WO2022065521A1 - セラミックス粉末材料、セラミックス粉末材料の製造方法、成型体、焼結体、及び、電池 - Google Patents

セラミックス粉末材料、セラミックス粉末材料の製造方法、成型体、焼結体、及び、電池 Download PDF

Info

Publication number
WO2022065521A1
WO2022065521A1 PCT/JP2021/044648 JP2021044648W WO2022065521A1 WO 2022065521 A1 WO2022065521 A1 WO 2022065521A1 JP 2021044648 W JP2021044648 W JP 2021044648W WO 2022065521 A1 WO2022065521 A1 WO 2022065521A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic powder
powder material
less
garnet
crushing
Prior art date
Application number
PCT/JP2021/044648
Other languages
English (en)
French (fr)
Inventor
理大 丹羽
Original Assignee
第一稀元素化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一稀元素化学工業株式会社 filed Critical 第一稀元素化学工業株式会社
Priority to KR1020227009892A priority Critical patent/KR102442201B1/ko
Priority to EP21856920.0A priority patent/EP4005999B1/en
Priority to CN202180005590.5A priority patent/CN115413274B/zh
Priority to US17/753,212 priority patent/US11629098B2/en
Publication of WO2022065521A1 publication Critical patent/WO2022065521A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • C01G33/006Compounds containing, besides niobium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • C01G35/006Compounds containing, besides tantalum, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • C04B40/0046Premixtures of ingredients characterised by their processing, e.g. sequence of mixing the ingredients when preparing the premixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a ceramic powder material, a method for manufacturing a ceramic powder material, a molded body, a sintered body, and a battery.
  • Li 7 La 3 Zr 2 O 12 (hereinafter, also referred to as “LLZ”) and LLZ-like compounds in which various additive elements have been introduced into LLZ have high lithium ion conductivity. Moreover, since it exhibits high electrochemical stability with respect to lithium metal, it is promising as a solid electrolyte material for all-solid-state lithium-ion secondary batteries.
  • the all-solid-state lithium-ion secondary battery is a next-generation secondary battery with ultimate safety because it uses a nonflammable solid electrolyte material, and research and development of materials and devices are actively pursued for its practical use. It has been done (see, for example, Patent Documents 1 to 3). In the following, LLZ and LLZ analog compounds are collectively referred to as "LLZ-based garnet-type compounds”.
  • the electrolyte members of all-solid-state batteries and semi-solid-state batteries need to be thinned in order to reduce cell resistance. Therefore, the powder used as a raw material for the electrolyte member is required to be fine particles of several ⁇ m or less.
  • the same physical properties are required for the LLZ-based garnet-type compound, which is one of the solid electrolyte materials.
  • a method of pulverizing a powder material of an LLZ-based garnet-type compound synthesized by an arbitrary method with a strong mechanical crushing force such as wet pulverization is known. While this method can obtain fine particles having a particle size of 1 ⁇ m or less, there are disadvantages due to the use of a solvent. When water is used as the solvent, the properties of the material are greatly impaired due to moisture absorption and desorption of Li.
  • the powder material of the LLZ-based garnet-type compound obtained by the method of the known technique is very strong, and it is difficult to atomize it unless it is a strong crushing method such as wet pulverization.
  • the powder material of the garnet-type compound containing Li is composed of high-density garnet-type compound particles having few voids.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a ceramic powder material containing a garnet-type compound containing Li and having easy pulverization property. Another object of the present invention is to provide a method for producing the ceramic powder material. Another object of the present invention is to provide a molded body obtained by using the ceramic powder material. Another object of the present invention is to provide a sintered body obtained by using the molded body. Another object of the present invention is to provide a battery having a sintered body obtained by sintering the ceramic powder material.
  • the raw material powder is atomized in order to improve the reactivity of various raw material powders.
  • the homogeneity of the elements is improved, and the reaction for producing the garnet-type compound can easily proceed uniformly.
  • the present inventor has found that since the conventional garnet-type compound is produced by the above process, it is composed of high-density particles without voids, which impairs easy pulverization. Then, they have found that it is possible to obtain a ceramic powder material having easy pulverization property by controlling the pore characteristics of the obtained garnet-type compound, and have completed the present invention.
  • the ceramic powder material according to the present invention is Contains garnet-type compounds containing Li,
  • the pore volume is 0.4 mL / g or more and 1.0 mL / g or less.
  • the pore volume is 0.4 mL / g or more, it contains a relatively large amount of voids and can be said to be fragile. Therefore, it can be easily atomized without using a powerful crushing method.
  • the average pore diameter is preferably 0.5 ⁇ m or more and 5 ⁇ m or less.
  • the average pore diameter is 0.5 ⁇ m or more and 5 ⁇ m or less, it can be said that there are many fine pores. Therefore, it can be atomized more easily.
  • the specific surface area is preferably 0.5 m 2 / g or more and 2.5 m 2 / g or less.
  • the specific surface area is 0.5 m 2 / g or more, it can be said that the particles of the ceramic powder material are fine. Since the particles are fine even before crushing, they become finer by crushing.
  • the particle diameter D 50 is preferably 0.5 ⁇ m or more and 50 ⁇ m or less.
  • the particle diameter D 50 is 50 ⁇ m or less, it can be said that the particles are relatively fine even before the crushing treatment. Therefore, when the crushing treatment is performed, finer particles can be obtained.
  • the garnet-type compound is preferably represented by the following formula [1].
  • M1 is Al or Ga
  • M2 is Nb or Ta
  • x is a number satisfying 0 ⁇ x ⁇ 0.35
  • y is 0 ⁇ y ⁇ . It is a value that satisfies 1.0.
  • the garnet-type compound is a compound represented by the above formula [1]
  • the ionic conductivity can be increased. Therefore, it can be suitably used as a constituent member of a battery (particularly, a lithium ion secondary battery).
  • the particle size D 50 after the following crushing treatment is preferably 0.1 ⁇ m or more and 10 ⁇ m or less.
  • ⁇ Crushing process> 0.1 g of ceramic powder material is put into 40 mL of pure water, and homogenizer treatment is performed for 5 minutes under the following ⁇ crushing conditions> using an ultrasonic homogenizer manufactured by BRANSON: product name Digital Sonifier 250 type.
  • ⁇ Crushing conditions> Transmission frequency: 20kHz High frequency output: 200W Amplitude control: 40 ⁇ 5%
  • the particles are fine particles.
  • the conditions of the crushing treatment are relatively mild conditions.
  • the particle diameter D 50 after the crushing treatment is 10 ⁇ m or less, it can be said that the ceramic powder material has a property of being easily crushed into fine particles under mild conditions.
  • the method for producing a ceramic powder material according to the present invention is as follows.
  • the method for manufacturing the ceramic powder material The first step of mixing a solution of a carbonic acid species and a solution containing a compound containing La as a constituent element to obtain a solution containing a precipitate A, The second step of mixing the solution containing the precipitate A with the solution containing the zirconium carbonate complex to obtain the precipitate B.
  • the fourth step of preparing a mixture of the precursor oxide and the compound having Li as a constituent element is characterized by comprising a fifth step of calcining the mixture at a temperature of 500 ° C. or higher and 900 ° C. or lower to obtain a garnet-type compound.
  • a ceramic powder material having a pore volume of 0.4 mL / g or more can be suitably obtained.
  • the molded body according to the present invention is characterized in that it is obtained by crushing the ceramic powder material and then applying pressure.
  • the ceramic powder material can be easily crushed. Therefore, the molded body obtained by pressurizing the ceramic powder material after crushing it becomes a more precise molded body.
  • the sintered body according to the present invention is characterized in that it is obtained by sintering the molded body.
  • the sintered body obtained by sintering the molded body is dense.
  • the battery according to the present invention is characterized by having the sintered body.
  • the sintered body is dense, a battery having the sintered body (particularly, an all-solid-state lithium-ion secondary battery) is excellent as a battery.
  • a ceramic powder material having easy crushability Another object of the present invention is to provide a method for producing the ceramic powder material. Further, it is possible to provide a molded body obtained by using the ceramic powder material. Further, it is possible to provide a sintered body obtained by using the molded body. Further, it is possible to provide a battery having a sintered body obtained by sintering the ceramic powder material.
  • 6 is an SEM image of the ceramic powder material obtained in Example 1.
  • 6 is an SEM image of the ceramic powder material obtained in Comparative Example 1.
  • the ceramic powder material according to this embodiment is Contains garnet-type compounds containing Li, The pore volume is 0.4 mL / g or more and 1.0 mL / g or less.
  • the ceramic powder material according to this embodiment has a pore volume of 0.4 mL / g or more and 1.0 mL / g or less.
  • the pore volume is preferably 0.5 mL / g or more, more preferably 0.6 mL / g or more.
  • the pore volume is preferably 1.0 mL / g or less, more preferably 0.9 mL / g or less. Since the pore volume is 0.4 mL / g or more, it contains a relatively large amount of voids and can be said to be fragile. Therefore, it can be easily atomized without using a powerful crushing method.
  • the ceramic powder material preferably has an average pore diameter of 0.5 ⁇ m or more and 5 ⁇ m or less.
  • the average pore diameter is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more. Further, the average pore diameter is more preferably 4 ⁇ m or less.
  • the average pore diameter is 0.5 ⁇ m or more and 5 ⁇ m or less, it can be said that a large number of fine pores are present. Therefore, it can be atomized more easily.
  • the ceramic powder material preferably has a pore specific surface area of 0.6 m 2 / g or more and 3 m 2 / g or less.
  • the pore specific surface area is preferably 0.8 m 2 / g or more, more preferably 1.0 m 2 / g or more.
  • the specific surface area of the pores is preferably 2.5 m 2 / g or less, more preferably 2 m 2 / g or less.
  • the specific measurement method of the pore volume, the average pore diameter, and the pore specific surface area is based on the method described in Examples.
  • the pore volume, average pore diameter, and pore specific surface area described in the present specification are values measured by the mercury intrusion method.
  • the ceramic powder material preferably has a specific surface area of 0.5 m 2 / g or more and 2.5 m 2 / g or less.
  • the specific surface area is preferably 0.6 m 2 / g or more, and more preferably 0.7 m 2 / g or more.
  • the specific surface area is preferably 2 m 2 / g or less, more preferably 1.5 m 2 / g or less.
  • the specific surface area refers to the BET specific surface area.
  • the specific method for measuring the specific surface area is the method described in Examples.
  • the ceramic powder material preferably has a particle diameter D 10 of 0.2 ⁇ m or more and 10 ⁇ m or less.
  • the particle diameter D 10 is preferably 9 ⁇ m or less, more preferably 8 ⁇ m or less.
  • the smaller the particle size D 10 the more preferable, but for example, it is 0.5 ⁇ m or more, 0.8 ⁇ m or more, and the like.
  • the particle diameter D 10 is 10 ⁇ m or less, it can be said that the particles are relatively fine even before the crushing treatment. Therefore, when the crushing treatment is performed, finer particles can be obtained.
  • the ceramic powder material preferably has a particle diameter D 50 (median diameter) of 0.5 ⁇ m or more and 50 ⁇ m or less.
  • the particle size D 50 is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, still more preferably 3 ⁇ m or more.
  • the particle diameter D 50 is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less.
  • the ceramic powder material preferably has a particle diameter D 90 of 50 ⁇ m or more and 250 ⁇ m or less.
  • the particle size D 90 is preferably 75 ⁇ m or more, more preferably 90 ⁇ m or more.
  • the particle diameter D 90 is preferably 200 ⁇ m or less, more preferably 170 ⁇ m or less.
  • the ceramic powder material preferably has a mode diameter (mode diameter) of 1 ⁇ m or more and 30 ⁇ m or less.
  • the mode diameter is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more.
  • the mode diameter is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less.
  • the ceramic powder material preferably has an average diameter (volume-based average diameter) of 10 ⁇ m or more and 100 ⁇ m or less.
  • the average diameter is preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more.
  • the average diameter is preferably 80 ⁇ m or less, more preferably 60 ⁇ m or less.
  • the ceramic powder material preferably has an integrated fraction of 5% or more and 90% or less with a particle size of 10 ⁇ m or less.
  • the integrated fraction having a particle size of 10 ⁇ m or less is preferably 10% or more, more preferably 15% or more, still more preferably 20% or more.
  • the integrated fraction having a particle size of 10 ⁇ m or less is preferably 85% or less, more preferably 80% or less, further preferably 70% or less, particularly preferably 60% or less, and particularly preferably 50% or less.
  • the specific method for measuring the integrated fraction having a diameter of 10 ⁇ m or less is the method described in Examples.
  • the following integrated fractions are values measured on a volume basis.
  • the ceramic powder material preferably has a particle size D 50 after the following crushing treatment of 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the particle diameter D 50 after the crushing treatment is smaller than the particle diameter D 50 before the crushing treatment.
  • the particle size D 50 after the crushing treatment is preferably 0.5 ⁇ m or more, and more preferably 1 ⁇ m or more. Further, the particle diameter D 50 after the crushing treatment is more preferably 8 ⁇ m or less. When the particle diameter D 50 after the crushing treatment is 10 ⁇ m or less, it can be said that the particles are fine particles. Further, the conditions of the crushing treatment are relatively mild conditions.
  • the ceramic powder material has a property of being easily crushed into fine particles under mild conditions.
  • the specific method for measuring the particle size D 50 after the crushing treatment is the method described in Examples.
  • the particle size D 50 after the crushing treatment described in the present specification is a value measured on a volume basis.
  • ⁇ Crushing process> 0.1 g of ceramic powder material is put into 40 mL of pure water, and homogenizer treatment is performed for 5 minutes under the following ⁇ crushing conditions> using an ultrasonic homogenizer manufactured by BRANSON: product name Digital Sonifier 250 type.
  • the ceramic powder material preferably has an integrated fraction of 60% or more and 100% or less with a particle size of 10 ⁇ m or less after the following crushing treatment.
  • the integrated fraction having a particle size of 10 ⁇ m or less after the crushing treatment is preferably 70% or more, more preferably 80% or more.
  • the integrated fraction having a particle size of 10 ⁇ m or less after the crushing treatment is preferably 99.5% or less, more preferably 99% or less, further preferably 98% or less, and particularly preferably 97.5% or less.
  • the integrated fraction with a particle size of 10 ⁇ m or less after the crushing treatment is 60% or more, it can be said that the particles are fine particles. Further, the conditions of the crushing treatment are relatively mild conditions.
  • the integrated fraction with a particle size of 10 ⁇ m or less after the crushing treatment is 60% or more, it can be said that the ceramic powder material has a property of being easily crushed into fine particles under mild conditions. ..
  • the specific method for measuring the integrated fraction having a particle size of 10 ⁇ m or less after the crushing treatment is the method described in Examples.
  • the integrated fraction having a particle size of 10 ⁇ m or less after the crushing treatment described in the present specification is a value measured on a volume basis.
  • ⁇ Crushing process> 0.1 g of ceramic powder material is put into 40 mL of pure water, and homogenizer treatment is performed for 5 minutes under the following ⁇ crushing conditions> using an ultrasonic homogenizer manufactured by BRANSON: product name Digital Sonifier 250 type.
  • the ceramic powder material according to the present embodiment contains a garnet-type compound containing Li (hereinafter, also simply referred to as “garnet-type compound”).
  • the garnet-type compound is not particularly limited as long as it contains a Li atom and exhibits a crystal structure similar to that of garnet.
  • the content of the garnet-type compound in the ceramic powder material is preferably 50% by mass or more.
  • the content is more preferably 70% by mass or more, further preferably 90% by mass or more, and particularly preferably 95% by mass or more. ..
  • the pore volume of the ceramic powder material is likely to be 0.4 mL / g or more and 1.0 mL / g or less.
  • the garnet-type compound preferably contains one or more elements selected from the group consisting of aluminum, gallium, yttrium, cerium, calcium, barium, strontium, niobium, and tantalum.
  • the garnet-type compound contains one or more elements selected from the group consisting of aluminum, gallium, yttrium, cerium, calcium, barium, strontium, niobium, and tantalum
  • the characteristics of the ceramic powder material are required. It can be adjusted to the characteristics according to.
  • the garnet-type compound is preferably represented by the following formula [1].
  • M1 is Al or Ga
  • M2 is Nb or Ta
  • x is a number satisfying 0 ⁇ x ⁇ 0.35
  • y is 0 ⁇ y ⁇ . It is a value that satisfies 1.0.
  • the x is preferably larger than 0, more preferably 0.15 or more, still more preferably 0.20 or more. From the viewpoint of ionic conductivity, x is preferably smaller than 0.35, more preferably 0.3 or less, still more preferably 0.28 or less.
  • the y is preferably larger than 0, more preferably 0.2 or more, and further preferably 0.3 or more. From the viewpoint of ionic conductivity, y is preferably smaller than 1.0, more preferably 0.8 or less, still more preferably 0.6 or less.
  • the garnet-type compound is a compound represented by the above formula [1]
  • the ionic conductivity can be increased. Therefore, it can be suitably used as a constituent member of a battery (particularly, a lithium ion secondary battery).
  • the ceramic powder material may contain a compound other than the garnet-type compound.
  • the compound other than the garnet-type compound include a garnet-type compound containing no Li.
  • the method for producing a ceramic powder material is A method for producing a ceramic powder material containing a garnet-type compound containing Li and having a pore volume of 0.4 mL / g or more and 1.0 mL / g or less.
  • the first step of mixing a solution of a carbonic acid species and a solution containing a compound containing La as a constituent element to obtain a solution containing a precipitate A The second step of mixing the solution containing the precipitate A with the solution containing the zirconium carbonate complex to obtain the precipitate B.
  • a solution of carbonic acid species and a solution containing a compound containing La as a constituent element are mixed to form a precipitate which is a carbonate of La (hereinafter, “lantern carbonate”). Also called “compound”).
