WO2012111717A1 - ルチル型酸化チタンゾルの製造方法 - Google Patents

ルチル型酸化チタンゾルの製造方法 Download PDF

Info

Publication number
WO2012111717A1
WO2012111717A1 PCT/JP2012/053554 JP2012053554W WO2012111717A1 WO 2012111717 A1 WO2012111717 A1 WO 2012111717A1 JP 2012053554 W JP2012053554 W JP 2012053554W WO 2012111717 A1 WO2012111717 A1 WO 2012111717A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
aqueous solution
oxalic acid
titanium oxide
mass
Prior art date
Application number
PCT/JP2012/053554
Other languages
English (en)
French (fr)
Inventor
なつ美 村上
愛 宮本
欣也 小山
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2012557997A priority Critical patent/JP5835589B2/ja
Priority to KR1020137024428A priority patent/KR101887052B1/ko
Priority to CN201280008532.9A priority patent/CN103380083B/zh
Priority to US13/985,370 priority patent/US8747542B2/en
Priority to EP12746720.7A priority patent/EP2676934B1/en
Publication of WO2012111717A1 publication Critical patent/WO2012111717A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/51Methods thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/51Methods thereof
    • B01F23/511Methods thereof characterised by the composition of the liquids or solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • B01J13/0047Preparation of sols containing a metal oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3669Treatment with low-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S516/00Colloid systems and wetting agents; subcombinations thereof; processes of
    • Y10S516/924Significant dispersive or manipulative operation or step in making or stabilizing colloid system
    • Y10S516/928Mixing combined with non-mixing operation or step, successively or simultaneously, e.g. heating, cooling, ph change, ageing, milling

