WO2019188114A1 - ポリカーボネートおよび成形体 - Google Patents

ポリカーボネートおよび成形体 Download PDF

Info

Publication number
WO2019188114A1
WO2019188114A1 PCT/JP2019/009298 JP2019009298W WO2019188114A1 WO 2019188114 A1 WO2019188114 A1 WO 2019188114A1 JP 2019009298 W JP2019009298 W JP 2019009298W WO 2019188114 A1 WO2019188114 A1 WO 2019188114A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
formula
polycarbonate
atom
Prior art date
Application number
PCT/JP2019/009298
Other languages
English (en)
French (fr)
Inventor
宗憲 白武
健太朗 石原
晃司 廣瀬
慎也 池田
加藤 宣之
近藤 光輝
章子 鈴木
健輔 大島
修也 永山
正大 神田
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2020509791A priority Critical patent/JP7207402B2/ja
Priority to EP19775953.3A priority patent/EP3778698B1/en
Priority to US17/040,369 priority patent/US11306180B2/en
Priority to CN201980022082.0A priority patent/CN111902455B/zh
Priority to KR1020207024855A priority patent/KR102652058B1/ko
Publication of WO2019188114A1 publication Critical patent/WO2019188114A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/16Aliphatic-aromatic or araliphatic polycarbonates
    • C08G64/1608Aliphatic-aromatic or araliphatic polycarbonates saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • C08G64/0208Aliphatic polycarbonates saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/305General preparatory processes using carbonates and alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Definitions

