WO2022059367A1 - チタン酸水溶液 - Google Patents

チタン酸水溶液 Download PDF

Info

Publication number
WO2022059367A1
WO2022059367A1 PCT/JP2021/028629 JP2021028629W WO2022059367A1 WO 2022059367 A1 WO2022059367 A1 WO 2022059367A1 JP 2021028629 W JP2021028629 W JP 2021028629W WO 2022059367 A1 WO2022059367 A1 WO 2022059367A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
aqueous solution
acid
quaternary ammonium
mass
Prior art date
Application number
PCT/JP2021/028629
Other languages
English (en)
French (fr)
Inventor
周平 原
太平 久間
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to KR1020237009964A priority Critical patent/KR102669418B1/ko
Priority to US18/022,942 priority patent/US20230399235A1/en
Priority to CN202180063554.4A priority patent/CN116323490A/zh
Priority to JP2022532565A priority patent/JP7114010B1/ja
Priority to EP21869054.3A priority patent/EP4215490A4/en
Publication of WO2022059367A1 publication Critical patent/WO2022059367A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/62Quaternary ammonium compounds
    • C07C211/63Quaternary ammonium compounds having quaternised nitrogen atoms bound to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Definitions

  • the present invention relates to an aqueous solution of titanium acid containing titanium or titanium acid in water.
  • Titanium oxide is widely used in thin film applications such as photocatalytic materials, high refractive index materials, and conductive materials. Further, the titanium acid compound of an alkali metal or an alkaline earth metal has various characteristics and is being used for various purposes.
  • lithium titanate is used as an anode material for a lithium secondary battery and as an additive for a ceramic insulator.
  • Sodium titanate is used in various adsorbents such as radioactive ion adsorbents. Potassium titanate has excellent sliding characteristics and wear resistance, so it imparts heat resistance, heat insulation, corrosion resistance, reinforcement, etc., including friction materials for brakes, precision gears, key switches, connectors, and bearings. It is used as an additive.
  • Barium titanate is a ceramic showing ferroelectricity, and is used as a typical electronic component material such as a capacitor material, a pyroelectric body, and a piezoelectric body.
  • Strontium titanate is used as a material for ceramic capacitors, for example, because it has a high dielectric constant and a small temperature change in the constant permittivity.
  • An aqueous solution of titanium acid containing titanium or titanium acid in water can be widely used as a surface treatment agent for various parts, a raw material such as titanium oxide, a catalyst for esterification, and the like.
  • the aqueous titanic acid solution can also be used as a raw material or a precursor for the titanic acid compounds of alkali metals and alkaline earth metals as described above, and the obtained titanic acid compounds can be used for various industrial purposes. It can be expected to be used effectively.
  • Patent Document 1 describes a method for producing a titanium-containing aqueous solution using an aliphatic amine.
  • Patent Document 2 discloses an aqueous solution for forming a titanium oxide film, which contains titanium ions, nitrate ions, peroxides, and complexing agents, and has a pH greater than 3.0. ..
  • Patent Document 3 has, as a water-soluble titanium oligomer composition, at least a chemical structure and composition obtained by reacting and / or mixing a titanium compound oligomer (a), an amine compound (b) and a glycol compound (c).
  • a water-soluble titanium oligomer composition comprising a titanium composite composition is disclosed.
  • the average dispersed particle size is 15 to 70 nm, and one or more compounds selected from water-soluble amine compounds are mixed with rutile-type titanium oxide (TiO 2 ) in a molar ratio of 0.005 to 0. .5
  • TiO 2 rutile-type titanium oxide
  • Patent Document 5 describes a barium titanate precursor that can be produced by mixing a water-soluble peroxohydroxycarboxylic acid titanium complex and a water-soluble barium salt as a barium titanate precursor that produces barium titanate by firing. Aqueous solutions are disclosed.
  • a method for preparing a titanium acid compound of an alkali metal or an alkaline earth metal the following method is known. For example, a method of reacting a hydrated potassium titanate powder or a solution containing titanium dioxide hydrate and a divalent metal ion in a closed container or under hot water conditions (Patent Document 6), crystalline fiber of potassium dititanate. A method of reacting a substance with an aqueous solution of a compound of a divalent metal (Patent Document 7), using an alkali metal titanic salt such as potassium dititanate or potassium hexatitanium as a titanium source, and using it as an inorganic or alkaline earth metal.
  • an alkali metal titanic salt such as potassium dititanate or potassium hexatitanium
  • Patent Document 8 A method in which an organic compound and a flux component (alkali metal halide, etc.) are mixed and fired (Patent Document 8), a mixture of titanium oxide powder and lithium compound powder is heat-treated at a temperature of 700 to 1600 ° C. A method for obtaining lithium titanate (Patent Document 9) and the like are known.
  • Patent Document 10 a method of mixing titanium alkoxide and an amine and adding water to react them.
  • Japanese Unexamined Patent Publication No. 2001-322815 Japanese Unexamined Patent Publication No. 11-158691 Japanese Unexamined Patent Publication No. 2009-13276 Japanese Unexamined Patent Publication No. 2013-091594 Japanese Unexamined Patent Publication No. 2012-62239 Japanese Unexamined Patent Publication No. 55-113623 Japanese Unexamined Patent Publication No. 62-21799 Japanese Unexamined Patent Publication No. 2-164800 Japanese Unexamined Patent Publication No. 6-275263 Japanese Patent No. 3502904
  • an object of the present invention is to provide a new aqueous solution of titanic acid and a method for producing the same, which can easily prepare a titanic acid compound of an alkali metal or an alkaline earth metal.
  • the present invention is a titanic acid aqueous solution containing a titanate ion and a quaternary ammonium cation in water, and the titanic acid aqueous solution (25 ° C.) adjusted to a concentration containing 9% by mass of titanium in terms of TIO 2 is added to 30 g. , Proposed a titanic acid aqueous solution characterized by the formation of a precipitate of Na 2 Ti 3 O 7 hydrate when 30 mL of an aqueous sodium hydroxide solution (25 ° C.) having a concentration of 2.2% by mass was added with stirring. do.
  • the present invention also proposes an aqueous solution of titanic acid containing a titanate ion and a quaternary ammonium cation in water and having a transmittance of 50% or less at a wavelength of 360 nm.
  • the present invention also obtains a neutralization reaction solution by adding a titanium salt solution to an aqueous amine solution (referred to as “neutralization step”), and cleans the titanium-containing precipitate generated in the neutralization reaction solution (“washing step”).
  • a method for producing an aqueous solution of titanium acid which comprises mixing a washed titanium-containing precipitate, a quaternary ammonium salt and water to prepare an aqueous solution of titanium acid (referred to as a “dissolution step”). To propose.
  • the aqueous solution of titanic acid proposed by the present invention is coated on the surface of various parts to form a surface layer having various functions, used as an additive for a catalyst, and effectively used for various industrial applications. Can be done. Further, since the aqueous titanic acid solution proposed by the present invention has high reactivity with the hydroxide of an alkali metal or an alkaline earth metal, it is mixed with, for example, the hydroxide of an alkali metal or an alkaline earth metal at normal temperature and pressure. By doing so, it is possible to easily synthesize a metal titanate compound of an alkali metal or an alkaline earth metal. And these metal titanate compounds, for example, lithium titanate, sodium titanate, potassium titanate, barium titanate, strontium titanate and the like can be effectively used for various industrial purposes.
  • the aqueous solution of titanium acid (“the aqueous solution of titanium acid”) according to an example of the embodiment of the present invention is an aqueous solution of titanium acid containing a titanium acid ion and a quaternary ammonium cation in water.
  • the "titanium aqueous solution” means a dispersion liquid containing titanium or titanium acid ions in water and having a transmittance of 70% or more at a wavelength of 450 nm.
  • the titanium acid ion is trititanate ion. Above all, it can be estimated to be Ti 3 O 7 2- .
  • a trititanate structure for example (NR 4 + ) 2 ⁇ Ti 3 O 7 2- , 2 mol or more of cations (NR 4 + ) are required for 3 mol of titanium.
  • NR 4 + cations
  • the quaternary ammonium cation has the following general formula NR 1 R 2 R 3 R 4 + (R 1 to R 4 are independently linear, branched or cyclic hydrocarbons, respectively. A group, an alkoxy group, a benzoyl group (-COC 6 H 5 ) or a hydroxy group. R 1 to R 4 may all be different, all may be the same, or some of them may be the same. It may be the same.) It is preferable that it is a cation represented by.
  • This aqueous solution of titanium acid preferably contains 0.01 to 15% by mass of titanium in 100% by mass of the aqueous solution in terms of TIO 2 , especially 0.1% by mass or more or 12% by mass or less, and 0.2% by mass among them. It is more preferably contained in a proportion of% or more or 10% by mass or less. It should be noted that titanium to titanium acid in this aqueous solution of titanium acid does not necessarily exist in the TiO 2 state. It may or may not exist in the TiO 2 state. It is an industry practice to indicate the titanium content in terms of TIO 2 .
  • the aqueous solution of titanium acid preferably contains a quaternary ammonium cation in a molar ratio of 0.44 to 1.0 with titanium. If the amount of the quaternary ammonium cation is large, the dispersibility or solubility of the titanoic acid in water can be enhanced. It can be inferred that the quaternary ammonium cation can be ionically bonded to the titanic acid to enhance its solubility in water. From this point of view, the aqueous solution of titanium acid preferably contains a quaternary ammonium cation in a molar ratio of 0.44 or more with titanium, more preferably 0.45 or more, and more preferably 0.46 or more.
  • this aqueous solution of titanium acid preferably contains a quaternary ammonium cation in a molar ratio of 1.0 or less with titanium, particularly 0.80 or less, and among them, 0.65 or less. Is even more preferable.
  • the maximum peak intensity (peak) at 2 ⁇ 26.0 ⁇ 3 ° in the X-ray diffraction pattern obtained by measuring the powder X-ray diffraction using CuK ⁇ ray from the dried powder.
  • the "maximum peak intensity” means the peak intensity of the peak having the highest intensity among the peaks existing in a predetermined diffraction angle range.
  • the intensity ratio (peak 1 / peak M) in the present titanium acid aqueous solution is preferably 3.0 or more, more preferably 3.1 or more, and even more preferably 3.2 or more. ..
  • the upper limit is expected to be about 15.0.
  • the "15.5 ⁇ 3 °" is preferably 15.5 ⁇ 2.5 °, more preferably 15.5 ⁇ 2 °, still more preferably 15.5 ⁇ 1.5 °, still more preferably 15.5. It is ⁇ 1 °.
  • the "26.0 ⁇ 3 °" is preferably 26.0 ⁇ 2.5 °, more preferably 26.0 ⁇ 2 °, preferably 26.0 ⁇ 1.5 °, and preferably 26.0 ⁇ 1 °. be.
  • the "48.5 ⁇ 3 °” is preferably 48.5 ⁇ 2.5 °, more preferably 48.5 ⁇ 2 °, still more preferably 48.5 ⁇ 1.5 °, still more preferably 48.5. It is ⁇ 1 °.
  • the aqueous solution of titanium acid may have a composition that does not contain a component other than a component derived from titanium or titanium acid and a component derived from a quaternary ammonium cation in water.
  • the component derived from titanium or titanium acid is, for example, a hydrate of titanium or titanium acid or an ion thereof.
  • the component derived from the quaternary ammonium cation is, for example, a compound of a quaternary ammonium ion, a quaternary ammonium salt, a quaternary ammonium ion and titanium to titanoic acid.
  • This aqueous solution of titanium acid may contain a component other than a component derived from titanium or titanium acid and a component derived from a quaternary ammonium cation (referred to as "other component") as long as the action and effect are not impaired. good.
