WO2022011939A1 - 无钴正极材料及其制备方法以及锂离子电池正极和锂电池 - Google Patents

无钴正极材料及其制备方法以及锂离子电池正极和锂电池 Download PDF

Info

Publication number
WO2022011939A1
WO2022011939A1 PCT/CN2020/134519 CN2020134519W WO2022011939A1 WO 2022011939 A1 WO2022011939 A1 WO 2022011939A1 CN 2020134519 W CN2020134519 W CN 2020134519W WO 2022011939 A1 WO2022011939 A1 WO 2022011939A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode material
cobalt
weight
free
Prior art date
Application number
PCT/CN2020/134519
Other languages
English (en)
French (fr)
Inventor
乔齐齐
江卫军
孙明珠
许鑫培
施泽涛
马加力
陈思贤
王鹏飞
Original Assignee
蜂巢能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蜂巢能源科技有限公司 filed Critical 蜂巢能源科技有限公司
Priority to US17/785,898 priority Critical patent/US20230025787A1/en
Priority to KR1020227020663A priority patent/KR20220103763A/ko
Priority to EP20945562.5A priority patent/EP4024520A4/en
Priority to JP2022521738A priority patent/JP7392132B2/ja
Publication of WO2022011939A1 publication Critical patent/WO2022011939A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the technical field of lithium ion batteries, for example, to a cobalt-free positive electrode material and a preparation method thereof, as well as a lithium ion battery positive electrode and a lithium battery.
  • the safety, cruising range and cost of lithium-ion power batteries are becoming more and more demanding in the field of new energy vehicles.
  • the performance of the positive electrode material plays a crucial role in the performance of the entire battery, and its cost accounts for 30-40% of the total cost of the power battery. Therefore, in order to improve the battery performance and reduce its cost, it is necessary to improve the performance of the positive electrode material and reduce the cost of the positive electrode material.
  • the cobalt element in the currently widely used NCM cathode is expensive and easily pollutes the environment. Therefore, it is necessary to reduce the cobalt content of the ternary cathode material, or to make the material free of cobalt.
  • the cobalt-free single crystal layered cathode material is easy to agglomerate during the dry coating process due to its small primary particle size and D50 of 2-4um, resulting in poor coating uniformity.
  • the lack of cobalt in cobalt-free materials leads to poor electrical conductivity and poor rate performance.
  • the present disclosure provides a cobalt-free positive electrode material and a preparation method thereof, as well as a lithium ion battery positive electrode and a lithium battery.
  • a cobalt-free positive electrode material in one embodiment, includes a core and a shell covering the core, the core is a cobalt-free positive electrode material, and the chemical formula of the core is LiNi x M y O 2 , wherein, 0.55 ⁇ x ⁇ 0.95, 0.05 ⁇ y ⁇ 0.45, and the shell is a coating agent and carbon.
  • the cobalt-free positive electrode material is not easy to agglomerate during the dry coating process, the coating uniformity is good, and the conductivity of the cobalt-free single crystal positive electrode material can be improved.
  • the content of the shell is 0.1-1.0% by weight, such as 0.1% by weight, 0.2% by weight, 0.3% by weight, 0.5% by weight, 0.6% by weight, 0.8% by weight % by weight or 1.0% by weight, etc.
  • the content of the shell is 0.3-1.0 wt %, such as 0.3 wt %, 0.4 wt %, 0.5 wt %, 0.7 wt %, 0.8 wt %, 0.9 wt % or 1.0 wt % and the like.
  • the coating agent is at least one of Al 2 O 3 and ZrO 2 .
  • the content of the coating agent is 0.25-0.3% by weight, such as 0.25% by weight, 0.28% by weight, 0.29% by weight or 0.30% by weight, etc.; the content of the carbon is 0.35-0.45% by weight, For example, 0.35 wt %, 0.36 wt %, 0.38 wt %, 0.40 wt %, 0.41 wt %, 0.43 wt %, 0.45 wt %, and the like.
  • the positive electrode material is a single crystal material.
  • the core is a single crystal material.
  • the material formed after the surface of the core of the single crystal is coated with the shell can also be considered as a single crystal material.
  • the average particle size of the positive electrode material is 1-10 ⁇ m, such as 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 8 ⁇ m or 10 ⁇ m.
  • the average particle size of the positive electrode material is 2-4 ⁇ m.
  • a method for preparing the cobalt-free positive electrode material includes:
  • step (3) pulverizing the material after step (2) to obtain a cobalt-free positive electrode material.
  • the addition of conductive substances can improve particle dispersibility and improve coating effect.
  • the preparation method is simple and can be applied on a large scale.
  • the preparation method of the cobalt-free positive electrode material can improve the dispersibility during the coating process of the cobalt-free positive electrode material, and at the same time improve the conductivity of the cobalt-free positive electrode material.
  • the reaction conditions include: the temperature is 800-1000°C, such as 800°C, 820°C, 840°C, 850°C, 880°C, 900°C, 925°C, 950°C °C or 1000°C, etc.; the time is 10-20h, such as 10h, 12h, 14h, 15h, 18h, 19h or 20h, etc.
  • the calcination conditions include: N 2 in an atmosphere, a temperature of 300-700 deg.] C, e.g. 300 °C, 400 °C, 500 °C , 550 °C, 600 °C or 700 °C, etc.; the time is 5-10h, such as 5h, 6h, 7h, 8.5h, 9h or 10h, etc.
  • the amount of the lithium salt is 47-50 wt %, for example, 47 wt %, 48 wt %, 48.5 wt %, 49% by weight or 50% by weight, etc.; the amount of the conductive substance used is 0.105-0.525% by weight, such as 0.105% by weight, 0.150% by weight, 0.200% by weight, 0.250% by weight, 0.300% by weight, 0.350% by weight, 0.400% by weight , 0.450 wt % or 0.500 wt %, etc.; the amount of the cobalt-free positive electrode material is 105-108 wt %, such as 105 wt %, 106 wt %, 107 wt % or 108 wt %, etc.; the amount of the coating agent 0.21-0.525 wt%, such as 0.21 wt%, 0.23 wt%, 0.30 wt%, 0.35 w
  • the amount of the lithium salt is 47-48 wt %, such as 47 wt %, 47.2 wt %, 47.5 wt % or 48 wt %, etc.; the The amount of the conductive substance used is 0.315-0.525% by weight, such as 0.315% by weight, 0.350% by weight, 0.400% by weight, 0.450% by weight, 0.480% by weight or 0.500% by weight, etc.
  • the amount of the cobalt-free positive electrode material is 105-106% by weight %, such as 105% by weight, 105.2% by weight, 105.5% by weight or 106% by weight, etc; Wait.
  • the conductive substance is selected from one or more of conductive carbon black, graphite and graphene.
  • the conductive material is conductive carbon black.
  • the specific surface area of the conductive substance is 50-200m 2 /g, such as 50m 2 /g, 60m 2 /g, 80m 2 /g, 90m 2 /g, 100m 2 /g, 120m 2 /g g, 150m 2 /g, 180m 2 /g or 200m 2 /g, etc.; the average particle size is 50-500nm, such as 50nm, 80nm, 100nm, 125nm, 150nm, 170nm, 200nm, 240nm, 280nm, 320nm, 350nm, 400nm or 500nm etc.
  • the coating agent is selected from at least one of Al 2 O 3 and ZrO 2 .
  • a cobalt-free positive electrode material prepared by the method is provided.
  • the conductivity of the cobalt-free positive electrode material prepared by the method can be improved.
  • a positive electrode of a lithium ion battery is provided, and the positive electrode of the lithium ion battery contains the cobalt-free positive electrode material.
  • a lithium ion battery in an embodiment of the present disclosure, includes a positive electrode and a negative electrode, and the positive electrode is the positive electrode of the lithium ion battery.
  • Fig. 1 is the SEM electron microscope photograph of the cobalt-free positive electrode material without adding conductive substance in Comparative Example 1;
  • Fig. 2 is the SEM electron microscope photograph of the cobalt-free positive electrode material obtained in Example 1;
  • Example 3 is a schematic diagram of the first-week charge-discharge curve of the material without carbon black added in Comparative Example 1 and the cobalt-free positive electrode material prepared in Example 1;
  • Example 4 is a schematic diagram of the cycle performance curves of the material without carbon black added in Comparative Example 1 and the cobalt-free positive electrode material prepared in Example 1.
  • Example 2 4, 4, and 6 are the cobalt-free positive electrode materials prepared in Example 1.
  • a cobalt-free positive electrode material in an embodiment of the present disclosure, includes a core and a shell covering the core, the core is a cobalt-free positive electrode material, and the chemical formula of the core is LiNi x M y O 2 , wherein 0.55 ⁇ x ⁇ 0.95, 0.05 ⁇ y ⁇ 0.45, the shell is a coating agent and carbon.
  • the inventor of the present disclosure found through experiments that in the related art, since the particle size of the cobalt-free positive electrode material is relatively small, it is easy to agglomerate during the dry coating process, resulting in poor coating uniformity; and the cobalt-free positive electrode cannot be improved. conductivity of the material.