  • the present invention relates to a polycarbonate and a molded body.
  • the present invention relates to a molded body suitable for an optical lens.
  • Optical glass or optical resin is used as a material for optical lenses used in optical systems of various cameras such as cameras, film-integrated cameras, and video cameras.
  • Optical glass is excellent in heat resistance, transparency, dimensional stability, chemical resistance, and the like, but has problems of high material cost, poor moldability, and low productivity.
  • an optical lens made of an optical resin has an advantage that it can be mass-produced by injection molding.
  • polycarbonate resin or the like is used in camera lenses.
  • Patent Documents 1 and 2 the development of resins for optical lenses having a high refractive index and a low Abbe number has been extensively carried out due to the lighter, thinner and smaller products.
  • Patent Literature 3 Patent Literature 4
  • Patent Documents 5 to 9 Patent Documents 5 to 9
  • a lens element having the same refractive index can be realized on a surface with a smaller curvature, so that the amount of aberration generated on this surface can be reduced.
  • aberration correction is performed by combining a plurality of concave lenses and convex lenses.
  • the chromatic aberration produced by the convex lens is combined with a concave lens having a chromatic aberration having the opposite sign to that of the convex lens, so that the chromatic aberration is synthetically canceled.
  • the concave lens is required to have high dispersion (that is, low Abbe number).
  • the present invention aims to solve such problems, and has a polycarbonate having an appropriate refractive index and Abbe number and excellent in heat resistance, total light transmittance and hue, and its It aims at providing a molded object.
  • the present inventor can solve the above-mentioned problems by using a novel compound, dispiroglycol (DSG), and a polycarbonate copolymerized with a dihydroxy compound having a hydrocarbon group containing a cyclic structure.
  • DSG dispiroglycol
  • a polycarbonate copolymerized with a dihydroxy compound having a hydrocarbon group containing a cyclic structure I found out.
  • the above problem has been solved by the following means ⁇ 1>, preferably ⁇ 2> to ⁇ 14>.
  • R 1 and R 2 each independently represents a hydrocarbon group
  • R 3 each independently represents a hydrogen atom, a group containing a hetero atom, a group containing a halogen atom
  • 6 represents a linear alkyl group having 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms, or a group having 6 to 12 carbon atoms including an aryl group.
  • ⁇ 3> The polycarbonate according to ⁇ 1> or ⁇ 2>, wherein the structural unit represented by the formula [I] accounts for 5 mol% to 95 mol% of all the structural units constituting the polycarbonate.
  • ⁇ 4> The polycarbonate according to any one of ⁇ 1> to ⁇ 3>, wherein the structural unit having a hydrocarbon group containing a cyclic structure includes a structural unit represented by the formula [II];
  • a and b each independently represent an integer of 0 to 10
  • X represents an alkylene group having 1 to 8 carbon atoms, a cycloalkylene group having 5 to 12 carbon atoms, or 6 to 20 carbon atoms.
  • R represents an hydrocarbon group containing a cyclic structure.
  • a and b in the formula [II] are integers of 1 to 10.
  • R in the formula [II] has a structure containing four or more benzene rings.
  • the structural unit represented by the formula [II] is at least one of the structural units represented by the formula [II-1], the formula [II-2] and the formula [II-3].
  • R 1 to R 10 each independently represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group having 1 to 6 carbon atoms, or an aryl having 6 to 20 carbon atoms.
  • R 1 to R 20 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group having 1 to 6 carbon atoms, or an aryl having 6 to 12 carbon atoms.
  • R 1 to R 16 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
  • R 1 and R 2 in the formula [I] each independently represent a linear alkyl group having 1 to 7 carbon atoms, a branched alkyl group having 3 to 7 carbon atoms, or an aryl group.
  • R 1 and R 2 in the formula [I] are each independently a linear alkyl group having 1 to 7 carbon atoms or an aryl group Polycarbonate described in 1.
  • a polycarbonate having a suitable refractive index and Abbe number, and excellent in heat resistance, total light transmittance, and hue, and a molded article thereof.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the polycarbonate of the present invention comprises a structural unit represented by the following formula [I] and a structural unit having a hydrocarbon group containing a cyclic structure.
  • R 1 and R 2 each independently represents a hydrocarbon group
  • R 3 each independently represents a hydrogen atom, a group containing a hetero atom, a group containing a halogen atom
  • 6 represents a linear alkyl group having 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms, or a group having 6 to 12 carbon atoms including an aryl group.
  • a polycarbonate having a high refractive index can be obtained while maintaining an Abbe number equivalent to that of a polycarbonate derived from a spiroglycol monomer having a structure similar to that of DSG.
  • a polycarbonate is excellent in heat resistance, has a high total light transmittance, and has a good hue (b value).
  • the polycarbonate of the present invention contains a structural unit represented by the formula [I].
  • R 1 and R 2 each independently represents a hydrocarbon group
  • R 3 each independently represents a hydrogen atom, a group containing a hetero atom, a group containing a halogen atom
  • 6 represents a linear alkyl group having 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms, or a group having 6 to 12 carbon atoms including an aryl group.
  • R 1 and R 2 in the formula [I] are each independently a hydrocarbon group, preferably a linear alkyl group having 1 to 7 carbon atoms, a branched alkyl group having 3 to 7 carbon atoms, or aryl Represents a group, more preferably a linear alkyl group having 1 to 7 carbon atoms or an aryl group, and a linear alkyl group having 1 to 7 carbon atoms is more preferable.
  • An example of a preferred embodiment of R 1 and R 2 in the present invention is an ethyl group, a methyl group or a phenyl group.
  • the straight-chain alkyl group having 1 to 7 carbon atoms is preferably a straight-chain alkyl group having 1 to 5 carbon atoms, more preferably a straight-chain alkyl group having 1 to 3 carbon atoms, and a methyl group Or it is more preferable that it is an ethyl group.
  • the branched alkyl group having 3 to 7 carbon atoms is preferably a branched alkyl group having 3 to 5 carbon atoms, more preferably a branched alkyl group having 3 or 4 carbon atoms, and a branched alkyl group having 3 carbon atoms. More preferably, it is an alkyl group.
  • the aryl group is preferably an aryl group having 6 to 20 carbon atoms, more preferably an aryl group having 6 to 14 carbon atoms, still more preferably a phenyl group, a naphthyl group or an anthracenyl group, and even more preferably a phenyl group.
  • R 1 and R 2 in the formula [I] are each independently, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, 1-methylpropyl group, 2-methylpropyl group, 1,1-dimethylethyl group (tert-butyl group), n-pentyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1-ethylpropyl group, 1,1-dimethylpropyl group, 1, 2-dimethylpropyl group, 2,2-dimethylpropyl group (neopentyl group), n-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 1,1 -Dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl
  • R 1 and R 2 are more preferably each independently a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, or a phenyl group.
  • the group is further preferred, more preferably a methyl group or an ethyl group, and even more preferably an ethyl group.
  • R 3 in formula [I] each independently represents a hydrogen atom, a group containing a hetero atom, a group containing a halogen atom (preferably a halogen atom), a linear alkyl group having 1 to 6 carbon atoms, or 3 to 3 carbon atoms.
  • 6 represents a branched alkyl group having 6 to 12 carbon atoms including an aryl group, a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms, or
  • the aryl group is preferably a group having 6 to 12 carbon atoms, more preferably a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, or a branched alkyl group having 3 to 6 carbon atoms.
  • it is a hydrogen atom or a methyl group, more preferably a hydrogen atom.
  • hetero atom contained in the group containing a hetero atom examples include an oxygen atom, a sulfur atom, and a nitrogen atom.
  • Preferred examples of the group containing a hetero atom include an alkoxy group, an alkylthioether group, an amino group, and a nitro group.
  • the alkyl chain constituting the alkoxy group or alkylthioether group is preferably a linear alkyl chain having 1 to 6 carbon atoms, and more preferably a linear alkyl chain having 1 to 3 carbon atoms.
  • the straight-chain alkyl group having 1 to 6 carbon atoms is preferably a straight-chain alkyl group having 1 to 5 carbon atoms, more preferably a straight-chain alkyl group having 1 to 3 carbon atoms, and a methyl group Or it is more preferable that it is an ethyl group.
  • the branched alkyl group having 3 to 6 carbon atoms is preferably a branched alkyl group having 3 to 5 carbon atoms, more preferably a branched alkyl group having 3 or 4 carbon atoms, and a branched alkyl group having 3 carbon atoms. More preferably, it is an alkyl group.
  • the group having 6 to 12 carbon atoms including an aryl group is preferably a phenyl group or an alkyl group substituted with a phenyl group, and more preferably a phenyl group.
  • the carbon number of the alkyl group constituting the alkyl group substituted with a phenyl group is preferably 1 to 3, more preferably 1 or 2, and even more preferably 1.
  • R 3 in the above formula [I] is, for example, a hydrogen atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, 1-methylpropyl group, 2-methylpropyl group, 1,1 -Dimethylethyl group (tert-butyl group), n-pentyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1-ethylpropyl group, 1,1-dimethylpropyl group, 1,2-dimethyl Propyl group, 2,2-dimethylpropyl group (neopentyl group), n-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 1,1-dimethylbutyl Group, 1,2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,2-dimethylbutyl group, 2,3-
  • R 3 is more preferably a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, or an n-butyl group. From the viewpoint of easy industrial availability, it is particularly preferable that R 3 is a hydrogen atom.
  • R 1 and R 2 in the formula [I] are each independently an ethyl group, a methyl group or a phenyl group, and R 3 is a hydrogen atom is exemplified.
  • R 1 and R 2 in the formula [I] are each independently an ethyl group or a methyl group, and R 3 is a hydrogen atom.
  • a certain structural unit is illustrated.
  • the structural unit represented by the formula [I] is derived from a compound represented by the following formula [II] (hereinafter sometimes referred to as “DSG”).
  • DSG a compound represented by the following formula [II]
  • R 1, R 2 and R 3 has the same meaning as R 1, R 2 and R 3 in the formula [I], the preferable range is also the same.
  • the molecular weight of the diol represented by the formula [II] is preferably 300 to 550, more preferably 300 to 500.
  • the diol represented by the formula [II] is obtained by subjecting a 1,4-cyclohexanedione derivative represented by the following formula (2) and a triol represented by the following formula (3) to a dehydration cyclization reaction. It is done.
  • a 1,4-cyclohexanedione derivative represented by the formula (2) and the triol represented by the formula (3) may be used alone or in combination of two or more.
  • each R 4 independently represents a hydrogen atom, a group containing a hetero atom, a halogen atom, a linear alkyl group having 1 to 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms, or A group having 6 to 12 carbon atoms including an aryl group is represented.
  • R 4 in formula (2) has the same meaning as R 3 in formula [II], and the preferred range is also the same.
  • R 5 represents a hydrocarbon group.
  • the hydrocarbon group as R 5 represents a linear alkyl group having 1 to 7 carbon atoms, a branched alkyl group having 3 to 7 carbon atoms, or an aryl group.
  • R 5 represents a linear alkyl group having 1 to 7 carbon atoms or a branched alkyl group having 3 to 7 carbon atoms.
  • the hydrocarbon group as R 5 does not contain an ether bond.
  • R 5 in formula (3) has the same meaning as R 1 and R 2 in formula [II], and the preferred range is also the same.
  • the 1,4-cyclohexanedione derivative represented by the formula (2) is 1,4-cyclohexanedione
  • the triol represented by the formula (3) is trimethylolpropane, trimethylolethane, and tris.
  • the case where it is at least one (preferably at least one of trimethylolpropane and trimethylolethane) is particularly preferred.
  • the proportion of the structural unit represented by the formula [I] in the polycarbonate of the present invention preferably occupies 5 mol% or more of all the structural units constituting the polycarbonate, 10 mol% or more, 20 mol% or more, 30 mol% or more, or It may be 40 mol% or more.
  • the upper limit of the proportion of the structural unit represented by the formula [I] is preferably 95 mol% or less, more preferably 70 mol% or less, and more preferably 60 mol% or less of all the structural units constituting the polycarbonate. More preferably.
  • the polycarbonate of the present invention may contain only one type of structural unit represented by the formula [I], or may contain two or more types. When 2 or more types are included, the total amount is preferably within the above range.
  • the polycarbonate of this invention contains the structural unit which has a hydrocarbon group containing a cyclic structure.
  • the hydrocarbon group including a cyclic structure refers to a group including a cyclic structure and having a skeleton formed from a hydrocarbon. More specifically, the hydrocarbon group having a cyclic structure is a hydrocarbon group having a cyclic structure which may have a substituent, and a hydrocarbon group having a cyclic structure which may have a substituent. Examples thereof include a group consisting of a combination of hydrocarbon groups having an acyclic structure which may have a substituent.
  • the cyclic structure in the present invention is a cyclic structure including an aromatic ring and / or an alicyclic ring, and a monocyclic ring, a condensed ring in which two or more monocyclic rings are condensed, a monocyclic ring and / or two or more condensed rings are covalently bonded.
  • bonded through the coupling group (hydrocarbon group) is illustrated.
  • the structural unit having a hydrocarbon group containing a cyclic structure preferably includes a structural unit represented by the formula [II].
  • a and b each independently represent an integer of 0 to 10
  • X represents an alkylene group having 1 to 8 carbon atoms, a cycloalkylene group having 5 to 12 carbon atoms, or 6 to 20 carbon atoms.
  • R represents an hydrocarbon group containing a cyclic structure.
  • a and b in the formula [II] are each independently preferably an integer of 1 to 10, more preferably an integer of 1 to 3, and still more preferably 1.
  • X in the formula [II] represents an alkylene group having 1 to 8 carbon atoms, a cycloalkylene group having 5 to 12 carbon atoms, or an arylene group having 6 to 20 carbon atoms, preferably an alkylene group having 1 to 8 carbon atoms. More preferably an alkylene group having 1 to 4 carbon atoms, and still more preferably an ethylene group.
  • the alkylene group is a linear or branched alkylene group, and a linear alkylene group is preferable. When a and b are 2 or more, each X may be the same or different.
  • R in the formula [II] represents a hydrocarbon group containing a cyclic structure.
  • R is preferably a group consisting of a linear alkylene group, a cyclic structure, a linear alkylene group, or a cyclic structure.