  • the other component include Nb, Si, Al and the like.
  • the content of the other component in the present titanium acid aqueous solution is preferably less than 5% by mass, more preferably less than 4% by mass, and even more preferably less than 3% by mass.
  • the present titanium acid aqueous solution contains unavoidable impurities unintentionally. At this time, the content of unavoidable impurities is preferably less than 0.01% by mass.
  • the aqueous solution of titanium acid does not contain an organic component that is difficult to volatilize. If this aqueous solution of titanium acid does not contain organic components that are difficult to volatilize, not only can it be formed by drying at a relatively low temperature (140 ° C or lower), but it also does not contain impurities, so it can be used for various purposes such as catalyst raw materials. It can be used effectively.
  • the "hard-to-volatile organic component” is, for example, triethanolamine, alkanolamine, oxycarboxylic acid, other chelating agents, ethylenediamine tetraacetate, citrate, nitrilotriacetate, cyclohexanediamine tetraacetic acid, and the like.
  • Other complexing agents, glycols, EDTA, amines, amine compounds, oxalic acid, butyric acid, organic metal compounds, halides, aniline, nitrobenzene and the like can be mentioned, and are organic substances having a volatilization temperature of 150 ° C. or higher.
  • this aqueous titanic acid solution "does not contain organic components that are difficult to volatilize"
  • the production method is unknown, for example, gas chromatography, nuclear magnetic resonance (NMR), GC.
  • NMR nuclear magnetic resonance
  • GC GC-It
  • the term "does not contain organic components that are difficult to volatilize" in the present titanium acid aqueous solution means that the content of organic substances having a volatilization temperature of 150 ° C. or higher is less than 1%.
  • the aqueous solution of titanium acid has a transmittance of 70% or more, further 80% or more, further 90% or more, and further 100% at a wavelength of 450 nm. Further, the aqueous solution of titanium acid preferably has a transmittance of 50% or less at a wavelength of 360 nm, and more preferably 45% or less, further 40% or less, and further preferably 35% or less.
  • This aqueous solution of titanium acid has high reactivity with hydroxides of alkali metals and alkaline earth metals, and can be mixed with an aqueous solution of alkali metals or alkaline earth metal salts under normal temperature and pressure to react with alkali metals or. Titanic acid compounds of alkaline earth metals can be obtained. Therefore, if this aqueous solution of titanate is mixed with hydroxides such as lithium, sodium, potassium, barium, and strontium at normal temperature and pressure, for example, lithium titanate, sodium titanate, potassium titanate, and barium titanate can be mixed. , Titanic acid compounds of alkali metals such as strontium titanate or alkaline earth metals can be obtained.
  • a titanate of an alkali metal or alkaline earth metal such as Na 2 Ti 3 O 7 hydrate or Ba 2 Ti 3 O 7 hydrate
  • water of the alkali metal or alkaline earth metal is usually obtained. It is known that it is difficult to easily produce it because it is necessary to mix it with an oxide and react it under high temperature and high pressure conditions using an autoclave or the like, or heat it to at least 80 ° C. or higher. ..
  • this aqueous titanic acid has a high reactivity with the hydroxide of alkali metal or alkaline earth metal, it is mixed with the hydroxide of alkali metal or alkaline earth metal under normal temperature and pressure to react. Only these titanic acid compounds can be obtained.
  • Other than this aqueous solution of titanium acid there is no known aqueous solution of titanium capable of synthesizing Na 2 Ti 3O 7 hydrate (sodium trititanium ) at normal temperature and pressure.
  • this aqueous solution of titanic acid is 30 g of the aqueous solution of titanic acid (25 ° C.) adjusted to contain 9% by mass of titanium in terms of TiO 2 and 30 mL of an aqueous solution of sodium hydroxide (25 ° C.) having a concentration of 2.2% by mass.
  • a precipitate is instantly formed, and if necessary, stirring is continued for 30 minutes or less to mature the precipitate, and then the generated precipitate is dried to obtain Na 2 Ti 3 O 7 hydration.
  • a powder made of a substance sodium trititanate
  • this aqueous solution of titanium acid produces a precipitate of Na 2 Ti 3 O 7 hydrate when reacted with the aqueous solution of sodium hydroxide as described above.
  • the peak detected at 2 ⁇ 27 ° or more and 29 ° or less and 47 ° or more and 49 ° or less preferably has an intensity of 10% or more and 70% or less with respect to the intensity of the main peak described above.
  • Alkali metal intercalated titanate nanotubes A vibrational spectroscopy study ", Vibrational Spectroscopy 55 (2011) 183-187" (reference).
  • the present titanic acid aqueous solution is 30 g of the titanic acid aqueous solution (25 ° C.) adjusted to contain 9% by mass of titanium in terms of TiO 2 and 30 mL of a barium hydroxide aqueous solution (25 ° C.) having a concentration of 2.2% by mass.
  • the generated precipitate is a precipitate of Na 2 Ti 3 O 7 hydrate or BaTi 3 O 7 hydrate should be confirmed by, for example, identification by the following X-ray diffraction measurement (XRD). Can be done.
  • XRD X-ray diffraction measurement
  • the method is not limited to this method. That is, the generated precipitate was measured by X-ray diffraction measurement under the following conditions, and Fig. It can be identified as Na 2 Ti 3 O 7 hydrate in the light of the XRD pattern described in 3 (b). It can be inferred from the fact that the hydrate of Na 2 Ti 3 O 7 is completely different from the XRD pattern of Na 2 Ti 3 O 7 anhydride (ICDD card No. 31-1329).
  • the generated precipitate is calcined, for example, calcined at 1000 ° C. for 2 hours, and the calcined product is composed of BaTi 2 O 5 and BaTi 4 O 9 .
  • identification it can be identified as a hydrate of BaTi 3 O 7 .
  • the present manufacturing method a suitable manufacturing method (referred to as “the present manufacturing method”) of the present titanium acid aqueous solution will be described.
  • a titanium salt solution and an amine aqueous solution are mixed to obtain a neutralization reaction solution (referred to as “neutralization step”), and the titanium-containing precipitate generated in the neutralization reaction solution is washed.
  • Titanic acid referred to as a "cleaning step”
  • cleaning step which comprises mixing the titanium-containing precipitate after washing with a quaternary ammonium salt and water to prepare a titanic acid aqueous solution (referred to as a "dissolution step”).
  • examples thereof include a method for producing an aqueous solution.
  • the method for producing the present titanium acid aqueous solution is not limited to such a production method.
  • each process will be described below, but each process may be a series of processes in terms of equipment and time, or may be different processing processes in which the equipment and time are different. You can also.
  • the titanium salt solution may be any solution in which titanium is dissolved.
  • an aqueous solution of titanyl sulfate, an aqueous solution of titanium chloride, an aqueous solution of titanium fluoride and the like can be mentioned.
  • the titanium chloride aqueous solution can be prepared by dissolving titanium chloride (TiCl 5 ) in a small amount of methanol and further adding water.
  • the aqueous solution of titanyl sulfate can be prepared by dissolving titanyl sulfate in hot water.
  • This aqueous solution of titanyl sulfate is preferably prepared so as to contain titanium in an amount of 8 to 15% by mass in terms of TIO 2 .
  • a titanium salt solution and an aqueous amine solution may be mixed and reacted to obtain a neutralization reaction solution.
  • the neutralization step it is preferable to carry out reverse neutralization in which a titanium salt solution such as an aqueous solution of titanyl sulfate is added to the aqueous solution of amine and reacted. It is speculated that by reverse neutralization in this way, the structure of titanium or titanium acid becomes a structure that is easily dissolved in water.
  • a titanium salt solution such as an aqueous solution of titanyl sulfate
  • an alkylamine or the like can be preferably exemplified.
  • alkylamine those having 1 to 3 alkyl groups can be preferably used. When having 2 to 3 alkyl groups, all three alkyl groups may be the same or may contain different ones.
  • alkyl group of the alkylamine those having 1 to 6 carbon atoms of the alkyl group are preferable, and those having 4 or less carbon atoms, particularly 3 or less, and further preferably 2 or less are preferable from the viewpoint of solubility.
  • alkylamines include methylamine, dimethylamine, trimethylamine, ethylamine, methylethylamine, diethylamine, triethylamine, methyldiethylamine, dimethylethylamine, n-propylamine, din-propylamine, trin-propylamine and iso.
  • -Propylamine diiso-propylamine, triiso-propylamine, n-butylamine, din-butylamine, trin-butylamine, iso-butylamine, diiso-butylamine, triiso-butylamine and tert-butylamine, n- Examples thereof include pentaamine and n-hexamine.
  • methylamine, dimethylamine, trimethylamine, ethylamine, methylethylamine, diethylamine, triethylamine, methyldiethylamine and dimethylethylamine are preferable, and methylamine, dimethylamine and trimethylamine are more preferable from the viewpoint of solubility.
  • the titanium salt solution in the neutralization step, from the viewpoint of enhancing dispersibility, it is preferable to add the titanium salt solution to an aqueous amine solution containing an equal amount or more, that is, one or more amines in molar ratio with sulfuric acid contained in the titanium salt solution. Above all, it is more preferable to add it to an aqueous amine solution containing an amine of 1.2 or more, and among them, 1.4 or more. On the other hand, from the viewpoint of increasing the amount of waste liquid, it is preferable to add the titanium salt solution to an aqueous amine solution containing an amine having a molar ratio of 2 or less with sulfuric acid contained in the titanium salt solution, particularly 1.8 or less. Among them, it is more preferable to add it to an aqueous amine solution containing 1.6 or less amine.
  • the neutralization step when a titanium salt solution such as an aqueous solution of titanyl sulfate is added to the aqueous amine solution, it is preferable to carry out a neutralization reaction within 1 minute. That is, instead of gradually adding the titanium salt solution over time, it is preferable to add the titanium salt solution at once, for example, within 1 minute for a neutralization reaction. At this time, the addition time of the titanium salt solution is preferably 1 minute or less, more preferably 30 seconds or less, and further preferably 10 seconds or less.
  • the neutralization reaction solution obtained in the neutralization step contains unnecessary components other than hydrates or ions of titanium or titanoic acid such as sulfuric acid compounds such as ammonium sulfate as impurities and amines. Since it is present in water, it is preferable to wash and remove the unnecessary component.
  • the cleaning method for example, the method for removing the sulfuric acid compound is arbitrary.
  • the cleaning process may be performed at room temperature, and there is no particular need to adjust the temperature of each.
  • the titanium-containing precipitate obtained by washing in the washing step for example, the titanium-containing precipitate obtained by removing sulfuric acid, is added with a dispersion medium such as water and a quaternary ammonium salt, if necessary.
  • a dispersion medium such as water and a quaternary ammonium salt
  • Examples of the type of quaternary ammonium salt to be added include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, methyltripropylammonium hydroxide, methyltributylammonium hydroxide, and hydroxide.