Definitions

  • the present invention relates to a method for producing a rutile type titanium oxide sol.
  • rutile titanium oxide has a high refractive index. It is used as a refractive index adjusting agent. In order to be used as an optical material, not only a high refractive index but also transparency when formed into a coating film is necessary.
  • rutile type titanium oxide is generally produced by a solid phase method in which amorphous titanium oxide or anatase type titanium oxide is fired at a high temperature, so that there is a problem that the particle size becomes large and transparency is impaired. there were.
  • the wet method can be synthesized at a low temperature, and thus is easy to obtain fine particles.
  • a method for producing a rutile-type titanium oxide sol by a wet method a method of reacting in the presence of a titanium salt and a tin compound having a rutile-type structure can be mentioned.
  • a method using a titanium salt and a tin compound there is a method in which a titanium strong acid salt and metal tin are reacted in the presence of hydrogen peroxide to form an aggregate of a titanium oxide-tin oxide composite colloid at 50 to 100 ° C. It is disclosed (see Patent Document 1).
  • a method for producing rutile titanium oxide fine particles in which a titanium compound solution is reacted at a temperature ranging from room temperature to 100 ° C. in the pH range of 1 to 3 in the presence of a tin compound having a Sn / Ti molar ratio of 0.001 to 2.
  • a titanium compound solution is reacted at a temperature ranging from room temperature to 100 ° C. in the pH range of 1 to 3 in the presence of a tin compound having a Sn / Ti molar ratio of 0.001 to 2.
  • Patent Document 3 A treatment method (see Patent Document 3), a method in which a titanium compound, a tin compound, and ammonia are reacted to form a gel and then dissolved in hydrogen peroxide and hydrothermally treated (see Patent Document 4) are disclosed. .
  • Patent Document 1 In the method described in Patent Document 1, an aggregate slurry of titanium oxide-tin oxide composite colloidal particles having a primary particle diameter of 2 to 20 nm is generated. Therefore, in order to obtain a sol having a good dispersion state, the contained electrolyte is removed. There is a need to. In the method described in Patent Document 2, since a precipitate is generated, a solid-liquid separation device is required.
  • the present invention substantially does not contain impurities such as alkali metals such as sodium and potassium, and chlorine, does not require a solid-liquid separation step, and has excellent dispersibility, and is measured according to a dynamic light scattering method.
  • the present invention provides a method for efficiently producing a rutile-type titanium oxide sol having a diameter of 5 to 100 nm.
  • the present inventors have carried out hydrothermal treatment of a titanium-containing aqueous solution containing a tin salt in the presence of oxalic acid and quaternary ammonium hydroxide, thereby allowing precipitation and coagulation. It has been found that a rutile-type titanium oxide sol having a good dispersion state can be produced without causing aggregation.
  • a method for producing a rutile-type titanium oxide sol having a particle diameter of 5 to 100 nm measured according to a dynamic light scattering method including the following steps (a) and (b): Step (a): A tin oxalate aqueous solution, titanium alkoxide, oxalic acid, a quaternary ammonium hydroxide and water are mixed. At this time, 0.1 to 0 tin atoms are added to 1 mol of titanium atoms, respectively.
  • TiO 2 in terms of TiO 2 adjusted so that the proportion of oxalic acid is 0.01 to 5 mol and the proportion of quaternary ammonium hydroxide is 0.1 to 3.5 mol
  • the titanium alkoxide is represented by the general formula (I).
  • Ti (OR 1 ) 4 (I) [Each R 1 in Formula (I) is the same or different and is an alkyl group having 1 to 3 carbon atoms.
  • the quaternary ammonium hydroxide is represented by the general formula (II). [NR 2 R 3 R 4 R 5 ] OH (II) [In the formula (II), R 2 , R 3 , R 4 and R 5 each independently represents an alkyl group having 1 to 8 carbon atoms, a hydroxyalkyl group having 1 to 8 carbon atoms, or 7 carbon atoms. Represents 15 to 15 aryloxyalkyl groups or benzyl groups.
  • a method for producing a rutile-type titanium oxide sol according to the first aspect which is a quaternary ammonium hydroxide represented by the formula:
  • the method for producing a rutile-type titanium oxide sol according to the third aspect wherein the quaternary ammonium hydroxide is tetramethylammonium hydroxide or tetraethylammonium hydroxide, It is.
  • the rutile type titanium oxide sol obtained by the method for producing a rutile type titanium oxide sol of the present invention is substantially free of alkali metals such as sodium and potassium and impurities such as chlorine and has high transparency. Further, the dry film exhibits a high refractive index of about 1.9 or more, and has good water resistance, moisture resistance, light resistance, weather resistance, heat resistance, wear resistance and the like. Moreover, the rutile type titanium oxide sol obtained by the production method of the rutile type titanium oxide sol of the present invention can be mixed with various binders to form a coating composition. By applying the composition to the base material, It is possible to form a coating film having high transparency that does not impair the transparency and a high refractive index.
  • step (a) a tin oxalate aqueous solution, titanium alkoxide, oxalic acid, quaternary ammonium hydroxide and water are mixed to prepare a titanium-containing aqueous solution.
  • the order of mixing the tin oxalate aqueous solution, titanium alkoxide, oxalic acid, quaternary ammonium hydroxide and water is not particularly limited.
  • the tin oxalate aqueous solution, titanium alkoxide, oxalic acid and quaternary ammonium hydroxide to be mixed are each in a ratio of 0.1 to 0.8 mole of tin atom per mole of titanium atom, The ratio is adjusted to 0.01 to 5 mol and the ratio of quaternary ammonium hydroxide to 0.1 to 3.5 mol.
  • the tin atom is adjusted so as to have a ratio of 0.1 to 0.8 mol per 1 mol of titanium atom.
  • the proportion of tin atoms is less than 0.1 with respect to 1 mole of titanium atoms, the crystallinity of rutile titanium oxide becomes insufficient, and anatase titanium oxide may be generated.
  • the ratio of tin atoms exceeds 0.8 with respect to 1 mol of titanium atoms, the content of tin oxide in the obtained rutile-type titanium oxide sol increases, so the refractive index of titanium oxide decreases. It is not preferable.
  • Oxalic acid is adjusted to a ratio of 0.01 to 5 mol per 1 mol of titanium atom.
  • the proportion of oxalic acid is less than 0.01 mole per mole of titanium atom, a part of the anatase-type titanium oxide is formed after the hydrothermal treatment in the step (b), and the intended single-phase rutile-type titanium oxide sol Cannot be obtained.
  • the pH of the titanium-containing aqueous solution becomes less than 3, and the particle diameter measured according to the dynamic light scattering method after the hydrothermal treatment in step (b) A suspension of rutile-type titanium oxide colloidal particles having a particle size exceeding 100 nm is obtained, and the intended rutile-type titanium oxide sol cannot be obtained.
  • the quaternary ammonium hydroxide is adjusted to have a ratio of 0.1 to 3.5 moles per mole of titanium atoms.
  • the ratio of the quaternary ammonium hydroxide is less than 0.1 mol with respect to 1 mol of titanium atom, the particle diameter measured according to the dynamic light scattering method exceeds 100 nm after the hydrothermal treatment in the step (b).
  • a suspension of rutile-type titanium oxide colloidal particles is obtained, and the intended rutile-type titanium oxide sol cannot be obtained.
  • the titanium-containing aqueous solution may be prepared by appropriately adjusting the amount of water used so that the TiO 2 equivalent concentration is 0.5 to 15% by mass.
  • TiO 2 which has expressed conveniently the Ti amount hydrolysis polycondensate in the form of TiO 2 is its oxide, the number of moles of TiO 2 hydrolysis system titanium alkoxide It is included in the condensate.
  • the mixing with the tin oxalate aqueous solution, titanium alkoxide, oxalic acid, quaternary ammonium hydroxide and water is preferably performed with stirring. Further, the obtained titanium-containing aqueous solution may be heated at 60 to 100 ° C. before the hydrothermal treatment in the step (b).
  • the pH of the aqueous titanium-containing solution prepared by the step (a) is 3.0 to 14.0.
  • the tin oxalate aqueous solution used in the present invention can be obtained by reacting metal tin, oxalic acid and hydrogen peroxide in an aqueous medium.
  • the production of the tin oxalate aqueous solution is performed by intermittently adding hydrogen peroxide and metal tin to the oxalic acid aqueous solution little by little alternately so that the H 2 O 2 / Sn molar ratio is maintained at 2-3. Or it is preferable to add continuously.
  • the reaction is possible even if the H 2 O 2 / Sn molar ratio exceeds 3, but this is not preferable because the amount of hydrogen peroxide increases. If the H 2 O 2 / Sn molar ratio is less than 2, the oxidation becomes insufficient and a desired aqueous tin oxalate solution cannot be obtained.
  • the reaction may be carried out under heating, preferably in the range of 30 to 70 ° C.
  • the Sn concentration in the reaction solution is preferably maintained at 0.01 to 8% by mass, and the finally obtained tin oxalate aqueous solution preferably has an Sn concentration of 1 to 5% by mass.
  • the obtained tin oxalate aqueous solution since hydrogen peroxide may remain, it is preferable to remove the hydrogen peroxide by passing it through a column packed with an oxidation catalyst on which platinum is supported.
  • tetraalkoxy titanium having 1 to 3 carbon atoms in the alkoxyl group is used.
  • This tetraalkoxy titanium has the general formula (I) Ti (OR 1 ) 4 (I) [Each R 1 in Formula (I) is the same or different and is an alkyl group having 1 to 3 carbon atoms. ].
  • the tetraalkoxytitanium may have the same or different four alkoxyl groups, but the same one is preferably used from the viewpoint of availability.
  • Specific examples of the tetraalkoxy titanium include tetramethoxy titanium, tetraethoxy titanium, tetra-n-propoxy titanium, tetraisopropoxy titanium, and the like. These may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the quaternary ammonium hydroxide used in the present invention has the general formula (II) [NR 2 R 3 R 4 R 5 ] OH (II) [In the formula (II), R 2 , R 3 , R 4 and R 5 each independently represents an alkyl group having 1 to 8 carbon atoms, a hydroxyalkyl group having 1 to 8 carbon atoms, or 7 carbon atoms. Represents 15 to 15 aryloxyalkyl groups or benzyl groups. ].
  • the quaternary ammonium hydroxide examples include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, octyltrimethylammonium hydroxide, tributylmethylammonium hydroxide, water
  • examples thereof include trioctylmethylammonium oxide, benzyltrimethylammonium hydroxide, benzyltriethylammonium hydroxide, benzyltripropylammonium hydroxide, benzyltributylammonium hydroxide, monomethyltriethanolammonium hydroxide, and dimethyldiethanolammonium hydroxide.
  • tetramethylammonium hydroxide and tetraethylammonium hydroxide are preferably used.
  • the added titanium alkoxide is decomposed to generate alcohol.
  • By-product alcohol may or may not be removed.
  • the titanium-containing aqueous solution may be heated to the boiling point of the alcohol or higher or distilled off under reduced pressure using an evaporator or the like.
  • the titanium-containing aqueous solution obtained in the step (a) is filled in a pressure vessel and hydrothermally treated in the step (b).
  • the hydrothermal treatment temperature is 100 to 200 ° C, preferably 120 to 180 ° C.
  • the hydrothermal treatment time is 0.5 to 10 hours, preferably 1 to 6 hours. If the hydrothermal treatment temperature is less than 100 ° C., the crystallization of the titanium oxide particles becomes insufficient and rutile-type titanium oxide colloidal particles cannot be obtained. Further, when the hydrothermal treatment temperature exceeds 200 ° C., the generated titanium oxide particles are aggregated, so that a sol cannot be obtained unless a dispersion treatment using a homogenizer or the like is performed.
  • the interplanar spacing d ( ⁇ ) value of the ⁇ 110> plane of tin oxide is 3.35
  • the ⁇ 110> plane of rutile titanium oxide d is 3.25.