  • the linear alkylene group is an alkylene group having 1 to 3 carbon atoms, preferably a methylene group or an ethylene group, more preferably an ethylene group. preferable.
  • R may be an alicyclic ring or an aromatic ring. Specific examples include a cyclic structure Cy shown below or a structure in which a substituent is bonded to the cyclic structure Cy. Specifically as a cyclic structure in this invention, the following cyclic structures Cy are illustrated.
  • A is a single bond or an alkyl group.
  • bonded with the said cyclic structure is also mentioned as a preferable example of the cyclic structure in this invention.
  • the hydrocarbon group having a cyclic structure in the present invention may have a substituent.
  • the substituent include a hydrocarbon group (an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an aralkyl group having 7 to 17 carbon atoms), a halogen atom (for example, , Fluorine atom, chlorine atom, bromine atom, iodine atom) and a group containing a hetero atom (for example, oxygen atom, nitrogen atom, sulfur atom, preferably oxygen atom).
  • the group containing a hetero atom include a group composed of a combination of a hetero atom and a hydrocarbon group, and an alkoxy group is preferable.
  • the structural unit having a hydrocarbon group containing a cyclic structure preferably contains at least one of the structural units represented by the formula [II-1], the formula [II-2] and the formula [II-3].
  • R 1 to R 10 each independently represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group having 1 to 6 carbon atoms, or an aryl having 6 to 20 carbon atoms.
  • R 1 to R 20 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group having 1 to 6 carbon atoms, or an aryl having 6 to 12 carbon atoms.
  • R 1 to R 16 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
  • Z represents an alkylene group having 1 to 8 carbon atoms, a cycloalkylene group having 5 to 12 carbon atoms, or an arylene group having 6 to 20 carbon atoms
  • e and f are each independently an integer of 0 to 10.
  • R 1 to R 10 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
  • a hydrogen atom, a fluorine atom, a chlorine atom, a methyl group or an ethyl group is more preferable, a hydrogen atom or a methyl group is more preferable, and a hydrogen atom is more preferable.
  • X represents an alkylene group having 1 to 8 carbon atoms, a cycloalkylene group having 5 to 12 carbon atoms, or an arylene group having 6 to 20 carbon atoms, and an alkylene group having 1 to 8 carbon atoms is An alkylene group having 1 to 4 carbon atoms is more preferable, and an ethylene group is more preferable.
  • a and b are each independently preferably an integer of 1 to 10, more preferably an integer of 1 to 3, and still more preferably 1.
  • R 1 to R 20 in formula [II-2] and R 1 to R 16 in formula [II-3] are the same as the preferred ranges of R 1 to R 10 in formula [II-1]. is there.
  • the preferred range of Y in formula [II-2] and Z in formula [II-3] is the same as the preferred range of X in formula [II-1].
  • the preferred ranges of c and d in the formula [II-2] and e and f in the formula [II-3] are the same as the preferred ranges of a and b in the formula [II-1].
  • the structural unit having a hydrocarbon group containing a cyclic structure in the polycarbonate of the present invention preferably occupies 5 mol% or more of the total structural units constituting the polycarbonate, more preferably 30 mol% or more, and 40 mol% or more. More preferably.
  • the upper limit of the proportion of the structural unit having a hydrocarbon group containing a cyclic structure is preferably 95 mol% or less of all the structural units constituting the polycarbonate, 90 mol% or less, 80 mol% or less, 70 mol% or less, Or 60 mol% or less may be sufficient.
  • the structural unit having a hydrocarbon group containing a cyclic structure is preferably at least 80 mol%, more preferably at least 90 mol%, the structural unit represented by the formula [II] (preferably the formula [II-1], the formula [II-2] and at least one of the structural units represented by the formula [II-3] are preferable.
  • the polycarbonate of this invention may contain only 1 type of the structural unit which has a hydrocarbon group containing a cyclic structure, and may contain 2 or more types. When 2 or more types are included, the total amount is preferably within the above range.
  • the total of the structural unit represented by the formula [I] and the structural unit having a hydrocarbon group containing a cyclic structure is preferably 90 mol% or more, and more preferably 95 mol% or more. 97 mol% or more is more preferable, and 99 mol% or more is more preferable.
  • the polycarbonate of this invention may contain other structural units other than the structural unit which has the structural unit represented by Formula [I], and the hydrocarbon group containing a cyclic structure.
  • Examples of the other structural unit include a structural unit derived from an aliphatic dihydroxy compound, a structural unit derived from a compound having three or more hydroxy groups, and a structural unit derived from a dicarboxylic acid or a derivative thereof.
  • the polycarbonate of the present invention contains other structural units, it is preferably contained in the range of 10 to 49 mol%, more preferably in the range of 10 to 30 mol% of all the structural units constituting the polycarbonate.
  • One type of other structural unit may be sufficient and 2 or more types may be sufficient. When 2 or more types are included, the total amount is preferably within the above range.
  • the aspect which has the structural unit derived from an aliphatic dihydroxy compound is illustrated.
  • the aliphatic dihydroxy compound include 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,2-decahydronaphthalenediethanol, 1,3-decahydronaphthalenediethanol, 1,4- Decahydronaphthalene diethanol, 1,5-decahydronaphthalene diethanol, 1,6-decahydronaphthalene diethanol, 2,7-decahydronaphthalene diethanol, tetralin dimethanol, norbornene dimethanol, tricyclodecane dimethanol, Examples include pentacyclododecanedimethanol, trimethylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, diethylene glycol, propylene glycol, neopentyl glycol and the like.
  • the polycarbonate of the present invention contains a structural unit derived from an aliphatic dihydroxy compound, it is preferably contained in the range of 10 to 49 mol% of the total structural units constituting the polycarbonate, and more preferably in the range of 10 to 30 mol%. preferable.
  • the structural unit derived from the aliphatic dihydroxy compound may be only one type or two or more types. When 2 or more types are included, the total amount is preferably within the above range.
  • the polycarbonate of the present invention may be a low molecule (polycarbonate oligomer) or a polymer (polycarbonate copolymer, polycarbonate resin). In the present invention, a polymer is preferable.
  • the polycarbonate of the present invention has a viscosity average molecular weight (Mv) of preferably 5,000 or more, more preferably 8,000 or more, further preferably 10,000 or more, and 11,000 or more. It is more preferable that The upper limit of the viscosity average molecular weight is, for example, 100,000 or less, preferably 50,000 or less, more preferably 30,000 or less, still more preferably 20,000 or less, and still more preferably. It is 15,000 or less, More preferably, it is 13,000 or less, Furthermore, 12,000 or less may be sufficient. By setting it to the lower limit value or more, the strength of the resulting molded product tends to be higher.
  • Mv viscosity average molecular weight
  • the polycarbonate of the present invention preferably has a number average molecular weight (Mn) of 2,000 or more, more preferably 3,000 or more, further preferably 5,000 or more, and 6,000. It is still more preferable that it is above.
  • Mn number average molecular weight
  • the upper limit of the number average molecular weight is, for example, 100,000 or less, preferably 50,000 or less, more preferably 30,000 or less, still more preferably 10,000 or less, and still more preferably.
  • the glass transition temperature (Tg) of the polycarbonate of the present invention is preferably 70 ° C or higher, more preferably 100 ° C or higher, further preferably 110 ° C or higher, and further preferably 120 ° C or higher. Furthermore, 125 degreeC or more, 130 degreeC or more, or 135 degreeC or more may be sufficient.
  • the upper limit of the glass transition temperature is preferably 190 ° C. or lower, more preferably 180 ° C. or lower, further preferably 170 ° C. or lower, 165 ° C. or lower, 150 ° C. or lower, or 146 It may be below °C.
  • the refractive index measured by the method of JIS-K-7142 is preferably 1.485 or more, and more preferably 1.500 or more. More preferably, it is 1.530 or more, more preferably 1.550 or more, and further preferably 1.570 or more.
  • the upper limit value of the refractive index is preferably 1.700 or less, and may be 1.650 or less. The refractive index is measured according to the method described in Examples described later.
  • the Abbe number measured by the method of JIS K 7142 is preferably 23 or more, more preferably 24 or more, and 25 or more. More preferably it is.
  • the upper limit of the Abbe number is preferably 52 or less, more preferably 35 or less, still more preferably 33 or less, still more preferably 31 or less, and may be 30 or less. .
  • the Abbe number is measured according to the method described in Examples described later.
  • the polycarbonate of the present invention preferably has a total light transmittance of more than 85% measured by the method of JIS-K-7361-1 when molded into a plate piece having a thickness of 3 mm, and more than 86%. Is more preferable and may be 87% or more.
  • the upper limit of the total light transmittance is ideally 100%, but it satisfies the required performance even when it is 99% or less, more preferably 95% or less, and particularly 90% or less.
  • the total light transmittance is measured according to the method described in Examples described later.
  • the b value according to JIS K7105 is preferably less than 3.0, more preferably 2.9 or less. It is more preferably 8 or less, and further preferably 2.7 or less.
  • the lower limit of the b value is ideally 0, but it satisfies the required performance even if it is 1.0 or more, further 2.0 or more, 2.1 or more, 2.2 or more, for example. Is.
  • the phenol content in the polycarbonate is preferably 0.1 to 3000 ppm (mass ratio), more preferably 0.1 to 2000 ppm, still more preferably 1 to 1000 ppm, and more preferably 1 to 800 ppm. Is more preferably 1 to 500 ppm, still more preferably 1 to 300 ppm.
  • the content of carbonic acid diester in the polycarbonate is preferably 0.1 to 1000 ppm (mass ratio), more preferably 0.1 to 500 ppm, still more preferably 1 to 200 ppm, and more preferably 1 to 100 ppm.
  • a resin having physical properties according to the purpose can be obtained.
  • the content of phenol and carbonic acid diester can be adjusted as appropriate by changing polycondensation conditions and equipment. It can also be adjusted by the conditions of the extrusion process after polycondensation.
  • the polycarbonate of the present invention is selected from the group consisting of the above viscosity average molecular weight, number average molecular weight, glass transition temperature, refractive index, Abbe number, total light transmittance, b value, phenol content in the polycarbonate, and carbonic acid diester content in the polycarbonate. It is preferable to satisfy at least two of the physical properties to be achieved, more preferably at least three, and even more preferably all.
  • the polycarbonate of the present invention preferably satisfies the refractive index, Abbe number, and total light transmittance, and more preferably satisfies the refractive index, Abbe number, total light transmittance, and glass transition temperature. In addition to the above, it is also preferable to satisfy the number average molecular weight.
  • the preferable form of the polycarbonate of this invention is described.
  • a structural unit represented by the formula [I]] comprising 90 to 10 mol% (preferably 60 to 40 mol%) of at least one of the structural units represented by the formula [II-2] and the formula [II-3].
  • the total of the structural units having a hydrocarbon group containing a cyclic structure is 90 mol% or more of the total structural units constituting the polycarbonate.
  • R 3 in the formula [I] is a hydrogen atom
  • R 1 and R 2 are ethyl groups
  • R 1 to R 10 are hydrogen atoms
  • a and b is each independently an integer of 1 to 10
  • R 1 to R 20 are hydrogen atoms
  • c and d are each independently an integer of 1 to 10
  • -3 wherein R 1 to R 16 are hydrogen atoms, and e and f are each independently an integer of 1 to 10.
  • ⁇ 3> A mode satisfying both ⁇ 1> and ⁇ 2> above.
  • ⁇ 4> An embodiment in which the number average molecular weight is 6000 or more in any one of the above items ⁇ 1> to ⁇ 3>.
  • the refractive index measured by the method of JIS-K-7142 when formed into a film having a thickness of 0.1 mm is 1.570 or more.
  • the polycarbonate of the present invention can be produced by a melt polycondensation method using a dihydroxy compound represented by the formula [II], a dihydroxy compound having a hydrocarbon group containing a cyclic structure, and a carbonic acid diester as raw materials. Further, as described above, other dihydroxy compounds may be used in combination.
  • the polycondensation catalyst can be produced in the presence of a basic compound catalyst, a transesterification catalyst, or a mixed catalyst composed of both.
  • Examples of the carbonic acid diester include diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate, and dicyclohexyl carbonate.
  • diphenyl carbonate is particularly preferable from the viewpoints of reactivity and purity.
  • the carbonic acid diester is preferably used in a ratio of 0.97 to 1.30 mol with respect to 1 mol of the dihydroxy compound, more preferably more than 0.98 mol and not more than 1.30 mol, and still more preferably 1.00 to 1 .30 mol ratio.
  • Examples of the basic compound catalyst include alkali metal compounds, alkaline earth metal compounds, and nitrogen-containing compounds. Details of these can be referred to the description of 0047 to 0049 of WO2017 / 175893, the contents of which are incorporated herein.
  • transesterification catalyst zinc, tin, zirconium and lead salts are preferably used, and these can be used alone or in combination. Moreover, you may use in combination with the alkali metal compound and alkaline-earth metal compound which were mentioned above. As the transesterification catalyst, the details of these can be referred to the description of 0051 of WO2017 / 175893, the contents of which are incorporated herein.
  • These catalysts are preferably used in a ratio of 1 ⁇ 10 ⁇ 9 to 1 ⁇ 10 ⁇ 3 mol, more preferably 1 ⁇ 10 ⁇ 7 to 1 ⁇ 10 ⁇ 4 mol with respect to 1 mol in total of the dihydroxy compound. It is used in the ratio.
  • the melt polycondensation method is a method in which melt polycondensation is carried out using the above-mentioned raw materials and catalyst while removing by-products by a transesterification reaction under normal pressure or reduced pressure.
  • the reaction is generally carried out in a multistage process of two or more stages. Specifically, the description of 0054 to 0056 of WO2017 / 175893 can be referred to, and the contents thereof are incorporated in the present specification.
  • the polycarbonate of the present invention is desired to have as little foreign matter content as possible, and filtration of the molten raw material and filtration of the catalyst solution are suitably performed.
  • the filter mesh is preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less.
  • generate is implemented suitably.
  • the mesh of the polymer filter is preferably 100 ⁇ m or less, more preferably 30 ⁇ m or less.