  • the inventor mixed a cobalt-free positive electrode material, a coating agent and a conductive substance and then performed a baking treatment. Since the conductive substance has a relatively large specific surface area and relatively small particle size, the coating can be improved. At the same time, since the conductive substance has good conductivity, the conductivity of the cobalt-free cathode material can be improved.
  • the positive electrode material is a cobalt-free positive electrode material
  • the cobalt-free positive electrode material has a stable structure, is free from dependence on cobalt elements, and has a lower cost than cobalt-containing materials.
  • the cobalt-free positive electrode material is a single crystal material, and it can be determined from the electron microscope photos that in an embodiment provided by the present disclosure, the cobalt-free positive electrode material is a cobalt-free single crystal material Layered cathode material.
  • the content of the shell is 0.1-1.0 wt %.
  • the content of the shell is 0.3-1.0 wt % based on the total weight of the core.
  • the content of the shell is limited within the aforementioned range, which can improve the dispersion during the coating process, and can improve the conductivity of the cobalt-free positive electrode material.
  • the coating agent is at least one of Al 2 O 3 and ZrO 2 . It can also be expressed as "the coating agent is Al 2 O 3 and/or ZrO 2 ".
  • the content of the coating agent is 0.25-0.3 wt %, and the content of the carbon is 0.35-0.45 wt %.
  • x may be any value within a range of 0.75, 0.55, and 0.8, and any two of these point values.
  • y may be 0.2, 0.25, and 0.45, and any value in a range of any two of these point values.
  • x is 0.75 and y is 0.25.
  • x+y 1.
  • the positive electrode material is a single crystal material.
  • the average particle size of the positive electrode material is 1-10 ⁇ m.
  • the average particle size of the positive electrode material is 2-4 ⁇ m.
  • the “average particle size” refers to the D50 of the positive electrode material.
  • the "average particle size" is measured using a laser particle size analyzer.
  • a method for preparing a cobalt-free positive electrode material includes:
  • step (3) pulverizing the material after step (2) to obtain a cobalt-free positive electrode material.
  • the reaction conditions include: a temperature of 800-1000° C. and a time of 10-20 h.
  • the reaction conditions include: a temperature of 900-1000° C. and a time of 10-15 h.
  • the conditions for the calcination include: in an N 2 atmosphere, the temperature is 300-700° C., and the time is 5-10 h.
  • the conditions of the calcination include: a temperature of 300-500° C. and a time of 5-7 hours.
  • steps (1) and (2) the mixing is mixed in a high speed mixer.
  • the stirring speed is carried out under the condition of 800-1000 rpm.
  • the stirring speed is carried out under the condition of 900-1000 rpm.
  • step (2) based on the total weight of the precursor, the amount of lithium salt is 47-50 wt %, the amount of conductive material is 0.105-0.525 wt %, and the amount of cobalt-free positive electrode material is used. is 105-108% by weight, and the amount of the coating agent is 0.21-0.525% by weight.
  • step (2) based on the total weight of the precursor, the amount of lithium salt is 47-48 wt %, the amount of conductive material is 0.315-0.525 wt %, and the amount of cobalt-free positive electrode material is used. It is 105-106% by weight, and the amount of the coating agent is 0.21-0.315% by weight.
  • the conductive substance is selected from one or more of conductive carbon black, graphite and graphene.
  • the conductive material is conductive carbon black.
  • conductive carbon black is selected from one or more of acetylene black, Super P and Super S, wherein, Super P and Super S are trade marks, specifically, the specific surface area of Super P is 120m 2 /g , the average particle size is 55nm; the specific surface area of Super S is 80m 2 /g, and the average particle size is 125nm.
  • the specific surface area of the conductive substance is 50-200 m 2 /g; the average particle size of the conductive substance is 50-500 nm.
  • the specific surface area of the conductive substance is 100-200 m 2 /g.
  • the average of the conductive substance is 50-200 nm.
  • the capping agent is selected from Al 2 O 3 and/or ZrO 2 .
  • the lithium salt is LiOH and/or Li 2 CO 3 .
  • the material in step (3), can be pulverized by roller pulverization and jet pulverization, and then sieved to obtain the final product.
  • a cobalt-free positive electrode material prepared by the above method is provided.
  • a positive electrode of a lithium ion battery is provided, and the positive electrode of the lithium ion battery contains the above-mentioned cobalt-free positive electrode material.
  • a lithium ion battery in an embodiment of the present disclosure, includes a positive electrode and a negative electrode, and the positive electrode is the above-mentioned positive electrode of the lithium ion battery.
  • ICP The element content parameter passed the ICP test, ICP was purchased from PerkinElmer Enterprise Management (Shanghai) Co., Ltd., and the manufacturer's model was Avio 500;
  • the surface morphology and dispersibility were tested by SEM.
  • the SEM was purchased from ZEISS, Germany, and the manufacturer's model was SUPRA 55VP;
  • the obtained battery was subjected to a charge-discharge test at 25 ⁇ 2°C, the charge-discharge voltage was 3.0-4.4V, and the current density was 0.1C/0.1C; 50-week cycle performance test: the obtained battery was placed in a 25 ⁇ 2°C environment
  • the charging and discharging test was carried out under the following conditions, the charging and discharging voltage was 3.0-4.4V, and the current density was 0.1C/0.1C (0.5C charging, 1C discharging).
  • Lithium salt was purchased from Ganfeng Lithium Industry Co., Ltd.; precursor was purchased from Jinchi Energy Materials Co., Ltd.; coating agent was purchased from Shanghai Evonik Special Chemical Co., Ltd.; conductive substance was purchased from Tianjin Youmeng Chemical Technology Co., Ltd. .
  • This example provides a cobalt-free positive electrode material prepared by the following method.
  • the cathode material includes a core and a shell covering the core, the core is a cobalt-free cathode material, and the chemical formula of the core is LiNi 0.75 Mn 0.25 O 2 , the shell is a coating agent and carbon; and based on the total weight of the core, the content of the shell is 0.6% by weight (wherein, the content of the coating agent Al 2 O 3 is 0.25% by weight, The content of the carbon (conductive carbon black) is 0.35% by weight); the coating layer is uniform.
  • This example provides a cobalt-free positive electrode material prepared by the following method.
  • the cathode material includes a core and a shell covering the core, the core is a cobalt-free cathode material, and the chemical formula of the core is LiNi 0.55 Mn 0.45 O 2 , the shell is the coating agent and carbon; and based on the total weight of the core, the content of the shell is 0.7% by weight (wherein, the content of the coating agent ZrO 2 is 0.30% by weight, and the content of carbon (conductive carbon black) is 0.40% by weight. % by weight); the coating is uniform.
  • This example provides a cobalt-free positive electrode material prepared by the following method.
  • the cathode material includes a core and a shell covering the core, the core is a cobalt-free cathode material, and the chemical formula of the core is LiNi 080 Mn 0.20 O 2 , the shell is the coating agent and carbon; and based on the total weight of the core, the content of the shell is 0.73% by weight (wherein, the content of the coating agent Al 2 O 3 is 0.28% by weight, the content of carbon (conductive carbon black) 0.45% by weight); the coating is uniform.
  • This example provides a cobalt-free positive electrode material prepared by the following method.
  • the cobalt-free positive electrode material was prepared in the same manner as in Example 1, except that:
  • step (1) replace “LiOH” with “Li 2 CO 3 ";
  • step (2) " conductive carbon black with a specific surface area of 200 m 2 /g" is changed to "conductive carbon black with a specific surface area of 80 m 2 /g", based on the total weight of the precursor, the amount of lithium salt is 47% by weight, the amount of conductive material is 0.35% by weight, the amount of cobalt-free positive electrode material is 105% by weight, and the amount of coating agent is 0.25% by weight.
  • the cathode material includes a core and a shell covering the core, the core is a cobalt-free cathode material, and the chemical formula of the core is LiNi 0.75 Mn 0.25 O 2 , the shell is the coating agent and carbon; and based on the total weight of the core, the content of the shell is 0.6 wt % (wherein, the content of the coating agent Al 2 O 3 is 0.25 wt %, and the content of carbon (conductive carbon black) is 0.25 wt %. 0.35% by weight); the coating is uniform.
  • This example provides a cobalt-free positive electrode material prepared by the following method.
  • the cobalt-free positive electrode material was prepared in the same manner as in Example 1, except that:
  • step (1) "reaction at 950°C for 10h” is changed to “reaction at 880°C for 20h”;
  • step (2) the "at 400 °C, the heat treatment under N 2 atmosphere, 5H time” was changed to "at 700 deg.] C, a heat treatment under N 2 atmosphere, 8H time.”
  • the cathode material includes a core and a shell covering the core, the core is a cobalt-free cathode material, and the chemical formula of the core is LiNi 0.75 Mn 0.25 O 2 , the shell is the coating agent and carbon; and based on the total weight of the core, the content of the shell is 0.6 wt % (wherein, the content of the coating agent Al 2 O 3 is 0.25 wt %, and the content of carbon (conductive carbon black) is 0.25 wt %. 0.35% by weight); the coating is uniform.
  • the cobalt-free positive electrode material was prepared under the same conditions as in Example 1, except that in step (2), no conductive carbon black was added.
  • the final product cobalt-free cathode material is obtained, which is marked as LiNi 0.75 Mn 0.25 O 2 .
  • Fig. 1 is the SEM electron microscope photograph of the cobalt-free positive electrode material without adding conductive substance in Comparative Example 1
  • Fig. 2 is the SEM electron microscope photograph of the cobalt-free positive electrode material prepared in Example 1; from the SEM test results of Fig. 1 and Fig. 2,
  • the dispersibility of the cobalt-free positive electrode material with carbon black added in Example 1 in FIG. 2 is significantly better than that in FIG. 1 without the addition of conductive substances such as carbon black.
  • the cobalt-free positive electrode material is a single crystal material, and the average particle size is 1-5 ⁇ m, for example, 2-4 ⁇ m.
  • Figure 3 is a schematic diagram of the first cycle charge-discharge curve of the material without carbon black added in Comparative Example 1 and the cobalt-free positive electrode material prepared in Example 1;
  • the first-week charge-discharge curve under 0.1C charge-discharge As can be seen from Figure 3, the material without carbon black added in Comparative Example 1, the first-week charge and discharge specific capacities of 0.1C were 213.0mAh/g and 184.1mAh/g, respectively, and the first-week charge-discharge efficiency was 86.38%;
  • the first-week charge and discharge specific capacities of the cobalt-free cathode material 0.1C prepared in Example 1 were 222.6mAh/g and 196.6mAh/g, respectively, and the first-week charge-discharge efficiency was 88.32%.
  • adding carbon black during the coating process is beneficial to improve the first cycle charge-discharge efficiency and discharge specific capacity of the material.
  • Figure 4 is a schematic diagram of the cycle performance curves of the material without carbon black added in Comparative Example 1 and the cobalt-free positive electrode material prepared in Example 1;
  • Figure 4 is a material at 25°C and a voltage of 3.0-4.4V, under 0.5C/1C Cyclic curve. It can be seen from Figure 4 that the capacity retention rate of the material without carbon black added in Comparative Example 1 was 95.7% after 50 cycles of cycling, and the capacity retention rate of the cobalt-free cathode material prepared in Example 1 was 98.8% after 50 cycles of cycling.
  • the reason for the improved cycle performance is: adding carbon black during the coating process, as in Example 1, can improve the coating uniformity of the material, reduce the side reaction between the material and the electrolyte, and improve the conductivity of the material.
  • the cobalt-free positive electrode material was prepared in the same manner as in Example 1, except that:
  • step (2) based on the total weight of the precursor, the amount of the lithium salt is 48% by weight, the amount of the conductive material is 0.08% by weight, and the amount of the cobalt-free positive electrode material is 105 % by weight, the amount of the coating agent is 0.25% by weight.
  • the cathode material includes a core and a shell covering the core, the core is a cobalt-free cathode material, and the chemical formula of the core is LiNi 0.75 Mn 0.25 O 2 , the shell is the coating agent and carbon; and based on the total weight of the core, the content of the shell is 0.33% by weight (wherein, the content of the coating agent Al 2 O 3 is 0.25% by weight, carbon (conductive carbon black) content of 0.08% by weight).
  • the cobalt-free positive electrode material was prepared in the same manner as in Example 1, except that:
  • step (1) "reaction at 950°C for 10h” is changed to “reaction at 1100°C for 8h”;
  • step (2) the "at 400 °C, the heat treatment under N 2 atmosphere, 5H time” was changed to "at 800 deg.] C, the heat treatment under N 2 atmosphere, time is 12h.”
  • the cathode material includes a core and a shell covering the core, the core is a cobalt-free cathode material, and the chemical formula of the core is LiNi 0.75 Mn 0.25 O 2 , the shell is a coating agent and carbon; and based on the total weight of the core, the content of the shell is 0.55% by weight (wherein, the content of the coating agent Al 2 O 3 is 0.20% by weight, carbon (conductive carbon black) content of 0.35% by weight).
  • the cobalt-free positive electrode material was prepared under the same conditions as in Example 1, the difference being that: in step (2), ordinary conductive carbon black, that is, carbon black with a non-large specific ratio, was added, specifically, the ordinary conductive carbon black The specific surface area is 25m 2 /g.
  • the common conductive carbon black was purchased from Tianjin Xinglongtai Chemical Products Technology Co., Ltd., and the model is xlt-1.
  • the cathode material includes a core and a shell covering the core, the core is a cobalt-free cathode material, the chemical formula of the core is LiNi 0.75 Mn 0.25 O 2 , and the shell is A capping agent and carbon; and based on the total weight of the core, the content of the shell is 0.6 wt % (wherein, the content of the capping agent Al 2 O 3 is 0.25 wt %, and the content of carbon (conductive carbon black) is 0.35 wt % %); however, the coating is not uniform.
  • n samples were prepared according to the method of Comparative Example 2-4 and Example 2-5, and 3 samples were randomly taken from it to test ICP.
  • the uniformity of the three elements is higher than that of Comparative Examples 2-4 without carbon black.
  • Example 1 After adding carbon black in the coating process of Example 1, from 1/3C to 4C, it can be seen that the high-rate performance of the cobalt-free cathode material prepared in Example 1 is significantly improved. For example, at a rate of 1C, the specific discharge capacity of the material after adding carbon black in Example 1 increased to 173.1mAh/g; at a rate of 4C, the specific discharge capacity of the material after adding carbon black in Example 1 reached 150.9mAh/g. In contrast, the material without carbon black added in Comparative Example 1 has a specific discharge capacity of only 164.5mAh/g at a rate of 1C, and the specific discharge capacity of the material without carbon black added in Comparative Example 1 is only 138.6mAh/g at a rate of 4C. It shows that the reason for the improved rate performance is that the carbon black has better electronic conductivity, and the electrochemical activity of the cobalt-free cathode material can be improved after coating, thereby improving the rate performance of the material.
  • Example 4 the cobalt-free cathode material C 4 -LiNi 0.75 Mn 0.25 O 2 prepared in Example 4; the conductive carbon black with a specific surface area of 200 m 2 /g" was modified to "the conductive carbon black with a specific surface area of 80 m 2 /g, The result is inferior to Example 1 in capacity and rate performance.
  • the cobalt-free cathode materials prepared in Comparative Examples 2 and 3 were DC 2 -LiNi 0.75 Mn 0.25 O 2 ; the results were lower than those of Example 1 in terms of capacity and rate performance.
  • the comparative example shows that, when X is increased, the capacity is increased, and when X is decreased, the capacity is decreased.
  • Example 2-5 and Comparative Example 2-4 were subjected to the first-week charge-discharge test at 25°C, when the voltage was 3.0-4.4V, and 0.1C/0.1C. The results are shown in Table 3.
  • Example 2-5 The materials prepared in Example 2-5 and Comparative Example 2-4 were tested for cycle performance at 25°C, when the voltage was 3.0-4.4V, and 0.5C/1C. The results are shown in Table 3.
  • Example 2-3 show that after X is greater than 0.75, the cycle performance is reduced; Improve cycle performance.
  • the present disclosure can improve particle dispersibility and coating effect by adding conductive substances; and the conductivity of the cobalt-free positive electrode material prepared by this method can be improved; in addition, the preparation method is simple and can be used on a large scale application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种无钴正极材料及其制备方法以及锂离子电池正极和锂电池,涉及锂离子电池技术领域。所述正极材料包括核以及包覆所述核的壳,所述核为无钴正极材料,所述核的化学式为LiNi xMn yO 2,其中,0.55≤x≤0.95,0.05≤y≤0.45,所述壳为包覆剂和碳。该方法能够提高无钴正极材料包覆过程中的分散性,同时能够提高无钴正极材料的导电性。

