WO2020174785A1 - 固体電解質の前駆体組成物、二次電池の製造方法 - Google Patents

固体電解質の前駆体組成物、二次電池の製造方法 Download PDF

Info

Publication number
WO2020174785A1
WO2020174785A1 PCT/JP2019/045708 JP2019045708W WO2020174785A1 WO 2020174785 A1 WO2020174785 A1 WO 2020174785A1 JP 2019045708 W JP2019045708 W JP 2019045708W WO 2020174785 A1 WO2020174785 A1 WO 2020174785A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
positive electrode
negative electrode
precursor composition
forming
Prior art date
Application number
PCT/JP2019/045708
Other languages
English (en)
French (fr)
Inventor
知史 横山
山本 均
古沢 昌宏
寺岡 努
Original Assignee
セイコーエプソン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーエプソン株式会社 filed Critical セイコーエプソン株式会社
Priority to US17/433,105 priority Critical patent/US20220158227A1/en
Priority to CN201980093060.3A priority patent/CN113490643A/zh
Priority to JP2021501577A priority patent/JP7115626B2/ja
Publication of WO2020174785A1 publication Critical patent/WO2020174785A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0407Methods of deposition of the material by coating on an electrolyte layer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G30/00Compounds of antimony
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • H01M2300/0077Ion conductive at high temperature based on zirconium oxide