  • the amount of the quaternary ammonium salt added is such that if the amount of the quaternary ammonium is large, the solubility of titanium to titanoic acid in water can be enhanced. Therefore, in the dissolution step, the titanium content after washing is contained. It is preferable to mix a quaternary ammonium salt containing 0.44 mol or more of quaternary ammonium with 1 mol of titanium contained in the precipitate. On the other hand, if the amount of quaternary ammonium is too large, problems such as impaired film formation and inhibition of catalytic action may occur. Therefore, in the dissolution step, the titanium-containing precipitate after washing is used. It is preferable to mix 1 mol of titanium contained in the product with a quaternary ammonium salt having 1.0 mol or less of quaternary ammonium.
  • Each step in this manufacturing method may be performed at room temperature, and each temperature adjustment is not particularly necessary.
  • the present titanium acid aqueous solution can be formed into a film by drying at a relatively accurate low temperature (140 ° C. or lower). Therefore, for example, it can be effectively used as various coating liquids. In addition, it can be used for various purposes such as a catalyst raw material. Further, as described above, since this aqueous titanic acid has a high reactivity with the hydroxide of the alkali metal or the alkaline earth metal, for example, the hydroxide of the alkali metal or the alkaline earth metal and the hydroxide are used at room temperature and normal pressure. When mixed, a metal titanate compound of an alkali metal or an alkaline earth metal can be easily synthesized. And these metal titanate compounds, for example, lithium titanate, sodium titanate, potassium titanate, barium titanate, strontium titanate and the like can be effectively used for various industrial purposes.
  • Example 1 33.3 g of titanyl sulfate (manufactured by Teika, TiO 2 concentration 33.3% by mass, sulfuric acid concentration 51.1% by mass) was added to 66.7 g of ion-exchanged water, and the mixture was allowed to stand at 90 ° C. or higher for 1 hour to dissolve it. An aqueous solution of titanyl sulfate (titanium concentration (TIO 2 conversion) 11% by mass, sulfuric acid 17% by mass, pH 1 or less) was obtained.
  • ammonia water was used as the cleaning liquid.
  • a part of the titanium-containing precipitate was calcined at 1000 ° C. for 4 hours to generate TIO 2 , and the concentration of TIO 2 contained in the titanium-containing precipitate was calculated from the mass thereof. The TiO 2 concentration was 11.0% by mass.
  • 45 g of the titanium-containing precipitate and 5 g of tetramethylammonium hydroxide pentahydrate (TMAH concentration 50% by mass) (0.443 mol with respect to 1 mol of Ti in the titanium-containing precipitate) are mixed and painted.
  • An aqueous solution of titanium acid was obtained by shaking with a shaker for 24 hours.
  • this aqueous solution of titanic acid has a TiO 2 content of 4.95 g (0.062 mol), that is, 9.9% by mass, and a quaternary ammonium cation in 50 g of the aqueous solution.
  • the content was 2.5 g (0.027 mol) or 5.0 mass%.
  • Example 2 In Example 1, tetramethylammonium hydroxide pentahydrate (TMAH concentration 50% by mass) was 6 g (0.542 mol with respect to 1 mol of Ti in the titanium-containing precipitate) with respect to 44 g of the titanium-containing precipitate.
  • An aqueous solution of titanium acid (sample) was obtained in the same manner as in Example 1 except that the mixture was mixed.
  • this aqueous solution of titanic acid (sample) has a TiO 2 content of 4.85 g (0.061 mol), that is, 9.7% by mass, and a quaternary ammonium cation in 50 g of the aqueous solution. The content was 3.0 g (0.033 mol), or 6.0% by mass.
  • Example 3 tetramethylammonium hydroxide pentahydrate (TMAH concentration 50% by mass) was 7 g (0.613 mol with respect to 1 mol of Ti in the titanium-containing precipitate) with respect to 43 g of the titanium-containing precipitate.
  • An aqueous solution of titanium acid (sample) was obtained in the same manner as in Example 1 except that the mixture was mixed.
  • this aqueous solution of titanic acid (sample) has a TiO 2 content of 4.75 g (0.063 mol), that is, 9.5% by mass, and a quaternary ammonium cation in 50 g of the aqueous solution. The content was 3.5 g (0.038 mol) or 7.0 mass%.
  • Example 4 In Example 1, 4.8 g of tetraethylammonium hydroxide (TEAH concentration 50% by mass) (0.521 mol with respect to 1 mol of Ti in the titanium-containing precipitate) and ions were added to 22.7 g of the titanium-containing precipitate.
  • An aqueous titanium acid solution (sample) was obtained in the same manner as in Example 1 except that 22.5 g of exchanged water was mixed.
  • this aqueous solution of titanic acid (sample) has a TiO 2 content of 2.50 g (0.031 mol), that is, 5.0% by mass in 50 g of the aqueous solution, and has a quaternary ammonium cation. The content was 2.4 g (0.016 mol) or 4.8% by mass.
  • Example 1 (Comparative Example 1) In Example 1, 6 g of 50% dimethylamine (1.096 mol with respect to 1 mol of Ti in the titanium-containing precipitate) was mixed with 44 g of the titanium-containing precipitate. However, it immediately gelled and lost its fluidity, and it was not possible to obtain an aqueous solution of titanium acid. As shown in Table 1, this gel-like substance (also referred to as "titanium-containing liquid (sample)”) has a TiO 2 content of 4.85 g (0.061 mol), that is, 9.7 mass in 50 g of the aqueous solution. The amine content was 3.0 g (0.067 mol), that is, 6.0% by mass.
  • this titanium-containing liquid has a TiO 2 content of 5.00 g (0.063 mol), that is, 10.0% by mass, and a lactic acid content of 12. It was 8 g (0.142 mol) or 25.6 mass% and had an ammonia content of 2.85 g (0.168 mol) or 5.7 mass%.
  • titanium-containing liquid (sample) an alkaline titanium oxide sol (also referred to as “titanium-containing liquid (sample)”). Obtained. As shown in Table 1, this titanium-containing liquid (sample) has a TiO 2 content of 5.00 g (0.063 mol), that is, 10.0% by mass in 50 g of the aqueous solution, and has a quaternary ammonium cation content. Was 0.6 g (0.007 mol) or 1.2 mass%. However, since this titanium-containing liquid (sample) is a sol, it is clear that titanium does not exist as a titanium acid ion.
  • TMAH tetramethylammonium hydroxide aqueous solution
  • This precipitate was Nucci filtered using a 5C filter paper, washed with pure water, and then allowed to stand and dried in a vacuum (0.08 MPa or less) atmosphere at 90 ° C. using a vacuum drying oven for 5 hours.
  • the obtained dried product was pulverized in an agate mortar, and the obtained powder was subjected to X-ray diffraction measurement.
  • the X-ray diffraction measurement conditions and the X-ray diffraction conditions are the same as the conditions of the following ⁇ XRD measurement>, but the peaks by b-spline are not smoothed in the analysis of the reactants.
  • FIG. 1 shows the titanium acid aqueous solution (sample) obtained in Example 1
  • FIG. 2 shows the titanium-containing liquid (sample) obtained in Comparative Example 2
  • FIG. 3 shows the titanium-containing liquid obtained in Comparative Example 3.
  • Sample and FIG. 4 show the X-ray diffraction pattern of the powder obtained by reacting with the aqueous sodium hydroxide solution using the titanium-containing liquid (sample) obtained in Comparative Example 4, respectively.
  • the powder obtained by reacting with the sodium hydroxide aqueous solution using the titanium acid aqueous solution (sample) obtained in Example 1-4 was obtained from Na 2 Ti 3 O 7 hydrate from the X-ray diffraction measurement results.
  • the powder obtained by reacting with the sodium hydroxide aqueous solution using the titanium-containing liquid (sample) obtained in Comparative Example 2 was amorphous and no titanium oxide was obtained from the X-ray diffraction measurement results.
  • the powder obtained by reacting with the sodium hydroxide aqueous solution using the titanium-containing liquid (sample) obtained in Comparative Example 3 became titanium oxide having a normal anatase-type or rutile-type structure, and a titanium acid compound was obtained. There wasn't.
  • the powder obtained by reacting with the sodium hydroxide aqueous solution using the titanium-containing liquid (sample) obtained in Comparative Example 4 was not at least Na 2 Ti 3 O 7 hydrate.
  • FIG. 5 shows an X-ray diffraction pattern of the powder obtained by reacting with the barium hydroxide aqueous solution using the titanium acid aqueous solution (sample) obtained in Example 1. This substance could not be identified with unknown materials. Therefore, when the substance was calcined at 1000 ° C.
  • FIG. 6 shows the X-ray diffraction pattern after firing.
  • ICDD PDF-2, 2021
  • the powder obtained by reacting with the barium hydroxide aqueous solution using the titanic acid aqueous solution (sample) obtained in Example 1 is BaTi 3O 7 hydrate, that is, BaTi 3O 7 ⁇ nH 2 O. Was presumed to be.
  • Transmittance measurement conditions -Device: UH4150 spectrophotometer-Measurement mode: Wavelength scan-Data mode:% T (transmission) -Measurement wavelength range: 200 to 2600 nm ⁇ Scan speed: 600nm / min ⁇ Sampling interval: 2nm
  • the powder (sample) of these titanium oxides was subjected to powder X-ray diffraction measurement using CuK ⁇ ray to obtain an X-ray diffraction pattern.
  • 7, 8 and 9 show the titanium-containing liquid (sample) obtained in Comparative Examples 1, 2 and 3, and FIGS.
  • FIG. 10-13 show the titanium acid aqueous solution (sample) obtained in Example 1-4
  • FIG. 14 Shows the X-ray diffraction pattern of the titanium acid compound powder (sample) obtained from the titanium-containing liquid (sample) obtained in Comparative Example 4.
  • X-ray diffraction measurement conditions ⁇ Equipment: MiniFlexII (manufactured by Rigaku Co., Ltd.) -Measurement range (2 ⁇ ): 5 to 90 ° ⁇ Sampling width: 0.02 ° ⁇ Scan speed: 2.0 ° / min ⁇ X-ray: CuK ⁇ ray ⁇ Voltage: 30kV ⁇ Current: 15mA ⁇ Divergence slit: 1.25 ° ⁇ Scattering slit: 1.25 ° ⁇ Light receiving slit: 0.3 mm
  • X-ray times analysis conditions -The data analysis software PDXL2 manufactured by Rigaku was used. -The peak was smoothed with b-spline to clarify the peak top.
  • aqueous titanic acid solutions (samples) obtained in Examples 1-4 were mixed with sodium hydroxide or barium hydroxide and reacted under normal temperature and pressure to obtain a titanium acid compound of sodium or barium. It turns out that you can get it. At this time, it was found that the titanium acid compound of sodium was composed of Na 2 Ti 3 O 7 hydrate when compared with the XRD pattern described in the above-mentioned reference.
  • the titanium-containing liquids (samples) obtained in Comparative Examples 1 and 3 were not aqueous solutions, and even when mixed with sodium hydroxide under normal temperature and pressure, the titanium acid compound of sodium (Na 2 Ti 3 O 7 ) was used. (Hydrate) could not be obtained.
  • the titanium-containing liquid (sample) obtained in Comparative Example 2 was an aqueous solution, but it did not contain a quaternary ammonium cation, and even if it was mixed with sodium hydroxide under normal temperature and pressure, it was sodium titanium.
  • the acid compound (Na 2 Ti 3 O 7 hydrate) could not be obtained.
  • the titanium-containing liquid (sample) obtained in Comparative Example 4 was an aqueous solution, but the light transmittance at a wavelength of 360 nm exceeded 50%, and even if it was mixed with sodium hydroxide under normal temperature and pressure, it could be mixed. It was not possible to obtain a titanium acid compound of sodium (Na 2 Ti 3 O 7 hydrate).
  • the titanium acid aqueous solutions obtained in Examples 1 to 4 contain a titanium acid ion and a quaternary ammonium cation because it has been confirmed that the precipitate is formed, and the titanium is trititanium acid. It can be estimated that it exists in the ionic state, that is, in the state of (NR 4 + ) 2 ⁇ Ti 3 O 7 2- .
  • the titanium acid aqueous solution (sample) obtained in Examples 1 to 4 is an aqueous solution containing no components other than the components derived from titanium or titanium acid and the components derived from the quaternary ammonium cation according to the production method. It is clear that there is. In particular, it is clear that it does not contain organic components that are difficult to volatilize.
  • the reactivity of the alkali metal or alkaline earth metal with the hydroxide is high, and by mixing and reacting with the hydroxide under normal temperature and pressure, the reaction is carried out. It can be considered that a titanium acid compound of an alkali metal or an alkaline earth metal can be obtained more easily and surely.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