Description

无钴正极材料及其制备方法以及锂离子电池正极和锂电池 技术领域
本公开涉及锂离子电池技术领域,例如涉及一种无钴正极材料及其制备方法以及锂离子电池正极和锂电池。
背景技术
当前,新能源汽车领域对锂离子动力电池的安全、续航里程、成本要求越来越高。在动力电池的四大主材中,正极材料性能对整个电池性能起着至关重要的作用,同时其成本占动力电池总成本的30~40%。因此,若要提高电池性能,降低其成本,需要提高提高正极材料性能,降低正极材料的成本。
目前广泛使用的NCM正极中钴元素价格昂贵,易对环境造成污染,因此需要降低三元正极材料的钴含量,或者使材料中不含钴。然而,无钴单晶层状正极材料因为一次粒径比较小,D50在2-4um,所以在干法包覆过程中容易团聚,导致包覆均匀性较差。同时,无钴材料中因缺少钴而导致导电性差,倍率性能差。
目前,对于无钴单晶层状正极材料的改进,未见有报道提出明确的改善方案。
因此,研究和开发一种无钴正极材料具有重要意义。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开提供一种无钴正极材料及其制备方法以及锂离子电池正极和锂电池。
本公开在一实施例中提供一种无钴正极材料,所述正极材料包括核以及包覆所述核的壳,所述核为无钴正极材料,所述核的化学式为LiNi xMn yO 2,其中,0.55≤x≤0.95,0.05≤y≤0.45,所述壳为包覆剂和碳。
本公开提供的一实施例中,无钴正极材料在干法包覆过程中不易团聚,包覆均匀性好,能够提高无钴单晶正极材料的导电性。
在一实施例中,以所述核的总重量为基准,所述壳的含量为0.1-1.0重量%,例如0.1重量%、0.2重量%、0.3重量%、0.5重量%、0.6重量%、0.8重量%或1.0重量%等。
在一实施例中,所述壳的含量为0.3-1.0重量%,例如0.3重量%、0.4重量%、0.5重量%、0.7重量%、0.8重量%、0.9重量%或1.0重量%等。
在一实施例中,所述包覆剂为Al 2O 3和ZrO 2中的至少一种。
在一实施例中,所述包覆剂的含量为0.25-0.3重量%,例如0.25重量%、0.28重量%、0.29重量%或0.30重量%等;所述碳的含量为0.35-0.45重量%,例如0.35重量%、0.36重量%、0.38重量%、0.40重量%、0.41重量%、0.43重量%或0.45重量%等。
在一实施例中,所述正极材料为单晶材料。
在一实施例中,所述核为单晶材料。
在该单晶的核的表面包覆所述的壳之后形成的材料也可以认为是单晶材料。
在一实施例中,所述正极材料的平均粒径为1-10μm,平均粒径例如1μm、2μm、3μm、4μm、5μm、6μm、8μm或10μm等。
在一实施例中,所述正极材料的平均粒径为2-4μm。
本公开在一实施例中提供一种所述无钴正极材料的制备方法,该方法包括:
(1)将锂盐和前驱体混合后进行反应,得到无钴正极材料;其中,所述前驱体的化学式为Ni xMn y(OH) 2,0.55≤x≤0.95,0.05≤y≤0.45;
(2)将所述无钴正极材料、包覆剂和导电物质混合后进行焙烧处理;
(3)将经步骤(2)后的物质进行粉碎处理,得到无钴正极材料。
本公开提供的一实施例中,采用添加导电物质,能够改善颗粒分散性,提高包覆效果。而且制备方法简单,可以大规模应用。
本公开提供的一实施例中,所述无钴正极材料的制备方法能够提高无钴正极材料包覆过程中的分散性,同时提高无钴正极材料的导电性。
在一实施例中,在步骤(1)中,所述反应的条件包括:温度为800-1000℃,例如800℃、820℃、840℃、850℃、880℃、900℃、925℃、950℃或1000℃等;时间为10-20h,例如10h、12h、14h、15h、18h、19h或20h等。
在一实施例中,在步骤(2)中,所述焙烧的条件包括:在N 2气氛下,温度为300-700℃,例如300℃、400℃、500℃、550℃、600℃或700℃等;时间为5-10h,例如5h、6h、7h、8.5h、9h或10h等。
在一实施例中,在步骤(2)中,以所述前驱体的总重量为基准,所述锂盐的用量为47-50重量%,例如47重量%、48重量%、48.5重量%、49重量%或50重量%等;所述导电物质的用量为0.105-0.525重量%,例如0.105重量%、0.150重量%、0.200重量%、0.250重量%、0.300重量%、0.350重量%、0.400重量%、0.450重量%或0.500重量%等;所述无钴正极材料的用量为105-108重量%,例如105重量%、106重量%、107重量%或108重量%等;所述包覆剂的用量为0.21-0.525重量%,例如0.21重量%、0.23重量%、0.30重量%、0.35重量%、0.40重量%或0.45重量%等。
在一实施例中,以所述前驱体的总重量为基准,所述锂盐的用量为47-48重量%,例如47重量%、47.2重量%、47.5重量%或48重量%等;所述导电物质的用量为0.315-0.525重量%,例如0.315重量%、0.350重量%、0.400重量%、0.450重量%、0.480重量%或0.500重量%等;所述无钴正极材料的用量为105-106重量%,例如105重量%、105.2重量%、105.5重量%或106重量%等;所述包覆剂的用量为0.21-0.315重量%,例如0.21重量%、0.25重量%、0.28重量%或0.3重量%等。
在一实施例中,所述导电物质选自导电炭黑、石墨和石墨烯中的一种或多种。
在一实施例中,所述导电物质为导电炭黑。
在一实施例中,所述导电物质的比表面积为50-200m 2/g,例如50m 2/g、60m 2/g、80m 2/g、90m 2/g、100m 2/g、120m 2/g、150m 2/g、180m 2/g或200m 2/g等;平均粒径为50-500nm,平均粒径例如50nm、80nm、100nm、125nm、150nm、170nm、200nm、240nm、280nm、320nm、350nm、400nm或500nm等。
在一实施例中,所述包覆剂选自Al 2O 3和ZrO 2中的至少一种。
本公开在一实施例中提供一种由所述的方法制得的无钴正极材料。采用所述的方法制得的无钴正极材料的导电性能够得到提高。
本公开在一实施例中提供一种锂离子电池正极,所述锂离子电池正极含有所述的无钴正极材料。
本公开在一实施例中提供一种锂离子电池,该锂离子电池包括正极和负极,所述正极为所述的锂离子电池正极。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1是对比例1没有加入导电物质的无钴正极材料的SEM电镜照片;
图2是实施例1制得的无钴正极材料的SEM电镜照片;
图3是对比例1没有加入炭黑的材料以及实施例1制得的无钴正极材料的首周充放电曲线示意图;
图4是对比例1没有加入炭黑的材料以及实施例1制得的无钴正极材料的循环性能曲线示意图。
附图标记说明
1,3,5是对比例1没有加入炭黑的材料;
2,4,6是实施例1制得的无钴正极材料。
具体实施例
下面通过具体实施方式来进一步说明本公开的技术方案。
本公开在一实施例中提供一种无钴正极材料,该正极材料包括核以及包覆所述核的壳,核为无钴正极材料,核的化学式为LiNi xMn yO 2,其中,0.55≤x≤0.95,0.05≤y≤0.45,壳为包覆剂和碳。
本公开的发明人通过实验发现:相关技术中,由于无钴正极材料的粒径比较小,所以在干法包覆过程中容易团聚,导致包覆均匀性较差;并且,不能提高无钴正极材料的导电性。
本公开提供的一实施例中,发明人通过将无钴正极材料、包覆剂和导电物质混合后进行焙烧处理,由于该导电物质具有比较大的比表面积和比较小的粒径,能够改善包覆过程中的分散性,同时,由于导电物质具有良好的导电性,能够提高无钴正极材料的导电性。
另外,本公开的一实施例中,正极材料为无钴正极材料,无钴正极材料结构稳定,摆脱了对钴元素的依赖,成本比含钴材料低。
需要说明的是,本公开提供的一实施例中,无钴正极材料属于单晶材料,并且从电镜照片上能够确定,本公开提供的一实施例中,无钴正极材料即为无钴单晶层状正极材料。
在一实施例中,以所述核的总重量为基准,所述壳的含量为0.1-1.0重量%。
在一实施例中,以所述核的总重量为基准,所述壳的含量为0.3-1.0重量%。
本公开提供的一实施例中,将壳的含量限定为前述范围之内,能够改善包覆过程中的分散性,并且,能够提高无钴正极材料的导电性。
在一实施例中,所述包覆剂为Al 2O 3和ZrO 2中的至少一种。也可表述为“所述包覆剂为Al 2O 3和/或ZrO 2”。
在一实施例中,所述包覆剂的含量为0.25-0.3重量%,所述碳的含量为0.35-0.45重量%。
在一实施例中,0.55≤x≤0.8,0.2≤y≤0.45。
在一实施例中,x可以为0.75、0.55和0.8以及这些点值中的任意两个所构成的范围中的任意值。