  • the carbonic acid species refers to at least one of carbonic acid (H 2 CO 3 ), hydrogen carbonate ion ( HCO 3- ) and carbonate ion (CO 3-2- ).
  • Examples of the carbonated solution include a solution of a compound containing a carbonate.
  • Examples of the compound containing a carbonate include ammonium hydrogencarbonate, lithium hydrogencarbonate, tetramethylammonium hydrogencarbonate, ammonium carbonate, carbonic acid gas and the like. These can be used alone or in any combination of two or more.
  • Examples of the compound having La as a constituent element include a water-soluble salt of the element La.
  • Examples of the water-soluble salt of the element La include lanthanum nitrate, lanthanum acetate, lanthanum chloride, and hydrates thereof.
  • the compounds listed above can be used alone or in any combination of two or more kinds and dissolved in pure water or the like to obtain an aqueous solution in which the La source is dissolved.
  • the La source may be in a solid state or a solution state.
  • the solvent of the La source may be water alone or a mixed solvent of water and an organic solvent such as alcohol, but the organic solvent may be used in the entire production. From the viewpoint of non-use, water alone is preferable. That is, when the La source is in the form of a solution, it is preferably an aqueous solution.
  • the pH of the aqueous solution may be adjusted by using an acid such as nitric acid or hydrochloric acid.
  • a compound having one or more elements selected from the group consisting of aluminum, gallium, yttrium, cerium, calcium, barium, strontium, niobium, and tantalum as constituent elements (hereinafter, "element M”).
  • element M a compound having one or more elements selected from the group consisting of aluminum, gallium, yttrium, cerium, calcium, barium, strontium, niobium, and tantalum as constituent elements
  • a compound having Nb as a constituent element, a compound having Ta as a constituent element, a compound having Al as a constituent element, and a compound having Ga as a constituent element are preferable from the viewpoint of increasing the ionic conductivity.
  • Examples of the M 0 source include water-soluble salts of the element M 0 .
  • Examples of the water-soluble salt of the element M 0 include nitrates, acetates, chlorides, oxides, hydroxides, oxalates, ammonium salts and the like of the element M 0 .
  • the compounds listed above can be used alone or in any combination of two or more kinds and dissolved in pure water or the like to obtain an aqueous solution in which an M0 source is dissolved.
  • the M0 source may be dissolved in the solution of the La source.
  • the M 0 source When the M 0 source is dissolved in the carbonated solution, the M 0 source may be previously dissolved in the carbonated solution and then mixed with the La source or the like.
  • ⁇ Second step> the solution containing the precipitate A (lanthanum carbonate compound) is mixed with the solution containing the zirconium carbonate complex to obtain the precipitate B.
  • the surface of the precipitate (lanthanum carbonate compound) can be uniformly coated with the Zr component.
  • the solution containing the zirconium carbonate complex can be prepared by mixing at least a compound containing a carbonic acid species and a compound containing a zirconium species (Zr species).
  • Examples of the compound containing carbonic acid species include ammonium hydrogencarbonate, lithium hydrogencarbonate, tetramethylammonium hydrogencarbonate, ammonium carbonate, carbonic acid gas and the like. These can be used alone or in any combination of two or more.
  • the Zr species means zirconium or zirconium ion.
  • the compound containing the above Zr species is also referred to as "Zr source”.
  • the solution containing the zirconium carbonate complex can also be prepared using a compound having both a carbonate type and a Zr type.
  • Such a compound having both carbonic acid species and Zr species can be treated as a compound containing carbonic acid species as well as a Zr source.
  • the molar ratio of the carbonic acid species to the zirconium species is within the range of 1.5 or more and 15.0 or less. It is preferable to mix the compound containing the carbonic acid species with the Zr source so as to be. This mixing may be carried out by mixing the two in a solid state and then dispersing them in a solvent, or by mixing the solutions of each other. In addition, when preparing using a compound having both carbonic acid species and Zr species, it can be prepared by dissolving this compound in a solvent.
  • the value of the above-mentioned molar ratio [number of moles of carbonic acid species / number of moles of zirconium species] is within the range of 1.5 or more and 15.0 or less, preferably 2.0 or more and 14.0 or less.
  • the type of the compound having both carbonic acid type and Zr type may be selected.
  • “Number of moles of carbonic acid species / number of moles of zirconium species” refers to the number of moles of carbonic acid species contained in all the raw materials used for preparing the solution of the zirconium carbonate complex. , Is defined as a value divided by the number of moles of Zr element contained in the Zr source (number of moles of carbonic acid species / number of moles of zirconium species). It is taken into consideration that the carbonated seeds and the NR 4+ seeds described later may be slightly volatilized from the finally prepared aqueous solution to cause a change in concentration . When crystals of zirconium ammonium carbonate, basic zirconium carbonate, or the like is used as the Zr source, the number of moles of carbonic acid species contained therein is also taken into consideration in the above molar ratio.
  • the carbonate coordinates with zirconium (IV) ions.
  • the carbonic acid species is CO 3 2-
  • (OH) 2 (CO 3 ) 6 ] It is considered to form 6- and the like. In this way, a solution containing the zirconium carbonate complex is obtained.
  • a solution containing a zirconium carbonate complex can be obtained by forming the above complex ion.
  • information on the coordination number, coordination distance, and local structure obtained by extended X-ray absorption fine structure (EXAFS) measurement, Raman spectroscopic measurement, nuclear magnetic resonance (NMR) measurement, etc. is analyzed. It can be confirmed by doing.
  • the above molar ratio [number of moles of carbonic acid species / number of moles of zirconium species] is more preferably 3.0 or more and 7.0 or less, and in this case, a more stable zirconium carbonate complex is formed.
  • At least one of the counter cations of the zirconium carbonate complex ion is set to NR 4+ .
  • R is at least one substituent selected from the group consisting of H, CH 3 and CH 2 CH 2 OH, and each R may be all the same, or all or part of it. It may be different. The coexistence of such NR 4+ cations allows the zirconium carbonate complex ion to exist more stably in solution.
  • NR 4+ examples include ammonium ion (NH 4 + ) , tetramethylammonium ion ((CH 3 ) 4 N + ), and 2 -hydroxyethyltrimethylammonium ion ((CH 3 ) 3 N (CH 2 CH 2 ). OH) + ) and the like, but are not limited to these.
  • ammonium ion ( NH 4+ ) is preferable as the NR 4+ from the viewpoint that the raw material is inexpensive.
  • a material capable of giving NR 4+ to the solution may be added . ..
  • Materials that can give NR 4+ to the solution include ammonium hydroxide (NH 4 OH, aqueous ammonia), tetramethylammonium hydroxide ((CH 3 ) 4 N (OH)), and choline hydroxide ((CH 3 )). ) 3 N (CH 2 CH 2 OH) (OH)) and the like, but are not limited thereto. These can be used alone or in any combination of two or more. Further, any one or more of ammonium hydrogen carbonate, tetramethylammonium hydrogen carbonate, ammonium carbonate and the like may be used in combination as the material capable of giving the above NR 4+ to the solution .
  • a compound containing a carbonate and a compound other than the Zr source for example, a chelating agent may be added as long as the formation of the zirconium carbonate complex is not inhibited.
  • the presence of the chelating agent improves the stability of the aqueous solution of the zirconium carbonate complex and can suppress the consumption of Zr due to the self-hydrolysis reaction.
  • the chelating agent include ethanolamines such as monoethanolamine, diethanolamine and triethanolamine, organic acids such as tartrate acid, citric acid, lactic acid, gluconic acid and glycolic acid, or salts of ethanolamines and organic acids. Can be mentioned. These can be used alone or in combination of two or more.
  • the molar ratio of chelating agent to zirconium (chelating agent / Zr) can be 0.01 to 1.
  • the pH of the solution containing the zirconium carbonate complex is preferably 7.0 or more and 9.5 or less.
  • a precipitate can be efficiently formed with an acidic aqueous solution.
  • the pH is 9.5 or less, the concentration of free hydroxide ions present in the solution of the zirconium carbonate complex becomes sufficiently low, and it is possible to suppress the formation of a precipitate as a hydroxide. ..
  • the pH can be adjusted by the mixing ratio of various raw materials for preparing a solution of the zirconium carbonate complex and the amount of the solvent, and the pH may be adjusted by adding a pH adjuster or the like.
  • the pH of the solution containing the precipitate B it is preferable to adjust the pH of the solution containing the precipitate B so as to be within the range of 9.0 or more and 11.0 or less.
  • Ammonia water, an aqueous sodium hydroxide solution, or the like can be used to adjust the pH.
  • the pH is 9.0 or higher, the elution of Zr can be further suppressed.
  • the pH is 11.0 or less, the elution of La can be further suppressed.
  • the pH can be adjusted by the mixing ratio of various raw materials for preparing the solution containing the precipitate B and the amount of the solvent, and the pH may be adjusted by adding aqueous ammonia or the like.
  • the precipitate B may be prepared, the pH may be adjusted as necessary, and then heating may be performed in the range of 90 to 200 ° C.
  • the heating time is preferably 30 to 60 minutes.
  • the precipitate B is calcined at a temperature of 500 ° C. or higher and 900 ° C. or lower to obtain a precursor oxide.
  • the firing holding time is preferably 1 to 15 hours.
  • a mixture of the precursor oxide and a compound having Li as a constituent element is prepared.
  • the mixture may be crushed.
  • the pore volumes in the obtained ceramic powder material are the same regardless of whether the mixture is pulverized or not pulverized. That is, crushing the mixture is not essential. In the examples described later, the mixture is crushed in order to obtain an SEM image as shown in FIG.
  • Li source examples include lithium oxide, lithium hydroxide, lithium chloride, lithium carbonate, lithium hydrogencarbonate, lithium nitrate, lithium sulfate, lithium acetate, and lithium citrate.
  • Li 3 C 6 H 5 O 7 lithium oxalate
  • Li 2 (COO) 2 lithium oxalate
  • the present invention is not limited thereto.
  • Li salts listed above they may be hydrates.
  • the mixture is fired at a temperature of 500 ° C. or higher and 900 ° C. or lower to obtain a garnet-type compound. Firing can be performed, for example, in an atmospheric atmosphere.
  • the firing temperature is preferably 600 ° C. or higher, more preferably 700 ° C. or higher.
  • the firing temperature is preferably 850 ° C. or lower, more preferably 800 ° C. or lower.
  • the firing holding time is preferably 1 to 15 hours.
  • the obtained fired product is a ceramic powder material containing a garnet-type compound.
  • the obtained ceramic powder material can be in the form of particles. It can be confirmed by scanning electron microscope observation that the ceramic powder material which is the obtained calcined product is in the form of particles.
  • the ceramic powder material achieves a pore volume of 0.4 mL / g or more by containing a garnet-type compound prepared from a precursor oxide having suppression of grain growth and aggregation of about 5 to 15 ⁇ m. be able to.
  • a method for coarsening the precipitate A (lantern salt) forming the skeleton of the precursor oxide to some extent in the first step can be mentioned.
  • the speed at which the La source is added to the carbonic acid seed solution is increased, the stirring speed is decreased, the concentration of the La source solution is increased, and the temperature at the time of adding the La source is adjusted. Examples include increasing the concentration on the basic solution side and increasing the concentration.
  • the rate at which the La source is added is set to 5 to 10 g / min with respect to 100 mL of the carbonate solution, the concentration of the La source solution is set to 10 to 20% by mass, and the La source is added.
  • Examples include setting the hourly temperature to 40 to 90 ° C., setting the concentration on the basic solution side to 10 to 20% by mass, and the like.
  • the surface of the precipitate A (lanthanum salt) is uniformly coated with the Zr element in the second step.
  • relatively mild conditions are preferable.
  • the timing of adding the solution containing the zirconium carbonate complex to the precipitate A, the temperature at the time of addition, the temperature rise at the time of addition, aging, adjusting the pH and the like can be mentioned.
  • the temperature at which the solution containing the zirconium carbonate complex is added to the precipitate A is set to 40 to 90 ° C.
  • the aging time after the temperature rise is set to 30 to 180 minutes
  • the pH is set to 9 to 90.
  • it is set in the range of 11.
  • the molded body according to the present embodiment is obtained by crushing the ceramic powder material and then pressurizing the material.
  • the ceramic powder material can be easily crushed. Therefore, the molded body obtained by pressurizing the ceramic powder material after crushing it becomes a more precise molded body.
  • the ceramic powder material has a pore volume of 0.4 mL / g or more and 1.0 mL / g or less, and can be easily atomized without using a powerful crushing method. Therefore, it is preferable that the crushing conditions are relatively mild.
  • the crushing conditions may be, for example, a ball mill, a vibration mill, or the like.
  • the molding pressure is not particularly limited and may be 0.5 t / cm 2 or more and 5 t / cm 2 or less, 0.8 t / cm 2 or more and 2 t / cm 2 or less.
  • crushed ceramic powder material When molding the crushed ceramic powder material, a commercially available mold molding machine or cold isotropic pressure pressurization method (CIP) can be adopted. Further, once the crushed ceramic powder material is temporarily molded by a mold molding machine, it may be main-molded by press molding such as CIP.
  • CIP cold isotropic pressure pressurization method
  • a binder may be added to improve the moldability, if necessary.
  • an organic binder is preferable. Since the organic binder can be easily removed from the molded body in an oxidizing atmosphere heating furnace and a degreased body can be obtained, impurities are less likely to remain in the sintered body in the end.
  • the organic binder include those that are soluble in alcohol, or those that are soluble in a mixed solution of two or more selected from the group consisting of alcohol, water, aliphatic ketones and aromatic hydrocarbons. ..
  • organic binder examples include at least one selected from the group consisting of polyethylene glycol, glycol fatty acid ester, glycerin fatty acid ester, polyvinyl butyral, polyvinyl methyl ether, polyvinyl ethyl ether and vinyl propionate.
  • the organic binder may further contain one or more thermoplastic resins that are insoluble in alcohol or the mixture.
  • the sintered body according to the present embodiment is obtained by sintering the molded body.
  • the heat treatment temperature and time at the time of sintering are not particularly limited, but are preferably about 950 to 1300 ° C. for about 1 to 5 hours.
  • the density of the sintered body is preferably 4.6 g / cm 3 or more and 5.5 g / cm 3 or less.
  • the density is more preferably 4.8 g / cm 3 or more, still more preferably 5.0 g / cm 3 or more.
  • the density is more preferably 5.3 g / cm 3 or less, still more preferably 5.2 cm 3 or less.
  • the lithium ion conductivity of the sintered body at a measured temperature of 30 ° C. is preferably 1 ⁇ 10 -5 S / cm or more and 3 ⁇ 10 -3 S / cm or less.
  • the lithium ion conductivity is more preferably 7 ⁇ 10 -5 S / cm or more, still more preferably 1 ⁇ 10 -4 S / cm or more.
  • the activation energy (Ea) of lithium ion conduction of the sintered body is preferably 42 kJ / mol or less.
  • the activation energy (Ea) of the lithium ion conduction is more preferably 38 kJ / mol or less, and further preferably 34 kJ / mol or less.
  • the all-solid-state lithium-ion secondary battery of this embodiment is A positive electrode layer containing a positive electrode active material and Negative electrode layer containing negative electrode active material and A solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer is provided. Then, at least one layer of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer includes the sintered body.
  • the positive electrode layer is a layer containing at least a positive electrode active material, and may further contain at least one of a lithium ion conductive material, an electron conduction aid, and a binder, if necessary.
  • the lithium ion conductive material contained in the positive electrode layer is preferably a sintered body obtained by sintering the above ceramic powder material.
  • the content of the sintered body in the positive electrode layer is not particularly limited, but can be, for example, in the range of 0.1% by volume to 80% by volume with respect to the entire positive electrode layer. Of these, it is preferably in the range of 1% by volume to 60% by volume, and more preferably in the range of 10% by volume to 50% by volume.
  • the thickness of the positive electrode layer is not particularly limited, but is preferably in the range of, for example, 0.1 ⁇ m to 1000 ⁇ m. If the positive electrode layer is thinner than 0.1 ⁇ m, it is difficult to increase the capacity of the all-solid-state lithium-ion secondary battery, and if the thickness exceeds 1000 ⁇ m, it is difficult to form a homogeneous layer.
  • the positive electrode active material is not particularly limited as long as it is a material capable of storing and releasing electrochemical Li ions, but from the viewpoint of increasing the capacity of the all-solid-state lithium ion secondary battery, sulfur and lithium sulfide having a large theoretical capacity ( It is preferable to use Li 2S ). Further, a Li-containing oxide material may be used from the viewpoint of increasing the operating voltage of the all-solid-state lithium-ion secondary battery.
  • Layered rock salt oxides such as LiMn 2 O 4 , Li (Ni 0.5 Mn 1.5 ) O 4 and other spinel oxides, LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCuPO 4 and other olivine phosphates. Salts, silicates such as Li 2 FeSiO 4 , Li 2 MnSiO 4 , and the like can be used.
  • the positive electrode active material the above-mentioned materials may be used alone, or may be used in any combination of two or more.
  • the content of the positive electrode active material in the positive electrode layer is preferably in the range of, for example, 10% by volume to 99% by volume with respect to the entire positive electrode layer. More preferably, it is in the range of 20% by volume to 99% by volume.
  • the shape of the positive electrode active material may be, for example, a particle shape.
  • the average particle size is preferably in the range of, for example, 0.05 ⁇ m to 50 ⁇ m.
  • the positive electrode layer may further contain at least one of an electron conduction aid and a binder in addition to the positive electrode active material and the lithium ion conductive material.
  • an electron conduction aid a material having high electron conductivity is preferable, and examples thereof include acetylene black, ketjen black, and carbon fiber.
  • the binder for example, polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl alcohol, polyvinyl acetate, polymethylmethacrylate, polyethylene and the like can be used.
  • the positive electrode layer can be produced by mixing and molding the constituent components (the above-mentioned positive electrode active material, lithium ion conductive material, electron conduction aid, binder, etc.). At this time, sintering may be performed if necessary.