  • the step of collecting the resin pellets must naturally be a low dust environment, and is preferably class 1000 or less, more preferably class 100 or less.
  • the polycarbonate of the present invention may be used alone or as a polycarbonate composition containing other components.
  • Other components to be blended into the polycarbonate composition include thermoplastic resins other than polycarbonate, antioxidants, mold release agents, processing stabilizers, ultraviolet absorbers, fluidity modifiers, crystal nucleating agents, reinforcing agents, dyes, Examples include antistatic agents and antibacterial agents.
  • thermoplastic resin other than polycarbonate include polycarbonate resins and polyester resins other than the polycarbonate of the present invention.
  • the antioxidant As specific examples of the antioxidant, the mold release agent, the processing stabilizer, and the ultraviolet absorber, the description in paragraphs 0078 to 0041 of WO2017 / 175893 and paragraphs 0078 to 0089 of WO2018 / 016516 can be referred to. Is incorporated herein by reference.
  • the molded article of the present invention is molded from the polycarbonate of the present invention or a polycarbonate composition containing the polycarbonate.
  • the molded body can be obtained by molding the polycarbonate or polycarbonate composition of the present invention by a known molding method such as extrusion molding or injection molding.
  • the polycarbonate of the present invention is particularly suitable for injection molding.
  • the molded product of the present invention can be widely used in applications used for thermoplastic resins, particularly polycarbonate resins. It is particularly suitable for optical applications.
  • examples of the optical application include an optical lens and an optical film. Details of optical applications can be referred to the descriptions in 0067 to 0070 of WO2017 / 175893 and paragraphs 0090 to 0095 of WO2018 / 016516, the contents of which are incorporated herein.
  • DSG-a The structure of DSG-a was identified from various spectra of 1 HNMR, 13 CNMR, DEPT, H-HCOSY, and HMQC. 13 C-NMR ⁇ 25.7 and 30.4 were assigned as two non-equivalent two methylene groups in the cyclohexane ring were observed from DEPT135 and HMQC spectra.
  • the molecular weight of DSG-a was measured using LC-MS analysis (electrospray method [ESI positive mode], high resolution mass spectrometry [millimass]).
  • electrospray method electrospray method
  • molecules are ionized and mass analyzed without almost fragmenting them, so molecular weight information can be obtained, and at the same time, high-resolution mass analysis can be verified as a composition formula. it can. Since the mass number (molecular weight M + 1) of [M + H] + protonated while maintaining the molecular structure was 345.222620 (C 18 H 33 O 6 ), the composition formula of DSG-a is C 18 H 32 O 6 was required.
  • the reaction yield of DSG-a and the purity of the product were determined by gas chromatography (device name: Agilent 6850, manufactured by Agilent) or high-performance liquid chromatography (device name: Chromaster, manufactured by Hitachi High-Tech Science). Quantified with. NMR was used to determine the structure of DSG-a (manufactured by JEOL Ltd., model: JNM-ECA500). The heavy solvent used and the measurement frequency were described in the assignment of each compound. The high resolution mass (millimeter, MS) analysis of DSG-a was performed by LC-MS direct injection method or DART (Direct Analysis in Real Time) method.
  • High-performance liquid chromatography (HPLC) apparatus U3000 (manufactured by Thermo Fisher Scientific)
  • DART device DART-Os (manufactured by AMR)
  • MS equipment LTQ Orbitrap Discovery (manufactured by Thermo Fisher Scientific) Measurement conditions when using HPLC Column: None Mobile phase: 0.1% by mass formic acid aqueous solution: A mixture of acetonitrile (volume ratio 50:50) Flow rate: 0.2 mL / min Sample concentration: 100 ppm by mass Injection volume: 10 ⁇ L
  • MS measurement conditions LC-MS direct injection
  • Ionization method Positive ESI
  • Capillary temperature 300 ° C
  • Capillary voltage 22V
  • Tube lens voltage 100V
  • Measurement conditions when using DART Ion source temperature 400 ° C
  • DART Ionization method: DART Capillary temperature: 200 ° C
  • Capillary voltage 35V Tube lens voltage: 100V
  • ⁇ Measurement method of polycarbonate> 1) Measurement of viscosity average molecular weight (Mv): A dichloromethane solution of 0.5 g / deciliter of polycarbonate was measured at a temperature of 20 ° C. with an Ubbelohde capillary viscometer, and an intrinsic viscosity [ ⁇ ] dL / g was determined with a Haggins constant of 0.45. It was calculated by applying to the Schnell equation. Mv ⁇ [ ⁇ ] / (1.23 ⁇ 10 ⁇ 4 ) ⁇ 1 / 0.83
  • Number average molecular weight (Mn) The number average molecular weight (Mn) of the polycarbonate was obtained by measuring nuclear magnetic resonance of protons in a deuterated chloroform solvent using a nuclear magnetic resonance apparatus. Mn was determined using the integral value of the methylene proton signal adjacent to the molecular end and the methylene proton signal adjacent to the carbonate bond. As the nuclear magnetic resonance apparatus, JNM-ECA500 manufactured by JEOL Ltd. was used.
  • Tg Glass transition temperature
  • Refractive index (nD) Polycarbonate was dissolved in methylene chloride to prepare a resin solution having a solid content concentration of 5.3% by mass. A cast film having a thickness of 0.1 mm was produced from this resin solution. The obtained 0.1 mm thick film was measured by the method of JIS-K-7142 using an Abbe refractometer.
  • Abbe number ( ⁇ ) Polycarbonate was dissolved in methylene chloride to prepare a resin solution having a solid content concentration of 5.3% by mass. A cast film having a thickness of 0.1 mm was produced from this resin solution. About the obtained 0.1-mm-thick film, the Abbe refractometer was used, the refractive index of wavelength 486nm, 589nm, and 656nm under 23 degreeC was measured, respectively, and also Abbe number was computed using the following formula. The refractive index here was measured by the method of JIS-K-7142.
  • (nD-1) / (nF-nC) nD: Refractive index at a wavelength of 589 nm nC: Refractive index at a wavelength of 656 nm nF: Refractive index at a wavelength of 486 nm
  • Total light transmittance Polycarbonate is vacuum-dried at 120 ° C for 4 hours and then injection-molded with an injection molding machine (FANUC ROBOSHOT ⁇ -S30iA) at a cylinder temperature of 270 ° C and a mold temperature of Tg-10 ° C. Test plate pieces were obtained. The obtained disc-shaped test plate piece having a thickness of 3 mm was measured by the method of JIS-K-7361-1 using a spectrocolorimeter. Used a SE2000 type spectral colorimeter manufactured by Nippon Denshoku Industries Co., Ltd.
  • b value Polycarbonate is vacuum-dried at 120 ° C for 4 hours and then injection-molded with an injection molding machine (FANUC ROBOSHOT ⁇ -S30iA) at a cylinder temperature of 270 ° C and a mold temperature of Tg-10 ° C. Test plate pieces were obtained. Using this plate piece, the b value was measured according to JIS K7105. The smaller the b value, the weaker the yellowness, and the better the hue. For measurement of the molded plate, a SE2000 type spectral colorimeter manufactured by Nippon Denshoku Industries Co., Ltd. was used.
  • LC-MS measurement conditions Measuring device (LC part): Agilent Infinity 1260 LC System Column: ZORBAX Eclipse XDB-18, and guard cartridge Mobile phase: A: 0.01 mol / L-ammonium acetate aqueous solution B: 0.01 mol / L-ammonium acetate in methanol solution C: THF Mobile phase gradient program: As shown in Table 1, the mixture of A to C was used as the mobile phase, and the mobile phase was allowed to flow through the column for 30 minutes while switching the composition of the mobile phase when the time indicated in the time (minutes) column passed. .
  • Example 1 As raw materials, DSG-a 3.4445 g (10.00 mmol), dihydroxy compound represented by the following formula (b) (hereinafter sometimes abbreviated as “BPEF”) 39.4668 g (90.00 mmol), diphenyl carbonate 21 0.9576 g (102.50 mmol), and 32 ⁇ L of 2.5 ⁇ 10 ⁇ 2 mol / L aqueous sodium hydrogen carbonate solution (8.0 ⁇ 10 ⁇ 7 mol, that is, 8.0 ⁇ with respect to a total of 1 mol of dihydroxy compounds) 10 ⁇ 6 mol) was placed in a 300 mL four-necked flask equipped with a stirrer and a distillation apparatus, and heated to 180 ° C.
  • BPEF dihydroxy compound represented by the following formula (b) (hereinafter sometimes abbreviated as “BPEF”) 39.4668 g (90.00 mmol), diphenyl carbonate 21 0.9576 g (102.50 mmol), and 32 ⁇ L of 2.5
  • Example 2 The reaction was conducted in the same manner as in Example 1 except that DSG-a was changed to 10.3335 g (30.00 mmol) and BPEF was changed to 30.6964 g (70.00 mmol).
  • the physical properties of the obtained resin are summarized in Table 3 below.
  • Example 3 The reaction was performed in the same manner as in Example 1 except that DSG-a was changed to 17.2225 g (50.00 mmol) and BPEF was changed to 21.9260 g (50.00 mmol) as raw materials.
  • the physical properties of the obtained resin are summarized in Table 3 below.
  • Example 4 As raw materials, 17.2225 g (50.00 mmol) of DSG-a, a dihydroxy compound represented by the following formula (c) (hereinafter sometimes abbreviated as “BNE”), 18.7220 g (50.00 mmol), DPC Of 21.9576 g (102.50 mmol) and 32 ⁇ L of 2.5 ⁇ 10 ⁇ 2 mol / L aqueous sodium hydrogen carbonate solution (8.0 ⁇ 10 ⁇ 7 mol, ie, 1 mol of the total of dihydroxy compounds). The reaction was conducted in the same manner as in Example 1 except that 0 ⁇ 10 ⁇ 6 mol) was used. The physical properties of the obtained resin are summarized in Table 3 below.
  • Example 5 As raw materials, 17.2225 g (50.00 mmol) of DSG-a, a dihydroxy compound represented by the following formula (d) (hereinafter sometimes abbreviated as “BPPEF”) 29.5360 g (50.00 mmol), DPC Of 21.9576 g (102.50 mmol) and 32 ⁇ L of 2.5 ⁇ 10 ⁇ 2 mol / L aqueous sodium hydrogen carbonate solution (8.0 ⁇ 10 ⁇ 7 mol, ie, 1 mol of the total of dihydroxy compounds). The reaction was conducted in the same manner as in Example 1 except that 0 ⁇ 10 ⁇ 6 mol) was used. The physical properties of the obtained resin are summarized in Table 3 below.
  • Example 6 As raw materials, 17.2225 g (50.00 mmol) of DSG-a, a dihydroxy compound represented by the following formula (e) (hereinafter sometimes abbreviated as “BNEF”) 29.9320 g (50.00 mmol), DPC Of 21.9576 g (102.50 mmol) and 32 ⁇ L of 2.5 ⁇ 10 ⁇ 2 mol / L aqueous sodium hydrogen carbonate solution (8.0 ⁇ 10 ⁇ 7 mol, ie, 1 mol of the total of dihydroxy compounds). The reaction was conducted in the same manner as in Example 1 except that 0 ⁇ 10 ⁇ 6 mol) was used. The physical properties of the obtained resin are summarized in Table 3 below.
  • Example 7 As raw materials, 17.2225 g (50.00 mmol) of DSG-a, 9.3610 g (25.00 mmol) of BNE, 10.9630 g (25.00 mmol) of BPEF, 21.9576 g (102.50 mmol) of DPC, and Except for using 32 ⁇ l of 2.5 ⁇ 10 ⁇ 2 mol / L sodium hydrogen carbonate aqueous solution (8.0 ⁇ 10 ⁇ 7 mol, that is, 8.0 ⁇ 10 ⁇ 6 mol with respect to 1 mol of the total of dihydroxy compounds) The reaction was conducted in the same manner as in Example 1. The physical properties of the obtained resin are summarized in Table 3 below.
  • Example 8 As raw materials, 17.2225 g (50.00 mmol) of DSG-a, a dihydroxy compound represented by the following formula (g) (hereinafter sometimes abbreviated as “D-NDM”) 11.1165 g (50.00 mmol) , 21.9576 g (102.50 mmol) of DPC, and 32 ⁇ L of 2.5 ⁇ 10 ⁇ 2 mol / L aqueous sodium hydrogen carbonate solution (8.0 ⁇ 10 ⁇ 7 mol, ie, a total of 1 mol of dihydroxy compounds) The reaction was carried out in the same manner as in Example 1 except that 8.0 ⁇ 10 ⁇ 6 mol) was used. The physical properties of the obtained resin are summarized in Table 3 below. D-NDM was synthesized by the method described in Monomer Synthesis Example 1 described in WO2016 / 052370. Compound represented by formula (g) (SPG)
  • Example 9 As raw materials, 17.225 g (50.00 mmol) of DSG-a, dihydroxy compound represented by the following formula (h) (hereinafter sometimes abbreviated as “CHDM”) 7.2105 g (50.00 mmol), DPC Of 21.9576 g (102.50 mmol) and 32 ⁇ L of 2.5 ⁇ 10 ⁇ 2 mol / L aqueous sodium hydrogen carbonate solution (8.0 ⁇ 10 ⁇ 7 mol, ie, 1 mol of the total of dihydroxy compounds). The reaction was conducted in the same manner as in Example 1 except that 0 ⁇ 10 ⁇ 6 mol) was used. The physical properties of the obtained resin are summarized in Table 3 below. Compound represented by formula (h) (CHDM)
  • Example 10 As raw materials, 17.2225 g (50.00 mmol) of DSG-a, a dihydroxy compound represented by the following formula (i) (hereinafter sometimes abbreviated as “PCPDM”), 13.195 g (50.00 mmol), DPC Of 21.9576 g (102.50 mmol) and 32 ⁇ L of 2.5 ⁇ 10 ⁇ 2 mol / L aqueous sodium hydrogen carbonate solution (8.0 ⁇ 10 ⁇ 7 mol, ie, 1 mol of the total of dihydroxy compounds). The reaction was conducted in the same manner as in Example 1 except that 0 ⁇ 10 ⁇ 6 mol) was used. The physical properties of the obtained resin are summarized in Table 3 below. Compound represented by formula (i) (PCPDM) (PCPDM)
  • Example 11 As raw materials, 17.225 g (50.00 mmol) of DSG-a, dihydroxy compound represented by the following formula (j) (hereinafter sometimes abbreviated as “TMCB”) 7.2105 g (50.00 mmol), DPC Of 21.9576 g (102.50 mmol) and 32 ⁇ L of 2.5 ⁇ 10 ⁇ 2 mol / L aqueous sodium hydrogen carbonate solution (8.0 ⁇ 10 ⁇ 7 mol, ie, 1 mol of the total of dihydroxy compounds). The reaction was conducted in the same manner as in Example 1 except that 0 ⁇ 10 ⁇ 6 mol) was used. The physical properties of the obtained resin are summarized in Table 3 below.
  • Example 12 As raw materials, 17.2225 g (50.00 mmol) of DSG-a and a dihydroxy compound represented by the following formula (k) (tricyclo [5.2.1.0 2,6 ] decanedimethanol, hereinafter referred to as “TCDDM” 7.2105 g (50.00 mmol), 21.9576 g (102.50 mmol) of DPC, and 32 ⁇ L (8.0 ⁇ 10 2 ) of an aqueous sodium hydrogen carbonate solution of 2.5 ⁇ 10 ⁇ 2 mol / L -7 mol, that is, 8.0 ⁇ 10 ⁇ 6 mol) was used in the same manner as in Example 1 except that a total of 1 mol of dihydroxy compounds was used.
  • the physical properties of the obtained resin are summarized in Table 3 below.
  • Compound represented by formula (k) (TCDDM) (TCDDM)
  • composition ratio in the above table indicates the charging ratio (mol%) of each raw material when the total of the raw material dihydroxy compounds is 100 mol%.
  • the polycarbonate of the present invention has a high refractive index while maintaining an excellent Abbe number equivalent to the conventional one. Moreover, the polycarbonate of the present invention had high heat resistance (Tg), high total light transmittance, and good hue (b value).
  • Example 3 and Comparative Example 1 differ only in that the dihydroxy compound as the raw material monomer is DSG-a and SPG. And compared with the comparative example 1, Example 3 shows that refractive index is high, heat resistance (Tg) is also high, total light transmittance is also high, and b value is low.
  • a high Abbe number polycarbonate having excellent optical properties and heat resistance, and an optical lens and an optical film using the same can be obtained.
  • the polycarbonate of the present invention can be injection-molded and is highly productive and inexpensive, it can be used in fields where expensive high-Abbe glass lenses have been used, such as cameras, telescopes, binoculars, and TV projectors. It is extremely useful.
  • the Abbe number is high, it is effective in correcting chromatic aberration, and an improvement in image quality is expected. It is particularly suitable for smartphones and tablets equipped with small lens units.
  • a high Abbe aspherical lens that is technically difficult to process with a glass lens can be easily obtained by injection molding, which is extremely useful. Further, it is extremely useful for correcting partial chromatic aberration associated with the recent wide-angle needs for cameras.
  • the polycarbonate of the present invention is useful as a film such as an antireflection film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