在一实施例中,y可以为0.2、0.25和0.45以及这些点值中的任意两个所构成的范围中的任意值。
在一实施例中,x为0.75,y为0.25。
在一实施例中,x+y=1。
在一实施例中,正极材料为单晶材料。
在一实施例中,正极材料的平均粒径为1-10μm。
在一实施例中,正极材料的平均粒径为2-4μm。
在本公开中,需要说明的是,“平均粒径”指的是所述正极材料的D50。
在一实施例中,“平均粒径”采用激光粒度仪进行测量。
本公开在一实施例中提供提供一种无钴正极材料的制备方法,该方法包括:
(1)将锂盐和前驱体混合后进行反应,得到无钴正极材料;其中,前驱体的化学式为Ni xMn y(OH) 2,0.55≤x≤0.95,0.05≤y≤0.45;
(2)将上述的无钴正极材料、包覆剂和导电物质混合后进行焙烧处理;
(3)将经步骤(2)后的物质进行粉碎处理,得到无钴正极材料。
在一实施例中,在步骤(1)中,所述反应的条件包括:温度为800-1000℃,时间为10-20h。
在一实施例中,在步骤(1)中,所述反应的条件包括:温度为900-1000℃,时间为10-15h。
在一实施例中,在步骤(2)中,所述焙烧的条件包括:在N 2气氛下,温度为300-700℃,时间为5-10h。
在一实施例中,在步骤(2)中,所述焙烧的条件包括:温度为300-500℃,时间为5-7h。
在一实施例中,在步骤(1)和(2)中,所述混合在高速混料机中混合。
在一实施例中,在步骤(1)和(2)中,在搅拌速率为800-1000rpm的条件下进行。
在一实施例中,在步骤(1)和(2)中,在搅拌速率为900-1000rpm的条件下进行。
在一实施例中,在步骤(2)中,以前驱体的总重量为基准,锂盐的用量为47-50重量%,导电物质的用量为0.105-0.525重量%,无钴正极材料的用量为105-108重量%,所述包覆剂的用量为0.21-0.525重量%。
在一实施例中,在步骤(2)中,以前驱体的总重量为基准,锂盐的用量为47-48重量%,导电物质的用量为0.315-0.525重量%,无钴正极材料的用量为105-106重量%,包覆剂的用量为0.21-0.315重量%。
在一实施例中,导电物质选自导电炭黑、石墨和石墨烯中的一种或多种。
在一实施例中,导电物质为导电炭黑。
在一实施例中,导电炭黑选自乙炔黑、Super P和Super S中的一种或多种,其中,Super P和Super S为牌号,具体的,Super P的比表面积为120m 2/g,平均粒径为55nm;Super S的比表面积为80m 2/g,平均粒径为125nm。
在一实施例中,导电物质的比表面积为50-200m 2/g;导电物质的平均粒径为50-500nm。
在一实施例中,导电物质的比表面积为100-200m 2/g。
在一实施例中,导电物质的平均为50-200nm。
在一实施例中,包覆剂选自Al 2O 3和/或ZrO 2
在一实施例中,锂盐为LiOH和/或Li 2CO 3
在一实施例中,在步骤(3)中,可以采用对辊破碎和气流粉碎将材料进行粉碎处理,然后过筛得到最终产品。
本公开在一实施例中提供一种由上述的方法制得的无钴正极材料。
本公开在一实施例中提供一种锂离子电池正极,该锂离子电池正极含有上述的无钴正极材料。
本公开在一实施例中提供了一种锂离子电池,该锂离子电池包括正极和负极,正极为上述的锂离子电池正极。
以下为本公开典型但非限制性实施例:
以下实施例和对比例中:
(1)元素含量参数通过ICP测试,ICP购自珀金埃尔默企业管理(上海)有限公司,厂家型号为Avio 500;
(2)表面形态以及分散性通过SEM测试,SEM购自德国ZEISS,厂家型号为SUPRA 55VP;
(3)首周充放电和循环性能通过组装扣电,测试扣电所得;扣电制作如下:
按照正极材料:导电炭黑:粘结剂PVDF(聚偏氟乙烯)=92:4:4的质量比混合,以NMP(N-甲基吡咯烷酮)为溶剂混浆后涂布于铝箔上,经过90℃真空干燥得到正极极片;然后将所述负极极片(锂片)、正极极片、电解液(1mol/L的LiPF6,EC:EMC=1:1)(EC为碳酸乙烯酯,EMC为碳酸甲乙酯酯)和隔膜组装成电池。
(4)首周充放电性能测试:
将得到的电池在25±2℃环境下进行充放电测试,充放电电压为3.0-4.4V,电流密度为0.1C/0.1C;50周循环性能测试:将得到的电池在25±2℃环境下进行充放电测试,充放电电压为3.0-4.4V,电流密度为0.1C/0.1C(0.5C充电,1C放电)。
(5)锂盐购自赣锋锂业股份有限公司;前驱体购自金驰能源材料有限公司;包覆剂购自上海赢创特种化学有限公司;导电物质购自天津优盟化工科技有限 公司。
实施例1
本实施例提供下述方法制备的无钴正极材料。
(1)将48gLiOH和100g前驱体NixMny(OH) 2,x为0.75,y为0.25,在高速混合机中,在搅拌速率为950rpm的条件下进行混合,然后在950℃高温反应10h,合成无钴正极材料;
(2)将无钴正极材料105g、包覆剂(具体为Al 2O 3)0.25g、比表面积为200m 2/g的导电炭黑0.35g在高速混料机中,在搅拌速率为1000rpm的条件下中混合,将混合好的物料在400℃,N 2气氛下热处理,时间为5h;其中,以所述前驱体的总重量为基准,所述锂盐的用量为48重量%,所述导电物质的用量为0.35重量%,所述无钴正极材料的用量为105重量%,所述包覆剂的用量为0.25重量%;
(3)采用对辊破碎和气流粉碎将上述材料进行粉碎处理,过300-400目筛。
结果得到最终产品无钴正极材料,标记为C 1-LiNi 0.75Mn 0.25O 2;该正极材料包括核以及包覆核的壳,核为无钴正极材料,核的化学式为LiNi 0.75Mn 0.25O 2,所述壳为包覆剂和碳;且以所述核的总重量为基准,所述壳的含量为0.6重量%(其中,所述包覆剂Al 2O 3的含量为0.25重量%,所述碳(导电炭黑)的含量为0.35重量%);包覆层均匀。
实施例2
本实施例提供下述方法制备的无钴正极材料。
(1)将47LiOH和100g前驱体Ni xMn y(OH) 2,x为0.55,y为0.45,在高速混合机中,在搅拌速率为900rpm的条件下进行混合,然后在980℃高温反应12h,合成无钴正极材料;
(2)将无钴正极材料106g、包覆剂(具体为ZrO 2)0.30g、比表面积为120m 2/g的导电炭黑0.40g在高速混料机中,在搅拌速率为980rpm的条件下中混合,将混合好的物料在500℃,N 2气氛下热处理,时间为6h;其中,以所述前驱体的总重量为基准,所述锂盐的用量为47重量%,所述导电物质的用量为0.40重量%,所述无钴正极材料的用量为106重量%,所述包覆剂的用量为0.30重量%;
(3)采用对辊破碎和气流粉碎将上述材料进行粉碎处理,过300-400目筛。
结果得到最终产品无钴正极材料,标记为C 2-LiNi 0.55Mn 0.45O 2;该正极材料包括核以及包覆核的壳,核为无钴正极材料,核的化学式为LiNi 0.55Mn 0.45O 2,壳为包覆剂和碳;且以核的总重量为基准,壳的含量为0.7重量%(其中,包覆剂ZrO 2的含量为0.30重量%,碳(导电炭黑)的含量为0.40重量%);包覆层均匀。
实施例3
本实施例提供下述方法制备的无钴正极材料。
(1)将48LiOH和100g前驱体Ni xMn y(OH) 2,x为0.80,y为0.20,在高速混合机中,在搅拌速率为950rpm的条件下进行混合,然后在900℃高温反应15h,合成无钴单晶层状正极材料;
(2)将无钴单晶层状正极材料105.5g、包覆剂(具体为Al 2O 3)0.28g、比表面积为150m 2/g的导电炭黑0.45g在高速混料机中,在搅拌速率为1000rpm的条件下中混合,将混合好的物料在500℃,N 2气氛下热处理,时间为7h;其中,以所述前驱体的总重量为基准,所述锂盐的用量为48重量%,所述导电物质的用量为0.45重量%,所述无钴正极材料的用量为105.5重量%,所述包覆剂的用量为0.28重量%;
(3)采用对辊破碎和气流粉碎将上述材料进行粉碎处理,过300-400目筛。
结果得到最终产品无钴正极材料,标记为C 3-LiNi 080Mn 0.20O 2;该正极材料包括核以及包覆核的壳,核为无钴正极材料,核的化学式为LiNi 080Mn 0.20O 2,壳为包覆剂和碳;且以核的总重量为基准,壳的含量为0.73重量%(其中,包覆剂Al 2O 3的含量为0.28重量%,碳(导电炭黑)的含量为0.45重量%);包覆层均匀。
实施例4
本实施例提供下述方法制备的无钴正极材料。
按照与实施例1相同的方法制备无钴正极材料,所不同之处在于:
在步骤(1)中,将“LiOH”替换为“Li 2CO 3”;