  • the method for mixing the constituents of the positive electrode layer is not particularly limited, and any general powder technique can be used. At this time, water or any organic solvent may be used as the dispersion solvent.
  • the method for molding and sintering the mixture of the constituent components of the positive electrode layer is not particularly limited, and generally known molding and sintering methods can be used. Further, the positive electrode layer may be formed on the solid electrolyte layer.
  • the sintering of the positive electrode layer can be performed in the form of integral sintering with the solid electrolyte layer.
  • integral sintering one of the "lithium ion conductive material constituting the solid electrolyte layer" or the “mixture of the constituent components of the positive electrode layer” is molded, and the other is molded on the other, if necessary. This is a method of sintering after pressing.
  • the positive electrode current collector that collects current from the positive electrode layer can be provided, for example, on the surface of the positive electrode layer opposite to the surface on which the solid electrolyte layer is arranged.
  • Examples of the material of the positive electrode current collector include stainless steel, aluminum, nickel, iron and carbon. Of these, stainless steel is preferable.
  • the negative electrode layer is a layer containing at least a negative electrode active material, and may further contain at least one of a lithium ion conductive material, an electron conduction aid, and a binder, if necessary.
  • the lithium ion conductive material contained in the negative electrode layer is preferably the above-mentioned sintered body (sintered body obtained by sintering the above-mentioned ceramic powder material).
  • the content of the sintered body in the negative electrode layer is not particularly limited, but can be, for example, in the range of 0.1% by volume to 80% by volume with respect to the entire negative electrode layer. Of these, it is preferably in the range of 1% by volume to 60% by volume, and more preferably in the range of 10% by volume to 50% by volume.
  • the thickness of the negative electrode layer is not particularly limited, but is preferably in the range of, for example, 0.1 ⁇ m to 1000 ⁇ m.
  • the negative electrode active material is not particularly limited as long as it is a material capable of storing and releasing electrochemical Li ions, but from the viewpoint of increasing the capacity of the all-solid-state lithium ion secondary battery, a metal material having a large theoretical capacity should be used. Is preferable. Examples of the metal material include metals such as Li, Si, Sn, and In, and alloys thereof. Of these, the metal Li is preferable because it has the largest theoretical capacity. Further, a Ti-based material such as titanium oxide or lithium titanate, which is excellent in reversible operation of the battery, may be used. Specific examples of the Ti-based material include TIO 2 , H 2 Ti 12 O 25 , Li 4 Ti 5 O 12 and the like. Furthermore, inexpensive carbon-based materials can also be used.
  • the carbon-based material examples include natural graphite, artificial graphite, non-graphitizable carbon, and easily graphitized carbon.
  • the negative electrode active material the above-mentioned materials may be used alone, or may be used in any combination of two or more.
  • the content of the negative electrode active material in the negative electrode layer is preferably in the range of, for example, 10% by volume to 99% by volume with respect to the entire negative electrode layer. More preferably, it is in the range of 20% by volume to 99% by volume.
  • the shape of the negative electrode active material may be, for example, a particle shape, a foil shape, a film shape, or the like. When the shape of the negative electrode active material is a particle shape, the average particle size thereof is preferably in the range of, for example, 0.05 ⁇ m to 50 ⁇ m.
  • the negative electrode layer may further contain at least one of an electron conduction aid and a binder in addition to the negative electrode active material and the lithium ion conductive material.
  • an electron conduction aid and the binder those used for the positive electrode layer described above can be used in the same manner.
  • the negative electrode layer can be produced by mixing and molding the constituent components (the above-mentioned negative electrode active material, lithium ion conductive material, electron conduction aid, binder, etc.). At this time, sintering may be performed if necessary.
  • the method for mixing the constituents of the negative electrode layer is not particularly limited, and any general powder process can be used. At this time, water or any organic solvent may be used as the dispersion solvent. Further, the method for molding and sintering the mixture of the constituent components of the negative electrode layer is not particularly limited, and generally known molding and sintering methods can be used.
  • the negative electrode layer may be formed by the above-mentioned method for forming the negative electrode layer, but the negative electrode active material itself may be regarded as the negative electrode layer by itself. .. Further, the negative electrode layer may be formed on the solid electrolyte layer.
  • the sintering of the negative electrode layer can be performed in the form of integral sintering with the solid electrolyte layer.
  • integral sintering one of the "lithium ion conductive material constituting the solid electrolyte layer described later" or the “mixture of the constituent components of the negative electrode layer" is first molded, and then the other is molded and baked. It is a method of making a conclusion.
  • the negative electrode current collector that collects current from the negative electrode layer can be provided, for example, on the surface of the negative electrode layer opposite to the surface on which the solid electrolyte layer is arranged.
  • Examples of the material of the negative electrode current collector include stainless steel, copper, nickel, carbon and the like. Of these, stainless steel is preferable.
  • the solid electrolyte layer is a layer interposed between the positive electrode layer and the negative electrode layer, and is a layer made of a lithium ion conductive material.
  • the lithium ion conductive material contained in the solid electrolyte layer is not particularly limited as long as it has lithium ion conductivity.
  • the lithium ion conductive material contained in the solid electrolyte layer is preferably the above-mentioned sintered body (sintered body obtained by sintering the above-mentioned ceramic powder material).
  • the content of the sintered body in the solid electrolyte layer is not particularly limited as long as the electron conductivity can be sufficiently suppressed, but is preferably in the range of, for example, 50% by volume to 100% by volume.
  • the solid electrolyte layer may also contain a lithium ion conductive material other than the sintered body.
  • a lithium ion conductive material other than the sintered body.
  • the thickness of the solid electrolyte layer is not particularly limited as long as it can prevent a short circuit of the all-solid-state lithium ion secondary battery, but can be, for example, in the range of 0.1 ⁇ m to 1000 ⁇ m. Of these, it is preferably in the range of 0.1 ⁇ m to 300 ⁇ m.
  • the solid electrolyte layer can be produced by molding and sintering the above-mentioned lithium ion conductive material.
  • the method for forming and sintering the lithium ion conductive material constituting the solid electrolyte layer is not particularly limited, and generally known methods for forming and sintering can be used.
  • the sintering temperature is not particularly limited, but for example, when the lithium ion conductive material is the above-mentioned ceramic powder material, the temperature is preferably in the range of 700 to 1200 ° C, and is preferably in the range of 700 to 1100 ° C. Is more preferable, and a temperature in the range of 700 to 1000 ° C. is further preferable.
  • the sintering density of the solid electrolyte layer is preferably 60% or more, more preferably 70% or more, still more preferably 80% or more, still more preferably 90% or more with respect to the theoretical density. This is because the higher the sintering density, the more the resistance can be suppressed.
  • sintering the solid electrolyte layer it is preferable to integrally sinter with at least one of the above-mentioned positive electrode layer or negative electrode layer. This is because the resistance at the layer interface can be reduced by integral sintering.
  • composition of all-solid-state lithium-ion secondary battery The shape of the all-solid-state lithium-ion secondary battery can be, for example, a coin type, a laminated type, a cylindrical type, a square type, or the like.
  • the method for manufacturing the all-solid-state lithium-ion secondary battery of the present embodiment is not particularly limited as long as it is a method capable of constructing the above-mentioned all-solid-state lithium-ion secondary battery, and is not particularly limited. A method similar to the method for manufacturing a battery can be used.
  • the all-solid-state lithium-ion secondary battery of the present embodiment is manufactured by laminating the positive electrode layer, the solid electrolyte layer, and the negative electrode layer described above in this order.
  • the all-solid-state lithium-ion secondary battery of the present embodiment by containing the above-mentioned sintered body, the internal resistance of the battery is suppressed due to the high lithium ion conductivity of the garnet-type compound, and the rate characteristics and the like are deteriorated. Battery performance is improved. Further, since the ceramic powder material is in the form of fine particles, the contact interface with the electrode active material can be sufficiently secured by being contained in the electrode layer. Therefore, the ion conduction path to the electrode active material is well constructed, and the proportion of the electrode active material that cannot contribute to the battery reaction is reduced, so that the energy density of the battery is improved.
  • the ceramic powder material is used for an all-solid-state lithium-ion secondary battery.
  • the battery according to the present invention is not limited to the all-solid-state lithium-ion secondary battery as long as it has a sintered body obtained by sintering the ceramic powder material.
  • the maximum value and the minimum value of the content of each component shown in the following examples should be considered as the preferable minimum value and the preferable maximum value of the present invention regardless of the content of other components. Further, the maximum and minimum values of the measured values shown in the following examples should be considered to be preferable minimum and maximum values of the present invention regardless of the content (composition) of each component.
  • Li 2 CO 3 Made by High Purity Chemical Laboratory La (OH) 3 : Made by High Purity Chemical Laboratory ZrO 2 : Made by Daiichi Rare Element Chemical Industry Co., Ltd., Product name "UEP” Nb 2 O 5 : Made by CBMM
  • the compound containing zirconium usually contains a hafnium component as an unavoidable component.
  • Hafnium is contained in the above raw materials and the ceramic powder materials obtained in the following Examples and Comparative Examples at a ratio of 0.03 as a molar ratio (number of moles of Hf / number of moles of Zr) to zirconium.
  • the hafnium component is not observed as an impurity compound, and it is considered that the hafnium component exists at the zirconium position in the crystal structure. Therefore, in the following Examples and Comparative Examples, the Zr concentration is expressed as the sum of the concentrations of zirconium and hafnium unless otherwise specified. Further, Zr in the composition ratio means the sum of zirconium and hafnium.
  • Example 1 [Ceramic powder material production] (Example 1) ⁇ Preparation of precursor oxide> 50.0 g of ammonium hydrogen carbonate was dissolved in 200 g of water, and 50.32 g of an aqueous solution of niobium ammonium oxalate was added. Then, while keeping the temperature at 40 ° C., 84.19 g of an aqueous solution of lanthanum nitrate was added dropwise at a rate of 8.5 g / min to obtain a precipitate A (first step).
  • Example 2 ⁇ Preparation of precursor oxide> 50.0 g of ammonium hydrogen carbonate was dissolved in 200 g of water. A mixed solution of 83.28 g of an aqueous solution of lanthanum nitrate and 2.16 g of an aqueous solution of aluminum nitrate was added dropwise thereto at a rate of 8.5 g / min to obtain a precipitate A (first step). Then, 58.87 g of an aqueous zirconium carbonate solution was added dropwise to the obtained precipitate A at a rate of 0.5 g / min to obtain a slurry containing the precipitate B (second step).
  • the pH was adjusted with aqueous ammonia so that the pH was within the range of 9.5 to 10, and then heated at 90 ° C. for 180 minutes.
  • the slurry containing the obtained precipitate B was suction-filtered, the filter was washed with pure water, water was removed, and the precipitate B was separated from the slurry.
  • the obtained precipitate B was calcined at 750 ° C. for 5 hours to obtain a precursor oxide (third step).
  • ⁇ Preparation of garnet-type compound> The precursor oxide and 8.80 g of lithium hydroxide monohydrate were pulverized and mixed by a ball mill (fourth step). Then, it was calcined at 800 degreeC for 3 hours (fifth step) to obtain a garnet-type compound. This garnet-type compound was used as the ceramic powder material according to Example 2.
  • Example 3 ⁇ Preparation of precursor oxide> 50.0 g of ammonium hydrogen carbonate was dissolved in 200 g of water. A mixed solution of 83.74 g of an aqueous solution of lanthanum nitrate and 2.25 g of an aqueous solution of aluminum nitrate was added dropwise thereto at a rate of 8.5 g / min to obtain a precipitate A (first step). Then, 59.20 g of an aqueous zirconium carbonate solution was added dropwise to the obtained precipitate A at a rate of 0.5 g / min to obtain a slurry containing the precipitate B (second step).
  • the pH was adjusted with aqueous ammonia so that the pH was within the range of 9.5 to 10, and then heated at 90 ° C. for 180 minutes.
  • the slurry containing the obtained precipitate B was suction-filtered, the filter was washed with pure water, water was removed, and the precipitate B was separated from the slurry.
  • the obtained precipitate B was calcined at 750 ° C. for 5 hours to obtain a precursor oxide (third step).
  • ⁇ Preparation of garnet-type compound> The precursor oxide and 8.39 g of lithium hydroxide monohydrate were pulverized and mixed by a ball mill (fourth step). Then, it was calcined at 800 degreeC for 3 hours (fifth step) to obtain a garnet-type compound. This garnet-type compound was used as the ceramic powder material according to Example 3.
  • Example 4 ⁇ Preparation of precursor oxide> 50.0 g of ammonium hydrogen carbonate was dissolved in 200 g of water. A mixed solution of 82.69 g of a lanthanum nitrate aqueous solution and 5.53 g of a gallium nitrate aqueous solution was added dropwise thereto at a rate of 8.5 g / min to obtain a precipitate A (first step). Then, 58.46 g of an aqueous zirconium carbonate solution was added dropwise to the obtained precipitate A at a rate of 0.5 g / min to obtain a slurry containing the precipitate B (second step).
  • the pH was adjusted with aqueous ammonia so that the pH was within the range of 9.5 to 10, and then heated at 90 ° C. for 180 minutes.
  • the slurry containing the obtained precipitate B was suction-filtered, the filter was washed with pure water, water was removed, and the precipitate B was separated from the slurry.
  • the obtained precipitate B was calcined at 750 ° C. for 5 hours to obtain a precursor oxide (third step).
  • ⁇ Preparation of garnet-type compound> The precursor oxide and 8.32 g of lithium hydroxide / monohydrate were pulverized and mixed by a ball mill (fourth step). Then, it was calcined at 800 degreeC for 3 hours (fifth step) to obtain a garnet-type compound. This garnet-type compound was used as the ceramic powder material according to Example 4.
  • Example 5 ⁇ Preparation of precursor oxide> 50.0 g of ammonium hydrogen carbonate was dissolved in 200 g of water. 59.27 g of an aqueous solution of lanthanum nitrate was added dropwise thereto at a rate of 8.5 g / min to obtain a precipitate A (first step). Then, 33.57 g of an aqueous zirconium carbonate solution was added dropwise to the obtained precipitate A at a rate of 0.5 g / min to obtain a slurry containing the precipitate B (second step). Next, the pH was adjusted with aqueous ammonia so that the pH was within the range of 9 to 11, and then heated at 90 ° C. for 180 minutes.
  • the slurry containing the obtained precipitate B was suction-filtered, the filter was washed with pure water, water was removed, and the precipitate B was separated from the slurry.
  • the obtained precipitate B was calcined at 800 ° C. for 5 hours to obtain a precursor oxide (third step).
  • ⁇ Preparation of garnet-type compound> The precursor oxide, 6.59 g of lithium hydroxide monohydrate and 2.01 g of tantalum pentoxide were pulverized and mixed by a ball mill (fourth step). Then, it was calcined at 800 degreeC for 3 hours (fifth step) to obtain a garnet-type compound. This garnet-type compound was used as the ceramic powder material according to Example 5.
  • Comparative Example 1 17.26 g of Li 2 CO 3 , 40.76 g of La (OH) 3 , 13.67 g of ZrO 2 and 4.75 g of Nb 2 O 5 are weighed and weighed in ethanol with a planetary ball mill (300 rpm / zirconia). It was mixed and crushed with a ball) for 1 hour. The mixed powder was separated from the bowl and ethanol and dried at 90 ° C. for 24 hours. Then, it was calcined in an Al 2 O 3 crucible at 950 ° C. for 1 hour in an air atmosphere to obtain the compound of Comparative Example 1. This compound was used as the ceramic powder material according to Comparative Example 1.
  • FIG. 1 shows an SEM image of the ceramic powder material obtained in Example 1
  • FIG. 2 shows an SEM image of the ceramic powder material obtained in Comparative Example 1.
  • the black portion of the background is the carbon tape used for fixing the powder material, and the ceramic powder material does not exist.
  • Example 1 As shown in FIG. 1, it was confirmed that the ceramic powder material of Example 1 had many voids and low density particles. On the other hand, it was confirmed that the ceramic powder material of Comparative Example 1 was high-density particles without voids.
  • a pore distribution was obtained by a mercury intrusion method using a pore distribution measuring device (“Autopore IV 9500” manufactured by Micromeritics). The measurement conditions were as follows. As a pretreatment for measurement, the ceramic powder material was dried under reduced pressure at 200 ° C. for 3 hours.
  • Measuring device Pore distribution measuring device (Micromeritics Autopore IV9500) Sampling amount: 0.5-0.7 g Measurement range: 0.0036 to 10.3 ⁇ m Number of measurement points: 120 points Mercury contact angle: 140 degrees Mercury surface tension: 480 dyne / cm Measurement temperature: 25 ° C Measurement pressure: 0.0155 to 27.46 MPa
  • the ceramic powder material of this example can be atomized by the crushing treatment under relatively mild conditions as described above, but for reference, a powerful crushing (crushing) method is used below.
  • the value measured by the particle diameter D 50 when the ceramic powder material of Example 1 is crushed (crushed) is shown below.
  • Example 1 [Measurement of particle size after strong crushing (crushing) treatment (reference)]
  • the sample of Example 1 was crushed under the following ⁇ crushing condition 2>. After that, the particle size was measured in the same manner as the measurement of the particle size before the crushing treatment. As a result, the particle size D 50 of the sample of Example 1 crushed under the crushing condition 2 was 0.27 ⁇ m.
  • ⁇ Crushing condition 2> The sample obtained in Example 1 was pulverized using a bead mill.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Liを含むガーネット型化合物を含み、細孔容積が、0.4mL/g以上1.0mL/g以下であるセラミックス粉末材料。