適切な屈折率およびアッベ数を有し、かつ、耐熱性、全光線透過率、および、色相に総合的に優れたポリカーボネートおよびその成形体の提供。式[I]で表される構成単位と環状構造を含む炭化水素基を有する構成単位とを含む、ポリカーボネート;式[I]中、R1およびR2は、それぞれ独立に、炭化水素基を表し、R3は、それぞれ独立に、水素原子、ヘテロ原子を含む基、ハロゲン原子を含む基、炭素数1~6の直鎖のアルキル基、炭素数3~6の分岐したアルキル基または、アリール基を含む炭素数が6~12である基を表す。

Description

ポリカーボネートおよび成形体
 本発明は、ポリカーボネートおよび成形体に関する。特に、光学レンズに適した成形体に関する。
 カメラ、フィルム一体型カメラ、ビデオカメラ等の各種カメラの光学系に使用される光学レンズの材料として、光学ガラスあるいは光学用樹脂が使用されている。光学ガラスは、耐熱性、透明性、寸法安定性、耐薬品性等に優れるが、材料コストが高く、成形加工性が悪く、生産性が低いという問題点を有している。
 一方、光学用樹脂からなる光学レンズは、射出成形により大量生産が可能であるという利点を有している。例えば、カメラ用レンズにおいて、ポリカーボネート樹脂等が使用されている。特に製品の軽薄短小化により、高屈折率、低アッベ数である光学レンズ向け樹脂の開発がさかんに行われている(特許文献1、特許文献2)。また、高アッベ数である光学レンズ向け樹脂としては、ポリメチルメタクリレート(PMMA)、シクロオレフィンポリマー等が一般的に使用されるが、最近では、さらに種々の物性が改善された樹脂も使用される(特許文献3、特許文献4)。
 一方、スピログリコール由来の構成単位を有するポリカーボネートも知られている(特許文献5~9)。
 一般に光学材料の屈折率が高いと、同一の屈折率を有するレンズエレメントを、より曲率の小さい面で実現できるため、この面で発生する収差量を小さくできる。その結果、レンズの枚数を減らしたり、レンズの偏心感度を低減したり、レンズ厚みを薄くして軽量化することが可能である。
 また、一般に、カメラの光学系では、複数枚の凹レンズと凸レンズを組み合わせることで収差補正を行っている。即ち、凸レンズでできた色収差に対し、凸レンズと反対の符号の色収差を有する凹レンズを組み合わせることにより、合成的に色収差を打ち消している。この時、凹レンズには高分散(すなわち、低アッベ数)であることが要求される。
WO2014/073496号公報 WO2018/016516号公報 WO2016/052370号公報 WO2017/175693号公報 特開2006-232897号公報 特開平10-251500号公報 特開平9-268225号公報 特開2011-162604号公報 特開2010-077249号公報
 しかしながら、近年、各種カメラ等の光学系に使用される光学素子の種類はより多くなっており、様々なバランスの屈折率とアッベ数を有する光学レンズ向け樹脂の要望がある。さらに適切な屈折率やアッベ数に止まらず、その他の各種樹脂物性も要求される。
 本発明は、かかる課題を解決することを目的とするものであって、適切な屈折率およびアッベ数を有し、かつ、耐熱性、全光線透過率および色相に総合的に優れたポリカーボネートおよびその成形体を提供することを目的とする。
 上記課題のもと、本発明者は、新規化合物であるジスピログリコール(DSG)と、環状構造を含む炭化水素基を有するジヒドロキシ化合物と共重合したポリカーボネートを用いることにより、上記課題を解決しうることを見出した。具体的には、下記手段<1>により、好ましくは<2>~<14>により、上記課題は解決された。
<1>下記式[I]で表される構成単位と環状構造を含む炭化水素基を有する構成単位とを含む、ポリカーボネート;
Figure JPOXMLDOC01-appb-C000006
式[I]中、R1およびR2は、それぞれ独立に、炭化水素基を表し、R3は、それぞれ独立に、水素原子、ヘテロ原子を含む基、ハロゲン原子を含む基、炭素数1~6の直鎖のアルキル基、炭素数3~6の分岐したアルキル基または、アリール基を含む炭素数が6~12である基を表す。
<2>数平均分子量が6000以上である、<1>に記載のポリカーボネート。
<3>前記式[I]で表される構成単位が、前記ポリカーボネートを構成する全構成単位の5mol%~95mol%を占める、<1>または<2>に記載のポリカーボネート。
<4>前記環状構造を含む炭化水素基を有する構成単位が、式[II]で表される構成単位を含む、<1>~<3>のいずれか1つに記載のポリカーボネート;
Figure JPOXMLDOC01-appb-C000007
式[II]中、aおよびbは、それぞれ独立に、0~10の整数を表し、Xは炭素数1~8のアルキレン基、炭素数5~12のシクロアルキレン基、または炭素数6~20のアリーレン基を表し、Rは環状構造を含む炭化水素基を表す。
<5>前記式[II]におけるaおよびbが1~10の整数である、<4>に記載のポリカーボネート。
<6>前記式[II]におけるRが4つ以上のベンゼン環を含む構造である、<4>または<5>に記載のポリカーボネート。
<7>前記式[II]で表される構成単位が、式[II-1]、式[II-2]および式[II-3]で表される構成単位の少なくとも1種である、<4>または<5>に記載のポリカーボネート;
Figure JPOXMLDOC01-appb-C000008
式[II-1]中、R1~R10は、それぞれ独立に、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6のアルキル基、炭素数6~20のアリール基、炭素数2~6のアルケニル基、炭素数1~6のアルコキシ基または炭素数7~17のアラルキル基を表し、
Xは、炭素数1~8のアルキレン基、炭素数5~12のシクロアルキレン基、または炭素数6~20のアリーレン基を表し、
aおよびbは、それぞれ独立に、0~10の整数である;
Figure JPOXMLDOC01-appb-C000009
式[II-2]中、R1~R20は、それぞれ独立に、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6のアルキル基、炭素数6~12のアリール基、炭素数2~6のアルケニル基、炭素数1~6のアルコキシ基または炭素数7~17のアラルキル基を表し、
Yは、炭素数1~8のアルキレン基、炭素数5~12のシクロアルキレン基、または炭素数6~20のアリーレン基を表し、
cおよびdは、それぞれ独立に、0~10の整数である;
Figure JPOXMLDOC01-appb-C000010
式[II-3]中、R1~R16は、それぞれ独立に、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6のアルキル基、炭素数6~12のアリール基、炭素数2~6のアルケニル基、炭素数1~6のアルコキシ基または炭素数7~17のアラルキル基を表し、
Zは、炭素数1~8のアルキレン基、炭素数5~12のシクロアルキレン基、または炭素数6~20のアリーレン基を表し、
eおよびfは、それぞれ独立に、0~10の整数である。
<8>前記式[I]におけるR3が、それぞれ独立に、水素原子またはメチル基である、<1>~<7>のいずれか1つに記載のポリカーボネート。
<9>前記式[I]におけるR1およびR2が、それぞれ独立に、炭素数1~7の直鎖のアルキル基、炭素数3~7の分岐したアルキル基、または、アリール基を表す、<1>~<8>のいずれか1つに記載のポリカーボネート。
<10>前記式[I]におけるR1およびR2が、それぞれ独立に、炭素数1~7の直鎖のアルキル基、または、アリール基である、<1>~<8>のいずれか1つに記載のポリカーボネート。
<11>前記式[I]におけるR3が、水素原子であり、R1およびR2が、それぞれ独立にエチル基、メチル基またはフェニル基である、<1>~<7>のいずれか1つに記載のポリカーボネート。
<12>前記式[I]におけるR3が、水素原子であり、R1およびR2がエチル基である、<1>~<7>のいずれか1つに記載のポリカーボネート。
<13><1>~<12>のいずれか1つに記載のポリカーボネートを含む、成形体。
<14>光学レンズである、<13>に記載の成形体。
 本発明により、適切な屈折率およびアッベ数を有し、かつ、耐熱性、全光線透過率、および、色相に総合的に優れたポリカーボネートおよびその成形体を提供可能になった。
 以下において、本発明の内容について詳細に説明する。なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本発明のポリカーボネートは、下記式[I]で表される構成単位と環状構造を含む炭化水素基を有する構成単位とを含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000011
式[I]中、R1およびR2は、それぞれ独立に、炭化水素基を表し、R3は、それぞれ独立に、水素原子、ヘテロ原子を含む基、ハロゲン原子を含む基、炭素数1~6の直鎖のアルキル基、炭素数3~6の分岐したアルキル基または、アリール基を含む炭素数が6~12である基を表す。
 このような構成とすることにより、適切な屈折率およびアッベ数を有し、かつ、耐熱性、全光線透過率、および、色相に総合的に優れたポリカーボネートが得られる。
 特に、DSGと類似の構造を有するスピログリコールモノマー由来のポリカーボネートと同等のアッベ数を保持しつつ、高屈折率のポリカーボネートが得られる。また、このようなポリカーボネートは、耐熱性に優れ、全光線透過率が高く、色相(b値)が良好なものが得られる。
<式[I]で表される構成単位>
 本発明のポリカーボネートは、式[I]で表される構成単位を含む。
Figure JPOXMLDOC01-appb-C000012
式[I]中、R1およびR2は、それぞれ独立に、炭化水素基を表し、R3は、それぞれ独立に、水素原子、ヘテロ原子を含む基、ハロゲン原子を含む基、炭素数1~6の直鎖のアルキル基、炭素数3~6の分岐したアルキル基または、アリール基を含む炭素数が6~12である基を表す。
 式[I]におけるR1およびR2としては、それぞれ独立に、炭化水素基であり、好ましくは、炭素数1~7の直鎖のアルキル基、炭素数3~7の分岐したアルキル基またはアリール基を表し、より好ましくは、炭素数1~7の直鎖のアルキル基またはアリール基を表し、炭素数1~7の直鎖のアルキル基がさらに好ましい。
 本発明におけるR1およびR2の好ましい実施形態の一例は、エチル基、メチル基またはフェニル基である。
 炭素数1~7の直鎖のアルキル基は、炭素数1~5の直鎖のアルキル基であることが好ましく、炭素数1~3の直鎖のアルキル基であることがより好ましく、メチル基またはエチル基であることがさらに好ましい。
 炭素数3~7の分岐したアルキル基は、炭素数3~5の分岐したアルキル基であることが好ましく、炭素数3または4の分岐したアルキル基であることがより好ましく、炭素数3の分岐したアルキル基であることがさらに好ましい。
 アリール基は、炭素数6~20のアリール基が好ましく、炭素数6~14のアリール基がより好ましく、フェニル基、ナフチル基、アントラセニル基がさらに好ましく、フェニル基が一層好ましい。
 式[I]におけるR1およびR2としては、それぞれ独立に、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、1-メチルプロピル基、2-メチルプロピル基、1,1-ジメチルエチル基(tert-ブチル基)、n-ペンチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1-エチルプロピル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル基、2,2-ジメチルプロピル基(ネオペンチル基)、n-ヘキシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、3,3-ジメチルブチル基、1-エチルブチル基、2-エチルブチル基、1,1,2-トリメチルプロピル基、1,2,2-トリメチルプロピル基、1-エチル-1-メチルプロピル基、1-エチル-2-メチルプロピル基、n-ヘプチル基、1-メチルヘキシル基、2-メチルヘキシル基、3-メチルヘキシル基、4-メチルヘキシル基、5-メチルヘキシル基、1,1-ジメチルペンチル基、1,2-ジメチルペンチル基、1,3-ジメチルペンチル基、1,4-ジメチルペンチル基、1,5-ジメチルペンチル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、3,4-ジメチルペンチル基、4,4-ジメチルペンチル基、1―エチルペンチル基、2-エチルペンチル基、3-エチルペンチル基、1-プロピルブチル基、2-プロピルブチル基、3-プロピルブチル基、1-エチル-1-メチルブチル基、1-エチル-2-メチルブチル基、1-エチル-3-メチルブチル基、2-エチル-1-メチルブチル基、2-エチル-2-メチルブチル基、2-エチル-3-メチルブチル基、および1,2,3-トリメチルブチル基、フェニル基、ナフチル基、アントラセニル基などが挙げられる。
 これらの中ではR1およびR2が、それぞれ独立に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、フェニル基であることがより好ましく、メチル基、エチル基またはフェニル基がさらに好ましく、メチル基またはエチル基であることが一層好ましく、エチル基であることがより一層好ましい。
 式[I]におけるR3は、それぞれ独立に、水素原子、ヘテロ原子を含む基、ハロゲン原子を含む基(好ましくはハロゲン原子)、炭素数1~6の直鎖のアルキル基、炭素数3~6の分岐したアルキル基または、アリール基を含む炭素数が6~12である基を表し、水素原子、炭素数1~6の直鎖のアルキル基、炭素数3~6の分岐したアルキル基または、アリール基を含む炭素数が6~12である基であることが好ましく、水素原子、炭素数1~6の直鎖のアルキル基または炭素数3~6の分岐したアルキル基であることがより好ましく、水素原子またはメチル基であることがさらに好ましく、水素原子が一層好ましい。
 ヘテロ原子を含む基に含まれるヘテロ原子としては、酸素原子、硫黄原子、窒素原子が例示される。
 ヘテロ原子を含む基は、アルコキシ基、アルキルチオエーテル基、アミノ基、ニトロ基が好ましい例として挙げられる。また、アルコキシ基またはアルキルチオエーテル基を構成するアルキル鎖は、炭素数1~6の直鎖のアルキル鎖が好ましく、炭素数1~3の直鎖のアルキル鎖がより好ましい。
 炭素数1~6の直鎖のアルキル基は、炭素数1~5の直鎖のアルキル基であることが好ましく、炭素数1~3の直鎖のアルキル基であることがより好ましく、メチル基またはエチル基であることがさらに好ましい。
 炭素数3~6の分岐したアルキル基は、炭素数3~5の分岐したアルキル基であることが好ましく、炭素数3または4の分岐したアルキル基であることがより好ましく、炭素数3の分岐したアルキル基であることがさらに好ましい。
 アリール基を含む炭素数が6~12である基は、フェニル基、フェニル基で置換されたアルキル基が好ましく、フェニル基がより好ましい。フェニル基で置換されたアルキル基を構成するアルキル基の炭素数は、1~3が好ましく、1または2がより好ましく、1がさらに好ましい。
 上記式[I]におけるR3としては、例えば、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、1-メチルプロピル基、2-メチルプロピル基、1,1-ジメチルエチル基(tert-ブチル基)、n-ペンチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1-エチルプロピル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル基、2,2-ジメチルプロピル基(ネオペンチル基)、n-ヘキシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、3,3-ジメチルブチル基、1-エチルブチル基、2-エチルブチル基、1,1,2-トリメチルプロピル基、1,2,2-トリメチルプロピル基、1-エチル-1-メチルプロピル基、1-エチル-2-メチルプロピル基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基、メチルチオエーテル基、エチルチオエーテル基、アミノ基、ニトロ基、フェニル基、およびベンジル基が挙げられる。
 これらの中ではR3は、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基であるとより好ましい。また、工業的に入手が容易であるという観点から、R3が水素原子である場合が特に好ましい。
 式[I]における好ましい実施形態として、式[I]におけるR1およびR2が、それぞれ独立に、エチル基、メチル基またはフェニル基であり、R3が水素原子である形態が例示される。また、式[I]で表される構成単位の好ましい他の実施形態として、式[I]におけるR1およびR2が、それぞれ独立に、エチル基またはメチル基であり、R3が水素原子である構成単位が例示される。
 式[I]で表される構成単位は、下記式[I-I]で表される化合物(以下、「DSG」ということがある)に由来する。
Figure JPOXMLDOC01-appb-C000013
式[I-I]における、R1、R2およびR3は、式[I]におけるR1、R2およびR3と同義であり、好ましい範囲も同様である。
 以下に、本発明で好ましく用いられる式[I-I]で表される化合物を示す。本発明がこれらに限定されるものではないことは言うまでもない。なお、Meはメチル基を、Etはエチル基を、Prはプロピル基を、Buはブチル基を表す。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 式[I-I]で表されるジオールの分子量は、300~550が好ましく、300~500がより好ましい。
 式[I-I]で表されるジオールは、下記式(2)で表される1,4-シクロヘキサンジオン誘導体と、下記式(3)で表されるトリオールを脱水環化反応させることによって得られる。式(2)で表される1,4-シクロヘキサンジオン誘導体および式(3)で表されるトリオールは、それぞれ、1種のみ用いてもよいし、2種以上を用いてもよい。
Figure JPOXMLDOC01-appb-C000019
式(2)中、R4は、それぞれ独立に、水素原子、ヘテロ原子を含む基、ハロゲン原子、炭素数1~6の直鎖のアルキル基、炭素数3~6の分岐したアルキル基または、アリール基を含む炭素数が6~12である基を表す。
 式(2)におけるR4は、式[I-I]におけるR3と同義であり、好ましい範囲も同様である。
Figure JPOXMLDOC01-appb-C000020
式(3)中、R5は、炭化水素基を表す。
 R5としての炭化水素基は、炭素数1~7の直鎖のアルキル基、炭素数3~7の分岐したアルキル基またはアリール基を表す。一実施形態としては、R5は、炭素数1~7の直鎖のアルキル基または炭素数3~7の分岐したアルキル基を表す。但し、R5としての炭化水素基は、エーテル結合を含まない。
 式(3)におけるR5としては、式[I-I]におけるR1およびR2と同義であり、好ましい範囲も同様である。
 本発明では、式(2)で表される1,4-シクロヘキサンジオン誘導体が、1,4-シクロヘキサンジオンであり、式(3)で表されるトリオールが、トリメチロールプロパン、トリメチロールエタンおよびトリス(ヒドロキシメチル)トルエンの少なくとも1種(好ましくは、トリメチロールプロパンおよびトリメチロールエタンの少なくとも1種)である場合が特に好ましい。
 本発明のポリカーボネートにおける式[I]で表される構成単位の割合は、ポリカーボネートを構成する全構成単位の5mol%以上を占めることが好ましく、10mol%以上、20mol%以上、30mol%以上、あるいは、40mol%以上であってもよい。また、前記式[I]で表される構成単位の割合の上限値は、ポリカーボネートを構成する全構成単位の95mol%以下であることが好ましく、70mol%以下であることがより好ましく、60mol%以下であることがさらに好ましい。
 本発明のポリカーボネートは、式[I]で表される構成単位を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<環状構造を含む炭化水素基を有する構成単位>
 本発明のポリカーボネートは、環状構造を含む炭化水素基を有する構成単位を含む。
 環状構造を含む炭化水素基とは、環状構造を含み、かつ、骨格が炭化水素から形成されている基をいう。より具体的には、環状構造を含む炭化水素基とは、置換基を有していてもよい環状構造の炭化水素基、および、置換基を有していてもよい環状構造の炭化水素基と置換基を有していてもよい非環状構造の炭化水素基の組み合わせからなる基が例示される。
 本発明における環状構造は、芳香環および/または脂環を含む環状構造であり、単環、単環が2つ以上縮合した縮合環、単環および/または縮合環の2つ以上が共有結合によって、あるいは、連結基(炭化水素基)を介して結合した構造が例示される。
 環状構造を含む炭化水素基を有する構成単位は、式[II]で表される構成単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000021
式[II]中、aおよびbは、それぞれ独立に、0~10の整数を表し、Xは炭素数1~8のアルキレン基、炭素数5~12のシクロアルキレン基、または炭素数6~20のアリーレン基を表し、Rは環状構造を含む炭化水素基を表す。
 式[II]におけるaおよびbは、それぞれ独立に、1~10の整数が好ましく、1~3の整数がより好ましく、1がさらに好ましい。
 式[II]におけるXは炭素数1~8のアルキレン基、炭素数5~12のシクロアルキレン基、または炭素数6~20のアリーレン基を表し、好ましくは炭素数1~8のアルキレン基であり、より好ましくは炭素数1~4のアルキレン基であり、さらに好ましくはエチレン基である。前記アルキレン基は、直鎖または分岐のアルキレン基であり、直鎖アルキレン基が好ましい。
 aおよびbが2以上の場合、それぞれのXは同一であってもよいし、異なっていてもよい。
 式[II]におけるRは、環状構造を含む炭化水素基を表す。
 Rは、直鎖アルキレン基-環状構造-直鎖アルキレン基からなる基、または、環状構造からなることが好ましい。
 Rが直鎖アルキレン基-環状構造-直鎖アルキレン基からなる基である場合、直鎖アルキレン基は、炭素数1~3のアルキレン基であり、メチレン基またはエチレン基が好ましく、エチレン基がより好ましい。
 Rが環状構造からなる場合、Rは、脂環であっても芳香環であってもよい。具体的には、下記に示す環状構造Cyまたは環状構造Cyに置換基が結合した構造が例示される。
 本発明における環状構造としては、具体的には、以下の環状構造Cyが例示される。
<環状構造Cy>
Figure JPOXMLDOC01-appb-C000022
  