在步骤(2)中,将“比表面积为200m 2/g的导电炭黑”修改为“比表面积为80m 2/g的导电炭黑”,以前驱体的总重量为基准,锂盐的用量为47重量%,导电物质的用量为0.35重量%,无钴正极材料的用量为105重量%,包覆剂的用 量为0.25重量%。
结果得到最终产品无钴正极材料,标记为C 4-LiNi 0.75Mn 0.25O 2;该正极材料包括核以及包覆核的壳,核为无钴正极材料,核的化学式为LiNi 0.75Mn 0.25O 2,壳为包覆剂和碳;且以核的总重量为基准,壳的含量为0.6重量%(其中,包覆剂Al 2O 3的含量为0.25重量%,碳(导电炭黑)的含量为0.35重量%);包覆层均匀。
实施例5
本实施例提供下述方法制备的无钴正极材料。
按照与实施例1相同的方法制备无钴正极材料,所不同之处在于:
在步骤(1)中,将“在950℃高温反应10h”修改为“在880℃高温反应20h”;
在步骤(2)中,将“在400℃,N 2气氛下热处理,时间为5h”修改为“在700℃,N 2气氛下热处理,时间为8h”。
结果得到最终产品无钴正极材料,标记为C 5-LiNi 0.75Mn 0.25O 2;该正极材料包括核以及包覆核的壳,核为无钴正极材料,核的化学式为LiNi 0.75Mn 0.25O 2,壳为包覆剂和碳;且以核的总重量为基准,壳的含量为0.6重量%(其中,包覆剂Al 2O 3的含量为0.25重量%,碳(导电炭黑)的含量为0.35重量%);包覆层均匀。
对比例1
按照与实施例1相同的条件制备无钴正极材料,所不同之处在于:在步骤(2)中,没有添加导电炭黑。
结果得到最终产品无钴正极材料,标记为LiNi 0.75Mn 0.25O 2
图1是对比例1没有加入导电物质的无钴正极材料的SEM电镜照片;图2是实施例1制得的无钴正极材料的SEM电镜照片;从图1和图2的SEM测试结果显示,图2实施例1中加入炭黑的无钴正极材料分散性明显优于图1没有加入导电物质例如炭黑的分散性。另外,从图2能够看出,所述无钴正极材料为单晶材料,平均粒径为1-5μm,例如为2-4μm。
另外,在本公开中,需要说明的是,在图1和图2中,“ZEISS”为设备厂 家标识。
图3是对比例1没有加入炭黑的材料以及实施例1制得的无钴正极材料的首周充放电曲线示意图;图3为材料在25℃,电压在3.0-4.4V时,0.1C/0.1C充放电下首周充放电曲线。从图3中能够看出,对比例1没有加入炭黑的材料,0.1C的首周充电和放电比容量分别为213.0mAh/g和184.1mAh/g,首周充放电效率为86.38%;实施例1制得的无钴正极材料0.1C的首周充电和放电比容量分别为222.6mAh/g和196.6mAh/g,首周充放电效率为88.32%。
因此,在包覆过程中加入炭黑,有利于提高材料的首周充放电效率和放电比容量。
图4是对比例1没有加入炭黑的材料以及实施例1制得的无钴正极材料的循环性能曲线示意图;图4为材料在25℃,电压在3.0-4.4V时,0.5C/1C下循环曲线。从图4中能够看出,对比例1没有加入炭黑的材料循环50周后容量保持率为95.7%,实施例1制得的无钴正极材料循环50周后容量保持率为98.8%。循环性能提高的原因为:在包覆过程中加入炭黑,如实施例1,能够提高材料的包覆均匀性,减少了材料和电解液之间的副反应,改善了材料的导电性。
对比例2
按照与实施例1相同的方法制备无钴正极材料,所不同之处在于:
在步骤(2)中,以所述前驱体的总重量为基准,所述锂盐的用量为48重量%,所述导电物质的用量为0.08重量%,所述无钴正极材料的用量为105重量%,所述包覆剂的用量为0.25重量%。
结果得到最终产品无钴正极材料,标记为DC 2-LiNi 0.75Mn 0.25O 2;该正极材料包括核以及包覆核的壳,核为无钴正极材料,核的化学式为LiNi 0.75Mn 0.25O 2,壳为包覆剂和碳;且以核的总重量为基准,壳的含量为0.33重量%(其中,所述包覆剂Al 2O 3的含量为0.25重量%,碳(导电炭黑)的含量为0.08重量%)。
对比例3
按照与实施例1相同的方法制备无钴正极材料,所不同之处在于:
在步骤(1)中,将“在950℃高温反应10h”修改为“在1100℃高温反应8h”;
在步骤(2)中,将“在400℃,N 2气氛下热处理,时间为5h”修改为“在800℃,N 2气氛下热处理,时间为12h”。
结果得到最终产品无钴正极材料,标记为DC 3-LiNi 0.75Mn 0.25O 2;该正极材料包括核以及包覆核的壳,核为无钴正极材料,核的化学式为LiNi 0.75Mn 0.25O 2,壳为包覆剂和碳;且以核的总重量为基准,壳的含量为0.55重量%(其中,所述包覆剂Al 2O 3的含量为0.20重量%,碳(导电炭黑)的含量为0.35重量%)。
对比例4
按照与实施例1相同的条件制备无钴正极材料,所不同之处在于:在步骤(2)中,添加普通导电炭黑,即非大比表的炭黑,具体地,该普通导电炭黑的比表面积为25m 2/g。另外,在本公开中,该普通导电炭黑购自天津星龙泰化工产品科技有限公司,型号为xlt-1。
结果得到最终产品无钴正极材料,标记为LiNi 0.75Mn 0.25O 2,该正极材料包括核以及包覆核的壳,核为无钴正极材料,核的化学式为LiNi 0.75Mn 0.25O 2,壳为包覆剂和碳;且以核的总重量为基准,壳的含量为0.6重量%(其中,包覆剂Al 2O 3的含量为0.25重量%,碳(导电炭黑)的含量为0.35重量%);但是,包覆层不均匀。
测试例1
按照对比例1和实施例1的方法制备n个样品,从中随机取3个样品测试ICP,结果如表1-ICP测试结果对比所示。
表1
Figure PCTCN2020134519-appb-000001
Figure PCTCN2020134519-appb-000002
从表1能够看出:实施例1中加入炭黑的物料,Ni,Mn,Al(包覆剂)3种元素的均匀性均高于对比例1不加炭黑的。
相应地,按照对比例2-4和实施例2-5的方法制备n个样品,从中随机取3个样品测试ICP,结果实施例2-5中加入炭黑的物料,Ni,Mn,Al(包覆剂)3种元素的均匀性均高于对比例2-4不加炭黑的。
测试例2
将对比例1-4和实施例1-5制备的材料进行倍率性能测试,结果如表2倍率性能对比所示。
表2
Figure PCTCN2020134519-appb-000003
Figure PCTCN2020134519-appb-000004
备注:表2在各个数据的单位为mAh/g。
通过表2的结果能够看出:
(1)实施例1包覆过程中加入炭黑后,从1/3C至4C,能够看出实施例1制备的无钴正极材料大倍率性能有明显的提升。例如:1C倍率下,实施例1加入炭黑后的材料放电比容量提高到173.1mAh/g;4C倍率下,实施例1加入炭黑后的材料放电比容量达到150.9mAh/g。而对比例1未加入炭黑的材料,1C倍率下,放电比容量仅为164.5mAh/g,4C倍率下,对比例1未加炭黑的材料放电比容量仅为138.6mAh/g。说明倍率性能提高的原因为炭黑电子电导率较好,包覆后可以提高无钴正极材料的电化学活性,从而提升材料的倍率性能。
同理,实施例4制备的无钴正极材料C 4-LiNi 0.75Mn 0.25O 2;将比表面积为200m 2/g的导电炭黑”修改为“比表面积为80m 2/g的导电炭黑,结果比实施例1容量及倍率性能差。
实施例5制备的无钴正极材料C 5-LiNi 0.75Mn 0.25O 2;将“在400℃,N2气氛下热处理,时间为5h”修改为“在700℃,N 2气氛下热处理,时间为8h后,以及以所述核的总重量为基准,所述壳的含量为0.6重量%;结果步骤(2)中的温度高,容量降低。
而对比例2和3制备的无钴正极材料DC 2-LiNi 0.75Mn 0.25O 2;结果比实施例1容量及倍率性能差。对比例说明,X提高,容量提高,X降低,容量降低。
测试例3
将实施例2-5和对比例2-4制备的材料在25℃,电压在3.0-4.4V时,0.1C/0.1C下进行首周充放电测试,结果如表3所示。
测试例4
将实施例2-5和对比例2-4制备的材料在25℃,电压在3.0-4.4V时,0.5C/1C下进行循环性能测试,结果如表3所示。
表3
Figure PCTCN2020134519-appb-000005
通过表3的结果能够看出:
实施例2-3结果说明,X大于0.75后,循环性能下降;实施例4-5结果说明,大比表的导电剂、合适的反应条件(一烧)和焙烧条件(二烧)温度有利于提高循环性能。
对比例3制备的材料,反应条件(一烧)和焙烧条件(二烧)温度过高,结果部分包覆剂进入到本体材料内部,壳含量减少;对比例4采用的比表面积比较小的导电炭黑,解雇包覆层不均匀;对比例2-4结果说明导电剂含量过少、反应条件(一烧)和焙烧条件(二烧)温度过高、导电剂比较小均不利于无钴材料循环性能的提高。
综上,本公开通过采用添加导电物质,能够改善颗粒分散性,提高包覆效果;以及采用该方法制得的无钴正极材料的导电性能够得到提高;另外,该制备方法简单,可以大规模应用。