アルカリ金属やアルカリ土類金属のチタン酸化合物を容易に調製することができる、新たなチタン酸水溶液として、水中に、チタン酸イオン及び4級アンモニウムカチオンを含有するチタン酸水溶液であって、チタンをTiO換算で9質量%含有する濃度に調整した前記チタン酸水溶液(25℃)30gに、濃度2.2質量%の水酸化ナトリウム水溶液(25℃)30mLを、攪拌しながら添加すると、NaTi水和物の沈殿が生成することを特徴とするか、または、波長360nmの透過率が50%以下であるチタン酸水溶液を提供する。 

Description

チタン酸水溶液
 本発明は、水中にチタン乃至チタン酸を含有するチタン酸水溶液に関する。
 酸化チタンは、光触媒材料、高屈折率材料、導電性材料等の薄膜用途において広く使用されている。
 また、アルカリ金属又はアルカリ土類金属のチタン酸化合物は、各種特徴を有しており、各種用途への利用が進められている。例えばチタン酸リチウムは、リチウム二次電池のアノード材料やセラミック絶縁体の添加剤などとして用いられている。チタン酸ナトリウムは、各種吸着材、例えば放射性イオン吸着材などに用いられている。チタン酸カリウムは、摺動特性・耐摩耗性に優れているため、例えばブレーキ用摩擦材、精密ギア、キースイッチ、コネクタ、軸受けをはじめ、耐熱性、断熱性、耐食性、補強性などを付与する添加材として使われている。チタン酸バリウムは、強誘電性を示すセラミックスであり、例えばコンデンサ材料、焦電体、圧電体などの代表的な電子部品材料として用いられている。チタン酸ストロンチウムは、誘電率が高く、かつ常誘電率の温度変化が小さいことから、例えばセラミックコンデンサの材料などに用いられている。
 水中にチタン乃至チタン酸を含有するチタン酸水溶液は、各種部品の表面処理剤、酸化チタンなどの原料、エステル化の触媒等として広く利用することができる。また、当該チタン酸水溶液は、上述のような、アルカリ金属やアルカリ土類金属のチタン酸化合物の原料や前駆体としても利用することができ、得られたチタン酸化合物は様々な工業的用途に有効利用することが期待できる。
 チタン乃至チタン酸を含有する水溶液としては、チタンアルコキシドにキレート化剤を反応させて得られることが知られている。例えば特許文献1には、脂肪族アミンを使用してチタン含有水溶液の製造方法が記載されている。
 また、水への安定性を高めるために、水溶性の置換基であるトリエタノールアミンや乳酸を用いたチタンキレート化合物や、チタンアルコキシドにグリコールやアミンを反応若しくは混合した化合物も知られている。
 例えば特許文献2には、チタンイオン、硝酸イオン、過酸化物、および錯化剤を含有し、かつpHが3.0より大きいことを特徴とするチタン酸化物被膜作成用水溶液が開示されている。
 特許文献3には、水溶性チタンオリゴマー組成物として、少なくとも、チタン化合物オリゴマー(a)、アミン化合物(b)及びグリコール化合物(c)を反応及び/又は混合させてなる化学構造と組成とを有するチタン複合組成物を含有することを特徴とする水溶性チタンオリゴマー組成物が開示されている。
 特許文献4には、平均分散粒子径が15~70nmであり、ルチル型酸化チタン(TiO)に対し、水溶性アミン化合物から選ばれた1種以上の化合物をモル比で0.005~0.5含有することを特徴とするアルカリ性ルチル型酸化チタンゾルが開示されている。
 特許文献5には、焼成によりチタン酸バリウムを生成するチタン酸バリウム前駆体として、水溶性のペルオキソヒドロキシカルボン酸チタン錯体と、水溶性バリウム塩を混合して作製することができるチタン酸バリウム前駆体水溶液が開示されている。
 また、アルカリ金属又はアルカリ土類金属のチタン酸化合物を調製する方法として、次のような方法が知られている。例えば、水和チタン酸カリウム粉末もしくは二酸化チタン水和物と二価金属イオンを含む溶液を、密閉容器中もしくは熱水条件下に反応させる方法(特許文献6)、二チタン酸カリウムの結晶性繊維状物と二価金属の化合物の水溶液を反応させる方法(特許文献7)、二チタン酸カリウムや六チタン酸カリウム等のチタン酸アルカリ金属塩をチタン源とし、これにアルカリ土類金属の無機もしくは有機化合物と、フラックス成分(アルカリ金属のハロゲン化物等)とを混合して焼成処理する方法(特許文献8)、酸化チタン粉末とリチウム化合物粉末との混合物を700~1600℃の温度で熱処理してチタン酸リチウムを得る方法(特許文献9)などが知られている。
 さらに、チタン含有水溶液を調製する方法として、チタンアルコキシドとアミンを混合し、水を加えて反応させる方法(特許文献10)が知られている。
特開2001-322815号公報 特開平11-158691号公報 特開2009-13276号公報 特開2013-091594号公報 特開2012-62239号公報 特開昭55-113623号公報 特開昭62-21799号公報 特開平2-164800号公報 特開平6-275263号公報 特許第3502904号公報
 上述のように、アルカリ金属又はアルカリ土類金属のチタン酸化合物を調製する方法として多くの方法が知られている。しかし、その方法の多くは、最終製品を得るために高温又は高圧の条件下で処理する必要があるか、若しくは、手間のかかる処理が必要であった。そのため、工業的製造方法として採用するには好ましい方法とは言えなかった。
 そこで本発明の目的は、アルカリ金属やアルカリ土類金属のチタン酸化合物を容易に調製することができる、新たなチタン酸水溶液及びその製造方法を提供することにある。
 本発明は、水中に、チタン酸イオン及び4級アンモニウムカチオンを含有するチタン酸水溶液であって、チタンをTiO換算で9質量%含有する濃度に調整した前記チタン酸水溶液(25℃)30gに、濃度2.2質量%の水酸化ナトリウム水溶液(25℃)30mLを、攪拌しながら添加すると、NaTi水和物の沈殿が生成することを特徴とする、チタン酸水溶液を提案する。
 本発明はまた、水中に、チタン酸イオン及び4級アンモニウムカチオンを含有するチタン酸水溶液であって、波長360nmの透過率が50%以下であるチタン酸水溶液を提案する。
 本発明はまた、チタン塩溶液をアミン水溶液に加えて中和反応液を得(「中和工程」と称する)、当該中和反応液中に生じたチタン含有沈殿物を洗浄し(「洗浄工程」と称する)、洗浄後のチタン含有沈殿物と4級アンモニウム塩と水とを混合してチタン酸水溶液を作製する(「溶解工程」と称する)ことを特徴とする、チタン酸水溶液の製造方法を提案する。
 本発明が提案するチタン酸水溶液は、各種部品の表面にコーティングして、各種機能を有する表面層を製膜したり、触媒の添加剤として使用したり、様々な工業的用途に有効利用することができる。また、本発明が提案するチタン酸水溶液は、アルカリ金属やアルカリ土類金属の水酸化物との反応性が高いため、例えばアルカリ金属やアルカリ土類金属の水酸化物と、常温常圧下で混合することにより、アルカリ金属やアルカリ土類金属のチタン酸金属化合物を容易に合成することができる。そして、これらチタン酸金属化合物、例えばチタン酸リチウム、チタン酸ナトリウム、チタン酸カリウム、チタン酸バリウム、チタン酸ストロンチウムなどは、工業上各種用途に有効に利用することができる。
実施例1で得たチタン酸水溶液(サンプル)と水酸化ナトリウム水溶液とを反応させて得られた反応物(沈殿物)を乾燥させた粉末を、粉末X線回折測定して得られたX線回折パターンである。 比較例2で得たチタン含有液(サンプル)と水酸化ナトリウム水溶液とを反応させて得られた反応物(沈殿物)を乾燥させた粉末を、粉末X線回折測定して得られたX線回折パターンである。 比較例3で得たチタン含有液(サンプル)と水酸化ナトリウム水溶液とを反応させて得られた反応物(沈殿物)を乾燥させた粉末を、粉末X線回折測定して得られたX線回折パターンである。 比較例4で得たチタン含有液(サンプル)と水酸化ナトリウム水溶液とを反応させて得られた反応物(沈殿物)を乾燥させた粉末を、粉末X線回折測定して得られたX線回折パターンである。 実施例1で得たチタン酸水溶液(サンプル)と水酸化バリウム水溶液とを反応させて得られた反応物(沈殿物)を乾燥させた粉末を、粉末X線回折測定して得られたX線回折パターンである。 実施例1で得たチタン酸水溶液(サンプル)と水酸化バリウム水溶液とを反応させて得られた反応物(沈殿物)を乾燥させ、さらに焼成したもののX線回折パターンである。 比較例1で得られたチタン含有液(サンプル)を乾燥させた粉末を、粉末X線回折測定して得られたX線回折パターンである。 比較例2で得られたチタン含有液(サンプル)を乾燥させた粉末を、粉末X線回折測定して得られたX線回折パターンである。 比較例3で得られたチタン含有液(サンプル)を乾燥させた粉末を、粉末X線回折測定して得られたX線回折パターンである。 実施例1で得られたチタン酸水溶液(サンプル)を乾燥させた粉末を、粉末X線回折測定して得られたX線回折パターンである。 実施例2で得られたチタン酸水溶液(サンプル)を乾燥させた粉末を、粉末X線回折測定して得られたX線回折パターンである。 実施例3で得られたチタン酸水溶液(サンプル)を乾燥させた粉末を、粉末X線回折測定して得られたX線回折パターンである。 実施例4で得られたチタン酸水溶液(サンプル)を乾燥させた粉末を、粉末X線回折測定して得られたX線回折パターンである。 比較例4で得られたチタン含有液(サンプル)を乾燥させた粉末を、粉末X線回折測定して得られたX線回折パターンである。
 次に、実施の形態例に基づいて本発明を説明する。但し、本発明が次に説明する実施形態に限定されるものではない。
 <本チタン酸水溶液>
 本発明の実施形態の一例に係るチタン酸水溶液(「本チタン酸水溶液」)は、水中に、チタン酸イオン及び4級アンモニウムカチオンを含有するチタン酸水溶液である。
 本発明において、「チタン酸水溶液」とは、水中にチタン乃至チタン酸イオンを含有する分散液のうち、波長450nmの透過率が70%以上の分散液を意味する。
 本チタン酸水溶液が、水中に4級アンモニウムカチオンを含有していることは、質量分析(MS)などにより確認することができる。但し、この確認方法に限定するものではない。
 本チタン酸水溶液において、前記チタン酸イオンは、3チタン酸イオンであると推定することができる。中でもTi 2-であると推定することができる。
 3チタン酸塩構造、例えば(NR ・Ti 2-をとるためには、3モルのチタンに対して2モル以上のカチオン(NR )が必要となる。また、後述するように、本チタン酸水溶液と水酸化ナトリウムとを反応させると、NaTi水和物と推定される沈殿が生じることが確認されている。これらの点などから、本チタン酸水溶液において、チタンは、チタン酸イオンとして、中でも3チタン酸イオンとして、その中でもTi 2-として存在しているものと推定することができる。
 本チタン酸水溶液において、前記4級アンモニウムカチオンは、下記一般式NR (R~Rは、それぞれ独立して、直鎖状又は分岐鎖状又は環状の炭化水素基、アルコキシ基、ベンゾイル基(-COC65)又はヒドロキシ基である。R~Rは全て異なるものであってもよいし、全て同じものであってもよいし、又は一部が同じものであってもよい。)で示されるカチオンであるのが好ましい。
Figure JPOXMLDOC01-appb-I000001
 本チタン酸水溶液は、水溶液100質量%中、チタンをTiO換算で0.01~15質量%含有するのが好ましく、中でも0.1質量%以上或いは12質量%以下、その中でも0.2質量%以上或いは10質量%以下の割合で含有するのがさらに好ましい。
 なお、本チタン酸水溶液におけるチタン乃至チタン酸は、必ずしもTiO状態で存在するものではない。TiO状態で存在しても、しなくてもよい。チタンの含有量をTiO換算で示すのは、業界の慣行である。
 本チタン酸水溶液は、4級アンモニウムカチオンを、チタンとのモル比で0.44~1.0含有するのが好ましい。
 4級アンモニウムカチオンの量が多ければ、チタン酸の水に対する分散性乃至溶解性を高めることができる。4級アンモニウムカチオンがチタン酸とイオン結合することで、水に対する溶解性を高めることができるものと推察することができる。かかる観点から、本チタン酸水溶液は、4級アンモニウムカチオンをチタンとのモル比で0.44以上含有するのが好ましく、中でも0.45以上、その中でも0.46以上含有するのがさらに好ましい。