 上記式において、Aは、単結合またはアルキル基である。また、上記環状構造に、置換基が結合した態様も、本発明における環状構造の好ましい例として挙げられる。
 上述のとおり、本発明における環状構造を有する炭化水素基は、置換基を有していてよい。
 置換基としては、炭化水素基(炭素数1~6のアルキル基、炭素数6~20のアリール基、炭素数2~6のアルケニル基または炭素数7~17のアラルキル基)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、および、ヘテロ原子(例えば、酸素原子、窒素原子、硫黄原子、好ましくは酸素原子)を含む基が例示される。ヘテロ原子を含む基の例としては、ヘテロ原子と炭化水素基の組み合わせからなる基が例示され、アルコキシ基が好ましい。
 環状構造を含む炭化水素基を有する構成単位は、式[II-1]、式[II-2]および式[II-3]で表される構成単位の少なくとも1種を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000023
式[II-1]中、R1~R10は、それぞれ独立に、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6のアルキル基、炭素数6~20のアリール基、炭素数2~6のアルケニル基、炭素数1~6のアルコキシ基または炭素数7~17のアラルキル基を表し、
Xは、炭素数1~8のアルキレン基、炭素数5~12のシクロアルキレン基、または炭素数6~20のアリーレン基を表し、
aおよびbは、それぞれ独立に、0~10の整数である;
Figure JPOXMLDOC01-appb-C000024
式[II-2]中、R1~R20は、それぞれ独立に、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6のアルキル基、炭素数6~12のアリール基、炭素数2~6のアルケニル基、炭素数1~6のアルコキシ基または炭素数7~17のアラルキル基を表し、
Yは、炭素数1~8のアルキレン基、炭素数5~12のシクロアルキレン基、または炭素数6~20のアリーレン基を表し、
cおよびdは、それぞれ独立に、0~10の整数である;
Figure JPOXMLDOC01-appb-C000025
式[II-3]中、R1~R16は、それぞれ独立に、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6のアルキル基、炭素数6~12のアリール基、炭素数2~6のアルケニル基、炭素数1~6のアルコキシ基または炭素数7~17のアラルキル基を表し、
Zは、炭素数1~8のアルキレン基、炭素数5~12のシクロアルキレン基、または炭素数6~20のアリーレン基を表し、
eおよびfは、それぞれ独立に、0~10の整数である。
 式[II-1]においてR1~R10は、それぞれ独立に、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6のアルキル基、炭素数6~20のアリール基、炭素数2~6のアルケニル基、炭素数1~6のアルコキシ基または炭素数7~17のアラルキル基を表し、水素原子、フッ素原子、塩素原子、または、炭素数1~6のアルキル基が好ましく、水素原子、フッ素原子、塩素原子、メチル基またはエチル基がより好ましく、水素原子またはメチル基がさらに好ましく、水素原子が一層好ましい。
 式[II-1]においてXは、炭素数1~8のアルキレン基、炭素数5~12のシクロアルキレン基、または炭素数6~20のアリーレン基を表し、炭素数1~8のアルキレン基が好ましく、炭素数1~4のアルキレン基がより好ましく、エチレン基がさらに好ましい。
 式[II-1]においてaおよびbは、それぞれ独立に、1~10の整数が好ましく、1~3の整数がより好ましく、1がさらに好ましい。
 式[II-2]におけるR1~R20、および、式[II-3]におけるR1~R16の好ましい範囲は、式[II-1]におけるR1~R10の好ましい範囲と同じである。
式[II-2]におけるY、および、式[II-3]におけるZの好ましい範囲は、式[II-1]におけるXの好ましい範囲と同じである。
式[II-2]におけるcおよびd、ならびに、式[II-3]におけるeおよびfの好ましい範囲は、式[II-1]におけるaおよびbの好ましい範囲と同じである。
 式[II-1]、式[II-2]、および、式[II-3]で表される構成単位は、WO2018/016516号公報の段落0035~0063に記載のジヒドロキシ化合物を用いて形成することができ、これらの内容は本明細書に組み込まれる。
 本発明のポリカーボネートにおける環状構造を含む炭化水素基を有する構成単位は、ポリカーボネートを構成する全構成単位の5mol%以上を占めることが好ましく、30mol%以上であることがより好ましく、40mol%以上であることがさらに好ましい。また、前記環状構造を含む炭化水素基を有する構成単位の割合の上限値は、ポリカーボネートを構成する全構成単位の95mol%以下であることが好ましく、90mol%以下、80mol%以下、70mol%以下、あるいは、60mol%以下であってもよい。
 特に、環状構造を含む炭化水素基を有する構成単位の好ましくは80mol%以上、より好ましくは90mol%以上が、式[II]で表される構成単位(好ましくは、式[II-1]、式[II-2]および式[II-3]で表される構成単位の少なくとも1種)であることが好ましい。
 本発明のポリカーボネートは、環状構造を含む炭化水素基を有する構成単位を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<他の構成単位>
 本発明のポリカーボネートは、式[I]で表される構成単位と環状構造を含む炭化水素基を有する構成単位の合計が、90mol%以上であることが好ましく、95mol%以上であることがより好ましく、97mol%以上であることがさらに好ましく、99mol%以上であることが一層好ましい。
 一方、本発明のポリカーボネートは、式[I]で表される構成単位と環状構造を含む炭化水素基を有する構成単位以外の他の構成単位を含んでいてもよい。
 他の構成単位としては、脂肪族ジヒドロキシ化合物由来の構成単位、ヒドロキシ基を3つ以上有する化合物由来の構成単位、ジカルボン酸またはその誘導体由来の構成単位が例示される。
 本発明のポリカーボネートが他の構成単位を含む場合、ポリカーボネートを構成する全構成単位の10~49mol%の範囲で含まれることが好ましく、10~30mol%の範囲で含まれることがより好ましい。
 他の構成単位は、1種のみであってもよいし、2種以上であってもよい。2種以上含まれる場合、合計量が上記範囲となることが好ましい。
 他の構成単位の実施形態の一例は、脂肪族ジヒドロキシ化合物由来の構成単位を有する態様が例示される。脂肪族ジヒドロキシ化合物の具体的には、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,2-デカヒドロナフタレンジメタノール、1,3-デカヒドロナフタレンジメタノール、1,4-デカヒドロナフタレンジメタノール、1,5-デカヒドロナフタレンジメタノール、1,6-デカヒドロナフタレンジメタノール、2,7-デカヒドロナフタレンジメタノール、テトラリンジメタノール、ノルボルネンジメタノール、トリシクロデカンジメタノール、ペンタシクロドデカンジメタノール、トリメチレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、プロピレングリコール、ネオペンチルグリコール等が例示される。
 本発明のポリカーボネートが脂肪族ジヒドロキシ化合物由来の構成単位を含む場合、ポリカーボネートを構成する全構成単位の10~49mol%の範囲で含まれることが好ましく、10~30mol%の範囲で含まれることがより好ましい。脂肪族ジヒドロキシ化合物由来の構成単位は、1種のみであってもよいし、2種以上であってもよい。2種以上含まれる場合、合計量が上記範囲となることが好ましい。
<ポリカーボネートの物性>
 本発明のポリカーボネートは、低分子(ポリカーボネートオリゴマー)であっても、高分子(ポリカーボネート共重合体、ポリカーボネート樹脂)であってもよい。本発明では、高分子であることが好ましい。
 本発明のポリカーボネートは、粘度平均分子量(Mv)が、5,000以上であることが好ましく、8,000以上であることがより好ましく、10,000以上であることがさらに好ましく、11,000以上であることが一層好ましい。前記粘度平均分子量の上限値は、例えば、100,000以下であり、好ましくは50,000以下であり、より好ましくは30,000以下であり、さらに好ましくは20,000以下であり、一層好ましくは15,000以下であり、より一層好ましくは13,000以下であり、さらには12,000以下であってもよい。前記下限値以上とすることにより、得られる成形体の強度がより高くなる傾向にあり、上記上限値以下とすることにより、溶融粘度が低くなり、射出成形で成形したときに、金型から成形体の抜き取りがより容易になり、さらには流動性が向上し、より射出成形性に優れる傾向にあり、好ましい。
 また、本発明のポリカーボネートは、数平均分子量(Mn)が2,000以上であることが好ましく、3,000以上であることがより好ましく、5,000以上であることがさらに好ましく、6,000以上であることが一層好ましい。前記数平均分子量の上限値は、例えば、100,000以下であり、好ましくは50,000以下であり、より好ましくは30,000以下であり、さらに好ましくは10,000以下であり、一層好ましくは9,000以下であり、より一層好ましくは8,000以下であり、さらには7,500以下であってもよい。前記下限値以上とすることにより、得られる成形体の強度がより高くなる傾向にあり、上記上限値以下とすることにより、溶融粘度が低くなり、射出成形で成形したときに、金型から成形体の抜き取りがより容易になり、さらには流動性が向上し、より射出成形性に優れる傾向にあり、好ましい。
 上記平均分子量は、後述する実施例に記載の方法で測定される。実施例に記載の機器等が廃番等により入手困難な場合は、同等の性能を有する他の機器等を用いることができる(以下、他の測定方法についても同じ)。
 本発明のポリカーボネートのガラス転移温度(Tg)は、70℃以上であることが好ましく、100℃以上であることがより好ましく、110℃以上であることがさらに好ましく、120℃以上であることが一層好ましく、さらには、125℃以上、130℃以上、あるいは、135℃以上であってもよい。また、ガラス転移温度の上限値は、190℃以下であることが好ましく、180℃以下であることがより好ましく、170℃以下であることがさらに好ましく、165℃以下、150℃以下、あるいは、146℃以下であってもよい。ガラス転移温度を100℃以上とすることにより、レンズやカメラとしての十分な使用温度範囲とすることができる。また、190℃以下とすることにより、より射出成形性が向上し好ましい。
 ガラス転移温度は、後述する実施例に記載の方法で測定される。
 本発明のポリカーボネートは、厚さ0.1mmのフィルムに成形したときの、JIS-K-7142の方法で測定した屈折率が1.485以上であることが好ましく、1.500以上であることがより好ましく、1.530以上であることがさらに好ましく、1.550以上であることが一層好ましく、1.570以上であることがより一層好ましい。また、前記屈折率の上限値は、1.700以下であることが好ましく、1.650以下であってもよい。
 屈折率は、後述する実施例に記載の方法に従って測定される。
 本発明のポリカーボネートは、厚さ0.1mmのフィルムに成形したときの、JIS K 7142の方法で測定したアッベ数が23以上であることが好ましく、24以上であることがより好ましく、25以上であることがさらに好ましい。前記アッベ数の上限値は、52以下であることが好ましく、35以下であることがより好ましく、33以下であることがさらに好ましく、31以下であることが一層好ましく、30以下であってもよい。
 アッベ数は、後述する実施例に記載の方法に従って測定される。
 本発明のポリカーボネートは、厚さ3mmのプレート片に成形したときの、JIS-K-7361-1の方法で測定した全光線透過率が85%超であることが好ましく、86%以上であることがより好ましく、87%以上であってもよい。前記全光線透過率の上限値は、理想は100%であるが、例えば、99%以下、さらには95%以下、特には90%以下であっても十分に要求性能を満たすものである。
 全光線透過率は、後述する実施例に記載の方法に従って測定される。
 本発明のポリカーボネートは、厚さ3mmのプレート片に成形したときの、JIS K7105に準じたb値が、3.0未満であることが好ましく、2.9以下であることがより好ましく、2.8以下であることがさらに好ましく、2.7以下であることがさらに好ましい。前記b値の下限値については、理想は0であるが、例えば、1.0以上、さらには、2.0以上、2.1以上、2.2以上であっても十分に要求性能を満たすものである。
 本発明のポリカーボネートには、製造時に生成するフェノールや、反応せずに残存した炭酸ジエステルが不純物として存在する場合がある。ポリカーボネート中のフェノール含量は、0.1~3000ppm(質量比)であることが好ましく、0.1~2000ppmであることがより好ましく、1~1000ppmであることがさらに好ましく、1~800ppmであることが一層好ましく、1~500ppmであることがより一層好ましく、1~300ppmであることがさらに一層好ましい。
 また、ポリカーボネート中の炭酸ジエステル含量は、0.1~1000ppm(質量比)であることが好ましく、0.1~500ppmであることがより好ましく、1~200ppmであることがさらに好ましく、1~100ppmであることが一層好ましい。
 ポリカーボネート中に含まれるフェノールおよび炭酸ジエステルの量を調節することにより、目的に応じた物性を有する樹脂を得ることができる。フェノールおよび炭酸ジエステルの含量の調節は、重縮合の条件や装置を変更することにより適宜行うことができる。また、重縮合後の押出工程の条件によっても調節可能である。
 本発明のポリカーボネートは、上記粘度平均分子量、数平均分子量、ガラス転移温度、屈折率、アッベ数、全光線透過率、b値、ポリカーボネート中のフェノール含量およびポリカーボネート中の炭酸ジエステル含量からなる群から選択される物性の少なくとも2つを満たすことが好ましく、少なくとも3つを満たすことがより好ましく、全てを満たすことがさらに好ましい。
 特に、本発明のポリカーボネートは、上記屈折率とアッベ数と全光線透過率を満たすことが好ましく、上記屈折率とアッベ数と全光線透過率とガラス転移温度を満たすことがより好ましい。また、前記と共に、数平均分子量も満たすことも好ましい。
 以下に、本発明のポリカーボネートの好ましい形態を述べる。
<1>式[I]で表される構成単位10~90mol%(好ましくは、40~60mol%)と、環状構造を含む炭化水素基を有する構成単位(好ましくは、式[II-1]、式[II-2]および式[II-3]で表される構成単位の少なくとも1種)90~10mol%(好ましくは、60~40mol%)を含み、式[I]で表される構成単位と環状構造を含む炭化水素基を有する構成単位の合計が、ポリカーボネートを構成する全構成単位の90mol%以上である態様。
<2>式[I]におけるR3が、水素原子であり、R1およびR2が、エチル基であり、式[II-1]中、R1~R10は水素原子であり、aおよびbはそれぞれ独立に1~10の整数であり、式[II-2]中、R1~R20は水素原子であり、cおよびdはそれぞれ独立に1~10の整数であり、式[II-3]中、R1~R16は、水素原子であり、eおよびfは、それぞれ独立に1~10の整数である態様。
<3>上記<1>および<2>の両方を満たす態様。
<4>上記<1>~<3>のいずれか1つにおいて、数平均分子量が6000以上である態様。
<5>上記<1>~<4>のいずれか1つにおいて、厚さ0.1mmのフィルムに成形したときの、JIS-K-7142の方法で測定した屈折率が1.570以上であり、アッベ数が30以下である態様。
<ポリカーボネートの製造>
 本発明のポリカーボネートは、式[I-I]で表されるジヒドロキシ化合物、環状構造を含む炭化水素基を有するジヒドロキシ化合物および炭酸ジエステルを原料として溶融重縮合法により製造することができる。さらに、上述のとおり、他のジヒドロキシ化合物等を併用してもよい。この反応では重縮合触媒として、塩基性化合物触媒、エステル交換触媒もしくはその双方からなる混合触媒の存在下、製造することができる。
 炭酸ジエステルとしては、ジフェニルカーボネート、ジトリールカーボネート、ビス(クロロフェニル)カーボネート、m-クレジルカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジシクロヘキシルカーボネート等が挙げられる。これらの中でも特にジフェニルカーボネートが反応性と純度の観点から好ましい。炭酸ジエステルは、ジヒドロキシ化合物1molに対して0.97~1.30molの比率で用いられることが好ましく、さらに好ましくは0.98mol超1.30mol以下の比率であり、一層好ましくは1.00~1.30molの比率である。
 塩基性化合物触媒としては、アルカリ金属化合物、アルカリ土類金属化合物、および含窒素化合物等が挙げられる。これらの詳細は、WO2017/175693号公報の0047~0049の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 エステル交換触媒としては、亜鉛、スズ、ジルコニウム、鉛の塩が好ましく用いられ、これらは単独もしくは組み合わせて用いることができる。また、上述したアルカリ金属化合物やアルカリ土類金属化合物と組み合わせて用いてもよい。
 エステル交換触媒としては、これらの詳細は、WO2017/175693号公報の0051の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 これらの触媒は、ジヒドロキシ化合物の合計1molに対して、1×10-9~1×10-3molの比率で用いられることが好ましく、より好ましくは1×10-7~1×10-4molの比率で用いられる。
 溶融重縮合法は、前記の原料および触媒を用いて、加熱下に常圧または減圧下にエステル交換反応により副生成物を除去しながら溶融重縮合を行うものである。反応は、一般には二段以上の多段工程で実施される。具体的には、WO2017/175693号公報の0054~0056の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 本発明のポリカーボネートは、異物含有量が極力少ないことが望まれ、溶融原料の濾過、触媒液の濾過が好適に実施される。フィルターのメッシュは5μm以下であることが好ましく、より好ましくは1μm以下である。さらに、生成する樹脂のポリマーフィルターによる濾過が好適に実施される。ポリマーフィルターのメッシュは100μm以下であることが好ましく、より好ましくは30μm以下である。また、樹脂ペレットを採取する工程は当然低ダスト環境でなければならず、クラス1000以下であることが好ましく、より好ましくはクラス100以下である。
<用途>
 本発明のポリカーボネートは、単独で用いてもよいし、他の成分を配合したポリカーボネート組成物として用いてもよい。ポリカーボネート組成物に配合する他の成分としては、ポリカーボネート以外の熱可塑性樹脂、酸化防止剤、離型剤、加工安定剤、紫外線吸収剤、流動性改質剤、結晶核剤、強化剤、染料、帯電防止剤あるいは抗菌剤等が例示される。ポリカーボネート以外の熱可塑性樹脂としては、本発明のポリカーボネート以外のポリカーボネート樹脂、ポリエステル樹脂等が例示される。また、酸化防止剤、離型剤、加工安定剤、紫外線吸収剤の具体例としては、WO2017/175693号公報の0030~0041およびWO2018/016516号公報の段落0078~0089の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 本発明の成形体は、本発明のポリカーボネートまたはポリカーボネートを含むポリカーボネート組成物から成形される。
 成形体は、本発明のポリカーボネートまたはポリカーボネート組成物を、押出成形、射出成形等の公知の成形方法によって成形することにより得られる。本発明のポリカーボネートは、特に、射出成形に適している。
 本発明の成形体は、熱可塑性樹脂、特に、ポリカーボネート樹脂に用いられる用途に広く用いることができる。特に、光学用途に適している。光学用途としては、光学レンズおよび光学フィルムが例示される。光学用途の詳細は、WO2017/175693号公報の0067~0070のおよびWO2018/016516号公報の段落0090~0095の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
 以下に示す実施例は、特に述べない限り、25℃の雰囲気下で行った。
<式(a)で表されるジヒドロキシ化合物の合成例>
 1,4-シクロヘキサンジオン(東京化成工業社製、試薬)10.0gと、トリメチロールプロパン(三菱ガス化学社製)25.1gと、トルエン(富士フイルム和光純薬社製、特級試薬)300gと、メタンスルホン酸(東京化成工業社製、試薬)0.26gとを、300mLの丸底フラスコに収容し、常圧下で釜内温度が90℃~112℃となるように加熱して脱水環化反応を行った。その温度にて、反応によって生成した水をトルエンと共沸させながらディーン・スターク・トラップを用いて系内から系外へ除去して、水の留出が止まるまで10時間反応させた。水を除去した後の反応系内は生成物がスラリー状になっていた。反応スラリー液を25℃まで冷却したのち、生成物をろ過、苛性ソーダ水にて中和洗浄、水にて洗浄、減圧乾燥をすることで式(a)で表されるジヒドロキシ化合物(以下、DSG-aということがある)30.3gを得た(GC純度98.4%、単離収率97%)。
 下記に反応スキームを示す。
Figure JPOXMLDOC01-appb-C000026
 DSG-aの構造は1HNMR、13CNMR、DEPT、H-HCOSY、HMQCの各種スペクトルから同定した。
Figure JPOXMLDOC01-appb-C000027

 13C-NMRのδ25.7と30.4は、DEPT135およびHMQCスペクトルから、シクロヘキサン環の4つのメチレン基が2つずつ非等価に観測されていると帰属した。
 さらにLC-MS分析(エレクトロスプレー法[ESIポジティブモード]、高分解能質量分析[ミリマス])を用いて、DSG-aの分子量を測定した。エレクトロスプレー法に従った質量分析では、分子をほとんどフラグメント化させずにイオン化して質量分析するため、分子量の情報を得ることができ、同時に高分解能質量分析することで組成式として検証することができる。分子構造が保持されたままプロトン化された[M+H]+の質量数(分子量M+1)が345.22620(C18336)であったことから、DSG-aの組成式はC18326と求められた。
 DSG-aの反応収率および生成物の純度はガスクロマトグラフィー(装置名:Agilent 6850、アジレント社製)もしくは高速液体クロマトグラフィー(装置名:Chromaster、日立ハイテクサイエンス社製)にて、内部標準法で定量した。
 DSG-aの構造決定にはNMRを使用した(日本電子社製、型式:JNM-ECA500)。使用した重溶媒および測定周波数は各化合物の帰属中に記載した。
 DSG-aの高分解能質量(ミリマス、MS)分析は、LC-MSのダイレクトインジェクション法、もしくはDART(Direct Analysis in Real Time)法にて行った。
 HPLC(High-performance liquid chromatography)装置:U3000(Thermo Fisher Scientific社製)
 DART装置:DART-Os(エーエムアール社製)
 MS装置:LTQ Orbitrap Discovery(Thermo Fisher Scientific社製)
HPLC使用時の測定条件
 カラム:なし
 移動相:0.1質量%のギ酸水溶液:アセトニトリル(体積比50:50)の混合液
 流速:0.2mL/分
 試料濃度:100質量ppm
 注入量:10μL
MS測定条件(LC-MSダイレクトインジェクション時)
 イオン化法:Positive ESI
 キャピラリ温度:300℃
 キャピラリ電圧:22V
 チューブレンズ電圧:100V
DART使用時の測定条件
 イオン源温度:400℃
MS測定条件(DART時)
 イオン化法:DART
 キャピラリ温度:200℃
 キャピラリ電圧:35V
 チューブレンズ電圧:100V
<ポリカーボネートの測定方法>
1)粘度平均分子量(Mv)の測定:
 0.5g/デシリットルのポリカーボネートのジクロロメタン溶液を、ウベローデ毛管粘度計によって20℃の温度で測定し、ハギンス定数0.45で極限粘度[η]dL/gを求め、この[η]を次式で表されるシュネルの式に当てはめることにより算出した。
 Mv={[η]/(1.23×10-4)}1/0.83
2)数平均分子量(Mn):
 ポリカーボネートの数平均分子量(Mn)は、核磁気共鳴装置を使用して、重クロロホルム溶媒中でプロトンの核磁気共鳴を測定して求めた。Mnは、分子末端の隣のメチレンプロトンシグナルとカーボネート結合の隣のメチレンプロトンシグナルの積分値を使用して求めた。
 核磁気共鳴装置は、日本電子株式会社製、型式:JNM-ECA500を使用した。
3)ガラス転移温度(Tg):
 示差熱走査熱量計(DSC)により測定した。特定条件は以下の通りである。
装置:株式会社日立ハイテクサイエンスDSC7000X
サンプル量:5mg
雰囲気:窒素ガス雰囲気下
昇温条件:10℃/分
4)屈折率(nD):
 ポリカーボネートを塩化メチレンに溶解させ、固形分濃度5.3質量%の樹脂溶液を作製した。この樹脂溶液から厚み0.1mmのキャストフィルムを作製した。
 得られた厚さ0.1mmフィルムについて、アッベ屈折計を用い、JIS-K-7142の方法で測定した。
5)アッベ数(ν):
 ポリカーボネートを塩化メチレンに溶解させ、固形分濃度5.3質量%の樹脂溶液を作製した。この樹脂溶液から厚み0.1mmのキャストフィルムを作製した。
 得られた厚さ0.1mmフィルムについて、アッベ屈折計を用い、23℃下での波長486nm、589nmおよび656nmの屈折率をそれぞれ測定し、さらに下記式を用いてアッベ数を算出した。ここでの屈折率は、JIS-K-7142の方法で測定した。
     ν=(nD-1)/(nF-nC)
     nD:波長589nmでの屈折率
     nC:波長656nmでの屈折率
     nF:波長486nmでの屈折率
5)全光線透過率:
 ポリカーボネートを120℃で4時間真空乾燥した後、射出成型機(FANUC ROBOSHOT α-S30iA)によりシリンダー温度270℃、金型温度Tg-10℃にて射出成形し、直径50mm、厚さ3mmの円盤状試験プレート片を得た。
 得られた厚さ3mmの円盤状試験プレート片について、分光色彩計を用い、JIS-K-7361-1の方法で測定した。
は、日本電色工業(株)製 SE2000型分光色彩計を用いた。
6)b値:
 ポリカーボネートを120℃で4時間真空乾燥した後、射出成型機(FANUC ROBOSHOT α-S30iA)によりシリンダー温度270℃、金型温度Tg-10℃にて射出成形し、直径50mm、厚さ3mmの円盤状試験プレート片を得た。
 このプレート片を用いて、JIS K7105に準じてb値を測定した。b値が小さいほど黄色味が弱いことを示し、色相が良好となる。
 成形プレートの測定には、日本電色工業(株)製 SE2000型分光色彩計を用いた。
7)ポリカーボネート中のフェノール(PhOH)、ジフェニルカーボネート(DPC)量の測定
 後述する実施例1で得られたポリカーボネート0.5gをテトラヒドロフラン(THF)50mLに溶解し、試料溶液とした。フェノール、ジフェニルカーボネートの標品として、市販のフェノール、ジフェニルカーボネートを各々蒸留して得られた純品より、フェノール、ジフェニルカーボネートの検量線を作成し、試料溶液2μLをLC-MSにより以下の測定条件で定量した。なお、この測定条件での検出限界値は0.01ppm(質量比)である。
LC-MS測定条件:
 測定装置(LC部分):Agilent Infinity 1260 LC System
  カラム:ZORBAX Eclipse XDB-18、およびガードカートリッジ
  移動相:
   A: 0.01mol/L-酢酸アンモニウム水溶液
   B:0.01mol/L-酢酸アンモニウムのメタノール溶液
   C:THF
   移動相のグラジエントプログラム:
 表1に示すように、上記A~Cの混合物を移動相として使用し、移動相の組成を時間(分)欄に示す時間が経過したときに切り替えつつ、30分間カラムに移動相を流した。
Figure JPOXMLDOC01-appb-T000028
   流速:0.3mL/分
   カラム温度:45℃
   検出器:UV(225nm)
 測定装置(MS部分):Agilent 6120 single quad LCMS System
  イオン化ソース: ESI
  極性: Positive(DPC)&Negative(PhOH)
  フラグメンタ:70V
  ドライガス:10L/分、350℃
  ネブライザ:50psi
  キャピラリ電圧:3000V(Positive)、2500V(Negative)
  測定イオン:
Figure JPOXMLDOC01-appb-T000029
試料注入量:2μL
<実施例1>
 原料として、DSG-a 3.4445g(10.00mmol)、下記式(b)で表されるジヒドロキシ化合物(以下「BPEF」と省略することがある)39.4668g(90.00mmol)、ジフェニルカーボネート21.9576g(102.50mmol)、および2.5×10-2mol/Lの炭酸水素ナトリウム水溶液32μL(8.0×10-7mol、即ち、ジヒドロキシ化合物の合計1molに対して、8.0×10-6mol)を撹拌機および留出装置付きの300mLの四口フラスコに入れ、窒素雰囲気760mmHgの下、180℃に加熱した。加熱開始10分後に原料の完全溶解を確認し、さらに同条件で110分間撹拌を行った。その後、減圧度を200mmHgに調整すると同時に、60℃/hrの速度で200℃まで昇温を行った。この際、副生したフェノールの留出開始を確認した。その後、20分間200℃に保持して反応を行った。さらに、75℃/hrの速度で230℃まで昇温し、昇温終了10分後、その温度で保持しながら、1時間かけて減圧度を1mmHg以下とした。その後、60℃/hrの速度で245℃まで昇温し、さらに30分間撹拌を行った。反応終了後、反応器内に窒素を導入して常圧に戻し、生成したポリカーボネートを取り出した。また、得られた樹脂中のフェノール(PhOH)含有量は100ppm(質量比)、DPC含有量は100ppm(質量比)であった。得られた樹脂の物性を下記表3にまとめた。
 式(a)で表されるジヒドロキシ化合物(DSG-a)
Figure JPOXMLDOC01-appb-C000030
 式(b)で表されるジヒドロキシ化合物(BPEF)
Figure JPOXMLDOC01-appb-C000031
<実施例2>
 原料として、DSG-aを10.3335g(30.00mmol)、BPEFを30.6964g(70.00mmol)に変更する以外は、実施例1と同様に反応を行った。得られた樹脂の物性を下記表3にまとめた。
<実施例3>
 原料として、DSG-aを17.2225g(50.00mmol)、BPEFを21.9260g(50.00mmol)に変更する以外は、実施例1と同様に反応を行った。得られた樹脂の物性を下記表3にまとめた。
<実施例4>
 原料として、DSG-aを17.2225g(50.00mmol)、下記式(c)で表されるジヒドロキシ化合物(以下、「BNE」と省略することがある)18.7220g(50.00mmol)、DPCを21.9576g(102.50mmol)、および2.5×10-2mol/Lの炭酸水素ナトリウム水溶液32μL(8.0×10-7mol、即ち、ジヒドロキシ化合物の合計1molに対して、8.0×10-6mol)を用いる以外は、実施例1と同様にして反応した。得られた樹脂の物性を下記表3にまとめた。
式(c)で表されるジヒドロキシ化合物(BNE)
Figure JPOXMLDOC01-appb-C000032
<実施例5>
 原料として、DSG-aを17.2225g(50.00mmol)、下記式(d)で表されるジヒドロキシ化合物(以下、「BPPEF」と省略することがある)29.5360g(50.00mmol)、DPCを21.9576g(102.50mmol)、および2.5×10-2mol/Lの炭酸水素ナトリウム水溶液32μL(8.0×10-7mol、即ち、ジヒドロキシ化合物の合計1molに対して、8.0×10-6mol)を用いる以外は、実施例1と同様にして反応した。得られた樹脂の物性を下記表3にまとめた。
式(d)で表されるジヒドロキシ化合物(BPPEF)
Figure JPOXMLDOC01-appb-C000033
<実施例6>
 原料として、DSG-aを17.2225g(50.00mmol)、下記式(e)で表されるジヒドロキシ化合物(以下、「BNEF」と省略することがある)29.9320g(50.00mmol)、DPCを21.9576g(102.50mmol)、および2.5×10-2mol/Lの炭酸水素ナトリウム水溶液32μL(8.0×10-7mol、即ち、ジヒドロキシ化合物の合計1molに対して、8.0×10-6mol)を用いる以外は、実施例1と同様にして反応した。得られた樹脂の物性を下記表3にまとめた。
式(e)で表されるジヒドロキシ化合物(BNEF)
Figure JPOXMLDOC01-appb-C000034
<実施例7>
 原料として、DSG-aを17.2225g(50.00mmol)、BNEを9.3610g(25.00mmol)、BPEFを10.9630g(25.00mmol)、DPCを21.9576g(102.50mmol)、および2.5×10-2mol/Lの炭酸水素ナトリウム水溶液32μl(8.0×10-7mol、即ち、ジヒドロキシ化合物の合計1molに対して、8.0×10-6mol)を用いる以外は、実施例1と同様にして反応した。得られた樹脂の物性を下記表3にまとめた。
<比較例1>
 DSG-aを、下記式(f)で表されるジヒドロキシ化合物(以下、「SPG」と省略することがある)15.2190g(50.00mmol)へ変更する以外、実施例3と同様に反応を行った。得られた樹脂の物性を下記表3にまとめた。
式(f)で表される化合物(SPG)
Figure JPOXMLDOC01-appb-C000035
<比較例2>
 DSG-aを、SPG9.1314g(30.00mmol)へ変更する以外、実施例2と同様に反応を行った。得られた樹脂の物性を下記表3にまとめた。
<実施例8>
 原料として、DSG-aを17.2225g(50.00mmol)、下記式(g)で表されるジヒドロキシ化合物(以下、「D-NDM」と省略することがある)11.1165g(50.00mmol)、DPCを21.9576g(102.50mmol)、および2.5×10-2mol/Lの炭酸水素ナトリウム水溶液32μL(8.0×10-7mol、即ち、ジヒドロキシ化合物の合計1molに対して、8.0×10-6mol)を用いる以外は、実施例1と同様に反応を行った。得られた樹脂の物性を下記表3にまとめた。
 尚、D-NDMは、WO2016/052370に記載のモノマー合成例1に記載の方法により、合成した。
式(g)で表される化合物(SPG)
Figure JPOXMLDOC01-appb-C000036
<実施例9>
 原料として、DSG-aを17.2225g(50.00mmol)、下記式(h)で表されるジヒドロキシ化合物(以下、「CHDM」と省略することがある)7.2105g(50.00mmol)、DPCを21.9576g(102.50mmol)、および2.5×10-2mol/Lの炭酸水素ナトリウム水溶液32μL(8.0×10-7mol、即ち、ジヒドロキシ化合物の合計1molに対して、8.0×10-6mol)を用いる以外は、実施例1と同様にして反応した。得られた樹脂の物性を下記表3にまとめた。
式(h)で表される化合物(CHDM)
Figure JPOXMLDOC01-appb-C000037
<実施例10>
 原料として、DSG-aを17.2225g(50.00mmol)、下記式(i)で表されるジヒドロキシ化合物(以下、「PCPDM」と省略することがある)13.1195g(50.00mmol)、DPCを21.9576g(102.50mmol)、および2.5×10-2mol/Lの炭酸水素ナトリウム水溶液32μL(8.0×10-7mol、即ち、ジヒドロキシ化合物の合計1molに対して、8.0×10-6mol)を用いる以外は、実施例1と同様にして反応した。得られた樹脂の物性を下記表3にまとめた。
式(i)で表される化合物(PCPDM)
Figure JPOXMLDOC01-appb-C000038
<実施例11>
 原料として、DSG-aを17.2225g(50.00mmol)、下記式(j)で表されるジヒドロキシ化合物(以下、「TMCB」と省略することがある)7.2105g(50.00mmol)、DPCを21.9576g(102.50mmol)、および2.5×10-2mol/Lの炭酸水素ナトリウム水溶液32μL(8.0×10-7mol、即ち、ジヒドロキシ化合物の合計1molに対して、8.0×10-6mol)を用いる以外は、実施例1と同様にして反応した。得られた樹脂の物性を下記表3にまとめた。
式(j)で表される化合物(TMCB)
Figure JPOXMLDOC01-appb-C000039
<実施例12>
 原料として、DSG-aを17.2225g(50.00mmol)、下記式(k)で表されるジヒドロキシ化合物(トリシクロ[5.2.1.02,6]デカンジメタノール、以下、「TCDDM」と省略することがある)7.2105g(50.00mmol)、DPCを21.9576g(102.50mmol)、および2.5×10-2mol/Lの炭酸水素ナトリウム水溶液32μL(8.0×10-7mol、即ち、ジヒドロキシ化合物の合計1molに対して、8.0×10-6mol)を用いる以外は、実施例1と同様にして反応した。得られた樹脂の物性を下記表3にまとめた。
式(k)で表される化合物(TCDDM)
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-T000041
 上記表の組成比は、原料ジヒドロキシ化合物の合計を100mol%としたときの、各原料の仕込み割合(mol%)を示している。
 上記結果から明らかなとおり、本発明のポリカーボネートは、従来と同等の優れたアッベ数を保持しつつ、高屈折率のものであった。また、本発明のポリカーボネートは、耐熱性(Tg)が高く、全光線透過率が高く、色相(b値)が良好であった。
 特に、実施例3と比較例1は、原料モノマーであるジヒドロキシ化合物が、DSG-aとSPGである点のみが異なる。そして、実施例3は、比較例1に比して、屈折率が高く、耐熱性(Tg)も高く、全光線透過率も高く、b値が低くなっていることが分かる。特に、屈折率が高くなると、アッベ数が劣る傾向にあるが、本発明のポリカーボネートは、優れたアッベ数を維持しつつ、屈折率を高くできた点で価値が高い。同様の傾向が、実施例2と比較例2の間でも認められた。
 本発明により、光学特性に優れ、耐熱性のある、高アッベ数のポリカーボネートおよびそれを用いた光学レンズおよび光学フィルムを得ることができる。本発明のポリカーボネートは、射出成形が可能であり、生産性が高く安価であるため、カメラ、望遠鏡、双眼鏡、テレビプロジェクター等、従来、高価な高アッベガラスレンズが用いられていた分野に用いることができ極めて有用である。また、アッベ数が高いことから、色収差の補正に有効であり、画質の向上が見込まれる。特に小さなレンズユニットを搭載するスマートフォン、タブレットに好適である。さらに本発明により、ガラスレンズでは技術的に加工の困難な高アッベ非球面レンズを射出成形により簡便に得ることができ、極めて有用である。また、近年のカメラに対する広角化ニーズに伴う部分色収差の補正に極めて有用である。さらに、本発明のポリカーボネートは、反射防止フィルムなどのフィルムとして有用である。

Claims (14)

  1. 下記式[I]で表される構成単位と環状構造を含む炭化水素基を有する構成単位とを含む、ポリカーボネート;
    Figure JPOXMLDOC01-appb-C000001
    式[I]中、R1およびR2は、それぞれ独立に、炭化水素基を表し、R3は、それぞれ独立に、水素原子、ヘテロ原子を含む基、ハロゲン原子を含む基、炭素数1~6の直鎖のアルキル基、炭素数3~6の分岐したアルキル基または、アリール基を含む炭素数が6~12である基を表す。
  2. 数平均分子量が6000以上である、請求項1に記載のポリカーボネート。
  3. 前記式[I]で表される構成単位が、前記ポリカーボネートを構成する全構成単位の5mol%~95mol%を占める、請求項1または2に記載のポリカーボネート。
  4. 前記環状構造を含む炭化水素基を有する構成単位が、式[II]で表される構成単位を含む、請求項1~3のいずれか1項に記載のポリカーボネート;
    Figure JPOXMLDOC01-appb-C000002
    式[II]中、aおよびbは、それぞれ独立に、0~10の整数を表し、Xは炭素数1~8のアルキレン基、炭素数5~12のシクロアルキレン基、または炭素数6~20のアリーレン基を表し、Rは環状構造を含む炭化水素基を表す。
  5. 前記式[II]におけるaおよびbが1~10の整数である、請求項4に記載のポリカーボネート。
  6. 前記式[II]におけるRが4つ以上のベンゼン環を含む構造である、請求項4または5に記載のポリカーボネート。
  7. 前記式[II]で表される構成単位が、式[II-1]、式[II-2]および式[II-3]で表される構成単位の少なくとも1種である、請求項4または5に記載のポリカーボネート;
    Figure JPOXMLDOC01-appb-C000003
    式[II-1]中、R1~R10は、それぞれ独立に、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6のアルキル基、炭素数6~20のアリール基、炭素数2~6のアルケニル基、炭素数1~6のアルコキシ基または炭素数7~17のアラルキル基を表し、
    Xは、炭素数1~8のアルキレン基、炭素数5~12のシクロアルキレン基、または炭素数6~20のアリーレン基を表し、
    aおよびbは、それぞれ独立に、0~10の整数である;
    Figure JPOXMLDOC01-appb-C000004
    式[II-2]中、R1~R20は、それぞれ独立に、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6のアルキル基、炭素数6~12のアリール基、炭素数2~6のアルケニル基、炭素数1~6のアルコキシ基または炭素数7~17のアラルキル基を表し、
    Yは、炭素数1~8のアルキレン基、炭素数5~12のシクロアルキレン基、または炭素数6~20のアリーレン基を表し、
    cおよびdは、それぞれ独立に、0~10の整数である;
    Figure JPOXMLDOC01-appb-C000005
    式[II-3]中、R1~R16は、それぞれ独立に、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6のアルキル基、炭素数6~12のアリール基、炭素数2~6のアルケニル基、炭素数1~6のアルコキシ基または炭素数7~17のアラルキル基を表し、
    Zは、炭素数1~8のアルキレン基、炭素数5~12のシクロアルキレン基、または炭素数6~20のアリーレン基を表し、
    eおよびfは、それぞれ独立に、0~10の整数である。
  8. 前記式[I]におけるR3が、それぞれ独立に、水素原子またはメチル基である、請求項1~7のいずれか1項に記載のポリカーボネート。
  9. 前記式[I]におけるR1およびR2が、それぞれ独立に、炭素数1~7の直鎖のアルキル基、炭素数3~7の分岐したアルキル基、または、アリール基を表す、請求項1~8のいずれか1項に記載のポリカーボネート。
  10. 前記式[I]におけるR1およびR2が、それぞれ独立に、炭素数1~7の直鎖のアルキル基、または、アリール基である、請求項1~8のいずれか1項に記載のポリカーボネート。
  11. 前記式[I]におけるR3が、水素原子であり、R1およびR2が、それぞれ独立にエチル基、メチル基またはフェニル基である、請求項1~7のいずれか1項に記載のポリカーボネート。
  12. 前記式[I]におけるR3が、水素原子であり、R1およびR2がエチル基である、請求項1~7のいずれか1項に記載のポリカーボネート。
  13.  請求項1~12のいずれか1項に記載のポリカーボネートを含む、成形体。
  14.  光学レンズである、請求項13に記載の成形体。
PCT/JP2019/009298 2018-03-28 2019-03-08 ポリカーボネートおよび成形体 WO2019188114A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020509791A JP7207402B2 (ja) 2018-03-28 2019-03-08 ポリカーボネートおよび成形体
EP19775953.3A EP3778698B1 (en) 2018-03-28 2019-03-08 Polycarbonate and molded body
US17/040,369 US11306180B2 (en) 2018-03-28 2019-03-08 Polycarbonate and molded article
CN201980022082.0A CN111902455B (zh) 2018-03-28 2019-03-08 聚碳酸酯和成型体
KR1020207024855A KR102652058B1 (ko) 2018-03-28 2019-03-08 폴리카보네이트 및 성형체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018061369 2018-03-28
JP2018-061369 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019188114A1 true WO2019188114A1 (ja) 2019-10-03

Family

ID=68060370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009298 WO2019188114A1 (ja) 2018-03-28 2019-03-08 ポリカーボネートおよび成形体

Country Status (7)

Country Link
US (1) US11306180B2 (ja)
EP (1) EP3778698B1 (ja)
JP (1) JP7207402B2 (ja)
KR (1) KR102652058B1 (ja)
CN (1) CN111902455B (ja)
TW (1) TWI791799B (ja)
WO (1) WO2019188114A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022038997A1 (ja) * 2020-08-18 2022-02-24 帝人株式会社 フルオレン誘導体およびその製造方法
WO2022091996A1 (ja) * 2020-10-27 2022-05-05 三菱瓦斯化学株式会社 熱可塑性樹脂及びそれを含む光学レンズ
WO2022091990A1 (ja) * 2020-10-27 2022-05-05 新日本理化株式会社 環式ジオール化合物、該化合物の製造方法及び該化合物の用途
CN115286780A (zh) * 2022-07-25 2022-11-04 万华化学集团股份有限公司 一种兼具耐低温冲击性和高耐热性、高折射率的共聚碳酸酯及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113480722B (zh) * 2021-08-06 2022-11-22 中国科学院过程工程研究所 一种聚碳酸酯及其制备方法和应用
WO2023182597A1 (ko) * 2022-03-23 2023-09-28 주식회사 엘지화학 폴리카보네이트 수지 및 이의 제조방법

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268225A (ja) 1996-01-30 1997-10-14 Teijin Ltd オキサスピロウンデカン基を含有するポリカーボネート共重合体およびその製造法
JPH10251500A (ja) 1997-03-12 1998-09-22 Mitsubishi Gas Chem Co Inc ポリカーボネート樹脂組成物
JP2006232897A (ja) 2005-02-22 2006-09-07 Mitsubishi Gas Chem Co Inc コポリカーボネート樹脂
JP2010077249A (ja) 2008-09-25 2010-04-08 Teijin Chem Ltd 光透過層用フィルム
JP2011162604A (ja) 2010-02-05 2011-08-25 Teijin Chem Ltd 光弾性定数が低いポリカーボネート樹脂の製造方法
WO2014073496A1 (ja) 2012-11-07 2014-05-15 三菱瓦斯化学株式会社 ポリカーボネート樹脂、その製造方法および光学成形体
WO2016052370A1 (ja) 2014-09-30 2016-04-07 三菱瓦斯化学株式会社 ポリカーボネート樹脂および光学レンズ
WO2016052476A1 (ja) * 2014-09-29 2016-04-07 三菱瓦斯化学株式会社 ポリエーテルジオール及びその製造方法
WO2017175693A1 (ja) 2016-04-05 2017-10-12 三菱瓦斯化学株式会社 ポリカーボネート共重合体、それを用いた光学レンズ及びフィルム、並びに該共重合体の製造方法
WO2018016516A1 (ja) 2016-07-21 2018-01-25 三菱瓦斯化学株式会社 ポリカーボネート樹脂、その製造方法及び光学レンズ
WO2018074305A1 (ja) * 2016-10-18 2018-04-26 三菱瓦斯化学株式会社 ジオール、ジオールの製造方法、ジ(メタ)アクリレートおよびジ(メタ)アクリレートの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7999055B2 (en) 2007-05-21 2011-08-16 Mitsubishi Gas Chemical Company, Inc Polycarbonate resin and method for producing the same
KR101513317B1 (ko) * 2007-06-19 2015-04-17 테이진 카세이 가부시키가이샤 광학 필름
US20110298143A1 (en) 2009-03-06 2011-12-08 Teijin Chemicals Ltd. Copolycarbonate and optical lens
KR101816956B1 (ko) 2010-11-12 2018-01-09 데이진 가부시키가이샤 코폴리카보네이트
US20160319069A1 (en) 2014-02-28 2016-11-03 Teijin Limited Polycarbonate and optical member comprising the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268225A (ja) 1996-01-30 1997-10-14 Teijin Ltd オキサスピロウンデカン基を含有するポリカーボネート共重合体およびその製造法
JPH10251500A (ja) 1997-03-12 1998-09-22 Mitsubishi Gas Chem Co Inc ポリカーボネート樹脂組成物
JP2006232897A (ja) 2005-02-22 2006-09-07 Mitsubishi Gas Chem Co Inc コポリカーボネート樹脂
JP2010077249A (ja) 2008-09-25 2010-04-08 Teijin Chem Ltd 光透過層用フィルム
JP2011162604A (ja) 2010-02-05 2011-08-25 Teijin Chem Ltd 光弾性定数が低いポリカーボネート樹脂の製造方法
WO2014073496A1 (ja) 2012-11-07 2014-05-15 三菱瓦斯化学株式会社 ポリカーボネート樹脂、その製造方法および光学成形体
WO2016052476A1 (ja) * 2014-09-29 2016-04-07 三菱瓦斯化学株式会社 ポリエーテルジオール及びその製造方法
WO2016052370A1 (ja) 2014-09-30 2016-04-07 三菱瓦斯化学株式会社 ポリカーボネート樹脂および光学レンズ
WO2017175693A1 (ja) 2016-04-05 2017-10-12 三菱瓦斯化学株式会社 ポリカーボネート共重合体、それを用いた光学レンズ及びフィルム、並びに該共重合体の製造方法
WO2018016516A1 (ja) 2016-07-21 2018-01-25 三菱瓦斯化学株式会社 ポリカーボネート樹脂、その製造方法及び光学レンズ
WO2018074305A1 (ja) * 2016-10-18 2018-04-26 三菱瓦斯化学株式会社 ジオール、ジオールの製造方法、ジ(メタ)アクリレートおよびジ(メタ)アクリレートの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3778698A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022038997A1 (ja) * 2020-08-18 2022-02-24 帝人株式会社 フルオレン誘導体およびその製造方法
WO2022091996A1 (ja) * 2020-10-27 2022-05-05 三菱瓦斯化学株式会社 熱可塑性樹脂及びそれを含む光学レンズ
WO2022091990A1 (ja) * 2020-10-27 2022-05-05 新日本理化株式会社 環式ジオール化合物、該化合物の製造方法及び該化合物の用途
JP7436927B2 (ja) 2020-10-27 2024-02-22 新日本理化株式会社 環式ジオール化合物、該化合物の製造方法及び該化合物の用途
CN115286780A (zh) * 2022-07-25 2022-11-04 万华化学集团股份有限公司 一种兼具耐低温冲击性和高耐热性、高折射率的共聚碳酸酯及其制备方法和应用
CN115286780B (zh) * 2022-07-25 2023-12-19 万华化学集团股份有限公司 一种兼具耐低温冲击性和高耐热性、高折射率的共聚碳酸酯及其制备方法和应用

Also Published As

Publication number Publication date
KR20200138182A (ko) 2020-12-09
TWI791799B (zh) 2023-02-11
EP3778698A1 (en) 2021-02-17
CN111902455B (zh) 2022-04-26
CN111902455A (zh) 2020-11-06
US11306180B2 (en) 2022-04-19
EP3778698A4 (en) 2021-02-17
KR102652058B1 (ko) 2024-03-27
JPWO2019188114A1 (ja) 2021-04-08
TW202003629A (zh) 2020-01-16
EP3778698B1 (en) 2021-09-08
US20210054143A1 (en) 2021-02-25
JP7207402B2 (ja) 2023-01-18

Similar Documents

Publication Publication Date Title
JP7207402B2 (ja) ポリカーボネートおよび成形体
KR102362026B1 (ko) 열가소성 수지 및 광학 부재
KR102509154B1 (ko) 폴리카보네이트 수지, 그 제조 방법, 및, 광학 렌즈
JP7082872B2 (ja) 高耐熱性ポリカーボネート樹脂及び成形体
JP2018177887A (ja) 熱可塑性樹脂
JP6670923B2 (ja) ポリカーボネート樹脂、成形体、光学部材及びレンズ
WO2023074439A1 (ja) 熱可塑性樹脂および光学部材
CN113667110A (zh) 一种光学聚碳酸酯树脂及其制备方法
WO2023074471A1 (ja) 熱可塑性樹脂および光学部材
US20160023978A1 (en) 6-hydroxy-2-naphthalenyl fluorene derivatives and lens and camera module using the same
KR20150082427A (ko) 폴리포르말 수지 공중합체 및 제조 방법
CN114702655B (zh) 聚碳酸酯及其制备方法和应用
JP7416196B2 (ja) 化合物、熱可塑性樹脂、光学部材、光学レンズ
CN113330051B (zh) 热塑性树脂和光学构件
CN114133548B (zh) 一种聚碳酸酯及其制备方法、热塑性组合物及光学制品和设备
TWI834822B (zh) 光學透鏡
TWI840091B (zh) 聚碳酸酯樹脂、其製造方法以及光學透鏡
WO2022190800A1 (ja) 熱可塑性樹脂および光学部材
WO2024115460A1 (en) Binaphthyl compounds and thermoplastic resins
TW202214548A (zh) 樹脂組成物
JP2024016426A (ja) 熱可塑性樹脂および光学部材
JP2023155974A (ja) 熱可塑性樹脂およびその成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775953

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509791

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019775953

Country of ref document: EP

Effective date: 20201028