Claims (20)

  1. 一种无钴正极材料,所述正极材料包括核以及包覆所述核的壳,所述核为无钴正极材料,所述核的化学式为LiNi xMn yO 2,其中,0.55≤x≤0.95,0.05≤y≤0.45,所述壳为包覆剂和碳。
  2. 根据权利要求1所述的正极材料,其中,以所述核的总重量为基准,所述壳的含量为0.1-1.0重量%。
  3. 根据权利要求2所述的正极材料,其中,以所述核的总重量为基准,所述壳的含量为0.3-1.0重量%。
  4. 根据权利要求1-3任一项所述的正极材料,其中,所述包覆剂为Al 2O 3和ZrO 2中的至少一种。
  5. 根据权利要求1-4一项所述的正极材料,其中,所述包覆剂的含量为0.25-0.3重量%,所述碳的含量为0.35-0.45重量%。
  6. 根据权利要求1-5任一项所述的正极材料,其中,所述正极材料为单晶材料。
  7. 根据权利要求1-6一项所述的正极材料,其中,所述正极材料的平均粒径为1-10μm。
  8. 根据权利要求7述的正极材料,其中,所述正极材料的平均粒径为2-4μm。
  9. 一种无钴正极材料的制备方法,所述方法包括:
    (1)将锂盐和前驱体混合后进行反应,得到无钴正极材料;其中,所述前驱体的化学式为Ni xMn y(OH) 2,0.55≤x≤0.95,0.05≤y≤0.45;
    (2)将所述无钴正极材料、包覆剂和导电物质混合后进行焙烧处理;
    (3)将经步骤(2)后的物质进行粉碎处理,得到无钴正极材料。
  10. 根据权利要求9所述的方法,其中,在步骤(1)中,所述反应的条件包括:温度为800-1000℃,时间为10-20h。
  11. 根据权利要求9或10所述的方法,其中,在步骤(2)中,所述焙烧的条件包括:在N 2气氛下,温度为300-700℃,时间为5-10h。
  12. 根据权利要求9-11任一项所述的方法,其中,在步骤(2)中,以所述前驱体的总重量为基准,所述锂盐的用量为47-50重量%,所述导电物质的用量为0.105-0.525重量%,所述无钴正极材料的用量为105-108重量%,所述包覆剂的用量为0.21-0.525重量%。
  13. 根据权利要求12所述的方法,其中,以所述前驱体的总重量为基准, 所述锂盐的用量为47-48重量%,所述导电物质的用量为0.315-0.525重量%,所述无钴正极材料的用量为105-106重量%,所述包覆剂的用量为0.21-0.315重量%。
  14. 根据权利要求9-13任一项所述的方法,其中,所述导电物质选自导电炭黑、石墨和石墨烯中的一种或多种。
  15. 根据权利要求14所述的方法,其中,所述导电物质为导电炭黑。
  16. 根据权利要求9-15任一项所述的方法,其中,所述导电物质的比表面积为50-200m 2/g,平均粒径为50-500nm。
  17. 根据权利要求9-15任一项所述的方法,其中,所述包覆剂选自Al 2O 3和/或ZrO 2
  18. 一种由权利要求9-17中任意一项所述的方法制得的无钴正极材料。
  19. 一种锂离子电池正极,所述锂离子电池正极含有权利要求1-8和18中任意一项所述的无钴正极材料。
  20. 一种锂离子电池,所述锂离子电池包括正极和负极,所述正极为权利要求19所述的锂离子电池正极。
PCT/CN2020/134519 2020-07-14 2020-12-08 无钴正极材料及其制备方法以及锂离子电池正极和锂电池 WO2022011939A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/785,898 US20230025787A1 (en) 2020-07-14 2020-12-08 Cobalt-free positive electrode material and preparation method therefor, lithium ion battery positive electrode, and lithium ion battery
KR1020227020663A KR20220103763A (ko) 2020-07-14 2020-12-08 무코발트 양극 재료 및 이의 제조방법 및 리튬 이온 배터리 양극과 리튬 배터리
EP20945562.5A EP4024520A4 (en) 2020-07-14 2020-12-08 COBALT-FREE POSITIVE ELECTRODE MATERIAL AND PREPARATION METHOD THEREFOR, LITHIUM-ION BATTERY POSITIVE ELECTRODE AND LITHIUM-ION BATTERY
JP2022521738A JP7392132B2 (ja) 2020-07-14 2020-12-08 コバルトフリー正極材料およびその調製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010677212.9 2020-07-14
CN202010677212.9A CN111916697B (zh) 2020-07-14 2020-07-14 无钴正极材料及其制备方法以及锂离子电池正极和锂电池

Publications (1)

Publication Number Publication Date
WO2022011939A1 true WO2022011939A1 (zh) 2022-01-20

Family

ID=73280937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134519 WO2022011939A1 (zh) 2020-07-14 2020-12-08 无钴正极材料及其制备方法以及锂离子电池正极和锂电池

Country Status (6)

Country Link
US (1) US20230025787A1 (zh)
EP (1) EP4024520A4 (zh)
JP (1) JP7392132B2 (zh)
KR (1) KR20220103763A (zh)
CN (1) CN111916697B (zh)
WO (1) WO2022011939A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114975983A (zh) * 2022-05-06 2022-08-30 四川新锂想能源科技有限责任公司 高镍低钴材料及其制备方法、电池正极
WO2023203952A1 (ja) * 2022-04-18 2023-10-26 パナソニックIpマネジメント株式会社 正極活物質、及び非水電解質二次電池

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111916697B (zh) * 2020-07-14 2021-09-21 蜂巢能源科技有限公司 无钴正极材料及其制备方法以及锂离子电池正极和锂电池
CN112786827A (zh) * 2021-01-29 2021-05-11 蜂巢能源科技有限公司 一种无钴正极材料及其制备方法
CN113060774B (zh) * 2021-03-26 2023-04-07 蜂巢能源科技有限公司 一种无钴正极材料及其制备方法和应用
CN113060775B (zh) * 2021-03-26 2022-10-28 蜂巢能源科技有限公司 一种无钴正极材料及其制备方法和应用
CN113072101B (zh) * 2021-03-30 2023-04-07 蜂巢能源科技有限公司 一种无钴正极材料及其制备方法和应用
CN113903894A (zh) * 2021-09-27 2022-01-07 蜂巢能源科技有限公司 一种复合无钴正极及其制备方法和应用
CN113725424B (zh) * 2021-11-03 2022-07-12 蜂巢能源科技有限公司 一种无钴正极材料及其制备方法和应用
CN114597372A (zh) * 2022-03-18 2022-06-07 蜂巢能源科技股份有限公司 一种超高镍正极材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103928668A (zh) * 2014-04-28 2014-07-16 深圳格林德能源有限公司 一种锂离子电池及其正极材料的制备方法
CN103996832A (zh) * 2014-05-16 2014-08-20 合肥工业大学 一种碳-金属氧化物双组分包覆修饰的高电压正极材料及其包覆方法
KR20160023496A (ko) * 2014-08-22 2016-03-03 주식회사 포스코이에스엠 무코발트 농도 구배 양극활물질의 제조 방법 및 이에 의하여 제조된 무코발트 농도 구배 양극활물질
CN108878859A (zh) * 2018-06-07 2018-11-23 中航锂电(洛阳)有限公司 一种镍钴锰酸锂正极材料及其制备方法,锂离子电池
CN109811412A (zh) * 2018-12-28 2019-05-28 广东邦普循环科技有限公司 一种单晶形貌的层状镍锰酸锂正极材料及其制备方法
CN109962223A (zh) * 2019-03-07 2019-07-02 浙江超威创元实业有限公司 一种包含无钴Ni-Mn固溶镍基正极材料的锂离子电池
CN111916697A (zh) * 2020-07-14 2020-11-10 蜂巢能源科技有限公司 无钴正极材料及其制备方法以及锂离子电池正极和锂电池