 他方、4級アンモニウムカチオンの量が多すぎると、製膜性の障害になったり、触媒作用を阻害したりするなどの不具合を生じる可能性がある。よって、本チタン酸水溶液は、4級アンモニウムカチオンをチタンとのモル比で1.0以下の割合で含有するのが好ましく、中でも0.80以下、その中でも0.65以下の割合で含有するのがさらに好ましい。
 本チタン酸水溶液は、それを乾燥させた粉末を、CuKα線を使用した粉末X線回折測定して得られるX線回折パターンにおいて、少なくとも2θ=6.5±1.4°、15.5±3°及び26.0±3°のそれぞれの位置にピーク(それぞれ「ピーク1、2、3」と称する)が存在するという特徴を有している。中でも、2θ=30.0±3°および48.5±3°にもピーク(それぞれ「ピーク4、5」と称する)が存在するのが好ましい。
 この際、「ピーク」とは、2θ=85°の強度に対して、4.0以上の強度比を有する変曲点をいう。
 中でも、本チタン酸水溶液は、それを乾燥させた粉末を、CuKα線を使用した粉末X線回折測定して得られるX線回折パターンにおいて、2θ=26.0±3°における最大ピーク強度(ピークM強度)に対する、2θ=15.5±3°における最大ピーク強度(ピーク2強度)の強度比率(ピーク2/ピークM)が0.6~2.0であるのが好ましく、中でも0.7以上或いは1.6以下、その中でも0.75以上或いは1.4以下、その中でも0.8以上或いは1.3以下であるのがさらに好ましい。
 本チタン酸水溶液がかかる特徴を有していれば、アルカリ金属やアルカリ土類金属の水酸化物との反応性をより高くすることができると考えることができる。
 なお、本発明において「最大ピーク強度」とは、所定の回折角度範囲に存在するピークの中で、最も強度の高いピークのピーク強度の意味である。
 本チタン酸水溶液は、さらにまた、それを乾燥させた粉末を、CuKα線を使用した粉末X線回折測定して得られるX線回折パターンにおいて、2θ=26.0±3°における最大ピーク強度(ピークM強度)に対する、2θ=6.5±1.4°における最大ピーク強度(ピーク1強度)の強度比率(ピーク1/ピークM)が3.0以上であることが好ましい。
 2θ=26.0±3°における最大ピーク強度(ピークM強度)に対する、2θ=6.5±1.4°における最大ピーク強度(ピーク1強度)強度の強度比(ピーク1/ピークM)が大きければ、本チタン酸水溶液の分散性がより高くなり、本チタン酸水溶液の透過率がより高くなる。X線回折パターンにおいて、2θ=15°より低角度側に現れるピークの強度が高いことはポリ酸構造の特徴の一つであることが確認されている。そのため、強度比(ピーク1/ピークM)高いほど、ポリ酸構造の占める割合が高くなり、本チタン酸水溶液の分散性が高くなり、透過率が高くなるものと推察することができる。
 かかる観点から、本チタン酸水溶液における上記強度比強度比(ピーク1/ピークM)は3.0以上であるのが好ましく、中でも3.1以上、その中でも3.2以上であるのがさらに好ましい。なお、上限値は、おそくらく15.0程度であると予想される。
 なお、前記「2θ=6.5±1.4°」は、好ましくは2θ=6.5±1.0°である。
 前記「15.5±3°」は、好ましくは15.5±2.5°、さらに好ましくは15.5±2°、さらに好ましくは15.5±1.5°、さらに好ましくは15.5±1°である。
 前記「26.0±3°」は、好ましくは26.0±2.5°、さらに好ましくは26.0±2°好ましくは26.0±1.5°好ましくは26.0±1°である。
 前記「2θ=30.0±3°」は、好ましくは30.0±2.5°、さらに好ましくは30.0±2°、さらに好ましくは30.0±1.5°、さらに好ましくは30.0±1°である。
 前記「48.5±3°」は、好ましくは48.5±2.5°、さらに好ましくは48.5±2°、さらに好ましくは48.5±1.5°、さらに好ましくは48.5±1°である。
 (組成)
 本チタン酸水溶液は、水中に、チタン乃至チタン酸に由来する成分および4級アンモニウムカチオンに由来する成分以外の成分を含有しない組成とすることができる。
 この際、チタン乃至チタン酸に由来する成分とは、例えばチタン乃至チタン酸の水和物乃至そのイオンなどである。
 また、4級アンモニウムカチオンに由来する成分とは、例えば4級アンモニウムイオン、4級アンモニウム塩、4級アンモニウムイオンとチタン乃至チタン酸との化合物などである。
 本チタン酸水溶液は、その作用効果を阻害しない範囲で、チタン乃至チタン酸に由来する成分、及び、4級アンモニウムカチオンに由来する成分以外の成分(「他成分」と称する)を含有してもよい。
 例えば、該他成分としては、例えばNb、Si、Alなどを挙げることができる。但し、これらに限定するものではない。
 この際、本チタン酸水溶液における該他成分の含有量は、5質量%未満であるのが好ましく、中でも4質量%未満、その中でも3質量%未満であるのがさらに好ましい。
 また、本チタン酸水溶液は、意図してではなく、不可避不純物を含むことが想定される。この際、不可避不純物の含有量は0.01質量%未満であるのが好ましい。
 なお、本チタン酸水溶液は、揮発し難い有機物成分を含有しないことが好ましい。本チタン酸水溶液が揮発し難い有機物成分を含有しなければ、比較的低温(140℃以下)で乾燥させることにより製膜することができるばかりか、不純物を含まないため、触媒原料など各種用途に有効に利用することができる。
 ここで、「揮発し難い有機物成分」とは、例えばトリエタノールアミン、アルカノールアミン、オキシカルボン酸、その他のキレート化剤、エチレンジアミン四酢酸塩、クエン酸塩、ニトリロ三酢酸塩、シクロヘキサンジアミン四酢酸、その他の錯化剤、グリコール、EDTA、アミン、アミン化合物、シュウ酸、酪酸、有機金属化合物、ハロゲン化物、アニリン、ニトロベンゼンなどを挙げることができ、揮発温度が150℃以上の有機物である。
 本チタン酸水溶液が、「揮発し難い有機物成分は含有しない」ことは、製造方法から確認できるほか、製造方法が不明の場合には、例えばガスクロマトグラフィーや、核磁気共鳴装置(NMR)、GC-MSなどにより、揮発し難い有機物成分の有無を分析することで確認することができる。
 この際、本チタン酸水溶液が、「揮発し難い有機物成分は含有しない」とは、揮発温度が150℃以上の有機物の含有量が1%未満である場合をいう。
 (透過率)
 本チタン酸水溶液は、波長450nmの透過率が70%以上、さらに80%以上、さらに90%以上、さらに100%であるのが好ましい。
 さらに本チタン酸水溶液は、波長360nmの透過率が50%以下であるのが好ましく、中でも45%以下、さらに40%以下、さらに35%で以下であるのが好ましい。
 (反応性)
 本チタン酸水溶液は、アルカリ金属やアルカリ土類金属の水酸化物との反応性が高く、常温常圧下でアルカリ金属又はアルカリ土類金属塩の水溶液と混合して反応させることで、アルカリ金属又はアルカリ土類金属のチタン酸化合物を得ることができる。
 よって、本チタン酸水溶液と、例えばリチウム、ナトリウム、カリウム、バリウム、ストロンチウムなどの水酸化物とを、常温常圧下で混合すれば、例えばチタン酸リチウム、チタン酸ナトリウム、チタン酸カリウム、チタン酸バリウム、チタン酸ストロンチウムなどのアルカリ金属又はアルカリ土類金属のチタン酸化合物を得ることができる。
 通常、例えばNaTi水和物、BaTi水和物などのアルカリ金属やアルカリ土類金属のチタン酸塩を得るためには、アルカリ金属やアルカリ土類金属の水酸化物と混合して、オートクレーブなどを用いて高温高圧の条件下で反応させるなど、少なくとも80℃以上に加熱して反応させる必要があるなど、簡単に作製することは難しいことが知られている。
 これに対し、本チタン酸水溶液は、アルカリ金属やアルカリ土類金属の水酸化物との反応性が高いため、アルカリ金属やアルカリ土類金属の水酸化物と常温常圧下で混合して反応させるだけで、これらのチタン酸化合物を得ることができる。
 本チタン酸水溶液以外には、常温常圧でNaTi水和物(3チタン酸ナトリウム)が合成できるチタン水溶液は知られていない。
 例えば、本チタン酸水溶液は、チタンをTiO換算で9質量%含有する濃度に調整した当該チタン酸水溶液(25℃)30gに、濃度2.2質量%の水酸化ナトリウム水溶液(25℃)30mLを、攪拌しながら添加すると、瞬時に沈殿が生成し、必要に応じて撹拌を30分以内継続して該沈殿を熟成させた後、生成した沈殿を乾燥すると、NaTi水和物(3チタン酸ナトリウム)からなる粉体を得ることができる。
 これより、本チタン酸水溶液は、上記のように水酸化ナトリウム水溶液と反応させると、NaTi水和物の沈殿が生成するものであると定義することができる。
 前記の3チタン酸ナトリウムは、Cu-Kα線を用いて2θ=5°~90°の範囲でX線回折測定すると、3チタン酸ナトリウムの化合物のピークが1以上観察される。
 この化合物は、前記のX線回折測定したときに、メインピークが2θ=10°以下に観察されることが好ましい。10°以下に検出されるピークは、これらの化合物の結晶方位が(001)であり、NaTi水和物に由来する。
 2θ=10°以下にメインピークが検出される場合、これに加えて2θ=27°以上29°以下、及び、47°以上49°以下の範囲の少なくとも一方に更にピークが検出されることが好ましい。
 この際、2θ=27°以上29°以下、及び、47°以上49°以下に検出されるピークは、前記したメインピークの強度に対して10%以上70%以下の強度を有することが好ましい。
 なお、3チタン酸塩に関しては、『Bartolomeu C. Vianaet al.「Alkali metal intercalated titanate nanotubes: A vibrational spectroscopy study」, Vibrational Spectroscopy 55 (2011) 183-187』 (参考文献)を参照されたい。
 また、本チタン酸水溶液は、チタンをTiO換算で9質量%含有する濃度に調整した当該チタン酸水溶液(25℃)30gに、濃度2.2質量%の水酸化バリウム水溶液(25℃)30mLを、攪拌しながら添加すると瞬時に沈殿が生成し、必要に応じて撹拌を30分以内継続して該沈殿を熟成させた後、生成した沈殿を乾燥すると、BaTi水和物からなる粉体を得ることができる。
 これより、本チタン酸水溶液は、上記のように水酸化バリウム水溶液と反応させると、BaTi水和物の沈殿が生成するものであると定義することができる。
 なお、生成した沈殿が、NaTi水和物又はBaTi水和物の沈殿であることの確認は、例えば次のようなX線回折測定(XRD)による同定によって行うことができる。但し、この方法に限定するものではない。
 すなわち、生成した前記沈殿を、下記条件にてX線回折測定により測定し、上記参考文献のFig.3(b)に記載されているXRDパターンと照らし合わせて、NaTi水和物と同定できる。
 なお、NaTiの水和物であることは、NaTi無水物(ICDDカード No.31-1329)のXRDパターンと全く異なることからも推定できる。
 他方、BaTiの水和物に関しては、生成した沈殿を焼成する、例えば1000℃で2時間焼成して、該焼成物がBaTiとBaTiとからなるものであると同定することにより、BaTiの水和物であると同定することができる。
 <本製造方法>
 次に、本チタン酸水溶液の好適な製造方法(「本製造方法」と称する)について説明する。
 本製造方法の一例として、チタン塩溶液とアミン水溶液とを混合して中和反応液を得(「中和工程」と称する)、当該中和反応液中に生じたチタン含有沈殿物を洗浄し(「洗浄工程」と称する)、洗浄後のチタン含有沈殿物と4級アンモニウム塩と水とを混合してチタン酸水溶液を作製する(「溶解工程」と称する)ことを特徴とする、チタン酸水溶液の製造方法を挙げることができる。但し、本チタン酸水溶液の製造方法は、このような製造方法に限定されるものではない。
 本製造方法は、上記工程を備えていれば、他の工程若しくは他の処理を追加することは適宜可能である。
 また、説明しやすいため、下記では、工程ごとに説明するが、各工程は、装置及び時間的に一連の処理とすることもできるし、また、装置及び時間を別にする異なる処理工程とすることもできる。
 (チタン塩溶液)
 前記チタン塩溶液は、チタンが溶解している溶液であればよい。例えば硫酸チタニル水溶液、塩化チタン水溶液、フッ化チタン水溶液などを挙げることができる。
 前記塩化チタン水溶液は、塩化チタン(TiCl5)を少量のメタノールに溶かし、さらに水を加えて作製することができる。
 前記硫酸チタニル水溶液は、硫酸チタニルを熱水に溶解して作製することができる。