  • the rutile-type titanium oxide sol obtained by the present invention is a single-phase rutile-type crystal having a diffraction pattern by powder X-ray diffraction analysis and a ⁇ 110> crystal plane d in the range of 3.25 ⁇ d ⁇ 3.35. .
  • the rutile-type titanium oxide sol obtained by the present invention can be observed as elliptical colloidal particles having a primary particle diameter of 5 to 50 nm as a projection image with a transmission electron microscope.
  • the obtained rutile-type titanium oxide sol has a particle diameter of 5 to 100 nm measured by a dynamic light scattering particle diameter measuring apparatus. Furthermore, the rutile-type titanium oxide sol has high transparency, and no sediment is observed even after standing at room temperature for 1 week.
  • the rutile type titanium oxide sol has a pH in the range of 3.0 to 14.0.
  • the rutile type titanium oxide sol obtained by the present invention can be washed and / or concentrated using an ultrafiltration method.
  • the rutile-type titanium oxide sol obtained by the present invention can be stabilized as a sol by adding an acid and / or basic compound as required.
  • an acid inorganic acids such as hydrochloric acid and nitric acid, oxalic acid, lactic acid, tartaric acid, malic acid, citric acid, glycolic acid, hydroacrylic acid, ⁇ -oxybutyric acid, glyceric acid, tartronic acid and the like can be used.
  • Examples of basic compounds used include ammonia, alkali metal hydroxides, ethylamine, diethylamine, n-propylamine, isopropylamine, diisopropylamine, dipropylamine, n-butylamine, isobutylamine, diisobutylamine, triethylamine, benzylamine, etc.
  • Alkylamines such as alkanolamines such as monoethanolamine and triethanolamine, guanidine hydroxide, quaternary ammonium hydroxides such as tetramethylammonium hydroxide and tetraethylammonium hydroxide, or carbonates such as ammonium carbonate and guanidine carbonate Salt.
  • the rutile-type titanium oxide sol obtained by the present invention can be mixed with various binders to form a coating composition. Furthermore, the coating composition can be applied to a substrate to obtain a member having a high refractive index film. Various substrates such as plastic, rubber, glass, metal, ceramics and paper can be used as the substrate.
  • the refractive index of the coating varies depending on the mixing ratio of the rutile type titanium oxide sol and the binder and the kind of the binder, but is in the range of about 1.55 to 2.2.
  • a film having a high refractive index obtained by applying a coating composition containing a rutile-type titanium oxide sol and a binder obtained by the present invention can be provided with an antireflection function by further providing an antireflection film.
  • the solution was passed through a column packed with a platinum catalyst to remove excess hydrogen peroxide, thereby preparing 1000 g of a tin oxalate aqueous solution having a SnO 2 equivalent concentration of 2.8% by mass.
  • the obtained tin oxalate aqueous solution had an oxalic acid concentration of 4.7% by mass.
  • the sodium concentration was below the limit of quantification (less than 10 ppb).
  • Example 1 27.0 g of pure water was put into a 200 mL beaker, and 26.9 g of tin oxalate aqueous solution prepared in Production Example 1 (containing 0.75 g in SnO 2 and 1.26 g in oxalic acid), titanium tetraisopropoxide 14.2 g [containing 4.0 g in terms of TiO 2 , manufactured by Kanto Chemical Co., Inc.] and 25% by mass of a tetramethylammonium hydroxide aqueous solution [manufactured by Tama Chemical Industry Co., Ltd.] 31.9 g were added with stirring.
  • the obtained titanium-containing aqueous solution had a tin atom / titanium atom molar ratio of 0.1, an oxalic acid / titanium atom molar ratio of 0.28, and a tetramethylammonium hydroxide / titanium atom molar ratio of 2.0.
  • 100 g of the titanium-containing aqueous solution was heated at 80 ° C. for 2 hours.
  • the titanium-containing aqueous solution after heating had a pH of 14.0, an electric conductivity of 64.2 mS / cm, and a TiO 2 equivalent concentration of 4.0% by mass.
  • the obtained sol had a pH of 14.0, an electrical conductivity of 76.3 mS / cm, a TiO 2 equivalent concentration of 4.0% by mass, a tetramethylammonium hydroxide concentration of 9.1% by mass, an oxalic acid concentration of 1.3% by mass,
  • the particle diameter was 37 nm measured according to the dynamic light scattering method, and circular particles having a diameter of 20 to 30 nm were observed by observation with a transmission electron microscope.
  • X-ray diffraction analysis of the powder obtained by drying the obtained sol at 110 ° C. was performed. The d value was 3.26, confirming that it was a single phase of a rutile crystal.
  • Example 2 197 g of pure water was put in a 2 L container, and 269 g of tin oxalate aqueous solution prepared in Production Example 1 (contained 7.5 g in terms of SnO 2 and 12.6 g in terms of oxalic acid), 142 g of titanium tetraisopropoxide ( 40 g in terms of TiO 2 ), 73 g of oxalic acid dihydrate (52 g in terms of oxalic acid), and 319 g of a 25% by mass tetramethylammonium hydroxide aqueous solution were added with stirring.
  • the obtained titanium-containing aqueous solution had a tin atom / titanium atom molar ratio of 0.1, an oxalic acid / titanium atom molar ratio of 1.4, and a tetramethylammonium hydroxide / titanium atom molar ratio of 1.75.
  • 1000 g of the titanium-containing aqueous solution was heated at 80 ° C. for 2 hours, and further kept under reduced pressure of 580 Torr for 2 hours, and then prepared using pure water so that the TiO 2 equivalent concentration was 4.0% by mass.
  • the obtained titanium-containing aqueous solution had a pH of 5.1 and an electric conductivity of 30.9 mS / cm.
  • the obtained sol had a pH of 3.9, an electrical conductivity of 32.6 mS / cm, a TiO 2 equivalent concentration of 4.0% by mass, a tetramethylammonium hydroxide concentration of 8.0% by mass, an oxalic acid concentration of 6.5% by mass,
  • the particle diameter was 16 nm as measured according to a typical light scattering method, and elliptical particles with a short axis of 5 nm and a long axis of 15 nm were observed by observation with a transmission electron microscope.
  • X-ray diffraction analysis of the powder obtained by drying the obtained sol at 110 ° C. was performed. The d value was 3.26, confirming that it was a single phase of a rutile crystal.
  • rutile-type titanium oxide aqueous sol 1000 g was concentrated using a rotary evaporator to obtain a stable rutile-type titanium oxide aqueous sol having a TiO 2 equivalent concentration of 20.5% by mass.
  • the particle diameter measured according to the dynamic light scattering method was 16 nm.
  • Example 3 44.9 g of pure water was put into a 200 mL beaker, and 26.9 g of tin oxalate aqueous solution prepared in Production Example 1 (containing 0.75 g in terms of SnO 2 and 1.26 g in terms of oxalic acid), titanium tetraiso 14.2 g of propoxide (containing 4.0 g in terms of TiO 2 ), 2.2 g of oxalic acid dihydrate (1.6 g in terms of oxalic acid), and 11.8 g of a 25% by mass tetramethylammonium hydroxide aqueous solution Added under stirring.
  • tin oxalate aqueous solution prepared in Production Example 1 containing 0.75 g in terms of SnO 2 and 1.26 g in terms of oxalic acid
  • titanium tetraiso 14.2 g of propoxide containing 4.0 g in terms of TiO 2
  • 2.2 g of oxalic acid dihydrate
  • the obtained titanium-containing aqueous solution had a tin atom / titanium atom molar ratio of 0.1, an oxalic acid / titanium atom molar ratio of 0.63, and a tetramethylammonium hydroxide / titanium atom molar ratio of 0.65.
  • 100 g of the titanium-containing aqueous solution was heated at 80 ° C. for 2 hours.
  • the titanium-containing aqueous solution after heating had a pH of 3.6, an electrical conductivity of 15.8 mS / cm, and a TiO 2 equivalent concentration of 4.0% by mass.
  • the obtained sol had a pH of 3.4, an electrical conductivity of 18.0 mS / cm, a TiO 2 equivalent concentration of 4.0% by mass, a tetramethylammonium hydroxide concentration of 3.0% by mass, an oxalic acid concentration of 2.9% by mass,
  • the particle diameter was 22 nm as measured according to a typical light scattering method, and elliptical particles having a minor axis of 5 nm and a major axis of 15 nm were observed by transmission electron microscope observation.
  • X-ray diffraction analysis of the powder obtained by drying the obtained sol at 110 ° C. was performed. The d value was 3.29, confirming that it was a single phase of a rutile crystal.
  • Example 4 In a 200 mL beaker, 3.5 g of pure water was added and 26.9 g of tin oxalate aqueous solution prepared in Production Example 1 (containing 0.75 g in terms of SnO 2 and 1.26 g in terms of oxalic acid), titanium tetraiso 14.2 g of propoxide (containing 4.0 g in terms of TiO 2 ), 9.8 g of oxalic acid dihydrate (7.0 g in terms of oxalic acid), and 45.6 g of a 25% by mass tetramethylammonium hydroxide aqueous solution Added under stirring.
  • tin oxalate aqueous solution prepared in Production Example 1 containing 0.75 g in terms of SnO 2 and 1.26 g in terms of oxalic acid
  • titanium tetraiso 14.2 g of propoxide containing 4.0 g in terms of TiO 2
  • 9.8 g of oxalic acid dihydrate
  • the obtained titanium-containing aqueous solution had a tin atom / titanium atom molar ratio of 0.1, an oxalic acid / titanium atom molar ratio of 1.8, and a tetramethylammonium hydroxide / titanium molar ratio of 2.5.
  • 100 g of the titanium-containing aqueous solution was heated at 90 ° C. for 2 hours.
  • the titanium-containing aqueous solution after heating had a pH of 4.9, an electrical conductivity of 37.4 mS / cm, and a TiO 2 equivalent concentration of 4.0% by mass.
  • the obtained sol had a pH of 4.2, an electric conductivity of 41.0 mS / cm, a TiO 2 equivalent concentration of 4.0 mass%, a tetramethylammonium hydroxide concentration of 11.4 mass%, an oxalic acid concentration of 8.3 mass%,
  • the particle diameter was 17 nm measured in accordance with the dynamic light scattering method, and elliptical particles having a minor axis of 5 nm and a major axis of 20 nm were observed by transmission electron microscope observation.
  • the powder obtained by drying the obtained sol at 110 ° C. was subjected to X-ray diffraction analysis, and was confirmed to be a single phase of a rutile crystal.
  • Example 5 30.6 g of pure water was put into a 200 mL beaker, and 37.7 g of tin oxalate aqueous solution prepared in Production Example 1 (1.1 g in terms of SnO 2 and 1.8 g in terms of oxalic acid), titanium tetraiso 2.8 g of propoxide (containing 0.79 g in terms of TiO 2 ), 0.64 g of oxalic acid dihydrate (0.45 g in terms of oxalic acid), and 7.3 g of a 25% by mass tetramethylammonium hydroxide aqueous solution Added under stirring.
  • the obtained titanium-containing aqueous solution had a tin atom / titanium atom molar ratio of 0.7, an oxalic acid / titanium atom molar ratio of 2.5, and a tetramethylammonium hydroxide / titanium molar ratio of 1.75. 79.0 g of the titanium-containing aqueous solution was heated at 80 ° C. for 2 hours.
  • the titanium-containing aqueous solution after heating had a pH of 3.2, an electrical conductivity of 18.3 mS / cm, and a TiO 2 equivalent concentration of 1.0% by mass.
  • the obtained sol had a pH of 3.2, an electrical conductivity of 14.5 mS / cm, a TiO 2 equivalent concentration of 1.0% by mass, a tetramethylammonium hydroxide concentration of 2.3% by mass, an oxalic acid concentration of 2.3% by mass,
  • the particle diameter was 14 nm measured according to a typical light scattering method, and 15-30 nm aggregated particles in which particles having a primary particle diameter of about 5 nm were aggregated were observed with a transmission electron microscope.
  • X-ray diffraction analysis of the powder obtained by drying the obtained sol at 110 ° C. was performed. The d value was 3.34, confirming that it was a single phase of a rutile crystal.
  • Example 6 Into a 200 mL beaker, 19.7 g of pure water was added and 26.9 g of tin oxalate aqueous solution prepared in Production Example 1 (containing 0.75 g in terms of SnO 2 and 1.26 g in terms of oxalic acid), titanium tetraiso 14.2 g of propoxide (containing 4.0 g in terms of TiO 2 ), 7.3 g of oxalic acid dihydrate (5.2 g in terms of oxalic acid), and 31.9 g of a 25% by mass tetramethylammonium hydroxide aqueous solution Added under stirring.
  • tin oxalate aqueous solution prepared in Production Example 1 containing 0.75 g in terms of SnO 2 and 1.26 g in terms of oxalic acid
  • titanium tetraiso 14.2 g of propoxide containing 4.0 g in terms of TiO 2
  • oxalic acid dihydrate 5.2 g
  • the obtained titanium-containing aqueous solution had a tin atom / titanium atom molar ratio of 0.1, an oxalic acid / titanium atom molar ratio of 1.4, and a tetramethylammonium hydroxide / titanium atom molar ratio of 1.75.
  • 100 g of the titanium-containing aqueous solution was heated at 80 ° C. for 2 hours, and further maintained under reduced pressure of 580 Torr for 2 hours, and then prepared using pure water so that the TiO 2 equivalent concentration was 4.0% by mass.
  • the obtained titanium-containing aqueous solution had a pH of 5.1, an electric conductivity of 30.9 mS / cm, and a TiO 2 equivalent concentration of 4.0% by mass.
  • the obtained sol had a pH of 4.4, an electric conductivity of 32.1 mS / cm, a TiO 2 equivalent concentration of 4.0% by mass, a tetramethylammonium hydroxide concentration of 8.0% by mass, an oxalic acid concentration of 6.5% by mass,
  • the particle diameter was 19 nm as measured according to a typical light scattering method, and approximately 10 nm elliptical particles were observed by observation with a transmission electron microscope.
  • the powder obtained by drying the obtained sol at 110 ° C. was subjected to X-ray diffraction analysis, and was confirmed to be a single phase of a rutile crystal.
  • Example 7 Into a 200 mL beaker, 19.7 g of pure water was added and 26.9 g of tin oxalate aqueous solution prepared in Production Example 1 (containing 0.75 g in terms of SnO 2 and 1.26 g in terms of oxalic acid), titanium tetraiso 14.2 g of propoxide (containing 4.0 g in terms of TiO 2 ), 7.3 g of oxalic acid dihydrate (5.2 g in terms of oxalic acid), and 31.9 g of a 25% by mass tetramethylammonium hydroxide aqueous solution Added under stirring.
  • tin oxalate aqueous solution prepared in Production Example 1 containing 0.75 g in terms of SnO 2 and 1.26 g in terms of oxalic acid
  • titanium tetraiso 14.2 g of propoxide containing 4.0 g in terms of TiO 2
  • oxalic acid dihydrate 5.2 g
  • the obtained titanium-containing aqueous solution had a tin atom / titanium atom molar ratio of 0.1, an oxalic acid / titanium atom molar ratio of 1.4, and a tetramethylammonium hydroxide / titanium atom molar ratio of 1.75.
  • 100 g of the titanium-containing aqueous solution was heated at 80 ° C. for 2 hours, and further maintained under a reduced pressure of 580 Torr for 2 hours, and then prepared using pure water so that the TiO 2 equivalent concentration was 4.0% by mass.
  • the obtained titanium-containing aqueous solution had a pH of 5.1, an electric conductivity of 30.9 mS / cm, and a TiO 2 equivalent concentration of 4.0% by mass.
  • a 200 mL SUS autoclave container was charged with 100 g of the titanium-containing aqueous solution after concentration adjustment, and hydrothermally treated at 180 ° C. for 5 hours. After hydrothermal treatment, it was cooled to room temperature. The solution after hydrothermal treatment was a pale milky white titanium oxide aqueous sol.
  • the obtained sol had a pH of 6.9, an electric conductivity of 41.6 mS / cm, a TiO 2 equivalent concentration of 4.0% by mass, a tetramethylammonium hydroxide concentration of 8.0% by mass, an oxalic acid concentration of 6.5% by mass,
  • the particle diameter was 81 nm as measured according to a typical light scattering method, and approximately 20 nm elliptical particles were observed by transmission electron microscope observation.
  • the powder obtained by drying the obtained sol at 110 ° C. was subjected to X-ray diffraction analysis, and was confirmed to be a single phase of a rutile crystal.
  • the obtained titanium-containing aqueous solution had a molar ratio of tin atom / titanium atom of 0.1, a molar ratio of oxalic acid / titanium atom of 1.3, and a molar ratio of tetramethylammonium hydroxide / titanium atom of 1.75.
  • 95.9 g of the titanium-containing aqueous solution was heated at 80 ° C. for 2 hours.
  • the titanium-containing aqueous solution after heating had a pH of 5.9, an electric conductivity of 31.5 mS / cm, and a TiO 2 equivalent concentration of 4.0% by mass.
  • the obtained sol had a pH of 3.9, an electrical conductivity of 36.0 mS / cm, a TiO 2 equivalent concentration of 4.0% by mass, a tetramethylammonium hydroxide concentration of 8.0% by mass, an oxalic acid concentration of 5.8% by mass,
  • the particle diameter was 17 nm measured according to a typical light scattering method, and circular particles having a size of about 5 nm and elliptical particles having a short axis of 5 nm and a long axis of 25 nm were observed with a transmission electron microscope.
  • the powder obtained by drying the obtained sol at 110 ° C. was subjected to X-ray diffraction analysis and confirmed to be a mixture of anatase type crystals and rutile type crystals.
  • the obtained titanium-containing aqueous solution had a molar ratio of tin atom / titanium atom of 0.1, a molar ratio of oxalic acid / titanium atom of 1.5, and a molar ratio of tetramethylammonium hydroxide / titanium atom of 2.0.
  • 100 g of the titanium-containing aqueous solution was heated at 90 ° C. for 2 hours.
  • the titanium-containing aqueous solution after heating had a pH of 4.7, an electrical conductivity of 28.6 mS / cm, and a TiO 2 equivalent concentration of 4.0% by mass.
  • the obtained sol had a pH of 3.9, an electric conductivity of 31.4 mS / cm, a TiO 2 equivalent concentration of 4.0% by mass, a tetramethylammonium hydroxide concentration of 9.1% by mass, an oxalic acid concentration of 6.7% by mass,
  • the particle diameter was 16 nm measured according to a typical light scattering method, and rounded particles of 5 nm and elliptical particles having a short axis of 5 nm and a long axis of 20 nm were observed by transmission electron microscope observation.
  • the powder obtained by drying the obtained sol at 110 ° C. was subjected to X-ray diffraction analysis and confirmed to be a mixture of anatase type crystals and rutile type crystals.
  • the resulting titanium-containing aqueous solution had a tin atom / titanium atom molar ratio of 0.1, an oxalic acid / titanium atom molar ratio of 1.6, and a tetramethylammonium hydroxide / oxalic acid molar ratio of 7.0.
  • 100 g of the titanium-containing aqueous solution was heated at 80 ° C. for 2 hours, and further maintained under reduced pressure of 580 Torr for 2 hours, and then prepared using pure water so that the TiO 2 equivalent concentration was 4.0% by mass.
  • the adjusted titanium-containing aqueous solution had a pH of 14.6, an electrical conductivity of 62.1 mS / cm, and a TiO 2 equivalent concentration of 2.0 mass%.
  • Teflon (registered trademark) autoclave container was charged with 60 g of the titanium-containing aqueous solution after the concentration adjustment, and hydrothermally treated at 140 ° C. for 5 hours. After cooling to room temperature, the treated solution taken out was a pale milky white titanium oxide aqueous sol.
  • the obtained sol had a pH of 14.0, an electrical conductivity of 50.0 mS / cm, a TiO 2 equivalent concentration of 2.0% by mass, a tetramethylammonium hydroxide concentration of 15.9% by mass, an oxalic acid concentration of 3.6% by mass,
  • the particle diameter was 115 nm as measured according to a typical light scattering method, and spherical particles of approximately 20 nm and elliptical particles having a minor axis of 70 nm and a major axis of 350 nm were observed with a transmission electron microscope.
  • X-ray diffraction analysis of the powder obtained by drying the obtained sol at 110 ° C. confirmed that it was a mixture of rutile and brookite crystals.
  • the obtained titanium-containing aqueous solution had a tin atom / titanium atom molar ratio of 0.1, an oxalic acid / titanium atom molar ratio of 1.4, and a tetramethylammonium hydroxide / titanium atom molar ratio of 1.75.
  • 100 g of the titanium-containing aqueous solution was heated at 80 ° C. for 2 hours, and further maintained under reduced pressure of 580 Torr for 2 hours, and then prepared using pure water so that the TiO 2 equivalent concentration was 4.0% by mass.
  • the adjusted titanium-containing aqueous solution had a pH of 5.1, an electric conductivity of 30.9 mS / cm, and a TiO 2 equivalent concentration of 4.0% by mass.
  • the particle diameter was 950 nm measured according to the dynamic light scattering method, and an aggregate in which colloidal particles having a primary particle diameter of about 5 nm aggregated to 500 nm or more was observed by observation with a transmission electron microscope. X-ray diffraction analysis of the powder obtained by drying the obtained suspension at 110 ° C. was confirmed to be a rutile crystal.
  • the obtained titanium-containing aqueous solution had a molar ratio of tin atom / titanium atom of 0.05, molar ratio of oxalic acid / titanium atom of 1.4, and molar ratio of tetramethylammonium hydroxide / titanium atom of 1.75.
  • 100 g of the titanium-containing aqueous solution was heated at 80 ° C. for 2 hours.
  • the titanium-containing aqueous solution after heating had a pH of 4.7, an electrical conductivity of 29.4 mS / cm, and a TiO 2 equivalent concentration of 4.0% by mass.
  • the obtained sol had a pH of 3.9, an electrical conductivity of 32.0 mS / cm, a TiO 2 equivalent concentration of 4.0% by mass, a tetramethylammonium hydroxide concentration of 8.0% by mass, an oxalic acid concentration of 6.5% by mass,
  • the particle diameter was 22 nm measured according to a typical light scattering method, and elliptical particles having a minor axis of 5 nm and a major axis of 20 nm were observed by transmission electron microscope observation.
  • X-ray diffraction analysis was performed on the powder obtained by drying the obtained sol at 110 ° C., it was found to be a mixture of a rutile crystal and an anatase crystal.
  • the resulting titanium-containing aqueous solution had a tin atom / titanium atom molar ratio of 0.1, an oxalic acid / titanium atom molar ratio of 7.1, and a tetramethylammonium hydroxide / titanium molar ratio of 2.0.
  • 100 g of the titanium-containing aqueous solution was heated at 80 ° C. for 2 hours, and further maintained under reduced pressure of 580 Torr for 2 hours, and then prepared using pure water so that the TiO 2 equivalent concentration was 4.0% by mass.
  • the obtained titanium-containing aqueous solution had a pH of 2.1, an electrical conductivity of 93.5 mS / cm, and a TiO 2 equivalent concentration of 2.0 mass%.
  • Teflon (registered trademark) autoclave container was charged with 60 g of the titanium-containing aqueous solution after the concentration adjustment, and hydrothermally treated at 140 ° C. for 5 hours. After hydrothermal treatment, it was cooled to room temperature. The solution after hydrothermal treatment was a milky white suspension. The resulting suspension had a pH of 2.1, an electrical conductivity of 27.0 mS / cm, a TiO 2 equivalent concentration of 2.0% by mass, a tetramethylammonium hydroxide concentration of 2.3% by mass, and an oxalic acid concentration of 15.9% by mass.
  • the particle diameter was 243 nm measured according to the dynamic light scattering method, and an aggregate in which colloidal particles having a primary particle diameter of about 4 nm aggregated to 300 nm or more was observed by observation with a transmission electron microscope. X-ray diffraction analysis of the powder obtained by drying the obtained suspension at 110 ° C. was confirmed to be a rutile crystal.
  • the obtained titanium-containing aqueous solution had a molar ratio of tin atom / titanium atom of 0.1 and a molar ratio of tetramethylammonium hydroxide / titanium atom of 1.75.
  • 100 g of the titanium-containing aqueous solution was heated at 90 ° C. for 2 hours.
  • the pH of the titanium-containing aqueous solution after heating was 14, the conductivity was 64.9 mS / cm, and the TiO 2 equivalent concentration was 4.0% by mass.
  • Teflon registered trademark
  • the solution after hydrothermal treatment was a pale milky white titanium oxide aqueous sol.
  • the obtained sol had a pH of 14, a conductivity of 67.4 mS / cm, a TiO 2 equivalent concentration of 4.0% by mass, a tetramethylammonium hydroxide concentration of 9.1% by mass, and a particle diameter of 125 nm measured according to the dynamic light scattering method. In observation with a transmission electron microscope, spherical particles of 2 to 3 nm were observed.
  • the powder obtained by drying the obtained sol at 110 ° C. was subjected to X-ray diffraction analysis and confirmed to be a mixture of anatase type crystals and rutile type crystals.
  • the rutile-type titanium oxide sol obtained by the present invention is useful for applications such as a catalyst, a photocatalyst, an optical material, antibacterial, and antifouling, and is particularly useful as a titanium oxide for a transparent electrode of a dye-sensitized solar cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

【課題】 分散性に優れた、動的光散乱法に従い測定された粒子径が5~100nmのルチル型酸化チタンゾルを効率的に製造する方法を提供すること。 【解決手段】 下記の(a)工程及び(b)工程を含む動的光散乱法に従い測定された粒子径が5~100nmのルチル型酸化チタンゾルの製造方法: (a)工程:シュウ酸スズ水溶液、チタンアルコキシド、シュウ酸、第4級アンモニウム水酸化物及び水を混合し、その際、チタン原子1モルに対して、それぞれ、スズ原子が0.1~0.8モルの割合、該シュウ酸が0.01~5モルの割合、及び該第4級アンモニウム水酸化物が0.1~3.5モルの割合となるように調整して、TiO2換算濃度0.1~15質量%のチタン含有水溶液を調製する工程、 (b)工程:前記(a)工程で得られたチタン含有水溶液を100~200℃で水熱処理する工程。

Description

ルチル型酸化チタンゾルの製造方法
 本発明は、ルチル型酸化チタンゾルの製造方法に関する。
 酸化チタンの結晶構造には、正方晶系高温型のルチル型、正方晶系低温型のアナターゼ型及び斜方晶系ブルッカイト型の3種類があり、中でもルチル型酸化チタンは屈折率が高いことから、屈折率調整剤として使用されている。
 光学材料として用いるためには、屈折率が高いことだけでなく、塗膜にした際の透明性も必要である。しかし、一般的にルチル型酸化チタンは、無定型の酸化チタンやアナターゼ型酸化チタンを高温焼成する固相法で製造されるため、粒子径が大きくなり、透明性が損なわれてしまうという問題があった。
 高温焼成が必要な固相法に比べて、湿式法は低温合成することができるため微粒子を得やすい方法である。湿式法でルチル型酸化チタンゾルを製造する方法として、チタン塩とルチル型構造を有するスズ化合物との共存下にて反応させる方法が挙げられる。
 チタン塩とスズ化合物を用いる方法としては、過酸化水素の存在下にてチタンの強酸塩と金属スズを反応させ、50~100℃で酸化チタン-酸化スズ複合コロイドの凝集体を生成させる方法が開示されている(特許文献1参照)。また、Sn/Tiモル比が0.001~2のスズ化合物共存下、チタン化合物溶液をpH-1~3の範囲で室温から100℃の温度で反応させるルチル型酸化チタン微粒子の製造方法が開示されている(特許文献2参照)。また、チタン原子を含有したゲルを過酸化水素で溶解したものを反応させる方法としては、水和酸化チタンゲルを過酸化水素で溶解したものとスズ酸カリウムの陽イオン交換したものを混合し、加熱処理する方法(特許文献3参照)、チタン化合物とスズ化合物とアンモニアを反応させてゲルを生成させたのち、過酸化水素で溶解し水熱処理する方法(特許文献4参照)などが開示されている。
特開平10-245224号公報 特開2005-132706号公報 特開平2-255532号公報 特開2009-227519号公報
 特許文献1に記載の方法では、一次粒子径が2~20nmの酸化チタン-酸化スズ複合コロイド粒子の凝集体スラリーが生成するため、分散状態の良好なゾルを得るためには含まれる電解質を除去する必要がある。特許文献2に記載の方法では、沈殿物が生成するため、固液分離装置を必要とする。特許文献3に記載の方法では、比表面積の高い水和酸化チタンのゲル又はゾルを安定的に調製することが困難であるため、得られる酸化チタンの結晶性が変動する問題があり、また、水和酸化チタンのゲル又はゾルにアルカリ等の不純物が残存するため、得られるルチル型酸化チタンは実質的にアルカリを含有しないものが得られない欠点がある。特許文献4に記載の方法では、チタン水酸化物とスズ水酸化物との混合ゲルの洗浄を必須とするが、不純物イオンの除去は困難であり、洗浄に長時間を要し、また固液分離装置を必要とするため工業的には好ましくない。
 そこで、本発明は、実質的にナトリウム、カリウム等のアルカリ金属及び塩素等の不純物を含まず、固液分離工程を必要とせず、分散性に優れた、動的光散乱法に従い測定された粒子径が5~100nmのルチル型酸化チタンゾルを効率的に製造する方法を提供するものである。
 本発明者らは上記の課題を解決するために鋭意検討した結果、スズ塩を含んだチタン含有水溶液をシュウ酸及び第4級アンモニウム水酸化物の存在下で水熱処理することにより、沈殿や凝集体を生じることなく分散状態が良好なルチル型酸化チタンゾルを製造できることを見出した。即ち、本発明は、
 第1観点として、下記の(a)工程及び(b)工程を含む動的光散乱法に従い測定された粒子径が5~100nmのルチル型酸化チタンゾルの製造方法:
(a)工程:シュウ酸スズ水溶液、チタンアルコキシド、シュウ酸、第4級アンモニウム水酸化物及び水を混合し、その際、チタン原子1モルに対して、それぞれ、スズ原子が0.1~0.8モルの割合、該シュウ酸が0.01~5モルの割合、及び該第4級アンモニウム水酸化物が0.1~3.5モルの割合となるように調整して、TiO2換算濃度0.1~15質量%のチタン含有水溶液を調製する工程、
(b)工程:前記(a)工程で得られたチタン含有水溶液を100~200℃で水熱処理する工程、
 第2観点として、前記チタンアルコキシドが一般式(I)
 Ti(OR14   (I)
[式(I)中の各R1は同一若しくは異なる、炭素原子数1~3のアルキル基である。]で表されるテトラアルコキシチタンである、第1観点に記載のルチル型酸化チタンゾルの製造方法、
 第3観点として、前記第4級アンモニウム水酸化物が一般式(II)
 〔NR2345〕OH   (II)
[式(II)中、R2、R3、R4及びR5は、各々独立して、炭素原子数1~8のアルキル基、炭素原子数1~8のヒドロキシアルキル基又は炭素原子数7~15のアリールオキシアルキル基若しくはベンジル基を表す。]で表される第4級アンモニウム水酸化物である、第1観点に記載のルチル型酸化チタンゾルの製造方法、
 第4観点として、前記第4級アンモニウム水酸化物が水酸化テトラメチルアンモニウム又は水酸化テトラエチルアンモニウムである、第3観点に記載のルチル型酸化チタンゾルの製造方法、
である。
 本発明のルチル型酸化チタンゾルの製造方法により得られるルチル型酸化チタンゾルは、実質的にナトリウム、カリウム等のアルカリ金属及び塩素等の不純物を含まず、且つ高い透明性を有している。また、その乾燥被膜は約1.9以上の高い屈折率を示し、耐水性、耐湿性、耐光性、耐候性、耐熱性、及び耐摩耗性等も良好である。
 また、本発明のルチル型酸化チタンゾルの製造方法により得られるルチル型酸化チタンゾルは、各種バインダーを混合してコーティング組成物とすることができ、該組成物を基材に塗布することにより、基材の透明性を損なわない高い透明性、及び高い屈折率を有するコーティング膜を形成することができる。
 本発明では、先ず(a)工程においてシュウ酸スズ水溶液、チタンアルコキシド、シュウ酸、第4級アンモニウム水酸化物及び水を混合し、チタン含有水溶液を調製する。シュウ酸スズ水溶液、チタンアルコキシド、シュウ酸、第4級アンモニウム水酸化物及び水を混合する順序は特に制約されない。
 混合されるシュウ酸スズ水溶液、チタンアルコキシド、シュウ酸及び第4級アンモニウム水酸化物は、チタン原子1モルに対して、それぞれ、スズ原子が0.1~0.8モルの割合、シュウ酸が0.01~5モルの割合、及び第4級アンモニウム水酸化物が0.1~3.5モルの割合となるように調整する。
 スズ原子は、チタン原子1モルに対して0.1~0.8モルの割合となるように調整する。スズ原子の割合が、チタン原子1モルに対して0.1未満の場合、ルチル型酸化チタンの結晶性が不十分になり、また、アナターゼ型酸化チタンが生成する場合がある。また、スズ原子の割合が、チタン原子1モルに対して0.8を超える場合、得られるルチル型酸化チタンゾル中の酸化スズの含有量が多くなることから、酸化チタンの屈折率が低下するため好ましくない。
 シュウ酸は、チタン原子1モルに対して0.01~5モルの割合となるように調整する。シュウ酸の割合が、チタン原子1モルに対して0.01モル未満の場合、(b)工程の水熱処理後に、アナターゼ型酸化チタンが一部生成し、目的とする単相のルチル型酸化チタンゾルが得られない。また、シュウ酸の割合が、チタン原子1モルに対して5モルを超える場合、チタン含有水溶液のpHが3未満となり、(b)工程の水熱処理後に動的光散乱法に従い測定された粒子径が100nmを超えるルチル型酸化チタンコロイド粒子の懸濁液が得られ、目的とするルチル型酸化チタンゾルが得られない。
 第4級アンモニウム水酸化物は、チタン原子1モルに対して0.1~3.5モルの割合となるように調整する。第4級アンモニウム水酸化物の割合が、チタン原子1モルに対して0.1モル未満の場合、(b)工程の水熱処理後に、動的光散乱法に従い測定された粒子径が100nmを超えるルチル型酸化チタンコロイド粒子の懸濁液が得られ、目的とするルチル型酸化チタンゾルが得られない。また、第4級アンモニウム水酸化物の割合が、チタン原子1モルに対して3.5モルを超える場合、(b)工程の水熱処理後にルチル型酸化チタンの他にブルッカイト型酸化チタンが生成し、単相のルチル型酸化チタンゾルが得られない。
 前記チタン含有水溶液は、TiO2換算濃度が0.5~15質量%となるように、用いる水の量を適宜調整して調製すればよい。ここで、TiO2換算とは、便宜的に加水分解重縮合物中のTi量をその酸化物であるTiO2の形で表したものであり、チタンアルコキシドのモル数のTiO2が加水分解系縮合物中に含まれていることを示す。
 前記シュウ酸スズ水溶液、チタンアルコキシド、シュウ酸、第4級アンモニウム水酸化物及び水との混合は攪拌下で行うことが好ましい。また、得られるチタン含有水溶液を(b)工程の水熱処理を行う前に60~100℃で加熱しても良い。
 (a)工程により調製されるチタン含有水溶液のpHは、3.0~14.0である。
 本発明に用いられるシュウ酸スズ水溶液は、水性媒体中で金属スズ、シュウ酸及び過酸化水素を反応させて得ることができる。シュウ酸スズ水溶液の製造は、シュウ酸の水溶液中に過酸化水素と金属スズをH22/Snモル比が2~3に保たれるように交互に少量ずつ断続的に添加するか、又は連続的に添加することが好ましい。初めに全量の過酸化水素をシュウ酸水溶液中に加え、これに金属スズを加えると過酸化水素の大部分が反応の初期に分解してしまい過酸化水素の量が不足し好ましくない。H22/Snモル比が3を越えても反応は可能であるが、過酸化水素量の残量が多くなるため好ましくない。H22/Snモル比が2未満では酸化が不充分となり、所望のシュウ酸スズ水溶液が得られない。反応は加熱下で行われても良く、30~70℃の範囲が好ましい。反応液中のSn濃度は0.01~8質量%に保持することが好ましく、最終的に得られるシュウ酸スズ水溶液としては、Sn濃度として1~5質量%であることが好ましい。得られるシュウ酸スズ水溶液は、過酸化水素が残存する場合があるため、白金が担持された酸化触媒を充填したカラムに通して過酸化水素を除去することが好ましい。
 本発明に用いられるチタンアルコキシドは、アルコキシル基の炭素原子数が1~3のテトラアルコキシチタンが用いられる。このテトラアルコキシチタンは、一般式(I)
 Ti(OR14   (I)
[式(I)中の各R1は同一若しくは異なる、炭素原子数1~3のアルキル基である。]で表すことができる。
 前記テトラアルコキシチタンは、4つのアルコキシル基が互いに同一でも異なっていてもよいが、入手の容易さなどの観点から、同一のものが好ましく用いられる。前記テトラアルコキシチタンの具体例としては、テトラメトキシチタン、テトラエトキシチタン、テトラ-n-プロポキシチタン、テトライソプロポキシチタン等が挙げられる。これらは1種を単独で用いても、又は2種以上を組み合わせて用いてもよい。
 本発明に用いられる第4級アンモニウム水酸化物は、一般式(II)
 〔NR2345〕OH   (II)
[式(II)中、R2、R3、R4及びR5は、各々独立して、炭素原子数1~8のアルキル基、炭素原子数1~8のヒドロキシアルキル基又は炭素原子数7~15のアリールオキシアルキル基若しくはベンジル基を表す。]で表すことができる。
 前記第4級アンモニウム水酸化物の具体例としては、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム、水酸化オクチルトリメチルアンモニウム、水酸化トリブチルメチルアンモニウム、水酸化トリオクチルメチルアンモニウム、水酸化ベンジルトリメチルアンモニウム、水酸化ベンジルトリエチルアンモニウム、水酸化ベンジルトリプロピルアンモニウム、水酸化ベンジルトリブチルアンモニウム、水酸化モノメチルトリエタノールアンモニウム、水酸化ジメチルジエタノールアンモニウム等を挙げることができる。中でも水酸化テトラメチルアンモニウム及び水酸化テトラエチルアンモニウムが好ましく用いられる。
 (a)工程では、添加されたチタンアルコキシドは分解されてアルコールが発生する。副生物のアルコールは除去してもしなくても良い。アルコールを除去する場合は、前記チタン含有水溶液をアルコールの沸点以上に加熱するか、又はエバポレーター等を用いた減圧下で蒸留除去しても良い。
 前記(a)工程で得られたチタン含有水溶液は、(b)工程において耐圧容器に充填されて水熱処理される。水熱処理温度は100~200℃であり、好ましくは120~180℃である。水熱処理時間は0.5~10時間であり、好ましくは1~6時間である。水熱処理温度が100℃未満では酸化チタン粒子の結晶化が不十分になり、ルチル型酸化チタンコロイド粒子が得られない。また、水熱処理温度が200℃を超えると生成する酸化チタン粒子が凝集するため、ホモジナイザー等による分散処理を行わなければゾルが得られず、好ましくない。
 粉末X線回折分析に用いるICDDカード(Inernational Centre for Diffractrion Data)において、酸化スズの<110>面の面間隔d(Å)値は3.35であり、ルチル型酸化チタンの<110>面のdは3.25である。本発明により得られるルチル型酸化チタンゾルは、粉末X線回折分析による回折パターン及び<110>結晶面のdが3.25<d<3.35の範囲であり、単相のルチル型結晶である。
 本発明により得られるルチル型酸化チタンゾルは、透過型電子顕微鏡では、投影像として一次粒子径が5~50nmの楕円球状のコロイド粒子として観察できる。また得られたルチル型酸化チタンゾルは、動的光散乱法粒子径測定装置により測定される粒子径が5~100nmである。さらに、上記ルチル型酸化チタンゾルは、透明性が高く、1週間室温で静置しても沈降物が観察されない。また上記ルチル型酸化チタンゾルのpHは3.0~14.0の範囲である。
 本発明により得られるルチル型酸化チタンゾルは、限外濾過法を用いて洗浄及び/又は濃縮を行うことができる。
 本発明により得られるルチル型酸化チタンゾルは、必要に応じて酸及び/又は塩基性化合物を添加することによりゾルとして安定化させることができる。
 用いられる酸としては塩酸、硝酸などの無機酸、シュウ酸、乳酸、酒石酸、リンゴ酸、クエン酸、グリコール酸、ヒドロアクリル酸、α-オキシ酪酸、グリセリン酸、タルトロン酸等を用いることができる。
 用いられる塩基性化合物としては、アンモニア、アルカリ金属水酸化物、エチルアミン、ジエチルアミン、n-プロピルアミン、イソプロピルアミン、ジイソプロピルアミン、ジプロピルアミン、n-ブチルアミン、イソブチルアミン、ジイソブチルアミン、トリエチルアミン、ベンジルアミン等のアルキルアミン、モノエタノールアミン、トリエタノールアミン等のアルカノールアミン、グアニジン水酸化物、テトラメチルアンモニウムハイドロオキサイド、テトラエチルアンモニウムハイドロオキサイド等の第4級アンモニウム水酸化物、又は炭酸アンモニウム、炭酸グアニジン等の炭酸塩が挙げられる。
 本発明により得られるルチル型酸化チタンゾルは、各種バインダーと混合してコーティング組成物とすることができる。
 更に上記コーティング組成物を基材に塗布して高屈折率被膜を有する部材を得ることができる。基材は、プラスチック、ゴム、ガラス、金属、セラミックス及び紙など種々のものが使用できる。
 上記被膜の屈折率はルチル型酸化チタンゾルとバインダーとの混合比率、及びバインダーの種類により異なるが、ほぼ1.55~2.2の範囲である。
 本発明により得られるルチル型酸化チタンゾルとバインダーとを含むコーティング組成物を塗布して得られた高屈折率を有する被膜は、さらに反射防止膜を設けることで反射防止機能を付与することができる。
 以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 なお、測定及び観察に用いた装置は、下記の通りである。
[動的光散乱法による粒子径測定]
 N4PLUS(BECKMAN COLUTER社製)
[透過型電子顕微鏡観察]
 JEM-1010(日本電子(株)製)
(製造例1)
 2Lの容器に純水849gを入れ、シュウ酸二水和物[宇部興産(株)製]82gを溶解した。次いで、金属スズ粉末[山石金属(株)製]22gと35%過酸化水素水溶液[関東化学(株)製]47gを各々10分割して交互に投入し、50~55℃で2時間保持した。次いで、白金触媒を充填したカラムに通液して、余剰の過酸化水素を除去し、SnO2換算濃度が2.8質量%のシュウ酸スズ水溶液1000gを調製した。得られたシュウ酸スズ水溶液はCHN元素分析の結果、シュウ酸濃度は4.7質量%であり、原子吸光分析の結果、ナトリウム濃度は定量限界以下(10ppb未満)であった。
(実施例1)
 200mLのビーカーに純水27.0gを入れ、製造例1にて調製したシュウ酸スズ水溶液26.9g(SnO2換算で0.75g、シュウ酸換算で1.26g含有)、チタンテトライソプロポキシド14.2g[TiO2換算で4.0g含有、関東化学(株)製]、25質量%水酸化テトラメチルアンモニウム水溶液[多摩化学工業(株)製]31.9gを攪拌下に添加した。得られたチタン含有水溶液は、スズ原子/チタン原子のモル比0.1、シュウ酸/チタン原子のモル比0.28、水酸化テトラメチルアンモニウム/チタン原子のモル比2.0であった。前記チタン含有水溶液100gを80℃で2時間加熱した。加熱後のチタン含有水溶液のpHは14.0、電導度は64.2mS/cm、TiO2換算濃度は4.0質量%であった。100mLのテフロン(登録商標)製オートクレーブ容器に前記加熱後のチタン含有水溶液60gを投入し、140℃で5時間水熱処理を行った。水熱処理後、室温に冷却した。水熱処理後の溶液は淡い乳白色の酸化チタン水性ゾルであった。得られたゾルは、pH14.0、電導度76.3mS/cm、TiO2換算濃度4.0質量%、水酸化テトラメチルアンモニウム濃度9.1質量%、シュウ酸濃度1.3質量%、動的光散乱法に従い測定された粒子径37nmであり、透過型電子顕微鏡観察では20~30nmの円形状粒子が観察された。得られたゾルを110℃で乾燥させて得た粉末のX線回折分析を行った。d値は3.26であり、ルチル型結晶の単相であることが確認された。
(実施例2)
 2Lの容器に純水197gを入れ、製造例1にて調製したシュウ酸スズ水溶液269g(SnO2換算して7.5g、シュウ酸換算して12.6g含有)、チタンテトライソプロポキシド142g(TiO2換算して40g含有)、シュウ酸二水和物73g(シュウ酸換算して52g)、25質量%水酸化テトラメチルアンモニウム水溶液319gを攪拌下に添加した。得られたチタン含有水溶液は、スズ原子/チタン原子のモル比0.1、シュウ酸/チタン原子のモル比1.4、水酸化テトラメチルアンモニウム/チタン原子のモル比1.75であった。前記チタン含有水溶液1000gを80℃で2時間加熱し、さらに580Torrの減圧下で2時間保持した後、TiO2換算濃度が4.0質量%になるように純水を用いて調製した。得られたチタン含有水溶液は、pHが5.1、電導度が30.9mS/cmであった。3Lのガラスライニングされたオートクレーブ容器に前記濃度調整後のチタン含有水溶液1000gを投入し、140℃で5時間水熱処理を行った。水熱処理後、室温に冷却した。水熱処理後の溶液は淡い乳白色の酸化チタン水性ゾルであった。得られたゾルは、pH3.9、電導度32.6mS/cm、TiO2換算濃度4.0質量%、水酸化テトラメチルアンモニウム濃度8.0質量%、シュウ酸濃度6.5質量%、動的光散乱法に従い測定された粒子径16nmであり、透過型電子顕微鏡観察では短軸5nmと長軸15nmの楕円粒子が観察された。得られたゾルを110℃で乾燥させて得た粉末のX線回折分析を行った。d値は3.26であり、ルチル型結晶の単相であることが確認された。前記ルチル型酸化チタン水性ゾル1000gをロータリーエバポレーターを用いて濃縮し、TiO2換算濃度が20.5質量%の安定なルチル型酸化チタン水性ゾルを得た。動的光散乱法に従い測定された粒子径は16nmであった。
(実施例3)
 200mLのビーカーに純水44.9gを入れ、製造例1にて調製したシュウ酸スズ水溶液26.9g(SnO2換算して0.75g、シュウ酸換算して1.26g含有)、チタンテトライソプロポキシド14.2g(TiO2換算して4.0g含有)、シュウ酸二水和物2.2g(シュウ酸換算して1.6g)、25質量%水酸化テトラメチルアンモニウム水溶液11.8gを攪拌下に添加した。得られたチタン含有水溶液は、スズ原子/チタン原子のモル比0.1、シュウ酸/チタン原子のモル比0.63、水酸化テトラメチルアンモニウム/チタン原子のモル比0.65であった。前記チタン含有水溶液100gを80℃で2時間加熱した。加熱後のチタン含有水溶液のpHは3.6、電導度は15.8mS/cm、TiO2換算濃度は4.0質量%であった。100mLのテフロン(登録商標)製オートクレーブ容器に加熱後のチタン含有水溶液60gを投入し、140℃で5時間水熱処理を行った。水熱処理後、室温に冷却した。水熱処理後の溶液は淡い乳白色の酸化チタン水性ゾルであった。得られたゾルは、pH3.4、電導度18.0mS/cm、TiO2換算濃度4.0質量%、水酸化テトラメチルアンモニウム濃度3.0質量%、シュウ酸濃度2.9質量%、動的光散乱法に従い測定された粒子径22nmであり、透過型電子顕微鏡観察では短軸5nmと長軸15nmの楕円粒子が観察された。得られたゾルを110℃で乾燥させて得た粉末のX線回折分析を行った。d値は3.29であり、ルチル型結晶の単相であることが確認された。
(実施例4)
 200mLのビーカーに純水3.5gを入れ、製造例1にて調製したシュウ酸スズ水溶液26.9g(SnO2換算して0.75g、シュウ酸換算して1.26g含有)、チタンテトライソプロポキシド14.2g(TiO2換算して4.0g含有)、シュウ酸二水和物9.8g(シュウ酸換算して7.0g)、25質量%水酸化テトラメチルアンモニウム水溶液45.6gを攪拌下に添加した。得られたチタン含有水溶液は、スズ原子/チタン原子のモル比0.1、シュウ酸/チタン原子のモル比1.8、水酸化テトラメチルアンモニウム/チタン原子のモル比2.5であった。前記チタン含有水溶液100gを90℃で2時間加熱した。加熱後のチタン含有水溶液のpHは4.9、電導度は37.4mS/cm、TiO2換算濃度は4.0質量%であった。100mLのテフロン(登録商標)製オートクレーブ容器に前記加熱後のチタン含有水溶液60gを投入し、140℃で5時間水熱処理を行った。水熱処理後、室温に冷却した。水熱処理後の溶液は淡い乳白色の酸化チタン水性ゾルであった。得られたゾルは、pH4.2、電導度41.0mS/cm、TiO2換算濃度4.0質量%、水酸化テトラメチルアンモニウム濃度11.4質量%、シュウ酸濃度8.3質量%、動的光散乱法に従い測定された粒子径17nmであり、透過型電子顕微鏡観察では短軸5nmと長軸20nmの楕円粒子が観察された。得られたゾルを110℃で乾燥させて得た粉末のX線回折分析を行い、ルチル型結晶の単相であることが確認された。
(実施例5)
 200mLのビーカーに純水30.6gを入れ、製造例1にて調製したシュウ酸スズ水溶液37.7g(SnO2換算して1.1g、シュウ酸換算して1.8g含有)、チタンテトライソプロポキシド2.8g(TiO2換算して0.79g含有)、シュウ酸二水和物0.64g(シュウ酸換算して0.45g)、25質量%水酸化テトラメチルアンモニウム水溶液7.3gを攪拌下に添加した。得られたチタン含有水溶液は、スズ原子/チタン原子のモル比0.7、シュウ酸/チタン原子のモル比2.5、水酸化テトラメチルアンモニウム/チタン原子のモル比1.75であった。前記チタン含有水溶液79.0gを80℃で2時間加熱した。加熱後のチタン含有水溶液のpHは3.2、電導度は18.3mS/cm、TiO2換算濃度は1.0質量%であった。100mLのテフロン(登録商標)製オートクレーブ容器に前記加熱後のチタン含有水溶液60gを投入し、140℃で5時間水熱処理を行った。水熱処理後、室温に冷却した。水熱処理後の溶液は淡い乳白色の酸化チタン水性ゾルであった。得られたゾルは、pH3.2、電導度14.5mS/cm、TiO2換算濃度1.0質量%、水酸化テトラメチルアンモニウム濃度2.3質量%、シュウ酸濃度2.3質量%、動的光散乱法に従い測定された粒子径14nmであり、透過型電子顕微鏡観察では一次粒子径5nm程度の粒子が集合した15~30nmの凝集粒子が観察された。得られたゾルを110℃で乾燥させて得た粉末のX線回折分析を行った。d値は3.34であり、ルチル型結晶の単相であることが確認された。
(実施例6)
 200mLのビーカーに純水19.7gを入れ、製造例1にて調製したシュウ酸スズ水溶液26.9g(SnO2換算して0.75g、シュウ酸換算して1.26g含有)、チタンテトライソプロポキシド14.2g(TiO2換算して4.0g含有)、シュウ酸二水和物7.3g(シュウ酸換算して5.2g)、25質量%水酸化テトラメチルアンモニウム水溶液31.9gを攪拌下に添加した。得られたチタン含有水溶液は、スズ原子/チタン原子のモル比0.1、シュウ酸/チタン原子のモル比1.4、水酸化テトラメチルアンモニウム/チタン原子のモル比1.75であった。前記チタン含有水溶液100gを80℃で2時間加熱し、さらに580Torrの減圧下で2時間保持した後、TiO2換算濃度が4.0質量%になるように純水を用いて調製した。得られたチタン含有水溶液のpHは5.1、電導度は30.9mS/cm、TiO2換算濃度は4.0質量%であった。100mLのテフロン(登録商標)製オートクレーブ容器に前記濃度調整後のチタン含有水溶液60gを投入し、100℃で5時間水熱処理を行った。水熱処理後、室温に冷却した。水熱処理後の溶液は淡い乳白色の酸化チタン水性ゾルであった。得られたゾルは、pH4.4、電導度32.1mS/cm、TiO2換算濃度4.0質量%、水酸化テトラメチルアンモニウム濃度8.0質量%、シュウ酸濃度6.5質量%、動的光散乱法に従い測定された粒子径19nmであり、透過型電子顕微鏡観察では約10nmの楕円粒子が観察された。得られたゾルを110℃で乾燥させて得た粉末のX線回折分析を行い、ルチル型結晶の単相であることが確認された。
(実施例7)
 200mLのビーカーに純水19.7gを入れ、製造例1にて調製したシュウ酸スズ水溶液26.9g(SnO2換算して0.75g、シュウ酸換算して1.26g含有)、チタンテトライソプロポキシド14.2g(TiO2換算して4.0g含有)、シュウ酸二水和物7.3g(シュウ酸換算して5.2g)、25質量%水酸化テトラメチルアンモニウム水溶液31.9gを攪拌下に添加した。得られたチタン含有水溶液は、スズ原子/チタン原子のモル比0.1、シュウ酸/チタン原子のモル比1.4、水酸化テトラメチルアンモニウム/チタン原子のモル比1.75であった。前記チタン含有水溶液100gを、80℃で2時間加熱し、さらに580Torrの減圧下で2時間保持した後、TiO2換算濃度が4.0質量%になるように純水を用いて調製した。得られたチタン含有水溶液のpHは5.1、電導度は30.9mS/cm、TiO2換算濃度は4.0質量%であった。200mLのSUS製オートクレーブ容器に前記濃度調整後のチタン含有水溶液100gを投入し、180℃で5時間水熱処理を行った。水熱処理後、室温に冷却した。水熱処理後の溶液は淡い乳白色の酸化チタン水性ゾルであった。得られたゾルは、pH6.9、電導度41.6mS/cm、TiO2換算濃度4.0質量%、水酸化テトラメチルアンモニウム濃度8.0質量%、シュウ酸濃度6.5質量%、動的光散乱法に従い測定された粒子径81nmであり、透過型電子顕微鏡観察では約20nmの楕円粒子が観察された。得られたゾルを110℃で乾燥させて得た粉末のX線回折分析を行い、ルチル型結晶の単相であることが確認された。
(製造例2)
 100mLのビーカーに純水20gを入れ、スズ酸ナトリウム[SnO2として51.7質量%含有、昭和化工(株)製]1.46gを溶解した。次いで、水素型陽イオン交換樹脂[アンバーライト(登録商標)IR-120B]を充填したカラムに通液して、ナトリウムを除去し、SnO2換算濃度が1.6重量%のスズ酸水溶液を45.2g調製した。原子吸光分析の結果、上記のスズ酸水溶液中のナトリウム濃度は6ppmであった。
(比較例1)
 200mLのビーカーに純水22.1gを入れ、製造例2にて調製したスズ酸水溶液45.2g(SnO2換算して0.72g含有)、チタンテトライソプロポキシド14.2g(TiO2換算して4.0g含有)、シュウ酸二水和物7.9g(シュウ酸換算して5.6g)、25質量%水酸化テトラメチルアンモニウム水溶液30.6gを攪拌下に添加した。得られたチタン含有水溶液は、スズ原子/チタン原子のモル比0.1、シュウ酸/チタン原子のモル比1.3、水酸化テトラメチルアンモニウム/チタン原子のモル比1.75であった。前記チタン含有水溶液95.9gを80℃で2時間加熱した。加熱後のチタン含有水溶液のpHは5.9、電導度は31.5mS/cm,TiO2換算濃度は4.0質量%であった。100mLのテフロン(登録商標)製オートクレーブ容器に前記加熱後のチタン含有水溶液60gを投入し、140℃で5時間水熱処理を行った。水熱処理後、室温に冷却した。水熱処理後の溶液は淡い乳白色の酸化チタン水性ゾルであった。得られたゾルは、pH3.9、電導度36.0mS/cm、TiO2換算濃度4.0質量%、水酸化テトラメチルアンモニウム濃度8.0質量%、シュウ酸濃度5.8質量%、動的光散乱法に従い測定された粒子径17nmであり、透過型電子顕微鏡観察では5nm程度の円形状粒子と短軸5nmと長軸25nmの楕円粒子が観察された。得られたゾルを110℃で乾燥させて得た粉末のX線回折分析を行い、アナターゼ型結晶とルチル型結晶の混合物であることが確認された。
(比較例2)
 200mLのビーカーに純水19.7gを入れ、10質量%スズ(IV)イソプロポキシドのイソプロパノール溶液(Alfa Aesar社製)17.7g(SnO2換算して0.75g含有)、チタンテトライソプロポキシド14.2g(TiO2換算して4.0g含有)、シュウ酸二水和物9.5g(シュウ酸換算して6.7g)、25質量%水酸化テトラメチルアンモニウム水溶液36.4gを攪拌下に添加した。得られたチタン含有水溶液は、スズ原子/チタン原子のモル比0.1、シュウ酸/チタン原子のモル比1.5、水酸化テトラメチルアンモニウム/チタン原子のモル比2.0であった。前記チタン含有水溶液100gを90℃で2時間加熱した。加熱後のチタン含有水溶液のpHは4.7、電導度は28.6mS/cm、TiO2換算濃度は4.0質量%であった。100mLのテフロン(登録商標)製オートクレーブ容器に前記加熱後のチタン含有水溶液60gを投入し、140℃で5時間水熱処理を行った。水熱処理後、室温に冷却した。水熱処理後の溶液は淡い乳白色の酸化チタン水性ゾルであった。得られたゾルは、pH3.9、電導度31.4mS/cm、TiO2換算濃度4.0質量%、水酸化テトラメチルアンモニウム濃度9.1質量%、シュウ酸濃度6.7質量%、動的光散乱法に従い測定された粒子径16nmであり、透過型電子顕微鏡観察では5nmの丸みをおびた粒子と、短軸5nmと長軸20nmの楕円粒子が観察された。得られたゾルを110℃で乾燥させて得た粉末のX線回折分析を行い、アナターゼ型結晶とルチル型結晶の混合物であることが確認された。
(比較例3)
 200mLのビーカーに純水74.7gを入れ、製造例1にて調製したシュウ酸スズ水溶液13.5g(SnO2換算して0.38g、シュウ酸換算して0.63g含有)、チタンテトライソプロポキシド7.1g(TiO2換算して2.0g含有)、シュウ酸二水和物4.2g(シュウ酸換算して3.0g)、25質量%水酸化テトラメチルアンモニウム水溶液63.8gを攪拌下に添加した。得られたチタン含有水溶液は、スズ原子/チタン原子のモル比0.1、シュウ酸/チタン原子のモル比1.6、水酸化テトラメチルアンモニウム/シュウ酸のモル比7.0であった。前記チタン含有水溶液100gを80℃で2時間加熱し、さらに580Torrの減圧下で2時間保持した後、TiO2換算濃度が4.0質量%になるように純水を用いて調製した。調整後のチタン含有水溶液のpHは14.6、電導度は62.1mS/cm、TiO2換算濃度は2.0質量%であった。100mLのテフロン(登録商標)製オートクレーブ容器に前記濃度調整後のチタン含有水溶液60gを投入し、140℃で5時間水熱処理を行った。室温に冷却後、取り出された処理後の溶液は淡い乳白色の酸化チタン水性ゾルであった。得られたゾルは、pH14.0、電導度50.0mS/cm、TiO2換算濃度2.0質量%、水酸化テトラメチルアンモニウム濃度15.9質量%、シュウ酸濃度3.6質量%、動的光散乱法に従い測定された粒子径115nmであり、透過型電子顕微鏡観察では20nm程度の球状粒子と短軸70nmと長軸350nmの楕円粒子が観察された。得られたゾルを110℃で乾燥させて得た粉末のX線回折分析を行ったところ、ルチル型結晶とブルッカイト型結晶の混合物であることが確認された。
(比較例4)
 200mLのビーカーに純水19.7gを入れ、製造例1にて調製したシュウ酸スズ水溶液26.9g(SnO2換算して0.75g、シュウ酸換算して1.26g含有)、チタンテトライソプロポキシド14.2g(TiO2換算して4.0g含有)、シュウ酸二水和物7.3g(シュウ酸換算して5.2g)、25質量%水酸化テトラメチルアンモニウム水溶液31.9gを攪拌下に添加した。得られたチタン含有水溶液は、スズ原子/チタン原子のモル比0.1、シュウ酸/チタン原子のモル比1.4、水酸化テトラメチルアンモニウム/チタン原子のモル比1.75であった。前記チタン含有水溶液100gを80℃で2時間加熱し、さらに580Torrの減圧下で2時間保持した後、TiO2換算濃度が4.0質量%になるように純水を用いて調製した。調整後のチタン含有水溶液のpHは5.1、電導度は30.9mS/cm、TiO2換算濃度は4.0質量%であった。200mLのSUS製オートクレーブ容器に前記濃度調整後のチタン含有水溶液100gを投入し、220℃で5時間水熱処理を行った。水熱処理後、室温に冷却した。水熱処理後の溶液は乳白色の懸濁液であった。得られた懸濁液は、pH8.2、電導度42.0mS/cm、TiO2換算濃度4.0質量%、水酸化テトラメチルアンモニウム濃度8.0質量%、シュウ酸濃度6.5質量%、動的光散乱法に従い測定された粒子径950nmであり、透過型電子顕微鏡観察では一次粒子径が約5nmのコロイド粒子が凝集して500nm以上となった凝集体が観察された。得られた懸濁液を110℃で乾燥させて得た粉末のX線回折分析を行い、ルチル型結晶であることが確認された。
(比較例5)
 200mLのビーカーに純水32.2gを入れ、製造例1にて調製したシュウ酸スズ水溶液13.5g(SnO2換算して0.38g、シュウ酸換算して0.63g含有)、チタンテトライソプロポキシド14.2g(TiO2換算して4.0g含有)、シュウ酸二水和物7.8g(シュウ酸換算して5.5g)、25質量%水酸化テトラメチルアンモニウム水溶液31.9gを攪拌下に添加した。得られたチタン含有水溶液は、スズ原子/チタン原子のモル比0.05、シュウ酸/チタン原子のモル比1.4、水酸化テトラメチルアンモニウム/チタン原子のモル比1.75であった。前記チタン含有水溶液100gを80℃で2時間加熱した。加熱後のチタン含有水溶液のpHは4.7、電導度は29.4mS/cm、TiO2換算濃度は4.0質量%であった。200mLのSUS製オートクレーブ容器に前記加熱後のチタン含有水溶液100gを投入し、180℃で5時間水熱処理を行った。水熱処理後、室温に冷却した。水熱処理後の溶液は淡い乳白色の酸化チタン水性ゾルであった。得られたゾルは、pH3.9、電導度32.0mS/cm、TiO2換算濃度4.0質量%、水酸化テトラメチルアンモニウム濃度8.0質量%、シュウ酸濃度6.5質量%、動的光散乱法に従い測定された粒子径22nmであり、透過型電子顕微鏡観察では短軸5nmと長軸20nmの楕円粒子が観察された。得られたゾルを110℃で乾燥させて得た粉末のX線回折分析を行ったところ、ルチル型結晶とアナターゼ型結晶の混合物であることが分かった。
(比較例6)
 200mLのビーカーに純水39.6gを入れ、製造例1にて調製したシュウ酸スズ水溶液13.5g(SnO2換算して0.38g、シュウ酸換算して0.63g含有)、チタンテトライソプロポキシド7.2g(TiO2換算して2.0g含有)、シュウ酸二水和物21.5g(シュウ酸換算して15.3g)、25質量%水酸化テトラメチルアンモニウム水溶液18.2gを攪拌下に添加した。得られたチタン含有水溶液は、スズ原子/チタン原子のモル比0.1、シュウ酸/チタン原子のモル比7.1、水酸化テトラメチルアンモニウム/チタン原子のモル比2.0であった。前記チタン含有水溶液100gを80℃で2時間加熱し、さらに580Torrの減圧下で2時間保持した後、TiO2換算濃度が4.0質量%になるように純水を用いて調製した。得られたチタン含有水溶液のpHは2.1、電導度は93.5mS/cm、TiO2換算濃度は2.0質量%であった。100mLのテフロン(登録商標)製オートクレーブ容器に前記濃度調整後のチタン含有水溶液60gを投入し、140℃で5時間水熱処理を行った。水熱処理後、室温に冷却した。水熱処理後の溶液は乳白色の懸濁液であった。得られた懸濁液は、pH2.1、電導度27.0mS/cm、TiO2換算濃度2.0質量%、水酸化テトラメチルアンモニウム濃度2.3質量%、シュウ酸濃度15.9質量%、動的光散乱法に従い測定された粒子径243nmであり、透過型電子顕微鏡観察では一次粒子径が約4nmのコロイド粒子が凝集して300nm以上となった凝集体が観察された。得られた懸濁液を110℃で乾燥させて得た粉末のX線回折分析を行い、ルチル型結晶であることが確認された。
(比較例7)
 200mLのビーカーに純水36.2gを入れ、10質量%スズ(IV)イソプロポキシドイソプロパノール溶液(Alfa Aesar社製)17.7g(SnO2換算して0.75g含有)、チタンテトライソプロポキシド14.2g(TiO2換算して4.0g含有)、25質量%水酸化テトラメチルアンモニウム水溶液31.9gを攪拌下に添加した。得られたチタン含有水溶液は、スズ原子/チタン原子のモル比0.1、水酸化テトラメチルアンモニウム/チタン原子のモル比1.75であった。前記チタン含有水溶液100gを90℃で2時間加熱した。加熱後のチタン含有水溶液のpHは14、電導度は64.9mS/cm、TiO2換算濃度は4.0質量%であった。100mLのテフロン(登録商標)製オートクレーブ容器に前記加熱後のチタン含有水溶液60gを投入し、140℃で5時間水熱処理を行った。水熱処理後、室温に冷却した。水熱処理後の溶液は淡い乳白色の酸化チタン水性ゾルであった。得られたゾルは、pH14、電導度67.4mS/cm、TiO2換算濃度4.0質量%、水酸化テトラメチルアンモニウム濃度9.1質量%、動的光散乱法に従い測定された粒子径125nmであり、透過型電子顕微鏡観察では2~3nmの球状粒子が観察された。得られたゾルを110℃で乾燥させて得た粉末のX線回折分析を行い、アナターゼ型結晶とルチル型結晶の混合物であることが確認された。
Figure JPOXMLDOC01-appb-T000001
 本発明により得られるルチル型酸化チタンゾルは、触媒、光触媒、光学材料、抗菌、防汚などの用途に有用であり、特に色素増感型太陽電池の透明電極用酸化チタンとして有用である。

Claims (4)

  1.  下記の(a)工程及び(b)工程を含む動的光散乱法に従い測定された粒子径が5~100nmのルチル型酸化チタンゾルの製造方法:
    (a)工程:シュウ酸スズ水溶液、チタンアルコキシド、シュウ酸、第4級アンモニウム水酸化物及び水を混合し、その際、チタン原子1モルに対して、それぞれ、スズ原子が0.1~0.8モルの割合、該シュウ酸が0.01~5モルの割合、及び該第4級アンモニウム水酸化物が0.1~3.5モルの割合となるように調整して、TiO2換算濃度0.1~15質量%のチタン含有水溶液を調製する工程、
    (b)工程:前記(a)工程で得られたチタン含有水溶液を100~200℃で水熱処理する工程。
  2.  前記チタンアルコキシドが一般式(I)
     Ti(OR14   (I)
    [式(I)中の各R1は同一若しくは異なる、炭素原子数1~3のアルキル基である。]で表されるテトラアルコキシチタンである、請求項1に記載のルチル型酸化チタンゾルの製造方法。
  3.  前記第4級アンモニウム水酸化物が一般式(II)
     〔NR2345〕OH   (II)
    [式(II)中、R2、R3、R4及びR5は、各々独立して、炭素原子数1~8のアルキル基、炭素原子数1~8のヒドロキシアルキル基又は炭素原子数7~15のアリールオキシアルキル基若しくはベンジル基を表す。]で表される第4級アンモニウム水酸化物である、請求項1に記載のルチル型酸化チタンゾルの製造方法。
  4.  前記第4級アンモニウム水酸化物が水酸化テトラメチルアンモニウム又は水酸化テトラエチルアンモニウムである、請求項3に記載のルチル型酸化チタンゾルの製造方法。
PCT/JP2012/053554 2011-02-15 2012-02-15 ルチル型酸化チタンゾルの製造方法 WO2012111717A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012557997A JP5835589B2 (ja) 2011-02-15 2012-02-15 ルチル型酸化チタンゾルの製造方法
KR1020137024428A KR101887052B1 (ko) 2011-02-15 2012-02-15 루틸형 산화 티탄 졸의 제조 방법
CN201280008532.9A CN103380083B (zh) 2011-02-15 2012-02-15 金红石型氧化钛溶胶的制造方法
US13/985,370 US8747542B2 (en) 2011-02-15 2012-02-15 Method for producing rutile titanium oxide sol
EP12746720.7A EP2676934B1 (en) 2011-02-15 2012-02-15 Method for producing rutile-type titanium oxide sol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-029852 2011-02-15
JP2011029852 2011-02-15

Publications (1)

Publication Number Publication Date
WO2012111717A1 true WO2012111717A1 (ja) 2012-08-23

Family

ID=46672630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053554 WO2012111717A1 (ja) 2011-02-15 2012-02-15 ルチル型酸化チタンゾルの製造方法

Country Status (8)

Country Link
US (1) US8747542B2 (ja)
EP (1) EP2676934B1 (ja)
JP (1) JP5835589B2 (ja)
KR (1) KR101887052B1 (ja)
CN (1) CN103380083B (ja)
HU (1) HUE037418T2 (ja)
TW (1) TWI520909B (ja)
WO (1) WO2012111717A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013091594A (ja) * 2011-10-06 2013-05-16 Taki Chem Co Ltd アルカリ性ルチル型酸化チタンゾル
JP2016108267A (ja) * 2014-12-05 2016-06-20 株式会社ダイセル 抗微生物剤
JP2017007888A (ja) * 2015-06-19 2017-01-12 株式会社リコー 多孔質構造体形成用分散体、多孔質構造体及び光電変換素子
WO2022059367A1 (ja) * 2020-09-18 2022-03-24 三井金属鉱業株式会社 チタン酸水溶液
WO2023277127A1 (ja) * 2021-07-02 2023-01-05 石原産業株式会社 酸化チタン粒子及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11161987B2 (en) 2015-12-09 2021-11-02 The Research Foundation For The State University Of New York Mixed transition metal oxides silica xerogels as antifouling/fouling release surfaces

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255532A (ja) 1989-03-30 1990-10-16 Catalysts & Chem Ind Co Ltd ルチル型酸化チタンゾルの製造法
JPH10245224A (ja) 1997-03-03 1998-09-14 Nissan Chem Ind Ltd 酸化チタン−酸化スズ複合ゾルの製造方法
JP2005132706A (ja) 2003-10-31 2005-05-26 Mitsui Chemicals Inc ルチル型酸化チタン超微粒子の製造法
JP2005528309A (ja) * 2002-02-12 2005-09-22 アイ ティー エヌ ナノベーション ゲーエムベーハー ナノスケールのルチル(rutile)又はナノスケールの酸化物、及びそれらの生成方法
JP2009227519A (ja) 2008-03-24 2009-10-08 Jgc Catalysts & Chemicals Ltd ルチル型酸化チタン微粒子の製造方法
WO2010055770A1 (ja) * 2008-11-12 2010-05-20 日産化学工業株式会社 酸化チタンゾルの製造方法
JP2011502937A (ja) * 2007-11-15 2011-01-27 ユミコア ソシエテ アノニム ルチル型二酸化チタン粉末の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997015526A1 (en) * 1995-10-27 1997-05-01 E.I. Du Pont De Nemours And Company Hydrothermal process for making ultrafine metal oxide powders
JP2002255532A (ja) * 2001-02-06 2002-09-11 Kishun Kin 炭化珪素の製造方法及び廃シリコンスラッジの処理方法
US7045005B2 (en) * 2001-07-19 2006-05-16 Sumitomo Chemical Company, Limited Ceramics dispersion liquid, method for producing the same, and hydrophilic coating agent using the same
JP4374869B2 (ja) * 2002-05-27 2009-12-02 住友化学株式会社 セラミックス分散液の製造方法
US7645436B1 (en) * 2003-01-07 2010-01-12 Aps Laboratory Tractable metal oxide sols and nanocomposites therefrom
KR100809758B1 (ko) * 2004-06-29 2008-03-04 미쓰이 가가쿠 가부시키가이샤 주석 변성 루틸형 산화티탄 미립자
JP5075385B2 (ja) * 2006-09-28 2012-11-21 株式会社 資生堂 多孔質酸化チタン及びその製造方法
KR20100014340A (ko) * 2006-12-28 2010-02-10 이 아이 듀폰 디 네모아 앤드 캄파니 이산화티타늄의 열수 제조 방법
JP4918880B2 (ja) * 2007-05-23 2012-04-18 日産化学工業株式会社 ジルコニアゾルの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255532A (ja) 1989-03-30 1990-10-16 Catalysts & Chem Ind Co Ltd ルチル型酸化チタンゾルの製造法
JPH10245224A (ja) 1997-03-03 1998-09-14 Nissan Chem Ind Ltd 酸化チタン−酸化スズ複合ゾルの製造方法
JP2005528309A (ja) * 2002-02-12 2005-09-22 アイ ティー エヌ ナノベーション ゲーエムベーハー ナノスケールのルチル(rutile)又はナノスケールの酸化物、及びそれらの生成方法
JP2005132706A (ja) 2003-10-31 2005-05-26 Mitsui Chemicals Inc ルチル型酸化チタン超微粒子の製造法
JP2011502937A (ja) * 2007-11-15 2011-01-27 ユミコア ソシエテ アノニム ルチル型二酸化チタン粉末の製造方法
JP2009227519A (ja) 2008-03-24 2009-10-08 Jgc Catalysts & Chemicals Ltd ルチル型酸化チタン微粒子の製造方法
WO2010055770A1 (ja) * 2008-11-12 2010-05-20 日産化学工業株式会社 酸化チタンゾルの製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013091594A (ja) * 2011-10-06 2013-05-16 Taki Chem Co Ltd アルカリ性ルチル型酸化チタンゾル
JP2016108267A (ja) * 2014-12-05 2016-06-20 株式会社ダイセル 抗微生物剤
JP2017007888A (ja) * 2015-06-19 2017-01-12 株式会社リコー 多孔質構造体形成用分散体、多孔質構造体及び光電変換素子
WO2022059367A1 (ja) * 2020-09-18 2022-03-24 三井金属鉱業株式会社 チタン酸水溶液
JP7114010B1 (ja) * 2020-09-18 2022-08-05 三井金属鉱業株式会社 チタン酸水溶液
WO2023277127A1 (ja) * 2021-07-02 2023-01-05 石原産業株式会社 酸化チタン粒子及びその製造方法

Also Published As

Publication number Publication date
US8747542B2 (en) 2014-06-10
KR101887052B1 (ko) 2018-08-09
KR20140016290A (ko) 2014-02-07
CN103380083B (zh) 2016-04-20
EP2676934B1 (en) 2018-04-04
US20130331463A1 (en) 2013-12-12
JPWO2012111717A1 (ja) 2014-07-07
TW201247545A (en) 2012-12-01
EP2676934A4 (en) 2015-07-29
CN103380083A (zh) 2013-10-30
TWI520909B (zh) 2016-02-11
HUE037418T2 (hu) 2018-08-28
EP2676934A1 (en) 2013-12-25
JP5835589B2 (ja) 2015-12-24

Similar Documents

Publication Publication Date Title
TWI464119B (zh) 氧化鈦溶膠之製造方法
JP5835589B2 (ja) ルチル型酸化チタンゾルの製造方法
JP5126783B2 (ja) ルチル型酸化チタン微粒子の製造方法
WO2016035689A1 (ja) 酸化ジルコニウム粒子の有機溶媒分散体とその製造方法
KR101621831B1 (ko) 초미립자 이산화티타늄 및 그 제조 방법
JP5317486B2 (ja) ルチル型酸化チタン微粒子の製造方法
JP2006176392A (ja) 変性された酸化第二スズゾルおよび酸化第二スズ−酸化ジルコニウム複合体ゾルの製造方法
JP5995009B2 (ja) ルチル型酸化チタンゾルの製造方法
JP5889261B2 (ja) 酸化ジルコニウム−酸化チタン複合ゾル及びその製造方法
TWI638777B (zh) Ultrafine titanium dioxide and manufacturing method thereof
JP2010030789A (ja) アナターゼ型酸化チタンの製造方法
WO2020170918A1 (ja) 酸化チタンの製造方法
JP2013091594A (ja) アルカリ性ルチル型酸化チタンゾル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280008532.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12746720

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012557997

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13985370

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012746720

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137024428

Country of ref document: KR

Kind code of ref document: A