JP2017088875A - 樹脂組成物ならびにそれを含む光学レンズ、シートおよびフィルム - Google Patents

樹脂組成物ならびにそれを含む光学レンズ、シートおよびフィルム Download PDF

Info

Publication number
JP2017088875A
JP2017088875A JP2016215177A JP2016215177A JP2017088875A JP 2017088875 A JP2017088875 A JP 2017088875A JP 2016215177 A JP2016215177 A JP 2016215177A JP 2016215177 A JP2016215177 A JP 2016215177A JP 2017088875 A JP2017088875 A JP 2017088875A
Authority
JP
Japan
Prior art keywords
resin composition
carbon atoms
general formula
group
compound represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016215177A
Other languages
English (en)
Other versions
JP7211694B2 (ja
Inventor
加藤 宣之
Noriyuki Kato
宣之 加藤
近藤 光輝
Mitsuteru Kondo
光輝 近藤
宗憲 白武
Munenori SHIRATAKE
宗憲 白武
健太朗 石原
Kentaro Ishihara
健太朗 石原
晃司 廣瀬
Koji Hirose
晃司 廣瀬
慎也 池田
Shinya Ikeda
慎也 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Publication of JP2017088875A publication Critical patent/JP2017088875A/ja
Application granted granted Critical
Publication of JP7211694B2 publication Critical patent/JP7211694B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/045Aromatic polycarbonates containing aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/307General preparatory processes using carbonates and phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/02Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】流動性および強度に優れた樹脂組成物の提供。
【解決手段】式(1)で表される化合物に由来する繰返し単位を含むポリエステルカーボネート樹脂と、式(A)で表される末端構造を有するポリマー及び/又は式(B)で表される化合物と、を含む樹脂組成物。


【選択図】図1−1

Description

本発明は、特定のフルオレン構造を有するポリエステルカーボネート樹脂を含む樹脂組成物、ならびにそれを含む光学レンズ、シートおよびフィルムに関する。
カメラ、フィルム一体型カメラ、ビデオカメラ等の各種カメラの光学系に使用される光学素子の材料として、光学ガラスあるいは光学用透明樹脂が使用されている。光学ガラスは、耐熱性、透明性、寸法安定性、耐薬品性等に優れ、様々な屈折率やアッベ数を有する多種類の光学ガラスが存在しているが、材料コストが高い上、成形加工性が悪く、また生産性が低いという問題点を有している。とりわけ、収差補正に使用される非球面レンズに加工するには、極めて高度な技術と高いコストがかかるため実用上大きな障害となっている。
上記の光学ガラスに対し、光学用透明樹脂、中でも熱可塑性透明樹脂からなる光学レンズは、射出成形により大量生産が可能で、しかも非球面レンズの製造も容易であるという利点を有しており、現在カメラ用レンズとして使用されている。光学用透明樹脂としては、例えば、ビスフェノールAからなるポリカーボネート、ポリメチルメタクリレートあるいは非晶性ポリオレフィンなどが例示される。また、特にポリカーボネート樹脂は、光学用途のためのシートまたはフィルムとしても使用されている。ポリカーボネート樹脂からなるシートおよびフィルムは、透明性が高く、耐熱性を有するため、液晶表示装置の前面保護シート、導光シートなどに好適に使用されている。
しかしながら、ビスフェノールAからなるポリカーボネート樹脂は、複屈折が大きいという弱点を有するため用途に制約がある。特に近年の携帯電話用カメラやデジタルカメラ用途においては、画素数の向上による解像度のアップに伴い、結像性能が高く、複屈折が低い樹脂材料が求められている。特許文献1には、ポリエステル樹脂においてフルオレン構造を有するジカルボン酸を原料に使用すると、複屈折の低減に効果があることが記載されている。
さらに優れた材料を求め、高屈折率、低アッベ数など種々の光学特性に優れた樹脂も開発されている(特許文献2)。しかしながら、近年、デジタルカメラ、スマートフォン、タブレットなどの電子機器が普及し、様々なモデルが発売される中で、それらのデバイスに搭載されるカメラも高機能化(例えば、高画素化、低F値化等)が進んでいる。そのため、高屈折率かつ小型のレンズが要求され、レンズユニットの設計において非球面レンズを用いることも多い。また、デバイスの高機能化に伴い、賦形性に優れたシートまたはフィルムも求められている。このような精密なレンズおよび賦形性に優れたシートまたはフィルムを得るためには、光学特性はもとより、良好な流動性および強度を有する樹脂が求められる。
特開2013−64119号公報 国際公開第2014/073496号
本発明は、上記問題に鑑み、流動性および強度に優れた樹脂組成物を提供することを目
的とする。
本発明者らは鋭意研究した結果、特定のフルオレン構造を有するポリエステルカーボネート樹脂を含み、さらに末端にビニル基を有するポリマーおよび/または化合物を所定量含む樹脂組成物が、流動性および強度に優れることを見出した。本発明は、例えば以下のとおりである。
[1] 下記一般式(1)で表される化合物に由来する繰返し単位を含むポリエステルカーボネート樹脂(ただし、下記一般式(A)で表される末端構造を有するポリマーは除く)と、
下記一般式(A)で表される末端構造を有するポリマーおよび/または下記一般式(B)で表される化合物と
[式(1)、(A)および(B)において、
及びRは、それぞれ独立に、水素原子、炭素数1〜20のアルキル基、炭素数1〜20のアルコキシル基、炭素数5〜20のシクロアルキル基、炭素数5〜20のシクロアルコキシル基、炭素数6〜20のアリール基、炭素数6〜20のアリールオキシ基、およびハロゲン原子から選択され;
Xは、それぞれ独立に、分岐していてもよい炭素数2〜6のアルキレン基であり;
HvおよびHfは、それぞれ水素原子であり;
nは、それぞれ独立に、1〜5の整数であり;
*はポリマー鎖である]
を含む樹脂組成物であって、
前記樹脂組成物のH−NMRスペクトルは、
の関係を満たす、
樹脂組成物。
[2] 前記一般式(1)で表される化合物に由来する繰返し単位を含むポリエステルカーボネート樹脂は、一般式(1)で表される化合物に由来する繰返し単位からなるポリエステルカーボネート樹脂である[1]に記載の樹脂組成物。
[3] 前記ポリエステルカーボネート樹脂は、さらに下記一般式(2)で表される化合物に由来する繰返し単位を含む、
[式中、
およびRは、それぞれ独立に、水素原子、炭素数1〜20のアルキル基、炭素数1〜20のアルコキシル基、炭素数5〜20のシクロアルキル基、炭素数5〜20のシクロアルコキシル基、炭素数6〜20のアリール基、炭素数6〜20のアリールオキシ基、およびハロゲン原子から選択され;
Yは、それぞれ独立に、分岐していてもよい炭素数2〜6のアルキレン基、炭素数6〜10のシクロアルキレン基、または炭素数6〜10のアリーレン基であり;
Wは、単結合または
からなる群より選択され(ここで、R、R、およびR14〜R17は、それぞれ独立に、水素原子、炭素数1〜10のアルキル基および炭素数6〜10のフェニル基から選択され;R10およびR11は、それぞれ独立に、水素原子および炭素数1〜5のアルキル基から選択され;R12およびR13は、それぞれ独立に、水素原子および炭素数1〜5のアルキル基、フェニル基から選択され;Z’は、3〜11の整数である);
pおよびqは、それぞれ独立に、0〜5の整数である]
[1]に記載の樹脂組成物。
[4] pおよびqは0であり、
Wは
(ここで、RおよびRは、請求項3で定義したとおりである)
である、[3]に記載の樹脂組成物。
[5] 前記一般式(2)で表される化合物はビスフェノールAである、[3]に記載の樹脂組成物。
[6] 前記ポリエステルカーボネート樹脂において、前記一般式(1)で表される化合物に由来する繰返し単位と、前記一般式(2)で表される化合物に由来する繰返し単位とのモル比が、20:80〜99:1である、[3]〜[5]のいずれかに記載の樹脂組成物。
[7] 前記樹脂組成物のH−NMRスペクトルは、
の関係を満たす、[1]〜[6]のいずれかに記載の樹脂組成物。
[8] 下記一般式(1)で表される化合物に由来する繰返し単位および下記一般式(3)で表される繰返し単位を含むポリエステルカーボネート樹脂(ただし、下記一般式(A)で表される末端構造を有するポリマーおよび下記一般式(C)で表される末端構造を有するポリマーは除く)と、
下記一般式(A)で表される末端構造を有するポリマー、下記一般式(B)で表される化合物、下記一般式(C)で表される末端構造を有するポリマー、および/または下記一般式(D)で表される化合物と
[式(1)、(3)、(A)、(B)、(C)および(D)において、
及びRは、それぞれ独立に、水素原子、炭素数1〜20のアルキル基、炭素数1〜20のアルコキシル基、炭素数5〜20のシクロアルキル基、炭素数5〜20のシクロアルコキシル基、炭素数6〜20のアリール基、炭素数6〜20のアリールオキシ基、およびハロゲン原子から選択され;
XおよびZは、それぞれ独立に、分岐していてもよい炭素数2〜6のアルキレン基であり;
nおよびmは、それぞれ独立に、1〜5の整数であり;
Hv、HfおよびHoは、それぞれ水素原子であり;
*は、それぞれ独立に、ポリマー鎖である]
を含む樹脂組成物であって、
前記樹脂組成物のH−NMRスペクトルは、
の関係を満たす、
樹脂組成物。
[9] 前記H−NMRスペクトルは、
または
の関係を満たす、[8]に記載の樹脂組成物。
[10] 前記H−NMRスペクトルは、
の関係を満たす、[8]または[9]に記載の樹脂組成物。
[11] 前記一般式(1)、(A)および(B)におけるXは、いずれもエチレンである、[1]〜[10]のいずれかに記載の樹脂組成物。
[12] 前記一般式(1)、(A)および(B)におけるnは、いずれも1である、[1]〜[11]のいずれかに記載の樹脂組成物。
[13] 前記一般式(1)で表される化合物は、9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレンまたは9,9−ビス(4−(2−ヒドロキシエトキシ)−3−フェニルフェニル)フルオレンである、[1]〜[12]のいずれかに記載の樹脂組成物。
[14] 前記一般式(3)、(C)および(D)におけるZは、いずれもエチレンである、[8]〜[13]のいずれかに記載の樹脂組成物。
[15] 前記一般式(3)、(C)および(D)におけるmは、いずれも1である、[8]〜[14]のいずれかに記載の樹脂組成物。
[16] 前記一般式(3)で表される化合物は、2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレンである[8]〜[15]のいずれかに記載の樹脂組成物。
[16−1] 前記ポリエステルカーボネート樹脂において、前記一般式(1)で表される化合物に由来する繰返し単位と、前記一般式(3)で表される化合物に由来する繰返し単位とのモル比が、20:80〜99:1である、[8]〜[16]のいずれかに記載の樹脂組成物。
[16−2] 前記ポリエステルカーボネート樹脂は、230〜300℃の温度で重合させることによって得られる、[1]〜[16−1]のいずれかに記載の樹脂組成物。
[16−3] 前記重合は、1Torr以下の圧力下で行われる[16−2]に記載の樹脂組成物。
[16−4] メルトボリュームレート(MVR)が11cm/10min以上である、[1]〜[16−3]のいずれかに記載の樹脂組成物。
[16−5] 曲げ強度が90MPa以上である、[1]〜[16−4]のいずれかに記載の樹脂組成物。
[17] [1]〜[16−5]のいずれかに記載の樹脂組成物を含む光学レンズ。
[18] [1]〜[16−5]のいずれかに記載の樹脂組成物を含むシートまたはフィルム。
[19] [1]〜[16−5]のいずれかに記載の樹脂組成物の製造方法であって、前
記一般式(1)で表される化合物を230〜300℃の重合温度で重合させる工程を含む、樹脂組成物の製造方法。
本発明によれば、流動性および強度に優れた樹脂組成物を提供することができる。
実施例1で製造した樹脂組成物のH−NMRチャート。 実施例1で製造した樹脂組成物のH−NMRチャート。 比較例1で製造した樹脂組成物のH−NMRチャート。 比較例1で製造した樹脂組成物のH−NMRチャート。
以下、本発明の実施の形態について、詳細に説明する。
本発明の樹脂組成物は、下記一般式(1)で表される化合物に由来する繰返し単位を含むポリエステルカーボネート樹脂(以下、樹脂(a)とも称する)(ただし、下記一般式(A)で表される末端構造を有するポリマーは除く)と、
下記一般式(A)で表される末端構造を有するポリマーおよび/または下記一般式(B)で表される化合物とを含む。
さらに、樹脂組成物における一般式(A)で表される末端構造を有するポリマーおよび/または一般式(B)で表される化合物の合計含有量は、樹脂組成物のH−NMRスペクトルを測定した場合に、以下の関係を満たすような量である。
式(A)で表される末端構造を有するポリマーおよび式(B)で表される化合物は、樹脂(a)を重合反応によって製造する際に生じ得る副生成物である。上記式(I)によって計算される値は、好ましくは0.01〜1.0であり、より好ましくは0.05〜0.7であり、特に好ましくは0.1〜0.4である。
以下、式(A)および(B)の末端に位置するビニル基を「フルオレン系ビニル末端基」といい、式(I)によって算出される値を、「フルオレン系ビニル末端基量」という。
式(I)において
とみなすことができる。
ここで、「プロトンピークの積分値」および「ピーク積分値」とは、NMR(核磁気共鳴)分光法により、水素核HについてのNMRスペクトル(H−NMRスペクトル)を測定した際の、NMRスペクトルのシグナルの面積値、即ち積分値である。一般に、NMR分光法は、物質の原子核に着目した測定法であり、それぞれの分子を構成する原子核そのものを定量的に測定できる。すなわち、H−NMRの場合、観測されたシグナルの積分値は、分子におけるHの存在率を示す。本発明では、H−NMRスペクトルのケミカルシフト値より、Hの帰属を推測し、各ケミカルシフト値について、Hシグナルの積分値を求めた。
上記のように、特定のフルオレン構造を有するポリエステルカーボネート樹脂(すなわち、樹脂(a))を含み、さらに末端にビニル基を有するポリマー(すなわち、一般式(A)で表される末端構造を有するポリマー)および/または末端にビニル基を有する化合物(すなわち、一般式(B)で表される化合物)を所定量含む樹脂組成物が、流動性および強度に優れることを、本発明者らは見出した。流動性および強度に優れた樹脂組成物は、成形性に優れるため、精密な部材の材料として適している。そのため、本発明の樹脂組成物は、デジタルカメラ、スマートフォン、タブレットなどにおける光学レンズ、液晶表示装置の前面保護シート(フィルム)、導光シート(フィルム)などに使用されるシートおよびフィルムの材料として好適に使用され得る。また、表面にパターンを有するシートおよびフィルムの材料としても好適である。
本発明の樹脂組成物が流動性および強度に優れる理由は定かではないが、以下のように推測される。
一般に化合物末端の構造は、その化合物の存在量の割に、樹脂組成物の物性へ影響を与えやすい傾向がある。本発明の樹脂組成物は、炭素−炭素二重結合を末端に有する式(A)で表されるポリマーが存在することにより、該二重結合の結合軸まわりで分子レベルでの回転が生じにくい。これが、成形体の強度向上に寄与するものと推測される。また、式(B)で表される化合物が存在することにより、樹脂組成物に微小の可塑性を付与することができ、その結果、樹脂の流動性が向上したと推測される。
さらに、本発明の樹脂組成物は、離型性が良いため射出成形時の金型汚れが少なく、射出成形物の形状安定性にも優れ、着色が少ないという利点も有する。
樹脂組成物における末端にビニル基を有するポリマーおよび化合物の量は、使用する樹脂原料、重合時の反応温度、反応時間、減圧度、モル比、反応釜の形状、攪拌翼の種類等を制御することにより、所望の範囲に調節することができる。例えば、重合反応時の温度を、230℃以上、好ましくは230℃〜300℃、より好ましくは240℃〜280℃、特に好ましくは250〜260℃に調節することにより、末端にビニル基を有するポリマーおよび化合物を所定量含み、流動性および強度に優れた樹脂組成物を得ることができる。
式(1)、(A)および(B)において、R及びRは、それぞれ独立に、水素原子、炭素数1〜20のアルキル基、炭素数1〜20のアルコキシル基、炭素数5〜20のシクロアルキル基、炭素数5〜20のシクロアルコキシル基、炭素数6〜20のアリール基、炭素数6〜20のアリールオキシ基、およびハロゲン原子から選択される。これらのうち、水素原子、炭素数1〜12のアルキル基または炭素数6〜12のアリール基が好ましく、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、シクロヘプタ基、シクロプロピル基、またはフェニル基がより好ましく、水素原子、メチル基、またはフェニル基が特に好ましく、水素原子またはフェニル基が最も好ましい。
Xは、それぞれ独立に、分岐していてもよい炭素数2〜6のアルキレン基であり、好ましくは炭素数2〜4のアルキレン基であり、より好ましくはエチレン基またはプロピレン基であり、特に好ましくはエチレン基である。
HvおよびHfは、それぞれ水素原子である。
nは、それぞれ独立に、1〜5の整数であり、1〜3の整数であることが好ましく、1〜2の整数であることがより好ましく、1であることが特に好ましい。
*はポリマー鎖であり、樹脂(a)を構成するいずれかの繰返し単位が複数結合した構造を有する。具体的には、*で表されるポリマー鎖は、一般式(1)で表される化合物に由来する繰返し単位を含む。また、樹脂(a)が後述する一般式(2)で表される繰返し単位または一般式(3)で表される繰返し単位を含む場合には、*のポリマー鎖は、これらの繰返し単位を含み得る。
式(1)で表される化合物としては、9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレン、9,9−ビス(4−(2−ヒドロキシエトキシ)−3−メチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−エチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−フェニルフェニル)フルオレン、および9,9−ビス(4−(2−ヒドロキシエトキシ)−3−フェニルフェニル)フルオレンが挙げられる。中でも、9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレン(以下、BPEFとも称する)または9,9−ビス(4−(2−ヒドロキシエトキシ)−3−フェニルフェニル)フルオレン(以下、BPPEFとも称する)が好適に使用される。
樹脂(a)における式(1)で表される化合物に由来する繰返し単位の割合は、樹脂(
a)を構成する全繰返し単位(カーボネート結合部分およびエステル結合部分を除く)に対して50mol%以上が好ましく、さらには80mol%以上が好ましく、90mol%以上が特に好ましく、100mol%が最も好ましい。樹脂(a)は、式(1)で表される化合物に由来する繰返し単位以外の繰返し単位を含んでいてもよい。
以下、上記樹脂組成物の好ましい実施形態について説明する。
<第1の好ましい実施形態>
第1の好ましい実施形態によると、下記一般式(1)で表される化合物に由来する繰返し単位からなるポリエステルカーボネート樹脂(ただし、下記一般式(A)で表される末端構造を有するポリマーは除く)と、
下記一般式(A)で表される末端構造を有するポリマーおよび/または下記一般式(B)で表される化合物と
を含む樹脂組成物が提供される。ここで、式(1)、(A)および(B)における各置換基の定義は上述したとおりであり、好ましい置換基および好ましい化合物についても上述したとおりである。ただし、式(A)における*で表されるポリマー鎖は、式(1)で表される化合物に由来する繰返し単位を含み、式(1)で表される化合物に由来する繰返し単位からなることが好ましい。
「一般式(1)で表される化合物に由来する繰返し単位からなるポリエステルカーボネ
ート樹脂(ポリマー鎖)」とは、樹脂におけるカーボネート結合部分およびエステル結合部分を除いた繰返し単位が、一般式(1)で表される化合物に由来する繰返し単位からなることを意味する。すなわち、上記記載は、一般式(1)で表される化合物に由来する繰返し単位とポリカーボネート結合部分とエステル結合部分とからなるポリエステルカーボネート樹脂(ポリマー鎖)を意味する。例えば、ポリカーボネート結合部分は、ホスゲンまたは炭酸ジエステルに由来し、エステル結合部分は、ジカルボン酸またはその誘導体に由来する。
第1の実施形態に係る樹脂組成物における一般式(A)で表される末端構造を有するポリマーおよび一般式(B)で表される化合物の合計含有量は、樹脂組成物のH−NMRスペクトルを測定した場合に、以下の関係を満たすような量であることが好ましい(すなわち、「フルオレン系ビニル末端基量」)。
式(I)において、
とみなすことができる。上記式(I)によって計算されるフルオレン系ビニル末端基量は、好ましくは0.01〜1.0であり、より好ましくは0.05〜0.7であり、特に好ましくは0.1〜0.4である。
<第2の好ましい実施形態>
第2の好ましい実施形態によると、下記一般式(1)で表される化合物に由来する繰返し単位および下記一般式(2)で表される化合物に由来する繰返し単位を含むポリエステルカーボネート樹脂(以下、樹脂(b)とも称する)(ただし、下記一般式(A)で表される末端構造を有するポリマーは除く)と、
下記一般式(A)で表される末端構造を有するポリマーおよび/または下記一般式(B)で表される化合物と
を含む樹脂組成物が提供される。ここで、式(1)、(A)および(B)における各置換基の定義は上述したとおりであり、好ましい置換基および好ましい化合物についても上述したとおりである。ただし、式(A)における*で表されるポリマー鎖は、式(1)で表される化合物に由来する繰返し単位および式(2)で表される化合物に由来する繰返し単位を含み、式(1)で表される化合物に由来する繰返し単位および式(2)で表される化合物に由来する繰返し単位からなることが好ましい。ここで、「式(1)で表される化合物に由来する繰返し単位および式(2)で表される化合物に由来する繰返し単位からなるポリマー鎖」とは、ポリマー鎖におけるカーボネート結合部分およびエステル結合部分を除いた繰返し単位が、式(1)で表される化合物に由来する繰返し単位および式(2)で表される化合物に由来する繰返し単位からなることを意味する。
第2の実施形態に係る樹脂組成物における一般式(A)で表される末端構造を有するポリマーおよび一般式(B)で表される化合物の合計含有量は、樹脂組成物のH−NMRスペクトルを測定した場合に、以下の関係を満たすような量であることが好ましい(すなわち、「フルオレン系ビニル末端基量」)。
式(I)において、
とみなすことができる。上記式(I)によって計算されるフルオレン系ビニル末端基量は、好ましくは0.01〜1.0であり、より好ましくは0.05〜0.7であり、特に好ましくは0.1〜0.4である。
式(2)において、RおよびRは、それぞれ独立に、水素原子、炭素数1〜20のアルキル基、炭素数1〜20のアルコキシル基、炭素数3〜20のシクロアルキル基、炭素数5〜20のシクロアルコキシル基、炭素数6〜20のアリール基、炭素数6〜20のアリールオキシ基、およびハロゲン原子から選択される。これらのうち、水素原子、炭素数1〜10のアルキル基、炭素数5〜20のシクロアルキル基および炭素数6〜15のアリール基が好ましく、水素原子、メチル基、エチル基、プロピル基、ブチル基、シクロヘキシル基およびフェニル基がより好ましく、水素原子、メチル基およびフェニル基が特に好ましい。
Yは、それぞれ独立に、分岐していてもよい炭素数2〜6のアルキレン基、炭素数6〜10のシクロアルキレン基、または炭素数6〜10のアリーレン基である。これらのうち、炭素数2〜6のアルキレン基が好ましく、エチレン、プロピレンがより好ましく、エチレンが特に好ましい。
Wは、単結合または
からなる群より選択される(ここで、R、R、およびR14〜R17は、それぞれ独立に、水素原子、炭素数1〜10のアルキル基および炭素数6〜10のフェニル基から選択され;R10およびR11は、それぞれ独立に、水素原子および炭素数1〜5のアルキル基から選択され;R12およびR13は、それぞれ独立に、水素原子および炭素数1〜5のアルキル基、フェニル基から選択され;Z’は、3〜11の整数である)。
Wは、単結合、
であることが好ましく、
であることがより好ましく、
であることが特に好ましい。
、R、およびR14〜R17は、炭素数1〜10のアルキル基、炭素数6〜10のフェニル基または水素原子であることが好ましく、水素原子、メチル基またはフェニル基であることがより好ましく、メチル基であることが特に好ましい。
10およびR11は、水素原子またはメチル基であることが好ましく、水素原子であることがより好ましい。
12およびR13は、それぞれ独立に、水素原子であることが好ましい。
Z’は、3〜10であることが好ましく、3〜5であることがより好ましく、5であることが特に好ましい。
pおよびqは、それぞれ独立に、0〜5の整数であり、0〜3であることが好ましく、0または1であることがより好ましく、pおよびqが共に0であることが特に好ましい。
式(2)で表される化合物としては、具体的には、2,2−ビス(4−ヒドロキシフェニル)プロパン[=ビスフェノールA]、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン[=ビスフェノールAP]、2,2−ビス(4−ヒドロキシフェニル)ヘキサフルオロプロパン[=ビスフェノールAF]、2,2−ビス(4−ヒドロキシフェ
ニル)ブタン[=ビスフェノールB]、ビス(4−ヒドロキシフェニル)ジフェニルメタン[=ビスフェノールBP]、ビス(4−ヒドロキシ−3−メチルフェニル)プロパン[=ビスフェノールC]、1,1−ビス(4−ヒドロキシフェニル)エタン[=ビスフェノールE]、ビス(4−ヒドロキシフェニル)メタン[=ビスフェノールF]、ビス(2−ヒドロキシフェニル)メタン、2,2−ビス(4−ヒドロキシ−3−イソプロピルフェニル)プロパン[=ビスフェノールG]、1,3−ビス(2−(4−ヒドロキシフェニル)−2−プロピル)ベンゼン[=ビスフェノールM]、ビス(4−ヒドロキシフェニル)スルホン[=ビスフェノールS]、1,4−ビス(2−(4−ヒドロキシフェニル)−2−プロピル)ベンゼン[=ビスフェノールP]、ビス(4−ヒドロキシ−3−フェニルフェニル]プロパン[=ビスフェノールPH]、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン[=ビスフェノールTMC]、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン[=ビスフェノールZ]、1,1−ビス(4−ヒドロキシ−3−メチルフェニル)シクロヘキサン(ビスフェノールOCZ)、および4,4−ビスフェノール等が例示される。これらの中で、ビスフェノールA、ビスフェノールM、ビスフェノールC、ビスフェノールZ、およびビスフェノールTMCが好ましく、ビスフェノールAがより好ましい。
式(1)で表される化合物に由来する繰返し単位および式(2)で表される化合物に由来する繰返し単位の合計割合は、樹脂(b)を構成する全繰返し単位(カーボネート結合部分およびエステル結合部分を除く)に対して40mol%以上が好ましく、50mol%以上がより好ましく、さらには80mol%以上が好ましく、90mol%以上が特に好ましく、100mol%が最も好ましい。樹脂(b)は、式(1)で表される化合物に由来する繰返し単位および式(2)で表される化合物に由来する繰返し単位以外の繰返し単位を含んでいてもよい。
式(1)で表される化合物に由来する繰返し単位と式(2)で表される化合物に由来する繰返し単位のモル比は、20:80〜99:1が好ましく、30:70〜98:2がより好ましく、40:60〜95:5が特に好ましい。
<第3の好ましい実施形態>
第3の好ましい実施形態によると、下記一般式(1)で表される化合物に由来する繰返し単位および下記一般式(3)で表される繰返し単位を含むポリエステルカーボネート樹脂(以下、樹脂(c)とも称する)(ただし、下記一般式(A)で表される末端構造を有するポリマーおよび下記一般式(C)で表される末端構造を有するポリマーは除く)と、
下記一般式(A)で表される末端構造を有するポリマー、下記一般式(B)で表される化合物、下記一般式(C)で表される末端構造を有するポリマー、および/または下記一般式(D)で表される化合物と
を含む樹脂組成物が提供される。ここで、式(1)、(A)および(B)における各置換基は、上述したとおりであり、好ましい置換基および好ましい化合物についても上述したとおりである。ただし、式(A)および(C)における*で表されるポリマー鎖は、式(1)で表される化合物に由来する繰返し単位および式(3)で表される化合物に由来する繰返し単位を含み、式(1)で表される化合物に由来する繰返し単位および式(3)で表される化合物に由来する繰返し単位からなることが好ましい。ここで、「式(1)で表される化合物に由来する繰返し単位および式(3)で表される化合物に由来する繰返し単位からなるポリマー鎖」とは、ポリマー鎖におけるカーボネート結合部分およびエステル結合部分を除いた繰返し単位が、式(1)で表される化合物に由来する繰返し単位および式(3)で表される化合物に由来する繰返し単位からなることを意味する。
式(3)、(C)および(D)において、Zは、それぞれ独立に、分岐していてもよい炭素数2〜6のアルキレン基である。好ましくは炭素数2〜4のアルキレン基であり、より好ましくはエチレン基またはプロピレン基であり、特に好ましくはエチレン基である。
mは、それぞれ独立に、1〜5の整数であり、1〜3の整数であることが好ましく、1〜2の整数であることがより好ましく、1であることが特に好ましい。
Hoは、水素原子である。
式(3)で表される化合物としては、2,2´−ビス(ヒドロキシメトキシ)−1,1´−ビナフタレン、2,2´−ビス(2−ヒドロキシエトキシ)−1,1´−ビナフタレン、2,2´−ビス(3−ヒドロキシプロピルオキシ)−1,1´−ビナフタレン、2,2´−ビス(4−ヒドロキシブトキシ)−1,1´−ビナフタレン等が例示される。中でも、2,2´−ビス(2−ヒドロキシエトキシ)−1,1´−ビナフタレン(以下、BHEBNとも称する)が好適に使用される。
第3の実施形態に係る樹脂組成物における一般式(A)で表される末端構造を有するポリマーおよび一般式(B)で表される化合物の合計含有量は、樹脂組成物のH−NMRスペクトルを測定した場合に、以下の関係を満たすような量であることが好ましい(すなわち、「フルオレン系ビニル末端基量」)。
または
式(II)または(III)によって計算されるフルオレン系ビニル末端基量は、好ましくは0.03〜0.7であり、より好ましくは0.03〜0.2であり、特に好ましくは0.03〜0.1である。
式(II)および(III)のどちらを満たすかは、式(1)の化合物の構造に依存するが、いずれかの関係を満たせばよい。具体的には、式(1)におけるRおよびRが共に水素原子である場合には、組成物のH−NMRスペクトルは式(II)を満たし、RおよびRのいずれか一方が水素原子でない場合(例えばフェニル基)には、組成物のH−NMRスペクトルは式(III)を満たす。
式(II)および(III)において、
は、それぞれ、
に対応する。
上記式において、「式(1)の化合物に由来する繰返し単位におけるHr」とは、式(1)のXに含まれる全水素原子を意味し、「式(3)の化合物に由来する繰返し単位におけるHs」とは、式(3)のZに含まれる全水素原子を意味する。例えば、XおよびZがそれぞれエチレン基である場合、HrおよびHsの位置は、以下のとおりである。
第3の実施形態に係る樹脂組成物における一般式(C)で表される末端構造を有するポリマーおよび一般式(D)で表される化合物の合計含有量は、樹脂組成物のH−NMRスペクトルを測定した場合に、以下の関係を満たすような量であることが好ましい。
以下、式(C)および(D)の末端に位置するビニル基を「ビナフトール系ビニル末端基」といい、式(IV)によって算出される値を、「ビナフトール系ビニル末端基量」という。上記式(IV)によって計算される値は、好ましくは0.3〜1.0であり、より好ましくは0.3〜0.9であり、特に好ましくは0.3〜0.5である。
式(IV)において、
は、
に対応する。
上記式におけるHrおよびHsは、上記で定義したとおりである。
上記式(II)〜(IV)を合わせて考えると、第3の実施形態に係る樹脂組成物における一般式(A)で表される末端構造を有するポリマー、一般式(B)で表される化合物、一般式(C)で表される末端構造を有するポリマーおよび一般式(D)で表される化合物の合計含有量は、樹脂組成物のH−NMRスペクトルを測定した場合に、以下の関係を満たすような量であることが好ましい(すなわち、「フルオレン系ビニル末端基量」+「ビナフトール系ビニル末端基量」)。
すなわち、式(II)または(III)のいずれかと式(IV)との和が、式(V)によって表される。上記式(V)によって計算される値は、好ましくは0.1〜2.0であり、より好ましくは0.3〜1.8であり、特に好ましくは0.4〜1.4である。
式(1)で表される化合物に由来する繰返し単位および式(3)で表される化合物に由来する繰返し単位の合計割合は、樹脂(c)を構成する全繰返し単位(カーボネート結合部分およびエステル結合部分を除く)に対して40mol%以上が好ましく、50mol%以上がより好ましく、さらには80mol%以上が好ましく、90mol%以上が特に好ましく、100mol%が最も好ましい。樹脂(c)は、式(1)で表される化合物に由来する繰返し単位および式(3)で表される化合物に由来する繰返し単位以外の繰返し単位を含んでいてもよい。
式(1)で表される化合物に由来する繰返し単位と式(3)で表される化合物に由来する繰返し単位のモル比は、20:80〜99:1が好ましく、30:70〜95:5がより好ましく、40:60〜90:10が特に好ましい。
<樹脂の製造方法>
上述したとおり、本発明の樹脂組成物はポリエステルカーボネート樹脂を含む。ポリエステルカーボネート樹脂において、各構成単位は、カーボネート結合部分およびエステル結合部分を介して結合される。このカーボネート結合部分は、「炭酸ジエステルに由来する構成単位」または「炭酸ジエステル構成単位」とも称し、エステル結合部分は、「ジカルボン酸またはその誘導体に由来する構成単位」または「ジカルボン酸構成単位」とも称する。また、本発明におけるポリエステルカーボネート樹脂は、ランダム、ブロックおよび交互共重合体のいずれの構造であってもよい。
ポリエステルカーボネート樹脂は、炭酸ジエステル構成単位を生成する化合物と、ジカルボン酸構成単位を生成する化合物と、ジヒドロキシ構成単位を生成する化合物とを、触媒の存在下、溶融状態でエステル交換反応させることによって製造される。具体的には、一般式(1)で表される化合物、任意に一般式(2)または(3)で表される化合物、ジカルボン酸またはその誘導体、および炭酸ジエステルを反応させる。反応方法としては、
エステル交換法、直接重合法などの溶融重縮合法、溶液重合法、界面重合法等の種々の方法が挙げられるが、中でも、反応溶媒を用いない溶融重縮合法が好ましい。
ジカルボン酸としては、特に限定されないが、ナフタレンジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、2−メチルテレフタル酸、ビフェニルジカルボン酸、テトラリンジカルボン酸などの芳香族ジカルボン酸、シュウ酸、マロン酸、コハク酸、マレイン酸、フマル酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ドデカンジカルボン酸、シクロヘキサンジカルボン酸、デカリンジカルボン酸、ノルボルナンジカルボン酸、トリシクロデカンジカルボン酸、ペンタシクロドデカンジカルボン酸、3,9−ビス(1,1−ジメチル−2−カルボキシエチル)−2,4,8,10−テトラオキサスピロ〔5.5〕ウンデカン、5−カルボキシ−5−エチル−2−(1,1−ジメチル−2−カルボキシエチル)−1,3−ジオキサン、ダイマー酸等の脂肪族ジカルボン酸およびそれらの誘導体が好ましい。ジカルボン酸の誘導体としては、エステル、酸無水物、酸ハロゲン化物が例示される。
炭酸ジエステルとしては、ジフェニルカーボネート、ジトリールカーボネート、ビス(クロロフェニル)カーボネート、m−クレジルカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジシクロヘキシルカーボネート等が挙げられる。これらの中でも特に、ジフェニルカーボネートが好ましい。炭酸ジエステルは、ジヒドロキシ化合物の合計1モルに対して0.97〜1.20モルの比率で用いられることが好ましく、更に好ましくは0.98〜1.10モルの比率である。炭酸ジエステルの量がこれら範囲を外れた場合、樹脂が所望の分子量に到達しない、未反応の原料が樹脂中に残存して光学特性が低下する等の問題が生じ得る。
塩基性化合物触媒としては、特にアルカリ金属化合物、アルカリ土類金属化合物、および含窒素化合物等が挙げられる。
アルカリ金属化合物としては、例えばアルカリ金属の有機酸塩、無機塩、酸化物、水酸化物、水素化物又はアルコキシド等が挙げられる。具体的には、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化リチウム、炭酸水素ナトリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸セシウム、酢酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸セシウム、ステアリン酸リチウム、水素化ホウ素ナトリウム、フェニル化ホウ素ナトリウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸セシウム、安息香酸リチウム、リン酸水素二ナトリウム、リン酸水素二カリウム、リン酸水素二リチウム、フェニルリン酸二ナトリウム、ビスフェノールAの二ナトリウム塩、二カリウム塩、二セシウム塩もしくは二リチウム塩、フェノールのナトリウム塩、カリウム塩、セシウム塩もしくはリチウム塩等が用いられる。これらのうち、触媒活性が高く、純度の高いものが安価で流通している炭酸水素ナトリウムが好ましい。
アルカリ土類金属化合物としては、例えばアルカリ土類金属化合物の有機酸塩、無機塩、酸化物、水酸化物、水素化物又はアルコキシド等が挙げられる。具体的には、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム、炭酸水素マグネシウム、炭酸水素カルシウム、炭酸水素ストロンチウム、炭酸水素バリウム、炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム、酢酸マグネシウム、酢酸カルシウム、酢酸ストロンチウム、酢酸バリウム、ステアリン酸マグネシウム、ステアリン酸カルシウム、安息香酸カルシウム、フェニルリン酸マグネシウム等が用いられる。
含窒素化合物としては、例えば4級アンモニウムヒドロキシドおよびそれらの塩、アミン類等が挙げられる。具体的には、テトラメチルアンモニウムヒドロキシド、テトラエチ
ルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド等のアルキル基、アリール基等を有する4級アンモニウムヒドロキシド類;トリエチルアミン、ジメチルベンジルアミン、トリフェニルアミン等の3級アミン類;ジエチルアミン、ジブチルアミン等の2級アミン類;プロピルアミン、ブチルアミン等の1級アミン類;2−メチルイミダゾール、2−フェニルイミダゾール、ベンゾイミダゾール等のイミダゾール類;あるいは、アンモニア、テトラメチルアンモニウムボロハイドライド、テトラブチルアンモニウムボロハイドライド、テトラブチルアンモニウムテトラフェニルボレート、テトラフェニルアンモニウムテトラフェニルボレート等の塩基もしくは塩基性塩等が用いられる。
エステル交換触媒としては、亜鉛、スズ、ジルコニウム、鉛等の塩が好ましく用いられ、これらは単独もしくは組み合わせて用いることができる。
エステル交換触媒としては、具体的には、酢酸亜鉛、安息香酸亜鉛、2−エチルヘキサン酸亜鉛、塩化スズ(II)、塩化スズ(IV)、酢酸スズ(II)、酢酸スズ(IV)、ジブチルスズジラウレート、ジブチルスズオキサイド、ジブチルスズジメトキシド、ジルコニウムアセチルアセトナート、オキシ酢酸ジルコニウム、ジルコニウムテトラブトキシド、酢酸鉛(II)、酢酸鉛(IV)等が用いられる。
これらの触媒は、ジヒドロキシ化合物の合計1モルに対して、1×10−9〜1×10−3モルの比率で、好ましくは1×10−7〜1×10−4モルの比率で用いられる。
触媒は、2種類以上を併用してもよい。また、触媒自体をそのまま添加してもよく、あるいは、水やフェノール等の溶媒に溶解してから添加してもよい。
溶融重縮合法は、前記の原料および触媒を用いて、加熱下で、さらに常圧または減圧下で、エステル交換反応により溶融重縮合を行うものである。すなわち、反応温度は常温、常圧より開始し、副生成物を除去しながら、徐々に昇温、減圧状態とするのが好ましい。
具体的には、反応の最終段階(反応条件の安定した段階)における反応温度が230〜300℃であることが好ましく、240〜280℃であることがより好ましく、250〜260℃であることが特に好ましい。反応の最終段階(反応条件の安定した段階)における減圧度は、100〜0.01mmHgであることが好ましく、50〜0.01mmHgであることがより好ましく、5〜0.1mmHgであることが特に好ましく、1mmHg以下(例えば1〜0.01mmHg)であることが最も好ましい。触媒は、原料と共に反応の最初から存在させてもよく、あるいは、反応の途中で添加してもよい。ここで、反応の最終段階とは、原料を融解させてエステル交換反応を行った後、減圧した状態(例えば、100〜0.01mmHg)で重合反応を行う段階を意味する。
溶融重縮合反応は、連続式で行っても良く、またバッチ式で行ってもよい。反応を行うに際して用いられる反応装置は、錨型攪拌翼、マックスブレンド攪拌翼、ヘリカルリボン型攪拌翼等を装備した縦型であっても、パドル翼、格子翼、メガネ翼等を装備した横型であっても、スクリューを装備した押出機型であってもよい。また、重合物の粘度を勘案してこれらの反応装置を適宜組み合わせて使用することが好適に実施される。
重合反応終了後、熱安定性および加水分解安定性を保持するために、触媒を除去もしくは失活させてもよいが、必ずしも失活させる必要はない。失活させる場合、公知の酸性物質の添加による触媒の失活のための方法を好適に実施できる。酸性物質としては、具体的には、安息香酸ブチル等のエステル類;p−トルエンスルホン酸等の芳香族スルホン酸類;p−トルエンスルホン酸ブチル、p−トルエンスルホン酸ヘキシル等の芳香族スルホン酸エステル類;亜リン酸、リン酸、ホスホン酸等のリン酸類;亜リン酸トリフェニル、亜リン酸モノフェニル、亜リン酸ジフェニル、亜リン酸ジエチル、亜リン酸ジn−プロピル
、亜リン酸ジn−ブチル、亜リン酸ジn−ヘキシル、亜リン酸ジオクチル、亜リン酸モノオクチル等の亜リン酸エステル類;リン酸トリフェニル、リン酸ジフェニル、リン酸モノフェニル、リン酸ジブチル、リン酸ジオクチル、リン酸モノオクチル等のリン酸エステル類;ジフェニルホスホン酸、ジオクチルホスホン酸、ジブチルホスホン酸等のホスホン酸類;フェニルホスホン酸ジエチル等のホスホン酸エステル類;トリフェニルホスフィン、ビス(ジフェニルホスフィノ)エタン等のホスフィン類;ホウ酸、フェニルホウ酸等のホウ酸類;ドデシルベンゼンスルホン酸テトラブチルホスホニウム塩等の芳香族スルホン酸塩類;ステアリン酸クロライド、塩化ベンゾイル、p−トルエンスルホン酸クロライド等の有機ハロゲン化物;ジメチル硫酸等のアルキル硫酸;塩化ベンジル等の有機ハロゲン化物等が好適に用いられる。失活剤の効果、樹脂に対する安定性等の観点から、p−トルエンまたはスルホン酸ブチルが特に好ましい。これらの失活剤は、触媒量に対して0.01〜50倍モル、好ましくは0.3〜20倍モル使用される。触媒量に対して0.01倍モルより少ないと、失活効果が不充分となり好ましくない。また、触媒量に対して50倍モルより多いと、樹脂の耐熱性が低下し、成形体が着色しやすくなるため好ましくない。
上記失活剤の添加は、混練により行うことができ、連続式、バッチ式のどちらでもよい。混練時の温度は、200〜350℃が好ましく、230〜300℃がより好ましく、250〜280℃が特に好ましい。混練機は、連続式ならば押出し機が好適であり、バッチ式ならばラボプラストミル、ニーダーが好適に使用される。押出機としては、例えば、単軸押出機、二軸押出機、多軸押出機等が挙げられる。押出機には、適宜、樹脂吐出量を安定定量化する為のギアポンプなどを設けることができる。樹脂組成物の溶融混練の雰囲気圧力は特に制限されず、常圧または減圧、例えば、常圧(760mmHg)〜0.1mmHgの圧力が、酸化防止、分解物、フェノールなどの低沸点成分の除去の観点で好ましい。押出機はベント式であってもノーベント式であってもよいが、押出製品の品質向上の点から、好ましくはベント式押出機である。ベント口の圧力(ベント圧力)は、常圧であっても減圧であってもよいが、例えば、常圧(760mmHg)〜0.1mmHgの圧力であってよく、好ましくは、100〜0.1mmHg程度の圧力、より好ましくは酸化防止、分解物、フェノールなどの低沸点成分の除去の観点で50〜0.1mmHg程度の圧力とする。また、フェノールなどの低沸点成分をより効率的に減少する目的で、水添脱揮してもよい。
失活剤の混練は、重合反応終了後すぐに行ってもよく、あるいは、重合後の樹脂をペレット化してから行ってもよい。また、失活剤の他、その他の添加剤(酸化防止剤、離型剤、紫外線吸収剤、流動性改質剤、結晶核剤、強化剤、染料、帯電防止剤あるいは抗菌剤等)も、同様の方法で添加することができる。
触媒失活後(失活剤を添加しない場合には、重合反応終了後)、ポリマー中の低沸点化合物を、0.1〜1mmHgの圧力、200〜350℃の温度で脱揮除去する工程を設けても良い。脱揮除去の際の温度は、好ましくは230〜300℃、より好ましくは250〜280℃である。この工程には、パドル翼、格子翼、メガネ翼等、表面更新能の優れた攪拌翼を備えた横型装置、あるいは薄膜蒸発器が好適に用いられる。
ポリエステルカーボネート樹脂は、異物含有量が極力少ないことが望まれ、溶融原料の濾過、触媒液の濾過等が好適に実施される。フィルターのメッシュは、5μm以下であることが好ましく、より好ましくは1μm以下である。さらに、生成する樹脂のポリマーフィルターによる濾過が好適に実施される。ポリマーフィルターのメッシュは、100μm以下であることが好ましく、より好ましくは30μm以下である。また、樹脂ペレットを採取する工程は当然低ダスト環境でなければならず、クラス6以下であることが好ましく、より好ましくはクラス5以下である。
また、ポリエステルカーボネート樹脂のポリスチレン換算平均分子量Mwは、20000〜200000が好ましく、25000〜120000がさらに好ましく、25000〜50000が特に好ましい。
Mwが20000より小さいと、樹脂が脆くなるため好ましくない。Mwが200000より大きいと、溶融粘度が高くなるため、成形時に金型からの樹脂の抜き取りが困難になり、更には流動性が悪くなり溶融状態で扱い難くなるため好ましくない。
<その他の成分>
本発明の樹脂組成物は、上述した以外の成分を含んでいてもよい。例えば、本発明における「式(1)で表される化合物に由来する繰返し単位を含むポリエステルカーボネート樹脂」の繰り返し単位として、式(1)〜(3)以外の化合物に由来する繰返し単位が含まれても良い。その量は、式(1)〜(3)で表される化合物に由来する繰返し単位の合計100モル%に対して20モル%以下が望ましく、10モル%以下がさらに望ましい。この範囲内であれば、高屈折率が保持される。
さらに含まれていてもよい繰返し単位としては、エチレングリコール、1,3−プロパンジオール、1,2−プロパンジオール、1,4−ブタンジオール、1,3−ブタンジオール、1,2−ブタンジオール、1,5−ヘプタンジオール、1,6−ヘキサンジオールのなどの脂肪族ジヒドロキシ化合物;1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、トリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノール、2,6−デカリンジメタノール、1,5−デカリンジメタノール、2,3−デカリンジメタノール、2,3−ノルボルナンジメタノール、2,5−ノルボルナンジメタノール、1,3−アダマンタンジメタノール等の脂環式ジヒドロキシ化合物;2,2−ビス(4−ヒドロキシフェニル)プロパン[=ビスフェノールA]、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジエチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−(3,5−ジフェニル)フェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジブロモフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、2,4’−ジヒドロキシ−ジフェニルメタン、ビス(4−ヒドロキシフェニル)メタン、ビス(4−ヒドロキシ−5−ニトロフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、3,3−ビス(4−ヒドロキシフェニル)ペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、ビス(4−ヒドロキシフェニル)スルホン、2,4’−ジヒドロキシジフェニルスルホン、ビス(4−ヒドロキシフェニル)スルフィド、4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシ−3,3’−ジクロロジフェニルエーテル、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−2−メチルフェニル)フルオレン等の芳香族ビスフェノール類に由来する繰返し単位が挙げられる。
また、本発明の樹脂組成物は、式(1)で表される化合物に由来する繰返し単位を含むポリエステルカーボネート樹脂に加えて、本発明の特性を損なわない範囲において他の樹脂を含んでも良い。
他の樹脂として、以下のものが例示される:
ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、(メタ)クリル樹脂、ABS樹脂、ポリアミド、ポリアセタール、ポリカーボネート、ポリフェニレンエーテル、ポリエステル、ポリフェニレンサルファイド、ポリイミド、ポリエーテルサルホン、ポリエーテルエーテルケトン、フッ素樹脂、シクロオレフィンポリマー、エチレン・酢酸ビニル共重合体、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ポリウレタン。
他の樹脂の含量は、式(1)で表される化合物に由来する繰返し単位を含むポリエステ
ルカーボネート樹脂100重量部に対して、20質量部以下が好ましく、10質量部以下がさらに好ましい。
他の樹脂の含量が多すぎると、相溶性が悪くなり、樹脂組成物の透明性が低下する場合がある。光学歪みを低く保つためには、他の樹脂は含まないことが好ましい。
<樹脂組成物の特性>
本発明の方法により得られる樹脂組成物は、末端ビニル基を含有する化合物およびポリマーを所定量含むことにより、所望の特性を有する。樹脂組成物のメルトボリュームレート(MVR)は、10cm/10minよりも大きく、11cm/10min以上であることが好ましく、12cm/10min以上であることがより好ましい。曲げ強度は、90MPa以上であることが好ましく、95MPa以上であることがより好ましい。
<光学成形体>
本発明の樹脂組成物を用いて光学成形体を製造できる。本発明の樹脂組成物は、成形に適した流動性および強度を有するため、液晶ディスプレイ、有機ELディスプレイ、太陽電池等に使用される透明導電性基板、光学ディスク、液晶パネル、光学レンズ、光学シート、光学フィルム、光ファイバー、コネクター、蒸着プラスチック反射鏡などの光学成形体の材料として有利に使用することができる。本発明の樹脂組成物を含む光学成形体は、高い屈折率を有すると共に、賦形性にも優れる。
一般に、エステル交換法を用いて製造された樹脂は、分子鎖に分岐構造を有するため、低せん断速度領域において粘度が高く、非ニュートン性を示す。このため、従来、低せん断領域において樹脂を成形する場合、不均一な残留歪みが発生しやすく、加工直後の反りや高温環境下で変形を生じてしまうという問題点があった。また、成形時、樹脂を軟化させる温度が高くなるほど樹脂の流動性は向上するものの、樹脂の分解や着色が発生しやすいため、軟化させる温度には制約があった。しかし、本発明の樹脂組成物は、流動性および強度に優れているため、成形時に生じ得る上記問題を解決することができる。また、得られる成形体は、高い屈折率を有すると共に、賦形性にも優れ、ヘーズ、全光線透過率、アッベ数等の光学成形体に求められる種々の特性においても優れている。
光学成形体は、例えば射出成形法、圧縮成形法、押出成形法、溶液キャスティング法など任意の方法により成形される。成形の際には、本発明の樹脂組成物をポリカーボネート樹脂やポリエステル樹脂などの他の樹脂と混合して使用することが出来る。また、酸化防止剤、加工安定剤、光安定剤、重金属不活性化剤、難燃剤、滑剤、帯電防止剤、界面活性剤、抗菌剤、離型剤、紫外線吸収剤、可塑剤、相溶化剤等の添加剤を混合しても構わない。
酸化防止剤としては、トリエチレングリコール−ビス[3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ペンタエリスリトール−テトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、N,N−ヘキサメチレンビス(3,5−ジ−tert−ブチル−4−ヒドロキシ−ヒドロシンナマイド)、3,5−ジ−tert−ブチル−4−ヒドロキシ−ベンジルホスホネート−ジエチルエステル、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレートおよび3,9−ビス{1,1−ジメチル−2−[β−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]エチル}−2,4,8,10−テトラオキサスピロ(5,5)ウンデカンなどが挙げられる。樹脂組成物中の
酸化防止剤の含有量は、樹脂組成物100重量部に対して0.001〜0.3重量部であることが好ましい。
加工安定剤としては、リン系加工熱安定剤、硫黄系加工熱安定剤等が挙げられる。リン系加工熱安定剤としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸およびこれらのエステル等が挙げられる。具体的には、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジクミルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト、トリブチルホスフェート、トリエチルホスフェート、トリメチルホスフェート、トリフェニルホスフェート、ジフェニルモノオルソキセニルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェート、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、ベンゼンホスホン酸ジプロピル、テトラキス(2,4−ジ−t−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−t−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−t−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイトおよびビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト等が挙げられる。樹脂組成物中のリン系加工熱安定剤の含有量は、樹脂組成物100重量部に対して0.001〜0.2重量部が好ましい。
硫黄系加工熱安定剤としては、ペンタエリスリトール−テトラキス(3−ラウリルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−ミリスチルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−ステアリルチオプロピオネート)、ジラウリル−3,3’−チオジプロピオネート、ジミリスチル−3,3’−チオジプロピオネート、ジステアリル−3,3’−チオジプロピオネート等が挙げられる。樹脂組成物中の硫黄系加工熱安定剤の含有量は、樹脂組成物100重量部に対して0.001〜0.2重量部が好ましい。
離型剤としては、その90重量%以上がアルコールと脂肪酸とのエステルからなるものが好ましい。アルコールと脂肪酸とのエステルとしては、具体的には一価アルコールと脂肪酸とのエステルや、多価アルコールと脂肪酸との部分エステルあるいは全エステルが挙げられる。上記一価アルコールと脂肪酸とのエステルとしては、炭素原子数1〜20の一価アルコールと炭素原子数10〜30の飽和脂肪酸とのエステルが好ましい。また、多価アルコールと脂肪酸との部分エステルあるいは全エステルとしては、炭素原子数1〜25の多価アルコールと炭素原子数10〜30の飽和脂肪酸との部分エステルまたは全エステルが好ましい。
具体的に、一価アルコールと飽和脂肪酸とのエステルとしては、ステアリルステアレート、パルミチルパルミテート、ブチルステアレート、メチルラウレート、イソプロピルパルミテート等が挙げられる。多価アルコールと飽和脂肪酸との部分エステルまたは全エステルとしては、ステアリン酸モノグリセリド、ステアリン酸ジグリセリド、ステアリン酸
トリグリセリド、ステアリン酸モノソルビテート、ベヘニン酸モノグリセリド、カプリン酸モノグリセリド、ラウリン酸モノグリセリド、ペンタエリスリトールモノステアレート、ペンタエリスリトールテトラステアレート、ペンタエリスリトールテトラペラルゴネート、プロピレングリコールモノステアレート、ビフェニルビフェネ−ト、ソルビタンモノステアレート、2−エチルヘキシルステアレート、ジペンタエリスリトールヘキサステアレート等のジペンタエリスルトールの全エステルまたは部分エステル等が挙げられる。これらのうち、ステアリン酸モノグリセリドおよびラウリン酸モノグリセリドが特に好ましい。これら離型剤の含有量は、樹脂組成物100重量部に対して0.005〜2.0重量部の範囲が好ましく、0.01〜0.6重量部の範囲がより好ましく、0.02〜0.5重量部の範囲がさらに好ましい。
紫外線吸収剤としては、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤、環状イミノエステル系紫外線吸収剤およびシアノアクリレート系紫外線吸収剤からなる群より選ばれる少なくとも1種の紫外線吸収剤が好ましい。すなわち、以下に挙げる紫外線吸収剤は、いずれかを単独で使用してもよく、2種以上を組み合わせて使用してもよい。
ベンゾトリアゾール系紫外線吸収剤としては、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−3,5−ジクミルフェニル)フェニルベンゾトリアゾール、2−(2−ヒドロキシ−3−tert−ブチル−5−メチルフェニル)−5−クロロベンゾトリアゾール、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2N−ベンゾトリアゾール−2−イル)フェノール]、2−(2−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−tert−アミルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−ブチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−4−オクトキシフェニル)ベンゾトリアゾ−ル、2,2’−メチレンビス(4−クミル−6−ベンゾトリアゾールフェニル)、2,2’−p−フェニレンビス(1,3−ベンゾオキサジン−4−オン)、2−[2−ヒドロキシ−3−(3,4,5,6−テトラヒドロフタルイミドメチル)−5−メチルフェニル]ベンゾトリアゾ−ル等が挙げられる。
ベンゾフェノン系紫外線吸収剤としては、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−ベンジロキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシトリハイドレイトベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシ−5−ソジウムスルホキシベンゾフェノン、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタン、2−ヒドロキシ−4−n−ドデシルオキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノン等が挙げられる。
トリアジン系紫外線吸収剤としては、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−[(ヘキシル)オキシ]−フェノール、2−(4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン−2−イル)−5−[(オクチル)オキシ]−フェノール、2,4,6−トリス(2−ヒドロキシ−4−ヘキシルオキシ−3−メチルフェニル)−1,3,5−トリアジン等が挙げられる。
環状イミノエステル系紫外線吸収剤としては、2,2’−ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−m−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(4,4’−ジフェニレン)ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(2,6−ナフタレン)ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(1,5−ナフタレン)ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(2−メチル−p−フェニレン)ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(2−ニトロ−p−フェニレン)ビス(3,1−ベンゾオキサジン−4−オン)および2,2’−(2−クロロ−p−フェニレン)ビス(3,1−ベンゾオキサジン−4−オン)などが挙げられる。
シアノアクリレート系紫外線吸収剤としては、1,3−ビス−[(2’−シアノ−3’,3’−ジフェニルアクリロイル)オキシ]−2,2−ビス[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]メチル)プロパン、および1,3−ビス−[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]ベンゼンなどが挙げられる。
紫外線吸収剤の含有量は、樹脂組成物100重量部に対して、好ましくは0.01〜3.0重量部であり、より好ましくは0.02〜1.0重量部であり、さらに好ましくは0.05〜0.8重量部である。かかる配合量の範囲であれば、用途に応じ、樹脂に十分な耐候性を付与することが可能である。
光学成形体の表面には、必要に応じ、反射防止層あるいはハードコート層といったコート層が設けられていても良い。反射防止層は、単層であっても多層であっても良く、有機物であっても無機物であっても構わないが、無機物であることが好ましい。具体的には、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、酸化チタニウム、酸化セリウム、酸化マグネシウム、フッ化マグネシウム等の酸化物あるいはフッ化物が例示される。
(光学フィルムまたは光学シート)
光学成形体の一例として、光学フィルムまたは光学シートについて説明する。本発明の樹脂組成物を含むフィルムまたはシートは、例えば、液晶基板用フィルム、液晶表示装置の輝度向上のためのプリズムシート、光メモリーカード等に好適に使用される。
シートおよびフィルムの構造は、特に限定されず、単層構造であっても、多層構造であってもよい。多層構造である場合には、異なる樹脂で構成される層が2層、3層または4層以上積層された構造であってもよい。
シートおよびフィルムを作製する方法としては、溶融押出法(例えば、Tダイ成形法)、キャスト塗工法(例えば、流延法)、カレンダー成形法、熱プレス法等、様々な製膜方法を用いることができ、特に限定されない。好ましくは、溶融押出法が挙げられる。溶融押出法を使用する場合、装置としては、周知の溶融押出成形機を用いればよい。以下、溶融押出法を使用してシートおよびフィルムを製造する方法について説明する。
まず、材料を押出機に投入して溶融混錬し、T型ダイの先端(リップ)からシート状の溶融材料を押し出す。押出機としては、例えば、一軸押出機、二軸押出機等が挙げられる。また、2層以上からなる多層のフィルムを製造する場合には、複数の押出機を用いてもよい。例えば、3層のフィルムを製造する場合には、3基または2基の押出機を用いて材料をそれぞれ溶融混錬し、溶融した材料を3種3層分配型または2種3層分配型フィードブロックで分配し、単層T型ダイに流入させて共押出しすることができる。あるいは、溶融した各層の材料をマルチマニホールドダイにそれぞれ流入させて、リップ手前で3層構
成に分配して共押出ししてもよい。
押出機には、適宜、材料中の比較的大きな異物等をろ過および除去する為のスクリーンメッシュ、材料中の比較的小さな異物、ゲル等をろ過および除去する為のポリマーフィルター、押し出す樹脂量を定量化する為のギアポンプなどを設けても良い。
T型ダイは、スリット状のリップを有するダイであり、例えば、フィードブロックダイ、マニホールドダイ、フィッシュテールダイ、コートハンガーダイ、スクリューダイ等が挙げられる。多層の熱可塑性樹脂フィルムを製造する場合には、マルチマニホールドダイなどを用いてもよい。
また、T型ダイのリップの幅方向の長さは、特に制限は無いが、製品幅に対して1.2〜1.5倍であることが好ましい。リップの開度は、所望の製品の厚みにより適宜調整すればよいが、通常、所望の製品の厚みの1.01〜10倍、好ましくは1.1〜5倍である。リップの開度の調整は、T型ダイの幅方向に並んだボルトによって行うのが好ましい。リップ開度は幅方向に一定でなくてもよく、例えば、端部のリップ開度を中央部のリップ開度より狭く調整することで、ドローレゾナンス現象を抑制することができる。
次いで、押し出されたシート状の材料を、2本の冷却ロールの間に挟み込んで成形する。2本の冷却ロールは、共に金属ロールであってもよいし、共に弾性ロールであってもよいし、一方が金属ロールであり、他方が弾性ロールであってもよい。ロールの表面状態は、特に限定されず、例えば、鏡面であってもよく、模様や凹凸等があってもよい。
金属ロールとしては、高剛性であれば特に限定されず、例えば、ドリルドロール、スパイラルロール等が挙げられる。
弾性ロールとしては、例えば、ゴムロールや、外周部に金属製薄膜を備えた弾性ロール(以下、金属弾性ロールとも称する)などが挙げられ、なかでも、金属弾性ロールであることが好ましい。
2本の冷却ロール間の隙間(ロールギャップ)は、所望の製品厚みにより適宜調整され、シート状の材料の両面が、それぞれ冷却ロールの中央部の表面に接する様にロールギャップが設定される。そのため、シート状の材料は、2本の冷却ロールで挟み込まれると、冷却ロールの中央部から一定の圧力を受けてフィルムまたはシートに成形される。
2本の冷却ロールの圧着圧はロール剛性の許容範囲において任意である。また、シートおよびフィルムへの成形速度についても、適宜調整可能である。
フィルムへの異物の混入を極力避けるため、成形環境も当然低ダスト環境でなければならず、クラス6以下であることが好ましく、より好ましくはクラス5以下である。
(光学レンズ)
光学成形体の具体例としては、光学レンズも挙げられる。本発明の樹脂組成物を含む光学レンズは、望遠鏡、双眼鏡、テレビプロジェクター等、従来、高価な高屈折率ガラスレンズが用いられていた分野に用いることができ、極めて有用である。必要に応じて、非球面レンズの形で用いることが好ましい。非球面レンズは、1枚のレンズで球面収差を実質的にゼロとすることが可能であるため、複数の球面レンズの組み合わせによって球面収差を取り除く必要がなく、軽量化および生産コストの低減化が可能になる。従って、非球面レンズは、光学レンズの中でも特にカメラレンズとして有用である。
光学レンズは、例えば射出成形法、圧縮成形法、射出圧縮成形法など任意の方法により成形される。本発明の樹脂組成物を使用することにより、ガラスレンズでは技術的に加工の困難な高屈折率低複屈折非球面レンズをより簡便に得ることができる。
本発明の樹脂組成物は、流動性が高いため、薄肉小型で複雑な形状である光学レンズを作製することができる。具体的なレンズサイズとしては、中心部の厚みが0.05〜3.0mm、より好ましくは0.05〜2.0mm、さらに好ましくは0.1〜2.0mmである。また、直径は、1.0mm〜20.0mm、より好ましくは1.0〜10.0mm、さらに好ましくは3.0〜10.0mmである。
光学レンズへの異物の混入を極力避けるため、成形環境も当然低ダスト環境でなければならず、クラス6以下であることが好ましく、より好ましくはクラス5以下である。
以下に本発明を実施例により説明するが、本発明はこれらの実施例に何らの制限を受けるものではない。
1.樹脂組成物
実施例におけるメルトボリュームレート(MVR)および曲げ強度は、以下の方法を用いて測定した。
(1)メルトボリュームレート(MVR)
MVRは、樹脂組成物の流動性を示す指標であり、値が大きいほど流動性が高いことを示す。実施例で製造した樹脂組成物を120℃で4時間真空乾燥し、(株)東洋精機製作所製メルトインデクサーT‐111を用い、温度260℃、加重2160gの条件下で測定した。
(2)曲げ強度
実施例で製造した樹脂組成物を120℃で4時間真空乾燥した後、射出成型によって80mm×10mm×4mmの試験片を得た。この試験片を用いて、JIS K 7171に準拠した曲げ試験を行った。
また、H−NMRの測定条件は、以下のとおりである。
(3)H−NMR測定条件
装置:ブルカー AVANZE III HD 500MHz
フリップ角:30度
待ち時間:1秒
積算回数:500回
測定温度:室温(298K)
濃度:5wt%
溶媒:重クロロホルム
内部標準物質:テトラメチルシラン(TMS) 0.05wt%
(4)レンズ成形性
4−1)レンズ成形性1(離型性):ポリエステルカーボネート樹脂組成物をファナック(株)製FUNUC ROBOSHOTS‐2000i30Aを用いて成形温度260度、金型温度135度でレンズ型試験片(厚さ0.5mm、直径10mm)に成形した。射出時のピーク圧力を55MPaに設定し、このときのエジェクト圧の値が20MPa未満である樹脂組成物をA、エジェクト圧の値が20〜30MPaである樹脂組成物をB、エジェクト圧の値が30MPa以上である樹脂組成物をCと評価した。
上述のエジェクト圧の低い樹脂組成物は、成形しやすく、生産性に優れることを示す。
4−2)レンズ成形性2(金型汚れ):新潟鉄工所製ミニ7成型機としずく型の金型を用いてシリンダー温度250℃、成型サイクル11秒、金型温度80℃、型締め力7トンで2000ショット成型した。成型終了後金型稼動側に設置された成型品本体部分に対応する入れ子(成型品の凸側表面に対応する)を連続成型後に金型部より取り外し、その表面部の金型汚れを目視にて観察した。
レンズ成形性2については、以下のように評価した。
A:目視にて金型汚れがなく、離型性が良好
B:目視にて金型汚れがあり、離型性が若干不良
C:目視にて金型汚れがあり、離型性が不良
<実施例1:BPEF系ポリマー;250℃>
9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレン(以下、「BPEF」とも称する)15.00kg(34.21mol)、テレフタル酸ジメチル1.66kg(8.55mol)、ジフェニルカーボネート(以下、「DPC」とも称する)5.86kg(27.36mol)、チタンテトラブトキシド14.5×10−4gを攪拌機及び留出装置つきの50リットル反応器に入れ、窒素雰囲気760mmHgの下、1時間かけて200℃に加熱しながら攪拌した。その後、同条件でさらに100分間攪拌を行った。その後、20分かけて減圧度を200mmHgに調整し、200℃、200mmHgの条件で40分間保持してエステル交換反応を行った。その後、45℃/hrの速度で250℃まで昇温し、250℃、200mmHgで10分間保持した。その後、20分かけて減圧度を150mmHgに調整し、250℃、150mmHgで10分間保持した。その後、10分かけて120mmHgに調整し、250℃、120mmHgで70分間保持した。その後、10分かけて100mmHgに調整し、250℃、100mmHgで10分間保持した。さらに40分かけて1mmHg以下とし、250℃、1mmHg以下の条件下で30分間攪拌しながら重合反応を行った。反応終了後、反応器内に窒素を吹き込んで加圧し、生成したポリエステルカーボネート樹脂をペレタイズしながら抜き出した。
<実施例2:BPEF系ポリマー;260℃>
実施例1と同様にエステル交換反応を行った。その後、45℃/hrの速度で260℃まで昇温し、260℃、200mmHgで10分間保持した。その後、20分かけて減圧度を150mmHgに調整し、260℃、150mmHgで10分間保持した。その後、10分かけて120mmHgに調整し、260℃、120mmHgで70分間保持した。その後、10分かけて100mmHgに調整し、260℃、100mmHgで10分間保持した。さらに40分かけて1mmHg以下とし、260℃、1mmHg以下の条件下で30分間攪拌しながら重合反応を行った。反応終了後、反応器内に窒素を吹き込んで加圧し、生成したポリエステルカーボネート樹脂をペレタイズしながら抜き出した。
<比較例1:BPEF系ポリマー;220℃>
実施例1と同様にエステル交換反応を行った。その後、45℃/hrの速度で220℃まで昇温し、220℃、200mmHgで10分間保持した。その後、20分かけて減圧度を150mmHgに調整し、220℃、150mmHgで10分間保持した。その後、10分かけて120mmHgに調整し、220℃、120mmHgで70分間保持した。その後、10分かけて100mmHgに調整し、220℃、100mmHgで10分間保持した。さらに40分かけて1mmHg以下とし、220℃、1mmHg以下の条件下で20分間攪拌しながら重合反応を行った。反応終了後、反応器内に窒素を吹き込んで加圧し、生成したポリエステルカーボネート樹脂をペレタイズしながら抜き出した。
<比較例2:BPEF系ポリマー;310℃>
実施例1と同様にエステル交換反応を行った。その後、45℃/hrの速度で310℃まで昇温し、310℃、200mmHgで10分間保持した。その後、20分かけて減圧度を150mmHgに調整し、310℃、150mmHgで10分間保持した。その後、10分かけて120mmHgに調整し、310℃、120mmHgで70分間保持した。その後、10分かけて100mmHgに調整し、310℃、100mmHgで10分間保持した。さらに40分かけて1mmHg以下とし、310℃、1mmHg以下の条件下で50分間攪拌しながら重合反応を行った。反応終了後、反応器内に窒素を吹き込んで加圧し、生成したポリエステルカーボネート樹脂をペレタイズしながら抜き出した。
実施例および比較例で得られた樹脂組成物について、MVR、フルオレン系ビニル末端基量、曲げ強度およびレンズ成形性を評価した。その結果を表1に示す。なお、フルオレン系ビニル末端基量は、以下に示す方法で算出した。
(フルオレン系ビニル末端基量の算出方法)
実施例および比較例で得られたポリエステルカーボネート樹脂は、以下の繰返し単位を含んでいる。
(式中、Haは水素原子を示す)
また、樹脂組成物中には、以下のポリマーおよび/または化合物が含まれている。
(式中、*はポリマー鎖を示し、Hcは水素原子を示す)
実施例および比較例で得られた樹脂組成物のH−NMRスペクトルを測定し、以下の式を用いてフルオレン系ビニル末端基量を算出した。
なお、上記式において、
とみなすことができる。
実施例1で製造した樹脂組成物のH−NMRチャートを図1(a)に示す。図1(b)および(c)は、図1(a)の部分拡大図である。また、比較例1で製造した樹脂組成
物のH−NMRチャートを図2(a)に示す。図2(b)および(c)は、図2(a)の部分拡大図である。
表1から、本発明の樹脂組成物は、流動性(MVR)、曲げ強度およびレンズ成形性に優れることが分かる。
さらに、本発明の樹脂組成物を用いてフィルムを形成した場合、そのフィルムは、光学フィルムに求められる全光線透過率を維持しながら、高いヘーズおよび算術平均粗さを示す。このことは、本発明の樹脂組成物を含むフィルムが、優れた転写性を有する、すなわち優れた賦形性を有することを意味する。また、本発明の樹脂組成物を含むフィルムは、光学材料の基本特性として求められるアッベ数、屈折率等の評価においても優れている。さらに、本発明の樹脂組成物を含むフィルムは、複屈折位相差の値が小さい。これは、フィルムの中央部と端部との間で複屈折の差が小さく、より均質なフィルムであることを意味する。
本発明の樹脂組成物を含むフィルムが上記のような優れた特性を有する理由は定かではないが、本発明の樹脂組成物中に存在するフルオレン基やビナフタレン基が、フィルムの光学特性や賦形性の向上に寄与するものと考えられる。さらに、本発明の樹脂組成物中には、末端にビニル基を有する化合物が含まれるため、成型時に樹脂が柔軟性を持ち、フィルムの賦形性がより向上するものと考えられる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (19)

  1. 下記一般式(1)で表される化合物に由来する繰返し単位を含むポリエステルカーボネート樹脂(ただし、下記一般式(A)で表される末端構造を有するポリマーは除く)と、
    下記一般式(A)で表される末端構造を有するポリマーおよび/または下記一般式(B)で表される化合物と
    [式(1)、(A)および(B)において、
    及びRは、それぞれ独立に、水素原子、炭素数1〜20のアルキル基、炭素数1〜20のアルコキシル基、炭素数5〜20のシクロアルキル基、炭素数5〜20のシクロアルコキシル基、炭素数6〜20のアリール基、炭素数6〜20のアリールオキシ基、およびハロゲン原子から選択され;
    Xは、それぞれ独立に、分岐していてもよい炭素数2〜6のアルキレン基であり;
    HvおよびHfは、それぞれ水素原子であり;
    nは、それぞれ独立に、1〜5の整数であり;
    *はポリマー鎖である]
    を含む樹脂組成物であって、
    前記樹脂組成物のH−NMRスペクトルは、
    の関係を満たす、
    樹脂組成物。
  2. 前記一般式(1)で表される化合物に由来する繰返し単位を含むポリエステルカーボネート樹脂は、一般式(1)で表される化合物に由来する繰返し単位からなるポリエステルカーボネート樹脂である請求項1に記載の樹脂組成物。
  3. 前記ポリエステルカーボネート樹脂は、さらに下記一般式(2)で表される化合物に由来する繰返し単位を含む、
    [式中、
    およびRは、それぞれ独立に、水素原子、炭素数1〜20のアルキル基、炭素数1〜20のアルコキシル基、炭素数5〜20のシクロアルキル基、炭素数5〜20のシクロアルコキシル基、炭素数6〜20のアリール基、炭素数6〜20のアリールオキシ基、およびハロゲン原子から選択され;
    Yは、それぞれ独立に、分岐していてもよい炭素数2〜6のアルキレン基、炭素数6〜10のシクロアルキレン基、または炭素数6〜10のアリーレン基であり;
    Wは、単結合または
    からなる群より選択され(ここで、R、R、およびR14〜R17は、それぞれ独立に、水素原子、炭素数1〜10のアルキル基および炭素数6〜10のフェニル基から選択され;R10およびR11は、それぞれ独立に、水素原子および炭素数1〜5のアルキル基から選択され;R12およびR13は、それぞれ独立に、水素原子および炭素数1〜5のアルキル基、フェニル基から選択され;Z’は、3〜11の整数である);
    pおよびqは、それぞれ独立に、0〜5の整数である]
    請求項1に記載の樹脂組成物。
  4. pおよびqは0であり、
    Wは
    (ここで、RおよびRは、請求項3で定義したとおりである)
    である、請求項3に記載の樹脂組成物。
  5. 前記一般式(2)で表される化合物はビスフェノールAである、請求項3に記載の樹脂組成物。
  6. 前記ポリエステルカーボネート樹脂において、前記一般式(1)で表される化合物に由来する繰返し単位と、前記一般式(2)で表される化合物に由来する繰返し単位とのモル比が、20:80〜99:1である、請求項3〜5のいずれか1項に記載の樹脂組成物。
  7. 前記樹脂組成物のH−NMRスペクトルは、
    の関係を満たす、請求項1〜6のいずれか1項に記載の樹脂組成物。
  8. 下記一般式(1)で表される化合物に由来する繰返し単位および下記一般式(3)で表される繰返し単位を含むポリエステルカーボネート樹脂(ただし、下記一般式(A)で表される末端構造を有するポリマーおよび下記一般式(C)で表される末端構造を有するポリマーは除く)と、
    下記一般式(A)で表される末端構造を有するポリマー、下記一般式(B)で表される化合物、下記一般式(C)で表される末端構造を有するポリマー、および/または下記一般式(D)で表される化合物と
    [式(1)、(3)、(A)、(B)、(C)および(D)において、
    及びRは、それぞれ独立に、水素原子、炭素数1〜20のアルキル基、炭素数1〜20のアルコキシル基、炭素数5〜20のシクロアルキル基、炭素数5〜20のシクロアルコキシル基、炭素数6〜20のアリール基、炭素数6〜20のアリールオキシ基、およびハロゲン原子から選択され;
    XおよびZは、それぞれ独立に、分岐していてもよい炭素数2〜6のアルキレン基であり;
    nおよびmは、それぞれ独立に、1〜5の整数であり;
    Hv、HfおよびHoは、それぞれ水素原子であり;
    *は、それぞれ独立に、ポリマー鎖である]
    を含む樹脂組成物であって、
    前記樹脂組成物のH−NMRスペクトルは、
    の関係を満たす、
    樹脂組成物。
  9. 前記H−NMRスペクトルは、
    または
    の関係を満たす、請求項8に記載の樹脂組成物。
  10. 前記H−NMRスペクトルは、
    の関係を満たす、請求項8または9に記載の樹脂組成物。
  11. 前記一般式(1)、(A)および(B)におけるXは、いずれもエチレンである、請求項1〜10のいずれか1項に記載の樹脂組成物。
  12. 前記一般式(1)、(A)および(B)におけるnは、いずれも1である、請求項1〜11のいずれか1項に記載の樹脂組成物。
  13. 前記一般式(1)で表される化合物は、9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレンまたは9,9−ビス(4−(2−ヒドロキシエトキシ)−3−フェニルフェニル)フルオレンである、請求項1〜12のいずれか1項に記載の樹脂組成物。
  14. 前記一般式(3)、(C)および(D)におけるZは、いずれもエチレンである、請求項8〜13のいずれか1項に記載の樹脂組成物。
  15. 前記一般式(3)、(C)および(D)におけるmは、いずれも1である、請求項8〜14のいずれか1項に記載の樹脂組成物。
  16. 前記一般式(3)で表される化合物は、2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレンである請求項8〜15のいずれか1項に記載の樹脂組成物。
  17. 請求項1〜16のいずれか1項に記載の樹脂組成物を含む光学レンズ。
  18. 請求項1〜16のいずれか1項に記載の樹脂組成物を含むシートまたはフィルム。
  19. 請求項1〜16のいずれか1項に記載の樹脂組成物の製造方法であって、前記一般式(1)で表される化合物を230〜300℃の重合温度で重合させる工程を含む、樹脂組成物の製造方法。
JP2016215177A 2015-11-04 2016-11-02 樹脂組成物ならびにそれを含む光学レンズ、シートおよびフィルム Active JP7211694B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015216962 2015-11-04
JP2015216962 2015-11-04

Publications (2)

Publication Number Publication Date
JP2017088875A true JP2017088875A (ja) 2017-05-25
JP7211694B2 JP7211694B2 (ja) 2023-01-24

Family

ID=58663189

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017548808A Active JP7211705B2 (ja) 2015-11-04 2016-11-02 樹脂組成物ならびにそれを含む光学レンズ、シートおよびフィルム
JP2016215177A Active JP7211694B2 (ja) 2015-11-04 2016-11-02 樹脂組成物ならびにそれを含む光学レンズ、シートおよびフィルム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017548808A Active JP7211705B2 (ja) 2015-11-04 2016-11-02 樹脂組成物ならびにそれを含む光学レンズ、シートおよびフィルム

Country Status (6)

Country Link
US (1) US10634819B2 (ja)
JP (2) JP7211705B2 (ja)
KR (1) KR102666254B1 (ja)
CN (1) CN108350262B (ja)
TW (1) TWI718198B (ja)
WO (1) WO2017078070A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021014962A1 (ja) * 2019-07-19 2021-01-28 帝人株式会社 熱可塑性樹脂及びそれを含む光学部材
JP2022046587A (ja) * 2015-11-04 2022-03-23 三菱瓦斯化学株式会社 熱可塑性樹脂の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133873A1 (ja) * 2011-03-28 2012-10-04 帝人化成株式会社 フルオレン誘導体からなる熱可塑性樹脂
WO2014054710A1 (ja) * 2012-10-05 2014-04-10 帝人株式会社 フルオレン骨格を有する熱可塑性樹脂組成物及び光学部材
JP2014185325A (ja) * 2013-02-20 2014-10-02 Teijin Ltd ポリカーボネート共重合体
JP2014221865A (ja) * 2013-05-13 2014-11-27 帝人株式会社 ポリエステルカーボネート共重合体
JP2015086265A (ja) * 2013-10-29 2015-05-07 帝人株式会社 熱可塑性樹脂およびそれらからなる光学部材

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111047A (ja) 2006-10-30 2008-05-15 Mitsubishi Gas Chem Co Inc ポリカーボネート樹脂の製造方法
JP5914261B2 (ja) 2011-08-29 2016-05-11 大阪ガスケミカル株式会社 フルオレン骨格を有するポリエステル樹脂
EP3750939B1 (en) 2012-11-07 2023-05-24 Mitsubishi Gas Chemical Company, Inc. Polycarbonate resin, production method therefor, and optical molded body
JP2015183086A (ja) 2014-03-24 2015-10-22 三菱化学株式会社 ポリカーボネート樹脂の製造方法
JP6587832B2 (ja) * 2015-05-26 2019-10-09 アルファーデザイン株式会社 液体吐出装置、スプレーパス設定方法、プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133873A1 (ja) * 2011-03-28 2012-10-04 帝人化成株式会社 フルオレン誘導体からなる熱可塑性樹脂
WO2014054710A1 (ja) * 2012-10-05 2014-04-10 帝人株式会社 フルオレン骨格を有する熱可塑性樹脂組成物及び光学部材
JP2014185325A (ja) * 2013-02-20 2014-10-02 Teijin Ltd ポリカーボネート共重合体
JP2014221865A (ja) * 2013-05-13 2014-11-27 帝人株式会社 ポリエステルカーボネート共重合体
JP2015086265A (ja) * 2013-10-29 2015-05-07 帝人株式会社 熱可塑性樹脂およびそれらからなる光学部材

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022046587A (ja) * 2015-11-04 2022-03-23 三菱瓦斯化学株式会社 熱可塑性樹脂の製造方法
WO2021014962A1 (ja) * 2019-07-19 2021-01-28 帝人株式会社 熱可塑性樹脂及びそれを含む光学部材
JPWO2021014962A1 (ja) * 2019-07-19 2021-01-28

Also Published As

Publication number Publication date
JPWO2017078070A1 (ja) 2018-08-23
US10634819B2 (en) 2020-04-28
TWI718198B (zh) 2021-02-11
KR102666254B1 (ko) 2024-05-14
TW201731951A (zh) 2017-09-16
WO2017078070A1 (ja) 2017-05-11
JP7211705B2 (ja) 2023-01-24
CN108350262A (zh) 2018-07-31
US20180306948A1 (en) 2018-10-25
CN108350262B (zh) 2021-07-30
JP7211694B2 (ja) 2023-01-24
KR20180079364A (ko) 2018-07-10

Similar Documents

Publication Publication Date Title
JP6908092B2 (ja) 重縮合で製造された樹脂および樹脂組成物
KR102365797B1 (ko) 폴리카보네이트 수지, 그 제조 방법 및 광학 성형체
JP6512219B2 (ja) ポリカーボネート樹脂組成物、ならびにそれを用いた光学材料および光学レンズ
JP7047808B2 (ja) 熱可塑性樹脂の製造方法
JP2019131824A (ja) 熱可塑性樹脂の製造方法
JPWO2017078076A1 (ja) 熱可塑性樹脂組成物およびその成形体
WO2017078071A1 (ja) 樹脂組成物の製造方法
JP7211694B2 (ja) 樹脂組成物ならびにそれを含む光学レンズ、シートおよびフィルム

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210224

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210224

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210303

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210309

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210402

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210406

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220816

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20221004

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221202

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20221213

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20230106

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20230110

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230112

R150 Certificate of patent or registration of utility model

Ref document number: 7211694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150