 この硫酸チタニル水溶液は、チタンをTiO換算で8~15質量%含有するように調製するのが好ましい。
 (中和工程)
 本製造方法では、チタン塩溶液とアミン水溶液とを混合して反応させて中和反応液を得ればよい。
 中和工程では、硫酸チタニル水溶液などのチタン塩溶液を、アミン水溶液に加えて反応させる逆中和を実施するのが好ましい。
 このように逆中和することによって、チタン乃至チタン酸の構造が水に溶けやすい構造になると推測している。
 中和工程で用いるアミン水溶液のアミンとしては、アルキルアミンなどを好ましく例示することができる。
 上記アルキルアミンとしては、アルキル基を1~3個有するものを好ましく使用可能である。アルキル基を2~3個有する場合、3個のアルキル基は全部同じものでもよいし、また、異なるなるものを含んでいてもよい。アルキルアミンのアルキル基としては、溶解性の観点から、アルキル基の炭素数1~6のものが好ましく、中でも4以下、その中でも3以下、さらにその中でも2以下のものが好ましい。
 上記アルキルアミンの具体例としては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、メチルエチルアミン、ジエチルアミン、トリエチルアミン、メチルジエチルアミン、ジメチルエチルアミン、n-プロピルアミン、ジn-プロピルアミン、トリn-プロピルアミン、iso-プロピルアミン、ジiso-プロピルアミン、トリiso-プロピルアミン、n-ブチルアミン、ジn-ブチルアミン、トリn-ブチルアミン、iso-ブチルアミン、ジiso-ブチルアミン、トリiso-ブチルアミンおよびtert-ブチルアミン、n-ペンタアミン、n-ヘキサアミンなどを挙げることができる。
 中でも、溶解性の点からは、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、メチルエチルアミン、ジエチルアミン、トリエチルアミン、メチルジエチルアミンおよびジメチルエチルアミンが好ましく、中でもメチルアミン、ジメチルアミン、トリメチルアミンがさらに好ましい。
 前記中和工程において、分散性を高める観点から、前記チタン塩溶液を、該チタン塩溶液に含まれる硫酸とモル比で等量以上すなわち1以上のアミンを含有するアミン水溶液に加えることが好ましく、中でも1.2以上、その中でも1.4以上のアミンを含有するアミン水溶液に加えることがさらに好ましい。
 他方、廃液量が多くなる観点から、前記チタン塩溶液を、該記チタン塩溶液に含まれる硫酸とモル比で2以下のアミンを含有するアミン水溶液に加えることが好ましく、中でも1.8以下、その中でも1.6以下のアミンを含有するアミン水溶液に加えることがさらに好ましい。
 中和工程では、硫酸チタニル水溶液などのチタン塩溶液を、アミン水溶液に加える際、1分以内に中和反応させるのが好ましい。すなわち、時間をかけて徐々に前記チタン塩溶液を加えるのではなく、例えば一気に投入するなど、1分以内の時間で投入して中和反応させるのが好ましい。
 この際、前記チタン塩溶液の添加時間は、1分以内とするのが好ましく、中でも30秒以内、その中でも10秒以内とするのがさらに好ましい。
 (洗浄工程)
 前記中和工程で得られた中和反応液、中でもそのチタン含有沈殿物には、不純物として、硫酸アンモニウムなどの硫酸化合物など、チタン乃至チタン酸の水和物乃至イオン及びアミン以外の不要な成分が水中に存在するため、当該不要な成分を洗浄して除去するのが好ましい。
 洗浄方法、例えば硫酸化合物の除去方法は任意である。例えば、アンモニア水や純水を用いた逆浸透ろ過、限外ろ過、精密ろ過などの膜を用いたろ過による方法のほか、遠心分離、その他の公知の方法を採用することができる。
 洗浄工程は、常温で行えばよく、それぞれの温度調整は特に必要ない。
 (溶解工程)
 次に、洗浄工程で洗浄されて得たチタン含有沈殿物、例えば硫酸除去して得られたチタン含有沈殿物は、水などの分散媒を加えると共に、4級アンモニウム塩を加えて、必要に応じて攪拌して反応を促進させることで、本チタン酸水溶液を作製することができる。
 添加する4級アンモニウム塩の種類としては、例えば水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム、水酸化メチルトリプロピルアンモニウム、水酸化メチルトリブチルアンモニウム、水酸化テトラペンチルアンモニウム、水酸化テトラヘキシルアンモニウム水酸化エチルトリメチルアンモニウム、水酸化ジメチルジエチルアンモニウム、水酸化ベンジルトリメチルアンモニウム、水酸化ヘキサデシルトリメチルアンモニウム、又は、水酸化(2-ヒドロキシエチル)トリメチルアンモニウムなどを挙げることができる。
 なお、4級アンモニウム塩に代えて、1~3級アミン又はこれらの塩を加えた場合には、水溶液化することができないことを確認している。
 4級アンモニウム塩の添加量は、上述したように、4級アンモニウムの量が多ければ、チタン乃至チタン酸の水に対する溶解性を高めることができるから、前記溶解工程では、前記洗浄後のチタン含有沈殿物に含まれるチタン1モルに対して0.44モル以上の4級アンモニウムを含む4級アンモニウム塩を混合するのが好ましい。
 他方、4級アンモニウムが多過ぎると、製膜性の障害になったり、触媒作用を阻害したりするなどの不具合を生じる可能性がある観点から、前記溶解工程では、前記洗浄後のチタン含有沈殿物に含まれるチタンに1モル対して1.0モル以下の4級アンモニウムを有する4級アンモニウム塩を混合するのが好ましい。
 本製造方法における各工程は、常温で行えばよく、それぞれの温度調整は特に必要ない。
 <用途>
 本チタン酸水溶液は比確的低温(140℃以下)で乾燥させることで製膜することができる。よって、例えば各種コーティング液として有効利用することができる。また、触媒原料など、各種用途に利用することができる。
 また、上述のように、本チタン酸水溶液は、アルカリ金属やアルカリ土類金属の水酸化物との反応性が高いため、例えばアルカリ金属やアルカリ土類金属の水酸化物と、常温常圧下で混合すれば、アルカリ金属やアルカリ土類金属のチタン酸金属化合物を容易に合成することができる。そしてこれらチタン酸金属化合物、例えばチタン酸リチウム、チタン酸ナトリウム、チタン酸カリウム、チタン酸バリウム、チタン酸ストロンチウムなどは、工業上各種用途に有効に利用することができる。
 <語句の説明>
 本明細書において「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
 また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
 本発明について、以下の実施例により更に説明する。但し、以下の実施例は本発明を限定するものではない。
 (実施例1)
 硫酸チタニル33.3g(テイカ社製、TiO濃度33.3質量%、硫酸濃度51.1質量%)をイオン交換水66.7gに加え、90℃以上で1時間静置して溶解させ、硫酸チタニル水溶液(チタン濃度(TiO換算)11質量%、硫酸17質量%、pH1以下)を得た。
 この硫酸チタニル水溶液100gを、50%ジメチルアミン100g(硫酸チタニル水溶液中の硫酸1モルに対して6.4モルのアミン量)に、1分未満の時間をかけて添加した。その後、15分撹拌し、中和反応液(pH12)を得た。この中和反応液はチタン含有物のスラリー、言い換えるとチタン含有沈殿物のスラリーであった。
 次に、前記中和反応液を、遠心分離機を用いてデカンテーションし、上澄み液の硫酸が100mg/L以下になるまで洗浄して、硫酸を除去したチタン含有沈殿物を得た。この際、洗浄液にはアンモニア水を用いた。
 前記チタン含有沈殿物の一部を、1000℃で4時間焼成することでTiOを生成し、その質量からチタン含有沈殿物に含まれるTiO濃度を算出した。TiO濃度は11.0質量%だった。
 次に、前記チタン含有沈殿物45gと、水酸化テトラメチルアンモニウム5水和物(TMAH濃度50質量%)5g(チタン含有沈殿物中のTi1モルに対して0.443モル)と混合し、ペイントシェイカーで24時間振り混ぜることでチタン酸水溶液(サンプル)を得た。
 このチタン酸水溶液(サンプル)は、該水溶液50g中、表1に示すように、TiO2含有量が4.95g(0.062モル)すなわち9.9質量%であり、且つ、4級アンモニウムカチオン含有量が2.5g(0.027モル)すなわち5.0質量%であった。
 (実施例2)
 実施例1において、前記チタン含有沈殿物44gに対して、水酸化テトラメチルアンモニウム5水和物(TMAH濃度50質量%)6g(チタン含有沈殿物中のTi1モルに対して0.542モル)と混合した以外、実施例1と同様にチタン酸水溶液(サンプル)を得た。
 このチタン酸水溶液(サンプル)は、該水溶液50g中、表1に示すように、TiO2含有量が4.85g(0.061モル)すなわち9.7質量%であり、且つ、4級アンモニウムカチオン含有量が3.0g(0.033モル)すなわち6.0質量%であった。
 (実施例3)
 実施例1において、前記チタン含有沈殿物43gに対して、水酸化テトラメチルアンモニウム5水和物(TMAH濃度50質量%)7g(チタン含有沈殿物中のTi1モルに対して0.613モル)と混合した以外、実施例1と同様にチタン酸水溶液(サンプル)を得た。
 このチタン酸水溶液(サンプル)は、該水溶液50g中、表1に示すように、TiO2含有量が4.75g(0.063モル)すなわち9.5質量%であり、且つ、4級アンモニウムカチオン含有量が3.5g(0.038モル)すなわち7.0質量%であった。
 (実施例4)
 実施例1において、前記チタン含有沈殿物22.7gに対して、水酸化テトラエチルアンモニウム(TEAH濃度50質量%)4.8g(チタン含有沈殿物中のTi1モルに対して0.521モル)とイオン交換水22.5gを混合した以外、実施例1と同様にチタン酸水溶液(サンプル)を得た。
 このチタン酸水溶液(サンプル)は、該水溶液50g中、表1に示すように、TiO2含有量が2.50g(0.031モル)すなわち5.0質量%であり、且つ、4級アンモニウムカチオン含有量が2.4g(0.016モル)すなわち4.8質量%であった。
 (比較例1)
 実施例1において、前記チタン含有沈殿物44gに対して、50%ジメチルアミン6g(チタン含有沈殿物中のTi1モルに対して1.096モル)を混合した。しかし、直ちにゲル化して流動性を失い、チタン酸水溶液を得ることはできなかった。
 このゲル状の物質(「チタン含有液(サンプル)」とも称する)は、該水溶液50g中、表1に示すように、TiO2含有量が4.85g(0.061モル)すなわち9.7質量%であり、且つ、アミン含有量が3.0g(0.067モル)すなわち6.0質量%であった。
 (比較例2)
 乳酸90gにイオン交換水30gを加え溶解し、この乳酸水溶液にオルトチタン酸テトライソプロピル142gを室温で攪拌しながら加えた後、60℃に加熱した。次に、34.3gの25%アンモニア水を加え、更に60℃で反応させ淡黄色のチタンラクテートアンモニウム水溶液を得た。これをイオン交換水204.8gで希釈してTiO2濃度10.0質量%の水溶液(「チタン含有液(サンプル)」とも称する)とした。
 このチタン含有液(サンプル)は、該水溶液50g中、表1に示すように、TiO2含有量が5.00g(0.063モル)すなわち10.0質量%であり、乳酸含有量が12.8g(0.142モル)すなわち25.6質量%であり、且つ、アンモニア含有量が2.85g(0.168モル)すなわち5.7質量%であった。
 (比較例3)
 3.2%水酸化ナトリウム水溶液10361gにオキシ塩化チタン水溶液(TiO2=27.5%、Cl=33.0%)600gを撹拌しながら30分かけて添加した。得られた水和酸化チタンゲルのpHは13であった。これを、遠心分離機を用いてデカンテーションし、ろ液EC5.0mS/cm以下になるまで洗浄を行い、チタン含有沈殿物を得た。洗浄にはイオン交換水を用いた。
 前記チタン含有沈殿物にイオン交換水を加え、チタン濃度4.5質量%になるように調整した。
 このチタン含有スラリー800gに純水44gと35%塩酸を56.3g添加した(pH0.8)。この溶液を60℃に加温し30分経過した時点で18%アンモニア水溶液をpH8になるまで添加した後、これを95℃に加温し2時間加熱した。これを限外ろ過洗浄し、ろ液ECが35μS/cmになるまで洗浄を行い、アナターゼ型とルチル型結晶構造を持つ酸化チタンゲルを得た(TiO2=10.5%、pH8.1、EC0.56mS/cm、比表面積275m2/g)。この酸化チタンゲル300gに25%水酸化テトラメチルアンモニウム水溶液(25%TMAH)14.3gを添加し、90℃で3時間加熱することでアルカリ性酸化チタンゾル(「チタン含有液(サンプル)」とも称する)を得た。
 このチタン含有液(サンプル)は、該水溶液50g中、表1に示すように、TiO2含有量が5.00g(0.063モル)すなわち10.0質量%であり、4級アンモニウムカチオン含有量が0.6g(0.007モル)すなわち1.2質量%であった。但し、このチタン含有液(サンプル)はゾルであるから、チタンはチタン酸イオンとしては存在してないことは明らかである。
 (比較例4)
 TIP(チタンテトライソプロポキシド)13.5g(TiOで0.052モル)と15%TMAH(テトラメチルアンモニウムヒドロキシド)36.5g(TMAHで0.052モル)を混合して30分間攪拌しながら反応させた。無色透明なTi含有水溶液(TiO濃度=8.3質量%)を得た。
 <NaOHとの反応性試験>
 実施例1-4で得たチタン酸水溶液(サンプル)又は比較例2-3で得たチタン含有液(サンプル)(25℃)を30g量り、これに2.2質量%水酸化ナトリウム水溶液(25℃)30mLをマグネティックスターラー(撹拌速度:150rpm)で撹拌しながら1分間かけて添加した。添加後、直ちに反応が進行すると反応物(沈殿物)を得たが、さらに15分間撹拌して熟成させた。この沈殿物を5Cろ紙を用いてヌッチェろ過し、純水で洗浄した後、減圧乾燥炉を用いて、90℃、真空(0.08MPa以下)の雰囲気で5時間静置乾燥した。得られた乾燥物をメノウ乳鉢にて粉砕し、得られた粉体についてX線回折測定を実施した。
 この際、X線回折測定条件及びX線回折条件は、下記<XRD測定>の条件と同様であるが、反応物の解析はb-splineによるピークを平滑化は実施していない。
 なお、比較例1で得たチタン含有液(サンプル)は、ゲル化して流動性のないものであったため、上記反応性試験を行わなかった。
 比較例4についても同様の試験を行ったが、水酸化ナトリウム水溶液を添加するとゲル状に固まってしまったため、そのまま減圧乾燥炉を用いて、90℃、真空(0.08MPa以下)の雰囲気で5時間静置乾燥した。得られた乾燥物をメノウ乳鉢にて粉砕し、得られた粉体についてX線回折測定を実施した。
 図1には、実施例1で得たチタン酸水溶液(サンプル)、図2には、比較例2で得たチタン含有液(サンプル)、図3には、比較例3で得たチタン含有液(サンプル)、図4には、比較例4で得たチタン含有液(サンプル)をそれぞれ用いて、水酸化ナトリウム水溶液と反応させて得られた粉体のX線回折パターンを示した。
 実施例1-4で得たチタン酸水溶液(サンプル)を用いて、水酸化ナトリウム水溶液と反応させて得られた粉体は、X線回折測定結果から、NaTi水和物からなるものであると同定された。
 比較例2で得たチタン含有液(サンプル)を用いて、水酸化ナトリウム水溶液と反応させて得られた粉体は、X線回折測定結果から、アモルファスでチタン酸化物は得られなかった。
 比較例3で得たチタン含有液(サンプル)を用いて、水酸化ナトリウム水溶液と反応させて得られた粉体は、通常のアナターゼ型、ルチル型構造の酸化チタンとなり、チタン酸化合物は得られなかった。
 比較例4で得たチタン含有液(サンプル)を用いて、水酸化ナトリウム水溶液と反応させて得られた粉体は、少なくともNaTi水和物ではなかった。
 次の基準で、NaOHとの反応性について評価し、表1に示した。
 〇(good):NaTi水和物と推定される回折パターンを得られた。
 ×(poor):NaTi水和物とは推定できない回折パターンだった。
 なお、比較例1は上述のようにNaOHとの反応性試験を行わなかったので、表1に「-」で示した。
 <BaOHとの反応性試験>
 実施例1で得たチタン酸水溶液(サンプル)を30g量り、これに3.3質量%水酸化バリウム水溶液207gをマグネティックスターラー(撹拌速度:150rpm)で撹拌しながら1分間かけて添加した。添加後、直ちに反応が進行すると反応物(沈殿物)を得たが、さらに15分間撹拌して熟成させた。この沈殿物を5Cろ紙を用いてヌッチェろ過し、純水で洗浄した後、減圧乾燥炉を用いて、90℃、真空(0.08MPa以下)の雰囲気で5時間静置乾燥した。得られた乾燥物をメノウ乳鉢にて粉砕し、得られた粉体についてX線回折測定を実施した。
 この際、X線回折測定条件及びX線回折条件は、下記<XRD測定>の条件と同様であるが、反応物の解析はb-splineによるピークを平滑化は実施していない。
 図5には、実施例1で得たチタン酸水溶液(サンプル)を用いて、水酸化バリウム水溶液と反応させて得られた粉体のX線回折パターンを示した。この物質は未知の物資で同定できなかった。そこで、当該物質を1000℃で1時間焼成したところ、BaTi49とBaTi25とからなるものであると同定することができた。図6には、当該焼成後のX線回折パターンを示した。この同定には、ICDD(PDF-2、2021)のカードNo: 01-077-1565とカードNo: 00-034-0133を用いた。
 これより、実施例1で得たチタン酸水溶液(サンプル)を用いて、水酸化バリウム水溶液と反応させて得られた粉体は、BaTi水和物すなわちBaTi・nHOであると推定された。
 <透過率測定>
 実施例1-4で得たチタン酸水溶液(サンプル)又は比較例1-3で得たチタン含有液(サンプル)の透過率を分光光度計にて測定した。
 =透過率測定条件=
 ・装置:UH4150形分光光度計
 ・測定モード:波長スキャン
 ・データモード:%T(透過)
 ・測定波長範囲:200~2600nm
 ・スキャンスピード:600nm/min
 ・サンプリング間隔:2nm
 測定して得られた透過率から、波長360nm及び450nmにおける透過率を算出して表1に示した。
 次の基準で溶解性について評価し、表1に示した。
 〇(good):波長450nmにおける透過率が70%以上
 ×(poor):波長450nmにおける透過率が70%未満
 <XRD測定>
 実施例1-4で得たチタン酸水溶液(サンプル)又は比較例1-4で得たチタン含有液(サンプル)10gを、乾燥炉を用いて、110℃、大気中で15時間静置して乾燥させた後、さらに150℃、大気中で2時間静置して乾燥させ、チタン酸化合物の粉体(サンプル)を得た。
 これらチタン酸化物の粉体(サンプル)について、CuKα線を使用した粉末X線回折測定を行い、X線回折パターンを得た。
 図7,8,9には、比較例1、2、3で得たチタン含有液(サンプル)、図10-13には、実施例1-4で得たチタン酸水溶液(サンプル)、図14には、比較例4で得たチタン含有液(サンプル)、からそれぞれ得たチタン酸化合物の粉体(サンプル)のX線回折パターンを示した。
 =X線回折測定条件=
 ・装置:MiniFlexII(株式会社リガク製)
 ・測定範囲(2θ):5~90°
 ・サンプリング幅:0.02°
 ・スキャンスピード:2.0°/min
 ・X線:CuKα線
 ・電圧:30kV
 ・電流:15mA
 ・発散スリット:1.25°
 ・散乱スリット:1.25°
 ・受光スリット:0.3mm
 =X線回解析条件=
 ・リガク社製データ解析ソフトPDXL2を使用した。
 ・ピークトップを明確化するためb-splineでピークを平滑化した。
 測定して得られたX線回折パターンにおいて、2θ=6.5±1.4°、15.5±3°、26.0±3°、2θ=30.0±3°および48.5±3°のそれぞれに存在するピークを、それぞれピーク1,2、3、4、5と称し、各ピークの回折角度とピーク強度を表2に示した。
 また、2θ=26.0±3°に存在する最大ピーク(ピークM)のピークの回折角度とピーク強度を表2に示した。
 さらに、2θ=26.0±3°に存在する最大ピーク(ピークM)の強度に対する、2θ=15.5±3°に存在するピーク2の強度の比率(ピーク2/ピークM)を算出して表2に示した。
 また、2θ=26.0±3°に存在する最大ピーク(ピークM)の強度に対する、2θ=6.5±1.4°に存在するピーク1の強度の比率(ピーク1/ピークM)を算出して表2に示した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 (考察)
 実施例1-4で得られたチタン酸水溶液(サンプル)はいずれも、波長450nmの光透過率が100%であり、水溶液として認められた。
 また、実施例1-4で得られたチタン酸水溶液(サンプル)はいずれも、水溶液が黄色味を帯びており、波長360nmの光透過率が50%以下であった。これは、Ti 2-により着色しているものと推定される。
 また、実施例1-4で得られたチタン酸水溶液(サンプル)はいずれも、常温常圧下で、水酸化ナトリウム又は水酸化バリウムと混合して反応させることで、ナトリウム又はバリウムのチタン酸化合物を得ることができることが分かった。
 この際、ナトリウムのチタン酸化合物は、上記参考文献に記載されているXRDパターンと照らし合わせると、NaTi水和物からなるものであることが分かった。
 他方、比較例1及び3で得られたチタン含有液(サンプル)はいずれも、水溶液ではなく、常温常圧下で水酸化ナトリウムと混合しても、ナトリウムのチタン酸化合物(NaTi水和物)を得ることはできなかった。
 また、比較例2で得られたチタン含有液(サンプル)は、水溶液であったが、4級アンモニウムカチオンを含有しておらず、常温常圧下で水酸化ナトリウムと混合しても、ナトリウムのチタン酸化合物(NaTi水和物)を得ることはできなかった。
 また、比較例4で得られたチタン含有液(サンプル)は、水溶液であったが、波長360nmの光透過率が50%を超えており、常温常圧下で水酸化ナトリウムと混合しても、ナトリウムのチタン酸化合物(NaTi水和物)を得ることはできなかった。
 上記実施例・比較例並びにこれまで本発明者が行ってきた試験結果から、溶解工程において、1~3級アミンを加えて反応させると、チタン酸を含有する液を水溶液とすることができないのに対し、4級アンモニウムカチオンを加えて反応させると、水溶液とすることができることが分かった。
 上記実施例・比較例並びにこれまで本発明者が行ってきた試験結果から、実施例で得られたチタン酸水溶液と水酸化ナトリウムとを反応させると、NaTi水和物と推定される沈殿が生じることが確認されている点などから、実施例1~4で得られたチタン酸水溶液においては、チタン酸イオン及び4級アンモニウムカチオンを含有しており、チタンは、3チタン酸イオンの状態、すなわち、(NR ・Ti 2-の状態で存在すると推定することができる。
 なお、実施例1~4で得られたチタン酸水溶液(サンプル)は、製造方法からして、チタン乃至チタン酸に由来する成分および4級アンモニウムカチオンに由来する成分以外の成分を含有しない水溶液であることは明らかである。特に、揮発し難い有機物成分を含有しないことは明らかである。
 上記実施例及びこれまで本発明者が行ってきた試験結果から、チタン酸水溶液を乾燥させた粉末を、CuKα線を使用した粉末X線回折測定して得られたX線回折パターンにおいて、少なくとも2θ=6.5±1.4°、15.5±3°及び26.0±3°のそれぞれの位置にピーク(それぞれ「ピーク1、2、3」と称する)を有し、かつ、2θ=26.0±3°における最大ピーク強度(ピークM強度)に対する、2θ=15.5±3°における最大ピーク強度(ピーク2強度)の強度比率(ピーク2/ピークM)が0.6~2.0であるものであれば、上述のように、アルカリ金属又はアルカリ土類金属の水酸化物との反応性が高く、常温常圧下で、当該水酸化物と混合して反応させることで、アルカリ金属又はアルカリ土類金属のチタン酸化合物をより容易かつ確実に得ることができると考えることができる。
 また、そのようなチタン酸水溶液は、さらに2θ=30.0±3°および48.5±3°のそれぞれにもピークを有することがさらに好ましいことも分かった。
 またさらに、そのようなチタン酸水溶液は、2θ=26.0±3°における最大ピーク強度(ピークM強度)に対する、2θ=6.5±1.4°における最大ピーク強度(ピーク1強度)の強度比率(ピーク1/ピークM)が3.0以上であることがさらに好ましいことも分かった。
 なお、図8の比較例2のX線回折パターンでは、表2に示すように、2θ=13.8°、24.9°、27.0°,48.2°にピークが存在するが、これらのピークはチタン乃至チタン酸に由来するものではなく、乳酸やグリコールに由来する有機物ピークと推定される。

Claims (11)

  1.  水中に、チタン酸イオン及び4級アンモニウムカチオンを含有するチタン酸水溶液であって、
     チタンをTiO換算で9質量%含有する濃度に調整した前記チタン酸水溶液(25℃)30gに、濃度2.2質量%の水酸化ナトリウム水溶液(25℃)30mLを、攪拌しながら添加すると、NaTi水和物の沈殿が生成することを特徴とする、チタン酸水溶液。
  2.  水中に、チタン酸イオン及び4級アンモニウムカチオンを含有するチタン酸水溶液であって、
     波長360nmの透過率が50%以下であるチタン酸水溶液。
  3.  チタンをTiO換算で0.01~15質量%含有する請求項1又は2に記載のチタン酸水溶液。
  4.  波長450nmの透過率が70%以上である請求項1~3の何れかに記載のチタン酸水溶液。
  5.  前記チタン酸水溶液を乾燥させた粉末を、CuKα線を使用した粉末X線回折測定すると、X線回折パターンにおいて、2θ=26.0±3°における最大ピーク強度に対する、2θ=15.5±3°における最大ピーク強度の比率が0.6~2.0であることを特徴とする請求項1~4の何れかに記載のチタン酸水溶液。
  6.  前記チタン酸水溶液とアルカリ金属又はアルカリ土類金属塩の水溶液とを混合して反応させることで、アルカリ金属又はアルカリ土類金属のチタン酸化合物を得ることができる請求項2に記載のチタン酸水溶液。
  7.  チタンをTiO換算で9質量%含有する濃度に調整した前記チタン酸水溶液(25℃)30gに、濃度2.2質量%の水酸化ナトリウム水溶液(25℃)30mLを、攪拌しながら添加し、添加後15分間撹拌すると、NaTi20・nHO(nは整数)の沈殿が生成することを特徴とする、請求項6に記載のチタン酸水溶液。
  8.  前記チタン酸イオンは、Ti 2-であることを特徴とする請求項1~7の何れかに記載のチタン酸水溶液。
  9.  前記4級アンモニウムカチオンは、一般式NR (R~Rは、それぞれ独立して、直鎖状又は分岐鎖状又は環状の炭化水素基、アルコキシ基、ベンゾイル基(-COC65)又はヒドロキシ基である。R~Rは全て異なるものであってもよいし、全て同じものであってもよいし、又は一部が同じものであってもよい。)で示されるカチオンであることを特徴とする請求項1~8の何れかに記載のチタン酸水溶液。
  10.  チタン塩溶液をアミン水溶液に加えて中和反応液を得(「中和工程」と称する)、当該中和反応液中に生じたチタン含有沈殿物を洗浄し(「洗浄工程」と称する)、洗浄後のチタン含有沈殿物と4級アンモニウム塩と水とを混合してチタン酸水溶液を作製する(「溶解工程」と称する)ことを特徴とする、チタン酸水溶液の製造方法。
  11.  前記溶解工程では、前記洗浄後のチタン含有沈殿物に含まれるチタンに対して4モル以上の4級アンモニウムを含有する4級アンモニウム塩を混合することを特徴とする、請求項10に記載のチタン酸水溶液の製造方法。
     
PCT/JP2021/028629 2020-09-18 2021-08-02 チタン酸水溶液 WO2022059367A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237009964A KR102669418B1 (ko) 2020-09-18 2021-08-02 티탄산 수용액
US18/022,942 US20230399235A1 (en) 2020-09-18 2021-08-02 Aqueous titanic acid solution
CN202180063554.4A CN116323490A (zh) 2020-09-18 2021-08-02 钛酸水溶液
JP2022532565A JP7114010B1 (ja) 2020-09-18 2021-08-02 チタン酸水溶液
EP21869054.3A EP4215490A4 (en) 2020-09-18 2021-08-02 AQUEOUS TITANIC ACID SOLUTION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-157100 2020-09-18
JP2020157100 2020-09-18

Publications (1)

Publication Number Publication Date
WO2022059367A1 true WO2022059367A1 (ja) 2022-03-24

Family

ID=80776835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028629 WO2022059367A1 (ja) 2020-09-18 2021-08-02 チタン酸水溶液

Country Status (7)

Country Link
US (1) US20230399235A1 (ja)
EP (1) EP4215490A4 (ja)
JP (1) JP7114010B1 (ja)
KR (1) KR102669418B1 (ja)
CN (1) CN116323490A (ja)
TW (1) TWI813022B (ja)
WO (1) WO2022059367A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502904B2 (ja) 1972-12-21 1975-01-30
JP2001322815A (ja) 2000-05-11 2001-11-20 Gifu Univ チタン含有水溶液の製造方法
JP2007161502A (ja) * 2005-12-09 2007-06-28 Gifu Univ チタン含有複合酸化物形成用溶液及びその製造方法、チタン含有複合酸化物の製造方法、チタン含有複合酸化物の前駆体、誘電体材料、並びに誘電体材料の製造方法
JP2009132762A (ja) 2007-11-05 2009-06-18 Matsumoto Fine Chemical Co Ltd 水溶性チタンオリゴマー組成物
JP2009283451A (ja) * 2008-04-21 2009-12-03 Kao Corp 導電膜形成用塗布剤
JP2012062239A (ja) 2010-09-17 2012-03-29 Yuta Matsushima チタン酸バリウムの前駆体水溶液、水溶性前駆体およびその製造方法
JP2012507457A (ja) * 2008-11-04 2012-03-29 サチトレベン ピグメンツ オーワイ チタン酸塩を調製する方法
WO2012111717A1 (ja) * 2011-02-15 2012-08-23 日産化学工業株式会社 ルチル型酸化チタンゾルの製造方法
JP2013091594A (ja) 2011-10-06 2013-05-16 Taki Chem Co Ltd アルカリ性ルチル型酸化チタンゾル

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113623A (en) 1979-02-26 1980-09-02 Kyushu Refract Co Ltd Fibrous titanic acid metal salt and manufacture thereof
JPS6221799A (ja) 1985-07-19 1987-01-30 Tohoku Kaihatsu Kk チタン酸金属繊維状物の製造法
JP2639989B2 (ja) 1988-12-19 1997-08-13 大塚化学株式会社 チタン酸金属塩ウイスカー及びその製造法
JP3502118B2 (ja) 1993-03-17 2004-03-02 松下電器産業株式会社 リチウム二次電池およびその負極の製造法
US5508343A (en) * 1994-08-31 1996-04-16 Rexam Industries Corporation Antistatic composition, method, and coated antistatic surface
JP3867374B2 (ja) 1997-11-25 2007-01-10 株式会社村田製作所 チタン酸化物被膜作製用水溶液、およびチタン酸化物被膜の製造方法
JP5035590B2 (ja) * 2005-03-02 2012-09-26 Toto株式会社 機能性材料の製造方法
JP5137668B2 (ja) * 2008-04-17 2013-02-06 花王株式会社 結晶性メソポーラスチタニア
JP2010132514A (ja) * 2008-12-08 2010-06-17 Kao Corp チタン酸ナノシート分散液の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502904B2 (ja) 1972-12-21 1975-01-30
JP2001322815A (ja) 2000-05-11 2001-11-20 Gifu Univ チタン含有水溶液の製造方法
JP2007161502A (ja) * 2005-12-09 2007-06-28 Gifu Univ チタン含有複合酸化物形成用溶液及びその製造方法、チタン含有複合酸化物の製造方法、チタン含有複合酸化物の前駆体、誘電体材料、並びに誘電体材料の製造方法
JP2009132762A (ja) 2007-11-05 2009-06-18 Matsumoto Fine Chemical Co Ltd 水溶性チタンオリゴマー組成物
JP2009283451A (ja) * 2008-04-21 2009-12-03 Kao Corp 導電膜形成用塗布剤
JP2012507457A (ja) * 2008-11-04 2012-03-29 サチトレベン ピグメンツ オーワイ チタン酸塩を調製する方法
JP2012062239A (ja) 2010-09-17 2012-03-29 Yuta Matsushima チタン酸バリウムの前駆体水溶液、水溶性前駆体およびその製造方法
WO2012111717A1 (ja) * 2011-02-15 2012-08-23 日産化学工業株式会社 ルチル型酸化チタンゾルの製造方法
JP2013091594A (ja) 2011-10-06 2013-05-16 Taki Chem Co Ltd アルカリ性ルチル型酸化チタンゾル

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BARTOLOMEU C. VIANAET: "Alkali metal intercalated titanate nanotubes: A vibrational spectroscopy study", VIBRATIONAL SPECTROSCOPY, vol. 55, 2011, pages 183 - 187, XP028143714, DOI: 10.1016/j.vibspec.2010.11.007
See also references of EP4215490A4

Also Published As

Publication number Publication date
TWI813022B (zh) 2023-08-21
CN116323490A (zh) 2023-06-23
JPWO2022059367A1 (ja) 2022-03-24
KR20230067629A (ko) 2023-05-16
KR102669418B1 (ko) 2024-05-28
US20230399235A1 (en) 2023-12-14
EP4215490A1 (en) 2023-07-26
EP4215490A4 (en) 2024-03-27
JP7114010B1 (ja) 2022-08-05
TW202212264A (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
JP5586616B2 (ja) チタン酸塩を調製する方法
KR20040017254A (ko) 티탄산 바륨 및 그의 제조방법
JP2007022857A (ja) 板状チタン酸金属化合物およびその製造方法
US8580226B2 (en) Synthesis of sodium titanate and ion exchange use thereof
JP5835589B2 (ja) ルチル型酸化チタンゾルの製造方法
KR101621831B1 (ko) 초미립자 이산화티타늄 및 그 제조 방법
JP4657621B2 (ja) ペロブスカイト型チタン含有複合酸化物粒子、その製造方法及び用途
TWI732445B (zh) 鐵系氧化物磁性粉及其製造方法
WO2022059367A1 (ja) チタン酸水溶液
JP7342227B2 (ja) タンタル酸分散液及びタンタル酸化合物
WO2021246111A1 (ja) ニオブ酸化合物及びニオブ含有スラリー
TWI753629B (zh) 鈮酸水溶液
JP2005105138A (ja) 透明性及び安定性に優れた光触媒被膜形成用水液、その製造方法及びそれを用いた構造体の製造方法
JPH0445453B2 (ja)
JP7187652B2 (ja) ニオブ酸水溶液
EP2786968B1 (en) Method for producing rutile-type titanium oxide sol
JP2005008707A (ja) 透明性及び安定性に優れた光触媒被膜形成水液、その製造方法及びそれを用いた構造体の製造方法
JP2001089111A (ja) 高純度アモルファス化合物粉末の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869054

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022532565

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237009964

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021869054

Country of ref document: EP

Effective date: 20230418