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3130813B2 (ja) * 1995-11-24 2001-01-31 富士化学工業株式会社 リチウムニッケル複合酸化物、その製造方法および二次電池用正極活物質
JP2008243414A (ja) 2007-03-26 2008-10-09 Kyoto Univ 複合材料及びその製造方法、二次電池電極材料、二次電池電極、並びに二次電池
JP2012169217A (ja) 2011-02-16 2012-09-06 Asahi Glass Co Ltd リチウムイオン二次電池用の正極活物質およびその製造方法
CN102931394B (zh) * 2012-11-20 2016-01-06 奇瑞汽车股份有限公司 锂镍锰氧材料及其制备方法、含该材料的锂离子电池
CN102969498B (zh) * 2012-12-11 2015-03-11 中国科学院宁波材料技术与工程研究所 一种高电压镍锰酸锂正极材料及其制备方法
CN104752713B (zh) * 2013-12-30 2019-01-25 北京当升材料科技股份有限公司 一种锂离子电池复合正极材料及其制备方法
CN104617303A (zh) * 2015-01-13 2015-05-13 海宁美达瑞新材料科技有限公司 一种复合改性的锂离子电池正极材料及其制备方法
CN104900865A (zh) * 2015-04-10 2015-09-09 合肥国轩高科动力能源股份公司 一种高实用性镍锰酸锂及其制备方法
US20160351973A1 (en) * 2015-06-01 2016-12-01 Energy Power Systems LLC Nano-engineered coatings for anode active materials, cathode active materials, and solid-state electrolytes and methods of making batteries containing nano-engineered coatings
CN105932251B (zh) * 2016-06-03 2018-05-04 中南大学 一种金属氧化物包覆锂离子电池正极材料的制备方法及其应用
CN108390022B (zh) * 2017-12-29 2020-12-25 桑德新能源技术开发有限公司 碳-金属氧化物复合包覆的锂电池三元正极材料、其制备方法及锂电池
CN111542954B (zh) * 2018-02-27 2023-06-30 株式会社Lg新能源 正极和包括所述正极的二次电池
US11158856B2 (en) * 2018-05-01 2021-10-26 Uchicago Argonne, Llc Composite bilayer coatings for high capacity cathodes and anodes
CN109621847B (zh) * 2018-11-07 2021-10-26 中国科学院过程工程研究所 一种碳和金属氧化物复合包覆锂离子电池正极材料的系统及方法
CN109970106B (zh) * 2019-03-28 2021-06-25 广东迈纳科技有限公司 一种高镍无钴前驱体及正极材料的大规模制备方法
CN110085837B (zh) * 2019-05-05 2022-03-01 贺州学院 金属氧化物/碳复合单层包覆锰系正极材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103928668A (zh) * 2014-04-28 2014-07-16 深圳格林德能源有限公司 一种锂离子电池及其正极材料的制备方法
CN103996832A (zh) * 2014-05-16 2014-08-20 合肥工业大学 一种碳-金属氧化物双组分包覆修饰的高电压正极材料及其包覆方法
KR20160023496A (ko) * 2014-08-22 2016-03-03 주식회사 포스코이에스엠 무코발트 농도 구배 양극활물질의 제조 방법 및 이에 의하여 제조된 무코발트 농도 구배 양극활물질
CN108878859A (zh) * 2018-06-07 2018-11-23 中航锂电(洛阳)有限公司 一种镍钴锰酸锂正极材料及其制备方法,锂离子电池
CN109811412A (zh) * 2018-12-28 2019-05-28 广东邦普循环科技有限公司 一种单晶形貌的层状镍锰酸锂正极材料及其制备方法
CN109962223A (zh) * 2019-03-07 2019-07-02 浙江超威创元实业有限公司 一种包含无钴Ni-Mn固溶镍基正极材料的锂离子电池
CN111916697A (zh) * 2020-07-14 2020-11-10 蜂巢能源科技有限公司 无钴正极材料及其制备方法以及锂离子电池正极和锂电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4024520A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023203952A1 (ja) * 2022-04-18 2023-10-26 パナソニックIpマネジメント株式会社 正極活物質、及び非水電解質二次電池
CN114975983A (zh) * 2022-05-06 2022-08-30 四川新锂想能源科技有限责任公司 高镍低钴材料及其制备方法、电池正极
CN114975983B (zh) * 2022-05-06 2024-06-18 四川新锂想能源科技有限责任公司 高镍低钴材料及其制备方法、电池正极

Also Published As

Publication number Publication date
EP4024520A1 (en) 2022-07-06
JP7392132B2 (ja) 2023-12-05
KR20220103763A (ko) 2022-07-22
US20230025787A1 (en) 2023-01-26
EP4024520A4 (en) 2024-01-03
CN111916697B (zh) 2021-09-21
CN111916697A (zh) 2020-11-10
JP2022553657A (ja) 2022-12-26

Similar Documents

Publication Publication Date Title
WO2022011939A1 (zh) 无钴正极材料及其制备方法以及锂离子电池正极和锂电池
EP3296267B1 (en) Spherical or spherical-like lithium ion battery cathode material, preparation method and application thereof
JP6380608B2 (ja) リチウム複合化合物粒子粉末の製造方法、リチウム複合化合物粒子粉末を非水電解質二次電池に用いる方法
CN108390022B (zh) 碳-金属氧化物复合包覆的锂电池三元正极材料、其制备方法及锂电池
KR102026918B1 (ko) 이차전지용 양극활물질의 제조방법 및 이에 따라 제조된 이차전지용 양극활물질
JP4973825B2 (ja) 非水電解質二次電池用正極活物質の製造法、非水電解質二次電池
JP5879761B2 (ja) リチウム複合化合物粒子粉末及びその製造方法、並びに非水電解質二次電池
Du et al. Study of effects on LiNi0. 8Co0. 15Al0. 05O2 cathode by LiNi1/3Co1/3Mn1/3O2 coating for lithium ion batteries
WO2017025007A1 (zh) 锂离子二次电池的正极活性材料及其制备方法和应用
WO2021129109A1 (zh) 一种锂离子电池的无钴正极材料及其制备方法和锂离子电池
WO2020043140A1 (zh) 三元正极材料及其制备方法、锂离子电池
CN107068995B (zh) 一种原位析出氧化物包覆锂离子电池正极材料及其制备方法及应用
WO2021143374A1 (zh) 无钴层状正极材料及其制备方法、正极片和锂离子电池
JP2018098161A (ja) 正極活物質の製造方法
CN110459764B (zh) 一种锂离子电池正极材料及其制备方法与应用
JP7271945B2 (ja) リチウムイオン二次電池用正極活物質とその製造方法、およびリチウムイオン二次電池
CN112366306B (zh) 一种纳米硅复合负极材料及其制造方法
WO2023030403A1 (zh) 一种复合材料及其制备方法和锂离子电池正极材料
CN113517425A (zh) 一种锂离子电池正极材料及其制备方法
WO2023184996A1 (zh) 一种改性高镍三元正极材料及其制备方法
JP2023101611A (ja) リチウム二次電池用正極活物質の製造方法、前記製造方法により製造された正極活物質を含むリチウム二次電池用正極、およびリチウム二次電池
CN116014104A (zh) 富锂镍系正极材料及其制备方法、正极片与二次电池
CN113764638A (zh) 正极材料、其制备方法、包括其的正极和锂离子电池
WO2018171144A1 (zh) 正极材料及其制备方法
CN106340637A (zh) 锂离子电池用聚硅酸酯/ncm三元复合正极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945562

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022521738

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020945562

Country of ref document: EP

Effective date: 20220331

ENP Entry into the national phase

Ref document number: 20227020663

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE