentaerythritol-tetrakis (3-myristylthiopropionate), pentaerythritol-tetrakis (3-stearylthiopropionate) Dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyl-3,3′-thiodipropionate, and the like.
  • the content of the sulfur-based processing heat stabilizer in the resin composition is preferably 0.001 to 0.2 parts by weight with respect to 100 parts by weight of the resin composition.
  • esters of alcohol and fatty acid include esters of monohydric alcohol and fatty acid, partial esters or total esters of polyhydric alcohol and fatty acid.
  • the ester of the monohydric alcohol and the fatty acid is preferably an ester of a monohydric alcohol having 1 to 20 carbon atoms and a saturated fatty acid having 10 to 30 carbon atoms.
  • the partial ester or total ester of a polyhydric alcohol and a fatty acid is preferably a partial ester or total ester of a polyhydric alcohol having 1 to 25 carbon atoms and a saturated fatty acid having 10 to 30 carbon atoms.
  • examples of the ester of a monohydric alcohol and a saturated fatty acid include stearyl stearate, palmityl palmitate, butyl stearate, methyl laurate, isopropyl palmitate and the like.
  • Examples of partial esters or total esters of polyhydric alcohols and saturated fatty acids include stearic acid monoglyceride, stearic acid diglyceride, stearic acid triglyceride, stearic acid monosorbate, behenic acid monoglyceride, capric acid monoglyceride, lauric acid monoglyceride, pentaerythritol monostearate.
  • Dipentaerythritol such as rate, pentaerythritol tetrastearate, pentaerythritol tetrapelargonate, propylene glycol monostearate, biphenyl biphenate, sorbitan monostearate, 2-ethylhexyl stearate, dipentaerythritol hexastearate And all esters or partial esters.
  • stearic acid monoglyceride and lauric acid monoglyceride are particularly preferred.
  • the content of these release agents is preferably in the range of 0.005 to 2.0 parts by weight, more preferably in the range of 0.01 to 0.6 parts by weight, with respect to 100 parts by weight of the resin composition. A range of ⁇ 0.5 parts by weight is more preferred.
  • the ultraviolet absorber at least one ultraviolet ray selected from the group consisting of a benzotriazole ultraviolet absorber, a benzophenone ultraviolet absorber, a triazine ultraviolet absorber, a cyclic imino ester ultraviolet absorber, and a cyanoacrylate ultraviolet absorber.
  • Absorbents are preferred. That is, any of the ultraviolet absorbers listed below may be used alone or in combination of two or more.
  • benzotriazole ultraviolet absorber examples include 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy- 3,5-dicumylphenyl) phenylbenzotriazole, 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2,2′-methylenebis [4- (1,1 , 3,3-tetramethylbutyl) -6- (2N-benzotriazol-2-yl) phenol], 2- (2-hydroxy-3,5-di-tert-butylphenyl) benzotriazole, 2- ( 2-hydroxy-3,5-di-tert-butylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy -3,5-di-tert-amylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octyl
  • benzophenone ultraviolet absorbers examples include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2-hydroxy-4- Methoxy-5-sulfoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfoxytrihydrate benzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-5-sodiumsulfoxybenzophenone, bis (5-benzoyl-4-hydroxy-2- Methoxyphenyl) methane, - hydroxy -4-n-dodecyloxy benzophenone, 2-hydroxy-4-methoxy-2'-carboxy benzophenone.
  • triazine ultraviolet absorbers examples include 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl) oxy] -phenol, 2- (4,6-bis ( 2,4-Dimethylphenyl) -1,3,5-triazin-2-yl) -5-[(octyl) oxy] -phenol, 2,4,6-tris (2-hydroxy-4-hexyloxy-3) -Methylphenyl) -1,3,5-triazine and the like.
  • Cyclic imino ester UV absorbers include 2,2′-bis (3,1-benzoxazin-4-one), 2,2′-p-phenylenebis (3,1-benzoxazin-4-one) 2,2′-m-phenylenebis (3,1-benzoxazin-4-one), 2,2 ′-(4,4′-diphenylene) bis (3,1-benzoxazin-4-one), 2,2 '-(2,6-naphthalene) bis (3,1-benzoxazin-4-one), 2,2'-(1,5-naphthalene) bis (3,1-benzoxazin-4-one) ), 2,2 ′-(2-methyl-p-phenylene) bis (3,1-benzoxazin-4-one), 2,2 ′-(2-nitro-p-phenylene) bis (3,1- Benzoxazin-4-one) and 2,2 '-(2-chloro-p- Eniren) bis (3,1-benzoxazin-4-one
  • Cyanoacrylate-based ultraviolet absorbers include 1,3-bis-[(2′-cyano-3 ′, 3′-diphenylacryloyl) oxy] -2,2-bis [(2-cyano-3,3-diphenyl). And acryloyl) oxy] methyl) propane and 1,3-bis-[(2-cyano-3,3-diphenylacryloyl) oxy] benzene.
  • the content of the ultraviolet absorber is preferably 0.01 to 3.0 parts by weight, more preferably 0.02 to 1.0 parts by weight, and still more preferably 100 parts by weight of the resin composition. 0.05 to 0.8 part by weight. If it is the range of this compounding quantity, it is possible to provide sufficient weather resistance to resin according to a use.
  • a coating layer such as an antireflection layer or a hard coating layer may be provided on the surface of the optical molded body, if necessary.
  • the antireflection layer may be a single layer or a multilayer, and may be organic or inorganic, but is preferably inorganic. Specific examples include oxides or fluorides such as silicon oxide, aluminum oxide, zirconium oxide, titanium oxide, cerium oxide, magnesium oxide, and magnesium fluoride.
  • optical film or optical sheet As an example of the optical molded body, an optical film or an optical sheet will be described.
  • the film or sheet containing the resin composition of the present invention is suitably used for, for example, a film for a liquid crystal substrate, a prism sheet for improving the luminance of a liquid crystal display device, an optical memory card, and the like.
  • the structure of the sheet and film is not particularly limited, and may be a single layer structure or a multilayer structure.
  • a structure in which two, three, or four or more layers composed of different resins are laminated may be used.
  • a method for producing a sheet and a film various film forming methods such as a melt extrusion method (for example, a T-die forming method), a cast coating method (for example, a casting method), a calendar forming method, and a hot press method are used.
  • a melt extrusion method is used.
  • a known melt extrusion molding machine may be used as the apparatus.
  • a method for producing a sheet and a film using the melt extrusion method will be described.
  • the material is put into an extruder and melted and kneaded to extrude the sheet-like molten material from the tip (lip) of the T-shaped die.
  • the extruder include a single screw extruder and a twin screw extruder.
  • the materials are melted and kneaded using three or two extruders, respectively, and the molten material is fed into a three-kind three-layer distribution type or a two-kind three-layer distribution type feed. It can be distributed in blocks and flow into a single layer T-die and co-extruded.
  • the melted material of each layer may be caused to flow into a multi-manifold die, and be distributed into a three-layer structure before the lip and coextruded.
  • a screen mesh for filtering and removing relatively large foreign substances in the material, a polymer filter for filtering and removing relatively small foreign substances and gels in the material, and the amount of resin extruded may be provided.
  • the T-type die is a die having a slit-like lip, and examples thereof include a feed block die, a manifold die, a fish tail die, a coat hanger die, and a screw die. In the case of producing a multilayer thermoplastic resin film, a multi-manifold die or the like may be used.
  • the length in the width direction of the lip of the T-type die is not particularly limited, but is preferably 1.2 to 1.5 times the product width.
  • the opening degree of the lip may be appropriately adjusted depending on the thickness of the desired product, but is usually 1.01 to 10 times, preferably 1.1 to 5 times the thickness of the desired product.
  • the opening degree of the lip is preferably adjusted by bolts arranged in the width direction of the T-shaped die.
  • the lip opening may not be constant in the width direction. For example, the draw resonance phenomenon can be suppressed by adjusting the lip opening at the end narrower than the lip opening at the center.
  • both of the two cooling rolls may be metal rolls, both may be elastic rolls, one may be a metal roll, and the other may be an elastic roll.
  • the surface state of the roll is not particularly limited, and may be, for example, a mirror surface, or may have a pattern or unevenness.
  • the metal roll is not particularly limited as long as it has high rigidity, and examples thereof include a drilled roll and a spiral roll.
  • the elastic roll include a rubber roll and an elastic roll (hereinafter also referred to as a metal elastic roll) provided with a metal thin film on the outer peripheral portion. Among these, a metal elastic roll is preferable.
  • the gap (roll gap) between the two cooling rolls is appropriately adjusted according to the desired product thickness, and the roll gap is set so that both surfaces of the sheet-like material are in contact with the center surface of the cooling roll. Therefore, when the sheet-like material is sandwiched between two cooling rolls, the sheet-like material is formed into a film or sheet by receiving a certain pressure from the central portion of the cooling roll.
  • the pressure-bonding pressure of the two cooling rolls is arbitrary within the allowable range of roll rigidity. Further, the forming speed for the sheet and the film can be adjusted as appropriate. In order to avoid contamination of the film with foreign substances as much as possible, the molding environment must naturally be a low dust environment, and is preferably class 6 or less, more preferably class 5 or less.
  • optical lens Specific examples of the optical molded body include an optical lens.
  • the optical lens containing the resin composition of the present invention can be used in fields where expensive high refractive index glass lenses have been conventionally used, such as telescopes, binoculars, and television projectors, and is extremely useful. If necessary, it is preferably used in the form of an aspheric lens. Since an aspherical lens can substantially eliminate spherical aberration with a single lens, there is no need to remove spherical aberration by combining a plurality of spherical lenses, which reduces weight and reduces production costs. It becomes possible. Therefore, the aspherical lens is particularly useful as a camera lens among optical lenses.
  • the optical lens is molded by an arbitrary method such as an injection molding method, a compression molding method, or an injection compression molding method.
  • an injection molding method such as an injection molding method, a compression molding method, or an injection compression molding method.
  • the thickness of the central portion is 0.05 to 3.0 mm, more preferably 0.05 to 2.0 mm, and still more preferably 0.1 to 2.0 mm.
  • the diameter is 1.0 mm to 20.0 mm, more preferably 1.0 to 10.0 mm, and still more preferably 3.0 to 10.0 mm.
  • the molding environment In order to avoid the contamination of foreign matter into the optical lens as much as possible, the molding environment must naturally be a low dust environment, preferably class 6 or less, more preferably class 5 or less.
  • melt volume rate (MVR) and bending strength in the examples were measured using the following methods.
  • MVR Melt volume rate
  • MVR is an index indicating the fluidity of the resin composition, and the larger the value, the higher the fluidity.
  • the resin composition produced in the example was vacuum-dried at 120 ° C. for 4 hours, and measured using a melt indexer T-111 manufactured by Toyo Seiki Seisakusho under a temperature of 260 ° C. and a load of 2160 g.
  • the peak pressure at the time of injection is set to 55 MPa
  • the resin composition having an eject pressure value of less than 20 MPa at this time is A
  • the resin composition having an eject pressure value of 20 to 30 MPa is B
  • the eject pressure value is The resin composition which is 30 MPa or more was evaluated as C.
  • the resin composition having a low ejecting pressure is easy to mold and has excellent productivity.
  • Lens moldability 2 (mold dirt): Niigata Iron Works mini 7 molding machine and drop mold, cylinder temperature 250 ° C, molding cycle 11 seconds, mold temperature 80 ° C, mold clamping force 2000 shots were molded at 7 tons. After the molding is completed, the insert (corresponding to the convex surface of the molded product) corresponding to the molded product body part installed on the mold operation side is removed from the mold part after continuous molding, and the mold dirt on the surface part is visually observed. And observed.
  • the lens moldability 2 was evaluated as follows. A: There is no mold dirt visually and good releasability. B: There is mold dirt visually and the mold release is slightly poor. C: There is mold dirt visually and the mold release is poor.
  • BPEF 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene
  • DPC diphenyl carbonate
  • the degree of vacuum was adjusted to 150 Torr over 15 minutes, and the mixture was held at 205 ° C. and 150 Torr for 20 minutes to conduct a transesterification reaction. Thereafter, the temperature was raised to 240 ° C. at a rate of 37.5 ° C./hr and held at 240 ° C. and 150 Torr for 10 minutes. Thereafter, the pressure was adjusted to 120 Torr over 10 minutes and maintained at 240 ° C. and 120 Torr for 70 minutes. Thereafter, the pressure was adjusted to 100 Torr over 10 minutes, and held at 240 ° C. and 100 Torr for 10 minutes. Further, the polymerization reaction was carried out with stirring for 10 minutes under the conditions of 240 ° C. and 1 Torr or less under a condition of 1 Torr or less over 40 minutes. After completion of the reaction, nitrogen was blown into the reactor for pressurization, and the produced polycarbonate resin composition was extracted while being pelletized.
  • Example 1-1 BPEF homopolymer; 260 ° C.>
  • a transesterification reaction was carried out in the same manner as in Example 1. Thereafter, the temperature was raised to 240 ° C. at a rate of 37.5 ° C./hr and held at 240 ° C. and 150 Torr for 10 minutes. Thereafter, the pressure was adjusted to 120 Torr over 10 minutes and maintained at 240 ° C. and 120 Torr for 70 minutes. Thereafter, the pressure was adjusted to 100 Torr over 10 minutes, and held at 240 ° C. and 100 Torr for 10 minutes. Further, the polymerization reaction was carried out with stirring for 10 minutes under the conditions of 260 ° C. and 1 Torr or less over 260 minutes at 260 ° C. and 1 Torr. After completion of the reaction, nitrogen was blown into the reactor for pressurization, and the produced polycarbonate resin composition was extracted while being pelletized.
  • Example 1-2 BPEF homopolymer; 280 ° C>
  • a transesterification reaction was carried out in the same manner as in Example 1. Thereafter, the temperature was raised to 240 ° C. at a rate of 37.5 ° C./hr and held at 240 ° C. and 150 Torr for 10 minutes. Thereafter, the pressure was adjusted to 120 Torr over 10 minutes and maintained at 240 ° C. and 120 Torr for 70 minutes. Thereafter, the pressure was adjusted to 100 Torr over 10 minutes, and held at 240 ° C. and 100 Torr for 10 minutes. Furthermore, the polymerization reaction was carried out with stirring for 10 minutes under the conditions of 280 ° C. and 1 Torr or less over 280 ° C. over 60 minutes. After completion of the reaction, nitrogen was blown into the reactor for pressurization, and the produced polycarbonate resin composition was extracted while being pelletized.
  • the resin compositions obtained in Examples 1 to 1-2 were evaluated for MVR, fluorene-based vinyl terminal group amount, bending strength, and lens moldability. The results are shown in Table 1. In addition, the amount of fluorene-based vinyl end groups was calculated by the method shown below.
  • the polycarbonate resins obtained in Examples 1 to 1-2 contain the following repeating units.
  • Ha represents a hydrogen atom
  • the following polymers and / or compounds are contained in the resin composition.
  • * represents a polymer chain
  • Hc represents a hydrogen atom
  • FIGS. 1B and 1C are partially enlarged views of FIG.
  • Example 2 Copolymer of BPEF and BHEBN; 240 ° C.> 2,2′-bis (2-hydroxyethoxy) -1,1′-binaphthalene (hereinafter also referred to as “BHEBN”) 7.66 kg (20.45 mol), BPEF 12.53 kg (28.58 mol), DPC 10.80 kg (50.42 mol) and sodium bicarbonate 2.7 ⁇ 10 ⁇ 2 g (3.21 ⁇ 10 ⁇ 4 mol) were placed in a 50 liter reactor equipped with stirrer and distiller. After nitrogen substitution, the temperature was raised to 205 ° C. over 20 minutes under a nitrogen atmosphere of 760 Torr.
  • BHEBN 2,2′-bis (2-hydroxyethoxy) -1,1′-binaphthalene
  • the raw material was melted while reducing the pressure to 700 Torr over 10 minutes.
  • the mixture was held for 10 minutes and stirred, and further held for 100 minutes, and then the pressure was reduced to 205 Torr over 20 minutes.
  • the sample was held for 60 minutes, adjusted to 180 Torr over 10 minutes, and held for 20 minutes at 215 ° C. and 180 Torr. Further, the pressure was adjusted to 150 Torr over 10 minutes, maintained at 230 ° C. and 140 Torr for 30 minutes, and then reduced in pressure and heated to 120 Torr and 240 ° C. Thereafter, the pressure was reduced to 100 Torr over 10 minutes and held for 10 minutes. Further, the pressure was reduced to 1 Torr or less over 50 minutes, and maintained at 240 ° C. and 1 Torr or less for 40 minutes. After completion of the reaction, nitrogen was blown into the reactor for pressurization, and the produced polycarbonate resin composition was extracted while being pelletized.
  • Example 2-1 copolymer of BPEF and BHEBN; 260 ° C.> The same process as in Example 2 was performed until the step of melting the raw material under reduced pressure. The mixture was held for 10 minutes and stirred, and further held for 100 minutes, and then the pressure was reduced to 205 Torr over 20 minutes. The sample was held for 60 minutes, adjusted to 180 Torr over 10 minutes, and held for 20 minutes at 215 ° C. and 180 Torr. Further, the pressure was adjusted to 150 Torr over 10 minutes, maintained at 230 ° C. and 140 Torr for 30 minutes, and then decompressed and heated to 120 Torr and 260 ° C. Thereafter, the pressure was reduced to 100 Torr over 10 minutes and held for 10 minutes.
  • the pressure was reduced to 1 Torr or less over 50 minutes, and maintained at 260 ° C. and 1 Torr or less for 40 minutes.
  • nitrogen was blown into the reactor for pressurization, and the produced polycarbonate resin composition was extracted while being pelletized.
  • the resin compositions obtained in Examples 2 and 2-1 were evaluated for MVR, fluorene-based vinyl end group amount, binaphthol-based vinyl end group amount, bending strength, and lens moldability. The results are shown in Table 1. The amount of fluorene-based vinyl end groups and the amount of binaphthol-based vinyl end groups were calculated by the methods shown below.
  • the polycarbonate resins obtained in Examples 2 and 2-1 contain the following repeating units.
  • Hm and Hk represent hydrogen atoms
  • the following polymers and / or compounds are contained in the resin composition.
  • * represents a polymer chain
  • Hc represents a hydrogen atom
  • the resin compositions obtained in Examples 2 and 2-1 include the following polymers and / or compounds in addition to those shown in the above-mentioned “Calculation method of the amount of fluorene-based vinyl end groups”. (In the formula, * represents a polymer chain and Hp represents a hydrogen atom)
  • FIG. 2B is a partially enlarged view of FIG.
  • Example 3 Copolymer of BPPEF and BHEBN; 240 ° C.> BHEBN 7.42 kg (19.83 mol), 9,9-bis (4- (2-hydroxyethoxy) -3-phenylphenyl) fluorene (hereinafter also referred to as “BPPEF”) 14.68 kg (24.85) Mol), 9.70 kg (45.30 mol) of DPC, 2.25 ⁇ 10 ⁇ 2 g (2.98 ⁇ 10 ⁇ 4 mol) of sodium hydrogen carbonate, and the same operation as in Example 2 was performed. A polycarbonate resin composition was obtained.
  • Example 3-1 Copolymer of BPPEF and BHEBN; 260 ° C.> BHEBN 7.42 kg (19.83 mol), 9,9-bis (4- (2-hydroxyethoxy) -3-phenylphenyl) fluorene (hereinafter also referred to as “BPPEF”) 14.68 kg (24.85) Mol), 9.70 kg (45.30 mol) of DPC, 2.25 ⁇ 10 ⁇ 2 g (2.98 ⁇ 10 ⁇ 4 mol) of sodium hydrogen carbonate, and the same operation as in Example 2-1. To obtain a polycarbonate resin composition.
  • Example 3-2 Copolymer of BPPEF and BHEBN; 280 ° C.> The same process as in Example 3-1 was performed until the raw material was melted under reduced pressure. The mixture was held for 10 minutes and stirred, and further held for 100 minutes, and then the pressure was reduced to 205 Torr over 20 minutes. The sample was held for 60 minutes, adjusted to 180 Torr over 10 minutes, and held for 20 minutes at 215 ° C. and 180 Torr. Further, the pressure was adjusted to 150 Torr over 10 minutes, maintained at 230 ° C. and 140 Torr for 30 minutes, and then decompressed and heated to 120 Torr and 280 ° C. Thereafter, the pressure was reduced to 100 Torr over 10 minutes and held for 10 minutes.
  • the pressure was reduced to 1 Torr or less over 50 minutes, and maintained at 280 ° C. and 1 Torr or less for 40 minutes. After completion of the reaction, nitrogen was blown into the reactor for pressurization, and the produced polycarbonate resin composition was extracted while being pelletized.
  • the resin compositions obtained in Examples 3 to 3-2 were evaluated for MVR, fluorene-based vinyl end group amount, binaphthol-based vinyl end group amount, bending strength, and lens moldability. The results are shown in Table 1. The amount of fluorene-based vinyl end groups and the amount of binaphthol-based vinyl end groups were calculated by the methods shown below.
  • the polycarbonate resins obtained in Examples 3 and 3-2 contain the following repeating units.
  • Hg and Hk represent hydrogen atoms
  • the following polymers and / or compounds are contained in the resin composition.
  • * represents a polymer chain and Hd represents a hydrogen atom
  • the resin compositions obtained in Examples 3 to 3-2 contain the following polymers and / or compounds in addition to those shown in the above “Calculation method of fluorene-based vinyl terminal group amount”.
  • * represents a polymer chain and Hp represents a hydrogen atom
  • FIG. 3B is a partially enlarged view of FIG.
  • Example 4 Copolymer of BPEF and bisphenol A; 240 ° C.> BPEF 15.80 kg (36.03 mol), 2,2-bis (4-hydroxyphenyl) propane (hereinafter also referred to as “bisphenol A”) 1.30 kg (5.69 mol), DPC 9.31 kg (43.03 mol) 45 mol), and 2.10 ⁇ 10 ⁇ 2 g (2.50 ⁇ 10 ⁇ 4 mol) of sodium bicarbonate were placed in a 50 liter reactor equipped with stirrer and distiller. After performing nitrogen substitution, the mixture was stirred while being heated to 205 ° C. over 1 hour under a nitrogen atmosphere of 760 Torr.
  • bisphenol A 2,2-bis (4-hydroxyphenyl) propane
  • the degree of vacuum was adjusted to 150 Torr over 15 minutes, and the mixture was held at 205 ° C. and 150 Torr for 20 minutes to conduct a transesterification reaction. Thereafter, the temperature was raised to 240 ° C. at a rate of 37.5 ° C./hr and held at 240 ° C. and 150 Torr for 10 minutes. Thereafter, the pressure was adjusted to 120 Torr over 10 minutes and maintained at 240 ° C. and 120 Torr for 70 minutes. Thereafter, the pressure was adjusted to 100 Torr over 10 minutes, and held at 240 ° C. and 100 Torr for 10 minutes. Further, the polymerization reaction was carried out with stirring for 10 minutes under the conditions of 240 ° C. and 1 Torr or less under a condition of 1 Torr or less over 40 minutes. After completion of the reaction, nitrogen was blown into the reactor for pressurization, and the produced polycarbonate resin composition was extracted while being pelletized.
  • Example 4-1 Copolymer of BPEF and bisphenol A; 260 ° C.>
  • a transesterification reaction was carried out in the same manner as in Example 4. Thereafter, the temperature was raised to 240 ° C. at a rate of 37.5 ° C./hr and held at 240 ° C. and 150 Torr for 10 minutes. Thereafter, the pressure was adjusted to 120 Torr over 10 minutes and maintained at 240 ° C. and 120 Torr for 70 minutes. Thereafter, the pressure was adjusted to 100 Torr over 10 minutes, and held at 240 ° C. and 100 Torr for 10 minutes. Furthermore, the polymerization reaction was carried out with stirring for 20 minutes at 260 ° C. and 1 Torr or less over 260 minutes at 260 ° C. and 1 Torr or less. After completion of the reaction, nitrogen was blown into the reactor for pressurization, and the produced polycarbonate resin composition was extracted while being pelletized.
  • Example 4-2 Copolymer of BPEF and bisphenol A; 280 ° C.>
  • a transesterification reaction was carried out in the same manner as in Example 4. Thereafter, the temperature was raised to 240 ° C. at a rate of 37.5 ° C./hr and held at 240 ° C. and 150 Torr for 10 minutes. Thereafter, the pressure was adjusted to 120 Torr over 10 minutes and maintained at 240 ° C. and 120 Torr for 70 minutes. Thereafter, the pressure was adjusted to 100 Torr over 10 minutes, and held at 240 ° C. and 100 Torr for 10 minutes. Furthermore, the polymerization reaction was carried out with stirring for 30 minutes under the conditions of 280 ° C. and 1 Torr or less over 280 ° C. over 40 minutes. After completion of the reaction, nitrogen was blown into the reactor for pressurization, and the produced polycarbonate resin composition was extracted while being pelletized.
  • the resin compositions obtained in Examples 4 to 4-2 were evaluated for MVR, fluorene-based vinyl terminal group amount, bending strength, and lens moldability. The results are shown in Table 1. In addition, the amount of fluorene-based vinyl end groups was calculated by the method shown below.
  • the polycarbonate resins obtained in Examples 4 to 4-2 contain the following repeating units.
  • Ha represents a hydrogen atom
  • the following polymers and / or compounds are contained in the resin composition.
  • * represents a polymer chain
  • Hc represents a hydrogen atom
  • Example 5 Copolymer of BPEF and BHEBN; 280 ° C.> BHEBN 7.66 kg (20.45 mol), BPEF 12.50 kg (28.50 mol), DPC 10.80 kg (50.42 mol), and sodium bicarbonate 1.78 ⁇ 10 ⁇ 2 g (2.12 ⁇ 10 -4 mol) was placed in a 50 liter reactor with stirrer and distiller. After nitrogen substitution, the temperature was raised to 205 ° C. over 20 minutes under a nitrogen atmosphere of 760 Torr. Thereafter, the raw material was melted while reducing the pressure to 700 Torr over 10 minutes. The mixture was held for 10 minutes and stirred, and further held for 100 minutes, and then the pressure was reduced to 205 Torr over 20 minutes.
  • the sample was held for 60 minutes, adjusted to 180 Torr over 10 minutes, and held for 20 minutes at 215 ° C. and 180 Torr. Further, the pressure was adjusted to 150 Torr over 10 minutes, and kept at 240 ° C. and 150 Torr for 30 minutes. Further, the pressure was reduced to 120 Torr over 10 minutes and maintained for 30 minutes, and then the temperature was raised to 280 ° C. over 40 minutes. Thereafter, the pressure was reduced to 100 Torr over 10 minutes and held for 10 minutes. Further, the pressure was reduced to 1 Torr or less over 50 minutes, and maintained at 280 ° C. and 1 Torr or less for 40 minutes. After completion of the reaction, nitrogen was blown into the reactor for pressurization, and the produced polycarbonate resin composition was extracted while being pelletized.
  • MVR of the resulting resin composition is 32cm 3 / 10min, the fluorene-based vinyl terminal group 0.625, the binaphthol vinyl terminal group 0.813, flexural strength was 85 MPa.
  • the amount of fluorene-based vinyl end groups and the amount of binaphthol-based vinyl end groups were calculated in the same manner as in Example 2.
  • a 1 H-NMR chart of the resin composition produced in Example 5 is shown in FIG.
  • FIG. 5B is a partially enlarged view of FIG.
  • BPEF homopolymer 230 ° C.> 15.50 kg (35.35 mol) of BPEF, 7.89 kg (36.82 mol) of DPC, and 1.78 ⁇ 10 ⁇ 2 g (2.12 ⁇ 10 ⁇ 4 mol) of sodium bicarbonate were added to a stirrer and a distiller. Placed in a 50 liter reactor with attached. After performing nitrogen substitution, the mixture was stirred while being heated to 205 ° C. over 1 hour under a nitrogen atmosphere of 760 Torr. After complete dissolution of the raw material, the degree of vacuum was adjusted to 150 Torr over 15 minutes, and the mixture was held at 205 ° C. and 150 Torr for 20 minutes to conduct a transesterification reaction.
  • the temperature was raised to 230 ° C. at a rate of 37.5 ° C./hr and held at 230 ° C. and 150 Torr for 10 minutes. Thereafter, the pressure was adjusted to 120 Torr over 10 minutes and maintained at 230 ° C. and 120 Torr for 70 minutes. Thereafter, the pressure was adjusted to 100 Torr over 10 minutes and maintained at 230 ° C. and 100 Torr for 10 minutes. Further, the polymerization reaction was carried out with stirring for 10 minutes under the conditions of 230 ° C. and 1 Torr or less at 1 Torr or less over 40 minutes. After completion of the reaction, nitrogen was blown into the reactor for pressurization, and the produced polycarbonate resin was extracted while being pelletized.
  • ⁇ Comparative Example 1-1 BPEF homopolymer; 300 ° C.>
  • a transesterification reaction was carried out in the same manner as in Comparative Example 1. Thereafter, the temperature was raised to 230 ° C. at a rate of 37.5 ° C./hr and held at 230 ° C. and 150 Torr for 10 minutes. Thereafter, the pressure was adjusted to 120 Torr over 10 minutes and maintained at 230 ° C. and 120 Torr for 70 minutes. Thereafter, the pressure was adjusted to 100 Torr over 10 minutes and held at 300 ° C. and 100 Torr for 10 minutes. Further, the polymerization reaction was carried out with stirring for 10 minutes under the conditions of 300 ° C. and 1 Torr or less under a condition of 1 Torr or less over 40 minutes. After completion of the reaction, nitrogen was blown into the reactor for pressurization, and the produced polycarbonate resin was extracted while being pelletized.
  • the mixture was held for 10 minutes and stirred, and further held for 100 minutes, and then the pressure was reduced to 205 Torr over 20 minutes.
  • the sample was held for 60 minutes, adjusted to 180 Torr over 10 minutes, and held for 20 minutes at 215 ° C. and 180 Torr. Further, the pressure was adjusted to 150 Torr over 10 minutes, maintained at 240 ° C. and 150 Torr for 30 minutes, and then decompressed to 120 Torr over 10 minutes. After maintaining for 30 minutes, the temperature was raised to 230 ° C. over 30 minutes. Thereafter, the pressure was reduced to 100 Torr over 10 minutes and held for 10 minutes. Further, the pressure was reduced to 1 Torr or lower over 50 minutes, and maintained at 230 ° C. and 1 Torr or lower for 40 minutes. After completion of the reaction, nitrogen was blown into the reactor for pressurization, and the produced polycarbonate resin composition was extracted while being pelletized.
  • the pressure was reduced to 100 Torr over 10 minutes and held for 10 minutes. Further, the pressure was reduced to 1 Torr or less over 50 minutes, and was maintained at 300 ° C. and 1 Torr or less for 50 minutes. After completion of the reaction, nitrogen was blown into the reactor for pressurization, and the produced polycarbonate resin composition was extracted while being pelletized.
  • Example 3 Copolymer of BPPEF and BHEBN; 300 ° C.> The same process as in Example 3-1 was performed until the raw material was melted under reduced pressure. The mixture was held for 10 minutes and stirred, and further held for 100 minutes, and then the pressure was reduced to 205 Torr over 20 minutes. The sample was held for 60 minutes, adjusted to 180 Torr over 10 minutes, and held for 20 minutes at 215 ° C. and 180 Torr. Further, the pressure was adjusted to 150 Torr over 10 minutes, maintained at 230 ° C. and 140 Torr for 30 minutes, and then reduced in pressure and heated to 120 Torr and 300 ° C. Thereafter, the pressure was reduced to 100 Torr over 10 minutes and held for 10 minutes.
  • the pressure was reduced to 1 Torr or less over 50 minutes, and the temperature was maintained at 300 ° C. and 1 Torr or less for 50 minutes.
  • nitrogen was blown into the reactor for pressurization, and the produced polycarbonate resin composition was extracted while being pelletized.
  • the resin composition obtained in Comparative Example 3 was evaluated for MVR, fluorene-based vinyl end group amount, binaphthol-based vinyl end group amount, bending strength, and lens moldability. The results are shown in Table 1. The amount of fluorene-based vinyl end groups and the amount of binaphthol-based vinyl end groups were calculated in the same manner as in Example 3.
  • Table 1 summarizes the calculated amounts of fluorene-based vinyl end groups and / or binaphthol-based vinyl end groups, and measured MVR, bending strength, and lens moldability.
  • the resin composition of the present invention is excellent in fluidity (MVR) and bending strength.
  • Refractive index A film having a thickness of 0.1 mm was measured by the method of JIS-K-7142 using an Abbe refractometer (23 ° C., wavelength 589 nm).
  • Abbe number ( ⁇ ) With respect to a 0.1 mm thick film, the Abbe refractometer was used to measure the refractive indices at wavelengths of 486 nm, 589 nm and 656 nm under 23 ° C., and the Abbe number was calculated using the following formula.
  • MVR Melt volume rate
  • Example 6 The resin composition pellets produced in Example 2 were melt extruded at 280 ° C. using a 26 mm twin screw extruder and a T die.
  • the extruded molten film was nipped between a first cooling roll made of silicon rubber having a diameter of 200 mm and a second cooling roll made of metal having a diameter of 200 mm subjected to mat processing (arithmetic average roughness of the surface: 3.2 ⁇ m). After forming the mat pattern on the film surface, the film was cooled, and the film was passed through a metal third cooling roll having a mirror surface structure, and a single-sided mat film was formed while being taken up by a take-up roll.
  • the temperature of the first cooling roll is set to 40 ° C.
  • the temperature of the second cooling roll is set to 130 ° C.
  • the temperature of the third cooling roll is set to 130 ° C.
  • the speed of the cooling roll is adjusted.
  • the average roughness was 3.0 ⁇ m.
  • Example 7 The resin composition pellets produced in Example 4 were melt extruded at 260 ° C. with a 26 mm twin screw extruder and a T die.
  • the extruded molten film was nipped between a first cooling roll made of silicon rubber having a diameter of 200 mm and a second cooling roll made of metal having a diameter of 200 mm subjected to mat processing (arithmetic surface roughness: 2.5 ⁇ m). After forming the mat pattern on the film surface, it was cooled, and the film was passed through a metal second cooling roll having a mirror surface structure, and a single-sided mat film was formed while being taken up by a take-up roll.
  • the temperature of the 1st cooling roll was set to 40 degreeC
  • the temperature of the 2nd cooling roll was set to 130 degreeC
  • the temperature of the 3rd cooling roll was set to 130 degreeC
  • the speed of the cooling roll was set to 3.0 m / min.
  • the film of the present invention exhibits high haze and arithmetic average roughness while maintaining the total light transmittance required for an optical film. This means that the film of the present invention has excellent transferability, that is, excellent shapeability. Moreover, it turns out that the film of this invention is excellent also in evaluation, such as an Abbe number and a refractive index calculated
  • the fluorene group and the binaphthalene group present in the resin composition of the present invention contribute to the improvement of the optical characteristics and formability of the film. It is thought to do. Furthermore, since the resin composition of the present invention contains a compound having a vinyl group at the terminal, it is considered that the resin has flexibility at the time of molding and the shapeability of the film is further improved.

Abstract

流動性および強度に優れた樹脂組成物を提供する。 一実施形態によると、下記一般式(1)で表される化合物に由来する繰返し単位を含む樹脂と、下記一般式(A)で表される末端構造を有するポリマーおよび/または下記一般式(B)で表される化合物とを含む樹脂組成物が提供される。

Description

樹脂組成物ならびにそれを含む光学レンズ、シートおよびフィルム
 本発明は、特定のフルオレン構造を有する樹脂を含む樹脂組成物、ならびにそれを含む光学レンズ、シートおよびフィルムに関する。
 カメラ、フィルム一体型カメラ、ビデオカメラ等の各種カメラの光学系に使用される光学素子の材料として、光学ガラスあるいは光学用透明樹脂が使用されている。光学ガラスは、耐熱性、透明性、寸法安定性、耐薬品性等に優れ、様々な屈折率やアッベ数を有する多種類の光学ガラスが存在しているが、材料コストが高い上、成形加工性が悪く、また生産性が低いという問題点を有している。とりわけ、収差補正に使用される非球面レンズに加工するには、極めて高度な技術と高いコストがかかるため実用上大きな障害となっている。
 上記の光学ガラスに対し、光学用透明樹脂、中でも熱可塑性透明樹脂からなる光学レンズは、射出成形により大量生産が可能で、しかも非球面レンズの製造も容易であるという利点を有しており、現在カメラ用レンズとして使用されている。光学用透明樹脂としては、例えば、ビスフェノールAからなるポリカーボネート、ポリメチルメタクリレートあるいは非晶性ポリオレフィンなどが例示される。また、特にポリカーボネート樹脂は、光学用途のためのシートまたはフィルムとしても使用されている。ポリカーボネート樹脂からなるシートおよびフィルムは、透明性が高く、耐熱性を有するため、液晶表示装置の前面保護シート、導光シートなどに好適に使用されている。
 しかしながら、ビスフェノールAからなるポリカーボネート樹脂は、複屈折が大きいという弱点を有するため用途に制約がある。特に近年の携帯電話用カメラやデジタルカメラ用途においては、画素数の向上による解像度のアップに伴い、結像性能が高く、複屈折が低い樹脂材料が求められている。特許文献1には、ポリエステル樹脂においてフルオレン構造を有するジカルボン酸を原料に使用すると、複屈折の低減に効果があることが記載されている。
 さらに優れた材料を求め、高屈折率、低アッベ数など種々の光学特性に優れた樹脂も開発されている(特許文献2)。しかしながら、近年、デジタルカメラ、スマートフォン、タブレットなどの電子機器が普及し、様々なモデルが発売される中で、それらのデバイスに搭載されるカメラも高機能化(例えば、高画素化、低F値化等)が進んでいる。そのため、高屈折率かつ小型のレンズが要求され、レンズユニットの設計において非球面レンズを用いることも多い。また、デバイスの高機能化に伴い、賦形性に優れたシートまたはフィルムも求められている。このような精密なレンズおよび賦形性に優れたシートまたはフィルムを得るためには、光学特性はもとより、良好な流動性および強度を有する樹脂が求められる。
特開2013-64119号公報 国際公開第2014/073496号
 本発明は、上記問題に鑑み、流動性および強度に優れた樹脂組成物を提供することを目的とする。
 本発明者らは鋭意研究した結果、特定のフルオレン構造を有する樹脂を含み、さらに末端にビニル基を有するポリマーおよび/または化合物を所定量含む樹脂組成物が、流動性および強度に優れることを見出した。本発明は、例えば以下のとおりである。
[1] 下記一般式(1)で表される化合物に由来する繰返し単位を含む樹脂(ただし、下記一般式(A)で表される末端構造を有するポリマーは除く)と、
Figure JPOXMLDOC01-appb-C000015
 下記一般式(A)で表される末端構造を有するポリマーおよび/または下記一般式(B)で表される化合物と
Figure JPOXMLDOC01-appb-C000016
[式(1)、(A)および(B)において、
 R及びRは、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシル基、炭素数5~20のシクロアルキル基、炭素数5~20のシクロアルコキシル基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、およびハロゲン原子から選択され;
 Xは、それぞれ独立に、分岐していてもよい炭素数2~6のアルキレン基であり;
 HvおよびHfは、それぞれ水素原子であり;
 nは、それぞれ独立に、1~5の整数であり;
 *はポリマー鎖である]
を含む樹脂組成物であって、
 前記樹脂組成物のH-NMRスペクトルは、
Figure JPOXMLDOC01-appb-M000017
の関係を満たす、
樹脂組成物。
[2] 前記一般式(1)で表される化合物に由来する繰返し単位を含む樹脂は、一般式(1)で表される化合物に由来する繰返し単位からなる樹脂である[1]に記載の樹脂組成物。
[3] 前記樹脂は、さらに下記一般式(2)で表される化合物に由来する繰返し単位を含む、
Figure JPOXMLDOC01-appb-C000018
[式中、
 RおよびRは、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシル基、炭素数5~20のシクロアルキル基、炭素数5~20のシクロアルコキシル基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、およびハロゲン原子から選択され;
 Yは、それぞれ独立に、分岐していてもよい炭素数2~6のアルキレン基、炭素数6~10のシクロアルキレン基、または炭素数6~10のアリーレン基であり;
 Wは、単結合または
Figure JPOXMLDOC01-appb-C000019
からなる群より選択され(ここで、R、R、およびR14~R17は、それぞれ独立に、水素原子、炭素数1~10のアルキル基および炭素数6~10のフェニル基から選択され;R10およびR11は、それぞれ独立に、水素原子および炭素数1~5のアルキル基から選択され;R12およびR13は、それぞれ独立に、水素原子および炭素数1~5のアルキル基、フェニル基から選択され;Z’は、3~11の整数である);
 pおよびqは、それぞれ独立に、0~5の整数である]
[1]に記載の樹脂組成物。
[4] pおよびqは0であり、
 Wは
Figure JPOXMLDOC01-appb-C000020
(ここで、RおよびRは、請求項3で定義したとおりである)
である、[3]に記載の樹脂組成物。
[5] 前記一般式(2)で表される化合物はビスフェノールAである、[3]に記載の樹脂組成物。
[6] 前記樹脂において、前記一般式(1)で表される化合物に由来する繰返し単位と、前記一般式(2)で表される化合物に由来する繰返し単位とのモル比が、20:80~99:1である、[3]~[5]のいずれかに記載の樹脂組成物。
[7] 前記樹脂組成物のH-NMRスペクトルは、
Figure JPOXMLDOC01-appb-M000021
の関係を満たす、[1]~[6]のいずれかに記載の樹脂組成物。
[8] 下記一般式(1)で表される化合物に由来する繰返し単位および下記一般式(3)で表される繰返し単位を含む樹脂(ただし、下記一般式(A)で表される末端構造を有するポリマーおよび下記一般式(C)で表される末端構造を有するポリマーは除く)と、
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 下記一般式(A)で表される末端構造を有するポリマー、下記一般式(B)で表される化合物、下記一般式(C)で表される末端構造を有するポリマー、および/または下記一般式(D)で表される化合物と
Figure JPOXMLDOC01-appb-C000024
[式(1)、(3)、(A)、(B)、(C)および(D)において、
 R及びRは、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシル基、炭素数5~20のシクロアルキル基、炭素数5~20のシクロアルコキシル基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、およびハロゲン原子から選択され;
 XおよびZは、それぞれ独立に、分岐していてもよい炭素数2~6のアルキレン基であり;
 nおよびmは、それぞれ独立に、1~5の整数であり;
 HfおよびHoは、それぞれ水素原子であり;
 *は、それぞれ独立に、ポリマー鎖である]
を含む樹脂組成物であって、
 前記樹脂組成物のH-NMRスペクトルは、
Figure JPOXMLDOC01-appb-M000025
の関係を満たす、
樹脂組成物。
[9] 前記H-NMRスペクトルは、
Figure JPOXMLDOC01-appb-M000026
または
Figure JPOXMLDOC01-appb-M000027
の関係を満たす、[8]に記載の樹脂組成物。
[10] 前記H-NMRスペクトルは、
Figure JPOXMLDOC01-appb-M000028
の関係を満たす、[8]または[9]に記載の樹脂組成物。
[11] 前記一般式(1)、(A)および(B)におけるXは、いずれもエチレンである、[1]~[10]のいずれかに記載の樹脂組成物。
[12] 前記一般式(1)、(A)および(B)におけるnは、いずれも1である、[1]~[11]のいずれかに記載の樹脂組成物。
[13] 前記一般式(1)で表される化合物は、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンまたは9,9-ビス(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)フルオレンである、[1]~[12]のいずれかに記載の樹脂組成物。
[14] 前記一般式(3)、(C)および(D)におけるZは、いずれもエチレンである、[8]~[13]のいずれかに記載の樹脂組成物。
[15] 前記一般式(3)、(C)および(D)におけるmは、いずれも1である、[8]~[14]のいずれかに記載の樹脂組成物。
[16] 前記一般式(3)で表される化合物は、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレンである[8]~[15]のいずれかに記載の樹脂組成物。
[16-1] 前記樹脂において、前記一般式(1)で表される化合物に由来する繰返し単位と、前記一般式(3)で表される化合物に由来する繰返し単位とのモル比が、20:80~99:1である、[8]~[16]のいずれかに記載の樹脂組成物。
[17] 前記樹脂は、ポリカーボネート樹脂、ポリエステル樹脂およびポリエステルカーボネート樹脂からなる群より選択される[1]~[16-1]のいずれかに記載の樹脂組成物。
[18] 前記樹脂はポリカーボネート樹脂である、[17]に記載の樹脂組成物。
[18-1] 前記樹脂は、240℃以上300℃未満の最終温度で重合させることによって得られる、[1]~[18]のいずれかに記載の樹脂組成物。
[18-2] 前記重合は、1Torr以下の圧力下で行われる[18-1]に記載の樹脂組成物。
[18-3] メルトボリュームレート(MVR)が30cm/10min以上である、[1]~[18-2]のいずれかに記載の樹脂組成物。
[18-4] 曲げ強度が80MPa以上である、[1]~[18-3]のいずれかに記載の樹脂組成物。
[19] [1]~[18-4]のいずれかに記載の樹脂組成物を含む光学レンズ。
[20] [1]~[18-4]のいずれかに記載の樹脂組成物を含むシートまたはフィルム。
 本発明によれば、流動性および強度に優れた樹脂組成物を提供することができる。
実施例1で製造した樹脂組成物のH-NMRチャート。 実施例2で製造した樹脂組成物のH-NMRチャート。 実施例3で製造した樹脂組成物のH-NMRチャート。 実施例4で製造した樹脂組成物のH-NMRチャート。 実施例5で製造した樹脂組成物のH-NMRチャート。 比較例1で製造した樹脂組成物のH-NMRチャート。 比較例2で製造した樹脂組成物のH-NMRチャート。
 以下、本発明の実施の形態について、詳細に説明する。
 本発明の樹脂組成物は、下記一般式(1)で表される化合物に由来する繰返し単位を含む樹脂(以下、樹脂(a)とも称する)(ただし、下記一般式(A)で表される末端構造を有するポリマーは除く)と、
Figure JPOXMLDOC01-appb-C000029
 下記一般式(A)で表される末端構造を有するポリマーおよび/または下記一般式(B)で表される化合物とを含む。
Figure JPOXMLDOC01-appb-C000030
 さらに、樹脂組成物における一般式(A)で表される末端構造を有するポリマーおよび/または一般式(B)で表される化合物の合計含有量は、樹脂組成物のH-NMRスペクトルを測定した場合に、以下の関係を満たすような量である。
Figure JPOXMLDOC01-appb-M000031
 式(A)で表される末端構造を有するポリマーおよび式(B)で表される化合物は、樹脂(a)を重合反応によって製造する際に生じ得る副生成物である。上記式(I)によって計算される値は、好ましくは0.03~0.9であり、より好ましくは0.03~0.7であり、特に好ましくは0.1~0.5である。
 以下、式(A)および(B)の末端に位置するビニル基を「フルオレン系ビニル末端基」といい、式(I)によって算出される値を、「フルオレン系ビニル末端基量」という。
 式(I)において
Figure JPOXMLDOC01-appb-M000032
とみなすことができる。
 ここで、「プロトンピークの積分値」および「ピーク積分値」とは、NMR(核磁気共鳴)分光法により、水素核HについてのNMRスペクトル(H-NMRスペクトル)を測定した際の、NMRスペクトルのシグナルの面積値、即ち積分値である。一般に、NMR分光法は、物質の原子核に着目した測定法であり、それぞれの分子を構成する原子核そのものを定量的に測定できる。すなわち、H-NMRの場合、観測されたシグナルの積分値は、分子におけるHの存在率を示す。本発明では、H-NMRスペクトルのケミカルシフト値より、Hの帰属を推測し、各ケミカルシフト値について、Hシグナルの積分値を求めた。
 上記のように、特定のフルオレン構造を有する樹脂(すなわち、樹脂(a))を含み、さらに末端にビニル基を有するポリマー(すなわち、一般式(A)で表される末端構造を有するポリマー)および/または末端にビニル基を有する化合物(すなわち、一般式(B)で表される化合物)を所定量含む樹脂組成物が、流動性および強度に優れることを、本発明者らは見出した。流動性および強度に優れた樹脂組成物は、成形性に優れるため、精密な部材の材料として適している。そのため、本発明の樹脂組成物は、デジタルカメラ、スマートフォン、タブレットなどにおける光学レンズ、液晶表示装置の前面保護シート(フィルム)、導光シート(フィルム)などに使用されるシートおよびフィルムの材料として好適に使用され得る。また、表面にパターンを有するシートおよびフィルムの材料としても好適である。
 本発明の樹脂組成物が流動性および強度に優れる理由は定かではないが、以下のように推測される。
 一般に化合物末端の構造は、その化合物の存在量の割に、樹脂組成物の物性へ影響を与えやすい傾向がある。本発明の樹脂組成物は、炭素-炭素二重結合を末端に有する式(A)で表されるポリマーが存在することにより、該二重結合の結合軸まわりで分子レベルでの回転が生じにくい。これが、成形体の強度向上に寄与するものと推測される。また、式(B)で表される化合物が存在することにより、樹脂組成物に微小の可塑性を付与することができ、その結果、樹脂の流動性が向上したと推測される。
 さらに、本発明の樹脂組成物は、離型性が良いため射出成形時の金型汚れが少なく、射出成形物の形状安定性にも優れ、着色が少ないという利点も有する。
 樹脂組成物における末端にビニル基を有するポリマーおよび化合物の量は、使用する樹脂原料、重合時の反応温度、反応時間、減圧度、モル比、反応釜の形状、攪拌翼の種類等を制御することにより、所望の範囲に調節することができる。例えば、重合反応時の最終温度を、220℃以上、好ましくは220℃以上300℃未満、より好ましくは240℃以上300℃未満、特に好ましくは240℃~280℃に調節することにより、末端にビニル基を有するポリマーおよび化合物を所定量含み、流動性および強度に優れた樹脂組成物を得ることができる。  
 式(1)、(A)および(B)において、R及びRは、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシル基、炭素数5~20のシクロアルキル基、炭素数5~20のシクロアルコキシル基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、およびハロゲン原子から選択される。これらのうち、水素原子、炭素数1~12のアルキル基または炭素数6~12のアリール基が好ましく、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、シクロヘプタ基、シクロプロピル基、またはフェニル基がより好ましく、水素原子、メチル基、またはフェニル基が特に好ましく、水素原子またはフェニル基が最も好ましい。
 Xは、それぞれ独立に、分岐していてもよい炭素数2~6のアルキレン基であり、好ましくは炭素数2~4のアルキレン基であり、より好ましくはエチレン基またはプロピレン基であり、特に好ましくはエチレン基である。
 HvおよびHfは、それぞれ水素原子である。
 nは、それぞれ独立に、1~5の整数であり、1~3の整数であることが好ましく、1~2の整数であることがより好ましく、1であることが特に好ましい。
 *はポリマー鎖であり、樹脂(a)を構成するいずれかの繰返し単位が複数結合した構造を有する。具体的には、*で表されるポリマー鎖は、一般式(1)で表される化合物に由来する繰返し単位を含む。また、樹脂(a)が後述する一般式(2)で表される繰返し単位または一般式(3)で表される繰返し単位を含む場合には、*のポリマー鎖は、これらの繰返し単位を含み得る。
 式(1)で表される化合物としては、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-メチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-エチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-フェニルフェニル)フルオレン、および9,9-ビス(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)フルオレンが挙げられる。中でも、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン(以下、BPEFとも称する)または9,9-ビス(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)フルオレン(以下、BPPEFとも称する)が好適に使用される。
 樹脂(a)における式(1)で表される化合物に由来する繰返し単位の割合は、樹脂(a)を構成する全繰返し単位(カーボネート結合部分およびエステル結合部分を除く)に対して50mol%以上が好ましく、さらには80mol%以上が好ましく、90mol%以上が特に好ましく、100mol%が最も好ましい。樹脂(a)は、式(1)で表される化合物に由来する繰返し単位以外の繰返し単位を含んでいてもよい。
 以下、上記樹脂組成物の好ましい実施形態について説明する。
<第1の好ましい実施形態>
 第1の好ましい実施形態によると、下記一般式(1)で表される化合物に由来する繰返し単位からなる樹脂(ただし、下記一般式(A)で表される末端構造を有するポリマーは除く)と、
Figure JPOXMLDOC01-appb-C000033
 下記一般式(A)で表される末端構造を有するポリマーおよび/または下記一般式(B)で表される化合物と
Figure JPOXMLDOC01-appb-C000034
を含む樹脂組成物が提供される。ここで、式(1)、(A)および(B)における各置換基の定義は上述したとおりであり、好ましい置換基および好ましい化合物についても上述したとおりである。ただし、式(A)における*で表されるポリマー鎖は、式(1)で表される化合物に由来する繰返し単位を含み、式(1)で表される化合物に由来する繰返し単位からなることが好ましい。
 「一般式(1)で表される化合物に由来する繰返し単位からなる樹脂(ポリマー鎖)」とは、樹脂におけるカーボネート結合部分およびエステル結合部分を除いた繰返し単位が、一般式(1)で表される化合物に由来する繰返し単位からなることを意味する。すなわち、樹脂がポリカーボネート樹脂である場合、「一般式(1)で表される化合物に由来する繰返し単位からなる樹脂」は、一般式(1)で表される化合物に由来する繰返し単位とカーボネート結合部分とからなるポリカーボネート樹脂(ポリマー鎖)を意味する。同様に、樹脂がエステル樹脂である場合には一般式(1)で表される化合物に由来する繰返し単位とエステル結合部分とからなるエステル樹脂(ポリマー鎖)を意味し、樹脂がポリエステルカーボネート樹脂である場合には一般式(1)で表される化合物に由来する繰返し単位とポリカーボネート結合部分とエステル結合部分とからなるポリエステルカーボネート樹脂(ポリマー鎖)を意味する。例えば、ポリカーボネート結合部分は、ホスゲンまたは炭酸ジエステルに由来し、エステル結合部分は、ジカルボン酸またはその誘導体に由来する。
 第1の実施形態に係る樹脂組成物における一般式(A)で表される末端構造を有するポリマーおよび一般式(B)で表される化合物の合計含有量は、樹脂組成物のH-NMRスペクトルを測定した場合に、以下の関係を満たすような量であることが好ましい(すなわち、「フルオレン系ビニル末端基量」)。
Figure JPOXMLDOC01-appb-M000035
 式(I)において、
Figure JPOXMLDOC01-appb-M000036
とみなすことができる。上記式(I)によって計算されるフルオレン系ビニル末端基量は、好ましくは0.03~0.9であり、より好ましくは0.03~0.7であり、特に好ましくは0.1~0.5である。
<第2の好ましい実施形態>
 第2の好ましい実施形態によると、下記一般式(1)で表される化合物に由来する繰返し単位および下記一般式(2)で表される化合物に由来する繰返し単位を含む樹脂(以下、樹脂(b)とも称する)(ただし、下記一般式(A)で表される末端構造を有するポリマーは除く)と、
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 下記一般式(A)で表される末端構造を有するポリマーおよび/または下記一般式(B)で表される化合物と
Figure JPOXMLDOC01-appb-C000039
を含む樹脂組成物が提供される。ここで、式(1)、(A)および(B)における各置換基の定義は上述したとおりであり、好ましい置換基および好ましい化合物についても上述したとおりである。ただし、式(A)における*で表されるポリマー鎖は、式(1)で表される化合物に由来する繰返し単位および式(2)で表される化合物に由来する繰返し単位を含み、式(1)で表される化合物に由来する繰返し単位および式(2)で表される化合物に由来する繰返し単位からなることが好ましい。ここで、「式(1)で表される化合物に由来する繰返し単位および式(2)で表される化合物に由来する繰返し単位からなるポリマー鎖」とは、ポリマー鎖におけるカーボネート結合部分およびエステル結合部分を除いた繰返し単位が、式(1)で表される化合物に由来する繰返し単位および式(2)で表される化合物に由来する繰返し単位からなることを意味する。
 第2の実施形態に係る樹脂組成物における一般式(A)で表される末端構造を有するポリマーおよび一般式(B)で表される化合物の合計含有量は、樹脂組成物のH-NMRスペクトルを測定した場合に、以下の関係を満たすような量であることが好ましい(すなわち、「フルオレン系ビニル末端基量」)。
Figure JPOXMLDOC01-appb-M000040
 式(I)において、
Figure JPOXMLDOC01-appb-M000041
とみなすことができる。上記式(I)によって計算されるフルオレン系ビニル末端基量は、好ましくは0.03~0.9であり、より好ましくは0.03~0.7であり、特に好ましくは0.1~0.5である。
 式(2)において、RおよびRは、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシル基、炭素数3~20のシクロアルキル基、炭素数5~20のシクロアルコキシル基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、およびハロゲン原子から選択される。これらのうち、水素原子、炭素数1~10のアルキル基、炭素数5~20のシクロアルキル基および炭素数6~15のアリール基が好ましく、水素原子、メチル基、エチル基、プロピル基、ブチル基、シクロヘキシル基およびフェニル基がより好ましく、水素原子、メチル基およびフェニル基が特に好ましい。
 Yは、それぞれ独立に、分岐していてもよい炭素数2~6のアルキレン基、炭素数6~10のシクロアルキレン基、または炭素数6~10のアリーレン基である。これらのうち、炭素数2~6のアルキレン基が好ましく、エチレン、プロピレンがより好ましく、エチレンが特に好ましい。
 Wは、単結合または
Figure JPOXMLDOC01-appb-C000042
からなる群より選択される(ここで、R、R、およびR14~R17は、それぞれ独立に、水素原子、炭素数1~10のアルキル基および炭素数6~10のフェニル基から選択され;R10およびR11は、それぞれ独立に、水素原子および炭素数1~5のアルキル基から選択され;R12およびR13は、それぞれ独立に、水素原子および炭素数1~5のアルキル基、フェニル基から選択され;Z’は、3~11の整数である)。
 Wは、単結合、
Figure JPOXMLDOC01-appb-C000043
であることが好ましく、
Figure JPOXMLDOC01-appb-C000044
であることがより好ましく、
Figure JPOXMLDOC01-appb-C000045
であることが特に好ましい。
 R、R、およびR14~R17は、炭素数1~10のアルキル基、炭素数6~10のフェニル基または水素原子であることが好ましく、水素原子、メチル基またはフェニル基であることがより好ましく、メチル基であることが特に好ましい。
 R10およびR11は、水素原子またはメチル基であることが好ましく、水素原子であることがより好ましい。
 R12およびR13は、それぞれ独立に、水素原子であることが好ましい。
 Z’は、3~10であることが好ましく、3~5であることがより好ましく、5であることが特に好ましい。
 pおよびqは、それぞれ独立に、0~5の整数であり、0~3であることが好ましく、0または1であることがより好ましく、pおよびqが共に0であることが特に好ましい。
 式(2)で表される化合物としては、具体的には、2,2-ビス(4-ヒドロキシフェニル)プロパン[=ビスフェノールA]、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン[=ビスフェノールAP]、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン[=ビスフェノールAF]、2,2-ビス(4-ヒドロキシフェニル)ブタン[=ビスフェノールB]、ビス(4-ヒドロキシフェニル)ジフェニルメタン[=ビスフェノールBP]、ビス(4-ヒドロキシ-3-メチルフェニル)プロパン[=ビスフェノールC]、1,1-ビス(4-ヒドロキシフェニル)エタン[=ビスフェノールE]、ビス(4-ヒドロキシフェニル)メタン[=ビスフェノールF]、ビス(2-ヒドロキシフェニル)メタン、2,2-ビス(4-ヒドロキシ-3-イソプロピルフェニル)プロパン[=ビスフェノールG]、1,3-ビス(2-(4-ヒドロキシフェニル)-2-プロピル)ベンゼン[=ビスフェノールM]、ビス(4-ヒドロキシフェニル)スルホン[=ビスフェノールS]、1,4-ビス(2-(4-ヒドロキシフェニル)-2-プロピル)ベンゼン[=ビスフェノールP]、ビス(4-ヒドロキシ-3-フェニルフェニル]プロパン[=ビスフェノールPH]、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン[=ビスフェノールTMC]、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン[=ビスフェノールZ]、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサン(ビスフェノールOCZ)、および4,4-ビスフェノール等が例示される。これらの中で、ビスフェノールA、ビスフェノールM、ビスフェノールC、ビスフェノールZ、およびビスフェノールTMCが好ましく、ビスフェノールAがより好ましい。
 式(1)で表される化合物に由来する繰返し単位および式(2)で表される化合物に由来する繰返し単位の合計割合は、樹脂(b)を構成する全繰返し単位(カーボネート結合部分およびエステル結合部分を除く)に対して40mol%以上が好ましく、50mol%以上がより好ましく、さらには80mol%以上が好ましく、90mol%以上が特に好ましく、100mol%が最も好ましい。樹脂(b)は、式(1)で表される化合物に由来する繰返し単位および式(2)で表される化合物に由来する繰返し単位以外の繰返し単位を含んでいてもよい。
 式(1)で表される化合物に由来する繰返し単位と式(2)で表される化合物に由来する繰返し単位のモル比は、20:80~99:1が好ましく、30:70~98:2がより好ましく、40:60~95:5が特に好ましい。
<第3の好ましい実施形態>
 第3の好ましい実施形態によると、下記一般式(1)で表される化合物に由来する繰返し単位および下記一般式(3)で表される繰返し単位を含む樹脂(以下、樹脂(c)とも称する)(ただし、下記一般式(A)で表される末端構造を有するポリマーおよび下記一般式(C)で表される末端構造を有するポリマーは除く)と、
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
 下記一般式(A)で表される末端構造を有するポリマー、下記一般式(B)で表される化合物、下記一般式(C)で表される末端構造を有するポリマー、および/または下記一般式(D)で表される化合物と
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
を含む樹脂組成物が提供される。ここで、式(1)、(A)および(B)における各置換基は、上述したとおりであり、好ましい置換基および好ましい化合物についても上述したとおりである。ただし、式(A)および(C)における*で表されるポリマー鎖は、式(1)で表される化合物に由来する繰返し単位および式(3)で表される化合物に由来する繰返し単位を含み、式(1)で表される化合物に由来する繰返し単位および式(3)で表される化合物に由来する繰返し単位からなることが好ましい。ここで、「式(1)で表される化合物に由来する繰返し単位および式(2)で表される化合物に由来する繰返し単位からなるポリマー鎖」とは、ポリマー鎖におけるカーボネート結合部分およびエステル結合部分を除いた繰返し単位が、式(1)で表される化合物に由来する繰返し単位および式(2)で表される化合物に由来する繰返し単位からなることを意味する。
 式(3)、(C)および(D)において、Zは、それぞれ独立に、分岐していてもよい炭素数2~6のアルキレン基である。好ましくは炭素数2~4のアルキレン基であり、より好ましくはエチレン基またはプロピレン基であり、特に好ましくはエチレン基である。
 mは、それぞれ独立に、1~5の整数であり、1~3の整数であることが好ましく、1~2の整数であることがより好ましく、1であることが特に好ましい。
 Hoは、水素原子である。
 式(3)で表される化合物としては、2,2´-ビス(ヒドロキシメトキシ)-1,1´-ビナフタレン、2,2´-ビス(2-ヒドロキシエトキシ)-1,1´-ビナフタレン、2,2´-ビス(3-ヒドロキシプロピルオキシ)-1,1´-ビナフタレン、2,2´-ビス(4-ヒドロキシブトキシ)-1,1´-ビナフタレン等が例示される。中でも、2,2´-ビス(2-ヒドロキシエトキシ)-1,1´-ビナフタレン(以下、BHEBNとも称する)が好適に使用される。
 第3の実施形態に係る樹脂組成物における一般式(A)で表される末端構造を有するポリマーおよび一般式(B)で表される化合物の合計含有量は、樹脂組成物のH-NMRスペクトルを測定した場合に、以下の関係を満たすような量であることが好ましい(すなわち、「フルオレン系ビニル末端基量」)。
Figure JPOXMLDOC01-appb-M000050
または
Figure JPOXMLDOC01-appb-M000051
 式(II)または(III)によって計算されるフルオレン系ビニル末端基量は、好ましくは0.03~0.9であり、より好ましくは0.03~0.7であり、特に好ましくは0.1~0.5である。
 式(II)および(III)のどちらを満たすかは、式(1)の化合物の構造に依存するが、いずれかの関係を満たせばよい。具体的には、式(1)におけるRおよびRが共に水素原子である場合には、組成物のH-NMRスペクトルは式(II)を満たし、RおよびRのいずれか一方が水素原子でない場合(例えばフェニル基)には、組成物のH-NMRスペクトルは式(III)を満たす。
 式(II)および(III)において、
Figure JPOXMLDOC01-appb-M000052
は、それぞれ、
Figure JPOXMLDOC01-appb-M000053
に対応する。
 上記式において、「式(1)の化合物に由来する繰返し単位におけるHr」とは、式(1)のXに含まれる全水素原子を意味し、「式(3)の化合物に由来する繰返し単位におけるHs」とは、式(3)のZに含まれる全水素原子を意味する。例えば、XおよびZがそれぞれエチレン基である場合、HrおよびHsの位置は、以下のとおりである。
Figure JPOXMLDOC01-appb-C000054
 第3の実施形態に係る樹脂組成物における一般式(C)で表される末端構造を有するポリマーおよび一般式(D)で表される化合物の合計含有量は、樹脂組成物のH-NMRスペクトルを測定した場合に、以下の関係を満たすような量であることが好ましい。
Figure JPOXMLDOC01-appb-M000055
 以下、式(C)および(D)の末端に位置するビニル基を「ビナフトール系ビニル末端基」といい、式(IV)によって算出される値を、「ビナフトール系ビニル末端基量」という。上記式(IV)によって計算される値は、好ましくは0.3~1.0であり、より好ましくは0.3~0.9であり、特に好ましくは0.3~0.6である。
 式(IV)において、
Figure JPOXMLDOC01-appb-M000056
は、
Figure JPOXMLDOC01-appb-M000057
に対応する。
 上記式におけるHrおよびHsは、上記で定義したとおりである。
 上記式(II)~(IV)を合わせて考えると、第3の実施形態に係る樹脂組成物における一般式(A)で表される末端構造を有するポリマー、一般式(B)で表される化合物、一般式(C)で表される末端構造を有するポリマーおよび一般式(D)で表される化合物の合計含有量は、樹脂組成物のH-NMRスペクトルを測定した場合に、以下の関係を満たすような量であることが好ましい(すなわち、「フルオレン系ビニル末端基量」+「ビナフトール系ビニル末端基量」)。
Figure JPOXMLDOC01-appb-M000058
すなわち、式(II)または(III)のいずれかと式(IV)との和が、式(V)によって表される。上記式(V)によって計算される値は、好ましくは0.1~2.0であり、より好ましくは0.3~1.8であり、さらに好ましくは0.4~1.4、特に好ましくは0.4~1.0である。
 式(1)で表される化合物に由来する繰返し単位および式(3)で表される化合物に由来する繰返し単位の合計割合は、樹脂(c)を構成する全繰返し単位(カーボネート結合部分およびエステル結合部分を除く)に対して40mol%以上が好ましく、50mol%以上がより好ましく、さらには80mol%以上が好ましく、90mol%以上が特に好ましく、100mol%が最も好ましい。樹脂(c)は、式(1)で表される化合物に由来する繰返し単位および式(3)で表される化合物に由来する繰返し単位以外の繰返し単位を含んでいてもよい。
 式(1)で表される化合物に由来する繰返し単位と式(3)で表される化合物に由来する繰返し単位のモル比は、20:80~99:1が好ましく、30:70~95:5がより好ましく、40:60~90:10が特に好ましい。
<樹脂の製造方法>
 本発明の樹脂の種類は特に限定されないが、ポリカーボネート樹脂、ポリエステル樹脂、またはポリエステルカーボネート樹脂が好ましく、ポリカーボネート樹脂がより好ましい。また、これらの樹脂は、ランダム、ブロックおよび交互共重合体のいずれの構造であってもよい。以下、特にポリカーボネート樹脂について、詳細に説明する。
 ポリカーボネート樹脂とは、樹脂を構成する各繰返し単位が、カーボネート結合を介して結合されている樹脂を意味する。本発明における一般式(1)で表される化合物に由来する繰返し単位を含む樹脂がポリカーボネート樹脂である場合、一般式(1)で表される化合物(および任意に一般式(2)で表される化合物または一般式(3)で表される化合物)、ならびに炭酸ジエステルなどのカーボネート前駆物質を原料として使用し、塩基性化合物触媒もしくはエステル交換触媒またはその双方からなる混合触媒の存在下、あるいは無触媒下において、溶融重縮合法により製造することができる。
 この反応に用いられる炭酸ジエステルとしては、ジフェニルカーボネート、ジトリールカーボネート、ビス(クロロフェニル)カーボネート、m-クレジルカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジシクロヘキシルカーボネート等が挙げられる。これらの中でも特に、ジフェニルカーボネートが好ましい。炭酸ジエステルは、ジヒドロキシ化合物の合計1モルに対して0.97~1.20モルの比率で用いられることが好ましく、更に好ましくは0.98~1.10モルの比率である。炭酸ジエステルの量がこれら範囲を外れた場合、樹脂が所望の分子量に到達しない、未反応の原料が樹脂中に残存して光学特性が低下する等の問題が生じ得る。
 塩基性化合物触媒としては、特にアルカリ金属化合物、アルカリ土類金属化合物、および含窒素化合物等が挙げられる。
 アルカリ金属化合物としては、例えばアルカリ金属の有機酸塩、無機塩、酸化物、水酸化物、水素化物又はアルコキシド等が挙げられる。具体的には、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化リチウム、炭酸水素ナトリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸セシウム、酢酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸セシウム、ステアリン酸リチウム、水素化ホウ素ナトリウム、フェニル化ホウ素ナトリウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸セシウム、安息香酸リチウム、リン酸水素二ナトリウム、リン酸水素二カリウム、リン酸水素二リチウム、フェニルリン酸二ナトリウム、ビスフェノールAの二ナトリウム塩、二カリウム塩、二セシウム塩もしくは二リチウム塩、フェノールのナトリウム塩、カリウム塩、セシウム塩もしくはリチウム塩等が用いられる。これらのうち、触媒活性が高く、純度の高いものが安価で流通している炭酸水素ナトリウムが好ましい。
 アルカリ土類金属化合物としては、例えばアルカリ土類金属化合物の有機酸塩、無機塩、酸化物、水酸化物、水素化物又はアルコキシド等が挙げられる。具体的には、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム、炭酸水素マグネシウム、炭酸水素カルシウム、炭酸水素ストロンチウム、炭酸水素バリウム、炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム、酢酸マグネシウム、酢酸カルシウム、酢酸ストロンチウム、酢酸バリウム、ステアリン酸マグネシウム、ステアリン酸カルシウム、安息香酸カルシウム、フェニルリン酸マグネシウム等が用いられる。
 含窒素化合物としては、例えば4級アンモニウムヒドロキシドおよびそれらの塩、アミン類等が挙げられる。具体的には、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド等のアルキル基、アリール基等を有する4級アンモニウムヒドロキシド類;トリエチルアミン、ジメチルベンジルアミン、トリフェニルアミン等の3級アミン類;ジエチルアミン、ジブチルアミン等の2級アミン類;プロピルアミン、ブチルアミン等の1級アミン類;2-メチルイミダゾール、2-フェニルイミダゾール、ベンゾイミダゾール等のイミダゾール類;あるいは、アンモニア、テトラメチルアンモニウムボロハイドライド、テトラブチルアンモニウムボロハイドライド、テトラブチルアンモニウムテトラフェニルボレート、テトラフェニルアンモニウムテトラフェニルボレート等の塩基もしくは塩基性塩等が用いられる。
 エステル交換触媒としては、亜鉛、スズ、ジルコニウム、鉛等の塩が好ましく用いられ、これらは単独もしくは組み合わせて用いることができる。
 エステル交換触媒としては、具体的には、酢酸亜鉛、安息香酸亜鉛、2-エチルヘキサン酸亜鉛、塩化スズ(II)、塩化スズ(IV)、酢酸スズ(II)、酢酸スズ(IV)、ジブチルスズジラウレート、ジブチルスズオキサイド、ジブチルスズジメトキシド、ジルコニウムアセチルアセトナート、オキシ酢酸ジルコニウム、ジルコニウムテトラブトキシド、酢酸鉛(II)、酢酸鉛(IV)等が用いられる。
 これらの触媒は、ジヒドロキシ化合物の合計1モルに対して、1×10-9~1×10-3モルの比率で、好ましくは1×10-7~1×10-4モルの比率で用いられる。
 触媒は、2種類以上を併用してもよい。また、触媒自体をそのまま添加してもよく、あるいは、水やフェノール等の溶媒に溶解してから添加してもよい。
 溶融重縮合法は、前記の原料および触媒を用いて、加熱下で、さらに常圧または減圧下で、エステル交換反応により溶融重縮合を行うものである。すなわち、反応温度は常温、常圧より開始し、副生成物を除去しながら、徐々に昇温、減圧状態とするのが好ましい。
 具体的には、反応の最終段階における反応温度が220℃以上300℃未満であることが好ましく、230℃超280℃以下であることがより好ましく、240~280℃であることが特に好ましく、240~260℃であることが最も好ましい。反応の最終段階における減圧度は、100~0.01Torrであることが好ましく、50~0.01Torrであることがより好ましく、5~0.1Torrであることが特に好ましく、1Torr以下(例えば1~0.01Torr)であることが最も好ましい。触媒は、原料と共に反応の最初から存在させてもよく、あるいは、反応の途中で添加してもよい。ここで、反応の最終段階とは、原料を融解させてエステル交換反応を行った後、減圧した状態(例えば、100~0.01Torr)で重合反応を行う段階を意味する。
 溶融重縮合反応は、連続式で行っても良く、またバッチ式で行ってもよい。反応を行うに際して用いられる反応装置は、錨型攪拌翼、マックスブレンド攪拌翼、ヘリカルリボン型攪拌翼等を装備した縦型であっても、パドル翼、格子翼、メガネ翼等を装備した横型であっても、スクリューを装備した押出機型であってもよい。また、重合物の粘度を勘案してこれらの反応装置を適宜組み合わせて使用することが好適に実施される。
 このポリカーボネート樹脂の製造方法では、重合反応終了後、熱安定性および加水分解安定性を保持するために、触媒を除去もしくは失活させてもよいが、必ずしも失活させる必要はない。失活させる場合、公知の酸性物質の添加による触媒の失活のための方法を好適に実施できる。酸性物質としては、具体的には、安息香酸ブチル等のエステル類;p-トルエンスルホン酸等の芳香族スルホン酸類;p-トルエンスルホン酸ブチル、p-トルエンスルホン酸ヘキシル等の芳香族スルホン酸エステル類;亜リン酸、リン酸、ホスホン酸等のリン酸類;亜リン酸トリフェニル、亜リン酸モノフェニル、亜リン酸ジフェニル、亜リン酸ジエチル、亜リン酸ジn-プロピル、亜リン酸ジn-ブチル、亜リン酸ジn-ヘキシル、亜リン酸ジオクチル、亜リン酸モノオクチル等の亜リン酸エステル類;リン酸トリフェニル、リン酸ジフェニル、リン酸モノフェニル、リン酸ジブチル、リン酸ジオクチル、リン酸モノオクチル等のリン酸エステル類;ジフェニルホスホン酸、ジオクチルホスホン酸、ジブチルホスホン酸等のホスホン酸類;フェニルホスホン酸ジエチル等のホスホン酸エステル類;トリフェニルホスフィン、ビス(ジフェニルホスフィノ)エタン等のホスフィン類;ホウ酸、フェニルホウ酸等のホウ酸類;ドデシルベンゼンスルホン酸テトラブチルホスホニウム塩等の芳香族スルホン酸塩類;ステアリン酸クロライド、塩化ベンゾイル、p-トルエンスルホン酸クロライド等の有機ハロゲン化物;ジメチル硫酸等のアルキル硫酸;塩化ベンジル等の有機ハロゲン化物等が好適に用いられる。失活剤の効果、樹脂に対する安定性等の観点から、p-トルエンまたはスルホン酸ブチルが特に好ましい。これらの失活剤は、触媒量に対して0.01~50倍モル、好ましくは0.3~20倍モル使用される。触媒量に対して0.01倍モルより少ないと、失活効果が不充分となり好ましくない。また、触媒量に対して50倍モルより多いと、樹脂の耐熱性が低下し、成形体が着色しやすくなるため好ましくない。
 上記失活剤の添加は、混練により行うことができ、連続式、バッチ式のどちらでもよい。混練時の温度は、200~350℃が好ましく、230~300℃がより好ましく、250~280℃が特に好ましい。混練機は、連続式ならば押出し機が好適であり、バッチ式ならばラボプラストミル、ニーダーが好適に使用される。押出機としては、例えば、単軸押出機、二軸押出機、多軸押出機等が挙げられる。押出機には、適宜、樹脂吐出量を安定定量化する為のギアポンプなどを設けることができる。樹脂組成物の溶融混練の雰囲気圧力は特に制限されず、常圧または減圧、例えば、常圧(760mmHg)~0.1mmHgの圧力が、酸化防止、分解物、フェノールなどの低沸点成分の除去の観点で好ましい。押出機はベント式であってもノーベント式であってもよいが、押出製品の品質向上の点から、好ましくはベント式押出機である。ベント口の圧力(ベント圧力)は、常圧であっても減圧であってもよいが、例えば、常圧(760mmHg)~0.1mmHgの圧力であってよく、好ましくは、100~0.1mmHg程度の圧力、より好ましくは酸化防止、分解物、フェノールなどの低沸点成分の除去の観点で50~0.1mmHg程度の圧力とする。また、フェノールなどの低沸点成分をより効率的に減少する目的で、水添脱揮してもよい。
 失活剤の混練は、重合反応終了後すぐに行ってもよく、あるいは、重合後の樹脂をペレット化してから行ってもよい。また、失活剤の他、その他の添加剤(酸化防止剤、離型剤、紫外線吸収剤、流動性改質剤、結晶核剤、強化剤、染料、帯電防止剤あるいは抗菌剤等)も、同様の方法で添加することができる。
 触媒失活後(失活剤を添加しない場合には、重合反応終了後)、ポリマー中の低沸点化合物を、0.1~1mmHgの圧力、200~350℃の温度で脱揮除去する工程を設けても良い。脱揮除去の際の温度は、好ましくは230~300℃、より好ましくは250~280℃である。この工程には、パドル翼、格子翼、メガネ翼等、表面更新能の優れた攪拌翼を備えた横型装置、あるいは薄膜蒸発器が好適に用いられる。
 このポリカーボネート樹脂は、異物含有量が極力少ないことが望まれ、溶融原料の濾過、触媒液の濾過等が好適に実施される。フィルターのメッシュは、5μm以下であることが好ましく、より好ましくは1μm以下である。さらに、生成する樹脂のポリマーフィルターによる濾過が好適に実施される。ポリマーフィルターのメッシュは、100μm以下であることが好ましく、より好ましくは30μm以下である。また、樹脂ペレットを採取する工程は当然低ダスト環境でなければならず、クラス6以下であることが好ましく、より好ましくはクラス5以下である。
 また、ポリカーボネート樹脂のポリスチレン換算平均分子量Mwは、20000~200000が好ましく、25000~120000がさらに好ましく、25000~50000が特に好ましい。
 Mwが20000より小さいと、樹脂が脆くなるため好ましくない。Mwが200000より大きいと、溶融粘度が高くなるため、成形時に金型からの樹脂の抜き取りが困難になり、更には流動性が悪くなり溶融状態で扱い難くなるため好ましくない。
<その他の成分>
 本発明の樹脂組成物は、上述した以外の成分を含んでいてもよい。例えば、本発明における「式(1)で表される化合物に由来する繰返し単位を含む樹脂」の繰り返し単位として、式(1)~(3)以外の化合物に由来する繰返し単位が含まれても良い。その量は、式(1)~(3)で表される化合物に由来する繰返し単位の合計100モル%に対して20モル%以下が望ましく、10モル%以下がさらに望ましい。この範囲内であれば、高屈折率が保持される。
 さらに含まれていてもよい繰返し単位としては、エチレングリコール、1,3-プロパンジオール、1,2-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、1,2-ブタンジオール、1,5-ヘプタンジオール、1,6-ヘキサンジオールのなどの脂肪族ジヒドロキシ化合物;1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、トリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノール、2,6-デカリンジメタノール、1,5-デカリンジメタノール、2,3-デカリンジメタノール、2,3-ノルボルナンジメタノール、2,5-ノルボルナンジメタノール、1,3-アダマンタンジメタノール等の脂環式ジヒドロキシ化合物;2,2-ビス(4-ヒドロキシフェニル)プロパン[=ビスフェノールA]、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジエチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-(3,5-ジフェニル)フェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,4’-ジヒドロキシ-ジフェニルメタン、ビス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシ-5-ニトロフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、3,3-ビス(4-ヒドロキシフェニル)ペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、ビス(4-ヒドロキシフェニル)スルホン、2,4’-ジヒドロキシジフェニルスルホン、ビス(4-ヒドロキシフェニル)スルフィド、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジクロロジフェニルエーテル、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-2-メチルフェニル)フルオレン等の芳香族ビスフェノール類に由来する繰返し単位が挙げられる。
 また、本発明の樹脂組成物は、式(1)で表される化合物に由来する繰返し単位を含む樹脂に加えて、本発明の特性を損なわない範囲において他の樹脂を含んでも良い。
 他の樹脂として、以下のものが例示される:
 ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、(メタ)クリル樹脂、ABS樹脂、ポリアミド、ポリアセタール、ポリカーボネート、ポリフェニレンエーテル、ポリエステル、ポリフェニレンサルファイド、ポリイミド、ポリエーテルサルホン、ポリエーテルエーテルケトン、フッ素樹脂、シクロオレフィンポリマー、エチレン・酢酸ビニル共重合体、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ポリウレタン。
 他の樹脂の含量は、式(1)で表される化合物に由来する繰返し単位を含む樹脂100重量部に対して、20質量部以下が好ましく、10質量部以下がさらに好ましい。
 他の樹脂の含量が多すぎると、相溶性が悪くなり、樹脂組成物の透明性が低下する場合がある。光学歪みを低く保つためには、他の樹脂は含まないことが好ましい。
<樹脂組成物の特性>
 本発明の方法により得られる樹脂組成物は、末端ビニル基を含有する化合物およびポリマーを所定量含むことにより、所望の特性を有する。樹脂組成物のメルトボリュームレート(MVR)は、30cm/10min以上であることが好ましく、32cm/10min以上であることがより好ましい。曲げ強度は、80MPa以上であることが好ましく、90MPa以上であることがより好ましく、100MPa以上であることが特に好ましい。
<光学成形体>
 本発明の樹脂組成物を用いて光学成形体を製造できる。本発明の樹脂組成物は、成形に適した流動性および強度を有するため、液晶ディスプレイ、有機ELディスプレイ、太陽電池等に使用される透明導電性基板、光学ディスク、液晶パネル、光学レンズ、光学シート、光学フィルム、光ファイバー、コネクター、蒸着プラスチック反射鏡などの光学成形体の材料として有利に使用することができる。本発明の樹脂組成物を含む光学成形体は、高い屈折率を有すると共に、賦形性にも優れる。
 一般に、エステル交換法を用いて製造された樹脂は、分子鎖に分岐構造を有するため、低せん断速度領域において粘度が高く、非ニュートン性を示す。このため、従来、低せん断領域において樹脂を成形する場合、不均一な残留歪みが発生しやすく、加工直後の反りや高温環境下で変形を生じてしまうという問題点があった。また、成形時、樹脂を軟化させる温度が高くなるほど樹脂の流動性は向上するものの、樹脂の分解や着色が発生しやすいため、軟化させる温度には制約があった。しかし、本発明の樹脂組成物は、流動性および強度に優れているため、成形時に生じ得る上記問題を解決することができる。また、得られる成形体は、高い屈折率を有すると共に、賦形性にも優れ、ヘーズ、全光線透過率、アッベ数等の光学成形体に求められる種々の特性においても優れている。
 光学成形体は、例えば射出成形法、圧縮成形法、押出成形法、溶液キャスティング法など任意の方法により成形される。成形の際には、本発明の樹脂組成物をポリカーボネート樹脂やポリエステル樹脂などの他の樹脂と混合して使用することが出来る。また、酸化防止剤、加工安定剤、光安定剤、重金属不活性化剤、難燃剤、滑剤、帯電防止剤、界面活性剤、抗菌剤、離型剤、紫外線吸収剤、可塑剤、相溶化剤等の添加剤を混合しても構わない。
 酸化防止剤としては、トリエチレングリコール-ビス[3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、ペンタエリスリトール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、N,N-ヘキサメチレンビス(3,5-ジ-tert-ブチル-4-ヒドロキシ-ヒドロシンナマイド)、3,5-ジ-tert-ブチル-4-ヒドロキシ-ベンジルホスホネート-ジエチルエステル、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレートおよび3,9-ビス{1,1-ジメチル-2-[β-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル}-2,4,8,10-テトラオキサスピロ(5,5)ウンデカンなどが挙げられる。樹脂組成物中の酸化防止剤の含有量は、樹脂組成物100重量部に対して0.001~0.3重量部であることが好ましい。
 加工安定剤としては、リン系加工熱安定剤、硫黄系加工熱安定剤等が挙げられる。リン系加工熱安定剤としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸およびこれらのエステル等が挙げられる。具体的には、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト、トリブチルホスフェート、トリエチルホスフェート、トリメチルホスフェート、トリフェニルホスフェート、ジフェニルモノオルソキセニルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェート、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、ベンゼンホスホン酸ジプロピル、テトラキス(2,4-ジ-t-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-t-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-t-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイトおよびビス(2,4-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト等が挙げられる。樹脂組成物中のリン系加工熱安定剤の含有量は、樹脂組成物100重量部に対して0.001~0.2重量部が好ましい。
 硫黄系加工熱安定剤としては、ペンタエリスリトール-テトラキス(3-ラウリルチオプロピオネート)、ペンタエリスリトール-テトラキス(3-ミリスチルチオプロピオネート)、ペンタエリスリトール-テトラキス(3-ステアリルチオプロピオネート)、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリル-3,3’-チオジプロピオネート等が挙げられる。樹脂組成物中の硫黄系加工熱安定剤の含有量は、樹脂組成物100重量部に対して0.001~0.2重量部が好ましい。
 離型剤としては、その90重量%以上がアルコールと脂肪酸とのエステルからなるものが好ましい。アルコールと脂肪酸とのエステルとしては、具体的には一価アルコールと脂肪酸とのエステルや、多価アルコールと脂肪酸との部分エステルあるいは全エステルが挙げられる。上記一価アルコールと脂肪酸とのエステルとしては、炭素原子数1~20の一価アルコールと炭素原子数10~30の飽和脂肪酸とのエステルが好ましい。また、多価アルコールと脂肪酸との部分エステルあるいは全エステルとしては、炭素原子数1~25の多価アルコールと炭素原子数10~30の飽和脂肪酸との部分エステルまたは全エステルが好ましい。
 具体的に、一価アルコールと飽和脂肪酸とのエステルとしては、ステアリルステアレート、パルミチルパルミテート、ブチルステアレート、メチルラウレート、イソプロピルパルミテート等が挙げられる。多価アルコールと飽和脂肪酸との部分エステルまたは全エステルとしては、ステアリン酸モノグリセリド、ステアリン酸ジグリセリド、ステアリン酸トリグリセリド、ステアリン酸モノソルビテート、ベヘニン酸モノグリセリド、カプリン酸モノグリセリド、ラウリン酸モノグリセリド、ペンタエリスリトールモノステアレート、ペンタエリスリトールテトラステアレート、ペンタエリスリトールテトラペラルゴネート、プロピレングリコールモノステアレート、ビフェニルビフェネ-ト、ソルビタンモノステアレート、2-エチルヘキシルステアレート、ジペンタエリスリトールヘキサステアレート等のジペンタエリスルトールの全エステルまたは部分エステル等が挙げられる。これらのうち、ステアリン酸モノグリセリドおよびラウリン酸モノグリセリドが特に好ましい。これら離型剤の含有量は、樹脂組成物100重量部に対して0.005~2.0重量部の範囲が好ましく、0.01~0.6重量部の範囲がより好ましく、0.02~0.5重量部の範囲がさらに好ましい。
 紫外線吸収剤としては、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤、環状イミノエステル系紫外線吸収剤およびシアノアクリレート系紫外線吸収剤からなる群より選ばれる少なくとも1種の紫外線吸収剤が好ましい。すなわち、以下に挙げる紫外線吸収剤は、いずれかを単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 ベンゾトリアゾール系紫外線吸収剤としては、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-3,5-ジクミルフェニル)フェニルベンゾトリアゾール、2-(2-ヒドロキシ-3-tert-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2N-ベンゾトリアゾール-2-イル)フェノール]、2-(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-アミルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-5-tert-ブチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-4-オクトキシフェニル)ベンゾトリアゾ-ル、2,2’-メチレンビス(4-クミル-6-ベンゾトリアゾールフェニル)、2,2’-p-フェニレンビス(1,3-ベンゾオキサジン-4-オン)、2-[2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミドメチル)-5-メチルフェニル]ベンゾトリアゾ-ル等が挙げられる。
 ベンゾフェノン系紫外線吸収剤としては、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2-ヒドロキシ-4-ベンジロキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホキシトリハイドレイトベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシ-5-ソジウムスルホキシベンゾフェノン、ビス(5-ベンゾイル-4-ヒドロキシ-2-メトキシフェニル)メタン、2-ヒドロキシ-4-n-ドデシルオキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-2’-カルボキシベンゾフェノン等が挙げられる。
 トリアジン系紫外線吸収剤としては、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノール、2-(4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル)-5-[(オクチル)オキシ]-フェノール、2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メチルフェニル)-1,3,5-トリアジン等が挙げられる。
 環状イミノエステル系紫外線吸収剤としては、2,2’-ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-p-フェニレンビス(3,1-ベンゾオキサジン-4-オン)、2,2’-m-フェニレンビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(4,4’-ジフェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(2,6-ナフタレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(1,5-ナフタレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(2-メチル-p-フェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(2-ニトロ-p-フェニレン)ビス(3,1-ベンゾオキサジン-4-オン)および2,2’-(2-クロロ-p-フェニレン)ビス(3,1-ベンゾオキサジン-4-オン)などが挙げられる。
 シアノアクリレート系紫外線吸収剤としては、1,3-ビス-[(2’-シアノ-3’,3’-ジフェニルアクリロイル)オキシ]-2,2-ビス[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]メチル)プロパン、および1,3-ビス-[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]ベンゼンなどが挙げられる。
 紫外線吸収剤の含有量は、樹脂組成物100重量部に対して、好ましくは0.01~3.0重量部であり、より好ましくは0.02~1.0重量部であり、さらに好ましくは0.05~0.8重量部である。かかる配合量の範囲であれば、用途に応じ、樹脂に十分な耐候性を付与することが可能である。
 光学成形体の表面には、必要に応じ、反射防止層あるいはハードコート層といったコート層が設けられていても良い。反射防止層は、単層であっても多層であっても良く、有機物であっても無機物であっても構わないが、無機物であることが好ましい。具体的には、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、酸化チタニウム、酸化セリウム、酸化マグネシウム、フッ化マグネシウム等の酸化物あるいはフッ化物が例示される。
(光学フィルムまたは光学シート)
 光学成形体の一例として、光学フィルムまたは光学シートについて説明する。本発明の樹脂組成物を含むフィルムまたはシートは、例えば、液晶基板用フィルム、液晶表示装置の輝度向上のためのプリズムシート、光メモリーカード等に好適に使用される。
 シートおよびフィルムの構造は、特に限定されず、単層構造であっても、多層構造であってもよい。多層構造である場合には、異なる樹脂で構成される層が2層、3層または4層以上積層された構造であってもよい。
 シートおよびフィルムを作製する方法としては、溶融押出法(例えば、Tダイ成形法)、キャスト塗工法(例えば、流延法)、カレンダー成形法、熱プレス法等、様々な製膜方法を用いることができ、特に限定されない。好ましくは、溶融押出法が挙げられる。溶融押出法を使用する場合、装置としては、周知の溶融押出成形機を用いればよい。以下、溶融押出法を使用してシートおよびフィルムを製造する方法について説明する。
 まず、材料を押出機に投入して溶融混錬し、T型ダイの先端(リップ)からシート状の溶融材料を押し出す。押出機としては、例えば、一軸押出機、二軸押出機等が挙げられる。また、2層以上からなる多層のフィルムを製造する場合には、複数の押出機を用いてもよい。例えば、3層のフィルムを製造する場合には、3基または2基の押出機を用いて材料をそれぞれ溶融混錬し、溶融した材料を3種3層分配型または2種3層分配型フィードブロックで分配し、単層T型ダイに流入させて共押出しすることができる。あるいは、溶融した各層の材料をマルチマニホールドダイにそれぞれ流入させて、リップ手前で3層構成に分配して共押出ししてもよい。
 押出機には、適宜、材料中の比較的大きな異物等をろ過および除去する為のスクリーンメッシュ、材料中の比較的小さな異物、ゲル等をろ過および除去する為のポリマーフィルター、押し出す樹脂量を定量化する為のギアポンプなどを設けても良い。
 T型ダイは、スリット状のリップを有するダイであり、例えば、フィードブロックダイ、マニホールドダイ、フィッシュテールダイ、コートハンガーダイ、スクリューダイ等が挙げられる。多層の熱可塑性樹脂フィルムを製造する場合には、マルチマニホールドダイなどを用いてもよい。
 また、T型ダイのリップの幅方向の長さは、特に制限は無いが、製品幅に対して1.2~1.5倍であることが好ましい。リップの開度は、所望の製品の厚みにより適宜調整すればよいが、通常、所望の製品の厚みの1.01~10倍、好ましくは1.1~5倍である。リップの開度の調整は、T型ダイの幅方向に並んだボルトによって行うのが好ましい。リップ開度は幅方向に一定でなくてもよく、例えば、端部のリップ開度を中央部のリップ開度より狭く調整することで、ドローレゾナンス現象を抑制することができる。
 次いで、押し出されたシート状の材料を、2本の冷却ロールの間に挟み込んで成形する。2本の冷却ロールは、共に金属ロールであってもよいし、共に弾性ロールであってもよいし、一方が金属ロールであり、他方が弾性ロールであってもよい。ロールの表面状態は、特に限定されず、例えば、鏡面であってもよく、模様や凹凸等があってもよい。
 金属ロールとしては、高剛性であれば特に限定されず、例えば、ドリルドロール、スパイラルロール等が挙げられる。
 弾性ロールとしては、例えば、ゴムロールや、外周部に金属製薄膜を備えた弾性ロール(以下、金属弾性ロールとも称する)などが挙げられ、なかでも、金属弾性ロールであることが好ましい。
 2本の冷却ロール間の隙間(ロールギャップ)は、所望の製品厚みにより適宜調整され、シート状の材料の両面が、それぞれ冷却ロールの中央部の表面に接する様にロールギャップが設定される。そのため、シート状の材料は、2本の冷却ロールで挟み込まれると、冷却ロールの中央部から一定の圧力を受けてフィルムまたはシートに成形される。
 2本の冷却ロールの圧着圧はロール剛性の許容範囲において任意である。また、シートおよびフィルムへの成形速度についても、適宜調整可能である。
 フィルムへの異物の混入を極力避けるため、成形環境も当然低ダスト環境でなければならず、クラス6以下であることが好ましく、より好ましくはクラス5以下である。
 (光学レンズ)
 光学成形体の具体例としては、光学レンズも挙げられる。本発明の樹脂組成物を含む光学レンズは、望遠鏡、双眼鏡、テレビプロジェクター等、従来、高価な高屈折率ガラスレンズが用いられていた分野に用いることができ、極めて有用である。必要に応じて、非球面レンズの形で用いることが好ましい。非球面レンズは、1枚のレンズで球面収差を実質的にゼロとすることが可能であるため、複数の球面レンズの組み合わせによって球面収差を取り除く必要がなく、軽量化および生産コストの低減化が可能になる。従って、非球面レンズは、光学レンズの中でも特にカメラレンズとして有用である。
 光学レンズは、例えば射出成形法、圧縮成形法、射出圧縮成形法など任意の方法により成形される。本発明の樹脂組成物を使用することにより、ガラスレンズでは技術的に加工の困難な高屈折率低複屈折非球面レンズをより簡便に得ることができる。
 本発明の樹脂組成物は、流動性が高いため、薄肉小型で複雑な形状である光学レンズを作製することができる。具体的なレンズサイズとしては、中心部の厚みが0.05~3.0mm、より好ましくは0.05~2.0mm、さらに好ましくは0.1~2.0mmである。また、直径は、1.0mm~20.0mm、より好ましくは1.0~10.0mm、さらに好ましくは3.0~10.0mmである。
 光学レンズへの異物の混入を極力避けるため、成形環境も当然低ダスト環境でなければならず、クラス6以下であることが好ましく、より好ましくはクラス5以下である。
 以下に本発明を実施例により説明するが、本発明はこれらの実施例に何らの制限を受けるものではない。
1.樹脂組成物
 実施例におけるメルトボリュームレート(MVR)および曲げ強度は、以下の方法を用いて測定した。
(1)メルトボリュームレート(MVR)
 MVRは、樹脂組成物の流動性を示す指標であり、値が大きいほど流動性が高いことを示す。実施例で製造した樹脂組成物を120℃で4時間真空乾燥し、(株)東洋精機製作所製メルトインデクサーT‐111を用い、温度260℃、加重2160gの条件下で測定した。
(2)曲げ強度
 実施例で製造した樹脂組成物を120℃で4時間真空乾燥した後、射出成型によって80mm×10mm×4mmの試験片を得た。この試験片を用いて、JIS K 7171に準拠した曲げ試験を行った。
 また、H-NMRの測定条件は、以下のとおりである。
(3)H-NMR測定条件
 装置:ブルカー AVANZE III HD 500MHz
 フリップ角:30度
 待ち時間:1秒
 積算回数:500回
 測定温度:室温(298K)
 濃度:5wt%
 溶媒:重クロロホルム
 内部標準物質:テトラメチルシラン(TMS) 0.05wt%
(4)レンズ成形性
 4-1)レンズ成形性1(離型性):ポリカーボネート樹脂組成物をファナック(株)製FUNUC ROBOSHOTS‐2000i30Aを用いて成形温度260度、金型温度135度でレンズ型試験片(厚さ0.5mm、直径10mm)に成形した。射出時のピーク圧力を55MPaに設定し、このときのエジェクト圧の値が20MPa未満である樹脂組成物をA、エジェクト圧の値が20~30MPaである樹脂組成物をB、エジェクト圧の値が30MPa以上である樹脂組成物をCと評価した。
 上述のエジェクト圧の低い樹脂組成物は、成形しやすく、生産性に優れることを示す。
 4-2)レンズ成形性2(金型汚れ):新潟鉄工所製ミニ7成型機としずく型の金型を用いてシリンダー温度250℃、成型サイクル11秒、金型温度80℃、型締め力7トンで2000ショット成型した。成型終了後金型稼動側に設置された成型品本体部分に対応する入れ子(成型品の凸側表面に対応する)を連続成型後に金型部より取り外し、その表面部の金型汚れを目視にて観察した。
 レンズ成形性2については、以下のように評価した。
  A:目視にて金型汚れがなく、離型性が良好
  B:目視にて金型汚れがあり、離型性が若干不良
  C:目視にて金型汚れがあり、離型性が不良
<実施例1:BPEFホモポリマー;240℃>
 9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン(以下、「BPEF」とも称する) 18.07kg(42.21モル)、ジフェニルカーボネート(以下、「DPC」とも称する) 9.20kg(42.95)モル、および炭酸水素ナトリウム 2.08×10-2g(3.33×10-4モル)を攪拌器および留出装置付きの50リットル反応器に入れた。窒素置換を行った後、窒素雰囲気760Torrの下、1時間かけて205℃に加熱しながら攪拌した。原料の完全溶解後、15分間かけて減圧度を150Torrに調整し、205℃、150Torrの条件で20分間保持し、エステル交換反応を行った。その後、37.5℃/hrの速度で240℃まで昇温し、240℃、150Torrで10分間保持した。その後、10分間かけて120Torrに調整し、240℃、120Torrで70分間保持した。その後、10分間かけて100Torrに調整し、240℃、100Torrで10分間保持した。さらに、40分間かけて1Torr以下とし、240℃、1Torr以下の条件下で10分間攪拌しながら重合反応を行った。反応終了後、反応器内に窒素を吹き込んで加圧し、生成したポリカーボネート樹脂組成物をペレタイズしながら抜き出した。  
<実施例1-1:BPEFホモポリマー;260℃>
 実施例1と同様にエステル交換反応を行った。その後、37.5℃/hrの速度で240℃まで昇温し、240℃、150Torrで10分間保持した。その後、10分間かけて120Torrに調整し、240℃、120Torrで70分間保持した。その後、10分間かけて100Torrに調整し、240℃、100Torrで10分間保持した。さらに、50分間かけて260℃、1Torr以下とし、260℃、1Torr以下の条件下で10分間攪拌しながら重合反応を行った。反応終了後、反応器内に窒素を吹き込んで加圧し、生成したポリカーボネート樹脂組成物をペレタイズしながら抜き出した。
<実施例1-2:BPEFホモポリマー;280℃>
 実施例1と同様にエステル交換反応を行った。その後、37.5℃/hrの速度で240℃まで昇温し、240℃、150Torrで10分間保持した。その後、10分間かけて120Torrに調整し、240℃、120Torrで70分間保持した。その後、10分間かけて100Torrに調整し、240℃、100Torrで10分間保持した。さらに、60分間かけて280℃、1Torr以下とし、280℃、1Torr以下の条件下で10分間攪拌しながら重合反応を行った。反応終了後、反応器内に窒素を吹き込んで加圧し、生成したポリカーボネート樹脂組成物をペレタイズしながら抜き出した。
 実施例1~1-2で得られた樹脂組成物について、MVR、フルオレン系ビニル末端基量、曲げ強度、およびレンズ成形性を評価した。その結果を表1に示す。なお、フルオレン系ビニル末端基量は、以下に示す方法で算出した。
(フルオレン系ビニル末端基量の算出方法)
 実施例1~1-2で得られたポリカーボネート樹脂は、以下の繰返し単位を含んでいる。
Figure JPOXMLDOC01-appb-C000059
(式中、Haは水素原子を示す)
 また、樹脂組成物中には、以下のポリマーおよび/または化合物が含まれている。
Figure JPOXMLDOC01-appb-C000060
(式中、*はポリマー鎖を示し、Hcは水素原子を示す)
 実施例1~1-2で得られた樹脂組成物のH-NMRスペクトルを測定し、以下の式を用いてフルオレン系ビニル末端基量を算出した。
Figure JPOXMLDOC01-appb-M000061
なお、上記式において、
Figure JPOXMLDOC01-appb-M000062
とみなすことができる。
 実施例1で製造した樹脂組成物のH-NMRチャートを図1(a)に示す。図1(b)および(c)は、図1(a)の部分拡大図である。
<実施例2:BPEFとBHEBNとの共重合体;240℃>
 2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレン(以下、「BHEBN」とも称する) 7.66kg(20.45モル)、BPEF 12.53kg(28.58モル)、DPC 10.80kg(50.42モル)、および炭酸水素ナトリウム 2.7×10-2g(3.21×10-4モル)を攪拌器および留出装置付きの50リットル反応器に入れた。窒素置換を行った後、窒素雰囲気760Torrの下、20分間かけて205℃まで昇温した。その後、10分間かけて700Torrまで減圧しながら原料を溶融した。そのまま10分間保持してから攪拌し、さらに100分間保持した後、20分間かけて205Torrに減圧した。そのまま60分間保持してから、10分間かけて180Torrに調整し、215℃、180Torrの条件下で20分間保持した。更に10分間かけて150Torrに調整し、230℃、140Torrの条件下で30分間保持したのち、120Torr、240℃に減圧、昇温した。その後、10分間かけて100Torrに減圧し、10分間保持した。さらに50分間かけて1Torr以下とし、240℃、1Torr以下の条件で40分間保持した。反応終了後、反応器内に窒素を吹き込んで加圧し、生成したポリカーボネート樹脂組成物をペレタイズしながら抜き出した。
<実施例2-1:BPEFとBHEBNとの共重合体;260℃>
 減圧しながら原料を溶融する工程まで、実施例2と同様に行った。そのまま10分間保持してから攪拌し、さらに100分間保持した後、20分間かけて205Torrに減圧した。そのまま60分間保持してから、10分間かけて180Torrに調整し、215℃、180Torrの条件下で20分間保持した。更に10分間かけて150Torrに調整し、230℃、140Torrの条件下で30分間保持したのち、120Torr、260℃に減圧、昇温した。その後、10分間かけて100Torrに減圧し、10分間保持した。さらに50分間かけて1Torr以下とし、260℃、1Torr以下の条件で40分間保持した。反応終了後、反応器内に窒素を吹き込んで加圧し、生成したポリカーボネート樹脂組成物をペレタイズしながら抜き出した。
 実施例2および2-1で得られた樹脂組成物について、MVR、フルオレン系ビニル末端基量、ビナフトール系ビニル末端基量、曲げ強度、およびレンズ成形性を評価した。その結果を表1に示す。なお、フルオレン系ビニル末端基量およびビナフトール系ビニル末端基量は、以下に示す方法で算出した。
(フルオレン系ビニル末端基量の算出方法)
 実施例2および2-1で得られたポリカーボネート樹脂は、以下の繰返し単位を含んでいる。
Figure JPOXMLDOC01-appb-C000063
(式中、HmおよびHkは水素原子を示す)
 また、樹脂組成物中には、以下のポリマーおよび/または化合物が含まれている。
Figure JPOXMLDOC01-appb-C000064
(式中、*はポリマー鎖を示し、Hcは水素原子を示す)
 実施例2および2-1で得られた樹脂組成物のH-NMRスペクトルを測定し、以下の式を用いてフルオレン系ビニル末端基量を算出した。
Figure JPOXMLDOC01-appb-M000065
なお、上記式において、
Figure JPOXMLDOC01-appb-M000066
とみなすことができる。
(ビナフトール系ビニル末端基量の算出方法)
 実施例2および2-1で得られた樹脂組成物は、上記「フルオレン系ビニル末端基量の算出方法」に示したものの他に、以下に示すポリマーおよび/または化合物も含んでいる。
Figure JPOXMLDOC01-appb-C000067
(式中、*はポリマー鎖を示し、Hpは水素原子を示す)
 実施例2および2-1で得られた樹脂組成物のH-NMRスペクトルに基づいて、以下の式を用いてビナフトール系ビニル末端基量を算出した。
Figure JPOXMLDOC01-appb-M000068
なお、上記式において、
Figure JPOXMLDOC01-appb-M000069
とみなすことができる。
 実施例2で製造した樹脂組成物のH-NMRチャートを図2(a)に示す。図2(b)は、図2(a)の部分拡大図である。
<実施例3:BPPEFとBHEBNとの共重合体;240℃>
 原料として、BHEBN 7.42kg(19.83モル)、9、9-ビス(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)フルオレン(以下「BPPEF」とも称する) 14.68kg(24.85モル)、DPC 9.70kg(45.30モル)、炭酸水素ナトリウム 2.25×10-2g(2.98×10-4モル)を使用したことを除き、実施例2と同じ操作を行い、ポリカーボネート樹脂組成物を得た。
<実施例3-1:BPPEFとBHEBNとの共重合体;260℃>
 原料として、BHEBN 7.42kg(19.83モル)、9、9-ビス(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)フルオレン(以下「BPPEF」とも称する) 14.68kg(24.85モル)、DPC 9.70kg(45.30モル)、炭酸水素ナトリウム 2.25×10-2g(2.98×10-4モル)を使用したことを除き、実施例2-1と同じ操作を行い、ポリカーボネート樹脂組成物を得た。
<実施例3-2:BPPEFとBHEBNとの共重合体;280℃>
 減圧しながら原料を溶融する工程まで、実施例3-1と同様に行った。そのまま10分間保持してから攪拌し、さらに100分間保持した後、20分間かけて205Torrに減圧した。そのまま60分間保持してから、10分間かけて180Torrに調整し、215℃、180Torrの条件下で20分間保持した。更に10分間かけて150Torrに調整し、230℃、140Torrの条件下で30分間保持したのち、120Torr、280℃に減圧、昇温した。その後、10分間かけて100Torrに減圧し、10分間保持した。さらに50分間かけて1Torr以下とし、280℃、1Torr以下の条件で40分間保持した。反応終了後、反応器内に窒素を吹き込んで加圧し、生成したポリカーボネート樹脂組成物をペレタイズしながら抜き出した。
 実施例3~3-2で得られた樹脂組成物について、MVR、フルオレン系ビニル末端基量、ビナフトール系ビニル末端基量、曲げ強度、およびレンズ成形性を評価した。その結果を表1に示す。なお、フルオレン系ビニル末端基量およびビナフトール系ビニル末端基量は、以下に示す方法で算出した。
(フルオレン系ビニル末端基量の算出方法)
 実施例3~3-2で得られたポリカーボネート樹脂は、以下の繰返し単位を含んでいる。
Figure JPOXMLDOC01-appb-C000070
(式中、HgおよびHkは水素原子を示す)
 また、樹脂組成物中には、以下のポリマーおよび/または化合物が含まれている。
Figure JPOXMLDOC01-appb-C000071
(式中、*はポリマー鎖を示し、Hdは水素原子を示す)
 実施例3~3-2で得られた樹脂組成物のH-NMRスペクトルを測定し、以下の式を用いてフルオレン系ビニル末端基量を算出した。
Figure JPOXMLDOC01-appb-M000072
なお、上記式において、
Figure JPOXMLDOC01-appb-M000073
とみなすことができる。
(ビナフトール系ビニル末端基量の算出方法)
 実施例3~3-2で得られた樹脂組成物は、上記「フルオレン系ビニル末端基量の算出方法」に示したものの他に、以下に示すポリマーおよび/または化合物も含んでいる。
Figure JPOXMLDOC01-appb-C000074
(式中、*はポリマー鎖を示し、Hpは水素原子を示す)
 実施例3~3-2で得られた樹脂組成物のH-NMRスペクトルに基づいて、以下の式を用いてビナフトール系ビニル末端基量を算出した。
Figure JPOXMLDOC01-appb-M000075
なお、上記式において、
Figure JPOXMLDOC01-appb-M000076
とみなすことができる。
 実施例3で製造した樹脂組成物のH-NMRチャートを図3(a)に示す。図3(b)は、図3(a)の部分拡大図である。
<実施例4:BPEFとビスフェノールAとの共重合体;240℃>
 BPEF 15.80kg(36.03モル)、2,2-ビス(4-ヒドロキシフェニル)プロパン(以下、「ビスフェノールA」とも称する) 1.30kg(5.69モル)、DPC 9.31kg(43.45モル)、および炭酸水素ナトリウム 2.10×10-2g(2.50×10-4モル)を攪拌機および留出装置付きの50リットル反応器に入れた。窒素置換を行った後、窒素雰囲気760Torrの下、1時間かけて205℃に加熱しながら攪拌した。原料の完全溶解後、15分間かけて減圧度を150Torrに調整し、205℃、150Torrの条件で20分間保持し、エステル交換反応を行った。その後、37.5℃/hrの速度で240℃まで昇温し、240℃、150Torrで10分間保持した。その後、10分間かけて120Torrに調整し、240℃、120Torrで70分間保持した。その後、10分間かけて100Torrに調整し、240℃、100Torrで10分間保持した。さらに、40分間かけて1Torr以下とし、240℃、1Torr以下の条件下で10分間攪拌しながら重合反応を行った。反応終了後、反応器内に窒素を吹き込んで加圧し、生成したポリカーボネート樹脂組成物をペレタイズしながら抜き出した。
<実施例4-1:BPEFとビスフェノールAとの共重合体;260℃>
 実施例4と同様に、エステル交換反応を行った。その後、37.5℃/hrの速度で240℃まで昇温し、240℃、150Torrで10分間保持した。その後、10分間かけて120Torrに調整し、240℃、120Torrで70分間保持した。その後、10分間かけて100Torrに調整し、240℃、100Torrで10分間保持した。さらに、40分間かけて260℃、1Torr以下とし、260℃、1Torr以下の条件下で20分間攪拌しながら重合反応を行った。反応終了後、反応器内に窒素を吹き込んで加圧し、生成したポリカーボネート樹脂組成物をペレタイズしながら抜き出した。
<実施例4-2:BPEFとビスフェノールAとの共重合体;280℃>
 実施例4と同様に、エステル交換反応を行った。その後、37.5℃/hrの速度で240℃まで昇温し、240℃、150Torrで10分間保持した。その後、10分間かけて120Torrに調整し、240℃、120Torrで70分間保持した。その後、10分間かけて100Torrに調整し、240℃、100Torrで10分間保持した。さらに、40分間かけて280℃、1Torr以下とし、280℃、1Torr以下の条件下で30分間攪拌しながら重合反応を行った。反応終了後、反応器内に窒素を吹き込んで加圧し、生成したポリカーボネート樹脂組成物をペレタイズしながら抜き出した。
 実施例4~4-2で得られた樹脂組成物について、MVR、フルオレン系ビニル末端基量、曲げ強度およびレンズ成形性を評価した。その結果を表1に示す。なお、フルオレン系ビニル末端基量は、以下に示す方法で算出した。
(フルオレン系ビニル末端基量の算出方法)
 実施例4~4-2で得られたポリカーボネート樹脂は、以下の繰返し単位を含んでいる。
Figure JPOXMLDOC01-appb-C000077
(式中、Haは水素原子を示す)
 また、樹脂組成物中には、以下のポリマーおよび/または化合物が含まれている。
Figure JPOXMLDOC01-appb-C000078
(式中、*はポリマー鎖を示し、Hcは水素原子を示す)
 実施例4~4-2で得られた樹脂組成物のH-NMRスペクトルを測定し、以下の式を用いてフルオレン系ビニル末端基量を算出した。
Figure JPOXMLDOC01-appb-M000079
なお、上記式において、
Figure JPOXMLDOC01-appb-M000080
とみなすことができる。
 実施例4で製造した樹脂組成物のH-NMRチャートを図4(a)に示す。図4(b)は、図4(a)の部分拡大図である。
<実施例5:BPEFとBHEBNとの共重合体;280℃>
 BHEBN 7.66kg(20.45モル)、BPEF 12.50kg(28.50モル)、DPC10.80kg(50.42モル)、および炭酸水素ナトリウム 1.78×10-2g(2.12×10-4モル)を攪拌器および留出装置付きの50リットル反応器に入れた。窒素置換を行った後、窒素雰囲気760Torrの下、20分間かけて205℃まで昇温した。その後、10分間かけて700Torrまで減圧しながら原料を溶融した。そのまま10分間保持してから攪拌し、さらに100分間保持した後、20分間かけて205Torrに減圧した。そのまま60分間保持してから、10分間かけて180Torrに調整し、215℃、180Torrの条件下で20分間保持した。更に10分間かけて150Torrに調整し、240℃、150Torrの条件下で30分間保持した。さらに、10分間かけて120Torrに減圧し、そのまま30分保持した後、40分間かけて280℃に昇温した。その後、10分間かけて100Torrに減圧して、10分間保持した。さらに50分間かけて1Torr以下とし、280℃、1Torr以下の条件で40分間保持した。反応終了後、反応器内に窒素を吹き込んで加圧し、生成したポリカーボネート樹脂組成物をペレタイズしながら抜き出した。
 得られた樹脂組成物のMVRは32cm/10min、フルオレン系ビニル末端基量は0.625、ビナフトール系ビニル末端基量は0.813、曲げ強度は85MPaであった。フルオレン系ビニル末端基量およびビナフトール系ビニル末端基量は、実施例2と同様に算出した。
 実施例5で製造した樹脂組成物のH-NMRチャートを図5(a)に示す。図5(b)は、図5(a)の部分拡大図である。
<比較例1:BPEFホモポリマー;230℃>
 BPEF 15.50kg(35.35モル)、DPC 7.89kg(36.82モル)、および炭酸水素ナトリウム 1.78×10-2g(2.12×10-4モル)を攪拌機および留出装置付きの50リットル反応器に入れた。窒素置換を行った後、窒素雰囲気760Torrの下、1時間かけて205℃に加熱しながら攪拌した。原料の完全溶解後、15分間かけて減圧度を150Torrに調整し、205℃、150Torrの条件で20分間保持し、エステル交換反応を行った。その後、37.5℃/hrの速度で230℃まで昇温し、230℃、150Torrで10分間保持した。その後、10分間かけて120Torrに調整し、230℃、120Torrで70分間保持した。その後、10分間かけて100Torrに調整し、230℃、100Torrで10分間保持した。さらに、40分間かけて1Torr以下とし、230℃、1Torr以下の条件下で10分間攪拌しながら重合反応を行った。反応終了後、反応器内に窒素を吹き込んで加圧し、生成したポリカーボネート樹脂をペレタイズしながら抜き出した。
<比較例1-1:BPEFホモポリマー;300℃>
 比較例1と同様にエステル交換反応を行った。その後、37.5℃/hrの速度で230℃まで昇温し、230℃、150Torrで10分間保持した。その後、10分間かけて120Torrに調整し、230℃、120Torrで70分間保持した。その後、10分間かけて100Torrに調整し、300℃、100Torrで10分間保持した。さらに、40分間かけて1Torr以下とし、300℃、1Torr以下の条件下で10分間攪拌しながら重合反応を行った。反応終了後、反応器内に窒素を吹き込んで加圧し、生成したポリカーボネート樹脂をペレタイズしながら抜き出した。
 比較例1および1-1で得られた樹脂組成物について、MVR、フルオレン系ビニル末端基量、曲げ強度およびレンズ成形性を評価した。その結果を表1に示す。なお、フルオレン系ビニル末端基量は、実施例1と同様に算出した。
 比較例1で製造した樹脂組成物のH-NMRチャートを図6(a)に示す。図6(b)は、図6(a)の部分拡大図である。
<比較例2:BPEFとBHEBNとの共重合体;230℃>
 BHEBN 7.66kg(20.46モル)、BPEF 12.50kg(28.51モル)、DPC10.80kg(50.42モル)および炭酸水素ナトリウム1.78×10-2g(2.12×10-4モル)を攪拌器および留出装置付きの50リットル反応器に入れた。窒素置換を行った後、窒素雰囲気760Torrの下、20分間かけて205℃まで昇温した。その後、10分間かけて700Torrまで減圧しながら原料を溶融した。そのまま10分間保持してから攪拌し、さらに100分間保持した後、20分間かけて205Torrに減圧した。そのまま60分間保持してから、10分間かけて180Torrに調整し、215℃、180Torrの条件下で20分間保持した。更に10分間かけて150Torrに調整し、240℃、150Torrの条件下で30分間保持したのち、10分間かけて120Torrに減圧した。そのまま30分間保持した後、30分間かけて230℃に昇温した。その後、10分間かけて100Torrに減圧し、10分間保持した。さらに50分間かけて1Torr以下とし、230℃、1Torr以下の条件で40分間保持した。反応終了後、反応器内に窒素を吹き込んで加圧し、生成したポリカーボネート樹脂組成物をペレタイズしながら抜き出した。
<比較例2-1:BPEFとBHEBNとの共重合体;300℃>
 減圧しながら原料を溶融する工程まで、比較例2と同様に行った。そのまま10分間保持してから攪拌し、さらに100分間保持した後、20分間かけて205Torrに減圧した。そのまま60分間保持してから、10分間かけて180Torrに調整し、215℃、180Torrの条件下で20分間保持した。更に10分間かけて150Torrに調整し、240℃、150Torrの条件下で30分間保持したのち、10分間かけて120Torrに減圧した。そのまま30分間保持した後、50分間かけて300℃に昇温した。その後、10分間かけて100Torrに減圧し、10分間保持した。さらに50分間かけて1Torr以下とし、300℃、1Torr以下の条件で50分間保持した。反応終了後、反応器内に窒素を吹き込んで加圧し、生成したポリカーボネート樹脂組成物をペレタイズしながら抜き出した。
 比較例2および2-1で得られた樹脂組成物について、MVR、フルオレン系ビニル末端基量、ビナフトール系ビニル末端基量、曲げ強度およびレンズ成形性を評価した。その結果を表1に示す。なお、フルオレン系ビニル末端基量およびビナフトール系ビニル末端基量は、実施例2と同様に算出した。
 比較例2で製造した樹脂組成物のH-NMRチャートを図7(a)に示す。図7(b)は、図7(a)の部分拡大図である。
<比較例3:BPPEFとBHEBNとの共重合体;300℃>
 減圧しながら原料を溶融する工程まで、実施例3-1と同様に行った。そのまま10分間保持してから攪拌し、さらに100分間保持した後、20分間かけて205Torrに減圧した。そのまま60分間保持してから、10分間かけて180Torrに調整し、215℃、180Torrの条件下で20分間保持した。更に10分間かけて150Torrに調整し、230℃、140Torrの条件下で30分間保持したのち、120Torr、300℃に減圧、昇温した。その後、10分間かけて100Torrに減圧し、10分間保持した。さらに50分間かけて1Torr以下とし、300℃、1Torr以下の条件で50分間保持した。反応終了後、反応器内に窒素を吹き込んで加圧し、生成したポリカーボネート樹脂組成物をペレタイズしながら抜き出した。
 比較例3で得られた樹脂組成物について、MVR、フルオレン系ビニル末端基量、ビナフトール系ビニル末端基量、曲げ強度、およびレンズ成形性を評価した。その結果を表1に示す。なお、フルオレン系ビニル末端基量およびビナフトール系ビニル末端基量は、実施例3と同様に算出した。
 上記実施例および比較例算出されたフルオレン系ビニル末端基量および/またはビナフトール系ビニル末端基量、ならびに測定されたMVR、曲げ強度およびレンズ成形性の値を、以下の表1にまとめる。 
Figure JPOXMLDOC01-appb-T000081
 表1から、本発明の樹脂組成物は、流動性(MVR)および曲げ強度に優れることが分かる。
2.フィルム
 上記で製造した樹脂組成物を用いて、フィルムを作製した。得られたフィルムの評価は、以下に示す方法で行った。
(1)全光線透過率およびヘーズ
 全光線透過率およびヘーズは、ヘーズメーター((株)村上色彩技術研究所製、「HM-150」)を用いて、JIS K-7361、JIS K-7136に従って測定した。
(2)ガラス転移温度
 示差熱走査熱量分析計(DSC)により測定した(測定機器:株式会社日立ハイテクサイエンスDSC7000X)。
(3)表面形状
 光拡散フィルムの表面形状は、算術平均粗さによって評価した。算術平均粗さは、小型表面粗さ測定機(株式会社ミツトモ製、「サーフテストSJ-210」)を用いて粗さ曲線を作成し、以下のように算出した。作成した粗さ曲線から、基準長さ(l)(平均線方向)の範囲を抜き取り、この抜き取り部分の平均線の方向にX軸を、X軸と直交する方向にY軸を取り、粗さ曲線をy=f(x)で表したときに、次の式によって求められる値(μm)を算術平均粗さ(Ra)とした。ここで、「基準長さ(l)(平均線方向)」とは、JIS B 0601:2001(ISO 4287:1997)に基づいた、粗さパラメータの基準長さを示す。
Figure JPOXMLDOC01-appb-M000082
(5)屈折率
 厚さ0.1mmフィルムについて、アッベ屈折計を用い、JIS-K-7142の方法で測定した(23℃、波長589nm)。
(6)アッベ数(ν)
 厚さ0.1mmフィルムについて、アッベ屈折計を用い、23℃下での波長486nm、589nmおよび656nmの屈折率を測定し、さらに下記式を用いてアッベ数を算出した。
     ν=(nD-1)/(nF-nC)
     nD:波長589nmでの屈折率
     nC:波長656nmでの屈折率 
     nF:波長486nmでの屈折率
(7)メルトボリュームレート(MVR)
 MVRは、樹脂組成物の流動性を示す指標であり、値が大きいほど流動性が高いことを示す。実施例で製造した樹脂組成物を120℃で4時間真空乾燥し、(株)東洋精機製作所製メルトインデクサーT‐111を用い、温度260℃、加重2160gの条件下で測定した。
<実施例6>
 実施例2で製造した樹脂組成物のペレットを、26mm二軸押出機およびTダイにより280℃で溶融押出しした。押し出された溶融フィルムを、直径200mmのシリコンゴム製の第一冷却ロールとマット加工(表面の算術平均粗さ:3.2μm)した直径200mmの金属製第二冷却ロールでニップした。マット柄をフィルム表面に賦形した後、冷却し、更に表面が鏡面構造である金属製第三冷却ロールにフィルムを通して、引取ロールで引き取りながら片面マットフィルムを成形した。この時、第一冷却ロールの温度を40℃、第二冷却ロールの温度を130℃、第三冷却ロールの温度を130℃に設定し、冷却ロールの速度を調整することにより、フィルム表面の算術平均粗さを3.0μmとした。
<実施例7>
 実施例4で製造した樹脂組成物のペレットを、26mm二軸押出機およびTダイにより260℃で溶融押出しした。押し出された溶融フィルムを、直径200mmのシリコンゴム製の第一冷却ロールとマット加工(表面の算術平均粗さ:2.5μm)した直径200mmの金属製第二冷却ロールでニップした。マット柄をフィルム表面に賦形した後、冷却し、更に表面が鏡面構造である金属製第二冷却ロールにフィルムを通して、引取ロールで引き取りながら片面マットフィルムを成形した。この時、第一冷却ロールの温度を40℃、第二冷却ロールの温度を130℃、第三冷却ロールの温度を130℃に設定し、冷却ロールの速度を3.0m/minとした。
<比較例4>
 ポリカーボネート樹脂(三菱エンジニアリングプラスチックス株式会社製ユーピロンH-4000)のペレットを用いて、実施例6と同様にフィルムを作製した。
 実施例6、7および比較例4で得られたフィルムの評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000083
 本発明のフィルムは、光学フィルムに求められる全光線透過率を維持しながら、高いヘーズおよび算術平均粗さを示す。このことは、本発明のフィルムが、優れた転写性を有する、すなわち優れた賦形性を有することを意味する。また、本発明のフィルムは、光学材料の基本特性として求められるアッベ数、屈折率等の評価においても優れていることが分かる。さらに、本発明のフィルムは、複屈折位相差の値が小さい。これは、フィルムの中央部と端部との間で複屈折の差が小さく、より均質なフィルムであることを意味する。
 本発明のフィルムが上記のような優れた特性を有する理由は定かではないが、本発明の樹脂組成物中に存在するフルオレン基やビナフタレン基が、フィルムの光学特性や賦形性の向上に寄与するものと考えられる。さらに、本発明の樹脂組成物中には、末端にビニル基を有する化合物が含まれるため、成型時に樹脂が柔軟性を持ち、フィルムの賦形性がより向上するものと考えられる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (20)

  1.  下記一般式(1)で表される化合物に由来する繰返し単位を含む樹脂(ただし、下記一般式(A)で表される末端構造を有するポリマーは除く)と、
    Figure JPOXMLDOC01-appb-C000001
     下記一般式(A)で表される末端構造を有するポリマーおよび/または下記一般式(B)で表される化合物と
    Figure JPOXMLDOC01-appb-C000002
    [式(1)、(A)および(B)において、
     R及びRは、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシル基、炭素数5~20のシクロアルキル基、炭素数5~20のシクロアルコキシル基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、およびハロゲン原子から選択され;
     Xは、それぞれ独立に、分岐していてもよい炭素数2~6のアルキレン基であり;
     HvおよびHfは、それぞれ水素原子であり;
     nは、それぞれ独立に、1~5の整数であり;
     *はポリマー鎖である]
    を含む樹脂組成物であって、
     前記樹脂組成物のH-NMRスペクトルは、
    Figure JPOXMLDOC01-appb-M000003
    の関係を満たす、
    樹脂組成物。
  2.  前記一般式(1)で表される化合物に由来する繰返し単位を含む樹脂は、一般式(1)で表される化合物に由来する繰返し単位からなる樹脂である請求項1に記載の樹脂組成物。
  3.  前記樹脂は、さらに下記一般式(2)で表される化合物に由来する繰返し単位を含む、
    Figure JPOXMLDOC01-appb-C000004
    [式中、
     RおよびRは、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシル基、炭素数5~20のシクロアルキル基、炭素数5~20のシクロアルコキシル基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、およびハロゲン原子から選択され;
     Yは、それぞれ独立に、分岐していてもよい炭素数2~6のアルキレン基、炭素数6~10のシクロアルキレン基、または炭素数6~10のアリーレン基であり;
     Wは、単結合または
    Figure JPOXMLDOC01-appb-C000005
    からなる群より選択され(ここで、R、R、およびR14~R17は、それぞれ独立に、水素原子、炭素数1~10のアルキル基および炭素数6~10のフェニル基から選択され;R10およびR11は、それぞれ独立に、水素原子および炭素数1~5のアルキル基から選択され;R12およびR13は、それぞれ独立に、水素原子および炭素数1~5のアルキル基、フェニル基から選択され;Z’は、3~11の整数である);
     pおよびqは、それぞれ独立に、0~5の整数である]
    請求項1に記載の樹脂組成物。
  4.  pおよびqは0であり、
     Wは
    Figure JPOXMLDOC01-appb-C000006
    (ここで、RおよびRは、請求項3で定義したとおりである)
    である、請求項3に記載の樹脂組成物。
  5.  前記一般式(2)で表される化合物はビスフェノールAである、請求項3に記載の樹脂組成物。
  6.  前記樹脂において、前記一般式(1)で表される化合物に由来する繰返し単位と、前記一般式(2)で表される化合物に由来する繰返し単位とのモル比が、20:80~99:1である、請求項3~5のいずれか1項に記載の樹脂組成物。
  7.  前記樹脂組成物のH-NMRスペクトルは、
    Figure JPOXMLDOC01-appb-M000007
    の関係を満たす、請求項1~6のいずれか1項に記載の樹脂組成物。
  8.  下記一般式(1)で表される化合物に由来する繰返し単位および下記一般式(3)で表される繰返し単位を含む樹脂(ただし、下記一般式(A)で表される末端構造を有するポリマーおよび下記一般式(C)で表される末端構造を有するポリマーは除く)と、
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
     下記一般式(A)で表される末端構造を有するポリマー、下記一般式(B)で表される化合物、下記一般式(C)で表される末端構造を有するポリマー、および/または下記一般式(D)で表される化合物と
    Figure JPOXMLDOC01-appb-C000010
    [式(1)、(3)、(A)、(B)、(C)および(D)において、
     R及びRは、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシル基、炭素数5~20のシクロアルキル基、炭素数5~20のシクロアルコキシル基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、およびハロゲン原子から選択され;
     XおよびZは、それぞれ独立に、分岐していてもよい炭素数2~6のアルキレン基であり;
     nおよびmは、それぞれ独立に、1~5の整数であり;
     HfおよびHoは、それぞれ水素原子であり;
     *は、それぞれ独立に、ポリマー鎖である]
    を含む樹脂組成物であって、
     前記樹脂組成物のH-NMRスペクトルは、
    Figure JPOXMLDOC01-appb-M000011
    の関係を満たす、
    樹脂組成物。
  9.  前記H-NMRスペクトルは、
    Figure JPOXMLDOC01-appb-M000012
    または
    Figure JPOXMLDOC01-appb-M000013
    の関係を満たす、請求項8に記載の樹脂組成物。
  10.  前記H-NMRスペクトルは、
    Figure JPOXMLDOC01-appb-M000014
    の関係を満たす、請求項8または9に記載の樹脂組成物。
  11.  前記一般式(1)、(A)および(B)におけるXは、いずれもエチレンである、請求項1~10のいずれか1項に記載の樹脂組成物。
  12.  前記一般式(1)、(A)および(B)におけるnは、いずれも1である、請求項1~11のいずれか1項に記載の樹脂組成物。
  13.  前記一般式(1)で表される化合物は、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンまたは9,9-ビス(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)フルオレンである、請求項1~12のいずれか1項に記載の樹脂組成物。
  14.  前記一般式(3)、(C)および(D)におけるZは、いずれもエチレンである、請求項8~13のいずれか1項に記載の樹脂組成物。
  15.  前記一般式(3)、(C)および(D)におけるmは、いずれも1である、請求項8~14のいずれか1項に記載の樹脂組成物。
  16.  前記一般式(3)で表される化合物は、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレンである請求項8~15のいずれか1項に記載の樹脂組成物。
  17.  前記樹脂は、ポリカーボネート樹脂、ポリエステル樹脂およびポリエステルカーボネート樹脂からなる群より選択される請求項1~16のいずれか1項に記載の樹脂組成物。
  18.  前記樹脂はポリカーボネート樹脂である、請求項17に記載の樹脂組成物。
  19.  請求項1~18のいずれか1項に記載の樹脂組成物を含む光学レンズ。
  20.  請求項1~18のいずれか1項に記載の樹脂組成物を含むシートまたはフィルム。
     
PCT/JP2016/082609 2015-11-04 2016-11-02 樹脂組成物ならびにそれを含む光学レンズ、シートおよびフィルム WO2017078070A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187014622A KR20180079364A (ko) 2015-11-04 2016-11-02 수지 조성물 그리고 그것을 포함하는 광학 렌즈, 시트 및 필름
US15/770,888 US10634819B2 (en) 2015-11-04 2016-11-02 Resin composition, and optical lens, sheet and film which contain same
CN201680063611.8A CN108350262B (zh) 2015-11-04 2016-11-02 树脂组合物以及含有其的光学透镜、片和膜
JP2017548808A JP7211705B2 (ja) 2015-11-04 2016-11-02 樹脂組成物ならびにそれを含む光学レンズ、シートおよびフィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-216962 2015-11-04
JP2015216962 2015-11-04

Publications (1)

Publication Number Publication Date
WO2017078070A1 true WO2017078070A1 (ja) 2017-05-11

Family

ID=58663189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082609 WO2017078070A1 (ja) 2015-11-04 2016-11-02 樹脂組成物ならびにそれを含む光学レンズ、シートおよびフィルム

Country Status (6)

Country Link
US (1) US10634819B2 (ja)
JP (2) JP7211694B2 (ja)
KR (1) KR20180079364A (ja)
CN (1) CN108350262B (ja)
TW (1) TWI718198B (ja)
WO (1) WO2017078070A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7047381B2 (ja) * 2015-11-04 2022-04-05 三菱瓦斯化学株式会社 熱可塑性樹脂の製造方法
JPWO2021014962A1 (ja) * 2019-07-19 2021-01-28

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111047A (ja) * 2006-10-30 2008-05-15 Mitsubishi Gas Chem Co Inc ポリカーボネート樹脂の製造方法
WO2014054710A1 (ja) * 2012-10-05 2014-04-10 帝人株式会社 フルオレン骨格を有する熱可塑性樹脂組成物及び光学部材
WO2014073496A1 (ja) * 2012-11-07 2014-05-15 三菱瓦斯化学株式会社 ポリカーボネート樹脂、その製造方法および光学成形体
JP2014185325A (ja) * 2013-02-20 2014-10-02 Teijin Ltd ポリカーボネート共重合体
JP2015086265A (ja) * 2013-10-29 2015-05-07 帝人株式会社 熱可塑性樹脂およびそれらからなる光学部材

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2692764B1 (en) * 2011-03-28 2018-08-29 Teijin Limited Thermoplastic resin formed from fluorene derivative
JP5914261B2 (ja) 2011-08-29 2016-05-11 大阪ガスケミカル株式会社 フルオレン骨格を有するポリエステル樹脂
JP6139258B2 (ja) * 2013-05-13 2017-05-31 帝人株式会社 ポリエステルカーボネート共重合体
JP6587832B2 (ja) * 2015-05-26 2019-10-09 アルファーデザイン株式会社 液体吐出装置、スプレーパス設定方法、プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111047A (ja) * 2006-10-30 2008-05-15 Mitsubishi Gas Chem Co Inc ポリカーボネート樹脂の製造方法
WO2014054710A1 (ja) * 2012-10-05 2014-04-10 帝人株式会社 フルオレン骨格を有する熱可塑性樹脂組成物及び光学部材
WO2014073496A1 (ja) * 2012-11-07 2014-05-15 三菱瓦斯化学株式会社 ポリカーボネート樹脂、その製造方法および光学成形体
JP2014185325A (ja) * 2013-02-20 2014-10-02 Teijin Ltd ポリカーボネート共重合体
JP2015086265A (ja) * 2013-10-29 2015-05-07 帝人株式会社 熱可塑性樹脂およびそれらからなる光学部材

Also Published As

Publication number Publication date
JP7211705B2 (ja) 2023-01-24
TWI718198B (zh) 2021-02-11
JP7211694B2 (ja) 2023-01-24
US20180306948A1 (en) 2018-10-25
US10634819B2 (en) 2020-04-28
TW201731951A (zh) 2017-09-16
JP2017088875A (ja) 2017-05-25
JPWO2017078070A1 (ja) 2018-08-23
CN108350262B (zh) 2021-07-30
CN108350262A (zh) 2018-07-31
KR20180079364A (ko) 2018-07-10

Similar Documents

Publication Publication Date Title
KR102365797B1 (ko) 폴리카보네이트 수지, 그 제조 방법 및 광학 성형체
JP7136265B2 (ja) 熱可塑性樹脂の製造方法
JP6512219B2 (ja) ポリカーボネート樹脂組成物、ならびにそれを用いた光学材料および光学レンズ
WO2015170691A1 (ja) 重縮合で製造された樹脂および樹脂組成物
WO2017078076A1 (ja) 熱可塑性樹脂組成物およびその成形体
WO2017078071A1 (ja) 樹脂組成物の製造方法
WO2017078070A1 (ja) 樹脂組成物ならびにそれを含む光学レンズ、シートおよびフィルム
KR102659378B1 (ko) 열가소성 수지의 제조 방법
KR20240055857A (ko) 열가소성 수지의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862130

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15770888

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017548808

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187014622

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16862130

Country of ref document: EP

Kind code of ref document: A1