Description

セラミックス粉末材料、セラミックス粉末材料の製造方法、成型体、焼結体、及び、電池
 本発明は、セラミックス粉末材料、セラミックス粉末材料の製造方法、成型体、焼結体、及び、電池に関する。
 ガーネットは化学組成M2+ 3+ Si12(M2+=Mg、Ca、Mn、Fe、M3+=Al、Cr、Fe)で表される立方晶系のケイ酸塩鉱物である。また、ガーネットと同様の結晶構造を示すガーネット型化合物はケイ酸塩に限定されず、結晶構造中のM2+、M3+、Si4+イオンのすべての位置が種々の価数のイオンで置換可能である。このため、ガーネットと同様の結晶構造を有する多種多様なガーネット型化合物が存在する。そして、化学合成されたガーネット型化合物の中には、産業上広く利用されている物質もある。
 近年、ガーネット型化合物の中でも、LiLaZr12(以下、「LLZ」ともいう)や、LLZに様々な添加元素を導入したLLZ類似化合物は、高いリチウムイオン伝導度を有し、かつ、リチウム金属に対して高い電気化学的安定性を示すことから、全固体リチウムイオン二次電池の固体電解質材料として有望視されている。全固体リチウムイオン二次電池は不燃性の固体電解質材料を使用していることから究極の安全性を有する次世代二次電池であり、その実用化に向けて材料やデバイスの研究開発が盛んに行われている(例えば、特許文献1~3参照)。なお、以下では、LLZとLLZ類似化合物との総称として、「LLZ系ガーネット型化合物」と称する。
特開2013-32259号公報 特開2017-168396号公報 特表2017-511781号公報
 全固体電池や、半固体電池における電解質部材は、セルの抵抗を低減するために厚みを薄くする必要がある。そのため、電解質部材の原料となる粉体は数μm以下の微粒であることが求められる。
 固体電解質材料の一つであるLLZ系ガーネット型化合物も当然同様の物性が求められる。微粒のLLZ系ガーネット型化合物を得る公知技術として、任意の手法で合成したLLZ系ガーネット型化合物の粉末材料を、湿式粉砕のような強い機械的解砕力を以て粉砕する手法が知られている。この手法では粒子径が1μm以下の微粒が得られる一方で、溶媒を用いることによるデメリットが生じる。溶媒に水を使用した場合には、吸湿とLiの脱離に伴い材料の特性を大きく損ねる。有機溶媒を用いた場合には、多量の有機溶剤を使用するため、コスト、環境負荷の観点から工業的に優れた手法であるとは言い難い。以上から、微粒のLLZ系ガーネット型化合物を得るための手法として湿式粉砕を用いることは好ましくないと考えられる。
 しかしながら、公知技術の手法で得られるLLZ系ガーネット型化合物の粉末材料は、非常に強固であり、湿式粉砕のような強力な解砕手法でないと微粒化するのが困難である。また、LLZ系ガーネット型化合物に限らず、Liを含むガーネット型化合物の粉末材料は、非常に強固であり、湿式粉砕のような強力な解砕手法でないと微粒化するのが困難である。これは、Liを含むガーネット型化合物の粉末材料が、空隙の少ない高密度なガーネット型化合物の粒子で構成されているためである。
 本発明は、上述した課題に鑑みてなされたものであり、その目的は、Liを含むガーネット型化合物を含み、易粉砕性を有するセラミックス粉末材料を提供することにある。また、当該セラミックス粉末材料の製造方法を提供することにある。また、当該セラミックス粉末材料を用いて得られる成型体を提供することにある。また、当該成型体を用いて得られる焼結体を提供することにある。また、当該セラミックス粉末材料を焼結して得られた焼結体を有する電池を提供することにある。
 従来、LLZ系ガーネット型化合物等のLiを含むガーネット型化合物の合成プロセスにおいては、各種原料粉末の反応性を向上させるために、原料粉末を微粒化している。原料粉末の微粒化により元素の均一性が向上し、ガーネット型化合物の生成反応が均一に進行しやすくなる。
 本発明者は、従来のガーネット型化合物が上記プロセスで製造されているために、空隙のない高密度な粒子で構成されることになり、易粉砕性を損ねていることに突き止めた。そして、得られるガーネット型化合物の細孔特性を制御すれば、易粉砕性を有するセラミックス粉末材料を得ることが可能であることを見出し、本発明を完成するに至った。
 すなわち、本発明に係るセラミックス粉末材料は、
 Liを含むガーネット型化合物を含み、
 細孔容積が、0.4mL/g以上1.0mL/g以下であることを特徴とする。
 前記構成によれば、細孔容積が0.4mL/g以上であるため、空隙を比較的多く含み、脆弱であるといえる。従って、強力な解砕手法を用いることなく、容易に微粒化することが可能である。
 前記構成においては、平均細孔径が、0.5μm以上5μm以下であることが好ましい。
 平均細孔径が0.5μm以上5μm以下であると、細かな細孔が多数存在するといえる。従って、より容易に微粒化することが可能である。
 前記構成においては、比表面積が、0.5m/g以上2.5m/g以下であることが好ましい。
 前記比表面積が0.5m/g以上であると、セラミックス粉末材料の粒子は細かいといえる。解砕する前の時点においても粒子が細かいため、解砕することにより、より微粒となる。
 前記構成においては、粒子径D50が、0.5μm以上50μm以下であることが好ましい。
 前記粒子径D50が50μm以下であると、解砕処理前においても粒子は比較的細かいといえる。従って、解砕処理を行うと、より微粒な粒子とすることができる。
 前記構成においては、前記ガーネット型化合物が、下記式[1]で表されることが好ましい。
  Li7-(3x+y)M1LaZr2-yM212    [1]
 ここで、式[1]において、M1は、Al又はGaであり、M2は、Nb又はTaであり、xは、0≦x≦0.35を満たす数であり、yは、0≦y≦1.0を満たす値である。
 前記ガーネット型化合物が上記式[1]で表される化合物であると、イオン伝導率を高めることができる。従って、電池(特に、リチウムイオン二次電池)の構成部材として好適に使用できる。
 前記構成においては、下記解砕処理後の粒子径D50が、0.1μm以上10μm以下であることが好ましい。
 <解砕処理>
 40mLの純水に0.1gのセラミックス粉末材料を投入し、BRANSON社製の超音波ホモジナイザー:製品名Digital Sonifier 250型を用い、下記<解砕条件>にてホモジナイザー処理を5分間行う。
 <解砕条件>
 発信周波数:20kHz
 高周波出力:200W
 振幅制御 :40±5%
 前記解砕処理後の粒子径D50が10μm以下であると、微粒であるといえる。また、前記解砕処理の条件は、比較的緩やかな条件である。前記解砕処理後の粒子径D50が10μm以下であると、当該セラミックス粉末材料は、緩やかな条件で簡単に微粒に解砕することができる性質を有しているといえる。
 また、本発明に係るセラミックス粉末材料の製造方法は、
 前記セラミックス粉末材料の製造方法であって、
 炭酸種の溶液とLaを構成元素とする化合物を含む溶液とを混合して沈殿物Aを含む溶液を得る第一工程、
 前記沈殿物Aを含む溶液に、炭酸ジルコニウム錯体を含む溶液を混合させて沈殿物Bを得る第二工程、
 前記沈殿物Bを500℃以上900℃以下の温度で焼成して前駆体酸化物を得る第三工程、
 前記前駆体酸化物とLiを構成元素とする化合物とを混合した混合物を調製する第四工程、及び、
 前記混合物を500℃以上900℃以下の温度で焼成してガーネット型化合物を得る第五工程を含むことを特徴とする。
 前記製造方法よれば、細孔容積が0.4mL/g以上であるセラミックス粉末材料を好適に得ることができる。
 また、本発明に係る成型体は、前記セラミックス粉末材料を解砕した後、加圧することにより得られたことを特徴とする。
 前記セラミックス粉末材料は、容易に解砕することができる。従って、当該セラミックス粉末材料を解砕した後、加圧することにより得られる成型体は、より緻密な成型体となる。
 また、本発明に係る焼結体は、前記成型体を焼結して得られたことを特徴とする。
 前記成型体が緻密であるため、当該成型体を焼結して得られる焼結体は、緻密となる。
 また、本発明に係る電池は、前記焼結体を有すること特徴とする。
 前記焼結体は、緻密であるため、当該焼結体を有する電池(特に、全固体リチウムイオン二次電池)は、電池として優れる。
 本発明によれば易粉砕性を有するセラミックス粉末材料を提供することができる。また、当該セラミックス粉末材料の製造方法を提供することにある。また、当該セラミックス粉末材料を用いて得られる成型体を提供することができる。また、当該成型体を用いて得られる焼結体を提供することができる。また、当該セラミックス粉末材料を焼結して得られた焼結体を有する電池を提供することができる。
実施例1で得られたセラミックス粉末材料のSEM画像である。 比較例1で得られたセラミックス粉末材料のSEM画像である。
 以下、本発明の実施形態について説明する。ただし、本発明はこれらの実施形態のみに限定されるものではない。
 [セラミックス粉末材料]
 本実施形態に係るセラミックス粉末材料は、
 Liを含むガーネット型化合物を含み、
 細孔容積が、0.4mL/g以上1.0mL/g以下である。
 上述の通り、本実施形態に係るセラミックス粉末材料は、細孔容積が0.4mL/g以上1.0mL/g以下である。前記細孔容積は、0.5mL/g以上が好ましく、0.6mL/g以上がより好ましい。また、前記細孔容積は、1.0mL/g以下が好ましく、0.9mL/g以下がより好ましい。前記細孔容積が0.4mL/g以上であるため、空隙を比較的多く含み、脆弱であるといえる。従って、強力な解砕手法を用いることなく、容易に微粒化することが可能である。
 前記セラミックス粉末材料は、平均細孔径が0.5μm以上5μm以下であることが好ましい。前記平均細孔径は、1μm以上が好ましく、2μm以上がより好ましい。また、前記平均細孔径は、4μm以下がより好ましい。前記平均細孔径が0.5μm以上5μm以下であると、細かな細孔が多数存在するといえる。従って、より容易に微粒化することが可能である。
 前記セラミックス粉末材料は、細孔比表面積が、0.6m/g以上3m/g以下であることが好ましい。前記細孔比表面積は、0.8m/g以上が好ましく、1.0m/g以上がより好ましい。また、前記細孔比表面積は、2.5m/g以下が好ましく、2m/g以下がより好ましい。前記細孔比表面積が0.6m/g以上であると、細かな細孔が多数存在するといえる。従って、より容易に微粒化することが可能である。
 前記細孔容積、前記平均細孔径、及び、前記細孔比表面積の具体的な測定方法は、実施例に記載の方法による。
 本明細書に記載の細孔容積、平均細孔径、細孔比表面積は、水銀圧入法にて測定される値である。
 前記セラミックス粉末材料は、比表面積が、0.5m/g以上2.5m/g以下であることが好ましい。前記比表面積は、0.6m/g以上が好ましく、0.7m/g以上がより好ましい。また、前記比表面積は、2m/g以下が好ましく、1.5m/g以下がより好ましい。前記比表面積が0.5m/g以上であると、セラミックス粉末材料の粒子は細かいといえる。解砕する前の時点においても粒子が細かいため、解砕することにより、より微粒となる。本明細書において、比表面積は、BET比表面積のことをいう。
前記比表面積の具体的な測定方法は、実施例に記載の方法による。
 前記セラミックス粉末材料は、粒子径D10が0.2μm以上10μm以下であることが好ましい。前記粒子径D10は、9μm以下が好ましく、8μm以下がより好ましい。前記粒子径D10は、小さいほど好ましいが、例えば、0.5μm以上、0.8μm以上等である。前記粒子径D10が10μm以下であると、解砕処理前においても粒子は比較的細かいといえる。従って、解砕処理を行うと、より微粒な粒子とすることができる。
 前記セラミックス粉末材料は、粒子径D50(メディアン径)が0.5μm以上50μm以下であることが好ましい。前記粒子径D50は、1μm以上が好ましく、2μm以上がより好ましく、3μm以上がさらに好ましい。また、前記粒子径D50は、40μm以下が好ましく、30μm以下がより好ましい。前記粒子径D50が50μm以下であると、解砕処理前においても粒子は比較的細かいといえる。従って、解砕処理を行うと、より微粒な粒子とすることができる。
 前記セラミックス粉末材料は、粒子径D90が50μm以上250μm以下であることが好ましい。前記粒子径D90は、75μm以上が好ましく、90μm以上がより好ましい。また、前記粒子径D90は、200μm以下が好ましく、170μm以下がより好ましい。前記粒子径D90が250μm以下であると、解砕処理前においても粒子は比較的細かいといえる。従って、解砕処理を行うと、より微粒な粒子とすることができる。
 前記セラミックス粉末材料は、モード径(最頻粒子径)が、1μm以上30μm以下であることが好ましい。前記モード径は、3μm以上が好ましく、5μm以上がより好ましい。また、前記モード径は、20μm以下が好ましく、15μm以下がより好ましい。前記モード径が30μm以下であると、解砕処理前においても粒子は比較的細かいといえる。従って、解砕処理を行うと、より微粒な粒子とすることができる。
 前記セラミックス粉末材料は、平均径(体積基準平均径)が、10μm以上100μm以下であることが好ましい。前記平均径は、20μm以上が好ましく、30μm以上がより好ましい。また、前記平均径は、80μm以下が好ましく、60μm以下がより好ましい。前記平均径が100μm以下であると、解砕処理前においても粒子は比較的細かいといえる。従って、解砕処理を行うと、より微粒な粒子とすることができる。
 前記セラミックス粉末材料は、粒径10μm以下の積算分率が、5%以上90%以下であることが好ましい。前記粒径10μm以下の積算分率は、10%以上が好ましく、15%以上がより好ましく、20%以上がさらに好ましい。また、前記粒径10μm以下の積算分率は、85%以下が好ましく、80%以下がより好ましく、70%以下がさらに好ましく、60%以下が特に好ましく、50%以下が特別に好ましい。前記粒径10μm以下の積算分率が5%以上であると、解砕処理前においても粒子は比較的細かいといえる。従って、解砕処理を行うと、より微粒な粒子とすることができる。
 前記粒子径D10、前記粒子径D50、前記粒子径D90、前記モード径、前記平均径、前記粒径1μm以下の積算分率、前記粒径5μm以下の積算分率、及び、前記粒径10μm以下の積算分率の具体的な測定方法は、実施例に記載の方法による。
 本明細書に記載の粒子径D10、粒子径D50、粒子径D90、モード径、平均径、粒径1μm以下の積算分率、粒径5μm以下の積算分率、及び、粒径10μm以下の積算分率は、体積基準で測定される値である。
 前記セラミックス粉末材料は、下記解砕処理後の粒子径D50が、0.1μm以上10μm以下であることが好ましい。前記解砕処理後の粒子径D50は、解砕処理前の粒子径D50よりも小さい。前記解砕処理後の粒子径D50は、0.5μm以上が好ましく、1μm以上がより好ましい。また、前記解砕処理後の粒子径D50は、8μm以下がより好ましい。前記解砕処理後の粒子径D50が10μm以下であると、微粒であるといえる。また、前記解砕処理の条件は、比較的緩やかな条件である。前記解砕処理後の粒子径D50が10μm以下であると、当該セラミックス粉末材料は、緩やかな条件で簡単に微粒に解砕することができる性質を有しているといえる。前記解砕処理後の粒子径D50の具体的な測定方法は、実施例に記載の方法による。本明細書に記載の解砕処理後の粒子径D50は、体積基準で測定される値である。
 <解砕処理>
 40mLの純水に0.1gのセラミックス粉末材料を投入し、BRANSON社製の超音波ホモジナイザー:製品名Digital Sonifier 250型を用い、下記<解砕条件>にてホモジナイザー処理を5分間行う。
 <解砕条件>
 発信周波数:20kHz
 高周波出力:200W
 振幅制御 :40±5%
 前記セラミックス粉末材料は、下記解砕処理後の粒径10μm以下の積算分率が、60%以上100%以下であることが好ましい。前記解砕処理後の粒径10μm以下の積算分率は、70%以上が好ましく、80%以上がより好ましい。また、前記解砕処理後の粒径10μm以下の積算分率は、99.5%以下が好ましく、99%以下がより好ましく、98%以下がさらに好ましく、97.5%以下が特に好ましい。
 前記解砕処理後の粒径10μm以下の積算分率が60%以上であると、微粒であるといえる。また、前記解砕処理の条件は、比較的緩やかな条件である。前記解砕処理後の粒径10μm以下の積算分率が60%以上であると、当該セラミックス粉末材料は、緩やかな条件で簡単に微粒に解砕することができる性質を有しているといえる。前記解砕処理後の粒径10μm以下の積算分率の具体的な測定方法は、実施例に記載の方法による。本明細書に記載の解砕処理後の粒径10μm以下の積算分率は、体積基準で測定される値である。
 <解砕処理>
 40mLの純水に0.1gのセラミックス粉末材料を投入し、BRANSON社製の超音波ホモジナイザー:製品名Digital Sonifier 250型を用い、下記<解砕条件>にてホモジナイザー処理を5分間行う。
 <解砕条件>
 発信周波数:20kHz
 高周波出力:200W
 振幅制御 :40±5%
 [Liを含むガーネット型化合物]
 上述したように、本実施形態に係るセラミックス粉末材料は、Liを含むガーネット型化合物(以下、単に、「ガーネット型化合物」ともいう)を含む。前記ガーネット型化合物は、Li原子を含み、ガーネットと同様の結晶構造を示すものであれば、特に限定されない。
 前記セラミックス粉末材料中の前記ガーネット型化合物の含有量は、50質量%以上であることが好ましい。前記含有量は、70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましい。。前記ガーネット型化合物の含有量が80質量%以上であると、セラミックス粉末材料の細孔容積を0.4mL/g以上1.0mL/g以下とし易い。
 前記ガーネット型化合物は、アルミニウム、ガリウム、イットリウム、セリウム、カルシウム、バリウム、ストロンチウム、ニオブ、及び、タンタルからなる群より選ばれる1種以上の元素を含むことが好ましい。
 前記ガーネット型化合物が、アルミニウム、ガリウム、イットリウム、セリウム、カルシウム、バリウム、ストロンチウム、ニオブ、及び、タンタルからなる群より選ばれる1種以上の元素を含むと、前記セラミックス粉末材料の特性を、要求特性に応じた特性に調整することができる。
 なかでも、前記ガーネット型化合物は、下記式[1]で表されることが好ましい。
  Li7-(3x+y)M1LaZr2-yM212    [1]
 ここで、式[1]において、M1は、Al又はGaであり、M2は、Nb又はTaであり、xは、0≦x≦0.35を満たす数であり、yは、0≦y≦1.0を満たす値である。
 前記xは、イオン伝導率の観点から、好ましくは0より大きく、より好ましくは0.15以上、さらに好ましくは0.20以上である。前記xは、イオン伝導率の観点から、好ましくは0.35より小さく、より好ましくは0.3以下、さらに好ましくは0.28以下である。
 前記yは、イオン伝導率の観点から、好ましくは0より大きく、より好ましくは0.2以上、さらに好ましくは0.3以上である。前記yは、イオン伝導率の観点から、好ましくは1.0より小さく、より好ましくは0.8以下、さらに好ましくは0.6以下である。
 前記ガーネット型化合物が上記式[1]で表される化合物であると、イオン伝導率を高めることができる。従って、電池(特に、リチウムイオン二次電池)の構成部材として好適に使用できる。
 前記セラミックス粉末材料は、前記ガーネット型化合物以外の他の化合物を含んでも構わない。前記ガーネット型化合物(Liを含むガーネット型化合物)以外の他の化合物としては、Liを含まないガーネット型化合物が挙げられる。
 [セラミックス粉末材料の製造方法]
 以下、セラミックス粉末材料の製造方法の一例について説明する。ただし、本発明のセラミックス粉末材料の製造方法は、以下の例示に限定されない。
 本実施形態に係るセラミックス粉末材料の製造方法は、
 Liを含むガーネット型化合物を含み、細孔容積が0.4mL/g以上1.0mL/g以下であるセラミックス粉末材料の製造方法であり、
 炭酸種の溶液とLaを構成元素とする化合物を含む溶液とを混合して沈殿物Aを含む溶液を得る第一工程、
 前記沈殿物Aを含む溶液に、炭酸ジルコニウム錯体を含む溶液混合させて沈殿物Bを得る第二工程、
 前記沈殿物Bを500℃以上900℃以下の温度で焼成して前駆体酸化物を得る第三工程
 前記前駆体酸化物とLiを構成元素とする化合物とを混合した混合物を調製する第四工程、及び、
 前記混合物を500℃以上900℃以下の温度で焼成してガーネット型化合物を得る第五工程を含む。
 <第一工程>
 本実施形態に係るセラミックス粉末材料の製造方法においては、まず、炭酸種の溶液とLaを構成元素とする化合物を含む溶液とを混合させてLaの炭酸塩である沈殿物(以下、「炭酸ランタン化合物」ともいう)を得る。
 前記炭酸種は、炭酸(HCO)、炭酸水素イオン(HCO )及び炭酸イオン(CO 2-)の少なくともいずれか1種をいう。
 前記炭酸種の溶液は、炭酸種を含む化合物の溶液が挙げられる。前記炭酸種を含む化合物としては、炭酸水素アンモニウム、炭酸水素リチウム、炭酸水素テトラメチルアンモニウム、炭酸アンモニウム、炭酸ガス等が挙げられる。これらは、いずれか1種を単独で、又は任意の2種以上の組み合わせで用いることができる。
 前記Laを構成元素とする化合物(以下、「La源」ともいう)としては、元素Laの水溶性塩等が挙げられる。元素Laの水溶性塩としては、硝酸ランタン、酢酸ランタン、塩化ランタン、これらの水和物等が挙げられる。上記例示列挙した化合物は単独で、又は任意の2種以上の組み合わせで用いて、純水等に溶解することにより、La源が溶解した水溶液を得ることができる。
 La源は、固体状態であっても溶液の状態であってもよい。La源が、溶液形態である場合、La源の溶媒としては、水単独であってもよいし、水とアルコール等の有機溶媒との混合溶媒であってもよいが、製造全体において有機溶剤を不使用にするという観点からは、水単独であることが好ましい。つまり、La源が、溶液形態である場合は、水溶液であることが好ましい。
 なお、La源を水に溶解する際には、硝酸や塩酸等の酸を用いて水溶液のpHを調整してもよい。
 第一工程においては、さらに、アルミニウム、ガリウム、イットリウム、セリウム、カルシウム、バリウム、ストロンチウム、ニオブ、及び、タンタルからなる群より選ばれる1種以上の元素を構成元素とする化合物(以下、「元素Mを構成元素とする化合物」、「M源」ともいう)を混合してもよい。
 前記M源としては、イオン伝導率を高める観点からは、Nbを構成元素とする化合物、Taを構成元素とする化合物、Alを構成元素とする化合物、Gaを構成元素とする化合物が好ましい。
 M源としては、元素Mの水溶性塩等が挙げられる。元素Mの水溶性塩としては、元素Mの硝酸塩、酢酸塩、塩化物、酸化物、水酸化物、シュウ酸塩、アンモニウム塩等を挙げることができる。上記例示列挙した化合物は単独で、又は任意の2種以上の組み合わせで用いて、純水等に溶解することにより、M源が溶解した水溶液を得ることができる。
 前記La源が溶液形態である場合、前記M源は、前記La源の溶液に溶解させてもよい。
 また、前記M源が前記炭酸種の溶液に溶解する場合には、前記炭酸種の溶液に、予め、前記M源を溶解させておき、その後、La源等と混合させてもよい。
 以上、第一工程について説明した。
 <第二工程>
 第二工程においては、前記沈殿物A(炭酸ランタン化合物)を含む溶液に、炭酸ジルコニウム錯体を含む溶液を混合させて沈殿物Bを得る。これにより、沈殿物(炭酸ランタン化合物)の表面にZr成分を均一に被覆させることができる。
 前記炭酸ジルコニウム錯体を含む溶液は、少なくとも炭酸種を含む化合物及びジルコニウム種(Zr種)を含む化合物を混合することで調製することができる。
 前記炭酸種を含む化合物としては、炭酸水素アンモニウム、炭酸水素リチウム、炭酸水素テトラメチルアンモニウム、炭酸アンモニウム、炭酸ガス等が挙げられる。これらは、いずれか1種を単独で、又は任意の2種以上の組み合わせで用いることができる。
 前記Zr種は、ジルコニウム又はジルコニウムイオンを意味する。なお、以下では上記のZr種を含む化合物を「Zr源」ともいうこととする。
 上記Zr源の具体例としては、炭酸ジルコニウムアンモニウムの結晶((NHZr(OH)(CO・2HO)、塩基性炭酸ジルコニウム(Zr(OH)(4-2n)(CO・mHO、n=0.2~1.0、m=1~10)、オキシ塩化ジルコニウム(ZrOCl)又はオキシ硝酸ジルコニウム(ZrO(NO)が挙げられるが、これらに限定されない。これらのZr源はいずれか1種を単独又は任意の2種以上の組み合わせで用いることができる。Zr源が上記のオキシ塩化ジルコニウム及びオキシ硝酸ジルコニウム等であれば、その水和物を用いてもよい。
 前記炭酸ジルコニウム錯体を含む溶液は、炭酸種とZr種の両方を有する化合物を用いて調製することもできる。ここでいう、炭酸種とZr種の両方を有する化合物とは、例えば、上述の炭酸ジルコニウムアンモニウムの結晶((NHZr(OH)(CO・2HO)、塩基性炭酸ジルコニウム(Zr(OH)(4-2n)(CO・mHO、n=0.2~1.0、m=1~10)等が挙げられる。このような炭酸種とZr種の両方を有する化合物は、Zr源であると同時に炭酸種を含む化合物としても扱うことができる。
 前記炭酸ジルコニウム錯体を含む溶液を調製するにあたっては、炭酸種のジルコニウム種に対するモル比、すなわち[炭酸種のモル数/ジルコニウム種のモル数]の値が1.5以上15.0以下の範囲内となるように、上記炭酸種を含む化合物と上記Zr源を混合することが好ましい。この混合は、両者を固体状態のまま混合してから溶媒に分散させてもよいし、互いの溶液どうしを混合させる方法でもよい。また、炭酸種とZr種の両方を有する化合物を用いて調製する場合は、この化合物を溶媒に溶解させることで調製することができる。この場合、上記モル比[炭酸種のモル数/ジルコニウム種のモル数]の値が1.5以上15.0以下の範囲内、好ましくは2.0以上14.0以下の範囲内となるような、炭酸種とZr種の両方を有する化合物の種類を選定すればよい。
 ここで、上記モル比についてさらに詳述すると、「炭酸種のモル数/ジルコニウム種のモル数」とは、炭酸ジルコニウム錯体の溶液の調製に使用するすべての原料に含まれる炭酸種のモル数を、Zr源に含まれるZr元素のモル数で除した値(炭酸種のモル数/ジルコニウム種のモル数)として定義される。最終的に調製された水溶液からは、炭酸種及び後述のNR 種が僅かに揮発して濃度変化を生じる可能性があることを考慮したものである。尚、Zr源として炭酸ジルコニウムアンモニウムの結晶または塩基性炭酸ジルコニウム等を使用した場合は、それらに含まれる炭酸種のモル数も上記モル比に考慮する。
 上記モル比の範囲で炭酸種を含む化合物とZr源が混合されると、炭酸種はジルコニウム(IV)イオンに配位する。例えば炭酸種がCO 2-の場合は、Zr単量体錯イオン[Zr(CO(2n-4)-{9≧n≧4}や、Zr二量体錯イオン[Zr(OH)(CO6-等を形成すると考えられる。このようにして、炭酸ジルコニウム錯体を含む溶液が得られる。また、炭酸種とZr種の両方を有する化合物を用いた場合も、上記錯イオンを形成することで炭酸ジルコニウム錯体を含む溶液が得られる。尚、炭酸ジルコニウム錯イオンの形成は拡張X線吸収微細構造(EXAFS)測定やラマン分光測定、核磁気共鳴(NMR)測定等により得られる配位数や配位距離、局所構造についての情報を解析することで確認することができる。
 上記モル比[炭酸種のモル数/ジルコニウム種のモル数]は、3.0以上7.0以下であることがより好ましく、この場合、より安定な炭酸ジルコニウム錯体が形成される。
 上記炭酸ジルコニウム錯体を含む溶液において、炭酸ジルコニウム錯イオンの対陽イオンの少なくとも一つは、NR となるようにする。ここで、Rは、H、CH及びCHCHOHからなる群より選ばれた少なくとも1種以上の置換基であり、各Rはすべて同一であってもよいし、全部又は一部が異なっていてもよい。このようなNR の陽イオンが共存することで、炭酸ジルコニウム錯イオンが溶液中においてより安定に存在できる。NR の具体例としては、アンモニウムイオン(NH )、テトラメチルアンモニウムイオン((CH)、2-ヒドロキシエチルトリメチルアンモニウムイオン((CHN(CHCHOH))等が挙げられるが、これらに限定されない。これらの内、NR としては、アンモニウムイオン(NH )がその原料が安価である観点から好ましい。炭酸ジルコニウム錯イオンの対陽イオンがNR となるようにするには、例えば、炭酸ジルコニウム錯イオンを含む溶液を調製する時に、NR を溶液に与えることができる材料を添加すればよい。NR を溶液に与えることができる材料としては、水酸化アンモニウム(NHOH、アンモニア水)、水酸化テトラメチルアンモニウム((CHN(OH))、水酸化コリン((CHN(CHCHOH)(OH))等が挙げられるが、これらに限定はされない。これらは単独でまたは任意の2種以上の組み合わせで用いることができる。上記のNR を溶液に与えることができる材料には、さらに、炭酸水素アンモニウム、炭酸水素テトラメチルアンモニウム、炭酸アンモニウム等のいずれか1種以上を兼用してもよい。
 炭酸ジルコニウム錯体を含む溶液を調製するにあたっては、炭酸ジルコニウム錯体の形成が阻害されなければ、炭酸種を含む化合物とZr源以外の化合物、例えば、キレート化剤を添加してもよい。キレート化剤の存在により、炭酸ジルコニウム錯体の水溶液の安定性が向上し、自己加水分解反応によるZrの消費を抑制することができる。キレート化剤としては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のエタノールアミン類、酒石酸、クエン酸、乳酸、グルコン酸、グリコール酸等の有機酸類、あるいはエタノールアミン類の塩や有機酸の塩等が挙げられる。これらは1種又は2種以上を併用して用いることができる。キレート化剤とジルコニウムのモル比(キレート化剤/Zr)は、0.01~1とすることができる。
 上記の炭酸ジルコニウム錯体を含む溶液は、そのpHが7.0以上9.5以下であることが好ましい。pHが7.0以上であることで、酸性水溶液と効率よく沈殿を形成することができる。また、pHが9.5以下であることで、炭酸ジルコニウム錯体の溶液中に存在するフリーの水酸化物イオン濃度が充分に低くなり、水酸化物として沈殿が生成することを抑制することができる。pHは、炭酸ジルコニウム錯体の溶液を調製するための各種原料の配合比や、溶媒の量で調整することができ、その他、pH調整剤などを添加してpH調整してもよい。
 第二工程においては、前記沈殿物Bを調製した後、沈殿物Bを含む溶液のpHを9.0以上11.0以下の範囲に収まるように調整することが好ましい。pHの調整は、アンモニア水、水酸化ナトリウム水溶液等を用いることができる。pHが9.0以上であると、Zrの溶出がより抑制できる。また、pHが11.0以下であると、Laの溶出をより抑制できる。pHは、沈殿物Bを含む溶液を調製するための各種原料の配合比や、溶媒の量で調整することができ、その他、アンモニア水等などを添加してpH調整してもよい。
 また、第二工程においては、前記沈殿物Bを調製し、必要に応じてpH調整を行った後、90~200℃の範囲内において加熱を行ってもよい。加熱時間としては、30~60分が好ましい。前記加熱を行うことで、Zrの収率を向上できる。
 その後、得られた前記沈殿物Bを含むスラリーの吸引ろ過を行い、濾物を純水等で洗浄し、水分を除去して前記沈殿物Bをスラリーから分離する。
 <第三工程>
 第三工程においては、前記沈殿物Bを500℃以上900℃以下の温度で焼成して前駆体酸化物を得る。焼成保持時間は1~15時間が好ましい。
 <第四工程>
 第四工程においては、前記前駆体酸化物とLiを構成元素とする化合物とを混合した混合物を調製する。
 なお、混合の際、混合物を粉砕してもよい。ただし、前記混合物を粉砕する場合であっても、粉砕しない場合であっても、得られるセラミックス粉末材料における細孔容積は、同等なものとなる。つまり、前記混合物の粉砕は、必須ではない。後述する実施例では、混合物を粉砕しているが、これは、図1に示すようなSEM画像を得るためである。
 前記Liを構成元素とする化合物(以下、「Li源」ともいう)としては、酸化リチウム、水酸化リチウム、塩化リチウム、炭酸リチウム、炭酸水素リチウム、硝酸リチウム、硫酸リチウム、酢酸リチウム、クエン酸リチウム(Li)、シュウ酸リチウム(Li(COO))等が例示されるが、これらに限定されるものではない。また、Li源として上記列挙した各種Li塩を用いる場合は、それらの水和物であってもよい。
 <第五工程>
 第五工程においては、前記混合物を500℃以上900℃以下の温度で焼成してガーネット型化合物を得る。焼成は、例えば、大気雰囲気下で行うことができる。前記焼成温度は、600℃以上が好ましく、700℃以上がより好ましい。前記焼成温度は、850℃以下が好ましく、800℃以下がより好ましい。焼成保持時間は1~15時間が好ましい。得られた焼成物は、ガーネット型化合物を含むセラミックス粉末材料である。そして、焼成を900℃以下の温度で行うことで、得られるセラミックス粉末材料は、粒子の形態になり得るものである。得られた焼成物であるセラミックス粉末材料が粒子の形態であることは、走査電子顕微鏡観察により確かめることができる。
 前記セラミックス粉末材料は、粒成長が抑制され、かつ、5~15μm程度の凝集を有する前駆体酸化物から作成されたガーネット型化合物を含むことにより、細孔容積0.4mL/g以上を達成することができる。
 5~15μm程度の凝集を有する前駆体酸化物を得る方法としては、第一工程において、前駆体酸化物の骨格を成す沈殿物A(ランタン塩)をある程度粗粒化させる方法が挙げられる。
 具体的には、第一工程において、炭酸種の溶液に、La源を添加する際の速度を早くする、攪拌速度を遅くする、La源液の濃度を濃くする、La源投入時の温度を高くする、塩基性溶液側の濃度を高くすること等が挙げられる。
 より具体的には、La源を添加する際の速度を炭酸種の溶液100mLに対して5~10g/minに設定する、La源液の濃度を10~20質量%に設定する、La源投入時の温度を40~90℃に設定する、塩基性溶液側の濃度を10~20質量%に設定すること等が挙げられる。
 また、粒成長が抑制された前駆体酸化物を得る方法としては、第二工程において、沈殿物A(ランタン塩)の表面にZr元素を均一に被覆させる方法が挙げられる。沈殿物A(ランタン塩)の表面にZr元素を均一に被覆させるには、比較的緩やかな条件が好ましい。
 具体的には、第二工程において、沈殿物Aに炭酸ジルコニウム錯体を含む溶液を添加するタイミング、添加時の温度、添加時の昇温、エージング、pHを調整する等が挙げられる。
 より具体的には、沈殿物Aに炭酸ジルコニウム錯体を含む溶液を添加する際の温度を40~90℃に設定する、昇温後のエージング時間を30~180分に設定する、pHを9~11の範囲に設定する等が挙げられる。
 以上、前記セラミックス粉末材料の製造方法の一例につき、説明した。
 [成型体]
 本実施形態に係る成型体は、前記セラミックス粉末材料を解砕した後、加圧することにより得られる。前記セラミックス粉末材料は、容易に解砕することができる。従って、当該セラミックス粉末材料を解砕した後、加圧することにより得られる成型体は、より緻密な成型体となる。
 ここで、前記セラミックス粉末材料は、細孔容積が0.4mL/g以上1.0mL/g以下であり、強力な解砕手法を用いることなく、容易に微粒化することが可能である。従って、前記解砕条件としては、比較的緩やかな条件とすることが好ましい。前記解砕条件としては、例えば、ボールミル、振動ミル等とすることができる。
 前記成型圧は特に限定されず、0.5t/cm以上5t/cm以下、0.8t/cm以上2t/cm以下等とすることができる。
 解砕後のセラミックス粉末材料を成型するにあたっては、市販の金型成型機や冷間等方圧加圧法(CIP)を採用できる。また、一旦、解砕後のセラミックス粉末材料を金型成型機で仮成型した後、CIP等のプレス成型で本成型してもよい。
 成型体の製造において、前記セラミックス粉末材料を解砕した後、加圧する前に、必要に応じて、成型性を向上させるためにバインダーを添加してもよい。
 前記バインダーとしては、有機系バインダーが好ましい。有機系バインダーは、酸化雰囲気の加熱炉にて成型体から除去しやすく、脱脂体を得ることができるので、最終的に焼結体中に不純物が残存しにくくなる。
 前記有機系バインダーとしては、アルコールに対して溶解するもの、又は、アルコール、水、脂肪族ケトン及び芳香族炭化水素からなる群より選ばれる2種以上の混合液に対して溶解するものが挙げられる。前記有機系バインダーとしては、例えば、ポリエチレングリコール、グリコール脂肪酸エステル、グリセリン脂肪酸エステル、ポリビニルブチラール、ポリビニルメチルエーテル、ポリビニルエチルエーテル及びプロピオン酸ビニルからなる群より選ばれる少なくとも1種以上が挙げられる。前記有機系バインダーは、さらに、アルコールもしくは上記混合液に対して不溶である1種以上の熱可塑性樹脂を含んでもよい。
 [焼結体]
 本実施形態に係る焼結体は、前記成型体を焼結させることにより得られる。前記焼結時の熱処理温度、及び、時間は特に限定されないが、950~1300℃程度で1~5時間程度が好ましい。
 前記焼結体の密度は、4.6g/cm以上5.5g/cm以下であることが好ましい。前記密度は、より好ましくは4.8g/cm以上、さらに好ましくは5.0g/cm以上である。前記密度は、より好ましくは5.3g/cm以下、さらに好ましくは5.2cm以下である。
 前記焼結体の測定温度30℃におけるリチウムイオン伝導率は、1×10-5S/cm以上3×10-3S/cm以下であることが好ましい。前記リチウムイオン伝導率は、より好ましくは7×10-5S/cm以上、さらに好ましくは1×10-4S/cm以上である。前記リチウムイオン伝導率は、高いほど好ましいが、例えば、2×10-3S/cm以下、1.5×10-3S/cm以下等である。
 前記焼結体のリチウムイオン伝導の活性化エネルギー(Ea)は、42kJ/mol以下であることが好ましい。前記リチウムイオン伝導の活性化エネルギー(Ea)は38kJ/mol以下であることがより好ましく、34kJ/mol以下であることがさらに好ましい。前記リチウムイオン伝導の活性化エネルギー(Ea)は、低いほど好ましいが、例えば、15kJ/mol以上、18kJ/mol以上等とすることができる。
 [全固体リチウムイオン二次電池]
 次に、全固体リチウムイオン二次電池の実施形態の一例について説明する。
 本実施形態の全固体リチウムイオン二次電池は、
 正極活物質を含有する正極層と、
 負極活物質を含有する負極層と、
 前記正極層及び前記負極層の間に介在される固体電解質層と、を備える。
 そして、前記正極層、前記負極層及び前記固体電解質層の少なくとも一つの層が、上記焼結体を備える。
 以下、本実施形態の全固体リチウムイオン二次電池について、構成ごとに説明する。
 (正極層)
 正極層は少なくとも正極活物質を含有する層であり、必要に応じて、リチウムイオン伝導性材料、電子伝導助剤および結着材の少なくとも一つをさらに含有していても良い。
 正極層に含まれるリチウムイオン伝導性材料は、上記セラミックス粉末材料を焼結して得られる焼結体であることが好ましい。正極層における前記焼結体の含有量は特に限定されないが、例えば、正極層全体に対して0.1体積%~80体積%の範囲内とすることができる。この内、好ましくは1体積%~60体積%の範囲内であり、より好ましくは10体積%~50体積%の範囲内である。正極層の厚さは特に限定されないが、例えば0.1μm~1000μmの範囲内であることが好ましい。正極層が0.1μmより薄いと全固体リチウムイオン二次電池の容量を大きくしにくく、1000μmを超過した厚みからなると均質な層を形成しにくくなる。
 正極活物質は電気化学的なLiイオンの吸蔵・放出が可能な材料であれば特に限定されないが、全固体リチウムイオン二次電池の容量を大きくする観点から、理論容量の大きな硫黄や硫化リチウム(LiS)を用いることが好ましい。また、全固体リチウムイオン二次電池の作動電圧を高くする観点からLi含有酸化物材料を用いてもよい。具体的には、LiCoO、LiMnO、LiNiO、LiVO、Li(NiCoMn)O(x+y+z=1)、Li(NiCoAl)O(x+y+z=1)等の層状岩塩型酸化物、LiMn、Li(Ni0.5Mn1.5)O等のスピネル型酸化物、LiFePO、LiMnPO、LiNiPO、LiCuPO等のオリビン型リン酸塩、LiFeSiO、LiMnSiO等のケイ酸塩等を用いることができる。正極活物質としては上述した材料を単独で用いてもよく、または任意の2種以上の組み合わせで用いてもよい。
 正極層における正極活物質の含有量は、例えば正極層全体に対して10体積%~99体積%の範囲内であることが好ましい。より好ましくは、20体積%~99体積%の範囲内である。また、正極活物質の形状としては、例えば粒子形状とすることができる。その平均粒径は、例えば0.05μm~50μmの範囲内であることが好ましい。
 正極層は正極活物質およびリチウムイオン伝導性材料の他に、電子伝導助剤および結着材の少なくとも一つをさらに含有していても良い。電子伝導助剤としては電子伝導性の高い材料が好ましく、例えば、アセチレンブラック、ケッチェンブラック、カーボンファイバ等を挙げることができる。また、結着材としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリビニルアルコール、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン等を用いることができる。
 正極層はその構成成分(上述した正極活物質、リチウムイオン伝導性材料、電子伝導助剤および結着材等)を混合し、成形することで作製することができる。この際、必要に応じて焼結を行ってもよい。正極層の構成成分の混合方法は特に限定されず、一般的な粉体技術であれば使用することができる。この際、水または任意の有機溶媒を分散溶媒として使用してもよい。さらに、正極層の構成成分の混合物を成形及び焼結する方法は特に限定されず、一般的に知られている成形及び焼結の方法を用いることができる。また、正極層は固体電解質層の上に作製してもよい。この場合、正極層の焼結は固体電解質層との一体焼結の形式で行うことができる。ここで、一体焼結とは、「固体電解質層を構成するリチウムイオン伝導性材料」または「正極層の構成成分の混合物」の一方を成形し、その上に他方を成形して、必要に応じてプレスを行った後に、焼結を行う方法である。
 正極層の集電を行う正極集電体は、例えば正極層の固体電解質層が配置される面と逆側の面に設けることができる。正極集電体の材料としては、例えば、ステンレススチール、アルミニウム、ニッケル、鉄及びカーボン等を挙げることができる。この内、ステンレススチールが好ましい。
 (負極層)
 負極層は少なくとも負極活物質を含有する層であり、必要に応じて、リチウムイオン伝導性材料、電子伝導助剤および結着材の少なくとも一つをさらに含有していても良い。
 負極層に含まれるリチウムイオン伝導性材料は、上記焼結体(上記セラミックス粉末材料を焼結して得られる焼結体)であることが好ましい。負極層における前記焼結体の含有量は特に限定されないが、例えば、負極層全体に対して0.1体積%~80体積%の範囲内とすることができる。この内、好ましくは1体積%~60体積%の範囲内であり、より好ましくは10体積%~50体積%の範囲内である。負極層の厚さは特に限定されないが、例えば0.1μm~1000μmの範囲内であることが好ましい。
 負極活物質は電気化学的なLiイオンの吸蔵・放出が可能な材料であれば特に限定されないが、全固体リチウムイオン二次電池の容量を大きくする観点から、理論容量の大きな金属材料を用いることが好ましい。金属材料としては例えばLi、Si、Sn、In等の金属及びこれらの合金を挙げることができる。この内、金属Liが最も理論容量が大きいために好ましい。また、電池の可逆作動に優れたチタン酸化物やチタン酸リチウム等のTi系材料を用いてもよい。Ti系材料の具体例としては、TiO、HTi1225、LiTi12等が挙げられる。さらに、安価な炭素系材料を用いることもできる。炭素系材料の具体例としては、天然黒鉛、人工黒鉛、難黒鉛化炭素、易黒鉛化炭素等が挙げられる。負極活物質としては上述した材料を単独で用いてもよく、または任意の2種以上の組み合わせで用いてもよい。
 負極層における負極活物質の含有量は、例えば負極層全体に対して10体積%~99体積%の範囲内であることが好ましい。より好ましくは、20体積%~99体積%の範囲内である。また、負極活物質の形状としては、例えば粒子形状や箔形状、膜形状等とすることができる。負極活物質の形状が粒子形状の場合、その平均粒径は、例えば0.05μm~50μmの範囲内であることが好ましい。
 負極層は負極活物質およびリチウムイオン伝導性材料の他に、電子伝導助剤および結着材の少なくとも一つをさらに含有していても良い。電子伝導助剤及び結着材としては、上述した正極層に用いられるものを同様に用いることができる。
 負極層はその構成成分(上述した負極活物質、リチウムイオン伝導性材料、電子伝導助剤および結着材等)を混合し、成形することで作製することができる。この際、必要に応じて焼結を行ってもよい。負極層の構成成分の混合方法は特に限定されず、一般的な粉体プロセスであれば使用することができる。この際、水または任意の有機溶媒を分散溶媒として使用してもよい。さらに、負極層の構成成分の混合物を成形及び焼結する方法は特に限定されず、一般的に知られている成形及び焼結の方法を用いることができる。尚、負極活物質の形状が箔形状または膜形状等である場合、上述した負極層の形成方法により負極層を形成してもよいが、負極活物質自身を単独で負極層と見なしてもよい。また、負極層は固体電解質層の上に作製してもよい。この場合、負極層の焼結は固体電解質層との一体焼結の形式で行うことができる。ここで、一体焼結とは、「後述する固体電解質層を構成するリチウムイオン伝導性材料」または「負極層の構成成分の混合物」の一方をまず成形し、その上に他方を成形して焼結を行う方法である。
 負極層の集電を行う負極集電体は、例えば負極層における固体電解質層が配置される面と逆側の面に設けることができる。負極集電体の材料としては、例えば、ステンレススチール、銅、ニッケル及びカーボン等を挙げることができる。この内、ステンレススチールが好ましい。
 (固体電解質層)
 固体電解質層は、正極層および負極層の間に介在される層であり、リチウムイオン伝導性材料から構成される層である。固体電解質層に含まれるリチウムイオン伝導性材料は、リチウムイオン伝導性を有するものであれば特に限定されるものではない。
 固体電解質層に含まれるリチウムイオン伝導性材料は、上記焼結体(上記セラミックス粉末材料を焼結して得られる焼結体)であることが好ましい。固体電解質層における上記焼結体の含有量は、電子伝導性が十分に抑制できる割合であれば特に限定されないが、例えば、50体積%~100体積%の範囲内であることが好ましい。
 固体電解質層には上記焼結体以外のリチウムイオン伝導性材料を含有することもできる。具体的には、Li1.3Al0.3Ti1.7(PO、Li1.5Al0.5Ge1.5(PO、LiZr(PO、Li1.2Ca0.1Zr1.9(PO、Li1.150.15Zr1.85(PO等のNASICON型化合物、LiO-B系ガラス、LiO-SiO系ガラス、LiO-P系ガラス、Li2.9PO3.30.46ガラス(LIPON)等のリチウムイオン伝導性酸化物ガラス、LiS-B系ガラス、LiS-SiS系ガラス、LiS-P系ガラス等のリチウムイオン伝導性硫化物ガラスを挙げることができる。リチウムイオン伝導性酸化物ガラス及びリチウムイオン伝導性硫化物ガラスは結晶化させてガラスセラミック材料として使用することもできる。
 固体電解質層の厚さは全固体リチウムイオン二次電池の短絡を防ぐことができる厚さであれば特に限定されないが、例えば、0.1μm~1000μmの範囲内とすることができる。この内、0.1μm~300μmの範囲内であることが好ましい。
 固体電解質層は上述したリチウムイオン伝導性材料を成形し焼結することで作製することができる。固体電解質層を構成するリチウムイオン伝導性材料の成形及び焼結の方法は特に限定されず、一般的に知られている成形及び焼結の方法を用いることができる。焼結温度は特に限定されないが、例えばリチウムイオン伝導性材料が上述したセラミックス粉末材料である場合、700~1200℃の範囲の温度であることが好ましく、700~1100℃の範囲の温度であることがより好ましく、700~1000℃の範囲の温度であることがさらに好ましい。ただし、Liの溶融・揮発を伴う分解反応抑制の観点から、1050℃以下が好ましく、1000℃以下がより好ましい。固体電解質層の焼結密度は理論密度に対して60%以上であることが好ましく、より好ましくは70%以上であり、さらに好ましくは80%以上であり、さらにより好ましくは90%以上である。焼結密度が大きいほど抵抗を抑制できるためである。固体電解質層の焼結を行う際は、上述した正極層または負極層の少なくとも一つと一体焼結することが好ましい。一体焼結により層界面の抵抗を小さくすることができるためである。
 (全固体リチウムイオン二次電池の構成)
 全固体リチウムイオン二次電池の形状としては、例えば、コイン型、ラミネート型、円筒型および角型等にすることができる。
 本実施形態の全固体リチウムイオン二次電池を製造する方法は、上述した全固体リチウムイオン二次電池を構築できる方法であれば特に限定されるものではなく、一般的な全固体リチウムイオン二次電池の製造方法と同様の方法を用いることができる。例えば、上述した正極層、固体電解質層、及び負極層をこの順番に積層することで、本実施形態の全固体リチウムイオン二次電池が製造される。
 本実施形態の全固体リチウムイオン二次電池によれば、上記焼結体を含有することにより、ガーネット型化合物の高いリチウムイオン伝導度に起因して電池の内部抵抗が抑制され、レート特性等の電池性能が向上する。また、セラミックス粉末材料は微粒子の形態であるため、電極層内に含有されることで電極活物質との接触界面が十分に確保できる。従って、電極活物質へのイオン伝導経路が良好に構築され、電池反応に寄与できない電極活物質の割合が減少するために、電池のエネルギー密度が向上する。
 上述した実施形態では、上記セラミックス粉末材料を全固体リチウムイオン二次電池に用いる場合について説明した。しかしながら、本発明に係る電池は、上記セラミックス粉末材料を焼結して得られた焼結体を有する限り、全固体リチウムイオン二次電池に限定されない。
 以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
 なお、以下の実施例で示される各成分の含有量の最大値、最小値は、他の成分の含有量に関係なく、本発明の好ましい最小値、好ましい最大値と考慮されるべきである。
 また、以下の実施例で示される測定値の最大値、最小値は、各成分の含有量(組成)に関係なく、本発明の好ましい最小値、最大値であると考慮されるべきである。
 [原料]
 実施例のセラミックス粉末材料を製造するために、以下の原料を準備した。
 <La源>
 硝酸ランタン水溶液(La濃度:16質量%)
 <Zr源>
 炭酸ジルコニウムアンモニウム水溶液(Zr濃度:10質量%)
 <Nb源>
 シュウ酸ニオビウムアンモニウム水溶液(Nb濃度:5質量%)
 組成式:[NH(NbO(C(HO))(HO)
 <Al源>
 硝酸アルミニウム水溶液(Al濃度:10質量%)
 <Ga源>
 硝酸ガリウム水溶液(Ga濃度:10質量%)
 <Li源>
 水酸化リチウム1水和物(粉末)
 <Ta源>
 酸化タンタル(三津和化学薬品、99.9%)
 比較例1のセラミックス粉末材料を製造するために、以下の原料を準備した。
 LiCO:高純度化学研究所製
 La(OH):高純度化学研究所製
 ZrO:第一稀元素化学工業株式会社製、製品名「UEP」
 Nb:CBMM社製
 なお、ジルコニウムを含む化合物は通常、混入不可避の成分としてハフニウム成分を含有している。上記原料及び下記実施例、比較例で得られたセラミックス粉末材料にはハフニウムがジルコニウムに対してモル比(Hfのモル数/Zrのモル数)として0.03の割合で含まれている。そして、製造されたセラミックス粉末材料においては、ハフニウム成分は不純物化合物として観測されることはなく、その結晶構造中のジルコニウム位置に存在していると考えられる。従って、下記実施例、比較例では、特に断りのない限り、Zr濃度はジルコニウムとハフニウムの濃度の和として表記している。また、組成比中のZrはジルコニウムとハフニウムの和を意味している。
 [セラミックス粉末材料の作製]
 (実施例1)
 <前駆体酸化物の作製>
 炭酸水素アンモニウム50.0gを水200gに溶解させ、シュウ酸ニオビウムアンモニウム水溶液50.32gを加えた。その後、温度を40℃に保ちながら、硝酸ランタン水溶液84.19gを、8.5g/minの速度で滴下して沈殿物Aを得た(第一工程)。その後、温度を40℃に保ちながら、得られた沈殿物Aに炭酸ジルコニウムアンモニウム水溶液44.69gを、0.5g/minの速度で滴下し、沈殿物Bを含むスラリーを得た(第二工程)。次に、pHが9~11の範囲に収まるように、アンモニア水を用いてpHを調整した後、90℃で180分間加熱した。
 得られた沈殿物Bを含むスラリーの吸引ろ過を行い、濾物を純水で洗浄し、水分を除去して沈殿物Bをスラリーから分離した。得られた沈殿物Bを750℃で5時間焼成することで前駆体酸化物を得た(第三工程)。
 <ガーネット型化合物の作製>
 前記前駆体酸化物と水酸化リチウム・一水和物8.81gとを、ボールミルにより粉砕混合した(第四工程)。その後、800℃で3時間焼成(第五工程)することで、ガーネット型化合物を得た。
 このガーネット型化合物を実施例1に係るセラミックス粉末材料とした。なお、各原料から算出される、セラミックス粉末材料の組成は、表1の通りである。
 (実施例2)
 <前駆体酸化物の作製>
 炭酸水素アンモニウム50.0gを水200gに溶解させた。そこへ硝酸ランタン水溶液83.28gと硝酸アルミニウム水溶液2.16gの混合溶液を、8.5g/minの速度で滴下して沈殿物Aを得た(第一工程)。その後、得られた沈殿物Aに炭酸ジルコニウムアンモニウム水溶液58.87gを、0.5g/minの速度で滴下し、沈殿物Bを含むスラリーを得た(第二工程)。次に、pHが9.5~10の範囲に収まるように、アンモニア水を用いてpHを調整した後、90℃で180分間加熱した。
 得られた沈殿物Bを含むスラリーの吸引ろ過を行い、濾物を純水で洗浄し、水分を除去して沈殿物Bをスラリーから分離した。得られた沈殿物Bを750℃で5時間焼成することで前駆体酸化物を得た(第三工程)。
 <ガーネット型化合物の作製>
 前記前駆体酸化物と水酸化リチウム・一水和物8.80gとを、ボールミルにより粉砕混合した(第四工程)。その後、800℃で3時間焼成(第五工程)することで、ガーネット型化合物を得た。
 このガーネット型化合物を実施例2に係るセラミックス粉末材料とした。
 (実施例3)
 <前駆体酸化物の作製>
 炭酸水素アンモニウム50.0gを水200gに溶解させた。そこへ硝酸ランタン水溶液83.74gと硝酸アルミニウム水溶液2.25gの混合溶液を、8.5g/minの速度で滴下して沈殿物Aを得た(第一工程)。その後、得られた沈殿物Aに炭酸ジルコニウムアンモニウム水溶液59.20gを、0.5g/minの速度で滴下し、沈殿物Bを含むスラリーを得た(第二工程)。次に、pHが9.5~10の範囲に収まるように、アンモニア水を用いてpHを調整した後、90℃で180分間加熱した。
 得られた沈殿物Bを含むスラリーの吸引ろ過を行い、濾物を純水で洗浄し、水分を除去して沈殿物Bをスラリーから分離した。得られた沈殿物Bを750℃で5時間焼成することで前駆体酸化物を得た(第三工程)。
 <ガーネット型化合物の作製>
 前記前駆体酸化物と水酸化リチウム・一水和物8.39gとを、ボールミルにより粉砕混合した(第四工程)。その後、800℃で3時間焼成(第五工程)することで、ガーネット型化合物を得た。
 このガーネット型化合物を実施例3に係るセラミックス粉末材料とした。
 (実施例4)
 <前駆体酸化物の作製>
 炭酸水素アンモニウム50.0gを水200gに溶解させた。そこへ硝酸ランタン水溶液82.69gと硝酸ガリウム水溶液5.53gの混合溶液を、8.5g/minの速度で滴下して沈殿物Aを得た(第一工程)。その後、得られた沈殿物Aに炭酸ジルコニウムアンモニウム水溶液58.46gを、0.5g/minの速度で滴下し、沈殿物Bを含むスラリーを得た(第二工程)。次に、pHが9.5~10の範囲に収まるように、アンモニア水を用いてpHを調整した後、90℃で180分間加熱した。
 得られた沈殿物Bを含むスラリーの吸引ろ過を行い、濾物を純水で洗浄し、水分を除去して沈殿物Bをスラリーから分離した。得られた沈殿物Bを750℃で5時間焼成することで前駆体酸化物を得た(第三工程)。
 <ガーネット型化合物の作製>
 前記前駆体酸化物と水酸化リチウム・一水和物8.32gとを、ボールミルにより粉砕混合した(第四工程)。その後、800℃で3時間焼成(第五工程)することで、ガーネット型化合物を得た。
 このガーネット型化合物を実施例4に係るセラミックス粉末材料とした。
 (実施例5)
 <前駆体酸化物の作製>
 炭酸水素アンモニウム50.0gを水200gに溶解させた。そこへ硝酸ランタン水溶液59.27gを、8.5g/minの速度で滴下して沈殿物Aを得た(第一工程)。その後、得られた沈殿物Aに炭酸ジルコニウムアンモニウム水溶液33.57gを、0.5g/minの速度で滴下し、沈殿物Bを含むスラリーを得た(第二工程)。次に、pHが9~11の範囲に収まるように、アンモニア水を用いてpHを調整した後、90℃で180分間加熱した。
 得られた沈殿物Bを含むスラリーの吸引ろ過を行い、濾物を純水で洗浄し、水分を除去して沈殿物Bをスラリーから分離した。得られた沈殿物Bを800℃で5時間焼成することで前駆体酸化物を得た(第三工程)。
 <ガーネット型化合物の作製>
 前記前駆体酸化物と水酸化リチウム・一水和物6.59gと酸化タンタル2.01gとを、ボールミルにより粉砕混合した(第四工程)。その後、800℃で3時間焼成(第五工程)することで、ガーネット型化合物を得た。
 このガーネット型化合物を実施例5に係るセラミックス粉末材料とした。
 (比較例1)
 17.26gのLiCO、40.76gのLa(OH)、13.67gのZrO、及び、4.75gのNbを秤量し、エタノール中にて遊星ボールミル(300rpm/ジルコニアボール)で1時間、混合・粉砕を行った。混合粉末をボールとエタノールから分離し、90℃で24時間乾燥させた。その後、Al23製のるつぼ中にて、950℃、1時間大気雰囲気で焼成を行い、比較例1の化合物を得た。この化合物を比較例1に係るセラミックス粉末材料とした。
 [SEM画像]
 図1に、実施例1で得られたセラミックス粉末材料のSEM画像を、図2に、比較例1で得られたセラミックス粉末材料のSEM画像を示す。なお、SEM画像中、背景の黒色部分は、粉末材料の固定に使用したカーボンテープであり、セラミックス粉末材料は存在しない。
 図1に示すように、実施例1のセラミックス粉末材料は、空隙が多く、密度の低い粒子であることが確認された。一方、比較例1のセラミックス粉末材料は、空隙のない高密度な粒子であることが確認された。
[結晶相の同定]
 (熱処理前のセラミックス粉末材料の結晶相)
 実施例、比較例のセラミックス粉末材料について、X線回折装置(「RINT2500」リガク製)を用い、X線回折スペクトルを得た。測定条件は下記の通りとした。
 <測定条件>
  測定装置:X線回折装置(リガク製、RINT2500)
  線源:CuKα線源
  管電圧:50kV
  管電流:300mA
  走査速度:4°(2θ)/min
 上記X線回折スペクトル測定の結果、実施例、比較例のセラミックス粉末材料は、ガーネット型構造を有することが確認できた。
[細孔容積の測定]
 実施例、比較例のセラミックス粉末材料について、細孔分布測定装置(「オートポアIV9500」マイクロメリティクス製)を用い、水銀圧入法にて細孔分布を得た。測定条件は下記の通りとした。なお、測定の前処理としてセラミックス粉末材料を200℃で3時間、減圧乾燥を行った。
<測定条件>
測定装置:細孔分布測定装置(マイクロメリティクス製オートポアIV9500)
サンプリング量:0.5~0.7g
測定範囲:0.0036~10.3μm
測定点数:120点
水銀接触角:140degrees
水銀表面張力:480dyne/cm
測定温度 :25℃
測定圧力 :0.0155~27.46MPa
 得られた細孔分布を用い、細孔容積、細孔比表面積、平均細孔径を求めた。結果を表1に示す。
[比表面積の測定]
 実施例、比較例のセラミックス粉末材料の比表面積を、比表面積計(「マックソーブ」マウンテック製)を用いてBET法にて測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[粒子径の測定(解砕処理前の粒子径の測定)]
 実施例、比較例のセラミックス粉末材料0.1gをレーザ回折/散乱式粒子径分布測定装置(「LA-950」HORIBA社製)に投入し、粒子径を測定した。結果を表2に示す。表2には、積算分率も合わせて示した。なお、表2中、「≦1μm」は、粒径1μm以下の積算分率を、「≦5μm」は、粒径5μm以下の積算分率を、「≦10μm」は、粒径10μm以下の積算分率を示している。
 測定装置の条件は、以下の通りとした。
 分散媒  :イオン交換水
 屈折率  :2.09
 粒子径基準:体積
 測定上限 :3000μm
 測定下限 :0.01μm
[解砕処理後の粒子径の測定]
 100mLビーカーに純水40mLと実施例、比較例のセラミックス粉末材料0.1g加え、ホモジナイザー処理を行った。ホモジナイザー処理は、BRANSON社製の超音波ホモジナイザー:製品名Digital Sonifier 250型を用い、下記<解砕条件>にて5分間行った。その後は、解砕処理前の粒子径の測定と同様にして、粒子径を測定した。結果を表2に示す。
 <解砕条件>
 発信周波数:20kHz
 高周波出力:200W
 振幅制御 :40±5%
Figure JPOXMLDOC01-appb-T000002
 (参考)
 本実施例のセラミックス粉末材料は、上記のような比較的緩やかな条件での解砕処理によって、微粒化することができるものであるが、以下、参考までに、強力な解砕(粉砕)手法によって、本実施例1のセラミックス粉末材料を解砕(粉砕)した場合、粒子径D50がどのような値となるかについて測定したものを示す。
[強力な解砕(粉砕)処理後の粒子径の測定(参考)]
 下記<解砕条件2>にて、実施例1の試料の粉砕処理を実施した。その後は、解砕処理前の粒子径の測定と同様にして、粒子径を測定した。その結果、解砕条件2にて粉砕した実施例1の試料の粒子径D50は0.27μmであった。
 <解砕条件2>
 実施例1で得られた試料を、ビーズミルを用いて粉砕した。
装置名   : RMB II(アイメックス株式会社製)
溶媒    : トルエン
ベッセル容量: 300 mL
ビーズ   : ジルコニアビーズ
ビーズ径  : φ0.3 mm
固形分濃度 : 15質量%
周速    : 12m/s
処理時間  : 60分間

Claims (10)

  1.  Liを含むガーネット型化合物を含み、
     細孔容積が、0.4mL/g以上1.0mL/g以下であることを特徴とするセラミックス粉末材料。
  2.  平均細孔径が、0.5μm以上5μm以下であることを特徴とする請求項1に記載のセラミックス粉末材料。
  3.  比表面積が、0.5m/g以上2.5m/g以下であることを特徴とする請求項1又は2に記載のセラミックス粉末材料。
  4.  粒子径D50が、0.5μm以上50μm以下であることを特徴とする請求項1~3のいずれか1に記載のセラミックス粉末材料。
  5.  前記ガーネット型化合物が、下記式[1]で表されることを特徴とする請求項1~4のいずれか1に記載のセラミックス粉末材料。
      Li7-(3x+y)M1LaZr2-yM212    [1]
     ここで、式[1]において、M1は、Al又はGaであり、M2は、Nb又はTaであり、xは、0≦x≦0.35を満たす数であり、yは、0≦y≦1.0を満たす値である。
  6.  下記解砕処理後の粒子径D50が、0.1μm以上10μm以下であることを特徴とする請求項1~5のいずれか1に記載のセラミックス粉末材料。
     <解砕処理>
     40mLの純水に0.1gのセラミックス粉末材料を投入し、BRANSON社製の超音波ホモジナイザー:製品名Digital Sonifier 250型を用い、下記<解砕条件>にてホモジナイザー処理を5分間行う。
     <解砕条件>
     発信周波数:20kHz
     高周波出力:200W
     振幅制御 :40±5%
  7.  請求項1~6のいずれか1に記載のセラミックス粉末材料の製造方法であって、
     炭酸種の溶液とLaを構成元素とする化合物を含む溶液とを混合して沈殿物Aを含む溶液を得る第一工程、
     前記沈殿物Aを含む溶液に、炭酸ジルコニウム錯体を含む溶液を混合させて沈殿物Bを得る第二工程、
     前記沈殿物Bを500℃以上900℃以下の温度で焼成して前駆体酸化物を得る第三工程、
     前記前駆体酸化物とLiを構成元素とする化合物とを混合した混合物を調製する第四工程、及び、
     前記混合物を500℃以上900℃以下の温度で焼成してガーネット型化合物を得る第五工程を含むことを特徴とするセラミックス粉末材料の製造方法。
  8.  請求項1~6のいずれか1に記載のセラミックス粉末材料を解砕した後、加圧することにより得られたことを特徴とする成型体。
  9.  請求項8に記載の成型体を焼結して得られたことを特徴とする焼結体。
  10.  請求項9に記載の焼結体を有することを特徴とする電池。
PCT/JP2021/044648 2021-03-31 2021-12-06 セラミックス粉末材料、セラミックス粉末材料の製造方法、成型体、焼結体、及び、電池 WO2022065521A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227009892A KR102442201B1 (ko) 2021-03-31 2021-12-06 세라믹스 분말 재료, 세라믹스 분말 재료의 제조 방법, 성형체, 소결체 및 전지
EP21856920.0A EP4005999B1 (en) 2021-03-31 2021-12-06 Ceramic powder material and method for producing ceramic powder material
CN202180005590.5A CN115413274B (zh) 2021-03-31 2021-12-06 陶瓷粉末材料、陶瓷粉末材料的制造方法、成型体、烧结体及电池
US17/753,212 US11629098B2 (en) 2021-03-31 2021-12-06 Ceramic powder material, method for producing ceramic powder material, molded body, sintered body, and battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021060422A JP6916406B1 (ja) 2021-03-31 2021-03-31 セラミックス粉末材料、セラミックス粉末材料の製造方法、成型体、焼結体、及び、電池
JP2021-060422 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022065521A1 true WO2022065521A1 (ja) 2022-03-31

Family

ID=77172616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044648 WO2022065521A1 (ja) 2021-03-31 2021-12-06 セラミックス粉末材料、セラミックス粉末材料の製造方法、成型体、焼結体、及び、電池

Country Status (6)

Country Link
US (1) US11629098B2 (ja)
EP (1) EP4005999B1 (ja)
JP (1) JP6916406B1 (ja)
KR (1) KR102442201B1 (ja)
CN (1) CN115413274B (ja)
WO (1) WO2022065521A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115340378A (zh) * 2022-10-20 2022-11-15 江苏蓝固新能源科技有限公司 一种氧化物固态电解质及其制备方法以及一种锂离子电池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032259A (ja) 2011-06-29 2013-02-14 Toyota Central R&D Labs Inc ガーネット型イオン伝導性酸化物及びその製造方法
WO2014038521A1 (ja) * 2012-09-04 2014-03-13 日本碍子株式会社 固体電解質セラミックス材料
US20150118571A1 (en) * 2013-10-31 2015-04-30 Shanghai Institute Of Ceramics, Chinese Acadamy Of Sciences Fluorine-containing lithium-garnet-type oxide ceramics
JP2017511781A (ja) 2014-01-22 2017-04-27 ショット アクチエンゲゼルシャフトSchott AG ガーネット型結晶構造を有するイオン伝導性ガラスセラミック
JP2017168396A (ja) 2016-03-18 2017-09-21 セイコーエプソン株式会社 固体電解質及びリチウムイオン電池
JP2018065704A (ja) * 2016-10-17 2018-04-26 国立大学法人三重大学 ガーネット型のリチウム−ランタン−ジルコニウム複合酸化物およびその製造方法
WO2020174785A1 (ja) * 2019-02-26 2020-09-03 セイコーエプソン株式会社 固体電解質の前駆体組成物、二次電池の製造方法
WO2021014905A1 (ja) * 2019-07-19 2021-01-28 第一稀元素化学工業株式会社 セラミックス粉末材料、セラミックス粉末材料の製造方法、及び、電池
JP2021020836A (ja) * 2019-07-30 2021-02-18 株式会社豊田中央研究所 焼結体の製造方法及び焼結体

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3808123A1 (de) * 1988-03-11 1988-07-07 Krupp Gmbh Verfahren zur herstellung von sinterteilen aus feinkoernigen metall- oder keramikpulvern
DE19855998B4 (de) * 1998-02-17 2006-07-13 H.C. Starck Gmbh Poröse Agglomerate und Verfahren zu deren Herstellung
JP2002128512A (ja) * 2000-10-16 2002-05-09 Noritake Co Ltd セラミック材、セラミック膜およびその利用
CN100439294C (zh) * 2004-03-24 2008-12-03 日本碍子株式会社 陶瓷多孔体及成型体的制造方法
KR100842058B1 (ko) * 2007-03-29 2008-06-30 한국기계연구원 다공질 세라믹스 제조방법
US20090191111A1 (en) * 2008-01-29 2009-07-30 Inha-Industry Partnership Institute Preparation method of calcium phosphate-based ceramic powder and compact thereof
JP5290337B2 (ja) * 2011-02-24 2013-09-18 国立大学法人信州大学 ガーネット型固体電解質、当該ガーネット型固体電解質を含む二次電池、及び当該ガーネット型固体電解質の製造方法
JP2013067279A (ja) 2011-09-22 2013-04-18 Futaba Corp 操縦用通信装置、被操縦体用通信装置及び操縦用通信システム
WO2013128759A1 (ja) * 2012-03-02 2013-09-06 日本碍子株式会社 固体電解質セラミックス材料及びその製造方法
JP6099407B2 (ja) * 2012-05-17 2017-03-22 日本碍子株式会社 全固体蓄電素子
JP6018930B2 (ja) * 2012-05-17 2016-11-02 日本碍子株式会社 正極−固体電解質複合体の製造方法
JP2014067574A (ja) * 2012-09-26 2014-04-17 Honda Motor Co Ltd 固体電解質、複合電解質、及びそれらを備えるリチウムイオン二次電池。
JP6081400B2 (ja) * 2014-03-18 2017-02-15 本田技研工業株式会社 固体電解質、複合電解質、及びそれらを備えるリチウムイオン二次電池。
WO2015163152A1 (ja) * 2014-04-24 2015-10-29 第一稀元素化学工業株式会社 ガーネット型化合物の製造方法及びガーネット型化合物、並びにこのガーネット型化合物を含む全固体リチウム二次電池
KR101592752B1 (ko) 2014-08-18 2016-02-12 현대자동차주식회사 가넷 분말, 이의 제조방법, 핫프레스를 이용한 고체전해질 시트 및 이의 제조방법
JP6333133B2 (ja) * 2014-09-09 2018-05-30 日本特殊陶業株式会社 リチウムイオン伝導性セラミックス焼結体、リチウム電池、及びリチウムイオン伝導性セラミックス焼結体の製造方法
JP2017033926A (ja) * 2015-07-29 2017-02-09 セントラル硝子株式会社 ガーネット型酸化物焼結体及びその製造方法
KR101728434B1 (ko) * 2015-09-18 2017-04-20 한국생산기술연구원 전고체 리튬이차전지용 고체전해질의 제조방법 및 그를 포함하는 전고체 리튬이차전지의 제조방법
WO2019189275A1 (ja) * 2018-03-27 2019-10-03 第一稀元素化学工業株式会社 セラミックス粉末、焼結体及び電池
JP7260102B2 (ja) * 2018-08-30 2023-04-18 株式会社カネカ ガーネット型複合金属酸化物粒子とその製造方法、及びガーネット型複合金属酸化物の圧縮成形物
KR102241096B1 (ko) * 2019-04-23 2021-04-19 한국세라믹기술원 큐빅 구조를 가지는 가넷형 산화물 고체전해질의 제조방법
CN113727946B (zh) * 2019-04-26 2024-01-02 日本钇股份有限公司 成膜用或烧结用粉末
CN110395980B (zh) * 2019-07-26 2022-02-11 深圳市富济新材料科技有限公司 多孔陶瓷材料、固体电解质材料及其制备方法和锂离子电池
JP2021020835A (ja) * 2019-07-30 2021-02-18 日本コンクリート工業株式会社 コンクリート成形物およびその製造方法
CN111732433A (zh) * 2020-07-02 2020-10-02 西安瑞智材料科技有限公司 一种粒径可控石榴石型固态电解质的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032259A (ja) 2011-06-29 2013-02-14 Toyota Central R&D Labs Inc ガーネット型イオン伝導性酸化物及びその製造方法
WO2014038521A1 (ja) * 2012-09-04 2014-03-13 日本碍子株式会社 固体電解質セラミックス材料
US20150118571A1 (en) * 2013-10-31 2015-04-30 Shanghai Institute Of Ceramics, Chinese Acadamy Of Sciences Fluorine-containing lithium-garnet-type oxide ceramics
JP2017511781A (ja) 2014-01-22 2017-04-27 ショット アクチエンゲゼルシャフトSchott AG ガーネット型結晶構造を有するイオン伝導性ガラスセラミック
JP2017168396A (ja) 2016-03-18 2017-09-21 セイコーエプソン株式会社 固体電解質及びリチウムイオン電池
JP2018065704A (ja) * 2016-10-17 2018-04-26 国立大学法人三重大学 ガーネット型のリチウム−ランタン−ジルコニウム複合酸化物およびその製造方法
WO2020174785A1 (ja) * 2019-02-26 2020-09-03 セイコーエプソン株式会社 固体電解質の前駆体組成物、二次電池の製造方法
WO2021014905A1 (ja) * 2019-07-19 2021-01-28 第一稀元素化学工業株式会社 セラミックス粉末材料、セラミックス粉末材料の製造方法、及び、電池
JP2021020836A (ja) * 2019-07-30 2021-02-18 株式会社豊田中央研究所 焼結体の製造方法及び焼結体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115340378A (zh) * 2022-10-20 2022-11-15 江苏蓝固新能源科技有限公司 一种氧化物固态电解质及其制备方法以及一种锂离子电池
CN115340378B (zh) * 2022-10-20 2023-02-03 江苏蓝固新能源科技有限公司 一种氧化物固态电解质及其制备方法以及一种锂离子电池

Also Published As

Publication number Publication date
EP4005999B1 (en) 2023-07-26
KR102442201B1 (ko) 2022-09-08
EP4005999A1 (en) 2022-06-01
JP2022156626A (ja) 2022-10-14
CN115413274B (zh) 2023-10-03
CN115413274A (zh) 2022-11-29
JP6916406B1 (ja) 2021-08-11
US20220388911A1 (en) 2022-12-08
EP4005999A4 (en) 2022-10-19
US11629098B2 (en) 2023-04-18

Similar Documents

Publication Publication Date Title
KR101731240B1 (ko) 가넷형 화합물의 제조 방법, 가넷형 화합물 및 상기 가넷형 화합물을 포함한 전고체 리튬 2차 전지
JP5971109B2 (ja) ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP4625536B2 (ja) 電極活物質であるアニオン不足型非化学量論リン酸鉄リチウム、その製造方法、及びそれを利用した電気化学素子
JP7025620B2 (ja) 全固体リチウム電池用電極積層体の製造方法、全固体リチウム電池用電極複合体及びその製造方法
KR102316442B1 (ko) 세라믹 분말 재료, 세라믹 분말 재료의 제조 방법 및 전지
KR20120112765A (ko) 복합 산화물의 제조 방법, 리튬 이온 2차 전지용 정극 활물질, 리튬 이온 2차 전지 및 차량
KR20130061038A (ko) 이종 금속이 도핑된 리튬 티탄 복합 산화물의 제조 방법, 및 이에 의하여 제조된 이종 금속이 도핑된 리튬 티탄 복합 산화물
Mohammadi et al. Low temperature nanostructured lithium titanates: controlling the phase composition, crystal structure and surface area
WO2022065522A1 (ja) セラミックス粉末材料、焼結体、及び、電池
WO2022065521A1 (ja) セラミックス粉末材料、セラミックス粉末材料の製造方法、成型体、焼結体、及び、電池
CN113348150B (zh) 钛氧化物、钛氧化物的制造方法以及使用含有钛氧化物的电极活性物质的锂二次电池
KR102016916B1 (ko) Llzo 산화물 고체 전해질 분말의 제조방법
CN112912343A (zh) 金属复合氢氧化物及其制造方法、锂离子二次电池用正极活性物质及其制造方法及使用其的锂离子二次电池
JP7507151B2 (ja) 酸化物系固体電解質粒子
JP7473713B2 (ja) リチウムコバルト系複合酸化物粒子及びその製造方法、リチウムコバルト系複合酸化物粒子組成物及びそれらの製造方法
WO2022145323A1 (ja) リン酸バナジウムリチウムの製造方法
Díaz Desposorio et al. Effect of x on the electrochemical performance of two-layered cathode materials xLi2MnO3–(1− x) LiNi0. 5Mn0. 5O2

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021856920

Country of ref document: EP

Effective date: 20220222

NENP Non-entry into the national phase

Ref country code: DE