Definitions

  • the present invention relates to a precursor composition for a solid electrolyte used in a secondary battery and a method for manufacturing the secondary battery.
  • Patent Document 1 a garnet type or garnet including a positive electrode, a negative electrode, lithium (Li), lanthanum (La), zirconium (Zr), and oxygen (O).
  • An all-solid-state lithium secondary battery including a solid electrolyte containing ceramics having a similar crystal structure is disclosed.
  • a ceramic having a garnet-type or garnet-like type crystal structure consisting of: and a method for producing a solid electrolyte material.
  • Li 2 CO 3 is used as the Li component
  • La(OH) 3 or La 2 O 3 is used as the La component
  • ZrO 2 is used as the Zr component.
  • the chemical composition of the solid electrolyte obtained by using the method for producing the solid electrolyte material is such that when Li 7 La 3 Zr 2 O 12, which is a garnet-type ceramic, is stoichiometrically equal to or less than that of Li. Therefore, it is supposed that it is given by Li 7-x La 3 Zr 2 O 12 (0 ⁇ x ⁇ 1.0).
  • a Li component, a La component, and a Zr component which are powders, are prepared and mixed based on the composition ratio of the solid electrolyte. It is said that it is preferable to perform heat treatment for 30 hours or more and 50 hours or less at a temperature lower than °C. However, since the heat treatment temperature is higher than 1000° C. and the heat treatment time is long, Li easily volatilizes, and it is difficult to achieve desired lithium ion conductivity in the obtained solid electrolyte.
  • the solid electrolyte precursor composition of the present application is a garnet-type or garnet-like type solid electrolyte precursor composition containing Li, La, Zr, and M, wherein M is one of Nb, Ta, and Sb. It is an element of at least one kind, and the composition ratio of Li:La:Zr:M in the solid electrolyte is 7-x:3:2-x:x, satisfying 0 ⁇ x ⁇ 2.0, and in the X-ray diffraction pattern.
  • the diffraction angle 2 ⁇ is 28.4°, 32.88°, 47.2°, 56.01°, 58.73°, the X-ray diffraction intensity peak is exhibited.
  • the solid electrolyte precursor composition described above preferably contains nitrate ions.
  • M is preferably two or more elements selected from Nb, Ta, and Sb.
  • the method for manufacturing a secondary battery of the present application forms a molded product using the precursor composition of the solid electrolyte described above, a step of sintering the molded product to form a solid electrolyte layer, and a solid electrolyte layer Characterized by including a step of forming a positive electrode on one surface, a step of forming a negative electrode on the other surface of the solid electrolyte layer, and a step of forming a current collector in contact with at least one of the positive electrode and the negative electrode To do.
  • another method of manufacturing a secondary battery of the present application is to form a molded product containing the above-described solid electrolyte precursor composition and a positive electrode active material, and sinter the molded product to form a positive electrode mixture.
  • the method is characterized by including a step of forming, a step of forming a negative electrode on one surface of the positive electrode mixture, and a step of forming a current collector on the other surface of the positive electrode mixture.
  • another method for manufacturing a secondary battery of the present application is to form a molded product containing the above-described solid electrolyte precursor composition and a negative electrode active material, and sinter the molded product to form a negative electrode mixture.
  • the method is characterized by including a step of forming, a step of forming a positive electrode on one surface of the negative electrode mixture, and a step of forming a current collector on the other surface of the negative electrode mixture.
  • Another method of manufacturing a secondary battery of the present application is a precursor composition of the solid electrolyte described above, a step of forming a sheet of a positive electrode mixture mixture containing a positive electrode active material, the solid electrolyte of the above Precursor composition, a step of forming a sheet of a negative electrode mixture mixture containing a negative electrode active material, a step of forming a sheet of an electrolyte mixture containing a solid electrolyte, a sheet of a positive electrode mixture mixture, a sheet of an electrolyte mixture A step of forming a laminate by laminating a sheet of the negative electrode mixture mixture in this order, a step of forming the laminate to form a formed article, a step of firing the formed article, and a fired formed article And forming a current collector on at least one surface thereof.
  • the solid electrolyte is preferably formed by using the precursor composition of the solid electrolyte described above.
  • the schematic perspective view which shows the structure of the lithium ion battery as a secondary battery of 1st Embodiment. 3 is a flowchart showing a method for manufacturing a lithium-ion battery as a secondary battery according to the first embodiment. Schematic which shows the manufacturing method of the lithium ion battery as a secondary battery of 1st Embodiment. Schematic which shows the manufacturing method of the lithium ion battery as a secondary battery of 1st Embodiment. The schematic sectional drawing which shows the formation method of another solid electrolyte layer. The schematic perspective view which shows the structure of the lithium ion battery as a secondary battery of 2nd Embodiment. The schematic sectional drawing which shows the structure of the lithium ion battery as a secondary battery of 2nd Embodiment.
  • the flowchart which shows the manufacturing method of the lithium ion battery as a secondary battery of 2nd Embodiment.
  • Schematic which shows the manufacturing method of the lithium ion battery as a secondary battery of 2nd Embodiment.
  • Schematic which shows the manufacturing method of the lithium ion battery as a secondary battery of 2nd Embodiment.
  • Schematic which shows the manufacturing method of the lithium ion battery as a secondary battery of 2nd Embodiment.
  • the schematic perspective view which shows the structure of the lithium ion battery as a secondary battery of 3rd Embodiment.
  • the schematic sectional drawing which shows the structure of the lithium ion battery as a secondary battery of 3rd Embodiment.
  • the flowchart which shows the manufacturing method of the lithium ion battery as a secondary battery of 3rd Embodiment.
  • the flowchart which shows the manufacturing method of the lithium ion battery as a secondary battery of 4th Embodiment.
  • FIG. 7 is a schematic view showing a method for manufacturing a lithium ion battery as a secondary battery according to the fourth embodiment.
  • 6 is a graph showing X-ray diffraction patterns of solid electrolyte precursor compositions of Examples 1 to 5.
  • 9 is a graph showing X-ray diffraction patterns of the precursor compositions of the solid electrolytes of Examples 6 and 7, the pyrolyzate of Comparative Example 1, and the mixture of Comparative Example 2.
  • 6 is a graph showing X-ray diffraction patterns of the solid electrolytes of Examples 1 to 5.
  • 6 is a graph showing X-ray diffraction patterns of the solid electrolytes of Example 6 and Example 7 and Comparative Examples 1 to 3.
  • 9 is a graph showing X-ray diffraction patterns of the solid electrolytes of Example 8 and Example 9.
  • the solid electrolyte precursor composition of the present embodiment contains lithium (Li), lanthanum (La), zirconium (Zr), and M, and M is Nb, Ta, or Sb.
  • Li lithium
  • La lanthanum
  • Zr zirconium
  • M is Nb, Ta, or Sb.
  • the X-ray diffraction pattern of the precursor composition by X-ray diffraction analysis (XRD) has diffraction angles 2 ⁇ of 28.4°, 32.88°, 47.2°, 56.01° and 58.73°. At some time, it shows a peak of X-ray diffraction intensity.
  • An electrolyte can be obtained.
  • the element M is one or more selected from Nb, Ta, and Sb, and x satisfies 0 ⁇ x ⁇ 2.0.
  • a method for producing such a solid electrolyte precursor composition will be described.
  • a raw material solution prepared by dissolving each of a lithium compound, a lanthanum compound, a zirconium compound, and a compound containing the element M, which is soluble in a solvent, in a solvent is prepared based on the stoichiometric composition represented by the above composition formula (1).
  • a prepared mixed solution is prepared.
  • a first heat treatment for removing a solvent component from the mixed solution is performed to obtain a mixture.
  • the conditions of the first heat treatment depend on the boiling point and vapor pressure of the solvent, but for example, the heating temperature is 50° C. or higher and 250° C. or lower, and the heating time is 30 minutes to 1 hour.
  • the mixture is subjected to a second heat treatment in an oxidizing atmosphere to obtain a solid electrolyte precursor composition.
  • the conditions of the second heat treatment are, for example, a heating temperature of 450° C. or higher and 550° C. or lower, and a heating time of 1 hour to 2 hours.
  • the mixture is oxidized by performing the second heat treatment in the oxidizing atmosphere.
  • a sample of the precursor composition of the solid electrolyte obtained by oxidizing the mixture was processed into a thin piece with a FIB cross-section processing device Helios 600 manufactured by FEI, and the element distribution and composition were investigated by various analysis methods.
  • the sample From the observation of a transmission electron microscope (TEM) using an electronic JEM-ARM200F and the result of selected area electron diffraction (SAED), the sample has a relatively large amorphous region of several 100 nm (nanometers) or more and a sample of 30 nm or less. It was composed of regions of aggregates of nanocrystals. Further, by energy dispersive X-ray analysis (TEM-EDX) and energy loss spectroscopy (EELS) using a JED-2300T detector made by JEOL, lithium (Li), carbon (C), Oxygen (O) was detected, and lanthanum (La), zirconium (Zr), and element M were detected in the region of the nanocrystal aggregate.
  • TEM-EDX energy dispersive X-ray analysis
  • EELS energy loss spectroscopy
  • the solid electrolyte precursor composition of the present embodiment has a diffraction angle 2 ⁇ of 28.4°, 32.88°, 47.2°, 56.01°, 58.73° in XRD.
  • La since a peak of the X-ray diffraction intensity, nanocrystals, La has a pyrochlore type crystal structure represented by the same space group Fd3m with 2 Zr 2 O 7, La 2 Zr 2 O 7 and the element It is considered to be a solid solution with M.
  • Detailed analysis results of XRD will be described in the section of Examples and Comparative Examples described later.
  • the oxidizing atmosphere may be an atmosphere containing oxygen, and examples thereof include the atmosphere.
  • the step of sintering is called main firing.
  • the step of subjecting the above mixture to the second heat treatment can be called calcination. That is, the precursor composition of the solid electrolyte obtained through the second heat treatment step is a calcined body.
  • lithium compound containing the lithium compound, the lanthanum compound, the zirconium compound, and the element M used in the method for producing the precursor composition of the solid electrolyte are as follows.
  • the lithium compound as the lithium source include lithium chloride, lithium nitrate, lithium acetate, lithium hydroxide, lithium metal salts such as lithium carbonate, lithium methoxide, lithium ethoxide, lithium propoxide, lithium isopropoxide, lithium.
  • lithium alkoxides such as butoxide, lithium isobutoxide, lithium secondary butoxide, lithium tertiary butoxide, and dipivaloylmethanatolithium, and one or more of these can be used in combination.
  • Examples of the lanthanum compound as a lanthanum source include lanthanum chloride, lanthanum nitrate, lanthanum metal salts such as lanthanum acetate, lanthanum trimethoxide, lanthanum triethoxide, lanthanum tripropoxide, lanthanum triisopropoxide, lanthanum tributoxide, Examples of the lanthanum alkoxide include lanthanum triisobutoxide, lanthanum trisecondary butoxide, lanthanum tritert-butoxide, and dipivaloylmethanatrantan, and one or more of them can be used in combination.
  • zirconium compounds as zirconium sources include zirconium chloride, zirconium oxychloride, zirconium oxynitrate, zirconium oxyacetate, zirconium metal salts such as zirconium acetate, zirconium tetramethoxide, zirconium tetraethoxide, zirconium tetrapropoxide, zirconium.
  • Zirconium alkoxides such as tetraisopropoxide, zirconium tetrabutoxide, zirconium tetraisobutoxide, zirconium tetrasecondary butoxide, zirconium tetratert-butoxide, and dipivaloylmethanatozirconium are listed, and one or more of these may be used. It can be used in combination.
  • the element M is selected from Nb, Ta and Sb. Therefore, when the element M is niobium (Nb), examples of the niobium compound as the niobium source include niobium chloride, niobium oxychloride, niobium metal salts such as niobium oxalate, niobium ethoxide, niobium propoxide, and niobium isooxide.
  • niobium alkoxides such as propoxide and niobium secondary butoxide, niobium triacetylacetonate, niobium pentaacetylacetonate, niobium diisopropoxide triacetylacetonate, and one or more of these may be used. It can be used in combination.
  • tantalum compound as a tantalum source examples include tantalum metal salts such as tantalum chloride and tantalum bromide, tantalum pentamethoxide, tantalum pentaethoxide, tantalum pentaisopropoxide, and the like.
  • tantalum alkoxides such as tantalum pentanormal propoxide, tantalum pentaisobutoxide, tantalum pentanormal butoxide, tantalum pentasecondary butoxide, and tantalum pentatert-butoxide, and one or more of these can be used in combination. ..
  • examples of the antimony compound as the antimony source include antimony bromide, antimony chloride, antimony fluoride, and other antimony metal salts, antimony trimethoxide, antimony triethoxide, antimony trioxide.
  • examples thereof include antimony alkoxides such as isopropoxide, antimony trinormal propoxide, antimony triisobutoxide, and antimony trinormal butoxide, and one or more of these can be used in combination.
  • Examples of the solvent capable of dissolving the lithium compound, the lanthanum compound, the zirconium compound, and the compound containing the element M include a single solvent or a mixed solvent of water and an organic solvent.
  • the organic solvent that constitutes the single solvent or the mixed solvent is not particularly limited, and examples thereof include methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, allyl alcohol, ethylene glycol monobutyl ether (2- n-butoxyethanol) and other alcohols, ethylene glycol, propylene glycol, butylene glycol, hexylene glycol, pentanediol, hexanediol, heptanediol, dipropylene glycol and other glycols, dimethyl ketone, methyl ethyl ketone, methyl propyl ketone, methyl Ketones such as isobutyl ketone, esters such as methyl formate, ethyl formate, methyl acetate, methyl acetoacetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether,
  • the precursor composition of the solid electrolyte contains nitrate ions.
  • the melting point of the precursor composition of the solid electrolyte is lowered, and even if the sintering temperature is set to 1000° C. or lower during sintering for obtaining the solid electrolyte. As the sintering progresses, it becomes easy to obtain a solid electrolyte having a dense garnet-type or garnet-like type crystal structure and exhibiting high lithium ion conductivity.
  • the element M in the precursor composition of the solid electrolyte is selected from two or more of Nb, Ta and Sb. Details will be described in the section of Examples and Comparative Examples described later.
  • FIG. 1 is a schematic perspective view showing a configuration of a lithium ion battery as a secondary battery of the first embodiment.
  • a lithium ion battery 100 as a secondary battery includes a positive electrode 10, a solid electrolyte layer 20 sequentially stacked on the positive electrode 10, and a negative electrode 30. .. Further, it has a current collector 41 in contact with the positive electrode 10 and a current collector 42 in contact with the negative electrode 30. Since the positive electrode 10, the solid electrolyte layer 20, and the negative electrode 30 are all composed of a solid phase, the lithium ion battery 100 of the present embodiment is a chargeable/dischargeable all solid state secondary battery.
  • the lithium-ion battery 100 of the present embodiment is, for example, a disk shape, and the outer size is, for example, a diameter ⁇ of 10 to 20 mm and a thickness of about 0.3 mm (millimeter). Since it is small and thin, and can be charged and discharged and is all solid, it can be suitably used as a power source for a mobile information terminal such as a smartphone.
  • the size and thickness of the lithium-ion battery 100 are not limited to this value as long as molding is possible.
  • the thickness from the positive electrode 10 to the negative electrode 30 when the outer size is 10 to 20 mm ⁇ as in the present embodiment is about 0.3 mm from the viewpoint of moldability when it is thin, and from the viewpoint of lithium ion conductivity when it is thick.
  • the shape of the lithium ion battery 100 is not limited to the disk shape, and may be a polygonal disk shape. Hereinafter, each configuration will be described.
  • the solid electrolyte layer 20 in the lithium ion battery 100 of the present embodiment is formed using the solid electrolyte precursor composition of the present embodiment. From the viewpoint of the charge/discharge rate, the solid electrolyte layer 20 preferably has a thickness in the range of 300 nm (nanometer) to 1000 ⁇ m (micrometer), and more preferably 500 nm to 100 ⁇ m.
  • the mass ratio of the solid electrolyte to the total volume of the solid electrolyte layer 20, that is, the theoretical bulk density It is preferably 50% or more, and more preferably 90% or more.
  • the method for forming such a solid electrolyte layer 20 include a green sheet method, a press sintering method, and a casting sintering method, which can be selected in consideration of the target thickness, size, and productivity. A specific example of the method for forming the solid electrolyte layer 20 will be described later.
  • a solid that contacts the positive electrode 10 and the negative electrode 30 For the purpose of improving the adhesion between the solid electrolyte layer 20 and the positive electrode 10 and the negative electrode 30, and improving the output and battery capacity of the lithium-ion battery 100 by increasing the specific surface area, a solid that contacts the positive electrode 10 and the negative electrode 30.
  • a three-dimensional pattern structure such as depressions (dimples), grooves (trench), columns (pillars) may be formed on the surface of the electrolyte layer 20.
  • any positive electrode active material can be used as long as it is capable of electrochemically repeating occlusion/release of lithium ions.
  • Specific positive electrode active materials include at least lithium (Li) and include vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu).
  • lithium composite oxide composed of any one or more elements selected from the group consisting of Examples of such a mixed oxide include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , Li 2 Mn 2 O 3 , LiCr 0.5 Mn 0.5 O 2 , LiFePO 4 , Li 2 FeP 2 O 7 , LiMnPO 4 , LiFeBO. 3, Li 3 V 2 (PO 4) 3, etc.
  • Li 2 CuO 2, Li 2 FeSiO 4, Li 2 MnSiO 4 can be cited.
  • a fluoride such as LiFeF 3
  • a boride complex compound such as LiBH 4 or Li 4 BN 3 H 10
  • an iodine complex compound such as a polyvinylpyridine-iodine complex
  • a non-metal compound such as sulfur
  • the positive electrode 10 is preferably formed in a thin film shape with a thickness of 100 nm to 500 ⁇ m on the surface of the solid electrolyte layer 20, and more preferably 300 nm to 100 ⁇ m.
  • a method of forming such a positive electrode 10 various methods can be used depending on the physicochemical characteristics of the positive electrode active material, the target thickness, the area, the productivity, etc., as long as the thin film having the above-described suitable thickness can be formed. You can choose. Specifically, methods such as a vacuum vapor deposition method, a sputtering method, a CVD method, a PLD method, an ALD method, a vapor deposition method such as an aerosol deposition method, and a chemical deposition method using a solution such as a sol-gel method and a MOD method are exemplified. be able to.
  • fine particles of the positive electrode active material may be slurried with an appropriate binder to form a coating film by squeegee or screen printing, and the coating film may be dried and sintered and baked on the surface of the solid electrolyte layer 20.
  • Negative Electrode The negative electrode 30 may be any so-called negative electrode active material that repeats electrochemical occlusion/release of lithium ions at a potential lower than that of the material selected as the positive electrode.
  • Specific negative electrode active materials include Nb 2 O 5 , V 2 O 5 , TiO 2 , In 2 O 3 (indium oxide), ZnO (zinc oxide), SnO 2 (tin oxide), NiO, and ITO (Sn are Added indium oxide), AZO (zinc oxide with aluminum added), GZO (zinc oxide with added gallium), ATO (tin oxide with added antimony), FTO (tin oxide with added fluorine) , Li 4 Ti 5 O 12 , Li 2 Ti 3 O 7, and other lithium compound oxides.
  • lithium ions are inserted between the layers of metals and alloys such as Li, Al, Si, Si-Mn, Si-Co, Si-Ni, Sn, Zn, Sb, Bi, In, Au, carbon materials, and carbon materials. Substances (LiC 24 , LiC 6, etc.) and the like, and at least one kind is selected from these.
  • the negative electrode 30 is preferably formed in a thin film shape on the surface of the solid electrolyte layer 20 with a thickness of 100 nm to 500 ⁇ m, and more preferably 300 nm to 100 ⁇ m.
  • the method of forming the negative electrode 30 various methods can be used depending on the physicochemical characteristics of the negative electrode active material, the target thickness, the area, the productivity, etc., as long as the thin film having the above-described suitable thickness can be formed. You can choose. Specifically, methods such as a vacuum vapor deposition method, a sputtering method, a CVD method, a PLD method, an ALD method, a vapor deposition method such as an aerosol deposition method, and a chemical deposition method using a solution such as a sol-gel method and a MOD method are exemplified. be able to.
  • fine particles of the negative electrode active material may be slurried with an appropriate binder to form a coating film by squeegee or screen printing, and the coating film may be dried and sintered and baked on the surface of the solid electrolyte layer 20.
  • the current collector is a conductor provided to transfer and receive electrons to and from the positive electrode 10 or the negative electrode 30, and is made of a material that has a sufficiently low electric resistance and whose electric conduction characteristics and its mechanical structure do not change due to charging and discharging. To be selected. Specifically, for the current collector 41 of the positive electrode 10, aluminum (Al), titanium (Ti), platinum (Pt), gold (Au), or the like is used. Copper (Cu) is preferably used for the current collector 42 of the negative electrode 30. The current collectors 41 and 42 are provided so as to have a small contact resistance with the positive electrode 10 or the negative electrode 30, and various shapes such as a plate shape and a mesh shape can be selected according to the design of the lithium ion battery 100. ..
  • the lithium-ion battery 100 is configured to have the pair of current collectors 41 and 42. However, for example, when a plurality of lithium-ion batteries 100 are stacked and used by being electrically connected in series, lithium is used.
  • the ion battery 100 can also be configured to include only the current collector 41 of the pair of current collectors 41 and 42.
  • FIG. 2 is a flowchart showing a method for manufacturing a lithium ion battery as a secondary battery according to the first embodiment
  • FIGS. 3 and 4 are schematic diagrams showing a method for manufacturing a lithium ion battery as a secondary battery according to the first embodiment. is there.
  • the solid electrolyte layer 20 forming step (step S1), the positive electrode 10 forming step (step S2), and the negative electrode 30 forming step (step S3) and the step of forming the current collectors 41 and 42 (step S4) are provided.
  • the solid electrolyte layer 20 is formed by the green sheet method using the solid electrolyte precursor composition of the present embodiment.
  • a solution prepared by dissolving 10 g of polypropylene carbonate (manufactured by Sigma-Aldrich) in 40 g of 1,4-dioxane (manufactured by Kanto Kagaku Co., Ltd.) was prepared as a binder for the green sheet, and the precursor of the solid electrolyte of the present embodiment was prepared.
  • a slurry was formed by adding 15 g of the composition and mixing.
  • the solid electrolyte mixture sheet 20s is formed using the slurry 20m.
  • a slurry 20 m is applied to a base material 506 such as a polyethylene terephthalate (PET) film with a constant thickness.
  • PET polyethylene terephthalate
  • the fully-automatic film applicator 500 has a coating roller 501 and a doctor roller 502. A squeegee 503 is provided so as to contact the doctor roller 502 from above.
  • a transport roller 504 is provided below the coating roller 501 at an opposing position, and the stage 505 is fixed by inserting the stage 505 on which the base material 506 is placed between the coating roller 501 and the transport roller 504. Is conveyed in the direction. 20 m of the slurry is put on the side where the squeegee 503 is provided between the doctor roller 502 and the application roller 501 which is arranged with a gap in the conveyance direction of the stage 505. The coating roller 501 and the doctor roller 502 are rotated so as to push the slurry 20 m downward through the gap, and the surface of the coating roller 501 is coated with the slurry 20 m having a constant thickness.
  • the transport roller 504 is rotated, and the stage 505 is transported such that the base material 506 is in contact with the coating roller 501 coated with the slurry 20 m.
  • the slurry 20m applied to the application roller 501 is transferred to the base material 506 in a sheet form to form the solid electrolyte mixture sheet 20s.
  • 2.5 g of the above-mentioned slurry 20 m is weighed and put into a fully automatic film applicator 500 (manufactured by Cotech), and a solid electrolyte mixture having a width of 5 cm, a length of 10 cm, and a thickness of 20 ⁇ m is placed on a base material 506.
  • the sheet 20s was formed.
  • the solid electrolyte mixture sheet 20s formed on the base material 506 is dried in the air for 8 hours and peeled off from the base material 506, and as shown in FIG. 4, a molded product 20f having a diameter ⁇ of 2 cm is formed using a punching die. did.
  • the molded product 20f was sintered in an oxidizing atmosphere at 900° C. for 8 hours to obtain a solid electrolyte layer 20 having a diameter ⁇ of about 19 mm and a thickness of 16 ⁇ m.
  • the slurry 20m is pressed and extruded by the coating roller 501 and the doctor roller 502 so that the theoretical bulk density of the solid electrolyte layer 20 after sintering is 90% or more, and the solid electrolyte mixture sheet 20s having a constant thickness is obtained. .. Then, the process proceeds to step S2.
  • the positive electrode 10 is formed on one surface of the solid electrolyte layer 20.
  • a sputtering apparatus SSP2000 manufactured by Suga Seisakusho is used, and lithium cobalt oxide (LiCoO 2 ) manufactured by Toyoshima Seisakusho with a diameter 4.9 cm is used as a target by sputtering to form a LiCoO 2 layer on the surface of the solid electrolyte layer 20 of 19 mm ⁇ . Was formed.
  • Argon gas was used as the carrier gas.
  • the solid electrolyte layer 20 on which the LiCoO 2 layer is formed is fired at 500° C. for 2 hours in an oxidizing atmosphere to convert the crystals of the LiCoO 2 layer into high-temperature phase crystals, thereby forming the positive electrode 10 having a thickness of 5.4 ⁇ m. Obtained. Then, the process proceeds to step S3.
  • the negative electrode 30 is formed on the other surface of the solid electrolyte layer 20.
  • a metal having a film thickness of, for example, 20 ⁇ m is formed on the surface of the solid electrolyte layer 20 opposite to the surface on which the positive electrode 10 is formed.
  • a thin film of Li was formed to serve as the negative electrode 30. Then, the process proceeds to step S4.
  • the current collector 41 was formed in contact with the positive electrode 10 and the current collector 42 was formed in contact with the negative electrode 30. Specifically, an aluminum foil having a thickness of 40 ⁇ m, which was die-cut to have a diameter ⁇ of 15 mm, was pressed against the positive electrode 10 to be bonded to obtain a current collector 41. Further, a copper foil having a thickness of 20 ⁇ m, which had been die-cut to have a diameter ⁇ of 15 mm, was pressed against the negative electrode 30 to be bonded to form a current collector 42. As described above, in the lithium-ion battery 100, the pair of current collectors 41 and 42 is not an indispensable structure, and even if one of the pair of current collectors 41 and 42 is formed in the step of forming the current collector. Good.
  • FIG. 5 is a schematic cross-sectional view showing another method for forming a solid electrolyte layer.
  • 1200 mg of the powder of the precursor composition of the solid electrolyte of the present embodiment is weighed, and a stainless steel exhaust having an inner diameter of 20 mm ⁇ manufactured by Specac Co., Ltd.
  • the ported pellet die 80 is filled and closed with a lid 81.
  • the lid 81 is pressed with a pressure of 300 MPa to perform uniaxial press molding for 2 minutes to obtain a molded product 20f.
  • the molded product 20f was taken out from the pellet die 80 and sintered at 900° C. for 8 hours in an oxidizing atmosphere to obtain a solid electrolyte layer 20 having a diameter ⁇ of 19 mm and a thickness of 80 ⁇ m.
  • the theoretical bulk density of the solid electrolyte layer 20 at this time was 92%.
  • Theoretical bulk density is the ratio of the actual mass to the theoretical mass based on the apparent volume.
  • the theoretical bulk density of the solid electrolyte layer 20 provided between the positive electrode 10 and the negative electrode 30 is preferably as high as possible as described above.
  • a solid electrolyte obtained by the above-described forming method using an agate bowl was pulverized, and a mixture of the obtained solid electrolyte powder 800 mg and the solid electrolyte precursor composition powder 400 mg of the present embodiment was added to the mixture.
  • the pellet die 80 is filled with the lid 81, and the lid 81 is pressed.
  • the pellet die 80 is pressed at a pressure of 300 MPa to perform uniaxial press molding for 2 minutes to obtain a molded product 20f.
  • the molded product 20f was taken out from the pellet die 80 and sintered at 900° C. for 8 hours in an oxidizing atmosphere to obtain a solid electrolyte layer 20 having a diameter ⁇ of 19.8 mm and a thickness of 87 ⁇ m.
  • the theoretical bulk density of the solid electrolyte layer 20 at this time was 97%.
  • the precursor composition of the solid electrolyte of the present embodiment is a garnet-type or garnet-like solid electrolyte precursor composition containing Li, La, Zr, and an element M, wherein the element M is Nb, One or more of Ta and Sb, the composition ratio of Li:La:Zr:element M in the solid electrolyte is 7-x:3:2-x:x, and 0 ⁇ x ⁇ 2.0 is satisfied,
  • the diffraction angle 2 ⁇ is 28.4°, 32.88°, 47.2°, 56.01°, 58.73°
  • an X-ray diffraction intensity peak is shown.
  • Such a solid electrolyte precursor composition has an amorphous region containing Li, C, and O and a region of an aggregate composed of nanocrystals considered to be a solid solution of La 2 Zr 2 O 7 and the element M.
  • a solid electrolyte precursor composition is obtained by mixing raw material solutions obtained by dissolving raw material compounds each containing a constituent element of the solid electrolyte in a solvent, followed by drying and firing. Therefore, as compared with the case where the powder of the raw material compound containing the constituent elements of the solid electrolyte is mixed based on the stoichiometric composition of the composition formula (1) of the solid electrolyte and sintered, the sintering temperature is 1000° C. or less.
  • the solid electrolyte formed using the precursor composition of the solid electrolyte of the present embodiment is represented by the following composition formula (1).
  • the element M is one or more selected from Nb, Ta, and Sb, and x satisfies 0 ⁇ x ⁇ 2.0.
  • lithium nitrate is used as the lithium compound and lanthanum nitrate is used as the lanthanum compound, so that the obtained precursor composition of the solid electrolyte contains nitrate ions. Will be included.
  • the heating temperature during sintering can be lowered to a temperature lower than 1000° C. as compared with the case where an alkoxide is used as a lithium compound or a lanthanum compound. It is considered that this is because the melting point of the precursor composition of the solid electrolyte is lowered by containing the nitrate ion.
  • the element M is preferably two or more selected from Nb, Ta and Sb. According to this, by selecting two or more kinds of the element M substituting a part of the Zr site from Nb, Ta and Sb, it is possible to obtain a higher lithium content in the solid electrolyte represented by the composition formula (1). Ionic conductivity can be realized.
  • the solid electrolyte layer 20 having high lithium ion conductivity is formed by using the solid electrolyte precursor composition of the present embodiment. Therefore, the lithium-ion battery 100 having excellent charge/discharge characteristics can be manufactured.
  • FIG. 6 is a schematic perspective view showing a configuration of a lithium ion battery as a secondary battery of the second embodiment
  • FIG. 7 is a schematic sectional view showing a structure of a lithium ion battery as a secondary battery of the second embodiment.
  • a lithium ion battery 200 as a secondary battery includes a positive electrode composite material 210 that functions as a positive electrode, an electrolyte layer 220 that is sequentially stacked on the positive electrode composite material 210, and a negative electrode. 230 and. Further, it has a current collector 241 in contact with the positive electrode mixture material 210 and a current collector 242 in contact with the negative electrode 230.
  • the lithium ion battery 200 of the present embodiment is also a chargeable/dischargeable all solid state secondary battery.
  • the lithium-ion battery 200 of the present embodiment is, for example, a disk shape, and the outer dimensions are, for example, a diameter ⁇ of 10 to 20 mm and a thickness of about 0.3 mm (millimeter). Since it is small and thin, and can be charged and discharged and is all solid, it can be suitably used as a power source for a mobile information terminal such as a smartphone.
  • the size and thickness of the lithium-ion battery 200 are not limited to this value as long as molding is possible.
  • the thickness from the positive electrode mixture material 210 to the negative electrode 230 is about 0.3 mm from the viewpoint of moldability when it is thin, and the lithium ion conductivity when it is thick.
  • the shape of the lithium ion battery 200 is not limited to the disk shape, and may be a polygonal disk shape. Hereinafter, each configuration will be described.
  • the positive electrode mixture 210 in the lithium-ion battery 200 of the present embodiment is configured to include a particulate positive electrode active material 211 and a solid electrolyte 212.
  • a positive electrode mixture material 210 can increase the interfacial area where the particulate positive electrode active material 211 and the solid electrolyte 212 are in contact with each other to increase the battery reaction rate in the lithium ion battery 200.
  • the positive electrode active material 211 used in the positive electrode mixture material 210 is preferably in the form of particles having a particle size of 100 nm to 100 ⁇ m, more preferably 300 nm to 30 ⁇ m.
  • the particle diameter represents the maximum diameter of the particles of the positive electrode active material 211.
  • the shape of the particulate positive electrode active material 211 is shown as a spherical shape, but the shape of the positive electrode active material 211 is not limited to a spherical shape, and various shapes such as a columnar shape, a plate shape, and a hollow shape. It is possible that it takes an irregular shape. Therefore, the particle size of the particulate positive electrode active material 211 may be shown as the average particle size.
  • the positive electrode active material 211 includes at least lithium (Li), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt. It is possible to use a lithium composite oxide composed of any one or more elements selected from the group consisting of (Co), nickel (Ni), and copper (Cu). Examples of such a mixed oxide include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , Li 2 Mn 2 O 3 , LiCr 0.5 Mn 0.5 O 2 , LiFePO 4 , Li 2 FeP 2 O 7 , LiMnPO 4 , LiFeBO. 3, Li 3 V 2 (PO 4) 3, etc.
  • Li 2 CuO 2, Li 2 FeSiO 4, Li 2 MnSiO 4 can be cited.
  • a fluoride such as LiFeF 3
  • a lithium borohydride compound which is a complex hydride such as LiBH 4 and Li 4 BN 3 H 10
  • an iodine complex compound such as a polyvinylpyridine-iodine complex
  • a non-metal compound such as sulfur.
  • the particles of the positive electrode active material 211 may have a coating layer or the like formed on the surface for the purpose of reducing the interface resistance with the solid electrolyte 212 and improving the electron conductivity.
  • a coating layer or the like formed on the surface for the purpose of reducing the interface resistance with the solid electrolyte 212 and improving the electron conductivity.
  • the interfacial resistance of lithium ion conduction can be improved. It can be reduced.
  • the positive electrode mixture 210 is compounded according to the characteristics and design required by the electrolyte, the conductive auxiliary agent, the binder, and the like.
  • the solid electrolyte 212 contained in the positive electrode mixture material 210 uses the precursor composition of the solid electrolyte of the present embodiment from the viewpoint of ionic conductivity, chemical stability, and interface impedance with the electrolyte layer 220. Has been formed. That is, the solid electrolyte 212 is represented by the following composition formula (1). Li 7-x La 3 (Zr 2-x , M x )O 12 (1)
  • the element M is one or more selected from Nb, Ta, and Sb, and x satisfies 0 ⁇ x ⁇ 2.0.
  • any substance may be used as long as it is a conductor in which electrochemical interaction can be ignored at the positive electrode reaction potential.
  • Carbon materials such as acetylene black, Ketjen black, carbon nanotubes, noble metals such as palladium and platinum, and conductive oxides such as SnO 2 , ZnO, RuO 2 , ReO 3 , and Ir 2 O 3 can be used.
  • the electrolyte layer 220 is preferably composed of the same material as the solid electrolyte 212 from the viewpoint of the interface impedance with the positive electrode mixture material 210, but other oxide solid electrolytes, sulfide solid electrolytes, nitride solid electrolytes, It is also possible to use a halide solid electrolyte, a hydride solid electrolyte, a dry polymer electrolyte, a quasi-solid electrolyte crystalline or amorphous, or to use them alone.
  • Examples of crystalline oxides include Li 0.35 La 0.55 TiO 3 , Li 0.2 La 0.27 NbO 3 , and some of the elements of these crystals are N, F, Al, Sr, Sc, Nb, Ta, Sb, and lanthanoids.
  • Perovskite type crystals or perovskite-like type crystals substituted with elements Li 7 La 3 Zr 2 O 12 , Li 5 La 3 Nb 2 O 12 , Li 5 BaLa 2 TaO 12 , and some of these crystal elements are N, Garnet-type crystal or garnet-like crystal substituted with F, Al, Sr, Sc, Nb, Ta, Sb, or lanthanoid element, Li 1.3 Ti 1.7 Al 0.3 (PO 4 ) 3 , Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 , Li 1.4 Al 0.4 Ti 1.4 Ge 0.2 (PO 4 ) 3 , and a NASICON type crystal in which a part of these crystals is replaced with N, F, Al, Sr, Sc, Nb, Ta, Sb, or a lanthanoid element, Other crystalline materials such as Li 14 ZnGe 4 O 16 and other Lisicon type crystals, Li 3.4 V 0.6 Si 0.4 O 4 , Li 3.6 V 0.4 Ge 0.6
  • Examples of crystalline sulfides include Li 10 GeP 2 S 12 , Li 9.6 P 3 S 12 , Li 9.54 Si 1.74 P 1.44 S 11.7 Cl 0.3 , and Li 3 PS 4 .
  • Examples of other amorphous materials include Li 2 O—TiO 2 , La 2 O 3 —Li 2 O—TiO 2 , LiNbO 3 , LiSO 4 , Li 4 SiO 4 , Li 3 PO 4 —Li 4 SiO.
  • the solid electrolyte constituting the electrolyte layer 220 When it is crystalline, it is preferably a crystal structure such as a cubic crystal having a small crystal plane anisotropy in the direction of lithium ion conduction. Further, when amorphous, the anisotropy of lithium ion conduction is small, and thus such crystalline or amorphous is preferable as the solid electrolyte constituting the electrolyte layer 220.
  • the thickness of the electrolyte layer 220 is preferably 0.1 ⁇ m or more and 100 ⁇ m or less, and more preferably 0.2 ⁇ m or more and 10 ⁇ m or less. By setting the thickness of the electrolyte layer 220 in the above range, the internal resistance of the electrolyte layer 220 can be reduced and the occurrence of a short circuit between the positive electrode mixture material 210 and the negative electrode 230 can be suppressed.
  • the surface of the electrolyte layer 220 in contact with the negative electrode 230 may be combined with various molding methods and processing methods as necessary to form a three-dimensional pattern structure such as depressions (dimples), grooves (trench), and pillars (pillars). You may form.
  • Negative Electrode The negative electrode 230 can employ the same configuration as the negative electrode 30 in the lithium-ion battery 100 of the first embodiment. Therefore, detailed description is omitted here.
  • a current collector is a conductor provided to transfer electrons to and from the positive electrode mixture material 210 or the negative electrode 230, has a sufficiently small electric resistance, and does not change electric conduction characteristics or its mechanical structure due to charging and discharging. The material is selected. Therefore, the current collector 241 in contact with the positive electrode mixture material 210 and the current collector 242 in contact with the negative electrode 230 can adopt the same configuration as the current collectors 41, 42 in the lithium ion battery 100 of the first embodiment. .. Therefore, detailed description is omitted here.
  • the pair of current collectors 241 and 242 are not essential, and may be configured to include only one.
  • FIG. 8 is a flowchart showing a method for manufacturing a lithium ion battery as a secondary battery according to the second embodiment
  • FIGS. 9 and 10 are schematic diagrams showing a method for manufacturing a lithium ion battery as a secondary battery according to the second embodiment. is there.
  • a mixture sheet forming process (step S11), a molded product forming process (step S12), and a molded product baking process (step S13).
  • step S11 a mixture sheet forming process
  • step S12 a molded product forming process
  • step S13 a molded product baking process
  • step S14 the step of forming the electrolyte layer 220
  • step S15 the step of forming the negative electrode 230
  • step S16 the step of forming the current collectors 241 and 242
  • step S11 15 g of powder of LiCoO 2 manufactured by Nippon Kayaku having an average particle size of 5 ⁇ m as the positive electrode active material 211, and 18 g of powder of the precursor composition of the solid electrolyte of the present embodiment are combined. 10 g of polypropylene carbonate (PPC) manufactured by Sigma-Aldrich as a binder is mixed with 90 g of 1,4-dioxane, which is a solvent manufactured by Kanto Kagaku, and mixed to form a slurry. Then, as shown in FIG.
  • PPC polypropylene carbonate
  • the obtained slurry 210 m is put into a fully-automatic film applicator 500 and coated on a substrate 506, and a positive electrode having a width of 5 cm, a length of 10 cm, and a thickness of 70 ⁇ m.
  • the mixture material sheet 210s was obtained. Then, the process proceeds to step S12.
  • step S12 the positive electrode mixture material sheet 210s is dried in the air for 8 hours, the positive electrode material mixture sheet 210s is peeled from the base material 506, and the die is cut as shown in FIG. A molded product 210f having a diameter ⁇ of 20 mm was obtained. Then, the process proceeds to step S13.
  • step S13 the molded product 210f was sintered in an oxidizing atmosphere at 900° C. for 8 hours to obtain a positive electrode composite material 210. Then, the process proceeds to step S14.
  • the electrolyte layer 220 was formed on one surface 210b (see FIG. 7) of the positive electrode composite material 210.
  • a sputtering apparatus SSP2000 manufactured by Suga Seisakusho
  • a solid solution Li 2.2 C 0.8 B 0.2 O 3 manufactured by Toyoshima Seisakusho
  • Li 2 CO 3 and Li 3 BO 3 having a diameter ⁇ of 4.9 cm
  • a Li 2.2 C 0.8 B 0.2 O 3 layer was formed on one surface 210b (see FIG. 7) of the positive electrode mixture material 210.
  • the negative electrode 230 was formed on the one surface 210b side of the positive electrode mixture 210. Specifically, by using a glove box storage type vacuum deposition device manufactured by Kenix, a thin film of metal Li having a film thickness of, for example, 20 ⁇ m is formed on the surface of the electrolyte layer 220 opposite to the positive electrode mixture material 210. And made the negative electrode 230. Then, the process proceeds to step S16.
  • the current collector 241 was formed so as to be in contact with the other surface 210a of the positive electrode mixture material 210, and the current collector 242 was formed so as to be in contact with the negative electrode 230.
  • a copper foil having a thickness of 20 ⁇ m which had been die-cut to have a diameter ⁇ of 15 mm, was pressed against the negative electrode 230 and bonded to form a current collector 242. Note that in the step of forming the current collector, only one of the pair of current collectors 241 and 242 may be formed.
  • the method for forming the positive electrode mixture material 210 and the electrolyte layer 220 is not limited to the method shown in steps S11 to S14.
  • 15 g of the powder of the solid electrolyte precursor composition of the present embodiment and 10 g of PPC as a binder are mixed with 40 g of 1,4-dioxane as a solvent and mixed to form a slurry.
  • the obtained slurry is put into a fully-automatic film applicator 500 and applied on a substrate 506 to form an electrolyte mixture sheet having a width of 5 cm, a length of 10 cm and a thickness of 20 ⁇ m.
  • step S12 the positive electrode mixture mixture sheet 210s separated from the base material 506 and the above-mentioned electrolyte mixture sheet are overlapped and roll-pressed at 90° C. under a pressure of 4 MPa to bond them together.
  • the laminated sheet obtained by pasting is die-cut to obtain a molded product, and the molded product is sintered in an oxidizing atmosphere at 900° C. for 8 hours to form a laminate of the positive electrode mixture material 210 and the electrolyte layer 220. You may get it.
  • the positive electrode mixture material 210 is formed by sintering a mixture obtained by mixing the particulate positive electrode active material 211 and the powder of the solid electrolyte precursor composition of the present embodiment. Therefore, since the positive electrode mixture material 210 is configured to include the particulate positive electrode active material 211 and the solid electrolyte 212 represented by the following composition formula (1), the particulate positive electrode active material 211 and the solid electrolyte 212 are It is possible to manufacture the lithium ion battery 200 having excellent charge/discharge characteristics by smoothly transmitting lithium ions at the interface.
  • the element M is one or more selected from Nb, Ta, and Sb, and x satisfies 0 ⁇ x ⁇ 2.0.
  • FIG. 11 is a schematic perspective view showing the configuration of a lithium ion battery as a secondary battery of the third embodiment
  • FIG. 12 is a schematic sectional view showing the structure of a lithium ion battery as a secondary battery of the third embodiment.
  • a lithium ion battery 300 as a secondary battery includes a positive electrode 310, an electrolyte layer 320 that is sequentially stacked on the positive electrode 310, and a negative electrode mixture material 330 that functions as a negative electrode. have. Further, a current collector 341 in contact with the positive electrode 310 and a current collector 342 in contact with the negative electrode mixture material 330 are included.
  • the lithium ion battery 300 of the present embodiment is also a chargeable/dischargeable all solid state secondary battery.
  • the lithium-ion battery 300 of the present embodiment is, for example, a disk shape, and the outer dimensions are, for example, a diameter ⁇ of 10 to 20 mm and a thickness of about 0.3 mm (millimeter). Since it is small and thin, and can be charged and discharged and is all solid, it can be suitably used as a power source for a mobile information terminal such as a smartphone.
  • the size and thickness of the lithium-ion battery 300 are not limited to this value as long as molding is possible.
  • the thickness from the positive electrode 310 to the negative electrode mixture material 330 when the outer size is 10 to 20 mm ⁇ as in the present embodiment is about 0.3 mm from the viewpoint of moldability when it is thin, and when it is thick, it is lithium ion conductive.
  • the shape of the lithium ion battery 300 is not limited to the disk shape, and may be a polygonal disk shape. Hereinafter, each configuration will be described.
  • the negative electrode composite material 330 in the lithium-ion battery 300 of the present embodiment is configured to include a particulate negative electrode active material 331 and a solid electrolyte 332.
  • a negative electrode mixture material 330 can increase the interface area where the particulate negative electrode active material 331 and the solid electrolyte 332 are in contact with each other, and can increase the battery reaction rate in the lithium ion battery 300.
  • the negative electrode active material 331 used in the negative electrode mixture material 330 preferably has a particle size of 100 nm to 100 ⁇ m, and more preferably has a particle size of 300 nm to 30 ⁇ m.
  • the particle diameter represents the maximum diameter of the particles of the negative electrode active material 331.
  • the shape of the particulate negative electrode active material 331 is shown as a spherical shape, but the shape of the negative electrode active material 331 is not limited to a spherical shape, and various forms such as a columnar shape, a plate shape, and a hollow shape are possible. It is possible that it takes an irregular shape. Therefore, the particle size of the particulate negative electrode active material 331 may be shown as the average particle size.
  • Examples of such a negative electrode active material 331 include Nb 2 O 5 , V 2 O 5 , TiO 2 , In 2 O 3 (indium oxide), ZnO (zinc oxide), and SnO, as described in the first embodiment.
  • 2 titanium oxide
  • NiO indium oxide with Sn added
  • AZO zinc oxide with aluminum added
  • GZO zinc oxide with gallium added
  • ATO tin oxide with antimony added
  • FTO tin oxide to which fluorine is added
  • Li 4 Ti 5 O 12 Li 2 Ti 3 O 7 and other lithium complex oxides.
  • lithium ions are inserted between the layers of metals and alloys such as Li, Al, Si, Si-Mn, Si-Co, Si-Ni, Sn, Zn, Sb, Bi, In, Au, carbon materials, and carbon materials.
  • metals and alloys such as Li, Al, Si, Si-Mn, Si-Co, Si-Ni, Sn, Zn, Sb, Bi, In, Au, carbon materials, and carbon materials.
  • the negative electrode mixture material 330 is compounded according to the characteristics and design required by the electrolyte, the conductive additive, the binder, and the like.
  • the solid electrolyte 332 included in the negative electrode mixture material 330 uses the solid electrolyte precursor composition of the present embodiment from the viewpoint of ionic conductivity, chemical stability, and interface impedance with the electrolyte layer 320. Has been formed. That is, the solid electrolyte 332 is represented by the following composition formula (1). Li 7-x La 3 (Zr 2-x , M x )O 12 (1)
  • the element M is one or more selected from Nb, Ta, and Sb, and x satisfies 0 ⁇ x ⁇ 2.0.
  • any substance may be used as long as it is a conductor in which electrochemical interaction can be ignored at the negative electrode reaction potential.
  • Carbon materials such as acetylene black, Ketjen black, carbon nanotubes, noble metals such as palladium and platinum, and conductive oxides such as SnO 2 , ZnO, RuO 2 , ReO 3 , and Ir 2 O 3 can be used.
  • the electrolyte layer 320 is preferably composed of the same material as the solid electrolyte 332 from the viewpoint of the interface impedance with the negative electrode mixture material 330, but other oxide solid electrolytes, sulfide solid electrolytes, nitride solid electrolytes, It is also possible to use a halide solid electrolyte, a hydride solid electrolyte, a dry polymer electrolyte, a quasi-solid electrolyte crystalline or amorphous, or to use them alone.
  • the example of the crystalline oxide, the example of the crystalline sulfide, and the example of the amorphous are the same as the contents described in the first embodiment, and the detailed description is omitted here.
  • the solid electrolyte constituting the electrolyte layer 320 When it is crystalline, it is preferable that it has a crystal structure such as a cubic crystal with a small crystal plane anisotropy in the direction of lithium ion conduction. Further, when amorphous, the anisotropy of lithium ion conduction is small, and thus such crystalline or amorphous is preferable as the solid electrolyte constituting the electrolyte layer 320.
  • the thickness of the electrolyte layer 320 is preferably 0.1 ⁇ m or more and 100 ⁇ m or less, and more preferably 0.2 ⁇ m or more and 10 ⁇ m or less. By setting the thickness of the electrolyte layer 320 in the above range, it is possible to reduce the internal resistance of the electrolyte layer 320 and suppress the occurrence of a short circuit between the positive electrode 310 and the negative electrode mixture 330.
  • a three-dimensional pattern of depressions (dimples), grooves (trench), pillars (pillars), etc. may be formed on the surface of the electrolyte layer 320 in contact with the negative electrode mixture material 330 by combining various molding methods and processing methods as needed.
  • the structure may be formed.
  • the positive electrode 310 may be any positive electrode active material capable of repeating electrochemical occlusion/release of lithium ions. Therefore, the same configuration as the positive electrode 10 in the lithium ion battery 100 of the first embodiment can be adopted. Therefore, detailed description is omitted here.
  • the current collector is a conductor provided to transfer electrons to and from the positive electrode 310 or the negative electrode mixture material 330, has a sufficiently small electric resistance, and does not change its electrical conductivity characteristics or its mechanical structure due to charging and discharging.
  • the material is selected. Therefore, the current collector 341 in contact with the positive electrode 310 and the current collector 342 in contact with the negative electrode mixture material 330 can adopt the same configuration as the current collectors 41, 42 in the lithium ion battery 100 of the first embodiment. .. Therefore, detailed description is omitted here.
  • the pair of current collectors 341 and 342 are not essential, and may be configured to include only one.
  • FIG. 13 is a flow chart showing a method for manufacturing a lithium ion battery as a secondary battery according to the third embodiment
  • FIGS. 14 and 15 are schematic views showing a method for manufacturing a lithium ion battery as a secondary battery according to the third embodiment. is there.
  • a mixture sheet forming step (step S21), a molded article forming step (step S22), and a molded article baking step (step S23).
  • a step of forming the electrolyte layer 320 (step S24), a step of forming the positive electrode 310 (step S25), and a step of forming the current collectors 341 and 342 (step S26).
  • step S21 15 g of Li 4 Ti 5 O 12 powder made of Sigma-Aldrich having an average particle size of 5 ⁇ m as the negative electrode active material 331 and 18 g of powder of the solid electrolyte precursor composition of the present embodiment.
  • 10 g of polypropylene carbonate (PPC) manufactured by Sigma-Aldrich as a binder are mixed with 90 g of 1,4-dioxane, which is a solvent manufactured by Kanto Kagaku, and mixed to form a slurry. Then, as shown in FIG.
  • PPC polypropylene carbonate
  • the obtained slurry 330 m is put into a fully-automatic film applicator 500 and applied onto a substrate 506 to form a negative electrode having a width of 5 cm, a length of 10 cm and a thickness of 70 ⁇ m.
  • a mixture material sheet 330s was obtained. Then, the process proceeds to step S22.
  • step S22 the negative electrode mixture material mixture sheet 330s is dried in the air for 8 hours, the negative electrode mixture material sheet 330s is peeled from the base material 506, and die-cut as shown in FIG. A molded product 330f having a diameter ⁇ of 20 mm was obtained. Then, the process proceeds to step S23.
  • step S23 the molded product 330f was sintered in an oxidizing atmosphere at 900° C. for 8 hours to obtain a negative electrode mixture material 330. Then, the process proceeds to step S24.
  • the electrolyte layer 320 was formed on one surface 330a (see FIG. 12) of the negative electrode mixture material 330.
  • a sputtering apparatus SSP2000 manufactured by Suga Seisakusho
  • a solid solution Li 2.2 C 0.8 B 0.2 O 3 manufactured by Toyoshima Seisakusho
  • Li 2 CO 3 and Li 3 BO 3 having a diameter ⁇ of 4.9 cm
  • a Li 2.2 C 0.8 B 0.2 O 3 layer was formed on one surface 330a (see FIG. 12) of the negative electrode mixture material 330.
  • the positive electrode 310 was formed on the one surface 330a side of the negative electrode mixture 330.
  • a sputtering apparatus SSP2000 manufactured by Suga Seisakusho
  • LiCoO 2 manufactured by Toshima Seisakusho
  • Argon gas was used as the carrier gas.
  • the LiCoO 2 layer-formed electrolyte layer 320 and the negative electrode mixture material 330 were fired at 500° C. for 2 hours in an oxidizing atmosphere to convert the crystals of the LiCoO 2 layer into high-temperature phase crystals and have a thickness of 5.4 ⁇ m.
  • a positive electrode 310 of was obtained. Then, the process proceeds to step S26.
  • the current collector 341 is formed so as to contact one surface 310a (see FIG. 12) of the positive electrode 310, and the other surface 330b (FIG. 12) of the negative electrode mixture 330 is formed.
  • the current collector 342 was formed so as to be in contact with the (see reference). Specifically, an aluminum foil having a thickness of 40 ⁇ m, which was die-cut to have a diameter ⁇ of 15 mm, was pressed against the positive electrode 310 to be bonded to obtain a current collector 341.
  • the method for forming the negative electrode mixture material 330 and the electrolyte layer 320 is not limited to the method shown in steps S21 to S24.
  • 15 g of the powder of the solid electrolyte precursor composition of the present embodiment and 10 g of PPC as a binder are mixed with 40 g of 1,4-dioxane as a solvent and mixed to form a slurry.
  • the obtained slurry is put into a fully-automatic film applicator 500 and applied on a substrate 506 to form an electrolyte mixture sheet having a width of 5 cm, a length of 10 cm and a thickness of 20 ⁇ m.
  • step S22 the negative electrode mixture mixture sheet 330s peeled from the base material 506 and the above electrolyte mixture sheet are overlapped and roll-pressed at 90° C. under a pressure of 4 MPa to bond them together.
  • the laminated sheet obtained by pasting was die-cut to obtain a molded product, and the molded product was sintered in an oxidizing atmosphere at 900° C. for 8 hours to laminate the electrolyte layer 320 and the negative electrode mixture material 330. You may obtain a laminated body.
  • the negative electrode mixture material 330 is formed by sintering a mixture obtained by mixing the particulate negative electrode active material 331 and the powder of the solid electrolyte precursor composition of the present embodiment. Therefore, since the negative electrode mixture material 330 is configured to include the particulate negative electrode active material 331 and the solid electrolyte 332 represented by the following composition formula (1), the particulate negative electrode active material 331 and the solid electrolyte 332 are It is possible to manufacture the lithium ion battery 300 having excellent charge/discharge characteristics, in which lithium ions are smoothly conducted at the interface.
  • the element M is one or more selected from Nb, Ta, and Sb, and x satisfies 0 ⁇ x ⁇ 2.0.
  • FIG. 16 is a schematic perspective view showing the configuration of a lithium ion battery as a secondary battery of the fourth embodiment
  • FIG. 17 is a schematic sectional view showing the structure of a lithium ion battery as a secondary battery of the fourth embodiment.
  • a lithium-ion battery 400 as a secondary battery includes a positive electrode mixture material 410, an electrolyte layer 420, which is sequentially stacked on the positive electrode mixture material 410, and a negative electrode mixture material 430. have. Further, a current collector 441 that is in contact with the positive electrode mixture material 410 and a current collector 442 that is in contact with the negative electrode mixture material 430 are provided.
  • the lithium ion battery 400 of the present embodiment is also a chargeable/dischargeable all solid state secondary battery.
  • the lithium-ion battery 400 of this embodiment is, for example, a disk shape, and the outer size is, for example, a diameter ⁇ of 10 to 20 mm and a thickness of about 0.3 mm (millimeter). Since it is small and thin, and can be charged and discharged and is all solid, it can be suitably used as a power source for a mobile information terminal such as a smartphone.
  • the size and thickness of the lithium-ion battery 400 are not limited to this value as long as molding is possible.
  • the thickness from the positive electrode mixture material 410 to the negative electrode mixture material 430 is about 0.3 mm from the viewpoint of moldability when thin, and lithium ion conduction when thick.
  • the shape of the lithium ion battery 400 is not limited to the disk shape, and may be a polygonal disk shape. Hereinafter, each configuration will be described.
  • the positive electrode mixture 410 includes a particulate positive electrode active material 411 capable of electrochemically repeating occlusion/release of lithium ions, and a precursor of the solid electrolyte of the present embodiment. And a solid electrolyte 412 formed by using the composition. That is, the positive electrode composite material 410 of the present embodiment can employ the same configuration as the positive electrode composite material 210 in the lithium ion battery 200 of the second embodiment. That is, since the positive electrode active material 411 has the same structure as the positive electrode active material 211 described in the second embodiment, detailed description thereof will be omitted here.
  • the solid electrolyte 412 is represented by the following composition formula (1). Li 7-x La 3 (Zr 2-x , M x )O 12 (1) In the composition formula (1), the element M is one or more selected from Nb, Ta, and Sb, and x satisfies 0 ⁇ x ⁇ 2.0.
  • the positive electrode composite material 410 is compounded according to the characteristics and design required by the electrolyte, the conductive additive, the binder, and the like.
  • the conduction aid any substance may be used as long as it is a conductor in which electrochemical interaction can be ignored at the positive electrode reaction potential.
  • Carbon materials such as acetylene black, Ketjen black, carbon nanotubes, noble metals such as palladium and platinum, and conductive oxides such as SnO 2 , ZnO, RuO 2 , ReO 3 , and Ir 2 O 3 can be used.
  • a negative electrode composite material 430 includes a particulate negative electrode active material 431 capable of repeating electrochemical absorption and desorption of lithium ions, and a precursor of the solid electrolyte of the present embodiment. And a solid electrolyte 432 formed by using the composition. That is, the negative electrode mixture 430 of this embodiment can employ the same configuration as the negative electrode mixture 330 of the lithium ion battery 300 of the third embodiment. That is, since the negative electrode active material 431 has the same configuration as the negative electrode active material 331 described in the third embodiment, detailed description thereof will be omitted here.
  • the solid electrolyte 432 is represented by the following composition formula (1). Li 7-x La 3 (Zr 2-x , M x )O 12 (1)
  • the element M is one or more selected from Nb, Ta, and Sb, and x satisfies 0 ⁇ x ⁇ 2.0.
  • the negative electrode mixture 430 is compounded according to the characteristics and design required by the electrolyte, the conductive additive, the binder, and the like.
  • the conduction aid any substance may be used as long as it is a conductor in which electrochemical interaction can be ignored at the negative electrode reaction potential.
  • Carbon materials such as acetylene black, Ketjen black, carbon nanotubes, noble metals such as palladium and platinum, and conductive oxides such as SnO 2 , ZnO, RuO 2 , ReO 3 , and Ir 2 O 3 can be used.
  • the electrolyte layer 420 is preferably composed of the same material as the solid electrolyte 412 and the solid electrolyte 432 from the viewpoint of the interface impedance between the positive electrode composite material 410 and the negative electrode composite material 430, but other oxide solid electrolytes. It is also possible to use a sulfide solid electrolyte, a nitride solid electrolyte, a halide solid electrolyte, a hydride solid electrolyte, a dry polymer electrolyte, a crystalline or amorphous of a pseudo solid electrolyte, or to use them alone.
  • the example of the crystalline oxide, the example of the crystalline sulfide, and the example of the amorphous are the same as the contents described in the first embodiment, and the detailed description is omitted here.
  • the solid electrolyte forming the electrolyte layer 420 When it is crystalline, it is preferable that it has a crystal structure such as a cubic crystal with a small crystal plane anisotropy in the direction of lithium ion conduction. In addition, since the anisotropy of lithium ion conduction is small when it is amorphous, such crystalline or amorphous is preferable as the solid electrolyte forming the electrolyte layer 420.
  • the thickness of the electrolyte layer 420 is preferably 0.1 ⁇ m or more and 100 ⁇ m or less, and more preferably 0.2 ⁇ m or more and 10 ⁇ m or less. By setting the thickness of the electrolyte layer 420 within the above range, the internal resistance of the electrolyte layer 420 can be reduced and the occurrence of a short circuit between the positive electrode composite material 410 and the negative electrode composite material 430 can be suppressed.
  • the surface of the electrolyte layer 420 in contact with the positive electrode composite material 410 and the negative electrode composite material 430 may be combined with various molding methods and processing methods as necessary to form depressions (dimples), grooves (trench), pillars (pillars), and the like.
  • a three-dimensional pattern structure may be formed.
  • the current collector is a conductor provided to transfer electrons to and from the positive electrode mixture material 410 or the negative electrode mixture material 430, has a sufficiently small electric resistance, and has an electrical conductivity characteristic and a mechanical structure due to charging and discharging. A material that does not change is selected. Therefore, the current collector 441 in contact with the positive electrode composite material 410 and the current collector 442 in contact with the negative electrode composite material 430 have the same configuration as the current collectors 41 and 42 in the lithium ion battery 100 of the first embodiment. You can Therefore, detailed description is omitted here. In the lithium-ion battery 400, the pair of current collectors 441 and 442 are not essential and may be configured to include only one.
  • FIG. 18 is a flowchart showing a method for manufacturing a lithium ion battery as a secondary battery according to the fourth embodiment
  • FIGS. 19 to 22 are schematic views showing a method for manufacturing a lithium ion battery as a secondary battery according to the fourth embodiment. is there.
  • the positive electrode mixture mixture sheet forming step (step S31), the negative electrode mixture sheet forming step (step S32), and the electrolyte mixture are performed.
  • step S31 In the step of forming the sheet of the positive electrode mixture mixture of step S31, 15 g of LiCoO 2 powder made by Nippon Kayaku having an average particle size of 5 ⁇ m as the positive electrode active material 411 and 18 g of powder of the precursor composition of the solid electrolyte of the present embodiment. And 10 g of polypropylene carbonate (PPC) manufactured by Sigma-Aldrich as a binder are mixed with 90 g of 1,4-dioxane, which is a solvent manufactured by Kanto Kagaku, and mixed to form a slurry. Then, as shown in FIG.
  • PPC polypropylene carbonate
  • the obtained slurry 410 m is put into a fully automatic film applicator 500, coated on the base material 506, dried in the atmosphere for 8 hours, and then peeled from the base material 506.
  • a positive electrode mixture mixture sheet 410s having a width of 5 cm, a length of 10 cm and a thickness of 70 ⁇ m was obtained. Then, the process proceeds to step S32.
  • step S32 15 g of Li 4 Ti 5 O 12 powder made of Sigma-Aldrich having an average particle size of 5 ⁇ m as the negative electrode active material 431, and the precursor composition of the solid electrolyte of the present embodiment 18 g of the above powder and 10 g of polypropylene carbonate (PPC) manufactured by Sigma-Aldrich as a binder are mixed with 90 g of 1,4-dioxane, which is a solvent manufactured by Kanto Chemical Co., Inc., to form a slurry. Then, as shown in FIG.
  • PPC polypropylene carbonate
  • the obtained slurry 430 m is put into a fully automatic film applicator 500, coated on a base material 506, dried in the atmosphere for 8 hours, and then peeled from the base material 506.
  • a negative electrode mixture mixture sheet 430s having a width of 5 cm, a length of 10 cm and a thickness of 70 ⁇ m was obtained. Then, the process proceeds to step S33.
  • step S33 18 g of the powder of the solid electrolyte precursor composition of the present embodiment and 10 g of Sigma-Aldrich polypropylene carbonate (PPC) as a binder are mixed with a solvent manufactured by Kanto Chemical Co., Ltd. 90 g of 1,4-dioxane as described above is mixed and slurried. Then, as shown in FIG. 21, the obtained slurry 420 m is put into a fully automatic film applicator 500, coated on the base material 506, dried in the atmosphere for 8 hours, and then peeled from the base material 506. Thereby, an electrolyte mixture sheet 420s having a width of 5 cm, a length of 10 cm and a thickness of 70 ⁇ m was obtained. Then, the process proceeds to step S34.
  • PPC Sigma-Aldrich polypropylene carbonate
  • step S34 the positive electrode mixture sheet 410s, the electrolyte mixture sheet 420s, and the negative electrode mixture sheet 430s are laminated in this order, and roll-pressed at 90° C. and a pressure of 4 MPa to attach them. Can fit.
  • the laminated sheet obtained by pasting was die-cut to obtain a molded product 450f. Then, the process proceeds to step S35.
  • the molded product 450f obtained in step S34 was sintered at 900° C. for 8 hours in an oxidizing atmosphere.
  • a portion made of the positive electrode mixture material becomes a positive electrode mixture material 410 by firing
  • a portion made of the electrolyte mixture becomes an electrolyte layer 420 by firing
  • a portion made of the negative electrode mixture material is made a negative electrode mixture material 430.
  • the sintered body of the molded product 450f is a laminated body of the positive electrode mixture material 410, the electrolyte layer 420, and the negative electrode mixture material 430. Then, the process proceeds to step S36.
  • the current collector 441 is formed so as to contact one surface 410a (see FIG. 17) of the positive electrode mixture material 410, and the other surface 430b of the negative electrode mixture material 430 (see FIG. 17). ) was formed so as to be in contact with (4). Specifically, an aluminum foil having a thickness of 40 ⁇ m, which was die-cut to have a diameter ⁇ of 15 mm, was pressed and bonded to the positive electrode mixture material 410 to form a current collector 441. Further, a copper foil having a thickness of 20 ⁇ m, which was die-cut to have a diameter ⁇ of 15 mm, was pressed against the negative electrode mixture material 430 to be bonded to form a current collector 442. Note that in the current collector forming step, only one of the pair of current collectors 441 and 442 may be formed.
  • the sheet forming process of the electrolyte mixture is not limited to the method shown in step S33.
  • a solid electrolyte 15 g of a powder having an average particle size of 5 ⁇ m obtained by crushing the solid electrolyte of the present embodiment, and 18 g of a powder of a precursor composition of the solid electrolyte having the same composition formula of the present embodiment are bound.
  • 10 g of polypropylene carbonate (PPC) manufactured by Sigma-Aldrich as an agent is mixed with 90 g of 1,4-dioxane, which is a solvent manufactured by Kanto Kagaku, and mixed to form a slurry. Then, as shown in FIG.
  • PPC polypropylene carbonate
  • the obtained slurry 420 m is put into a fully-automatic film applicator 500 and applied on a base material 506 to form an electrolyte mixture having a width of 5 cm, a length of 10 cm and a thickness of 70 ⁇ m.
  • the seat 420s may be obtained.
  • the positive electrode mixture 410 is formed by sintering a mixture obtained by mixing the particulate positive electrode active material 411 and the powder of the precursor composition of the solid electrolyte of the present embodiment. Therefore, since the positive electrode mixture material 410 is configured to include the particulate positive electrode active material 411 and the solid electrolyte 412 represented by the following composition formula (1), the particulate positive electrode active material 411 and the solid electrolyte 412 are included. Lithium ions are smoothly conducted at the interface of.
  • the particulate negative electrode active material 431 is combined with the solid electrolyte 432 to facilitate lithium ion conduction at the interface. Therefore, since a high battery reaction rate can be realized with both the positive electrode mixture material 410 and the negative electrode mixture material 430, the lithium ion battery 400 having excellent charge/discharge characteristics can be manufactured.
  • the element M is one or more selected from Nb, Ta, and Sb, and x satisfies 0 ⁇ x ⁇ 2.0.
  • the electrolyte layer 420 is preferably formed by mixing a particulate solid electrolyte crystal and powder of the precursor composition of the solid electrolyte of the present embodiment and sintering the mixture. According to this, at the temperature at which the precursor composition of the solid electrolyte of the present embodiment is converted into crystals, the particles of the solid electrolyte crystal in particle form are sintered, and even at low temperature sintering.
  • the electrolyte layer 420 that is dense and has high lithium ion conductivity can be formed.
  • Example A solid electrolyte formed using the precursor composition of the solid electrolyte of the present embodiment will be described with reference to Examples 1 to 9 in which the composition of the element M and the like are different.
  • the specific constitution of each raw material compound used in the formation of the solid electrolytes of Examples 1 to 9 is as follows.
  • Lithium compounds are manufactured by Kanto Chemical Co., Inc. of lithium nitrate (LiNO 3), lanthanum compounds are manufactured by Kanto Chemical Co., Inc. of lanthanum nitrate hexahydrate (La (NO 3) 3 ⁇ 6H 2 O), zirconium compounds Sigma Aldrich Zirconium butoxide.
  • the niobium compound used as the element M is pentaethoxy niobium manufactured by Kojundo Chemical
  • the tantalum compound is tantalum ethoxide manufactured by Gelest
  • the antimony compound is tri-n-butoxyantimony manufactured by Kojundo Chemical.
  • Example 1 The solid electrolyte of Example 1 is represented by the composition formula Li 6.3 La 3 Zr 1.3 Sb 0.5 Ta 0.2 O 12 . Lithium nitrate, lanthanum nitrate, zirconium butoxide, tri-n-butoxy antimony and tantalum ethoxide are weighed according to the molar ratios in the composition formula of Example 1 and dissolved in 2-n-butoxyethanol as a solvent. The mixed solution in which each raw material compound was dissolved was placed in a beaker made of titanium, heated to 140° C. to cause gelation, and further heated at 540° C. for 30 minutes in the air atmosphere to obtain an ash-like thermal decomposition product, that is, the solid of Example 1.
  • An electrolyte precursor composition was obtained. 1 g of this pyrolyzed product was filled in a pellet die having an inner diameter of 13 mm ⁇ with an exhaust port and manufactured by Specac, and press-molded with a load of 6 kN to obtain pellets as a molded product. The obtained pellet was placed in an alumina crucible and sintered in an air atmosphere at 900° C. for 8 hours to obtain a solid electrolyte pellet of Example 1.
  • Example 2 The solid electrolyte of Example 2 is represented by the composition formula Li 6.7 La 3 Zr 1.7 Nb 0.25 Ta 0.05 O 12 . Lithium nitrate, lanthanum nitrate, zirconium butoxide, pentaethoxyniobium and tantalum ethoxide are weighed according to the molar ratios in the composition formula of Example 2 and dissolved in 2-n-butoxyethanol as a solvent. After that, the same treatment as in Example 1 was carried out to obtain a solid electrolyte pellet of Example 2.
  • Example 3 The solid electrolyte of Example 3 is represented by the composition formula Li 6.35 La 3 Zr 1.35 Nb 0.25 Sba 0.4 O 12 . Lithium nitrate, lanthanum nitrate, zirconium butoxide, pentaethoxyniobium, and tri-n-butoxyantimony are weighed according to the molar ratios in the composition formula of Example 3 and dissolved in 2-n-butoxyethanol as a solvent. After that, the same treatment as in Example 1 was carried out to obtain a solid electrolyte pellet of Example 3.
  • Example 4 The solid electrolyte of Example 4 has a composition formula of Li 5.95 La 3 Zr 0.95 Nb 0.25 Sba 0.4 Ta 0.4 O 12 . Lithium nitrate, lanthanum nitrate, zirconium butoxide, pentaethoxyniobium, tri-n-butoxyantimony and tantalum ethoxide were weighed according to the molar ratios in the composition formula of Example 4 and dissolved in 2-n-butoxyethanol as a solvent. Let After that, the same treatment as in Example 1 was carried out to obtain a solid electrolyte pellet of Example 4.
  • Example 5 The solid electrolyte of Example 5 is represented by the composition formula Li 6.75 La 3 Zr 1.75 Nb 0.25 O 12 . Lithium nitrate, lanthanum nitrate, zirconium butoxide, and pentaethoxyniobium are weighed according to the molar ratios in the composition formula of Example 5, and dissolved in 2-n-butoxyethanol as a solvent. After that, the same treatment as in Example 1 was carried out to obtain a solid electrolyte pellet of Example 5.
  • Example 6 The solid electrolyte of Example 6 is represented by the composition formula Li 6.75 La 3 Zr 1.75 Sb 0.25 O 12 . Lithium nitrate, lanthanum nitrate, zirconium butoxide, and tri-n-butoxyantimony are weighed according to the molar ratios in the composition formula of Example 6, and dissolved in 2-n-butoxyethanol as a solvent. After that, the same treatment as in Example 1 was carried out to obtain a solid electrolyte pellet of Example 6.
  • Example 7 The solid electrolyte of Example 7 is represented by the composition formula Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12 . Lithium nitrate, lanthanum nitrate, zirconium butoxide, and tantalum ethoxide are weighed according to the molar ratio in the composition formula of Example 7, and dissolved in 2-n-butoxyethanol as a solvent. After that, the same treatment as in Example 1 was carried out to obtain a solid electrolyte pellet of Example 7.
  • Example 8 The solid electrolyte of Example 8 is an electrolyte represented by the composition formula Li 6.3 La 3 Zr 1.3 Sb 0.5 Ta 0.2 O 12 , and the composition formula is the same as that of Example 1. Specifically, the solid electrolyte pellets obtained in the same manner as in Example 1 are crushed in an agate bowl to obtain solid electrolyte powder. To 800 mg of this solid electrolyte powder, 400 mg of a precursor composition of a solid electrolyte, which is a pyrolyzate obtained in the same manner as in Example 1, was mixed, and press-molding and sintering were carried out in the same manner as in Example 1. The solid electrolyte pellet of Example 8 was obtained.
  • Example 9 The solid electrolyte of Example 9 is the solid electrolyte of Example 1 represented by the composition formula Li 6.3 La 3 Zr 1.3 Sb 0.5 Ta 0.2 O 12 and the example represented by the composition formula Li 6.75 La 3 Zr 1.75 Nb 0.25 O 12. 5 is a solid electrolyte mixture. Specifically, the solid electrolyte pellets obtained in the same manner as in Example 5 are crushed in an agate bowl to obtain solid electrolyte powder. To 800 mg of this solid electrolyte powder, 400 mg of a precursor composition of a solid electrolyte, which is a pyrolyzed product obtained in the same manner as in Example 1, was mixed, and sintering was performed after press molding as in Example 1. The solid electrolyte pellet of Example 9 was obtained.
  • Comparative Example As a comparative example, a garnet-type solid electrolyte formed by using the MOD method was used as Comparative Example 1, and a garnet-type solid electrolyte formed by using the solid phase method was used as Comparative Example 2. A garnet-type solid electrolyte formed by using the solid-phase method with a different composition of the element M from Comparative Example 2 was set as Comparative Example 3.
  • Comparative Example 3 A garnet-type solid electrolyte formed by using the solid-phase method with a different composition of the element M from Comparative Example 3.
  • Comparative Example 1 The solid electrolyte of Comparative Example 1 is represented by the composition formula Li 6.75 La 3 Zr 1.75 Nb 0.25 O 12 , and the composition formula is the same as in Example 5. 1.43 g of (2,4-pentanedionato)lithium as a lithium source, 2.62 g of tris(2,4-pentanedionato)lanthanum hydrate as a lanthanum source, and zirconium butoxide as a zirconium source of 1.2 g. 34 g and 0.16 g of pentaethoxyniobium as a niobium source were weighed and dissolved in 20 g of propionic acid manufactured by Tokyo Kasei Kogyo.
  • Comparative example 2 The solid electrolyte of Comparative Example 2 is represented by the composition formula Li 6.75 La 3 Zr 1.75 Nb 0.25 O 12 , and the composition formula is the same as that of Comparative Example 1.
  • 2.5 g of Li 2 CO 3 powder as a lithium source 4.89 g of La 2 O 3 powder as a lanthanum source, 2.16 g of ZrO 2 powder as a zirconium source, and Nb 2 O 3 powder as a niobium source. 0.33 g of each was weighed, 40 g of n-hexane manufactured by Kanto Kagaku was added and mixed in an agate bowl to obtain a mixture.
  • Comparative Example 3 The solid electrolyte of Comparative Example 3 is represented by the composition formula Li 5.95 La 3 Zr 0.95 Nb 0.25 Sba 0.4 Ta 0.4 O 12 , and the composition formula is the same as in Example 4. 2.2 g of Li 2 CO 3 powder as a lithium source, 4.89 g of La 2 O 3 powder as a lanthanum source, 1.17 g of ZrO 2 powder as a zirconium source, and Nb 2 O 3 powder as a niobium source.
  • FIG. 3 is a graph showing an X-ray diffraction pattern of a mixture of the product and Comparative Example 2.
  • 25 is a graph showing X-ray diffraction patterns of the solid electrolytes of Examples 1 to 5
  • FIG. 26 is a graph showing X-ray diffraction patterns of the solid electrolytes of Examples 6 and 7, and Comparative Examples 1 and 2.
  • FIG. 27 is a graph showing X-ray diffraction patterns of the solid electrolytes of Example 8 and Example 9.
  • the precursor compositions of the solid electrolytes of Examples 1 to 7 had diffraction angles 2 ⁇ of 28.4°, 32.88°, 47.2° in the X-ray diffraction pattern. At 56.01° and 58.73°, the X-ray diffraction intensity peaks are shown.
  • the thermal decomposition product of Comparative Example 1 of the MOD method shows a peak of X-ray diffraction intensity when the diffraction angle 2 ⁇ is in the range of 0° to 65° and is 28.76°, but other than that. Has no clear peak.
  • the mixture of Comparative Example 2 of the solid-phase method had X at a diffraction angle 2 ⁇ of 28.57°, 33.1°, 39.51°, 47.57°, 56.43°, and 59.19°.
  • the peak of the line diffraction intensity is shown. That is, it is considered that the substances contained in the precursor compositions of the solid electrolytes of Examples 1 to 7, the thermal decomposition product of Comparative Example 1, and the mixture of Comparative Example 2 have crystal structures different from each other.
  • the X-ray diffraction pattern of the mixture of Comparative Example 3 is almost the same as that of Comparative Example 2 and is therefore not shown in FIG.
  • the X-ray diffraction patterns of the solid electrolytes of Examples 1 to 9 and Comparative Examples 1 to 3 show a plurality of diffraction angles 2 ⁇ appearing in the range of 0° to 65°. All peaks were assigned to garnet-type or garnet-like type crystals in the ICDD database. That is, it is considered that the solid electrolytes of Examples 1 to 9 and Comparative Examples 1 to 3 obtained after sintering at 900° C. for 8 hours all have a garnet type or garnet-like crystal structure.
  • the lithium ion conductivity obtained by the EIS measurement shows the total lithium ion conductivity including the bulk lithium ion conductivity and the grain boundary lithium ion conductivity in each solid electrolyte pellet.
  • Table 1 shows the lithium ion conductivity of each of the solid electrolyte pellets of Examples 1 to 9 and Comparative Examples 1 to 3.
  • the solid electrolyte pellets of Examples 1 to 9 exhibit higher lithium ion conductivity than the solid electrolyte pellets of Comparative Examples 1 to 3.
  • the solid electrolyte pellet of Example 6 in which Sb is selected has the highest lithium ion conductivity and its value. Is 1.3 ⁇ 10 ⁇ 4 S (Siemens)/cm.
  • the lithium ion conductivity of the solid electrolyte pellets of Examples 1 to 4 in which two or more elements M are selected from Nb, Sb, and Ta are 2.0 ⁇ 10 ⁇ 4 S/cm or more.
  • Example 4 in which three kinds of Nb, Sb and Ta are selected shows the highest lithium ion conductivity.
  • sintering is performed again on a molded product obtained by mixing the solid electrolyte powder and the precursor composition of the solid electrolyte, as compared with Example 4 in which three kinds of the element M are selected from Nb, Sb, and Ta.
  • Higher lithium ion conductivity was realized in Examples 8 and 9 in which the solid electrolyte pellets were obtained by applying the solid electrolyte pellets.
  • the lithium ion conductivity of the solid electrolyte pellets of Comparative Example 1 formed by the MOD method and Comparative Example 2 formed by the solid phase method when Nb is selected as the element M has the same composition formula and Lower than Example 5 formed by the phase method.
  • Three kinds of elements M were selected from Nb, Sb and Ta, and the lithium ion conductivity of the solid electrolyte pellet of Comparative Example 3 formed by the solid phase method was the same as the composition formula and formed by the liquid phase method. Lower than in Example 4.
  • Example 5 and Comparative Example 1 are solid electrolytes represented by the same composition formula, and although they are also formed by the liquid phase method, the lithium source and the lanthanum source are nitrates in Example 5, Example 1 is different in that it is a metal complex of an organic compound. Higher lithium ion conductivity can be achieved by using nitrate as the lithium source and the lanthanum source.
  • a solution was prepared by dissolving 0.1 g of the precursor composition of the solid electrolyte represented by the composition formula Li 6.3 La 3 Zr 1.3 Sb 0.5 Ta 0.2 O 12 of Example 1 with a mixed acid such as nitric acid, hydrofluoric acid and sulfuric acid. did.
  • the elements contained in this solution were quantified using an ICP-AES measuring device Agilent 5110 manufactured by Nippon Agilent Technology Co., Ltd.
  • 0.25 g of the solid electrolyte precursor composition of Example 1 was suspended in 10 ml (ml) of ultrapure water and shaken at 23° C. for 1 hour to extract the suspension.
  • the suspension was centrifuged at about 10,000 G for 10 minutes, and the supernatant was filtered with a syringe filter having a pore size of 0.22 ⁇ m to obtain an extract.
  • the nitrate ion contained in this extract was quantified with an ion chromatograph ICS-1000 manufactured by Nippon Dynex.
  • Table 2 shows the quantitative results of ICP-AES and the quantitative results of ion chromatography.
  • Table 2 shows the mass% and the average mass% of Li, La, Zr, Sb, Ta and nitrate ion contained in each sample as a result of analyzing five samples.
  • nitrates are used as the lithium source and the lanthanum source, as shown in Table 2 above, it is clear that the precursor composition of the solid electrolyte of Example 1 contains approximately 3% by mass or less of nitrate ions. Is. Since nitrates are used as the lithium source and the lanthanum source also in the other Examples 2 to 7, it is considered that nitrate ions are similarly detected when a sample is prepared and subjected to ion chromatographic analysis.
  • the secondary battery having a solid electrolyte formed by using the solid electrolyte precursor composition of the present embodiment is not limited to the all-solid-state lithium ion battery shown in each of the above embodiments.
  • a secondary battery may be configured in which a porous separator is provided between the positive electrode mixture material 210 and the negative electrode 230 and the separator is impregnated with an electrolytic solution.
  • (Modification 2) Electronic devices to which the lithium-ion batteries shown in the above-described embodiments are applied as power sources include, for example, head mounted displays, head-up displays, mobile phones, personal digital assistants, notebook computers, digital cameras, Examples include portable electronic devices such as video cameras, music players, wireless headphones, and game consoles, and wearable electronic devices that are used by being attached to a part of the human body. Further, the present invention is not limited to such general consumer devices, but can be applied to industrial devices, and may be a moving body such as an automobile or a ship.
  • a lithium ion battery as a secondary battery using the solid electrolyte of the present embodiment can be suitably adopted.
  • the solid electrolyte precursor composition of the present application is a garnet-type or garnet-like type solid electrolyte precursor composition containing Li, La, Zr, and M, wherein M is one of Nb, Ta, and Sb. It is an element of at least one kind, and the composition ratio of Li:La:Zr:M in the solid electrolyte is 7-x:3:2-x:x, satisfying 0 ⁇ x ⁇ 2.0, and in the X-ray diffraction pattern.
  • the diffraction angle 2 ⁇ is 28.4°, 32.88°, 47.2°, 56.01°, 58.73°, the X-ray diffraction intensity peak is exhibited.
  • the solid electrolyte precursor composition described above preferably contains nitrate ions. According to this configuration, the temperature of the heat treatment for sintering can be lowered as compared with the case where nitrate ions are not included. In other words, the inclusion of nitrate ions lowers the melting point of the precursor composition of the solid electrolyte, and even if the sintering is performed at a temperature of 1000° C. or less, the sintering proceeds and high lithium ion conductivity can be realized.
  • M is preferably two or more kinds of elements selected from Nb, Ta and Sb. According to this structure, a higher lithium ion conductivity can be realized by selecting two or more elements M from Nb, Ta, and Sb for substituting a part of the Zr site.
  • the method for manufacturing a secondary battery of the present application forms a molded product using the precursor composition of the solid electrolyte described above, a step of sintering the molded product to form a solid electrolyte layer, and a solid electrolyte layer Characterized by including a step of forming a positive electrode on one surface, a step of forming a negative electrode on the other surface of the solid electrolyte layer, and a step of forming a current collector in contact with at least one of the positive electrode and the negative electrode To do.
  • the solid electrolyte layer is formed using the precursor composition of the solid electrolyte described above, a solid electrolyte layer having high lithium ion conductivity is obtained, and excellent charge/discharge characteristics are obtained. It is possible to manufacture a secondary battery having
  • another method of manufacturing a secondary battery of the present application is to form a molded product containing the above-described solid electrolyte precursor composition and a positive electrode active material, and sinter the molded product to form a positive electrode mixture.
  • the method is characterized by including a step of forming, a step of forming a negative electrode on one surface of the positive electrode mixture, and a step of forming a current collector on the other surface of the positive electrode mixture.
  • the positive electrode mixture is formed using the precursor composition of the solid electrolyte described above, lithium ions are smoothly formed between the positive electrode active material and the solid electrolyte in the positive electrode mixture. It is possible to manufacture a secondary battery that conducts and has excellent charge and discharge characteristics.
  • another method for manufacturing a secondary battery of the present application is to form a molded product containing the above-described solid electrolyte precursor composition and a negative electrode active material, and sinter the molded product to form a negative electrode mixture.
  • the method is characterized by including a step of forming, a step of forming a positive electrode on one surface of the negative electrode mixture, and a step of forming a current collector on the other surface of the negative electrode mixture.
  • the negative electrode mixture is formed using the precursor composition of the solid electrolyte described above, lithium ions are smoothly formed between the negative electrode active material and the solid electrolyte in the negative electrode mixture. It is possible to manufacture a secondary battery that conducts and has excellent charge and discharge characteristics.
  • Another method of manufacturing a secondary battery of the present application is a precursor composition of the solid electrolyte described above, a step of forming a sheet of a positive electrode mixture mixture containing a positive electrode active material, the solid electrolyte of the above Precursor composition, a step of forming a sheet of a negative electrode mixture mixture containing a negative electrode active material, a step of forming a sheet of an electrolyte mixture containing a solid electrolyte, a sheet of a positive electrode mixture mixture, a sheet of an electrolyte mixture A step of forming a laminate by laminating a sheet of the negative electrode mixture mixture in this order, a step of forming the laminate to form a formed article, a step of firing the formed article, and a fired formed article And forming a current collector on at least one surface thereof.
  • the solid electrolyte is included in the fired molded product. And a positive electrode mixture containing a positive electrode active material, and a negative electrode mixture containing a solid electrolyte and a negative electrode active material. An electrolyte layer is formed between the positive electrode composite material and the negative electrode composite material by the fired electrolyte mixture. Therefore, lithium ions are smoothly conducted between the positive electrode active material and the solid electrolyte in the positive electrode mixture, and lithium ions are smoothly conducted between the negative electrode active material and the solid electrolyte in the negative electrode mixture, which is excellent.
  • a secondary battery having charge/discharge characteristics can be manufactured.
  • the solid electrolyte is formed by using the precursor composition of the solid electrolyte described above. According to this method, since the solid electrolyte having a high lithium ion conductivity is contained in the sheet of the electrolyte mixture, the fired molded product contains lithium ions between the positive electrode composite material and the negative electrode composite material. An electrolyte layer that smoothly conducts is formed, and a secondary battery having more excellent charge/discharge characteristics can be manufactured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

1000℃以下の温度で焼結しても高いリチウムイオン伝導率を実現可能な固体電解質の前駆体組成物を提供すること。 本願の固体電解質の前駆体組成物は、Li、La、Zr、およびMを含むガーネット型またはガーネット類似型の固体電解質の前駆体組成物であって、Mは、Nb、Ta、Sbのうち1種以上の元素であり、固体電解質におけるLi:La:Zr:Mの組成比が7-x:3:2-x:xであり、0<x<2.0を満たし、X線回折パターンにおいて、回折角2θが28.4°、32.88°、47.2°、56.01°、58.73°であるときに、X線回折強度のピークを示す。

Description

固体電解質の前駆体組成物、二次電池の製造方法
 本発明は、二次電池に用いられる固体電解質の前駆体組成物、二次電池の製造方法に関する。
 固体電解質を用いた二次電池として、例えば、特許文献1には、正極と、負極と、リチウム(Li)とランタン(La)とジルコニウム(Zr)と酸素(O)とからなるガーネット型もしくはガーネット類似型の結晶構造を有するセラミックスを含有する固体電解質と、を備えた全固体リチウム二次電池が開示されている。
 また、上記特許文献1には、Li成分、La成分及びZr成分を含有する原材料を準備する工程と、該原材料を1125℃超1230℃未満の温度で熱処理して、LiとLaとZrとOとからなるガーネット型もしくはガーネット類似型の結晶構造を有するセラミックスを得る工程と、を備えた固体電解質材料の製造方法が開示されている。また、Li成分としてLi2CO3を用い、La成分としてLa(OH)3またはLa23を用い、Zr成分としてZrO2を用いる例が挙げられている。該固体電解質材料の製造方法を用いて得られた固体電解質の化学組成は、ガーネット型のセラミックスであるLi7La3Zr212と比較すると、化学量論的にLiが同等かそれ以下であって、Li7-xLa3Zr212(0≦x≦1.0)で与えられるとしている。
特開2010-45019号公報
 上記特許文献1に示された固体電解質材料の製造方法では、それぞれ粉末である、Li成分、La成分、Zr成分を固体電解質の組成比に基づいて調合し混ぜ合わせた混合物に、1125℃超1230℃未満の温度で30時間以上50時間以下の熱処理を施すことが好ましいとしている。しかしながら、熱処理の温度が1000℃よりも高く、熱処理の時間が長いため、Liが揮発し易く、得られる固体電解質において所望のリチウムイオン伝導率を実現することが難しいという課題があった。
 本願の固体電解質の前駆体組成物は、Li、La、Zr、およびMを含むガーネット型またはガーネット類似型の固体電解質の前駆体組成物であって、Mは、Nb、Ta、Sbのうち1種以上の元素であり、固体電解質におけるLi:La:Zr:Mの組成比が7-x:3:2-x:xであり、0<x<2.0を満たし、X線回折パターンにおいて、回折角2θが28.4°、32.88°、47.2°、56.01°、58.73°であるときに、X線回折強度のピークを示すことを特徴とする。
 上記に記載の固体電解質の前駆体組成物は、硝酸イオンを含むことが好ましい。
 上記に記載の固体電解質の前駆体組成物において、Mは、Nb、Ta、Sbの中から選ばれる2種以上の元素であることが好ましい。
 本願の二次電池の製造方法は、上記に記載の固体電解質の前駆体組成物を用いて成形物を形成し、成形物を焼結して固体電解質層を形成する工程と、固体電解質層の一方の面に正極を形成する工程と、固体電解質層の他方の面に負極を形成する工程と、正極及び負極のうち少なくとも一方に接する集電体を形成する工程と、を含むことを特徴とする。
 また、本願の他の二次電池の製造方法は、上記に記載の固体電解質の前駆体組成物と、正極活物質とを含む成形物を形成し、成形物を焼結して正極合材を形成する工程と、正極合材の一方の面に負極を形成する工程と、正極合材の他方の面に集電体を形成する工程と、を含むことを特徴とする。
 また、本願の他の二次電池の製造方法は、上記に記載の固体電解質の前駆体組成物と、負極活物質とを含む成形物を形成し、成形物を焼結して負極合材を形成する工程と、負極合材の一方の面に正極を形成する工程と、負極合材の他方の面に集電体を形成する工程と、を含むことを特徴とする。
 本願の他の二次電池の製造方法は、上記に記載の固体電解質の前駆体組成物と、正極活物質とを含む正極合材混合物のシートを形成する工程と、上記に記載の固体電解質の前駆体組成物と、負極活物質とを含む負極合材混合物のシートを形成する工程と、固体電解質を含む電解質混合物のシートを形成する工程と、正極合材混合物のシートと、電解質混合物のシートと、負極合材混合物のシートとをこの順に積層して積層体を形成する工程と、積層体を成形して成形物を形成する工程と、成形物を焼成する工程と、焼成された成形物の少なくとも一方の面に集電体を形成する工程と、を含むことを特徴とする。
 上記他の二次電池の製造方法において、上記固体電解質は、上記に記載の固体電解質の前駆体組成物を用いて形成されていることが好ましい。
第1実施形態の二次電池としてのリチウムイオン電池の構成を示す概略斜視図。 第1実施形態の二次電池としてのリチウムイオン電池の製造方法を示すフローチャート。 第1実施形態の二次電池としてのリチウムイオン電池の製造方法を示す概略図。 第1実施形態の二次電池としてのリチウムイオン電池の製造方法を示す概略図。 他の固体電解質層の形成方法を示す概略断面図。 第2実施形態の二次電池としてのリチウムイオン電池の構成を示す概略斜視図。 第2実施形態の二次電池としてのリチウムイオン電池の構造を示す概略断面図。 第2実施形態の二次電池としてのリチウムイオン電池の製造方法を示すフローチャート。 第2実施形態の二次電池としてのリチウムイオン電池の製造方法を示す概略図。 第2実施形態の二次電池としてのリチウムイオン電池の製造方法を示す概略図。 第3実施形態の二次電池としてのリチウムイオン電池の構成を示す概略斜視図。 第3実施形態の二次電池としてのリチウムイオン電池の構造を示す概略断面図。 第3実施形態の二次電池としてのリチウムイオン電池の製造方法を示すフローチャート。 第3実施形態の二次電池としてのリチウムイオン電池の製造方法を示す概略図。 第3実施形態の二次電池としてのリチウムイオン電池の製造方法を示す概略図。 第4実施形態の二次電池としてのリチウムイオン電池の構成を示す概略斜視図。 第4実施形態の二次電池としてのリチウムイオン電池の構造を示す概略断面図。 第4実施形態の二次電池としてのリチウムイオン電池の製造方法を示すフローチャート。 第4実施形態の二次電池としてのリチウムイオン電池の製造方法を示す概略図。 第4実施形態の二次電池としてのリチウムイオン電池の製造方法を示す概略図。 第4実施形態の二次電池としてのリチウムイオン電池の製造方法を示す概略図。 第4実施形態の二次電池としてのリチウムイオン電池の製造方法を示す概図。 実施例1~5の固体電解質の前駆体組成物におけるX線回折パターンを示すグラフ。 実施例6及び実施例7の固体電解質の前駆体組成物、比較例1の熱分解物、比較例2の混合物におけるX線回折パターンを示すグラフ。 実施例1~5の固体電解質におけるX線回折パターンを示すグラフ。 実施例6及び実施例7、比較例1~3の固体電解質におけるX線回折パターンを示すグラフ。 実施例8及び実施例9の固体電解質におけるX線回折パターンを示すグラフ。
 以下、本発明の実施形態について、必要により図面を参照して説明する。なお、以下の各図においては、説明する部分が認識可能な程度の大きさとなるように、適宜拡大または縮小して表示している。
 1.第1実施形態
 1-1.固体電解質の前駆体組成物
 本実施形態の固体電解質の前駆体組成物は、リチウム(Li)、ランタン(La)、ジルコニウム(Zr)、及びMを含み、Mは、Nb、Ta、Sbのうち1種以上の元素であり、固体電解質におけるLi:La:Zr:Mの組成比が7-x:3:2-x:xであり、0<x<2.0を満たす。また、前駆体組成物のX線回折分析(XRD)によるX線回折パターンは、回折角2θが28.4°、32.88°、47.2°、56.01°、58.73°であるときに、X線回折強度のピークを示す。
 本実施形態の固体電解質の前駆体組成物を用い、高温で熱処理して焼結させることにより、以下の組成式(1)で示されるガーネット型またはガーネット類似型のリチウム複合金属酸化物である固体電解質を得ることができる。
 Li7-xLa3(Zr2-x,Mx)O12・・・(1)
 上記組成式(1)において、元素Mは、Nb、Ta、Sbの中から1種以上が選ばれ、xは0<x<2.0を満たす。
 このような固体電解質の前駆体組成物の製造方法を示す。まず、溶媒に可溶な、リチウム化合物、ランタン化合物、ジルコニウム化合物、元素Mを含む化合物のそれぞれを溶媒に溶解させた原料溶液を、上記組成式(1)に示される化学量論組成に基づいて調合した混合溶液を作製する。そして、混合溶液から溶媒成分を除去する第1の加熱処理を施して混合物を得る。第1の加熱処理の条件は、溶媒の沸点や蒸気圧によるが、例えば、加熱温度が50℃以上250℃以下、加熱時間が30分から1時間である。続いて、酸化雰囲気で混合物に第2の加熱処理を施して固体電解質の前駆体組成物を得る。第2の加熱処理の条件は、例えば、加熱温度が450℃以上550℃以下で、加熱時間は1時間から2時間である。酸化雰囲気で第2の加熱処理を施すことにより混合物は酸化される。混合物を酸化して得られた固体電解質の前駆体組成物の試料を、FEI製FIB断面加工装置Helios600で薄片状に加工して、各種の分析手法により、元素分布や組成を調べたところ、日本電子製JEM-ARM200Fを用いた透過電子顕微鏡(TEM)の観察と制限視野電子回折(SAED)の結果から、試料は数100nm(ナノメートル)程度以上の比較的に大きなアモルファス領域と、30nm以下のナノ結晶からなる集合体の領域から構成されていた。また、日本電子製の検出器JED-2300Tを用いたエネルギー分散型X線分析(TEM-EDX)とエネルギー損失分光分析(EELS)により、試料のアモルファス領域からリチウム(Li)、炭素(C)、酸素(O)が検出され、ナノ結晶からなる集合体の領域からランタン(La)、ジルコニウム(Zr)、元素Mが検出された。また、本実施形態の固体電解質の前駆体組成物は、XRDにおいて、回折角2θが28.4°、32.88°、47.2°、56.01°、58.73°であるときに、X線回折強度のピークを示すことから、ナノ結晶は、La2Zr27と同様な空間群Fd3mで表わされるパイロクロア型の結晶構造を有しており、La2Zr27と元素Mとの固溶体であると考えられる。詳しい、XRDの分析結果については、後述する実施例及び比較例の項において説明する。なお、酸化雰囲気とは、酸素を含む雰囲気であればよく、例えば、大気が挙げられる。
 固体電解質の前駆体組成物を用いて固体電解質を得るには、上述した第2の加熱処理の温度よりも高い温度で焼結する必要があることから、焼結する工程を本焼成と呼ぶと、上述した混合物に第2の加熱処理を施す工程は仮焼成と呼ぶことができる。つまり、第2の加熱処理の工程を経て得られる固体電解質の前駆体組成物は、仮焼成体である。
 固体電解質の前駆体組成物の製造方法において用いられる、リチウム化合物、ランタン化合物、ジルコニウム化合物、元素Mを含む化合物の具体例は、以下の通りである。
 リチウム源としてのリチウム化合物としては、例えば、塩化リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム、炭酸リチウムなどのリチウム金属塩、リチウムメトキシド、リチウムエトキシド、リチウムプロポキシド、リチウムイソプロポキシド、リチウムブトキシド、リチウムイソブトキシド、リチウムセカンダリーブトキシド、リチウムターシャリーブトキシド、ジピバロイルメタナトリチウムなどのリチウムアルコキシドが挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 ランタン源としてのランタン化合物としては、例えば、塩化ランタン、硝酸ランタン、酢酸ランタンなどのランタン金属塩、ランタントリメトキシド、ランタントリエトキシド、ランタントリプロポキシド、ランタントリイソプロポキシド、ランタントリブトキシド、ランタントリイソブトキシド、ランタントリセカンダリーブトキシド、ランタントリターシャリーブトキシド、ジピバロイルメタナトランタンなどのランタンアルコキシドが挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 ジルコニウム源としてのジルコニウム化合物としては、例えば、塩化ジルコニウム、オキシ塩化ジルコニウム、オキシ硝酸ジルコニウム、オキシ酢酸ジルコニウム、酢酸ジルコニウムなどのジルコニウム金属塩、ジルコニウムテトラメトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトラプロポキシド、ジルコニウムテトライソプロポキシド、ジルコニウムテトラブトキシド、ジルコニウムテトライソブトキシド、ジルコニウムテトラセカンダリーブトキシド、ジルコニウムテトラターシャリーブトキシド、ジピバロイルメタナトジルコニウムなどのジルコニウムアルコキシドが挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 元素Mは、Nb、Ta、Sbの中から選ばれる。したがって、元素Mがニオブ(Nb)である場合、ニオブ源としてのニオブ化合物としては、例えば、塩化ニオブ、オキシ塩化ニオブ、蓚酸ニオブのようなニオブ金属塩、ニオブエトキシド、ニオブプロポキシド、ニオブイソプロポキシド、ニオブセカンダリーブトキシドのようなニオブアルコキシドや、ニオブトリアセチルアセトナート、ニオブペンタアセチルアセトナート、ニオブジイソプロポキシドトリアセチルアセトナートなどが挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 元素Mがタンタル(Ta)である場合、タンタル源としてのタンタル化合物としては、例えば、塩化タンタル、臭化タンタルなどのタンタル金属塩、タンタルペンタメトキシド、タンタルペンタエトキシド、タンタルペンタイソプロポキシド、タンタルペンタノルマルプロポキシド、タンタルペンタイソブトキシド、タンタルペンタノルマルブトキシド、タンタルペンタセカンダリーブトキシド、タンタルペンタターシャリーブトキシドなどのタンタルアルコキシドが挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。
 元素Mがアンチモン(Sb)である場合、アンチモン源としてのアンチモン化合物としては、例えば、臭化アンチモン、塩化アンチモン、フッ化アンチモンなどのアンチモン金属塩、アンチモントリメトキシド、アンチモントリエトキシド、アンチモントリイソプロポキシド、アンチモントリノルマルプロポキシド、アンチモントリイソブトキシド、アンチモントリノルマルブトキシドなどのアンチモンアルコキシドが挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 これらの、リチウム化合物、ランタン化合物、ジルコニウム化合物、元素Mを含む化合物を溶解可能な溶媒としては、水及び有機溶媒の単溶媒または混合溶媒が挙げられる。
 単溶媒または混合溶媒を構成する有機溶媒としては、特に限定されないが、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、アリルアルコール、エチレングルコールモノブチルエーテル(2-n-ブトキシエタノール)などのアルコール類、エチレングリコール、プロピレングリコール、ブチレングリコール、ヘキシレングリコール、ペンタンジオール、ヘキサンジオール、ヘプタンジオール、ジプロピレングリコールなどのグリコール類、ジメチルケトン、メチルエチルケトン、メチルプロピルケトン、メチルイソブチルケトンなどのケトン類、ギ酸メチル、ギ酸エチル、酢酸メチル、アセト酢酸メチルなどのエステル類、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテルなどのエーテル類、ギ酸、酢酸、2-エチル酪酸、プロピオン酸などの有機酸類、トルエン、o-キシレン、p-キシレンなどの芳香族類、ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドンなどのアミド類などが挙げられる。
 特に、リチウム化合物として金属塩である硝酸リチウムを用い、ランタン化合物として金属塩である硝酸ランタンを用いると、固体電解質の前駆体組成物に硝酸イオンが含まれることになる。硝酸イオンが含まれる固体電解質の前駆体組成物を用いると、固体電解質の前駆体組成物の融点が低下して、固体電解質を得るための焼結時に焼結温度を1000℃以下にしたとしても焼結が進んで、緻密なガーネット型またはガーネット類似型の結晶構造を有し、高いリチウムイオン伝導率を示す固体電解質が得られ易くなる。
 また、高いリチウムイオン伝導率を示す固体電解質を得るには、固体電解質の前駆体組成物における元素Mは、Nb、Ta、Sbのうちから2種以上を選ぶことが好ましい。詳しくは、後述する実施例及び比較例の項で述べる。
 1-2.二次電池
 次に、本実施形態の固体電解質の前駆体組成物を用いて形成された固体電解質を備える二次電池について、二次電池の具体例を挙げて説明する。図1は第1実施形態の二次電池としてのリチウムイオン電池の構成を示す概略斜視図である。
 図1に示すように、本実施形態の二次電池としてのリチウムイオン電池100は、正極10と、正極10に対して順に積層された固体電解質層20と、負極30と、を有している。また、正極10に接する集電体41と、負極30に接する集電体42とを有している。正極10、固体電解質層20、負極30は、いずれも固相で構成されていることから、本実施形態のリチウムイオン電池100は、充放電可能な全固体二次電池である。
 本実施形態のリチウムイオン電池100は、例えば円盤状であって、外形の大きさは、直径Φが例えば10~20mm、厚みが例えばおおよそ0.3mm(ミリメートル)である。小型、薄型であると共に、充放電可能であって全固体であることから、スマートフォンなどの携帯情報端末の電源として好適に用いることができる。リチウムイオン電池100は、成形が可能ならば大きさや厚みはこの値に限定されない。本実施形態のように外形の大きさが10~20mmφの場合の正極10から負極30までの厚みは、薄い場合は成形性の観点から0.3mm程度、厚い場合はリチウムイオン伝導性の観点から見積もられ、1mm程度までで、あまり厚いと活物質の利用効率を下げてしまう。なお、リチウムイオン電池100の形状は円盤状であることに限定されず、多角形の盤状であってもよい。以降、各構成について説明する。
 1-2-1.固体電解質層
 本実施形態のリチウムイオン電池100における固体電解質層20は、本実施形態の固体電解質の前駆体組成物を用いて形成されている。固体電解質層20は、充放電レートの観点から、厚みは300nm(ナノメートル)~1000μm(マイクロメートル)の範囲とすることが好ましく、500nm~100μmの厚みとすることがより好ましい。また、負極30側に析出するリチウムの樹状結晶体(デンドライト)による正極10と負極30との短絡を防ぐ観点から、固体電解質層20の全体積に対する固体電解質の質量割合、すなわち理論嵩密度を50%以上とすることが好ましく、90%以上とすることがより好ましい。このような固体電解質層20の形成方法としては、グリーンシート法、プレス焼結法、鋳込み焼結法などが挙げられ、目的の厚み、サイズ、生産性を考慮して選択することができる。固体電解質層20の形成方法の具体例については後述する。なお、固体電解質層20と正極10及び負極30との密着性の向上や、比表面積の増大によるリチウムイオン電池100の出力や電池容量の向上などを目的として、正極10や負極30と接触する固体電解質層20の表面に、窪み(ディンプル)、溝(トレンチ)、柱(ピラー)などの三次元的なパターン構造を形成してもよい。
 1-2-2.正極
 本実施形態のリチウムイオン電池100における正極10は、電気化学的なリチウムイオンの吸蔵・放出を繰り返すことが可能な正極活物質であればいかなるものを用いてもよい。具体的な正極活物質としては、少なくともリチウム(Li)を含み、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)からなる群より選択されるいずれか1種以上の元素により構成されるリチウムの複酸化物を用いることができる。このような複酸化物としては、例えば、LiCoO2、LiNiO2、LiMn24、Li2Mn23、LiCr0.5Mn0.52、LiFePO4、Li2FeP27、LiMnPO4、LiFeBO3、Li32(PO43、Li2CuO2、Li2FeSiO4、Li2MnSiO4などが挙げられる。また、例えば、LiFeF3などのフッ化物、LiBH4やLi4BN310などのホウ素化物錯体化合物、ポリビニルピリジン-ヨウ素錯体などのヨウ素錯体化合物、硫黄などの非金属化合物も正極活物質として使用することもできる。
 正極10は導電性やイオン拡散距離を鑑みるといずれも固体電解質層20の表面に100nm~500μmの厚みで薄膜状に形成されていることが望ましく、300nm~100μmの厚みであることがより好ましい。
 このような正極10の形成方法は、上述した好適な厚みの薄膜が形成できる手法であれば、正極活物質の物理化学的特性、目的の厚み、面積および生産性などに応じてさまざまな手法を選択することができる。具体的には真空蒸着法、スパッタリング法、CVD法、PLD法、ALD法、エアロゾルデポジション法などの気相堆積法、ゾルゲル法やMOD法といった溶液を用いた化学堆積法などの手法を例示することができる。また正極活物質の微粒子を適当なバインダーと共にスラリー化してスキージやスクリーン印刷を行って塗膜を形成し、塗膜を乾燥および焼結して固体電解質層20の表面に焼き付けてもよい。
 1-2-3.負極
 負極30は、正極として選択された材料よりも低い電位において電気化学的なリチウムイオンの吸蔵・放出を繰り返すいわゆる負極活物質であればいかなるものを用いてもよい。具体的な負極活物質としては、Nb25、V25、TiO2、In23(酸化インジウム)、ZnO(酸化亜鉛)、SnO2(酸化スズ)、NiO、ITO(Snが添加された酸化インジウム)、AZO(アルミニウムが添加された酸化亜鉛)、GZO(ガリウムが添加された酸化亜鉛)、ATO(アンチモンが添加された酸化スズ)、FTO(フッ素が添加された酸化スズ)、Li4Ti512、Li2Ti37などのリチウムの複酸化物が挙げられる。また、Li、Al、Si、Si-Mn、Si-Co、Si―Ni、Sn、Zn、Sb、Bi、In、Auなどの金属および合金、炭素材料、炭素材料の層間にリチウムイオンが挿入された物質(LiC24、LiC6など)などが挙げられ、これらの中から1種類以上が選択される。負極30は導電性やイオン拡散距離を鑑みるといずれも固体電解質層20の表面に100nm~500μmの厚みで薄膜状に形成されていることが望ましく、300nm~100μmの厚みであることがより好ましい。
 このような負極30の形成方法は、上述した好適な厚みの薄膜が形成できる手法であれば、負極活物質の物理化学的特性、目的の厚み、面積および生産性などに応じてさまざまな手法を選択することができる。具体的には真空蒸着法、スパッタリング法、CVD法、PLD法、ALD法、エアロゾルデポジション法などの気相堆積法、ゾルゲル法やMOD法といった溶液を用いた化学堆積法などの手法を例示することができる。また負極活物質の微粒子を適当なバインダーと共にスラリー化してスキージやスクリーン印刷を行って塗膜を形成し、塗膜を乾燥および焼結して固体電解質層20の表面に焼き付けてもよい。
 1-2-4.集電体
 集電体は正極10または負極30に対し電子の授受を担うよう設けられる導電体であり、十分に電気抵抗が小さく、また充放電によって電気伝導特性やその機械構造が変化しない素材が選択される。具体的には、正極10の集電体41にはアルミニウム(Al)、チタン(Ti)、白金(Pt)、金(Au)などが用いられる。また負極30の集電体42には銅(Cu)が好適に用いられる。集電体41,42は正極10または負極30と接触抵抗が小さくなるよう設けられており、板状、メッシュ状などリチウムイオン電池100の設計に応じて様々な形態のものを選択することができる。本実施形態では、一対の集電体41,42を有するようにリチウムイオン電池100を構成したが、例えば、複数のリチウムイオン電池100を積層し、電気的に直列に接続して用いる場合、リチウムイオン電池100は、一対の集電体41,42のうち集電体41だけを備える構成とすることも可能である。
 1-3.二次電池の製造方法
 次に、本実施形態の二次電池としてのリチウムイオン電池の製造方法について具体例を挙げて説明する。図2は第1実施形態の二次電池としてのリチウムイオン電池の製造方法を示すフローチャート、図3及び図4は第1実施形態の二次電池としてのリチウムイオン電池の製造方法を示す概略図である。
 図2に示すように、本実施形態のリチウムイオン電池100の製造方法は、固体電解質層20の形成工程(ステップS1)と、正極10の形成工程(ステップS2)と、負極30の形成工程(ステップS3)と、集電体41,42の形成工程(ステップS4)と、を備えている。
 ステップS1の固体電解質層20の形成工程では、本実施形態の固体電解質の前駆体組成物を用いてグリーンシート法により固体電解質層20を形成する。具体的には、グリーンシートの結着剤としてポリプロピレンカーボネート(シグマアルドリッチ製)10gを1,4-ジオキサン(関東化学製)40gに溶解した溶液を用意し、さらに本実施形態の固体電解質の前駆体組成物15gを加えて混合することでスラリー化した。スラリー20mには必要に応じて、分散剤や希釈剤、保湿剤などを添加してもよい。次に、スラリー20mを用いて固体電解質混合物シート20sを形成する。具体的には、図3に示すように、例えば全自動フィルムアプリケーター500(コーテック社製)を用いて、ポリエチレンテレフタレート(PET)フィルムなどの基材506上に、スラリー20mを一定の厚みで塗布して固体電解質混合物シート20sとする。全自動フィルムアプリケーター500は、塗布ローラー501とドクターローラー502とを有している。ドクターローラー502に対して上方から接するようにスキージ503が設けられている。塗布ローラー501の下方において対向する位置に搬送ローラー504が設けられており、塗布ローラー501と搬送ローラー504との間に基材506が載置されたステージ505を挿入することによりステージ505が一定の方向に搬送される。ステージ505の搬送方向に隙間を置いて配置された塗布ローラー501とドクターローラー502との間においてスキージ503が設けられた側にスラリー20mが投入される。上記隙間からスラリー20mを下方に押し出すように、塗布ローラー501とドクターローラー502とを回転させて、塗布ローラー501の表面に一定の厚みのスラリー20mを塗工する。そして、同時に搬送ローラー504を回転させ、スラリー20mが塗工された塗布ローラー501に基材506が接するようにステージ505を搬送する。これにより、塗布ローラー501に塗工されたスラリー20mは基材506にシート状に転写され、固体電解質混合物シート20sとなる。本実施形態では、上述したスラリー20mを2.5g秤量して全自動フィルムアプリケーター500(コーテック社製)に投入し、基材506上に、幅5cm、長さ10cm、厚さ20μmの固体電解質混合物シート20sを形成した。基材506に形成された固体電解質混合物シート20sを大気中で8時間乾燥させて基材506から剥離し、図4に示すように、抜き型を用いて直径Φが2cmの成形物20fを形成した。次に、成形物20fに対して酸化雰囲気において900℃で8時間の焼結を行い、直径Φがおよそ19mm、厚みが16μmの固体電解質層20を得た。なお、焼結後の固体電解質層20の理論嵩密度が90%以上となるように、塗布ローラー501とドクターローラー502とによってスラリー20mを加圧し押し出して一定の厚みの固体電解質混合物シート20sとする。そして、ステップS2へ進む。
 ステップS2の正極10の形成工程では、固体電解質層20の一方の面に正極10を形成する。具体的には菅製作所製のスパッタ装置SSP2000を使用し、豊島製作所製の直径Φが4.9cmのコバルト酸リチウム(LiCoO2)をターゲットとしてスパッタリングにより19mmΦの固体電解質層20の表面にLiCoO2層を形成した。キャリアガスにはアルゴンガスを用いた。スパッタリング後、酸化雰囲気中でLiCoO2層が形成された固体電解質層20を500℃で2時間焼成することにより、LiCoO2層の結晶を高温相結晶に転化し、厚み5.4μmの正極10を得た。そして、ステップS3へ進む。
 ステップS3の負極30の形成工程では、固体電解質層20の他方の面に負極30を形成する。具体的には、ケニックス社製のグローブボックス内収納型真空蒸着装置を使用して、固体電解質層20の正極10が形成された面に対して反対側の面に、膜厚が例えば20μmの金属Liの薄膜を形成して負極30とした。そして、ステップS4へ進む。
 ステップS4の集電体41,42の形成工程では、正極10に接するように集電体41を形成し、負極30に接するように集電体42を形成した。具体的には、直径Φが15mmとなるように型抜きした厚みが40μmのアルミニウム箔を正極10に押圧して接合し集電体41とした。また、直径Φが15mmとなるように型抜きした厚みが20μmの銅箔を負極30に押圧して接合し集電体42とした。前述したように、リチウムイオン電池100において、一対の集電体41,42は必須な構成ではなく、集電体の形成工程は、一対の集電体41,42のうち一方を形成するとしてもよい。
 なお、固体電解質層20の形成方法は、ステップS1に示したグリーンシート法に限定されない。図5は他の固体電解質層の形成方法を示す概略断面図である。他の固体電解質層20の形成方法としては、例えば、図5に示すように、本実施形態の固体電解質の前駆体組成物の粉末を1200mg秤量して、Specac社製の内径20mmΦのステンレス製排気ポート付きペレットダイス80に充填し蓋81を用いて閉塞する。300MPaの圧力で蓋81を押圧して2分間の一軸プレス成型を行って成形物20fを得る。ペレットダイス80から成形物20fを取り出して、酸化雰囲気において900℃で8時間の焼結を行い、直径Φが19mm、厚みが80μmの固体電解質層20を得た。このときの、固体電解質層20の理論嵩密度は92%であった。理論嵩密度とは、見かけの体積に基づいた理論質量に対する実際の質量の割合である。
 正極10と負極30との間に設けられる固体電解質層20の理論嵩密度は前述したようにできるだけ高い方が好ましい。例えば、メノウ鉢を用いて上述した形成方法により得られた固体電解質を粉砕し、得られた固体電解質の粉末800mgに本実施形態の固体電解質の前駆体組成物の粉末400mgを加えた混合物を、上記のペレットダイス80に充填し蓋81をして、300MPaの圧力で押圧して2分間の一軸プレス成型を行い、成形物20fを得る。ペレットダイス80から成形物20fを取り出して、酸化雰囲気において900℃で8時間の焼結を行い、直径Φが19.8mm、厚みが87μmの固体電解質層20を得た。このときの、固体電解質層20の理論嵩密度は97%であった。
 上記第1実施形態によれば、以下の効果が得られる。
 1)本実施形態の固体電解質の前駆体組成物は、Li、La、Zr、および元素Mを含むガーネット型またはガーネット類似型の固体電解質の前駆体組成物であって、元素Mは、Nb、Ta、Sbのうち1種以上であり、固体電解質におけるLi:La:Zr:元素Mの組成比が7-x:3:2-x:xであり、0<x<2.0を満たし、X線回折パターンにおいて、回折角2θが28.4°、32.88°、47.2°、56.01°、58.73°であるときに、X線回折強度のピークを示す。このような固体電解質の前駆体組成物は、Li、C、Oを含むアモルファス領域と、La2Zr27と元素Mとの固溶体であると考えられるナノ結晶からなる集合体の領域とを有している。また、このような固体電解質の前駆体組成物は、固体電解質の構成元素を含む原料化合物をそれぞれ溶媒に溶解させた原料溶液を混ぜ合わせて、乾燥・焼成することにより得られる。したがって、固体電解質の構成元素を含む原料化合物の粉末を固体電解質の組成式(1)の化学量論組成に基づいて混ぜ合わせて、焼結する場合に比べて、焼結における温度を1000℃以下に低温化したとしても、酸化物の焼結が容易に進む。これによって焼結時にリチウムが揮発して組成が変化することが抑えられ、高いリチウムイオン伝導率を有するガーネット型またはガーネット類似型の固体電解質を実現できる。本実施形態の固体電解質の前駆体組成物を用いて形成された固体電解質は、下記の組成式(1)で示される。
 Li7-xLa3(Zr2-x,Mx)O12・・・(1)
 上記組成式(1)において、元素Mは、Nb、Ta、Sbの中から1種以上が選ばれ、xは0<x<2.0を満たす。
 2)本実施形態の固体電解質の前駆体組成物を製造するにあたり、リチウム化合物として硝酸リチウムを用い、ランタン化合物として硝酸ランタンを用いることにより、得られた固体電解質の前駆体組成物は硝酸イオンを含むことになる。リチウム化合物やランタン化合物としてアルコキシドを用いる場合に比べて、焼結時の加熱温度を1000℃よりも低い温度に低温化することができる。これは、硝酸イオンを含むことで固体電解質の前駆体組成物の融点が低下することに起因していると考えられる。
 3)本実施形態の固体電解質の前駆体組成物において、元素Mは、Nb、Ta、Sbの中から選ばれる2種以上であることが好ましい。これによれば、Zrのサイトの一部を置換する元素Mを、Nb、Ta、Sbの中から2種以上を選ぶことにより、上記組成式(1)で示される固体電解質において、より高いリチウムイオン伝導率を実現できる。
 4)本実施形態の二次電池としてのリチウムイオン電池100の製造方法は、本実施形態の固体電解質の前駆体組成物を用いて高いリチウムイオン伝導率を有する固体電解質層20を形成していることから、優れた充放電特性を有するリチウムイオン電池100を製造することができる。
 2.第2実施形態
 2-1.二次電池
 次に、本実施形態の固体電解質の前駆体組成物を用いて形成された固体電解質を含む二次電池の他の例について、上記第1実施形態と同様にリチウムイオン電池を例に挙げて説明する。
 図6は第2実施形態の二次電池としてのリチウムイオン電池の構成を示す概略斜視図、図7は第2実施形態の二次電池としてのリチウムイオン電池の構造を示す概略断面図である。
 図6に示すように、本実施形態の二次電池としてのリチウムイオン電池200は、正極として機能する正極合材210と、正極合材210に対して順に積層された、電解質層220と、負極230とを有している。また、正極合材210に接する集電体241と、負極230に接する集電体242とを有している。
 正極合材210、電解質層220、負極230は、いずれも固相で構成されていることから、本実施形態のリチウムイオン電池200もまた、充放電可能な全固体二次電池である。
 本実施形態のリチウムイオン電池200は、例えば円盤状であって、外形の大きさは、直径Φが例えば10~20mm、厚みが例えばおおよそ0.3mm(ミリメートル)である。小型、薄型であると共に、充放電可能であって全固体であることから、スマートフォンなどの携帯情報端末の電源として好適に用いることができる。リチウムイオン電池200は、成形が可能ならば大きさや厚みはこの値に限定されない。本実施形態のように外形の大きさが10~20mmφの場合の正極合材210から負極230までの厚みは、薄い場合は成形性の観点から0.3mm程度、厚い場合はリチウムイオン伝導性の観点から見積もられ、1mm程度までで、あまり厚いと活物質の利用効率を下げてしまう。なお、リチウムイオン電池200の形状は円盤状であることに限定されず、多角形の盤状であってもよい。以降、各構成について説明する。
 2-1-1.正極合材
 図7に示すように、本実施形態のリチウムイオン電池200における正極合材210は、粒子状の正極活物質211と、固体電解質212とを含んで構成されている。このような正極合材210は、粒子状の正極活物質211と固体電解質212とが接する界面面積を大きくして、リチウムイオン電池200における電池反応速度を高めることが可能となっている。
 正極合材210に用いられる正極活物質211は、粒径が100nm~100μmの粒子状のものを採用することが好ましく、粒径が300nm~30μmであるものを採用することがより好ましい。ここで粒径とは正極活物質211の粒子の最大径を表す。なお、図7では、粒子状の正極活物質211の形状を球状として表示したが、正極活物質211の形状は球状であることに限定されず、柱状、板状、中空状などの様々な形態をとることが考えられ、実際には不定形である。したがって、粒子状の正極活物質211の粒径を平均粒径として示すこともある。
 このような正極活物質211としては、上記第1実施形態で説明したように、少なくともリチウム(Li)を含み、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)からなる群より選択されるいずれか1種以上の元素により構成されるリチウムの複酸化物を用いることができる。このような複酸化物としては、例えば、LiCoO2、LiNiO2、LiMn24、Li2Mn23、LiCr0.5Mn0.52、LiFePO4、Li2FeP27、LiMnPO4、LiFeBO3、Li32(PO43、Li2CuO2、Li2FeSiO4、Li2MnSiO4などが挙げられる。また、例えば、LiFeF3などのフッ化物、LiBH4やLi4BN310などの錯体水素化物である水素化ホウ素リチウム化合物、ポリビニルピリジン-ヨウ素錯体などのヨウ素錯体化合物、硫黄などの非金属化合物も正極活物質211として使用することもできる。
 また、正極活物質211の粒子は、固体電解質212との界面抵抗の低減や電子伝導性の向上などを目的として、表面に被覆層などが形成されていてもよい。例えば、LiCoO2からなる正極活物質211の粒子の表面にLiNbO3、Al23、ZrO2、Ta25などの薄膜を3nm~1μm程度形成することで、リチウムイオン伝導の界面抵抗を低減することができる。
 また、正極合材210は正極活物質211のほかに、電解質や導電助剤、結着剤などが求める特性や設計に応じて複合化される。本実施形態において正極合材210に含まれる固体電解質212は、イオン伝導性や化学的安定性、及び電解質層220との界面インピーダンスの観点から本実施形態の固体電解質の前駆体組成物を用いて形成されている。
 つまり、固体電解質212は、以下の組成式(1)で示される。
 Li7-xLa3(Zr2-x,Mx)O12・・・(1)
 上記組成式(1)において、元素Mは、Nb、Ta、Sbの中から1種以上が選ばれ、xは0<x<2.0を満たす。
 導電助剤は正極反応電位において電気化学的な相互作用が無視できる導電体であれば、いかなるものを用いてもよい。アセチレンブラック、ケッチェンブラック、カーボンナノチューブなどの炭素材料、パラジウム、プラチナなどの貴金属、及びSnO2、ZnO、RuO2やReO3、Ir23などの導電性酸化物を用いることができる。
 2-1-2.電解質層
 電解質層220は、正極合材210との界面インピーダンスの観点から固体電解質212と同じ材料で構成されることが好ましいが、他の酸化物固体電解質、硫化物固体電解質、窒化物固体電解質、ハロゲン化物固体電解質、水素化物固体電解質、ドライポリマー電解質、擬固体電解質の結晶質または非晶質を混合して、あるいは単独で用いることもできる。
 結晶質の酸化物の一例としては、Li0.35La0.55TiO3、Li0.2La0.27NbO3、及びこれら結晶の元素の一部をN、F、Al、Sr、Sc、Nb、Ta、Sb、ランタノイド元素などで置換したペロブスカイト型結晶またはペロブスカイト類似型結晶、Li7La3Zr212、Li5La3Nb212、Li5BaLa2TaO12、及びこれら結晶の元素の一部をN、F、Al、Sr、Sc、Nb、Ta、Sb、ランタノイド元素などで置換したガーネット型結晶またはガーネット類似型結晶、Li1.3Ti1.7Al0.3(PO43、Li1.4Al0.4Ti1.6(PO43、Li1.4Al0.4Ti1.4Ge0.2(PO43、及びこれら結晶の一部をN、F、Al、Sr、Sc、Nb、Ta、Sb、ランタノイド元素などで置換したNASICON型結晶、Li14ZnGe416、などのLISICON型結晶、Li3.40.6Si0.44、Li3.60.4Ge0.64、Li2+x1-xx3、などのその他の結晶質を挙げることができる。
 結晶質の硫化物の一例としては、Li10GeP212、Li9.6312、Li9.54Si1.741.4411.7Cl0.3、Li3PS4などを挙げることができる。
 また、その他の非晶質の一例としては、Li2O-TiO2、La23-Li2O-TiO2、LiNbO3、LiSO4、Li4SiO4、Li3PO4-Li4SiO4、Li4GeO4-Li3VO4、Li4SiO4-Li3VO4、Li4GeO4-Zn2GeO2、Li4SiO4-LiMoO4、Li4SiO4-Li4ZrO4、SiO2-P25-Li2O、SiO2-P25-LiCl、Li2O-LiCl-B23、LiAlCl4、LiAlF4、LiF-Al23、LiBr-Al23、Li2.88PO3.730.14、Li3N-LiCl、Li6NBr3、Li2S-SiS2、Li2S-SiS2-P25などを挙げることができる。
 結晶質である場合は、リチウムイオン伝導の方向の結晶面異方性が小さい立方晶などの結晶構造であることが好ましい。また非晶質である場合はリチウムイオン伝導の異方性が小さいため、このような結晶質あるいは非晶質は電解質層220を構成する固体電解質としていずれも好ましい。
 電解質層220の厚さは、0.1μm以上、100μm以下であることが好ましく、より好ましくは、0.2μm以上、10μm以下である。電解質層220の厚さを上記範囲とすることによって、電解質層220の内部抵抗を低減し、かつ正極合材210と負極230との間での短絡の発生を抑制することができる。
 なお、電解質層220の負極230と接する面に、必要に応じて各種成形法、加工法を組み合わせて、窪み(ディンプル)、溝(トレンチ)、柱(ピラー)などの三次元的なパターン構造を形成してもよい。
 2-1-3.負極
 負極230は、上記第1実施形態のリチウムイオン電池100における負極30と同様な構成を採用することができる。したがって、ここでは詳細な説明を省略する。
 2-1-4.集電体
 集電体は正極合材210または負極230に対し電子の授受を担うよう設けられる導電体であり、十分に電気抵抗が小さく、また充放電によって電気伝導特性やその機械構造が変化しない素材が選択される。したがって、正極合材210に接する集電体241、負極230に接する集電体242は、上記第1実施形態のリチウムイオン電池100における集電体41,42と同様な構成を採用することができる。ゆえに、ここでは詳細な説明を省略する。なお、リチウムイオン電池200において、一対の集電体241,242は必須ではなく、一方だけを備える構成としてもよい。
 2-2.二次電池の製造方法
 次に、本実施形態の二次電池としてのリチウムイオン電池の製造方法について具体例を挙げて説明する。図8は第2実施形態の二次電池としてのリチウムイオン電池の製造方法を示すフローチャート、図9及び図10は第2実施形態の二次電池としてのリチウムイオン電池の製造方法を示す概略図である。
 図8に示すように、本実施形態のリチウムイオン電池200の製造方法は、混合物のシート形成工程(ステップS11)と、成形物の形成工程(ステップS12)と、成形物の焼成工程(ステップS13)と、電解質層220の形成工程(ステップS14)と、負極230の形成工程(ステップS15)と、集電体241,242の形成工程(ステップS16)と、を備えている。
 ステップS11の混合物のシート形成工程では、正極活物質211として平均粒径が5μmの日本化薬製のLiCoO2の粉末15gと、本実施形態の固体電解質の前駆体組成物の粉末18gと、結着剤としてのシグマアルドリッチ製のポリプロピレンカーボネート(PPC)10gとを、関東化学製の溶媒である1,4-ジオキサン90gに混ぜて混合しスラリー化する。そして、図9に示すように、得られたスラリー210mを全自動フィルムアプリケーター500に投入して、基材506上に塗工して、幅が5cm、長さが10cm、厚さが70μmの正極合材混合物シート210sを得た。そして、ステップS12へ進む。
 ステップS12の成形物の形成工程では、大気中で正極合材混合物シート210sを8時間乾燥させ、基材506から正極合材混合物シート210sを剥離し、図10に示すように、型抜きして直径Φが20mmの成形物210fを得た。そして、ステップS13へ進む。
 ステップS13の成形物の焼成工程では、成形物210fを酸化雰囲気において900℃で8時間焼結して、正極合材210を得た。そして、ステップS14へ進む。
 ステップS14の電解質層220の形成工程では、正極合材210の一方の面210b(図7参照)に電解質層220を形成した。具体的には、スパッタ装置SSP2000(菅製作所製)を使用し、直径Φが4.9cmのLi2CO3とLi3BO3の固溶体Li2.20.80.23(豊島製作所製)をターゲットとして、正極合材210の一方の面210b(図7参照)に、Li2.20.80.23層を形成して電解質層220とした。スパッタリング後の正極合材210の一部をフィリップス社製の電界放出型表面走査電子顕微鏡XL30FEGで分析したところ、厚みが5.6μmの、Li2.20.80.23層が形成されたことがわかった。そして、ステップS15へ進む。
 ステップS15の負極230の形成工程では、正極合材210の一方の面210b側に、負極230を形成した。具体的には、ケニックス社製のグローブボックス内収納型真空蒸着装置を使用して、電解質層220の正極合材210と反対側の面に、膜厚が例えば20μmの金属Liの薄膜を形成して負極230とした。そして、ステップS16へ進む。
 ステップS16の集電体241,242の形成工程では、正極合材210の他方の面210aに接するように集電体241を形成し、負極230に接するように集電体242を形成した。具体的には、直径Φが15mmとなるように型抜きした厚みが40μmのアルミニウム箔を正極合材210に押圧して接合し集電体241とした。また、直径Φが15mmとなるように型抜きした厚みが20μmの銅箔を負極230に押圧して接合し集電体242とした。なお、集電体の形成工程は、一対の集電体241,242のうち、一方だけを形成するとしてもよい。
 また、正極合材210及び電解質層220の形成方法は、ステップS11~ステップS14に示した方法に限定されない。例えば、本実施形態の固体電解質の前駆体組成物の粉末15gと、結着剤としてのPPC10gとを、溶媒である1,4-ジオキサン40gに混ぜて混合しスラリー化する。そして、得られたスラリーを全自動フィルムアプリケーター500に投入し、基材506上に塗工して、幅が5cm、長さが10cm、厚さが20μmの電解質混合物シートを形成する。ステップS12で、基材506から剥離した正極合材混合物シート210sと上記の電解質混合物シートとを重ね、90℃で4MPaの圧力でロールプレスして貼り合せる。貼り合せて得られた積層シートを型抜きして成形物とし、この成形物に対して酸化雰囲気において900℃で8時間の焼結を行い、正極合材210と電解質層220との積層体を得るとしてもよい。
 上記第2実施形態の二次電池としてのリチウムイオン電池200の製造方法によれば、以下の効果が得られる。
 正極合材210は、粒子状の正極活物質211と、本実施形態の固体電解質の前駆体組成物の粉末とを混ぜ合わせて得られた混合物を焼結することにより形成されている。したがって、正極合材210は、粒子状の正極活物質211と下記組成式(1)で示される固体電解質212とを含んで構成されることから、粒子状の正極活物質211と固体電解質212との界面で円滑にリチウムイオンが伝導され、優れた充放電特性を有するリチウムイオン電池200を製造することができる。
 Li7-xLa3(Zr2-x,Mx)O12・・・(1)
 上記組成式(1)において、元素Mは、Nb、Ta、Sbの中から1種以上が選ばれ、xは0<x<2.0を満たす。
 3.第3実施形態
 3-1.二次電池
 次に、本実施形態の固体電解質の前駆体組成物を用いて形成された固体電解質を含む二次電池の他の例について、上記第1実施形態と同様にリチウムイオン電池を例に挙げて説明する。
 図11は第3実施形態の二次電池としてのリチウムイオン電池の構成を示す概略斜視図、図12は第3実施形態の二次電池としてのリチウムイオン電池の構造を示す概略断面図である。
 図11に示すように、本実施形態の二次電池としてのリチウムイオン電池300は、正極310と、正極310に対して順に積層された、電解質層320と、負極として機能する負極合材330とを有している。また、正極310に接する集電体341と、負極合材330に接する集電体342とを有している。
 正極310、電解質層320、負極合材330は、いずれも固相で構成されていることから、本実施形態のリチウムイオン電池300もまた、充放電可能な全固体二次電池である。
 本実施形態のリチウムイオン電池300は、例えば円盤状であって、外形の大きさは、直径Φが例えば10~20mm、厚みが例えばおおよそ0.3mm(ミリメートル)である。小型、薄型であると共に、充放電可能であって全固体であることから、スマートフォンなどの携帯情報端末の電源として好適に用いることができる。リチウムイオン電池300は、成形が可能ならば大きさや厚みはこの値に限定されない。本実施形態のように外形の大きさが10~20mmφの場合の正極310から負極合材330までの厚みは、薄い場合は成形性の観点から0.3mm程度、厚い場合はリチウムイオン伝導性の観点から見積もられ、1mm程度までで、あまり厚いと活物質の利用効率を下げてしまう。なお、リチウムイオン電池300の形状は円盤状であることに限定されず、多角形の盤状であってもよい。以降、各構成について説明する。
 3-1-1.負極合材
 図12に示すように、本実施形態のリチウムイオン電池300における負極合材330は、粒子状の負極活物質331と、固体電解質332とを含んで構成されている。このような負極合材330は、粒子状の負極活物質331と固体電解質332とが接する界面面積を大きくして、リチウムイオン電池300における電池反応速度を高めることが可能となっている。
 負極合材330に用いられる負極活物質331は、粒径が100nm~100μmの粒子状のものを採用することが好ましく、粒径が300nm~30μmであるものを採用することがより好ましい。ここで粒径とは負極活物質331の粒子の最大径を表す。なお、図12では、粒子状の負極活物質331の形状を球状として表示したが、負極活物質331の形状は球状であることに限定されず、柱状、板状、中空状などの様々な形態をとることが考えられ、実際には不定形である。したがって、粒子状の負極活物質331の粒径を平均粒径として示すこともある。
 このような負極活物質331としては、上記第1実施形態で説明したように、Nb25、V25、TiO2、In23(酸化インジウム)、ZnO(酸化亜鉛)、SnO2(酸化スズ)、NiO、ITO(Snが添加された酸化インジウム)、AZO(アルミニウムが添加された酸化亜鉛)、GZO(ガリウムが添加された酸化亜鉛)、ATO(アンチモンが添加された酸化スズ)、FTO(フッ素が添加された酸化スズ)、Li4Ti512、Li2Ti37などのリチウムの複酸化物が挙げられる。また、Li、Al、Si、Si-Mn、Si-Co、Si―Ni、Sn、Zn、Sb、Bi、In、Auなどの金属および合金、炭素材料、炭素材料の層間にリチウムイオンが挿入された物質(LiC24、LiC6など)などが挙げられ、これらの中から1種類以上が選択される。
 また、負極合材330は負極活物質331のほかに、電解質や導電助剤、結着剤などが求める特性や設計に応じて複合化される。本実施形態において負極合材330に含まれる固体電解質332は、イオン伝導性や化学的安定性、及び電解質層320との界面インピーダンスの観点から本実施形態の固体電解質の前駆体組成物を用いて形成されている。
 つまり、固体電解質332は、以下の組成式(1)で示される。
 Li7-xLa3(Zr2-x,Mx)O12・・・(1)
 上記組成式(1)において、元素Mは、Nb、Ta、Sbの中から1種以上が選ばれ、xは0<x<2.0を満たす。
 導電助剤は負極反応電位において電気化学的な相互作用が無視できる導電体であれば、いかなるものを用いてもよい。アセチレンブラック、ケッチェンブラック、カーボンナノチューブなどの炭素材料、パラジウム、プラチナなどの貴金属、及びSnO2、ZnO、RuO2やReO3、Ir23などの導電性酸化物を用いることができる。
 3-1-2.電解質層
 電解質層320は、負極合材330との界面インピーダンスの観点から固体電解質332と同じ材料で構成されることが好ましいが、他の酸化物固体電解質、硫化物固体電解質、窒化物固体電解質、ハロゲン化物固体電解質、水素化物固体電解質、ドライポリマー電解質、擬固体電解質の結晶質または非晶質を混合して、あるいは単独で用いることもできる。
 結晶質の酸化物の一例、結晶質の硫化物の一例、非晶質の一例は、上記第1実施形態で説明した内容と同じであり、ここでは詳細な説明は省略する。
 結晶質である場合、リチウムイオン伝導の方向の結晶面異方性が小さい立方晶などの結晶構造であることが好ましい。また非晶質である場合はリチウムイオン伝導の異方性が小さいため、このような結晶質あるいは非晶質は電解質層320を構成する固体電解質としていずれも好ましい。
 電解質層320の厚さは、0.1μm以上、100μm以下であることが好ましく、より好ましくは、0.2μm以上、10μm以下である。電解質層320の厚さを上記範囲とすることによって、電解質層320の内部抵抗を低減し、且つ正極310と負極合材330との間での短絡の発生を抑制することができる。
 なお、電解質層320の負極合材330と接する面に、必要に応じて各種成形法、加工法を組み合わせて、窪み(ディンプル)、溝(トレンチ)、柱(ピラー)などの三次元的なパターン構造を形成してもよい。
 3-1-3.正極
 正極310は、電気化学的なリチウムイオンの吸蔵・放出を繰り返すことが可能な正極活物質であればいかなるものを用いてもよい。したがって、上記第1実施形態のリチウムイオン電池100における正極10と同様な構成を採用することができる。ゆえに、ここでは詳細な説明を省略する。
 3-1-4.集電体
 集電体は正極310または負極合材330に対し電子の授受を担うよう設けられる導電体であり、十分に電気抵抗が小さく、また充放電によって電気伝導特性やその機械構造が変化しない素材が選択される。したがって、正極310に接する集電体341、負極合材330に接する集電体342は、上記第1実施形態のリチウムイオン電池100における集電体41,42と同様な構成を採用することができる。したがって、ここでは詳細な説明を省略する。なお、リチウムイオン電池300において、一対の集電体341,342は必須ではなく、一方だけを備える構成としてもよい。
 3-2.二次電池の製造方法
 次に、本実施形態の二次電池としてのリチウムイオン電池の製造方法について具体例を挙げて説明する。図13は第3実施形態の二次電池としてのリチウムイオン電池の製造方法を示すフローチャート、図14及び図15は第3実施形態の二次電池としてのリチウムイオン電池の製造方法を示す概略図である。
 図13に示すように、本実施形態のリチウムイオン電池300の製造方法は、混合物のシート形成工程(ステップS21)と、成形物の形成工程(ステップS22)と、成形物の焼成工程(ステップS23)と、電解質層320の形成工程(ステップS24)と、正極310の形成工程(ステップS25)と、集電体341,342の形成工程(ステップS26)と、を備えている。
 ステップS21の混合物のシート形成工程では、負極活物質331として平均粒径が5μmのシグマアルドリッチ製のLi4Ti512の粉末15gと、本実施形態の固体電解質の前駆体組成物の粉末18gと、結着剤としてのシグマアルドリッチ製のポリプロピレンカーボネート(PPC)10gとを、関東化学製の溶媒である1,4-ジオキサン90gに混ぜて混合しスラリー化する。そして、図14に示すように、得られたスラリー330mを全自動フィルムアプリケーター500に投入して、基材506上に塗工して、幅が5cm、長さが10cm、厚さが70μmの負極合材混合物シート330sを得た。そして、ステップS22へ進む。
 ステップS22の成形物の形成工程では、大気中で負極合材混合物シート330sを8時間乾燥させ、基材506から負極合材混合物シート330sを剥離し、図15に示すように、型抜きして直径Φが20mmの成形物330fを得た。そして、ステップS23へ進む。
 ステップS23の成形物の焼成工程では、成形物330fを酸化雰囲気において900℃で8時間焼結して、負極合材330を得た。そして、ステップS24へ進む。
 ステップS24の電解質層320の形成工程では、負極合材330の一方の面330a(図12参照)に電解質層320を形成した。具体的には、スパッタ装置SSP2000(菅製作所製)を使用し、直径Φが4.9cmのLi2CO3とLi3BO3の固溶体Li2.20.80.23(豊島製作所製)をターゲットとして、負極合材330の一方の面330a(図12参照)に、Li2.20.80.23層を形成して電解質層320とした。スパッタリング後の負極合材330の一部をフィリップス社製の電界放出型表面走査電子顕微鏡XL30FEGで分析したところ、厚みが5.6μmの、Li2.20.80.23層が形成されたことがわかった。そして、ステップS25へ進む。
 ステップS25の正極310の形成工程では、負極合材330の一方の面330a側に、正極310を形成した。具体的には、スパッタ装置SSP2000(菅製作所製)を使用し、直径Φが4.9cmのLiCoO2(豊島製作所製)をターゲットとして、電解質層320の一方の面320a(図12参照)に、LiCoO2層を形成した。キャリアガスにはアルゴンガスを用いた。スパッタリング後、酸化雰囲気中でLiCoO2層が形成された電解質層320及び負極合材330を500℃で2時間焼成することにより、LiCoO2層の結晶を高温相結晶に転化し、厚み5.4μmの正極310を得た。そして、ステップS26へ進む。
 ステップS26の集電体341,342の形成工程では、正極310の一方の面310a(図12参照)に接するように集電体341を形成し、負極合材330の他方の面330b(図12参照)に接するように集電体342を形成した。具体的には、直径Φが15mmとなるように型抜きした厚みが40μmのアルミニウム箔を正極310に押圧して接合し集電体341とした。また、直径Φが15mmとなるように型抜きした厚みが20μmの銅箔を負極合材330に押圧して接合し集電体342とした。なお、集電体の形成工程は、一対の集電体341,342のうち、一方だけを形成するとしてもよい。
 また、負極合材330及び電解質層320の形成方法は、ステップS21~ステップS24に示した方法に限定されない。例えば、本実施形態の固体電解質の前駆体組成物の粉末15gと、結着剤としてのPPC10gとを、溶媒である1,4-ジオキサン40gに混ぜて混合しスラリー化する。そして、得られたスラリーを全自動フィルムアプリケーター500に投入し、基材506上に塗工して、幅が5cm、長さが10cm、厚さが20μmの電解質混合物シートを形成する。ステップS22で、基材506から剥離した負極合材混合物シート330sと上記の電解質混合物シートとを重ね、90℃で4MPaの圧力でロールプレスして貼り合せる。貼り合せて得られた積層シートを型抜きして成形物とし、この成形物に対して酸化雰囲気において900℃で8時間の焼結を行い、電解質層320と負極合材330とが積層された積層体を得るとしてもよい。
 上記第3実施形態の二次電池としてのリチウムイオン電池300の製造方法によれば、以下の効果が得られる。
 負極合材330は、粒子状の負極活物質331と、本実施形態の固体電解質の前駆体組成物の粉末とを混ぜ合わせて得られた混合物を焼結することにより形成されている。したがって、負極合材330は、粒子状の負極活物質331と下記組成式(1)で示される固体電解質332とを含んで構成されることから、粒子状の負極活物質331と固体電解質332との界面で円滑にリチウムイオンが伝導され、優れた充放電特性を有するリチウムイオン電池300を製造することができる。
 Li7-xLa3(Zr2-x,Mx)O12・・・(1)
 上記組成式(1)において、元素Mは、Nb、Ta、Sbの中から1種以上が選ばれ、xは0<x<2.0を満たす。
 4.第4実施形態
 4-1.二次電池
 次に、本実施形態の固体電解質の前駆体組成物を用いて形成された固体電解質を含む二次電池の他の例について、上記第1実施形態と同様にリチウムイオン電池を例に挙げて説明する。
 図16は第4実施形態の二次電池としてのリチウムイオン電池の構成を示す概略斜視図、図17は第4実施形態の二次電池としてのリチウムイオン電池の構造を示す概略断面図である。
 図16に示すように、本実施形態の二次電池としてのリチウムイオン電池400は、正極合材410と、正極合材410に対して順に積層された、電解質層420と、負極合材430とを有している。また、正極合材410に接する集電体441と、負極合材430に接する集電体442とを有している。
 正極合材410、電解質層420、負極合材430は、いずれも固相で構成されていることから、本実施形態のリチウムイオン電池400もまた、充放電可能な全固体二次電池である。
 本実施形態のリチウムイオン電池400は、例えば円盤状であって、外形の大きさは、直径Φが例えば10~20mm、厚みが例えばおおよそ0.3mm(ミリメートル)である。小型、薄型であると共に、充放電可能であって全固体であることから、スマートフォンなどの携帯情報端末の電源として好適に用いることができる。リチウムイオン電池400は、成形が可能ならば大きさや厚みはこの値に限定されない。本実施形態のように外形の大きさが10~20mmφの場合の正極合材410から負極合材430までの厚みは、薄い場合は成形性の観点から0.3mm程度、厚い場合はリチウムイオン伝導性の観点から見積もられ、1mm程度までで、あまり厚いと活物質の利用効率を下げてしまう。なお、リチウムイオン電池400の形状は円盤状であることに限定されず、多角形の盤状であってもよい。以降、各構成について説明する。
 4-1-1.正極合材
 図17に示すように、正極合材410は、電気化学的なリチウムイオンの吸蔵・放出を繰り返すことが可能な粒子状の正極活物質411と、本実施形態の固体電解質の前駆体組成物を用いて形成された固体電解質412とを含んで構成されている。すなわち、本実施形態の正極合材410は、上記第2実施形態のリチウムイオン電池200における正極合材210と同様な構成を採用することができる。つまり、正極活物質411は、第2実施形態で説明した正極活物質211と同様な構成であることから、ここでは詳細な説明を省略する。
 また、固体電解質412は、以下の組成式(1)で示される。
 Li7-xLa3(Zr2-x,Mx)O12・・・(1)
 上記組成式(1)において、元素Mは、Nb、Ta、Sbの中から1種以上が選ばれ、xは0<x<2.0を満たす。
 また、正極合材410は正極活物質411のほかに、電解質や導電助剤、結着剤などが求める特性や設計に応じて複合化される。導電助剤は正極反応電位において電気化学的な相互作用が無視できる導電体であれば、いかなるものを用いてもよい。アセチレンブラック、ケッチェンブラック、カーボンナノチューブなどの炭素材料、パラジウム、プラチナなどの貴金属、及びSnO2、ZnO、RuO2やReO3、Ir23などの導電性酸化物を用いることができる。
 4-1―2.負極合材
 図17に示すように、負極合材430は、電気化学的なリチウムイオンの吸蔵・放出を繰り返すことが可能な粒子状の負極活物質431と、本実施形態の固体電解質の前駆体組成物を用いて形成された固体電解質432とを含んで構成されている。すなわち、本実施形態の負極合材430は、上記第3実施形態のリチウムイオン電池300における負極合材330と同様な構成を採用することができる。つまり、負極活物質431は、第3実施形態で説明した負極活物質331と同様な構成であることから、ここでは詳細な説明を省略する。
 また、固体電解質432は、以下の組成式(1)で示される。
 Li7-xLa3(Zr2-x,Mx)O12・・・(1)
 上記組成式(1)において、元素Mは、Nb、Ta、Sbの中から1種以上が選ばれ、xは0<x<2.0を満たす。
 また、負極合材430は負極活物質431のほかに、電解質や導電助剤、結着剤などが求める特性や設計に応じて複合化される。導電助剤は負極反応電位において電気化学的な相互作用が無視できる導電体であれば、いかなるものを用いてもよい。アセチレンブラック、ケッチェンブラック、カーボンナノチューブなどの炭素材料、パラジウム、プラチナなどの貴金属、及びSnO2、ZnO、RuO2やReO3、Ir23などの導電性酸化物を用いることができる。
 4-1-3.電解質層
 電解質層420は、正極合材410及び負極合材430との界面インピーダンスの観点から固体電解質412及び固体電解質432と同じ材料を含んで構成されることが好ましいが、他の酸化物固体電解質、硫化物固体電解質、窒化物固体電解質、ハロゲン化物固体電解質、水素化物固体電解質、ドライポリマー電解質、擬固体電解質の結晶質または非晶質を混合して、あるいは単独で用いることもできる。
 結晶質の酸化物の一例、結晶質の硫化物の一例、非晶質の一例は、上記第1実施形態で説明した内容と同じであり、ここでは詳細な説明は省略する。
 結晶質である場合、リチウムイオン伝導の方向の結晶面異方性が小さい立方晶などの結晶構造であることが好ましい。また非晶質である場合はリチウムイオン伝導の異方性が小さいため、このような結晶質あるいは非晶質は電解質層420を構成する固体電解質としていずれも好ましい。
 電解質層420の厚さは、0.1μm以上、100μm以下であることが好ましく、より好ましくは、0.2μm以上、10μm以下である。電解質層420の厚さを上記範囲とすることによって、電解質層420の内部抵抗を低減し、且つ正極合材410と負極合材430との間での短絡の発生を抑制することができる。
 なお、電解質層420の正極合材410や負極合材430と接する面に、必要に応じて各種成形法、加工法を組み合わせて、窪み(ディンプル)、溝(トレンチ)、柱(ピラー)などの三次元的なパターン構造を形成してもよい。
 4-1-4.集電体
 集電体は正極合材410または負極合材430に対し電子の授受を担うよう設けられる導電体であり、十分に電気抵抗が小さく、また充放電によって電気伝導特性やその機械構造が変化しない素材が選択される。したがって、正極合材410に接する集電体441、負極合材430に接する集電体442は、上記第1実施形態のリチウムイオン電池100における集電体41,42と同様な構成を採用することができる。ゆえに、ここでは詳細な説明を省略する。なお、リチウムイオン電池400において、一対の集電体441,442は必須ではなく、一方だけを備える構成としてもよい。
 4-2.二次電池の製造方法
 次に、本実施形態の二次電池としてのリチウムイオン電池の製造方法について具体例を挙げて説明する。図18は第4実施形態の二次電池としてのリチウムイオン電池の製造方法を示すフローチャート、図19~図22は第4実施形態の二次電池としてのリチウムイオン電池の製造方法を示す概略図である。
 図18に示すように、本実施形態のリチウムイオン電池400の製造方法は、正極合材混合物のシート形成工程(ステップS31)と、負極合材混合物のシート形成工程(ステップS32)と、電解質混合物のシート形成工程(ステップS33)と、シート積層工程(ステップS34)と、成形物の形成工程(ステップS35)と、成形物の焼成工程(ステップS36)と、集電体の形成工程(ステップS37)と、を備えている。
 ステップS31の正極合材混合物のシート形成工程では、正極活物質411として平均粒径が5μmの日本化薬製のLiCoO2の粉末15gと、本実施形態の固体電解質の前駆体組成物の粉末18gと、結着剤としてのシグマアルドリッチ製のポリプロピレンカーボネート(PPC)10gとを、関東化学製の溶媒である1,4-ジオキサン90gに混ぜて混合しスラリー化する。そして、図19に示すように、得られたスラリー410mを全自動フィルムアプリケーター500に投入し、基材506上に塗工して大気中で8時間乾燥させた後、基材506から剥離することにより、幅が5cm、長さが10cm、厚さが70μmの正極合材混合物シート410sを得た。そして、ステップS32へ進む。
 ステップS32の負極合材混合物のシート形成工程では、負極活物質431として平均粒径が5μmのシグマアルドリッチ製のLi4Ti512の粉末15gと、本実施形態の固体電解質の前駆体組成物の粉末18gと、結着剤としてのシグマアルドリッチ製のポリプロピレンカーボネート(PPC)10gとを、関東化学製の溶媒である1,4-ジオキサン90gに混ぜて混合しスラリー化する。そして、図20に示すように、得られたスラリー430mを全自動フィルムアプリケーター500に投入し、基材506上に塗工して大気中で8時間乾燥させた後、基材506から剥離することにより、幅が5cm、長さが10cm、厚さが70μmの負極合材混合物シート430sを得た。そして、ステップS33へ進む。
 ステップS33の電解質混合物のシート形成工程では、本実施形態の固体電解質の前駆体組成物の粉末18gと、結着剤としてのシグマアルドリッチ製のポリプロピレンカーボネート(PPC)10gとを、関東化学製の溶媒である1,4-ジオキサン90gに混ぜて混合しスラリー化する。そして、図21に示すように、得られたスラリー420mを全自動フィルムアプリケーター500に投入して、基材506上に塗工して大気中で8時間乾燥させたのち、基材506から剥離することにより、幅が5cm、長さが10cm、厚さが70μmの電解質混合物シート420sを得た。そして、ステップS34へ進む。
 ステップS34のシート積層工程では、図22に示すように、正極合材混合物シート410s、電解質混合物シート420s、負極合材混合物シート430sをこの順に重ね、90℃で4MPaの圧力でロールプレスして貼り合せる。貼り合せて得られた積層シートを型抜きして成形物450fを得た。そして、ステップS35へ進む。
 ステップS35の焼成工程では、ステップS34で得られた成形物450fを酸化雰囲気において900℃で8時間焼結した。成形物450fのうち、正極合材混合物からなる部分は、焼成により正極合材410になり、電解質混合物からなる部分は焼成により電解質層420になり、負極合材混合物からなる部分は負極合材430になる。つまり、成形物450fの焼結体は、正極合材410、電解質層420、負極合材430の積層体である。そして、ステップS36へ進む。
 ステップS36の集電体の形成工程では、正極合材410の一方の面410a(図17参照)に接するように集電体441を形成し、負極合材430の他方の面430b(図17参照)に接するように集電体442を形成した。具体的には、直径Φが15mmとなるように型抜きした厚みが40μmのアルミニウム箔を正極合材410に押圧して接合し集電体441とした。また、直径Φが15mmとなるように型抜きした厚みが20μmの銅箔を負極合材430に押圧して接合し集電体442とした。なお、集電体の形成工程は、一対の集電体441,442のうち、一方だけを形成するとしてもよい。
 なお、電解質混合物のシート形成工程は、ステップS33に示された方法に限定されない。例えば、固体電解質として、本実施形態の固体電解質を粉砕して得られる平均粒径が5μmの粉末15gと、本実施形態の組成式が同じ固体電解質の前駆体組成物の粉末18gと、結着剤としてのシグマアルドリッチ製のポリプロピレンカーボネート(PPC)10gとを、関東化学製の溶媒である1,4-ジオキサン90gに混ぜて混合しスラリー化する。そして、図21に示すように、得られたスラリー420mを全自動フィルムアプリケーター500に投入し、基材506上に塗工して、幅が5cm、長さが10cm、厚さが70μmの電解質混合物シート420sを得るとしてもよい。
 上記第4実施形態の二次電池としてのリチウムイオン電池400の製造方法によれば、以下の効果が得られる。
 正極合材410は、粒子状の正極活物質411と、本実施形態の固体電解質の前駆体組成物の粉末とを混ぜ合わせて得られた混合物を焼結することにより形成されている。したがって、正極合材410は、粒子状の正極活物質411と下記組成式(1)で示される固体電解質412とを含んで構成されることから、粒子状の正極活物質411と固体電解質412との界面で円滑にリチウムイオンが伝導される。同様に負極合材430も、粒子状の負極活物質431が固体電解質432と複合化されることにより界面におけるリチウムイオン伝導を円滑にすることができる。従って正極合材410及び負極合材430のいずれにおいても高い電池反応速度を実現できるため、優れた充放電特性を有するリチウムイオン電池400を製造することができる。
 Li7-xLa3(Zr2-x,Mx)O12・・・(1)
 上記組成式(1)において、元素Mは、Nb、Ta、Sbの中から1種以上が選ばれ、xは0<x<2.0を満たす。
 また、電解質層420は、粒子状の固体電解質結晶と本実施形態の固体電解質の前駆体組成物の粉末を混ぜ合わせて得られた混合物を焼結することにより構成することが好ましい。これによれば、本実施形態の固体電解質の前駆体組成物が結晶に転化される温度で、粒子状の固体電解質結晶の粒子間が焼結されることになり、低温焼結であっても緻密でリチウムイオン伝導性が高い電解質層420を形成することができる。
 5.実施例及び比較例
 次に、本実施形態の固体電解質の前駆体組成物を用いて形成された固体電解質の実施例と、比較例とを挙げ、実施例及び比較例の評価結果について具体的に説明する。
 5-1.実施例
 本実施形態の固体電解質の前駆体組成物を用いて形成された固体電解質につき、元素Mの組成などを異ならせた実施例1~実施例9を挙げて説明する。
 実施例1~実施例9の固体電解質の形成において用いられる各原料化合物の具体的な構成は、以下の通りである。
 リチウム化合物は関東化学製の硝酸リチウム(LiNO3)であり、ランタン化合物は関東化学製の硝酸ランタン六水和物(La(NO33・6H2O)であり、ジルコニウム化合物はシグマアルドリッチ製のジルコニウムブトキシドである。元素Mとして用いられる、ニオブ化合物は高純度化学製のペンタエトキシニオブであり、タンタル化合物はGelest社製のタンタルエトキシドであり、アンチモン化合物は高純度化学製のトリ-n-ブトキシアンチモンである。
 5-1-1.実施例1
 実施例1の固体電解質は、組成式Li6.3La3Zr1.3Sb0.5Ta0.212で示されるものである。硝酸リチウム、硝酸ランタン、ジルコニウムブトキシド、トリ-n-ブトキシアンチモン、タンタルエトキシドのそれぞれを実施例1の組成式におけるモル比率に従って秤量し、溶媒である2-n-ブトキシエタノールに溶解させる。各原料化合物が溶解した混合溶液をチタン製のビーカーに入れて140℃に加熱してゲル化させ、さらに大気雰囲気下540℃で30分間加熱し灰状の熱分解物、すなわち実施例1の固体電解質の前駆体組成物を得た。この熱分解物1gをSpecac社製の内径13mmΦの排気ポート付きペレットダイスに充填し、6kNの加重でプレス成型して成形物としてのペレットを得た。得られたペレットをアルミナ製の坩堝に納め、大気雰囲気において900℃で8時間焼結して実施例1の固体電解質ペレットを得た。
 5-1-2.実施例2
 実施例2の固体電解質は、組成式Li6.7La3Zr1.7Nb0.25Ta0.0512で示されるものである。硝酸リチウム、硝酸ランタン、ジルコニウムブトキシド、ペンタエトキシニオブ、タンタルエトキシドのそれぞれを実施例2の組成式におけるモル比率に従って秤量し、溶媒である2-n-ブトキシエタノールに溶解させる。以降は、実施例1と同様に処理して実施例2の固体電解質ペレットを得た。
 5-1-3.実施例3
 実施例3の固体電解質は、組成式Li6.35La3Zr1.35Nb0.25Sba0.412で示されるものである。硝酸リチウム、硝酸ランタン、ジルコニウムブトキシド、ペンタエトキシニオブ、トリ-n-ブトキシアンチモンのそれぞれを実施例3の組成式におけるモル比率に従って秤量し、溶媒である2-n-ブトキシエタノールに溶解させる。以降は、実施例1と同様に処理して実施例3の固体電解質ペレットを得た。
 5-1-4.実施例4
 実施例4の固体電解質は、組成式Li5.95La3Zr0.95Nb0.25Sba0.4Ta0.412で示されるものである。硝酸リチウム、硝酸ランタン、ジルコニウムブトキシド、ペンタエトキシニオブ、トリ-n-ブトキシアンチモン、タンタルエトキシドのそれぞれを実施例4の組成式におけるモル比率に従って秤量し、溶媒である2-n-ブトキシエタノールに溶解させる。以降は、実施例1と同様に処理して実施例4の固体電解質ペレットを得た。
 5-1-5.実施例5
 実施例5の固体電解質は、組成式Li6.75La3Zr1.75Nb0.2512で示されるものである。硝酸リチウム、硝酸ランタン、ジルコニウムブトキシド、ペンタエトキシニオブのそれぞれを実施例5の組成式におけるモル比率に従って秤量し、溶媒である2-n-ブトキシエタノールに溶解させる。以降は、実施例1と同様に処理して実施例5の固体電解質ペレットを得た。
 5-1-6.実施例6
 実施例6の固体電解質は、組成式Li6.75La3Zr1.75Sb0.2512で示されるものである。硝酸リチウム、硝酸ランタン、ジルコニウムブトキシド、トリ-n-ブトキシアンチモンのそれぞれを実施例6の組成式におけるモル比率に従って秤量し、溶媒である2-n-ブトキシエタノールに溶解させる。以降は、実施例1と同様に処理して実施例6の固体電解質ペレットを得た。
 5-1-7.実施例7
 実施例7の固体電解質は、組成式Li6.75La3Zr1.75Ta0.2512で示されるものである。硝酸リチウム、硝酸ランタン、ジルコニウムブトキシド、タンタルエトキシドのそれぞれを実施例7の組成式におけるモル比率に従って秤量し、溶媒である2-n-ブトキシエタノールに溶解させる。以降は、実施例1と同様に処理して実施例7の固体電解質ペレットを得た。
 5-1-8.実施例8
 実施例8の固体電解質は、組成式Li6.3La3Zr1.3Sb0.5Ta0.212で示される電解質であり、組成式は実施例1と同じである。具体的には、実施例1と同様にして得られた固体電解質ペレットをメノウ鉢で粉砕して固体電解質粉末とする。この固体電解質粉末800mgに対し、実施例1と同様にして得られた熱分解物である固体電解質の前駆体組成物400mgを混合し、実施例1と同様にプレス成型後に焼結を施して実施例8の固体電解質ペレットを得た。
 5-1-9.実施例9
 実施例9の固体電解質は、組成式Li6.3La3Zr1.3Sb0.5Ta0.212で示される実施例1の固体電解質と、組成式Li6.75La3Zr1.75Nb0.2512で示される実施例5の固体電解質の混合物である。具体的には、実施例5と同様にして得られた固体電解質ペレットをメノウ鉢で粉砕して固体電解質粉末とする。この固体電解質粉末800mgに対し、実施例1と同様にして得られた熱分解物である固体電解質の前駆体組成物400mgを混合し、実施例1と同様にプレス成型後に焼結を施して実施例9の固体電解質ペレットを得た。
 5-2.比較例
 比較例として、MOD法を用いて形成されたガーネット型の固体電解質を比較例1とし、比較例1に対して固相法を用いて形成されたガーネット型の固体電解質を比較例2とし、比較例2に対して元素Mの構成を異ならせ固相法を用いて形成されたガーネット型の固体電解質を比較例3とした。以降、比較例1~比較例3の固体電解質の構成と固体電解質ペレットの形成とについて説明する。
 5-2-1.比較例1
 比較例1の固体電解質は、組成式Li6.75La3Zr1.75Nb0.2512で示されるものであり、組成式は実施例5と同じである。リチウム源としての(2,4-ペンタンジオナト)リチウムを1.43g、ランタン源としてのトリス(2,4-ペンタンジオナト)ランタン水和物を2.62g、ジルコニウム源としてジルコニウムブトキシドを1.34g、ニオブ源としてペンタエトキシニオブを0.16g、それぞれ秤量して、東京化成工業製のプロピオン酸20gに溶解させた。これをチタン製のビーカーに入れて140℃に加熱してゲル化させ、さらに大気雰囲気下540℃で30分間加熱し灰状の熱分解物を得た。この熱分解物1gをSpecac社製の内径13mmΦの排気ポート付きペレットダイスに充填し、6kNの加重でプレス成型して成形物としてのペレットを得た。得られたペレットをアルミナ製の坩堝に納め、大気雰囲気において900℃で8時間焼結して比較例1の固体電解質ペレットを得た。
 5-2-2.比較例2
 比較例2の固体電解質は、組成式Li6.75La3Zr1.75Nb0.2512で示されるものであり、組成式は比較例1と同じである。リチウム源としてLi2CO3の粉末を2.5g、ランタン源としてLa23の粉末を4.89g、ジルコニウム源としてZrO2の粉末を2.16g、ニオブ源としてNb23の粉末を0.33g、それぞれ秤量して、関東化学製のn-ヘキサン40gを加えてメノウ鉢で混合して混合物を得た。この混合物1gをSpecac社製の内径13mmΦの排気ポート付きペレットダイスに充填し、6kNの加重でプレス成型して成形物としてのペレットを得た。得られたペレットをアルミナ製の坩堝に納め、大気雰囲気において900℃で8時間焼結して比較例2の固体電解質ペレットを得た。
 5-2-3.比較例3
 比較例3の固体電解質は、組成式Li5.95La3Zr0.95Nb0.25Sba0.4Ta0.412で示されるものであり、組成式は実施例4と同じである。リチウム源としてLi2CO3の粉末を2.2g、ランタン源としてLa23の粉末を4.89g、ジルコニウム源としてZrO2の粉末を1.17g、ニオブ源としてNb23の粉末を0.33g、アンチモン源としてSb23の粉末を0.58g、タンタル源としてTa25の粉末を0.88g、それぞれ秤量して、関東化学製のn-ヘキサン40gを加えてメノウ鉢で混合して混合物を得た。この混合物1gをSpecac社製の内径13mmΦの排気ポート付きペレットダイスに充填し、6kNの加重でプレス成型して成形物としてのペレットを得た。得られたペレットをアルミナ製の坩堝に納め、大気雰囲気において900℃で8時間焼結して比較例3の固体電解質ペレットを得た。
 5-3.実施例及び比較例の評価結果
 実施例1~7の熱分解物である固体電解質の前駆体組成物及び固体電解質、実施例8及び実施例9の固体電解質、比較例1の熱分解物と固体電解質、比較例2及び比較例3の混合物及び固体電解質のそれぞれを試料として、フィリップス社製のX線回折装置X‘Pert-PROで分析し、X線回折パターンを得た。図23は実施例1~5の固体電解質の前駆体組成物におけるX線回折パターンを示すグラフ、図24は実施例6及び実施例7の固体電解質の前駆体組成物、比較例1の熱分解物、比較例2の混合物におけるX線回折パターンを示すグラフである。図25は実施例1~5の固体電解質におけるX線回折パターンを示すグラフ、図26は実施例6及び実施例7、比較例1及び比較例2の固体電解質におけるX線回折パターンを示すグラフ、図27は実施例8及び実施例9の固体電解質におけるX線回折パターンを示すグラフである。
 図23及び図24に示すように、実施例1~7の固体電解質の前駆体組成物は、X線回折パターンにおいて、回折角2θが28.4°、32.88°、47.2°、56.01°、58.73°であるときに、X線回折強度のピークを示す。これに対して、MOD法の比較例1の熱分解物は、回折角2θが0°~65°の範囲において、28.76°であるときにX線回折強度のピークを示すものの、それ以外に明確なピークが生じていない。固相法の比較例2の混合物は、回折角2θが28.57°、33.1°、39.51°、47.57°、56.43°、59.19°であるときに、X線回折強度のピークを示している。つまり、実施例1~7の固体電解質の前駆体組成物と、比較例1の熱分解物と、比較例2の混合物とにおいて、それぞれに含まれる物質は互いに異なる結晶構造を有すると考えられる。なお、比較例3の混合物におけるX線回折パターンは比較例2とほとんど同じであるため、図24には図示していない。
 図25及び図26並びに図27に示すように、実施例1~9及び比較例1~3の固体電解質のX線回折パターンは、回折角2θが0°~65°の範囲に出現する複数のピークが、いずれもICDDデータベースのガーネット型またはガーネット類似型結晶に帰属された。つまり、900℃、8時間の焼結後に得られる実施例1~9及び比較例1~3の固体電解質は、いずれもガーネット型またはガーネット類似型の結晶構造を有していると考えられる。
 実施例1~9及び比較例1~3の各固体電解質ペレットの両面に8mmΦのリチウム金属箔(本荘ケミカル社製)を貼り付けて活性化電極とし、交流インピーダンスアナライザーSolatron1260(Solatron Anailtical社製)を用いて交流インピーダンス(EIS)を測定してリチウムイオン伝導率を求めた。EIS測定は、交流(AC)振幅10mVにて、107Hzから10-1Hzの周波数領域にて行った。EIS測定によって得られたリチウムイオン伝導率は、各固体電解質ペレットにおけるバルクのリチウムイオン伝導率と粒界のリチウムイオン伝導率とを含む総リチウムイオン伝導率を示すものである。実施例1~9及び比較例1~3の各固体電解質ペレットにおけるリチウムイオン伝導率を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 上記の表1に示すように、実施例1~実施例9の固体電解質ペレットは、比較例1~3の固体電解質ペレットに比べて高いリチウムイオン伝導率を示す。詳しくは、元素MをNb、Sb、Taの中から1種を選択した実施例5~7の中では、Sbを選択した実施例6の固体電解質ペレットにおけるリチウムイオン伝導率が最も高く、その値は、1.3×10-4S(ジーメンス)/cmである。これに比べて、元素MをNb、Sb、Taの中から2種以上選択した実施例1~4の固体電解質ペレットのリチウムイオン伝導率はいずれも2.0×10-4S/cm以上の値を示しており、このうち、Nb、Sb、Taの3種が選択された実施例4が最も高いリチウムイオン伝導率を示している。また、元素MをNb、Sb、Taの中から3種選択した実施例4よりも、固体電解質粉末と、固体電解質の前駆体組成物とを混ぜ合わせて得られた成形物に再び焼結を施して固体電解質ペレットを得た実施例8や実施例9のほうが高いリチウムイオン伝導率が実現されている。これに対して、元素MとしてNbを選択し、MOD法で形成された比較例1や固相法で形成された比較例2の固体電解質ペレットのリチウムイオン伝導率は、組成式が同じで液相法で形成された実施例5よりも低い。元素MをNb、Sb、Taの中から3種が選択され、固相法で形成された比較例3の固体電解質ペレットのリチウムイオン伝導率は、組成式が同じで液相法で形成された実施例4よりも低い。
 実施例5と比較例1とは同じ組成式で示される固体電解質であり、液相法で形成される点も同じではあるが、リチウム源及びランタン源が、実施例5では硝酸塩であり、比較例1では有機化合物の金属錯体である点で異なっている。リチウム源及びランタン源として硝酸塩を用いた方が高いリチウムイオン伝導率を実現できる。
 実施例1の組成式Li6.3La3Zr1.3Sb0.5Ta0.212で示される固体電解質の前駆体組成物0.1gを硝酸、フッ化水素酸、硫酸などの混酸で溶解した溶解液を調製した。この溶解液に含まれる元素を日本アジレントテクノロジー株式会社製のICP-AES測定装置Agilent5110を用いて定量した。
 また、実施例1の固体電解質の前駆体組成物0.25gを超純水10ml(ミリリットル)に懸濁し、23℃で1時間振盪して懸濁液を抽出した。この懸濁液を10000G程度で10分間遠心分離し、さらに上澄液を孔径が0.22μmのシリンジフィルターでろ過したものを抽出液として得た。この抽出液に含まれる硝酸イオンを日本ダイネクス社製のイオンクロマトグラフICS-1000にて定量した。ICP-AESの定量結果とイオンクロマトグラフの定量結果とを表2に示す。なお、表2は、5つの試料を分析した結果として、各試料に含まれるLi、La、Zr、Sb、Taと硝酸イオンの質量%と平均質量%とを示すものである。
Figure JPOXMLDOC01-appb-T000002
 リチウム源及びランタン源として硝酸塩を用いていることから、上記の表2に示すように、実施例1の固体電解質の前駆体組成物は、おおよそ3質量%弱程度の硝酸イオンを含むことが明らかである。他の実施例2~実施例7においてもリチウム源及びランタン源として硝酸塩を用いていることから、試料を作製してイオンクロマト分析を行えば、同様に硝酸イオンが検出されると考えられる。
 なお、本発明は上述した実施形態に限定されず、上述した実施形態に種々の変更や改良などを加えることが可能である。変形例を以下に述べる。
 (変形例1)本実施形態の固体電解質の前駆体組成物を用いて形成された固体電解質を有する二次電池は、上記各実施形態に示された全固体型のリチウムイオン電池に限定されない。例えば、正極合材210と負極230との間に多孔質なセパレーターを設け、セパレーターに電解液を含浸させた二次電池の構成としてもよい。
 (変形例2)上記各実施形態に示されたリチウムイオン電池が電源として適用される電子機器は、例えば、ヘッドマウントディスプレイ、ヘッドアップディスプレイ、携帯電話機、携帯情報端末、ノート型パソコン、デジタルカメラ、ビデオカメラ、音楽プレイヤー、ワイヤレスヘッドホン、ゲーム機などの携帯型や、人体の一部に装着して用いるウェアラブル型の電子機器が挙げられる。また、このような一般消費者向けの機器に限らず、産業用途の機器にも適用可能であり、自動車や船舶などの移動体であってもよい。例えば、電気自動車(EV)、プラグインハイブリッド自動車(PHEV)、ハイブリッド自動車(HEV)、燃料電池自動車(FCV)などの蓄電池として、本実施形態の固体電解質を用いた二次電池としてのリチウムイオン電池を好適に採用することができる。
 以下に、実施形態から導き出される内容を記載する。
 本願の固体電解質の前駆体組成物は、Li、La、Zr、およびMを含むガーネット型またはガーネット類似型の固体電解質の前駆体組成物であって、Mは、Nb、Ta、Sbのうち1種以上の元素であり、固体電解質におけるLi:La:Zr:Mの組成比が7-x:3:2-x:xであり、0<x<2.0を満たし、X線回折パターンにおいて、回折角2θが28.4°、32.88°、47.2°、56.01°、58.73°であるときに、X線回折強度のピークを示すことを特徴とする。
 本願の構成によれば、1000℃以下の温度で焼結しても高いリチウムイオン伝導率を実現可能な固体電解質の前駆体組成物を提供することができる。
 上記に記載の固体電解質の前駆体組成物は、硝酸イオンを含むことが好ましい。
 この構成によれば、硝酸イオンを含まない場合に比べて、焼結に係る熱処理の温度を低温化できる。言い換えれば、硝酸イオンを含むことで固体電解質の前駆体組成物における融点が低下し、1000℃以下の温度で焼結しても焼結が進んで高いリチウムイオン伝導率を実現できる。
 上記に記載の固体電解質の前駆体組成物において、Mは、Nb、Ta、Sbの中から選ばれる2種以上の元素であることが好ましい。
 この構成によれば、Zrのサイトの一部を置換する元素Mを、Nb、Ta、Sbの中から2種以上を選ぶことにより、より高いリチウムイオン伝導率を実現できる。
 本願の二次電池の製造方法は、上記に記載の固体電解質の前駆体組成物を用いて成形物を形成し、成形物を焼結して固体電解質層を形成する工程と、固体電解質層の一方の面に正極を形成する工程と、固体電解質層の他方の面に負極を形成する工程と、正極及び負極のうち少なくとも一方に接する集電体を形成する工程と、を含むことを特徴とする。
 本願の方法によれば、上記に記載の固体電解質の前駆体組成物を用いて固体電解質層が形成されているため、高いリチウムイオン伝導率を有する固体電解質層が得られ、優れた充放電特性を有する二次電池を製造することができる。
 また、本願の他の二次電池の製造方法は、上記に記載の固体電解質の前駆体組成物と、正極活物質とを含む成形物を形成し、成形物を焼結して正極合材を形成する工程と、正極合材の一方の面に負極を形成する工程と、正極合材の他方の面に集電体を形成する工程と、を含むことを特徴とする。
 本願の方法によれば、上記に記載の固体電解質の前駆体組成物を用いて正極合材が形成されているため、正極合材において正極活物質と固体電解質との間で円滑にリチウムイオンが伝導し、優れた充放電特性を有する二次電池を製造することができる。
 また、本願の他の二次電池の製造方法は、上記に記載の固体電解質の前駆体組成物と、負極活物質とを含む成形物を形成し、成形物を焼結して負極合材を形成する工程と、負極合材の一方の面に正極を形成する工程と、負極合材の他方の面に集電体を形成する工程と、を含むことを特徴とする。
 本願の方法によれば、上記に記載の固体電解質の前駆体組成物を用いて負極合材が形成されているため、負極合材において負極活物質と固体電解質との間で円滑にリチウムイオンが伝導し、優れた充放電特性を有する二次電池を製造することができる。
 本願の他の二次電池の製造方法は、上記に記載の固体電解質の前駆体組成物と、正極活物質とを含む正極合材混合物のシートを形成する工程と、上記に記載の固体電解質の前駆体組成物と、負極活物質とを含む負極合材混合物のシートを形成する工程と、固体電解質を含む電解質混合物のシートを形成する工程と、正極合材混合物のシートと、電解質混合物のシートと、負極合材混合物のシートとをこの順に積層して積層体を形成する工程と、積層体を成形して成形物を形成する工程と、成形物を焼成する工程と、焼成された成形物の少なくとも一方の面に集電体を形成する工程と、を含むことを特徴とする。
 本願の方法によれば、上記に記載の固体電解質の前駆体組成物を用いて正極合材混合物のシート及び負極合材混合物のシートが形成されるため、焼成された成形物には、固体電解質と正極活物質とを含む正極合材と、固体電解質と負極活物質とを含む負極合材とが含まれる。正極合材と負極合材との間には、焼成された電解質混合物により電解質層が形成される。したがって、正極合材において正極活物質と固体電解質との間で円滑にリチウムイオンが伝導すると共に、負極合材において負極活物質と固体電解質との間で円滑にリチウムイオンが伝導して、優れた充放電特性を有する二次電池を製造することができる。
 上記他の二次電池の製造方法において、上記固体電解質は、上記に記載の固体電解質の前駆体組成物を用いて形成されていることが好ましい。
 この方法によれば、電解質混合物のシートに高いリチウムイオン伝導率を有する固体電解質が含まれることになることから、焼成された成形物には正極合材と負極合材との間でリチウムイオンを円滑に伝導する電解質層が形成され、さらに優れた充放電特性を有する二次電池を製造することができる。
 10…正極、20…固体電解質層、30…負極、41,42…集電体、100…二次電池としてのリチウムイオン電池、200…二次電池としてのリチウムイオン電池、210…正極合材、211…正極活物質、212…固体電解質、230…負極、241,242…集電体、300…二次電池としてのリチウムイオン電池、310…正極、330…負極合材、331…負極活物質、332…固体電解質、341,342…集電体、400…二次電池としてのリチウムイオン電池、410…正極合材、420…電解質層、430…負極合材、441,442…集電体。

Claims (8)

  1.  Li、La、Zr、およびMを含むガーネット型またはガーネット類似型の固体電解質の前駆体組成物であって、
     前記Mは、Nb、Ta、Sbのうち1種以上の元素であり、
     前記固体電解質におけるLi:La:Zr:Mの組成比が7-x:3:2-x:xであり、0<x<2.0を満たし、
     X線回折パターンにおいて、回折角2θが28.4°、32.88°、47.2°、56.01°、58.73°であるときに、X線回折強度のピークを示す、固体電解質の前駆体組成物。
  2.  前記固体電解質の前駆体組成物は、硝酸イオンを含む、請求項1に記載の固体電解質の前駆体組成物。
  3.  前記Mは、Nb、Ta、Sbの中から選ばれる2種以上の元素である、請求項1または2に記載の固体電解質の前駆体組成物。
  4.  請求項1乃至3のいずれか一項に記載の固体電解質の前駆体組成物を用いて成形物を形成し、前記成形物を焼結して固体電解質層を形成する工程と、
     前記固体電解質層の一方の面に正極を形成する工程と、
     前記固体電解質層の他方の面に負極を形成する工程と、
     前記正極及び前記負極のうち少なくとも一方に接する集電体を形成する工程と、を含む、二次電池の製造方法。
  5.  請求項1乃至3のいずれか一項に記載の固体電解質の前駆体組成物と、正極活物質とを含む成形物を形成し、前記成形物を焼結して正極合材を形成する工程と、
     前記正極合材の一方の面に負極を形成する工程と、
     前記正極合材の他方の面に集電体を形成する工程と、を含む、二次電池の製造方法。
  6.  請求項1乃至3のいずれか一項に記載の固体電解質の前駆体組成物と、負極活物質とを含む成形物を形成し、前記成形物を焼結して負極合材を形成する工程と、
     前記負極合材の一方の面に正極を形成する工程と、
     前記負極合材の他方の面に集電体を形成する工程と、を含む、二次電池の製造方法。
  7.  請求項1乃至3のいずれか一項に記載の固体電解質の前駆体組成物と、正極活物質とを含む正極合材混合物のシートを形成する工程と、
     請求項1乃至3のいずれか一項に記載の固体電解質の前駆体組成物と、負極活物質とを含む負極合材混合物のシートを形成する工程と、
     固体電解質を含む電解質混合物のシートを形成する工程と、
     前記正極合材混合物のシートと、前記電解質混合物のシートと、前記負極合材混合物のシートとをこの順に積層して積層体を形成する工程と、
     前記積層体を成形して成形物を形成する工程と、
     前記成形物を焼成する工程と、
     焼成された前記成形物の少なくとも一方の面に集電体を形成する工程と、を含む、二次電池の製造方法。
  8.  前記固体電解質は、請求項1乃至3のいずれか一項に記載の固体電解質の前駆体組成物を用いて形成されている、請求項7に記載の二次電池の製造方法。
PCT/JP2019/045708 2019-02-26 2019-11-21 固体電解質の前駆体組成物、二次電池の製造方法 WO2020174785A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/433,105 US20220158227A1 (en) 2019-02-26 2019-11-21 Precursor composition for solid electrolyte, and method for producing secondary battery
CN201980093060.3A CN113490643A (zh) 2019-02-26 2019-11-21 固体电解质的前体组合物、二次电池的制造方法
JP2021501577A JP7115626B2 (ja) 2019-02-26 2019-11-21 固体電解質の前駆体組成物、二次電池の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019032429 2019-02-26
JP2019-032429 2019-02-26

Publications (1)

Publication Number Publication Date
WO2020174785A1 true WO2020174785A1 (ja) 2020-09-03

Family

ID=72238579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045708 WO2020174785A1 (ja) 2019-02-26 2019-11-21 固体電解質の前駆体組成物、二次電池の製造方法

Country Status (4)

Country Link
US (1) US20220158227A1 (ja)
JP (1) JP7115626B2 (ja)
CN (1) CN113490643A (ja)
WO (1) WO2020174785A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065521A1 (ja) * 2021-03-31 2022-03-31 第一稀元素化学工業株式会社 セラミックス粉末材料、セラミックス粉末材料の製造方法、成型体、焼結体、及び、電池
EP4006000A4 (en) * 2021-03-31 2022-10-19 Daiichi Kigenso Kagaku Kogyo Co., Ltd. CERAMIC POWDER MATERIAL, SINTERED BODY AND BATTERY

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016072210A (ja) * 2014-09-30 2016-05-09 セイコーエプソン株式会社 耐リチウム還元層形成用組成物、耐リチウム還元層の成膜方法およびリチウム二次電池
WO2017203954A1 (ja) * 2016-05-26 2017-11-30 国立研究開発法人産業技術総合研究所 低対称ガーネット関連型構造固体電解質およびリチウムイオン二次電池
JP2018037326A (ja) * 2016-09-01 2018-03-08 セイコーエプソン株式会社 固体電解質成形体の製造方法、複合体の製造方法、および電池の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5717318B2 (ja) * 2007-02-13 2015-05-13 ナミックス株式会社 全固体二次電池
CN105683127B (zh) * 2013-10-07 2020-08-28 昆腾斯科普公司 用于锂二次电池的石榴石材料和制造和使用石榴石材料的方法
JP2016171068A (ja) * 2015-03-10 2016-09-23 Tdk株式会社 ガーネット型リチウムイオン伝導性酸化物
EP3736834A4 (en) * 2018-01-05 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. SOLID ELECTROLYTE MATERIAL, AND BATTERY
CN109369182A (zh) * 2018-11-29 2019-02-22 江苏海基新能源股份有限公司 一种立方相石榴石固态电解质材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016072210A (ja) * 2014-09-30 2016-05-09 セイコーエプソン株式会社 耐リチウム還元層形成用組成物、耐リチウム還元層の成膜方法およびリチウム二次電池
WO2017203954A1 (ja) * 2016-05-26 2017-11-30 国立研究開発法人産業技術総合研究所 低対称ガーネット関連型構造固体電解質およびリチウムイオン二次電池
JP2018037326A (ja) * 2016-09-01 2018-03-08 セイコーエプソン株式会社 固体電解質成形体の製造方法、複合体の製造方法、および電池の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065521A1 (ja) * 2021-03-31 2022-03-31 第一稀元素化学工業株式会社 セラミックス粉末材料、セラミックス粉末材料の製造方法、成型体、焼結体、及び、電池
EP4006000A4 (en) * 2021-03-31 2022-10-19 Daiichi Kigenso Kagaku Kogyo Co., Ltd. CERAMIC POWDER MATERIAL, SINTERED BODY AND BATTERY

Also Published As

Publication number Publication date
JPWO2020174785A1 (ja) 2021-11-04
JP7115626B2 (ja) 2022-08-09
US20220158227A1 (en) 2022-05-19
CN113490643A (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
JP6165546B2 (ja) 固体電解質および全固体リチウムイオン二次電池
US20130273437A1 (en) All solid state battery
JP7415451B2 (ja) 固体電解質複合粒子、粉末および複合固体電解質成形体の製造方法
CN113574019A (zh) 固体电解质的前体溶液
WO2020174785A1 (ja) 固体電解質の前駆体組成物、二次電池の製造方法
EP3819968A1 (en) Positive electrode active material composite particle and powder
CN113540557B (zh) 固体组合物和固体电解质成型体的制造方法
JP7331640B2 (ja) 正極活物質複合体
US11641032B2 (en) Solid electrolyte, method for producing solid electrolyte, and composite body
JP7342628B2 (ja) 固体組成物および固体電解質の製造方法
CN114122502A (zh) 固体电解质、固体电解质的制造方法及复合体
CN114122504A (zh) 固体电解质、固体电解质的制造方法及复合体
JP2021169387A (ja) 固体組成物の製造方法および機能性セラミックス成形体の製造方法
JP2021138571A (ja) 固体組成物の製造方法および固体電解質の製造方法
JP2022015857A (ja) 負極活物質の前駆体溶液、負極活物質の前駆体粉末および負極活物質の製造方法
WO2022091983A1 (ja) 全固体二次電池
WO2023176968A1 (ja) 固体電解質層、及び全固体二次電池
CN114122505B (zh) 固体电解质、固体电解质的制造方法及复合体
US11641031B2 (en) Solid electrolyte, method for producing solid electrolyte, and composite body
WO2021090782A1 (ja) 全固体二次電池
WO2023176967A1 (ja) 固体電解質層、及び全固体二次電池
US20210288345A1 (en) Solid Electrolyte, Method For Producing Solid Electrolyte, And Composite Body
JP2022038107A (ja) 固体電解質、固体電解質の製造方法および複合体
WO2022107801A1 (ja) 固体電解質セラミックスおよび固体電池
WO2022107804A1 (ja) 固体電解質セラミックスおよび固体電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917403

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501577

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917403

Country of ref document: EP

Kind code of ref document: A1