WO2022004832A1 - ウレア樹脂組成物とポリウレア発泡体 - Google Patents

ウレア樹脂組成物とポリウレア発泡体 Download PDF

Info

Publication number
WO2022004832A1
WO2022004832A1 PCT/JP2021/024879 JP2021024879W WO2022004832A1 WO 2022004832 A1 WO2022004832 A1 WO 2022004832A1 JP 2021024879 W JP2021024879 W JP 2021024879W WO 2022004832 A1 WO2022004832 A1 WO 2022004832A1
Authority
WO
WIPO (PCT)
Prior art keywords
foam
polyurea foam
resin composition
polyurea
urea resin
Prior art date
Application number
PCT/JP2021/024879
Other languages
English (en)
French (fr)
Inventor
嘉隆 伊藤
敦史 宮田
英生 大田
Original Assignee
株式会社イノアック技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社イノアック技術研究所 filed Critical 株式会社イノアック技術研究所
Priority to JP2022534105A priority Critical patent/JPWO2022004832A1/ja
Priority to KR1020237002965A priority patent/KR20230029901A/ko
Priority to EP21833798.8A priority patent/EP4174101A4/en
Priority to US18/003,488 priority patent/US20230323012A1/en
Priority to CA3184389A priority patent/CA3184389A1/en
Priority to CN202180043640.9A priority patent/CN115884998A/zh
Publication of WO2022004832A1 publication Critical patent/WO2022004832A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/09Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture
    • C08G18/092Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture oligomerisation to isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/09Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/161Catalysts containing two or more components to be covered by at least two of the groups C08G18/166, C08G18/18 or C08G18/22
    • C08G18/163Catalysts containing two or more components to be covered by at least two of the groups C08G18/166, C08G18/18 or C08G18/22 covered by C08G18/18 and C08G18/22
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1808Catalysts containing secondary or tertiary amines or salts thereof having alkylene polyamine groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1825Catalysts containing secondary or tertiary amines or salts thereof having hydroxy or primary amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1833Catalysts containing secondary or tertiary amines or salts thereof having ether, acetal, or orthoester groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1875Catalysts containing secondary or tertiary amines or salts thereof containing ammonium salts or mixtures of secondary of tertiary amines and acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/20Heterocyclic amines; Salts thereof
    • C08G18/2009Heterocyclic amines; Salts thereof containing one heterocyclic ring
    • C08G18/2036Heterocyclic amines; Salts thereof containing one heterocyclic ring having at least three nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/20Heterocyclic amines; Salts thereof
    • C08G18/2081Heterocyclic amines; Salts thereof containing at least two non-condensed heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/225Catalysts containing metal compounds of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/227Catalysts containing metal compounds of antimony, bismuth or arsenic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/242Catalysts containing metal compounds of tin organometallic compounds containing tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3234Polyamines cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3237Polyamines aromatic
    • C08G18/3243Polyamines aromatic containing two or more aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/125Water, e.g. hydrated salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/127Mixtures of organic and inorganic blowing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/146Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K3/2279Oxides; Hydroxides of metals of antimony
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0025Foam properties rigid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/0058≥50 and <150kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/10Water or water-releasing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/16Unsaturated hydrocarbons
    • C08J2203/162Halogenated unsaturated hydrocarbons, e.g. H2C=CF2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • C08J2203/182Binary blends of expanding agents of physical blowing agents, e.g. acetone and butane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K2003/026Phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/322Ammonium phosphate
    • C08K2003/323Ammonium polyphosphate

Definitions

  • the present invention relates to a urea resin composition and a polyurea foam.
  • Urethane foam is used as a heat insulating material and heat insulating material for construction applications, ships for transporting oil and gas, and electric appliances such as refrigerators.
  • a method of constructing urethane foam by a spraying method is used because heat insulation construction is easy.
  • the spraying method is a method of forming a urethane foam heat insulating structure by spraying a stock solution of urethane foam onto the building frame at the same time using a spraying device.
  • polyurethane resin has excellent elasticity, flexibility, and tensile strength, and also has excellent wear resistance and impact strength.
  • urethane foam alone has high flammability, studies have been made to improve the flame retardancy of urethane foam.
  • Patent Document 1 describes, for forming a water-foaming hard polyisocyanurate foam, which comprises an organic polyphenylmethane polyisocyanate, a polyol, a trimerization catalyst, water as a foaming agent, a foam stabilizer, and a flame retardant.
  • the composition is disclosed.
  • the invention of Patent Document 1 is a primary and / or secondary polyol obtained by using an active hydrogen-containing compound as a polymerization initiator, presenting an acid catalyst, and performing ring-open polymerization of a chlorinated epoxy compound.
  • Patent Document 2 includes a polyisocyanate compound, a polyol compound, a trimerization catalyst, a foaming agent, a foam stabilizer and an additive, and the trimerization catalyst is a nitrogen-containing aromatic compound, a carboxylate alkali metal salt, and a tertiary ammonium salt. And at least one selected from the group consisting of a quaternary ammonium salt, the additive contains red phosphorus as an essential component, and in addition to red phosphorus, a phosphate ester, a phosphate-containing flame retardant, a bromine-containing flame retardant, and a boron-containing additive.
  • the trimerization catalyst is a nitrogen-containing aromatic compound, a carboxylate alkali metal salt, and a tertiary ammonium salt.
  • the additive contains red phosphorus as an essential component, and in addition to red phosphorus, a phosphate ester, a phosphate-containing flame retardant, a bromine-containing flame retardant
  • a flame-retardant urethane resin composition comprising a combination of at least one selected from the group consisting of a flame-retardant agent, an antimony-containing flame-retardant agent, and a metal hydroxide is disclosed.
  • the urethane foam using the flame-retardant urethane resin composition of Patent Document 2 is easy to handle, has excellent flame retardancy, and can form a foam that maintains a constant shape when heated. It is shown.
  • Patent Document 1 Although the flame retardancy is improved by the nurate bond, many urethane bonds are formed, and there is a possibility that the flame retardancy may not be sufficient. Further, the invention of Patent Document 2 describes that high flame retardancy is imparted by adding red phosphorus (powder) as a flame retardant and incorporating an isocyanurate ring, but the powder flame retardant.
  • red phosphorus powder
  • Patent Document 2 does not particularly mention this point.
  • Patent Documents 1 and 2 are related to deterioration over time due to temperature and humidity, which are important when used as a heat insulating material and a heat insulating material for electric appliances such as construction applications, petroleum and gas transport vessels, and refrigerators. No verification was made, and there was a risk of deterioration over time in a moist heat environment.
  • the inventions of Patent Documents 1 and 2 may have cracks or carbonize inside the foam when they come into contact with a flame due to a fire or the like when used for building purposes, for example, and have strength. Was significantly reduced, which could cause the building to collapse.
  • an object of the present invention is to provide a urea resin composition capable of providing a novel foam different from the urethane foam, and the foam thereof.
  • the second object of the present invention is to have excellent flame retardancy and shape retention during combustion, suppress deterioration over time in a moist heat environment, and have excellent adhesion to an adherend during coating, and contact with the adherend. It is an object of the present invention to provide a urea resin composition capable of providing a polyurea foam in which cracks are less likely to occur even when a flame is applied and carbonization due to flame contact does not easily proceed from the surface to a deep part, and the foam thereof.
  • the present inventors have diligently studied toward the realization of the above object, and have found that a polyurea foam obtained by foaming a specific urea resin composition can solve the above problems, and have completed the present invention. .. That is, the present invention is as follows.
  • the present invention (1) is It is a urea resin composition containing a polyisocyanate compound (A), a polyamine compound (B), a trimerization catalyst, a foaming agent, a foam stabilizer and a flame retardant.
  • the present invention (2) is It is a polyurea foam containing a flame retardant and having an isocyanurate structure.
  • the present invention (3) is A urea resin composition containing a polyisocyanate compound (A), a polyamine compound (B), a trimerization catalyst, a foaming agent and a defoaming agent. It is a urea resin composition containing no polyol compound or having a content of the polyol compound of 1/5 or less by mass ratio with respect to the content of the polyamine compound (B).
  • the present invention (4) is It is a composition for producing a polyurea foam containing a polyamine compound (B), a trimerization catalyst, a foaming agent, a foam regulating agent and a flame retardant.
  • the present invention (5) A composition for producing a polyurea foam containing a polyamine compound (B), a trimerization catalyst, a foaming agent and a foaming agent.
  • a composition for producing a polyurea foam which does not contain a polyol compound or has a content of the polyol compound of 1/5 or less by mass ratio with respect to the content of the polyamine compound (B).
  • the present invention (6) is A urea resin composition containing a polyisocyanate compound (A), a polyamine compound (B), a trimerization catalyst, a foaming agent, a foam stabilizer and a flame retardant.
  • the content of the polyamine compound (B) is 2.0% by mass or more when the total amount of the urea resin composition is 100% by mass.
  • the urea resin composition is characterized in that the content of the trimerization catalyst is 5 to 20 parts by mass when the content of the polyamine compound (B) in the urea resin composition is 100 parts by mass.
  • the present invention (7) is It is a polyurea foam obtained by foaming and curing the urea resin composition of the invention (6).
  • the present invention (8) A polyurea foam having an isocyanurate structure,
  • the polyurea foam is a polyurea foam having an isocyanurate conversion rate of 25 to 50%.
  • the isocyanurate conversion rate is a value calculated by the following formula (1) based on the absorption spectrum obtained by the infrared spectroscopic analysis of the polyurea foam.
  • Isocyanurate conversion rate (%) P1 / (P1 + P2 + P3 + P4) x 100
  • P1 Peak area derived from the isocyanurate structure contained in the absorption spectrum of the polyurea foam obtained by infrared spectroscopic analysis
  • P2 C of the urea structure contained in the absorption spectrum of the polyurea foam obtained by infrared spectroscopic analysis.
  • Peak area derived from O P3: Peak area derived from C O of urethane structure and isocyanurate structure contained in the absorption spectrum of polyurea foam obtained by infrared spectroscopy P4: Obtained by infrared spectroscopy The peak area derived from the urethane structure contained in the absorption spectrum of the polyurea foam and NH contained in the urea structure.
  • the present invention may be the following invention.
  • the present invention (9) A polyurea foam having an isocyanurate structure and a 5% weight loss temperature of 175 ° C. or higher. For the 5% weight loss temperature, use a differential thermal / thermogravimetric simultaneous measuring instrument to observe the weight loss behavior of the sample in the temperature range of 25 to 700 ° C. at a temperature rise temperature of 10 ° C / min and a dry air stream. , Measure the temperature at which the sample weight is reduced by 5% by weight.
  • the present invention (10) A urea resin composition containing a polyisocyanate compound (A), a polyamine compound (B), a trimerization catalyst, a foaming agent, a foam stabilizer and a flame retardant.
  • the urea resin composition is characterized in that the content of the polyamine compound (B) is 2.0% by mass or more when the total amount of the urea resin composition is 100% by mass.
  • the present invention (11) The urea resin composition of the invention (10), characterized in that the amine value of the polyamine compound (B) is 50 to 1000 mg KOH / g.
  • the present invention (12) The polyisocyanate compound (A) is the urea resin composition of the invention (10) or (11), which is characterized by having an NCO% of 10 to 35%.
  • the present invention (13) The urea resin composition according to any one of the inventions (10) to (12), wherein the polyisocyanate compound (A) is an aromatic isocyanate.
  • the flame retardant is the urea resin composition according to any one of the inventions (10) to (13), which comprises red phosphorus.
  • the present invention (15) The flame retardant is characterized by containing at least one selected from a phosphoric acid ester, a phosphate-containing flame retardant, a bromine-containing flame retardant, a boron-containing flame retardant, an antimony-containing flame retardant, and a metal hydroxide.
  • the present invention (16) A polyurea foam obtained by foaming and curing the urea resin composition according to any one of the inventions (10) to (15).
  • the present invention (17) The polyurea foam has a total calorific value of 8.5 MJ / m 2 or less after 20 minutes as measured under the condition of heating with a radiant heat intensity of 50 kW / m 2 in accordance with the ISO-5660 test method.
  • This is the polyurea foam of the invention (16), which is characterized by the above.
  • the present invention (18) It is a polyurea foam having an isocyanurate structure.
  • the present invention (19) The polyurea foam according to the invention (18), which comprises a flame retardant.
  • the present invention (20) The polyurea foam according to the invention (18) or (19), which comprises red phosphorus.
  • the present invention (21) The polyurea foam of the invention (20) is characterized in that the content of the red phosphorus is 1 to 30% by mass when the total mass of the polyurea foam is 100% by mass.
  • the present invention (22) The polyurea foam is the polyurea foam according to any one of the inventions (18) to (21), characterized in that the isocyanurate formation rate is 10 to 50%.
  • the isocyanurate conversion rate is a value calculated by the following formula (1) based on the absorption spectrum obtained by the infrared spectroscopic analysis of the polyurea foam.
  • Isocyanurate conversion rate (%) P1 / (P1 + P2 + P3 + P4) x 100
  • P1 Peak area derived from the isocyanurate structure contained in the absorption spectrum of the polyurea foam obtained by infrared spectroscopic analysis
  • P4 Obtained by infrared spectroscopy.
  • the peak area derived from the urethane structure contained in the absorption spectrum of the polyurea foam and NH contained in the urea structure is based on the present invention.
  • the invention (18) to the above which comprises at least one selected from a phosphoric acid ester, a phosphate-containing flame retardant, a bromine-containing flame retardant, a boron-containing flame retardant, an antimony-containing flame retardant, and a metal hydroxide.
  • a urea resin composition capable of providing a novel foam different from the urethane foam, and the foam thereof.
  • a urea resin composition capable of providing a foam having sufficient flame retardancy and compression performance, and a foam thereof.
  • the present invention has excellent flame retardancy and shape retention during combustion, can suppress deterioration over time in a moist heat environment, has excellent adhesion to an adherend during coating, and is in contact with flame.
  • a polyurea resin composition capable of providing a polyurea foam in which cracks are less likely to occur and carbonization due to flame contact does not easily proceed from the surface to the deep part, and the foam thereof.
  • the polyurea foam of the present invention has an isocyanurate structure. Further, the polyurea foam is obtained by foaming and curing the urea resin composition.
  • the urea resin composition of the present invention contains a polyisocyanate compound (A), a polyamine compound (B), a trimerization catalyst, and a foaming agent, and is preferably a urea resin composition containing a foam stabilizer and a flame retardant.
  • the urea resin composition of the present invention is characterized in that the content of the polyamine compound (B) is 2.0% by mass or more when the total amount of the urea resin composition is 100% by mass.
  • the urea resin composition of the present invention can form a polyurea foam by foaming and curing.
  • the polyisocyanate compound (A) according to the present invention is not particularly limited as long as it does not inhibit the effect of the present invention.
  • Examples of the polyisocyanate compound (A) include monomer-type polyisocyanate and polymer-type polyisocyanate.
  • the monomer-type polyisocyanate is a compound in which a plurality of isocyanate groups are present at the ends of the monomer structure.
  • the polymer-type polyisocyanate is a compound in which a plurality of isocyanate groups are present at the ends of the polymer structure.
  • the monomer-type polyisocyanate is, for example, as a bifunctional polyisocyanate compound, 2,4-toluene diisocyanate (2,4-TDI), 2,6-toluene diisocyanate (2,6-TDI), m-phenylenediisocinate.
  • modified products and derivatives include isocyanurate compounds of diisocyanate compounds, adduct compounds of diisocyanate compounds, buretto compounds of diisocyanate compounds, allophanate compounds of diisocyanate compounds, and carbodiimide-modified compounds of diisocyanate compounds.
  • These polyisocyanate compounds may be used alone or in combination of two or more. Since the monomer-type polyisocyanate compound forms the urea skeleton of the polyurea foam, it can be freely selected in consideration of the characteristics of the desired polyurea foam.
  • aromatic isocyanates are preferable, MDIs or modified products or derivatives of MDIs are more preferable, and monomeric MDIs and crude MDIs are even more preferable, because they are excellent in reactivity.
  • aromatic isocyanates are preferable in terms of the safety of the working environment because they are excellent in reactivity when used as a polyurea foam for a spraying method.
  • the crude MDI containing a polynuclear body is excellent in flame retardancy because it has an excellent isocyanurate formation rate.
  • the polymer-type polyisocyanate compound is prepolymerized by reacting an active hydrogen compound having two or more active hydrogen groups, for example, a polyol compound or a polyamine compound (D) with an excessive amount of the polyisocyanate compound (C).
  • an active hydrogen compound having two or more active hydrogen groups for example, a polyol compound or a polyamine compound (D)
  • the polyamine compound (D) and the polyisocyanate compound (C) are raw materials for producing a polymer-type polyisocyanate
  • the polyamine compound (B) and the polyisocyanate which are the raw materials of the urea resin composition according to the present invention. It is not included in the compound (A), respectively.
  • the polyisocyanate compound (C) may be the same as or different from the polyisocyanate compound (A).
  • polyester polyols examples include polyester polyols and polyether polyols.
  • Some polyester polyols are obtained by a condensation reaction between a polyhydric alcohol and a polyvalent carboxylic acid.
  • the polyhydric alcohol examples include ethylene glycol, propylene glycol, butanediol, butylene glycol, glycerin, and trimethylolpropane.
  • the polyvalent carboxylic acid examples include glutaric acid, adipic acid, maleic acid, phthalic acid, terephthalic acid, isophthalic acid and the like. These can be used alone or in combination of two or more.
  • polyester polyols obtained by ring-opening condensation of caprolactone, methylvalerolactone and the like can be mentioned.
  • polyether polyol for example, an oxide such as ethylene oxide, propylene oxide, trimethylene oxide, or butylene oxide is addition-polymerized with a polyhydric alcohol such as ethylene glycol, propylene glycol, diethylene glycol, glycerin, trimethylolpropane, and sorbitol.
  • a polyhydric alcohol such as ethylene glycol, propylene glycol, diethylene glycol, glycerin, trimethylolpropane, and sorbitol.
  • the polyisocyanate compound (B) to be reacted with these polyol compounds is not particularly limited as long as it does not inhibit the effect of the present invention, and is obtained by modifying an aliphatic or aromatic polyisocyanate, a mixture thereof, and them.
  • the modified polyisocyanate to be used can be mentioned.
  • the polyamine compound (D) is not particularly limited as long as it does not inhibit the effect of the present invention.
  • examples of the polyamine compound (D) include aliphatic polyamines such as triethylenetetramine, aromatic polyamines such as metaphenylenediamine, and alicyclic polyamines such as isophorone diamine. Specifically, 4,4'-diamino-3,3'-dichlorodiphenylmethane, trimethylene-bis (4-aminobenzoate), 4,4'-diamino-3,3'-diethyl-5,5'-dimethyldiphenylmethane.
  • polyamine compound (D) may be the same as or different from the polyamine compound (B) described later.
  • the NCO% of the polyisocyanate compound (A) is not limited as long as it does not inhibit the effect of the present invention, and can be, for example, 5 to 40%, preferably 10 to 35%, more preferably 15 to 35%. ..
  • a polyurea foam having high shape retention during combustion, low thermal conductivity, and capable of suppressing deterioration over time in a moist heat environment can be obtained. That is, it is possible to obtain a polyurea foam having excellent flame retardancy and shape retention during combustion, capable of suppressing deterioration over time in a moist heat environment, and having excellent adhesion to an adherend during coating.
  • the NCO% (isocyanate content) of the polyisocyanate compound (A) is the method A (toluene / Measure according to dibutylamine, hydrochloric acid method).
  • Polyamine compound (B) The polyamine compound forms a urea bond by reacting with isocyanate.
  • the urea bond has features such as excellent water resistance, corrosion resistance, and chemical resistance such as acid and alkali.
  • the polyamine compound (B) is not particularly limited as long as it does not inhibit the effect of the present invention.
  • Examples of the polyamine compound (B) include aliphatic polyamines such as triethylenetetramine, aromatic polyamines such as metaphenylenediamine, and alicyclic polyamines such as isophorone diamine. Specifically, 4,4'-diamino-3,3'-dichlorodiphenylmethane, trimethylene-bis (4-aminobenzoate), 4,4'-diamino-3,3'-diethyl-5,5'-dimethyldiphenylmethane.
  • Lonzacure M-DEA Lonzacure M-MIPA, Lonzacure M-DIPA, Lonzacure M-CDEA; EtaCure 100, EtaCure 300, EtaCure 410, Evonik 420; Can be mentioned. These can be used alone or in combination of two or more.
  • the amine value of the polyamine compound (B) is not particularly limited as long as it does not inhibit the effect of the present invention, but can be, for example, 50 to 1000 mgKOH / g, preferably 200 to 1000 mgKOH / g, and 450 to 1000 mgKOH / g. Is more preferable, and 500 to 1000 mgKOH / g is even more preferable.
  • the amine value of the polyamine compound is within such a range, it has excellent flame retardancy and shape retention during combustion, can suppress deterioration over time in a moist heat environment, and adheres to the adherend during coating.
  • a urea resin composition capable of providing a polyurea foam having excellent properties, which is less likely to crack even when exposed to flames, and which is less likely to cause carbonization due to contact with flames from the surface to a deep part.
  • a total calorific value test using a cone calorie meter according to the ISO-5660 standard (a test showing flame retardancy, which may be abbreviated as a concaro total calorific value test), a volume change rate at 600 ° C. (which will be described later).
  • a carbonized layer is formed on the surface of the foam to prevent fire from entering the deep part of the foam, which is an excellent effect.
  • the amine value of the polyamine compound (B) can be found in all of JIS K1557-7: 2011 "Plastic-Polyurethane Raw Material Polyurethane Test Method-Part 7: How to Determine Basicity (Nitrogen Content and Total Amine Value Display)". It can be measured by a method for measuring an amine value.
  • an active hydrogen compound can be added as long as the effect of the present invention is not impaired.
  • the active hydrogen compound include alcohols such as primary alcohols, secondary alcohols and tertiary alcohols, monools, polyol compounds, and thiol compounds.
  • Alcohols and polyol compounds can react with the polyisocyanate compound (A) to form urethane bonds and form a part of the skeleton of the polyurea foam.
  • the content of the polyol compound can be 1/5 or less by mass ratio with respect to the content of the polyamine compound (B), preferably 1/10 or less, and more preferably no polyol compound. ..
  • trimerization catalyst The trimerization catalyst according to the present invention is not particularly limited as long as the effect of the present invention is not impaired.
  • an isocyanurate structure can be formed in the polyurea foam when the polyurea foam is produced using the polyamine compound (B).
  • trimerization catalyst examples include metal oxides such as lithium oxide, sodium oxide, and potassium oxide; Alkoxides such as methoxysodium, ethoxysodium, propoxysodium, butoxysodium, methoxypotassium, ethoxypotassium, propoxypotassium, butoxypotassium; Organic metal salts such as potassium acetate, potassium octylate, potassium caprylate, iron oxalate; 2,4,6-Tris (dimethylaminomethyl) phenol, N, N', N "-tris (dimethylaminopropyl) hexahydrotriazine, triethylenediamine, 1,3,5-tris (dimethylaminopropyl) hexahydro-s -Triazine amines such as triazine; derivatives of ethyleneimine; Alkali metals, aluminum, acetylacetone chelate of transition metals; Quaternary ammonium salts; diazabic
  • tertiary amines organometallic salts and diazabicycloundecene
  • tertiary amines and diazabicycloundecene By using these suitable quantification catalysts, it has excellent flame retardancy and shape retention during combustion, can suppress deterioration over time in a moist heat environment, and has excellent adhesion to the adherend during coating. Polyurea foam can be obtained.
  • foaming agent The foaming agent according to the present invention is not particularly limited as long as the effect of the present invention is not impaired.
  • the foaming agent include water, hydrocarbons (preferably C4 to C6), hydrofluoroolefins, and carbon dioxide gas. Specific examples thereof include cyclopentane, HFO (1336 mzz), and HFO (1233 zd). These can be used alone or in combination of two or more.
  • Defoaming agent The defoaming agent according to the present invention is not particularly limited as long as the effect of the present invention is not impaired.
  • foam stabilizer include silicone compounds and nonionic surfactants. These can be used alone or in combination of two or more.
  • the urea resin composition according to the present invention may contain a flame retardant.
  • the flame retardant is not particularly limited as long as it does not inhibit the effect of the present invention, and is, for example, red phosphorus, phosphoric acid ester, phosphate-containing flame retardant, brominated flame retardant, boron-containing flame retardant, antimony-containing flame retardant and metal water. Oxides and the like can be mentioned. These can be used alone or in combination of two or more.
  • red phosphorus and phosphoric acid ester contains red phosphorus and phosphoric acid ester, and is further selected from chlorine-containing phosphoric acid ester, phosphate-containing flame retardant, bromine-containing flame retardant, boron-containing flame retardant, antimony-containing flame retardant and metal hydroxide. It is particularly preferable to contain at least one of these, and it is particularly preferable to contain a flame retardant containing red phosphorus, a phosphoric acid ester, and a bromine.
  • the urea resin composition according to the present invention contains these flame retardants, it has excellent flame retardancy and shape retention during combustion, can suppress deterioration over time in a moist heat environment, and is coated during coating. A polyurea foam having excellent adhesion to a body can be obtained.
  • other flame retardants other than these flame retardants can be included.
  • the phosphoric acid ester according to the present invention is not particularly limited as long as it does not inhibit the effect of the present invention.
  • Examples of the phosphoric acid ester include triphenyl phosphate, cresyldiphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, tris (t-butylated phenyl) phosphate, tris (i-propylated phenyl) phosphate, and 2-ethylhexyl.
  • Aromatic phosphates such as diphenyl phosphate; Aromatic condensed phosphate esters such as 1,3-phenylene bis (diphenyl phosphate), 1,3-phenylene bis (dixyrenyl) phosphate, resorcinol bis (diphenyl) phosphate, and bisphenol A bis (diphenyl phosphate); Halogen-containing phosphate esters such as tris (dichloropropyl) phosphate, tris ( ⁇ -chloropropyl) phosphate, tris (chloroethyl) phosphate; Examples thereof include halogen-containing condensed phosphoric acid esters such as 2,2-bis (chloromethyl) trimethylenebis (bis (2-chloroethyl) phosphate) and polyoxyalkylene bisdichloroalkyl phosphate. These can be used alone or in combination of two or more.
  • the phosphate-containing flame retardant according to the present invention is not particularly limited as long as the effect of the present invention is not impaired.
  • the phosphate-containing flame retardant include ammonium salts such as ammonium phosphate, ammonium dihydrogen phosphate, and diammonium hydrogen phosphate as monophosphates; Sodium salts such as monosodium phosphate, disodium phosphate, trisodium phosphate, monosodium phosphite, dissodium phosphite, sodium hypophosphite; Potassium salts such as monopotassium phosphate, dipotassium phosphate, tripotassium phosphate, monopotassium phosphite, dipotassium phosphite, potassium hypophosphite; Lithium salts such as monolithium phosphate, dilithium phosphate, trilithium phosphate, monolithium phosphate, dilithium phosphite, lithium hypophosphit
  • Calcium salts such as calcium dihydrogen phosphate, calcium hydrogen phosphate, tricalcium phosphate, calcium hypophosphite
  • Zinc salts such as zinc phosphate, zinc phosphate, zinc hypophosphite, aluminum primary phosphate, aluminum secondary phosphate, aluminum tertiary phosphate, aluminum phosphite, aluminum hypophosphite, etc. Salt; etc. can be mentioned.
  • the polyphosphate include ammonium polyphosphate, piperazine polyphosphate, melamine polyphosphate, ammonium polyphosphate, aluminum polyphosphate and the like. These can be used alone or in combination of two or more.
  • the brominated flame retardant according to the present invention is not particularly limited as long as it does not inhibit the effect of the present invention.
  • the bromine-containing flame retardant include pentabromodiphenyl ether; octabromodiphenyl ether; decabromodiphenyl ether; tetrabromobisphenol A (TBBA), TBBA-epoxy oligomer, TBBA-polycarbonate oligomer, TBBA-bis (dibromopropeel ether), TBBA.
  • -TBBA compounds such as bis (aryl ether); Bisphenylpentamethane, 1,2-bis (2,4,6-tribromophenoxy) ethane, 2,4,6-tris (2,4,6-tribromophenoxy) -1,3,5-triazine, Polybenzene ring compounds such as 2,6-dibromophenol and 2,4-dibromophenol; Brominated styrene compounds such as brominated polystyrene and polybrominated styrene; Phthalic acid compounds such as ethylenebistetrabromophthalimide; Cyclic aliphatic compounds such as hexabromocyclododecane; polyacrylic acid brominated aromatic ester compounds such as poly (pentabromophenylacrylate); and the like can be mentioned. These can be used alone or in combination of two or more.
  • the boron-containing flame retardant according to the present invention is not particularly limited as long as the effect of the present invention is not impaired.
  • the boron-containing flame retardant include boric acid; boron oxide such as diboron trioxide, boron trioxide, diboron dioxide, tetraboron trioxide, and tetraboron pentoxide; boric acid, lithium borate, and sodium borate.
  • boric acid compounds such as potassium borate, cesium borate, magnesium borate, calcium borate, barium borate, zirconium borate, zinc borate, aluminum borate, and ammonium borate.
  • the antimony-containing flame retardant according to the present invention is not particularly limited as long as the effect of the present invention is not impaired.
  • the boron-containing flame retardant include antimony oxide such as antimony trioxide and antimony pentoxide; antimonyates such as sodium antimonate and potassium antimonate; and pyroantimonates such as sodium pyroantimonate and potassium pyroantimonate; And so on. These can be used alone or in combination of two or more.
  • the metal hydroxide according to the present invention is not particularly limited as long as the effect of the present invention is not impaired.
  • Examples of the metal hydroxide include aluminum hydroxide, magnesium hydroxide and the like. These can be used alone or in combination of two or more.
  • flame retardants known flame retardants can be used.
  • flame retardants include chlorine compounds such as chlorinated paraffin; nitrogen compounds such as hindered amine and melamine cyanurate; cellulose; and the like. These can be used alone or in combination of two or more.
  • additives can be added to the resin composition according to the present invention as long as the effects of the present invention are not impaired.
  • known additives such as a resin (urea) catalyst, a foaming catalyst, a balance catalyst, an antioxidant, an ultraviolet absorber, an antibacterial agent, and a dispersant can be added.
  • the cream time of the urea resin composition according to the present invention at 5 ° C. can be 1 to 120 seconds, preferably 2 to 70 seconds.
  • the cream time at 5 ° C. is applied, it exerts a more excellent effect in obtaining sufficient liquid flowability, wettability to the skeleton, and adhesiveness.
  • the cream thyme is a mixture of all the other compositions of the urea resin composition except the polyisocyanate compound (A) (hereinafter, may be referred to as a composition for producing a polyurea foam).
  • the cream time of the urea composition of the present invention at 20 ° C. can be 0.5 to 90 seconds, preferably 0.7 to 60 seconds.
  • the cream time at 20 ° C. of the urea resin composition is within the range, the mixed liquid is thickened before the foaming agent volatilizes at a practical liquid temperature, and the cells are efficiently foamed without collapsing. In that respect, it has a better effect.
  • the cream time of the urea composition at 20 ° C. is the same measurement except that the polyisocyanate compound (A) and the composition for producing a polyurea foam are kept at 20 ° C. and mixed in the method for measuring the cream time at 5 ° C. Measure by method.
  • the polyurea foam of the present invention contains an isocyanurate structure.
  • the isocyanurate structure is formed by trimerizing the polyisocyanate compound (A), which is a raw material of the urea resin composition, with a trimerization catalyst.
  • the isocyanurate structure can be detected by infrared spectroscopy.
  • the ratio of the polyisocyanate compound (A) converted to isocyanurate (isocyanurate conversion rate) is calculated by the following formula (1) based on the absorption spectrum obtained by the infrared spectroscopic analysis method.
  • the isocyanurate-forming rate is not particularly limited as long as it does not inhibit the effect of the present invention, but can be, for example, 10 to 50%, preferably 20 to 45%, and more preferably 25 to 40%. Further, the lower limit value may be 10% or more, 20% or more, 25% or more, 28% or more, and the upper limit value may be 50% or less, 45% or less, 43% or less, 40% or less.
  • the polyurea foam has excellent flame retardancy as long as the isocyanurate formation rate is within such a range.
  • Isocyanurate conversion rate (%) P1 / (P1 + P2 + P3 + P4) x 100
  • P1 Peak area derived from the isocyanurate structure contained in the absorption spectrum of the polyurea foam obtained by infrared spectroscopic analysis
  • P2 C of the urea structure contained in the absorption spectrum of the polyurea foam obtained by infrared spectroscopic analysis.
  • Peak area derived from O P3: Peak area derived from C O of urethane structure and isocyanurate structure contained in the absorption spectrum of polyurea foam obtained by infrared spectroscopy P4: Obtained by infrared spectroscopy The peak area derived from the urethane structure contained in the absorption spectrum of the polyurea foam and NH contained in the urea structure.
  • P1 is the area of the peak derived from the isocyanurate structure contained in the absorption spectrum of the polyurea foam obtained by the infrared spectroscopic analysis, and is the area of the peak derived from the nurate ring in the vicinity of the wave number 1410 cm-1.
  • P1 is a peak area with a wave number in the range of 1380 to 1430 cm- 1.
  • P1 indicates the content of the isocyanurate structure formed by the reaction of the isocyanate group of the raw material polyisocyanate compound (A).
  • the area of. P3 is a peak area with a wave number in the range of 1680 to 1730 cm- 1.
  • P3 indicates the content of the urethane structure and the isocyanurate structure formed by the reaction of the isocyanate group of the raw material polyisocyanate compound (A).
  • P4 is a peak area derived from the urethane structure contained in the absorption spectrum of the polyurea foam obtained by the infrared spectroscopic analysis and NH contained in the urea structure, and is derived from NH having a wave number of 1510 cm- 1. The area of the peak to be. P4 is a peak area with a wave number in the range of 1470 to 1550 cm- 1. P4 indicates the content of the urethane structure and the urea structure contained in the polyurea foam, and indicates the content of the urethane structure and the urea structure formed by the reaction of the isocyanate group of the raw material polyisocyanate compound (A).
  • the sum of P1 to P4 indicates the total number of reacted isocyanate groups of the raw material polyisocyanate compound (A). Therefore, the isocyanurate conversion rate is a value indicating the ratio of the isocyanate groups of the polyisocyanate compound (A), which is the reacted raw material, having an isocyanurate structure.
  • the density of the density polyurea foams is not particularly restricted so long as it does not inhibit the effect of the present invention, can be a 10 ⁇ 200kg / m 3, preferably 10 ⁇ 100kg / m 3, is 10 ⁇ 55kg / m 3 More preferred.
  • the density of the polyurea foam is measured according to JIS K7222: 2005 "Foam Plastics and Rubber-How to Determine the Apparent Density".
  • the polyurea resin composition was poured into a box-shaped mold (for example, a mold for molding a foam into a rectangular parallelepiped shape), foamed and cured to obtain a molded polyurea foam, and the polyurea foam was obtained. It is produced by cutting into a length of 50 mm, a width of 50 mm, and a thickness of 20 mm.
  • the flow direction of foaming when foamed in the mold (the direction in which the urea resin composition foams and expands, and the direction vertically upward from the bottom surface of the mold.
  • this direction is referred to as the rise direction).
  • the surface of the taken-out test piece whose normal is the rise direction is the CD surface.
  • the surface orthogonal to the CD surface of the test piece is defined as the MD surface. Observe the CD surface with an optical microscope (including a digital microscope) and confirm its shape.
  • the ratio of the average cell diameter in the MD surface to the average cell diameter in the CD surface can be 0.7 to 1.8. , 0.8 to 1.3 are preferable. When these values are in such a range, a polyurea foam having excellent performance can be obtained.
  • the closed cell ratio The bubbles contained in the polyurea foam are not particularly limited as long as the effects of the present invention are not impaired, and may include closed cells, open cells, or semi-open cells.
  • the semi-open cell structure means a structure having small pores in the bubbles, unlike the closed cells, and having smaller pores between adjacent bubbles as compared with the open cell structure.
  • the closed cell ratio of the polyurea foam can be, for example, 75% or more, preferably 80% or more. When the closed cell ratio is in such a range, a polyurea foam having excellent performance can be obtained.
  • the closed cell ratio is calculated by the following method.
  • the polyurea foam is processed into a test piece having a length of 30 mm, a width of 30 mm, and a thickness of 20 mm, and the length of each side is accurately measured to calculate the apparent volume (V) of the test piece.
  • the mass (W) of the test piece is measured.
  • the true volume (V1) of the test piece is measured using a dry automatic densitometer.
  • the value calculated by the following equations 2 to 4 is defined as the closed cell ratio. Each measurement shall be performed in an environment with a temperature of 23 ⁇ 5 ° C. and a relative humidity of 40 to 70%.
  • the 5% weight loss temperature of the polyurea foam can be, for example, 120 to 320 ° C, preferably 150 to 280 ° C. When the 5% weight loss temperature is in such a range, a polyurea foam having the effect of the present invention can be obtained.
  • a differential thermal / thermogravimetric simultaneous measuring device TG / DTA was used to observe the weight loss behavior of the polyurea foam in the temperature range of 25 to 700 ° C., and the sample weight was 5 weight.
  • the ash content of the polyurea foam when heated to 600 ° C. can be, for example, 5 to 60% by weight, preferably 10% by weight or more. Further, the ash content of the polyurea foam when heated to 700 ° C. can be, for example, 3% by weight or more, preferably 5% by weight or more. When these values are in such a range, a polyurea foam having the effect of the present invention can be obtained.
  • the weight of the polyurea foam is reduced in the temperature range of 25 to 600 ° C or 25 to 700 ° C using a differential thermal / thermogravimetric simultaneous measuring instrument (TG / DTA). Observe the behavior, measure the residual weight of the polyurea foam at 600 ° C or 700 ° C, and divide by the weight of the initial polyurea foam to obtain the ash content (% by weight) at 600 ° C or 700 ° C. The measurement is performed at a heating rate of 10 ° C./min and under a dry air stream (flow velocity: 250 mm / min).
  • the remaining amount of the polyurea foam retained after heat treatment at 300 ° C. for 30 minutes can be, for example, 30 to 95% by weight, preferably 55 to 95% by weight.
  • the remaining amount of the polyurea foam retained after heat treatment at 500 ° C. for 30 minutes can be, for example, 15 to 65% by weight, preferably 25 to 65% by weight. When these values are in such a range, a polyurea foam having the effect of the present invention can be obtained.
  • the remaining amount of holding after heating at 300 ° C and 500 ° C for 30 minutes is obtained after raising the temperature to 300 ° C or 500 ° C using a differential thermal / thermogravimetric simultaneous measuring device (TG / DTA) and holding for another 30 minutes.
  • the remaining weight of the polyurea foam is measured and divided by the weight of the initial polyurea foam to obtain the holding weight (% by weight).
  • the measurement is performed under a dry air flow (flow velocity: 250 mm / min) by raising and holding the temperature up to a predetermined temperature at a temperature rise rate of 10 ° C./min.
  • the compressive strength of the polyurea foam can be, for example, 300 to 800 kPa, preferably 350 to 800 kPa. When the compressive strength is within such a range, a polyurea foam having the effect of the present invention can be obtained. Compressive strength is measured by the method described in JIS K7220: 2006 "Hard foamed plastic-How to determine compressive properties".
  • Adhesive strength of the polyurea foam to the wooden board can be, for example, 50 to 250 kPa, preferably 70 to 250 kPa. When the adhesive strength is within such a range, a polyurea foam having the effect of the present invention can be obtained. Adhesive strength is measured by the method described in JIS A9526: 2015 "Sprayed Hard Urethane Foam for Building Insulation".
  • the thermal conductivity of the polyurea foam is not particularly limited as long as it does not inhibit the effect of the present invention, but can be, for example, 0.015 to 0.040 W / (m ⁇ K), 0.015. It is preferably ⁇ 0.026 W / (m ⁇ K). When the thermal conductivity is within such a range, a polyurea foam having the effect of the present invention can be obtained.
  • the thermal conductivity is measured by the method described in JIS A1412-1 "Method for measuring thermal resistance and thermal conductivity of thermal insulating material-Part 1: Protective heat plate method (GHP method)".
  • the compressive elastic modulus of the polyurea foam can be, for example, 8 to 30 MPa, preferably 10 to 30 MPa. When the compressive elastic modulus is within such a range, a polyurea foam having the effect of the present invention can be obtained.
  • the compressive modulus is measured by the method described in JIS K7220: 2006 "Hard foamed plastic-How to determine compressive properties".
  • the moisture permeability coefficient of the polyurea foam can be, for example, 2.5 to 9.5 ng / (m 2 ⁇ s ⁇ Pa), and 2.5 to 8.5 ng / (m 2 ⁇ s ⁇ Pa). preferable. When the moisture permeability coefficient is within such a range, a polyurea foam having the effect of the present invention can be obtained.
  • the permeability coefficient is measured by the method described in JIS K7225: 2018 "Hard foamed plastic-How to determine water vapor permeability".
  • the tensile strength of the polyurea foam can be, for example, 0.5 to 2.0 MPa, preferably 0.6 to 2.0 MPa. When the tensile strength is within such a range, a polyurea foam having the effect of the present invention can be obtained.
  • the tensile strength is measured by the method described in JIS A9511: 2017 “Foam plastic heat insulating material”.
  • the tensile elongation of the polyurea foam can be, for example, 45 to 220%, preferably 55 to 180%. When the tensile elongation is within the range, a polyurea foam having the effect of the present invention can be obtained.
  • a test piece is prepared in accordance with JIS A9511: 2017 “Foam plastic heat insulating material”, and two marked lines having a tensile distance of 50 mm are drawn in parallel. This test piece is tested at a tensile speed of 500 mm / min using a material testing machine, and the distance between the marked lines at the time of breaking is measured. The tensile elongation is calculated as the measurement result (interval between marked lines at break) / 50 mm (interval between marked lines before the test) ⁇ 100.
  • the bending strength of the polyurea foam can be, for example, 0.02 to 0.15 MPa, preferably 0.025 to 0.15 MPa. When the bending strength is within such a range, a polyurea foam having the effect of the present invention can be obtained. Bending strength is measured by the method described in JIS K7221-2: 2006 "Hard foamed plastic-bending test-Part 2: How to determine bending characteristics".
  • Charpy impact strength Charpy impact strength polyurea foam for example, be a 1.0 ⁇ 3.0kg ⁇ cm / cm 3 , preferably 1.2 ⁇ 3.0kg ⁇ cm / cm 3 . When the Charpy impact strength is within such a range, a polyurea foam having the effect of the present invention can be obtained.
  • the Charpy impact strength is measured by the method described in JIS K7111-1: 2012 "Plastic-How to determine Charpy impact characteristics-Part 1: Non-instrumented impact test".
  • the water absorption rate of the polyurea foam can be, for example, 0.012 to 0.050%, preferably 0.015 to 0.045%. When the water absorption rate is within such a range, a polyurea foam having the effect of the present invention can be obtained.
  • the water absorption rate is calculated by dividing the amount of water absorption measured by the method B described in JIS A9511: 2017 "foamed plastic heat insulating material" by the initial weight of the polyurea foam.
  • Punching shear strength of the punching shear strength polyurea foam for example, it is a 7 ⁇ 30N / cm 2, preferably 8 ⁇ 25N / cm 2. When the punching shear strength is within such a range, a polyurea foam having the effect of the present invention can be obtained.
  • the punching shear strength is measured by the method described in JIS K7214: 1985 "Shear test method by punching plastic".
  • Durometer hardness (C hardness) The durometer hardness (C hardness) of the polyurea foam can be, for example, 25 to 65, preferably 30 to 60. When the durometer hardness (C hardness) is within such a range, a polyurea foam having the effect of the present invention can be obtained.
  • the durometer hardness (C hardness) is measured by the method described in JIS K7215: 1986 "Plastic Durometer Hardness Test Method".
  • the specific heat of the polyurea foam can be, for example, 0.15 to 0.35 kJ / (kg ⁇ ° C.), preferably 0.17 to 0.30 kJ / (kg ⁇ ° C.).
  • the specific heat is measured by the input compensation differential scanning calorimetry method described in JIS K7123: 1987 “Method for measuring specific heat capacity of plastic”.
  • the total calorific value of the polyurea foam is measured under the condition of heating with a radiant heat intensity of 50 kW / m 2 using a cone calorie meter according to the test method of ISO-5660.
  • the total amount of heat generated during the elapsed 10 minutes it can be 15 mJ / m 2 or less, preferably 10 MJ / m 2 or less.
  • the total amount of heat generated during the elapsed 20 minutes it can be 15 mJ / m 2 or less, preferably 10 MJ / m 2 or less, more preferably 8 MJ / m 2.
  • the polyurea foam has particularly excellent flame retardancy.
  • the urea resin composition of the present invention contains a polyisocyanate compound (A), a polyamine compound (B), a catalyst, a foaming agent, a foam stabilizer, red phosphorus, other flame retardants, and other additives in advance. It is made by mixing.
  • a known method can be used as the mixing method of the urea resin composition. Specifically, raw materials other than polyisocyanate (A) are mixed in a container with a mixer (for example, a stirrer equipped with a propeller type stirring blade) (for example, the stirrer is used to stir at 2000 rpm for 5 minutes), and polyurea is used. Adjust the composition for foam production.
  • the polyisocyanate (A) and the composition for producing a polyurea foam are cooled to predetermined temperatures (for example, 10 ⁇ 1 ° C.), respectively. Then, the polyisocyanate (A) and the composition for producing a polyurea foam can be mixed (for example, stirred at 2000 rpm for 5 seconds using the stirrer) to obtain a urea resin composition. Further, the urea resin composition can be foamed and cured to obtain a polyurea foam.
  • the composition for producing a polyurea foam in which a raw material other than polyisocyanate is mixed in advance and the polyisocyanate compound (A) are supplied to a spray gun using a pump or the like (at this time).
  • the composition for producing a polyurea foam and the polyisocyanate compound (A) are mixed in a chamber inside the spray gun and sprayed onto the skeleton to obtain a polyurea foam.
  • the composition for producing a polyurea foam in which a raw material other than the polyisocyanate compound (A) is mixed in advance and the polyisocyanate compound (A) can be handled as a two-component system liquid.
  • the flame retardant, defoaming agent, foaming agent, dispersant, and other additives that do not react with the polyisocyanate compound (A) can be mixed with the polyisocyanate compound (A) and handled as a system liquid.
  • the content of the polyamine compound (B) in the urea resin composition is 2.0% by mass or more, preferably 5.0% by mass or more, preferably 8% by mass, when the total amount of the urea resin composition is 100% by mass. More preferably, it is 0.0% by mass or more.
  • the upper limit of the content of the polyamine compound (B) can be, for example, 40.0% by mass or less, preferably 30.0% by mass or less, and more preferably 20.0% by mass or less. From another viewpoint, the content of the polyamine compound (B) in the urea resin composition can be blended so that the isocyanate index of the urea resin composition is 200 to 600, and is more preferably 200 to 500.
  • the isocyanate index is a value obtained by multiplying the ratio of the number of moles of all active hydrogens of the resin composition containing all the raw materials to the number of moles of isocyanate groups in the polyisocyanate compound (A) by 100 (NCO). Number of moles / number of moles of active hydrogen ⁇ 100).
  • the polyamine compound (B) is used.
  • the content in the composition for producing a polyurea foam is 2.0% by mass or more when the sum of the composition for producing a polyurea foam and the polyisocyanate compound (A) is 100% by mass. 0% by mass or more is preferable, and 8.0% by mass or more is more preferable.
  • the upper limit of the content of the polyamine compound (B) can be, for example, 40.0% by mass or less, preferably 30.0% by mass or less, and more preferably 20.0% by mass or less.
  • the content of the polyamine compound (B) in the composition for producing a polyurea foam has an isocyanate index of 200 to 600 when the composition for producing a polyurea foam and the polyisocyanate compound (A) are mixed. It can be blended so as to be, and 200 to 500 is more preferable.
  • the content of the polyisocyanate compound (A) in the urea resin composition may be 100 to 1000 parts by mass when the total content of the polyamine compound (B) in the urea resin composition is 100 parts by mass. can.
  • the total content of the polyamine compound (B) in the composition for producing a polyurea foam is When is 100 parts by mass, it can be 100 to 1000 parts by mass.
  • the content of the foam stabilizer in the urea resin composition or the composition for producing a polyurea foam is 100% by mass of the total content of the polyamine compound (B) in the urea resin composition or the composition for producing a polyurea foam. In the case of parts, it can be 0.1 to 20 parts by mass. Further, the content of the defoaming agent contained in the polyurea foam can be 0.1 to 20% by mass and 0.5 to 15% by mass when the total mass of the polyurea foam is 100% by mass. % Is preferable.
  • the content of the flame retardant in the urea resin composition or the composition for producing a polyurea foam is 100 parts by mass based on the total content of the polyamine compound (B) in the urea resin composition or the composition for producing a polyurea foam. , 10 to 200 parts by mass, preferably 30 to 150 parts by mass, and more preferably 50 to 100 parts by mass.
  • the content of the flame retardant is within such a range, a polyurea foam having excellent flame retardancy can be obtained.
  • the content of the flame retardant contained in the polyurea foam can be 1 to 60% by mass, preferably 2 to 45% by mass, when the total mass of the polyurea foam is 100% by mass.
  • the content of red phosphorus in the urea resin composition or the composition for producing a polyurea foam is 100 parts by mass based on the total content of the polyamine compound (B) in the urea resin composition or the composition for producing a polyurea foam.
  • the amount can be 100 parts by mass or less, preferably 5 to 40 parts by mass, and more preferably 25 to 40 parts by mass.
  • the content of red phosphorus contained in the polyurea foam can be 0 to 30% by mass, preferably 1 to 30% by mass, when the total mass of the polyurea foam is 100% by mass. Up to 25% by mass is more preferable.
  • the content of red phosphorus is within such a range, a polyurea foam having more excellent flame retardancy can be obtained, and deterioration with time in a moist heat environment can be suppressed.
  • the ash content after thermal decomposition of the foam increases, and in the flame contact evaluation described later, it is possible to prevent the progress of combustion to the deep part of the foam by forming a nonflammable carbonized layer at the initial stage of flame contact. ..
  • the total content of the flame retardant selected from the phosphoric acid ester, the phosphate-containing flame retardant, the bromine-containing flame retardant, the boron-containing flame retardant, the antimony-containing flame retardant and the metal hydroxide is determined in the urea resin composition.
  • the total content of the polyamine compound (B) is 100 parts by mass, it can be 10 to 200 parts by mass.
  • the content (Fp) of red phosphorus in the urea resin composition is selected from phosphoric acid ester, phosphate-containing flame retardant, bromine-containing flame retardant, boron-containing flame retardant, antimony-containing flame retardant and metal hydroxide.
  • the ratio (Fp / Ft) to the total content (Ft) of the flame retardant is not particularly limited, but can be, for example, 0.0 to 1.0, preferably 0.0 to 0.8. , 0.09 to 0.73 is more preferable, and 0.45 to 0.73 is even more preferable.
  • the content of the trimerization catalyst in the urea resin composition or the composition for producing a polyurea foam is 100 parts by mass based on the total content of the polyamine compound (B) in the resin composition or the composition for producing a polyurea foam. , 0.1 to 30 parts by mass, preferably 1 to 20 parts by mass, more preferably 5 to 20 parts by mass, still more preferably 10 to 20 parts by mass.
  • the content of the trimerization catalyst is within such a range, isocyanurate formation is sufficient, and the polyurea foam has excellent flame retardancy and shape retention during combustion, and can suppress deterioration over time in a moist heat environment. Can be obtained.
  • the content of the trimerization catalyst contained in the polyurea foam can be 0.01 to 20% by mass and 0.05 to 15% by mass when the total mass of the polyurea foam is 100% by mass. % Is preferable.
  • the content of the foaming agent in the urea resin composition or the composition for producing a polyurea foam is such that the total content of the polyamine compound (B) in the resin composition or the composition for producing a polyurea foam is 100 parts by mass. In this case, the amount may be 1 to 60 parts by mass, preferably 5 to 50 parts by mass. When the content of the foaming agent is within such a range, a polyurea foam having excellent flame retardancy and shape retention during combustion and capable of suppressing deterioration over time in a moist heat environment can be obtained.
  • the content of the foaming agent contained in the polyurea foam can be 1 to 40% by mass, preferably 3 to 30% by mass, assuming that the total mass of the polyurea foam is 100% by mass.
  • the content of the catalyst other than the trimerization catalyst is the polyamine compound in the urea resin composition or the composition for producing a polyurea foam.
  • the total content of (B) is 100 parts by mass, it can be 1 to 10 parts by mass.
  • a compound having both a resinification catalyst and a foaming catalyst action shall be blended as a resinification catalyst.
  • the content of the catalyst other than the trimerization catalyst contained in the polyurea foam can be 0 to 20% by mass, and 0.5 to 15 when the total mass of the polyurea foam is 100% by mass. Mass% is preferred.
  • the polyurea foam of the present invention can be used for construction purposes (walls, ceilings, roofs, floors, etc.), fittings (windows, obstacles, doors, brans, basements, etc.), and ships / storage for transporting oil and gas.
  • Tanks vehicles (engines, batteries, ceilings, floors, door panels, etc.), aircraft, transport machines, cold storage bags for chemical transportation, freezing / refrigerating rooms, plant facilities, electrical appliances such as refrigerators, heat insulating materials for earth retaining walls , Heat material, Cold heat resistance mitigation material, Underground filling reinforcement material for ground subsidence prevention work and road construction, Injection repair material for civil engineering use such as tunnels, bridges, floating piers, Structural part filling material such as unnecessary basement, Energy absorbing material, Used for waterproof materials, waterproof materials, buoyancy materials, etc. Further, in a wooden structure or a reinforced concrete structure, it can be used as a polyurea foam for a spraying method because heat insulation construction is easy.
  • Crude MDI (Millionate MR-200 manufactured by Tosoh Co., Ltd.) is charged in a 5 L polyethylene container equipped with a mechanical stirrer, an anchor type stirring blade, and a nitrogen introduction tube, and the liquid temperature of isocyanate (Crude MDI) is set to 25 ° C. did.
  • a predetermined amount of polypropylene glycol (manufactured by Mitsui Chemicals SKC Polyurethane Co., Ltd., Actol D2000, hydroxyl value: 55.1) was added stepwise as a polyol so that the liquid temperature did not exceed 80 ° C.
  • the NCO group content of the obtained prepolymer was measured in accordance with JIS K1603-1 (Method A), and it was confirmed that the NCO group content was a predetermined value.
  • ⁇ Making foam> (Preparation of mixed solution and foam used for evaluation other than adhesiveness evaluation)
  • the contents of the polyamine compound, the polyol compound, the trimerization catalyst, the flame retardant, the foaming agent, the foam stabilizer, and other additives are contained in each of Examples and Comparative Examples shown in Tables 1 to 7.
  • Each mixture was stirred and mixed at 2000 rpm for 5 minutes using a stirrer equipped with a propeller type stirring blade to obtain a polyurea foam production composition and a polyol mixture of each Example and Comparative Example.
  • the mixture was placed in a cooling furnace at 10 ° C., and the obtained polyamine mixture and the polyisocyanate having the contents shown in Tables 1 to 7 were individually cooled to 10 ⁇ 1 ° C.
  • the polyamine mixed solution and the polyol mixed solution of each example and the comparative example and the polyisocyanate were stirred and mixed at 2000 rpm for 5 seconds at 2000 rpm using a stirrer equipped with a propeller type stirring blade to foam and cure.
  • a foam of a comparative example was obtained.
  • the polyamine mixed solution and the polyol mixed solution of each Example and Comparative Example and the polyisocyanate having the contents shown in Tables 1 to 7 were individually cooled to 10 ⁇ 1 ° C.
  • the above-mentioned material was mixed with a hand spray for spraying a rigid urethane foam, which will be described later, and sprayed onto an object to form a foam for evaluation of adhesiveness.
  • ⁇ Average cell (bubble) diameter and cell shape The polyurea foam production composition and polyol mixture of each Example and Comparative Example and polyisocyanate are mixed by the above method, and foamed and cured in a mold to obtain foams of each Example and Comparative Example. Obtained. A test piece having a length of 50 mm, a width of 50 mm, and a thickness of 20 mm was cut out from each of the obtained foams, and bubbles in the CD surface and the MD surface were observed using a digital microscope (VHX-800 manufactured by KEYENCE). The shape was confirmed.
  • the closed cell ratio of the foams of each Example and Comparative Example was measured by the following method.
  • the foams of each Example and Comparative Example were processed into a test piece having a length of 30 mm, a width of 30 mm, and a thickness of 20 mm, and the length of each side was accurately measured to calculate the apparent volume (V) of the test piece.
  • the mass (W) of the test piece was measured.
  • the true volume (V1) of the test piece was measured using a dry automatic densitometer (Micromeritex Accupic II 1340 manufactured by Shimadzu Corporation). Using these values, the value calculated by the following equations 2 to 4 was taken as the closed cell ratio.
  • Each measurement was performed in an environment with a temperature of 23 ⁇ 5 ° C.
  • ⁇ Measurement of ash content (600 ° C, 700 ° C)> 3 to 5 mg is collected from the center of the foam of each Example and Comparative Example, and the sample is filled in an aluminum pan (for measurement at 600 ° C) or a platinum pan (for measurement at 700 ° C), and TG / DTA.
  • a measuring instrument model TG / DTA7200 manufactured by SII
  • the ash content (%) of each foam was determined from the weight.
  • ⁇ Tension elongation> The tensile elongation of the foams of each Example and Comparative Example was measured by the following method.
  • a test piece was prepared in accordance with JIS A9511: 2017 “Foam plastic heat insulating material”, and two marked lines having a tensile distance of 50 mm were drawn in parallel. This test piece was tested at a tensile speed of 500 mm / min using a material testing machine, and the distance between the marked lines at the time of breaking was measured.
  • the tensile elongation is shown in Tables 8 to 14 as the result calculated as the measurement result (spacing of the marked lines at the time of breaking) / 50 mm (spacing of the marked lines before the test) ⁇ 100.
  • C hardness ⁇ Durometer hardness (C hardness)>
  • the durometer hardness (C hardness) of the foams of each Example and Comparative Example was measured by the method described in JIS K7215: 1986 "Plastic Durometer Hardness Test Method”. The results are shown in Tables 8-14.
  • ⁇ Dimensional changes before and after wet heat treatment> The foams of each Example and Comparative Example were subjected to a wet heat treatment for one month in an environment of 80 ° C. and an RH of 85%, and the rate of change in dimensions before and after the wet heat treatment was measured.
  • the measurement sample of the foam was 100 mm in length ⁇ 100 mm in width ⁇ 20 mm in thickness, and the dimensional measurement of the measurement sample was performed using a caliper. The results are shown in 15-21.
  • ⁇ Volume change rate (600 ° C)> A sample was cut out from the center of the foam of each Example and Comparative Example so as to have a length of 5 cm, a width of 5 cm, and a thickness of 5 cm, and allowed to stand in an electric furnace heated to 600 ° C. for 5 minutes to determine the volume change rate. It was measured. The volume before heating is set to 100%, the volume after heating is measured, and the value obtained by subtracting the volume before heating from the volume after heating is divided by the volume before heating and multiplied by 100 to obtain the volume change rate. did. When it expands, it shows a positive value, and when it contracts, it shows a negative value. The results are shown in Tables 15-21.
  • ⁇ Flame contact test> A sample was cut out from the foams of each Example and Comparative Example 24 hours after foaming so as to form a rectangular parallelepiped having a length of 10 cm, a width of 10 cm, and a thickness of 5 cm. Each obtained sample was placed on a wire mesh having a length of 10 cm, a width of 10 cm, and a thickness of 1 mm, and the surface of the sample was indirectly flamed for 3 minutes with a gas burner.
  • the combustion gas methane gas having a purity of 99.5% or more was used, and the combustion gas was supplied at 0.2 MPa to obtain a pale flame.
  • the height of the fire was 5 cm, and the distance between the flame and the surface of the sample was 1 cm.
  • Total calorific value (50 kW x 10 minutes, 20 minutes) measurement A sample was cut out from the center of the foam of each example and comparative example so as to have a length of 10 cm, a width of 10 cm, and a thickness of 5 cm. A cone calorie meter total calorific value test was carried out, and the total calorific value and maximum heat generation rate of the sample were measured. The measurement was performed with a radiant heat amount of 50 kW / m 2 and measurement times of 10 minutes and 20 minutes. The results are shown in Tables 15-21. In addition, "not measurable" in the table means that the sample expanded in the test came into contact with the tip of the spark plug of the cone calorie meter, no spark was generated, and normal measurement could not be performed.
  • the flame retardancy test of UL94 was carried out according to the standard 5VA, and the burning distance, the burning time, the presence or absence of drip / cotton ignition, the presence or absence of flame penetration, and the size of the through hole were measured. ..
  • the pump was operated, and the amine mixture (system liquid) and the separately sufficiently stirred polyisocyanate were adjusted so that the difference in liquid pressure between the liquids was within 2.0 MPa.
  • the nozzle of the spray gun is opened, the amine mixed solution (system solution) and isocyanate are mixed in the chamber inside the gun, and sprayed onto the skeleton to prepare the foams of Examples 1, 18 and 92, and the above-mentioned spray is applied.
  • the same evaluation as the method not used was performed.
  • the foams having the same composition as those of Examples 1, 18 and 92 obtained the same results as the evaluation results of Examples 1, 18 and 92, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

優れた難燃性と燃焼時の保形性を有し、湿熱環境下における経時劣化を抑制でき、塗工時の被着体への接着性に優れ、接炎してもクラックが入りにくく、かつ、炭化が発泡体深部まで進行しにくいポリウレア発泡体が提供可能なウレア樹脂組成物を提供。ポリイソシアネート化合物(A)、ポリアミン化合物(B)、三量化触媒、発泡剤、整泡剤及び難燃剤を含むウレア樹脂組成物。

Description

ウレア樹脂組成物とポリウレア発泡体
 本発明は、ウレア樹脂組成物とポリウレア発泡体に関する。
 ウレタン発泡体は、建築用途や石油及びガス運搬用船舶、冷蔵庫などの電化製品の保温材、断熱材として使用されている。特に、鉄筋コンクリート造の建築などでは、断熱施工が容易であるためウレタン発泡体を吹付工法により施工する方法が用いられている。吹付工法は、ウレタン発泡体の原液を、吹付装置を用いて、建築物の躯体に吹付けると同時に発泡させウレタン発泡体断熱構造を形成する工法である。
 一般にポリウレタン樹脂は、弾性や柔軟性、引張り強度に優れており、耐磨耗性や衝撃強度にも優れた性能を示すという特徴を有している。しかしながら、ウレタン発泡体単独では燃焼性が高いため、ウレタン発泡体の難燃性を改善する検討がなされてきた。
 そのようなウレタン発泡体として、特許文献1には、有機ポリフェニルメタンポリイソシアネート、ポリオール、三量化触媒、発泡剤としての水、整泡剤、難燃剤からなる水発泡硬質ポリイソシアヌレートフォーム形成用組成物が開示されている。特許文献1の発明は、ポリオールが、活性水素含有化合物を重合開始剤として用い、酸触媒の存在化、塩素化エポキシ化合物の開環重合を行うことにより得られる、1級及び/又は2級の水酸基を有する塩素化ポリエーテルポリオールを含有することを特徴とし、かつ、有機ポリフェニルメタンポリイソシアネートとポリオールをイソシアネートインデックスが120~400となるように配合したことを特徴としている。特許文献1の水発泡硬質ポリイソシアヌレートフォーム形成用組成物を用いたウレタン発泡体は、作業環境等に優れ、かつ、難燃性に優れることが示されている。
 特許文献2には、ポリイソシアネート化合物、ポリオール化合物、三量化触媒、発泡剤、整泡剤及び添加剤を含み、三量化触媒が、窒素含有芳香族化合物、カルボン酸アルカリ金属塩、3級アンモニウム塩及び4級アンモニウム塩からなる群より選ばれる少なくとも一つであり、添加剤が、赤リンを必須成分とし、赤リン以外にリン酸エステル、リン酸塩含有難燃剤、臭素含有難燃剤、ホウ素含有難燃剤、アンチモン含有難燃剤及び金属水酸化物からなる群より選ばれる少なくとも一つを組み合わせてなる難燃性ウレタン樹脂組成物が開示されている。この特許文献2の難燃性ウレタン樹脂組成物を用いたウレタン発泡体が、取り扱いが容易であり、難燃性に優れ、加熱されたときに一定の形状を保つ発泡体を形成することができることが示されている。
特開2013-023510号公報 特開2017―075326号公報
 特許文献1の発明は、ヌレート結合により難燃性の向上が見られるが、ウレタン結合が多く形成されており、難燃性が十分とは言えないおそれがあった。また、特許文献2の発明は、難燃剤として赤りん(粉体)を添加すること、イソシアヌレート環を組み込むことで高い難燃性が付与されることが記載されているが、粉体難燃剤を用いることで、例えばスプレー塗布した場合に被着体と接着不良(ウキ)が発生することが考えられ、経時変化により、フォーム材の脱落や断熱性能の低下が発生するおそれがあった。特許文献2では、この点に関しては、特に言及されていない。さらに、特許文献1及び2の発明は、建築用途や石油及びガス運搬用船舶、冷蔵庫などの電化製品の保温材、断熱材として使用される場合に重要となる、温度及び湿度による経時劣化については何ら検証されておらず、湿熱環境下における経時劣化のおそれがあった。これらに加え、特許文献1及び2の発明は、例えば建築用途で用いられる場合に、火災などにより、接炎した際、クラックが入ったり、発泡体の内部が炭化したりする場合があり、強度が著しく低下し、建築物の倒壊などの原因になるおそれがあった。
 そこで本発明の目的は、ウレタン発泡体とは異なる、新規の発泡体を提供することが可能であるウレア樹脂組成物と、その発泡体を提供することである。
 本発明の第2の目的は、優れた難燃性と燃焼時の保形性を有し、湿熱環境下における経時劣化を抑制でき、塗工時の被着体への接着性に優れ、接炎してもクラックが入りにくく、かつ、接炎による炭化が表面から深部へ進行しにくいポリウレア発泡体を提供することが可能であるウレア樹脂組成物と、その発泡体を提供することである。
 本発明者らは、上記目的の実現に向け鋭意検討し、特定のウレア樹脂組成物を発泡させてなるポリウレア発泡体が、上記課題を解決可能なことを見出し、本発明を完成させるに至った。即ち、本発明は以下の通りである。
 本発明(1)は、
 ポリイソシアネート化合物(A)、ポリアミン化合物(B)、三量化触媒、発泡剤、整泡剤及び難燃剤を含むウレア樹脂組成物である。
 本発明(2)は、
 難燃剤を含有し、イソシアヌレート構造を有する、ポリウレア発泡体である。
 本発明(3)は、
 ポリイソシアネート化合物(A)、ポリアミン化合物(B)、三量化触媒、発泡剤及び整泡剤を含むウレア樹脂組成物であって、
 ポリオール化合物を含まないか、又は、ポリオール化合物の含有量は前記ポリアミン化合物(B)の含有量に対して質量比で1/5以下である、ウレア樹脂組成物である。
 本発明(4)は、
 ポリアミン化合物(B)、三量化触媒、発泡剤、整泡剤及び難燃剤を含むポリウレア発泡体製造用組成物である。
 本発明(5)は、
 ポリアミン化合物(B)、三量化触媒、発泡剤及び整泡剤を含むポリウレア発泡体製造用組成物であって、
 ポリオール化合物を含まないか、又は、ポリオール化合物の含有量は前記ポリアミン化合物(B)の含有量に対して質量比で1/5以下である、ポリウレア発泡体製造用組成物である。
 本発明(6)は、
 ポリイソシアネート化合物(A)、ポリアミン化合物(B)、三量化触媒、発泡剤、整泡剤及び難燃剤を含むウレア樹脂組成物であって、
 前記ポリアミン化合物(B)の含有量は、前記ウレア樹脂組成物の全量を100質量%とした場合に、2.0質量%以上であり、
 前記三量化触媒の含有量は、前記ウレア樹脂組成物中のポリアミン化合物(B)の含有量を100質量部とした場合に、5~20質量部であることを特徴とする、ウレア樹脂組成物である。
 本発明(7)は、
 前記発明(6)のウレア樹脂組成物を発泡、硬化させてなるポリウレア発泡体である。
 本発明(8)は、
 イソシアヌレート構造を有する、ポリウレア発泡体であって、
 前記ポリウレア発泡体は、イソシアヌレート化率が25~50%であることを特徴とするポリウレア発泡体。
 なお、イソシアヌレート化率は、前記ポリウレア発泡体の赤外線分光分析法により得られた吸収スペクトルに基づいて下式(1)により算出された値である。
(式1)
 イソシアヌレート化率(%)=P1/(P1+P2+P3+P4)×100
P1:赤外線分光分析法により得られたポリウレア発泡体の吸収スペクトルに含まれるイソシアヌレート構造に由来するピーク面積
P2:赤外線分光分析法により得られたポリウレア発泡体の吸収スペクトルに含まれるウレア構造のC=Oに由来するピーク面積
P3:赤外線分光分析法により得られたポリウレア発泡体の吸収スペクトルに含まれるウレタン構造及びイソシアヌレート構造のC=Oに由来するピーク面積
P4:赤外線分光分析法により得られたポリウレア発泡体の吸収スペクトルに含まれるウレタン構造及びウレア構造に含まれるN-Hに由来するピーク面積
 また、本発明は、以下の発明であってもよい。
 本発明(9)は、
 イソシアヌレート構造を有し、5%重量減少温度が175℃以上であるポリウレア発泡体である。
 なお、5%重量減少温度は、示差熱・熱重量同時測定器を用い、昇温温度10℃/min、乾燥空気気流下、25~700℃の温度領域について、試料の重量減少挙動を観測し、試料重量が5重量%減少する温度を測定する。
 本発明(10)は、
 ポリイソシアネート化合物(A)、ポリアミン化合物(B)、三量化触媒、発泡剤、整泡剤及び難燃剤を含むウレア樹脂組成物であって、
 前記ポリアミン化合物(B)の含有量は、前記ウレア樹脂組成物の全量を100質量%とした場合に、2.0質量%以上であることを特徴とする、ウレア樹脂組成物である。
 本発明(11)は、
 前記ポリアミン化合物(B)のアミン価は、50~1000mg KOH/gであることを特徴とする、前記発明(10)のウレア樹脂組成物である。
 本発明(12)は、
 前記ポリイソシアネート化合物(A)は、NCO%が10~35%であることを特徴とする、前記発明(10)又は(11)のウレア樹脂組成物である。
 本発明(13)は、
 前記ポリイソシアネート化合物(A)が芳香族イソシアネートであることを特徴とする、前記発明(10)~(12)のいずれかのウレア樹脂組成物である。
 本発明(14)は、
 前記難燃剤は、赤燐を含むことを特徴とする、前記発明(10)~(13)のいずれかのウレア樹脂組成物である。
 本発明(15)は、
 前記難燃剤は、リン酸エステル、リン酸塩含有難燃剤、臭素含有難燃剤、ホウ素含有難燃剤、アンチモン含有難燃剤及び金属水酸化物から選ばれる少なくとも一つを含むことを特徴とする、前記発明(10)~(14)のいずれかのウレア樹脂組成物である。
 本発明(16)は、
 前記発明(10)~(15)のいずれかのウレア樹脂組成物を発泡、硬化させてなるポリウレア発泡体である。
 本発明(17)は、
 前記ポリウレア発泡体は、ISO-5660の試験方法に準拠し、放射熱強度を50kW/mとして加熱した条件で測定した、20分経過時の総発熱量が8.5MJ/m以下であることを特徴とする、前記発明(16)のポリウレア発泡体である。
 本発明(18)は、
 イソシアヌレート構造を有する、ポリウレア発泡体である。
 本発明(19)は、
 難燃剤を含むことを特徴とする、前記発明(18)のポリウレア発泡体である。
 本発明(20)は、
 赤燐を含むことを特徴とする、前記発明(18)又は(19)のポリウレア発泡体である。
 本発明(21)は、
 前記赤燐の含有量は、前記ポリウレア発泡体の全質量を100質量%とした場合に、1~30質量%であることを特徴とする、前記発明(20)のポリウレア発泡体である。
 本発明(22)は、
 前記ポリウレア発泡体は、イソシアヌレート化率が10~50%であることを特徴とする、前記発明(18)~(21)のいずれかのポリウレア発泡体である。
 なお、イソシアヌレート化率は、前記ポリウレア発泡体の赤外線分光分析法により得られた吸収スペクトルに基づいて下式(1)により算出された値である。
(式1)
 イソシアヌレート化率(%)=P1/(P1+P2+P3+P4)×100
P1:赤外線分光分析法により得られたポリウレア発泡体の吸収スペクトルに含まれるイソシアヌレート構造に由来するピーク面積
P2:赤外線分光分析法により得られたポリウレア発泡体の吸収スペクトルに含まれるウレア構造のC=Oに由来するピーク面積
P3:赤外線分光分析法により得られたポリウレア発泡体の吸収スペクトルに含まれるウレタン構造及びイソシアヌレート構造のC=Oに由来するピーク面積
P4:赤外線分光分析法により得られたポリウレア発泡体の吸収スペクトルに含まれるウレタン構造及びウレア構造に含まれるN-Hに由来するピーク面積
 本発明(23)は、
 リン酸エステル、リン酸塩含有難燃剤、臭素含有難燃剤、ホウ素含有難燃剤、アンチモン含有難燃剤及び金属水酸化物から選ばれる少なくとも一つを含むことを特徴とする、前記発明(18)~(22)のいずれか一項に記載のポリウレア発泡体である。
 本発明によれば、ウレタン発泡体とは異なる、新規の発泡体を提供可能であるウレア樹脂組成物と、その発泡体とが提供可能である。
 また、本発明によれば、十分な難燃性及び圧縮性能を有する発泡体を提供可能であるウレア樹脂組成物と、その発泡体とが提供可能である。
 さらに本発明によれば、優れた難燃性と燃焼時の保形性を有し、湿熱環境下における経時劣化を抑制でき、塗工時の被着体への接着性に優れ、接炎してもクラックが入りにくく、かつ、接炎による炭化が表面から深部へ進行しにくいポリウレア発泡体を提供することができるウレア樹脂組成物と、その発泡体とが提供可能である。
本発明の気泡(セル)の形状及び平均気泡径を観察するためのポリウレア発泡体を成形するための金型と、その発泡の流れ方向を説明する説明図である。
1.ウレア樹脂組成物
 本発明のポリウレア発泡体は、イソシアヌレート構造を有する。また、ポリウレア発泡体は、ウレア樹脂組成物を発泡、硬化させることで得られる。本発明のウレア樹脂組成物は、ポリイソシアネート化合物(A)、ポリアミン化合物(B)、三量化触媒、発泡剤を含み、好ましくは整泡剤、難燃剤含むウレア樹脂組成物である。以下の記載において、上限値と下限値とが別々に記載されている場合、上限値と下限値を自由に組み合わせて新たな数値範囲とすることができる。
 本発明のウレア樹脂組成物は、ポリアミン化合物(B)の含有量が、前記ウレア樹脂組成物の全量を100質量%とした場合に、2.0質量%以上であることを特徴とする。
 本発明のウレア樹脂組成物は、発泡、硬化させることにより、ポリウレア発泡体を形成することができる。
2.ウレア樹脂組成物の原料
2-1.ポリイソシアネート化合物(A)
 本発明にかかるポリイソシアネート化合物(A)は、本発明の効果を阻害しない限りにおいて特に限定されない。ポリイソシアネート化合物(A)としては、モノマー型ポリイソシアネートとポリマー型ポリイソシアネートとを挙げることができる。モノマー型ポリイソシアネートとは、モノマー構造の末端に複数のイソシアネート基が存在する化合物である。ポリマー型ポリイソシアネートとは、ポリマー構造の末端に複数のイソシアネート基が存在する化合物である。これらのポリイソシアネート化合物(A)は、単独で、又は、複数を組み合わせて用いることができる。
 モノマー型ポリイソシアネートは、例えば、2官能のポリイソシアネート化合物として、2,4-トルエンジイソシアネート(2,4-TDI)、2,6-トルエンジイソシアネート(2,6-TDI)、m-フェニレンジイソシネート、p-フェニレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート(4,4’-MDI)、2,4’-ジフェニルメタンジアネート(2,4’-MDI)、2,2’-ジフェニルメタンジイソシアネート(2,2’-MDI)、水素添加MDI、キシリレンジイソシアネート、3,3’-ジメチル-4,4’-ビフェニレンジイソネート、3,3’-ジメトキシ-4,4’-ビフェニレンジイソシアネート、ポリメチレンポリフェニルポリイソシアネート、1,5-ナフタレンジイソシアネート、キシリレンジイソシアネート(XDI)、水素添加XDI、テトラメチルキシレンジイソシアネート(TMXDI)、などの芳香族系のもの、シクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、メチルシクロヘキサンジイソシアネートなどの脂環式のもの、ブタン-1,4-ジイソシアネート、ヘキサメチレンジイソシアネート、イソプロピレンジイソシアネート、メチレンジイソシアネート、リジンジイソシアネートなどのアルキレン系のもの;
 3官能以上のポリイソシアネートとして、1-メチルベンゾール-2,4,6-トリイソシアネート、1,3,5-トリメチルベンゾール-2,4,6-トリイソシアネート、ビフェニル-2,4,4’-トリイソシアネート、ジフェニルメタン-2,4,4’-トリイソシアネート、メチルジフェニルメタン-4,6,4’-トリイソシアネート、4,4’-ジメチルジフェニルメタン-2,2’,5,5’テトライソシアネート、トリフェニルメタン-4,4’,4”-トリイソシアネート、ポリメリックMDI、リジンエステルトリイソシアネート、1,3,6-ヘキサメチレントリイソシアネート、1,6,11-ウンデカントリイソシアネート、ビシクロヘプタントリイソシアネート、1,8-ジイソシアナトメチルオクタン等;を挙げることができ、
 また、これらの変性体、誘導体等;を含むことができる。これらの変性体、誘導体としては、例えば、ジイソシアネート化合物のイソシアヌレート化合物、ジイソシアネート化合物のアダクト化合物、ジイソシアネート化合物のビュレット化合物、ジイソシアネート化合物のアロファネート化合物、ジイソシアネート化合物のカルボジイミド変性化合物を挙げることができる。
 なお、これらのポリイソシアネート化合物は、単独で、又は、複数を組み合わせて用いることができる。
 モノマー型ポリイソシアネート化合物はポリウレア発泡体のウレア骨格を形成するため、所望するポリウレア発泡体の特性を考慮して自由に選択することができる。これらのモノマー型ポリイソシアネートのうち、反応性に優れる点で、芳香族イソシアネートが好ましく、MDI、又は、MDIの変性体若しくは誘導体がより好ましく、モノメリックMDI及びクルードMDIがさらに好ましい。これら好適な芳香族イソシアネートは、吹付工法用ポリウレア発泡体として用いた場合には、反応性に優れることから、作業環境の安全性の点で好ましい。また、同等のNCO%を有するモノメリックMDI及びクルードMDIでは、多核体を含むクルードMDIが、イソシアヌレート化率に優れるため、難燃性に優れる。
 ポリマー型ポリイソシアネート化合物としては、活性水素基を2以上有する活性水素化合物、例えば、ポリオール化合物、ポリアミン化合物(D)に過剰量のポリイソシアネート化合物(C)を反応させることにより、プレポリマー化したものが含まれる。なお、このポリアミン化合物(D)及びポリイソシアネート化合物(C)は、ポリマー型ポリイソシアネートを作製するための原料であり、本発明にかかるウレア樹脂組成物の原料であるポリアミン化合物(B)及びポリイソシアネート化合物(A)にはそれぞれ含まれない。ここで、ポリイソシアネート化合物(C)は、ポリイソシアネート化合物(A)と同一でも、異なっていてもよい。
 このような、ポリオール化合物としては、ポリエステルポリオール、ポリエーテルポリオール等を挙げることができる。ポリエステルポリオールとしては、多価アルコールと多価カルボン酸との縮合反応により得られるものがある。多価アルコールとしては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ブチレングリコール、グリセリン、トリメチロールプロパン等が挙げることができる。多価カルボン酸としては、例えば、グルタル酸、アジピン酸、マレイン酸、フタル酸、テレフタル酸、イソフタル酸等を挙げることができる。これらは、単独で、又は、複数を組み合わせて用いることができる。さらに、カプロラクトン、メチルバレロラクトン等を開環縮合して得られるポリエステルポリオールを挙げることができる。
 ポリエーテルポリオールとしては、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、グリセリン、トリメチロールプロパン、ソルビトール等の多価アルコールに、エチレンオキサイド、プロピレンオキサイド、トリメチレンオキサイド、ブチレンオキサイド等のオキサイドを付加重合させたものを挙げることができる。これらは、単独で、又は、複数を組み合わせて用いることができる。
 これらポリオール化合物と反応させるポリイソシアネート化合物(B)としては、本発明の効果を阻害しない限りにおいて特に限定されず、脂肪族系又は芳香族系ポリイソシアネート、それらの混合物、及びそれらを変性して得られる変性ポリイソシアネートを挙げることができる。
 ポリアミン化合物(D)としては、本発明の効果を阻害しない限りにおいて特に限定されない。ポリアミン化合物(D)としては、例えば、トリエチレンテトラミンのような脂肪族ポリアミン、メタフェニレンジアミンのような芳香族ポリアミン、イソホロンジアミンのような脂環式ポリアミン等を挙げることができる。具体的には、4,4’-ジアミノ-3,3’-ジクロロジフェニルメタン、トリメチレン-ビス(4-アミノベンゾエート)、4,4’-ジアミノ-3,3’-ジエチルー5,5’-ジメチルジフェニルメタン、ポリテトラメチレンオキシド-ジ-p-アミノベンゾエート、2,2’,6,6’-テトラエチル-4,4’-メチレンジアニリン、4,4’-メチレンビス(2-イソプロピル-6-メチルアニリン)、4,4’-メチレンビス(2,6-ジイソプロピルアニリン)、4,4’-メチレンビス(3-クロロ-2,6-ジエチルアニリン)、3,5-ジエチルトルエン-2,4-ジアミン、ジメチルチオトルエンジアミンを挙げることができる。
 これは、単独で、又は、複数を組み合わせて用いることができる。また、ポリアミン化合物(D)は、後述するポリアミン化合物(B)と同一でも、異なっていてもよい。
 ポリイソシアネート化合物(A)のNCO%は、本発明の効果を阻害しない限りにおいて限定されず、例えば、5~40%とすることができ、10~35%が好ましく、15~35%がより好ましい。ポリイソシアネート化合物(A)のNCO%が大きくなると、燃焼時の保形性が高く、熱伝導性が低く、湿熱環境下における経時劣化を抑制できるポリウレア発泡体を得ることができる。即ち、優れた難燃性と燃焼時の保形性を有し、湿熱環境下における経時劣化を抑制できる塗工時の被着体への接着性に優れたポリウレア発泡体を得ることができる。
 ポリイソシアネート化合物(A)のNCO%(イソシアネート含有率)は、JIS K1603-1:2007「プラスチック-ポリウレタン原料芳香族イソシアネート試験方法 第1部:イソシアネート基含有率の求め方」のA法(トルエン/ジブチルアミン、塩酸法)に準拠して測定する。
2-2.ポリアミン化合物(B)
 ポリアミン化合物は、イソシアネートと反応することでウレア結合を形成する。ウレア結合は耐水、耐食、酸やアルカリといった耐薬品性に優れるといった特徴を有する。
 ポリアミン化合物(B)は、本発明の効果を阻害しない限りにおいて特に限定されない。ポリアミン化合物(B)としては、例えば、トリエチレンテトラミンのような脂肪族ポリアミン、メタフェニレンジアミンのような芳香族ポリアミン、イソホロンジアミンのような脂環式ポリアミン等を挙げることができる。具体的には、4,4’-ジアミノ-3,3’-ジクロロジフェニルメタン、トリメチレン-ビス(4-アミノベンゾエート)、4,4’-ジアミノ-3,3’-ジエチルー5,5’-ジメチルジフェニルメタン、ポリテトラメチレンオキシド-ジ-p-アミノベンゾエート、2,2’,6,6’-テトラエチル-4,4’-メチレンジアニリン、4,4’-メチレンビス(2-イソプロピル-6-メチルアニリン)、4,4’-メチレンビス(2,6-ジイソプロピルアニリン)、4,4’-メチレンビス(3-クロロ-2,6-ジエチルアニリン)、3,5-ジエチルトルエン-2,4-ジアミン、ジメチルチオトルエンジアミンを挙げることができ、市販品の例としてクミアイ化学工業社製のイハラキュアミンMT、イハラキュアミンM液状品、CUA-4、キュアハードMED、エラスマー250P、エラスマー1000P;ロンザジャパン社製のLonzacure M-DEA、Lonzacure M-MIPA、Lonzacure M-DIPA、Lonzacure M-CDEA;アルベマール社製のエタキュア100、エタキュア300、エタキュア410、エタキュア420;Evonik Nutrition & Care社製のVERSALINK740;Evonik社製のANCAMINE2049を挙げることができる。これらは、単独で、又は、複数を組み合わせて用いることができる。
 ポリアミン化合物(B)のアミン価は、本発明の効果を阻害しない限りにおいて特に限定されないが、例えば、50~1000mgKOH/gとすることができ、200~1000mgKOH/gが好ましく、450~1000mgKOH/gがより好ましく、500~1000mgKOH/gがさらに好ましい。ポリアミン化合物のアミン価がかかる範囲にある場合には、優れた難燃性と燃焼時の保形性を有し、湿熱環境下における経時劣化を抑制でき、塗工時の被着体への接着性に優れ、接炎してもクラックが入りにくく、かつ、接炎による炭化が表面から深部へ進行しにくいポリウレア発泡体が提供可能なウレア樹脂組成物を得ることができる。特に後述する、ISO-5660の規格に従ったコーンカロリーメータによる総発熱量試験(難燃性を示す試験であり、以降コンカロ総発熱量試験と略す場合がある)、600℃における体積変化率(保形性示す試験)、及び、接炎試験では、発泡体表面に炭化層を形成して、発泡体深部への火の侵入を防止できる点で優れた効果を示す。
 ポリアミン化合物(B)のアミン価は、JIS K1557-7:2011「プラスチック-ポリウレタン原料ポリオール試験方法-第7部:塩基性度の求め方(窒素含有量及び全アミン価表示)」に記載の全アミン価の測定方法によって測定することができる。
 本発明のポリアミン化合物(B)に加え、本発明の効果を阻害しない限りにおいて、活性水素化合物を添加することができる。活性水素化合物は例えば、1級アルコール、2級アルコール、3級アルコール等のアルコール類、モノオール、ポリオール化合物、又はチオール化合物が挙げられる。アルコール類やポリオール化合物は、ポリイソシアネート化合物(A)と反応してウレタン結合を形成し、ポリウレア発泡体の骨格の一部を形成することができる。しかしながら、ウレタン結合はウレア結合よりも燃焼性が高いため、ポリウレア発泡体の難燃性が低下するおそれがある。このため、ポリオール化合物の含有量は、ポリアミン化合物(B)の含有量に対し、質量比で1/5以下とすることができ、1/10以下が好ましく、ポリオール化合物は含まないことがより好ましい。
2-3.三量化触媒
 本発明にかかる三量化触媒は、本発明の効果を阻害しない限りにおいて特に限定されない。三量化触媒を用いることで、ポリアミン化合物(B)を用いてポリウレア発泡体を製造する際にポリウレア発泡体にイソシアヌレート構造を形成することができる。三量化触媒としては、例えば、酸化リチウム、酸化ナトリウム、酸化カリウム等の金属酸化物類;
メトキシナトリウム、エトキシナトリウム、プロポキシナトリウム、ブトキシナトリウム、メトキシカリウム、エトキシカリウム、プロポキシカリウム、ブトキシカリウム等のアルコキシド類;
酢酸カリウム、オクチル酸カリウム、カプリル酸カリウム、シュウ酸鉄等の有機金属塩類;
2,4,6-トリス(ジメチルアミノメチル)フェノール、N,N’,N”-トリス(ジメチルアミノプロピル)ヘキサヒドロトリアジン、トリエチレンジアミン、1,3,5-トリス(ジメチルアミノプロピル)ヘキサヒドロ-s-トリアジン等の3級アミン類;エチレンイミンの誘導体;
アルカリ金属、アルミニウム、遷移金属類のアセチルアセトンのキレート類;
4級アンモニウム塩;ジアザビシクロウンデセン(DBU)等;を挙げることができる。
 これらは、単独で、又は、複数を組み合わせて用いることができる。これらのうち、3級アミン類、有機金属塩類、ジアザビシクロウンデセンを使用することがより好ましく、3級アミン類、ジアザビシクロウンデセンを使用することがより好ましい。これら好適な三量化触媒を用いることで、優れた難燃性と燃焼時の保形性を有し、湿熱環境下における経時劣化を抑制でき、塗工時の被着体への接着性に優れたポリウレア発泡体を得ることができる。
2-4.発泡剤
 本発明にかかる発泡剤は、本発明の効果が阻害されない限りにおいて特に限定されない。発泡剤としては、例えば、水、炭化水素(好適にはC4~C6)、ハイドロフルオロオレフィン、炭酸ガスを挙げることができる。具体的には、シクロペンタン、HFO(1336mzz)、HFO(1233zd)を挙げることができる。これらは、単独で、又は、複数を組み合わせて用いることができる。
2-5.整泡剤
 本発明にかかる整泡剤は、本発明の効果が阻害されない限りにおいて特に限定されない。整泡剤としては、例えば、シリコーン系化合物、非イオン系界面活性剤等を挙げることができる。これらは、単独で、又は、複数を組み合わせて用いることができる。
2-6.難燃剤
 本発明にかかるウレア樹脂組成物は、難燃剤を含むことができる。難燃剤として本発明の効果を阻害しない限りにおいて特に限定されないが、例えば、赤燐、リン酸エステル、リン酸塩含有難燃剤、臭素含有難燃剤、ホウ素含有難燃剤、アンチモン含有難燃剤及び金属水酸化物等を挙げることができる。これらは、単独で、又は、複数を組み合わせて用いることができる。これらのうち、赤燐又はリン酸エステル、リン酸塩含有難燃剤、臭素含有難燃剤、ホウ素含有難燃剤、アンチモン含有難燃剤及び金属水酸化物から選ばれる少なくとも一つを含むことが好ましく、赤燐を含むことがより好ましく、赤燐に加え、リン酸エステル、リン酸塩含有難燃剤、臭素含有難燃剤、ホウ素含有難燃剤、アンチモン含有難燃剤及び金属水酸化物から選ばれる少なくとも一つを含む場合がさらに好ましく、赤燐とリン酸エステルを含み、さらに塩素含有リン酸エステル、リン酸塩含有難燃剤、臭素含有難燃剤、ホウ素含有難燃剤、アンチモン含有難燃剤及び金属水酸化物から選ばれる少なくとも一つを含む場合が特に好ましく、赤燐、リン酸エステル、臭素含有難燃剤を含む場合が特に好ましい。本発明にかかるウレア樹脂組成物がこれらの難燃剤を含む場合には、優れた難燃性と燃焼時の保形性を有し、湿熱環境下における経時劣化を抑制でき、塗工時の被着体への接着性に優れたポリウレア発泡体を得ることができる。また、これらの難燃剤以外のその他の難燃剤を含むことができる。
 本発明にかかるリン酸エステルは、本発明の効果を阻害しない限りにおいて特に限定されない。リン酸エステルとしては、例えば、トリフェニルホスフェート、クレジルジフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、トリス(t-ブチル化フェニル)ホスフェート、トリス(i-プロピル化フェニル)ホスフェート、2-エチルヘキシルジフェニルホスフェート等の芳香族リン酸エステル;
1,3-フェニレンビス(ジフェニルホスフェート)、1,3-フェニレンビス(ジキシレニル)ホスフェート、レゾルシノールビス(ジフェニル)ホスフェート、ビスフェノールAビス(ジフェニルホスフェート)等の芳香族縮合リン酸エステル;
トリス(ジクロロプロピル)ホスフェート、トリス(β-クロロプロピル)ホスフェート、トリス(クロロエチル)ホスフェート等の含ハロゲンリン酸エステル類;
2,2-ビス(クロロメチル)トリメチレンビス(ビス(2-クロロエチル)ホスフェート)、ポリオキシアルキレンビスジクロロアルキルホスフェート等の含ハロゲン縮合リン酸エステル類;等を挙げることができる。これらは、単独で、又は、複数を組み合わせて用いることができる。
 本発明にかかるリン酸塩含有難燃剤は、本発明の効果を阻害しない限りにおいて特に限定されない。リン酸塩含有難燃剤としては、例えば、モノリン酸塩としては、リン酸アンモニウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム等のアンモニウム塩;
リン酸一ナトリウム、リン酸二ナトリウム、リン酸三ナトリウム、亜リン酸一ナトリウム、亜リン酸二ナトリウム、次亜リン酸ナトリウム等のナトリウム塩;
リン酸一カリウム、リン酸二カリウム、リン酸三カリウム、亜リン酸一カリウム、亜リン酸二カリウム、次亜リン酸カリウム等のカリウム塩;
リン酸一リチウム、リン酸二リチウム、リン酸三リチウム、亜リン酸一リチウム、亜リン酸二リチウム、次亜リン酸リチウム等のリチウム塩;
リン酸二水素バリウム、リン酸水素バリウム、リン酸三バリウム、次亜リン酸バリウム等のバリウム塩、リン酸一水素マグネシウム、リン酸水素マグネシウム、リン酸三マグネシウム、次亜リン酸マグネシウム等のマグネシウム塩;
リン酸二水素カルシウム、リン酸水素カルシウム、リン酸三カルシウム、次亜リン酸カルシウム等のカルシウム塩;
リン酸亜鉛、亜リン酸亜鉛、次亜リン酸亜鉛等の亜鉛塩、第一リン酸アルミニウム、第二リン酸アルミニウム、第三リン酸アルミニウム、亜リン酸アルミニウム、次亜リン酸アルミニウム等のアルミニウム塩;等を挙げることができる。
 ポリリン酸塩としては、例えば、ポリリン酸アンモニウム、ポリリン酸ピペラジン、ポリリン酸メラミン、ポリリン酸アンモニウムアミド、ポリリン酸アルミニウム等を挙げることができる。これらは、単独で、又は、複数を組み合わせて用いることができる。
 本発明にかかる臭素含有難燃剤は、本発明の効果を阻害しない限りにおいて特に限定されない。臭素含有難燃剤としては、例えば、ペンタブロモジフェニルエーテル;オクタブロモジフェニルエーテル;デカブロモジフェニルエーテル;テトラブロモビスフェノールA(TBBA)、TBBA-エポキシオリゴマー、TBBA-ポリカーボネートオリゴマー、TBBA-ビス(ジブロモプロピールエーテル)、TBBA-ビス(アリールエーテル)等のTBBA化合物;
ビスフェニルペンタメタン、1,2-ビス(2,4,6-トリブロモフェノキシ)エタン、2,4,6-トリス(2,4,6-トリブロモフェノキシ)-1,3,5-トリアジン、2,6-ジブロモフェノール、2,4-ジブロモフェノール等の多ベンゼン環化合物;
臭素化ポリスチレン、ポリ臭素化スチレン等の臭素化スチレン化合物;
エチレンビステトラブロモフタルイミド等のフタル酸化合物;
ヘキサブロモシクロドデカン等の環状脂肪族化合物;ポリ(ペンタブロモフェニルアクリレート)等のポリアクリル酸臭素化芳香族エステル化合物;等を挙げることができる。これらは、単独で、又は、複数を組み合わせて用いることができる。
 本発明にかかるホウ素含有難燃剤は、本発明の効果を阻害しない限りにおいて特に限定されない。ホウ素含有難燃剤としては、例えば、ホウ砂;三酸化二ホウ素、三酸化ホウ素、二酸化二ホウ素、三酸化四ホウ素、五酸化四ホウ素等の酸化ホウ素;ホウ酸、ホウ酸リチウム、ホウ酸ナトリウム、ホウ酸カリウム、ホウ酸セシウム、ホウ酸マグネシウム、ホウ酸カルシウム、ホウ酸バリウム、ホウ酸ジルコニウム、ホウ酸亜鉛、ホウ酸アルミニウム、ホウ酸アンモニウム等ホウ酸化合物等を挙げることができる。
 本発明にかかるアンチモン含有難燃剤は、本発明の効果を阻害しない限りにおいて特に限定されない。ホウ素含有難燃剤としては、例えば、三酸化アンチモン、五酸化アンチモン等の酸化アンチモン;アンチモン酸ナトリウム、アンチモン酸カリウム等のアンチモン酸塩;ピロアンチモン酸ナトリウム、ピロアンチモン酸カリウム等のピロアンチモン酸塩;等を挙げることができる。これらは、単独で、又は、複数を組み合わせて用いることができる。
 本発明にかかる金属水酸化物は、本発明の効果を阻害しない限りにおいて特に限定されない。金属水酸化物としては、例えば、水酸化アルミニウム、水酸化マグネシウム等を挙げることができる。これらは、単独で、又は、複数を組み合わせて用いることができる。
 その他の難燃剤としては、公知の難燃剤を用いることができる。その他の難燃剤としては、例えば、塩素化パラフィン等の塩素化合物;ヒンダードアミン、メラミンシアヌレート等の窒素化合物;セルロース;等を挙げることができる。これらは、単独で、又は、複数を組み合わせて用いることができる。
2-7.その他添加物
 本発明にかかる樹脂組成物は、本発明の効果を阻害しない限りにおいて、上記の添加物に加え、さらにその他の添加物を添加することができる。その他の添加物としては、樹脂(ウレア)化触媒、泡化触媒、バランス触媒、酸化防止剤、紫外線吸収剤、抗菌剤、分散剤等、添加剤として公知のものを添加することができる。
3.ウレア樹脂組成物の特性
 本発明にかかるウレア樹脂組成物の5℃におけるクリームタイムは、1~120秒とすることができ、2~70秒が好ましい。ウレア樹脂組成物の5℃におけるクリームタイムがかかる範囲にある場合には、液の流れ性や躯体への濡れ性・接着性を十分に得る点でより優れた効果を奏する。ここで、クリームタイムとは、ウレア樹脂組成物のうち、ポリイソシアネート化合物(A)を除く、その他の全ての組成物を混合した混合物(以降、ポリウレア発泡体製造用組成物と称する場合がある)と、ポリイソシアネート化合物(A)を混合した時点から、これらの混合物が発泡を開始し、クリーム状の液体となり膨張を開始する直前までの時間を指す。肉眼で、混合物の溶液の色が変色を始めた時間として測定する。なお、5℃とは、ポリイソシアネート化合物(A)とポリウレア発泡体製造用組成物を、それぞれ5℃に保ち混合したことを示す。
 本発明のウレア組成物の20℃におけるクリームタイムは、0.5~90秒とすることができ、0.7~60秒が好ましい。ウレア樹脂組成物の20℃におけるクリームタイムがかかる範囲にある場合には、実用上の液温で発泡剤が揮発する前に混合した液体が増粘しセルが崩壊することなく、効率的に発泡する点で、より優れた効果を奏する。ウレア組成物の20℃におけるクリームタイムは、5℃におけるクリームタイムの測定方法において、ポリイソシアネート化合物(A)とポリウレア発泡体製造用組成物を、それぞれ20℃に保ち混合したこと以外は、同じ測定方法により測定する。
4.ポリウレア発泡体の特性
4-1.イソシアヌレート化率
 本発明のポリウレア発泡体は、イソシアヌレート構造を含む。イソシアヌレート構造は、ウレア樹脂組成物の原料であるポリイソシアネート化合物(A)が、三量化触媒によって三量化されることで形成される。イソシアヌレート構造は、赤外線分光分析法により、検出できる。ポリイソシアネート化合物(A)がイソシアヌレート化された割合(イソシアヌレート化率)は、赤外線分光分析法により得られた吸収スペクトルに基づいて下式(1)により算出される。イソシアヌレート化率は、本発明の効果を阻害しない限りにおいて特に限定さないが、例えば、10~50%とすることができ、20~45%が好ましく、25~40%がより好ましい。また、下限値は10%以上、20%以上、25%以上、28%以上とすることができ、上限値は50%以下、45%以下、43%以下、40%以下としてもよい。イソシアヌレート化率がかかる範囲内にあれば、ポリウレア発泡体は、優れた難燃性を有する。
(式1)
 イソシアヌレート化率(%)=P1/(P1+P2+P3+P4)×100
P1:赤外線分光分析法により得られたポリウレア発泡体の吸収スペクトルに含まれるイソシアヌレート構造に由来するピーク面積
P2:赤外線分光分析法により得られたポリウレア発泡体の吸収スペクトルに含まれるウレア構造のC=Oに由来するピーク面積
P3:赤外線分光分析法により得られたポリウレア発泡体の吸収スペクトルに含まれるウレタン構造及びイソシアヌレート構造のC=Oに由来するピーク面積
P4:赤外線分光分析法により得られたポリウレア発泡体の吸収スペクトルに含まれるウレタン構造及びウレア構造に含まれるN-Hに由来するピーク面積
 P1は、赤外線分光分析法により得られたポリウレア発泡体の吸収スペクトルに含まれるイソシアヌレート構造に由来するピークの面積であり、波数1410cm-1近傍のヌレート環に由来するピークの面積である。P1は、波数が1380~1430cm-1の範囲のピーク面積である。P1は、原料のポリイソシアネート化合物(A)のイソシアネート基が反応してできたイソシアヌレート構造の含有量を示す。
 P2は、赤外線分光分析法により得られたポリウレア発泡体の吸収スペクトルに含まれるウレア構造のC=Oに由来するピーク面積であり、波数が1595cm-1近傍のウレア結合のC=Oに由来するピークの面積である。P2は、波数が1550~1640cm-1の範囲のピーク面積である。P2は、原料のポリイソシアネート化合物(A)のイソシアネート基が反応してできたウレア構造の含有量を示す。
 P3は、赤外線分光分析法により得られたポリウレア発泡体の吸収スペクトルに含まれるウレタン構造及びイソシアヌレート構造のC=Oに由来するピーク面積であり、波数1710cm-1近傍のC=O結合のピークの面積である。P3は、波数が1680~1730cm-1の範囲のピーク面積である。P3は、原料のポリイソシアネート化合物(A)のイソシアネート基が反応してできたウレタン構造及びイソシアヌレート構造の含有量を示す。
 P4は、赤外線分光分析法により得られたポリウレア発泡体の吸収スペクトルに含まれるウレタン構造及びウレア構造に含まれるN-Hに由来するピーク面積であり、波数1510cm-1近傍のN-Hに由来するピークの面積である。P4は、波数が1470~1550cm-1の範囲のピーク面積である。P4は、ポリウレア発泡体に含まれるウレタン構造及びウレア構造の含有量を示し、原料のポリイソシアネート化合物(A)のイソシアネート基が反応してできたウレタン構造及びウレア構造の含有量を示す。
 従って、P1~P4の和は、原料であるポリイソシアネート化合物(A)のイソシアネート基の反応した総数を示す。このため、イソシアヌレート化率は、反応した原料であるポリイソシアネート化合物(A)のイソシアネート基のうち、イソシアヌレート構造となったものの割合を示す値である。
4-2.密度
 ポリウレア発泡体の密度は、本発明の効果を阻害しない限りにおいて特に限定されないが、10~200kg/mとすることができ、10~100kg/mが好ましく、10~55kg/mがより好ましい。ポリウレア発泡体の密度がかかる範囲にある場合には、熱伝導率に優れ、難燃性に優れたポリウレア発泡体を得ることができる。ポリウレア発泡体の密度は、JIS K7222:2005「発泡プラスチック及びゴム-見掛け密度の求め方」に従って測定される。
4-3.平均セル(気泡)径及びセル形状
 ポリウレア発泡体に含まれる気泡(セル)の平均セル径及び形状は、以下の試験片を作製し、測長機能付きの光学顕微鏡(例えば、デジタルマイクロスコープ)を用いて、観察、測定する。試験片は、ウレア樹脂組成物を箱型の金型(例えば、発泡体を直方体形状成形するための金型)に流し込み、発泡、硬化させ、成形したポリウレア発泡体を得て、このポリウレア発泡体から長さ50mm×幅50mm×厚み20mmに切り出すことで作製される。ここで、金型内で発泡させた際の発泡の流れ方向(ウレア樹脂組成物が発泡して膨張する方向であり、金型底面から垂直上方の方向。以降、この方向をライズ方向と称す)を、試験片の厚み方向となるように取り出す。取り出した試験片のライズ方向を法線とする面をCD面とする。また、試験片のCD面に直交する面をMD面とする。CD面を光学顕微鏡(デジタルマイクロスコープを含む)で観察し、その形状を確認する。その際、CD面における気泡を無作為に10個選択し、各気泡のCD面内の最も長い径(R1とする)と、その最も長い径に直交する方向の径(R2とする)の差(DR=R1-R2)を求め、選択した全ての気泡のDRの平均が、5mmを超える場合を楕円形状と判断する。
 また、0mm以上5mm以下を円形状と判断する。
 また、CD面内及びMD面内の気泡を無作為にそれぞれ10個選択し、その長軸の長さを測定し、平均したものをCD面内の平均セル径及びCD面内の平均セル径とする。また、MD面内の平均セル径とCD面内の平均セル径の比(MD面内の平均セル径/CD面内の平均セル径)は、0.7~1.8とすることができ、0.8~1.3が好ましい。これらの値がかかる範囲にある場合には、優れた性能のポリウレア発泡体を得ることができる。
4-4.独立気泡率
 ポリウレア発泡体に含まれる気泡は、本発明の効果を阻害しない限りにおいて特に限定されず、独立気泡、連続気泡、半連続気泡のいずれを含んでいてもよい。ここで、半連続気泡構造とは、独立気泡と異なり、気泡に小さな気孔を有する構造であって、連続気泡構造と比較して、隣り合う気泡同士の気孔が小さい構造のものを意味する。
 ポリウレア発泡体の独立気泡率は、例えば、75%以上とすることができ、80%以上が好ましい。独立気泡率がかかる範囲にある場合には、優れた性能のポリウレア発泡体を得ることができる。
 なお、独立気泡率は、以下の方法で算出されたものとする。ポリウレア発泡体を長さ30mm×幅30mm×厚み20mmの試験片に加工し、各辺の長さを正確に測定し試験片の見かけの体積(V)を算出する。試験片の質量(W)を測定する。乾式自動密度計を用いて、試験片の真の体積(V1)を測定する。下式2~4により算出された値を独立気泡率とする。なお各測定は、温度23±5℃、相対湿度40~70%の環境下で行うものとする。
(式2)
オープンセル率(%):Oc=(V-V1)/V×100
(式3)
ポリウレア発泡体の樹脂量:S=W/(V×D)×100
 Dは、ポリウレア発泡体の樹脂自体の密度とする。
(式4)
独立気泡率:Cc=100-Oc-S
4-5.5%重量減少温度
 ポリウレア発泡体の5%重量減少温度は、例えば、120~320℃とすることができ、150~280℃が好ましい。5%重量減少温度が、かかる範囲にある場合には、本発明の効果を有するポリウレア発泡体を得ることができる。5%重量減少温度の測定は、示差熱・熱重量同時測定器(TG/DTA)を用い、25~700℃の温度領域について、ポリウレア発泡体の重量減少挙動を観測し、試料重量が5重量%減少する温度を測定する。測定は、昇温速度を10℃/minとし、乾燥空気気流下(流速:250mm/min)として行う。
4-6.灰分量(600℃及び700℃)の測定
 ポリウレア発泡体の600℃に加熱した場合の灰分量は、例えば、5~60重量%とすることができ、10重量%以上が好ましい。また、ポリウレア発泡体の700℃に加熱した場合の灰分量は、例えば、3重量%以上とすることができ、5重量%以上が好ましい。これらの値が、かかる範囲にある場合には、本発明の効果を有するポリウレア発泡体を得ることができる。600℃及び700℃に加熱した場合の灰分量は、示差熱・熱重量同時測定器(TG/DTA)を用い、25~600℃又は25~700℃の温度領域について、ポリウレア発泡体の重量減少挙動を観測し、600℃又は700℃でのポリウレア発泡体の残存重量を測定し、初期のポリウレア発泡体の重量で除して、600℃又は700℃の灰分量(重量%)とする。測定は、昇温速度を10℃/minとし、乾燥空気気流下(流速:250mm/min)として行う。
4-7.保持残量(300℃×30分、500℃×30分)
 ポリウレア発泡体の300℃における30分間の加熱処理後の保持残量は、例えば、30~95重量%とすることができ、55~95重量%が好ましい。また、ポリウレア発泡体の500℃における30分間の加熱処理後の保持残量は、例えば、15~65重量%とすることができ、25~65重量%が好ましい。これらの値が、かかる範囲にある場合には、本発明の効果を有するポリウレア発泡体を得ることができる。300℃及び500℃における30分間加熱した場合の保持残量は、示差熱・熱重量同時測定器(TG/DTA)を用い、300℃又は500℃に昇温し、さらに30分間保持したあとのポリウレア発泡体の残量重量を測定し、初期のポリウレア発泡体の重量で除して、保持重量(重量%)とする。測定は、昇温速度を10℃/minとして所定の温度まで昇温、保持し、乾燥空気気流下(流速:250mm/min)として行う。
4-8.圧縮強度
 ポリウレア発泡体の圧縮強度は、例えば、300~800kPaとすることができ、350~800kPaが好ましい。圧縮強度がかかる範囲にある場合には、本発明の効果を有するポリウレア発泡体を得ることができる。圧縮強度は、JIS K7220:2006「硬質発泡プラスチック-圧縮特性の求め方」に記載の方法で測定される。
4-9.接着強度
 ポリウレア発泡体の木板に対する接着強度は、例えば、50~250kPaとすることができ、70~250kPaが好ましい。接着強度がかかる範囲にある場合には、本発明の効果を有するポリウレア発泡体を得ることができる。接着強度は、JIS A9526:2015「建築物断熱用吹付け硬質ウレタンフォーム」に記載の方法で測定される。
4-10.熱伝導率
 ポリウレア発泡体の熱伝導率は、本発明の効果を阻害しない限りにおいて特に限定されないが、例えば、0.015~0.040W/(m・K)とすることができ、0.015~0.026W/(m・K)が好ましい。熱伝導率がかかる範囲にある場合には、本発明の効果を有するポリウレア発泡体を得ることができる。熱伝導率は、JIS A1412-1「熱絶縁材の熱抵抗及び熱伝導率の測定方法-第1部:保護熱板法(GHP法)」に記載の方法で測定される。
4-11.圧縮弾性率
 ポリウレア発泡体の圧縮弾性率は、例えば、8~30MPaとすることができ、10~30MPaが好ましい。圧縮弾性率がかかる範囲にある場合には、本発明の効果を有するポリウレア発泡体を得ることができる。圧縮弾性率は、JIS K7220:2006「硬質発泡プラスチック-圧縮特性の求め方」に記載の方法で測定される。
4-12.透湿係数(水蒸気透過度)
 ポリウレア発泡体の透湿係数は、例えば、2.5~9.5ng/(m・s・Pa)とすることができ、2.5~8.5ng/(m・s・Pa)が好ましい。透湿係数がかかる範囲にある場合には、本発明の効果を有するポリウレア発泡体を得ることができる。透過係数は、JIS K7225:2018「硬質発泡プラスチック-水蒸気透過性の求め方」に記載の方法で測定される。
4-13.引張強度
 ポリウレア発泡体の引張強度は、例えば、0.5~2.0MPaとすることができ、0.6~2.0MPaが好ましい。引張強度がかかる範囲にある場合には、本発明の効果を有するポリウレア発泡体を得ることができる。引張強度は、JIS A9511:2017「発泡プラスチック保温材」に記載の方法で測定される。
4-14.引張伸び
 ポリウレア発泡体の引張伸びは、例えば、45~220%とすることができ、55~180%が好ましい。引張伸びがかかる範囲にある場合には、本発明の効果を有するポリウレア発泡体を得ることができる。引張伸びは、JIS A9511:2017「発泡プラスチック保温材」に記載に準拠して試験片を作製し、引張方向の間隔が50mmとなる標線を2本平行に引く。この試験片を、材料試験機を用いて、引張速度500mm/minで試験を行い、破断に至った際の前記標線間の間隔を測定する。引張伸びは、測定結果(破断時の標線の間隔)/50mm(試験前の標線の間隔)×100として算出する。
4-15.曲げ強度
 ポリウレア発泡体の曲げ強度は、例えば、0.02~0.15MPaとすることができ、0.025~0.15MPaが好ましい。曲げ強度がかかる範囲にある場合には、本発明の効果を有するポリウレア発泡体を得ることができる。曲げ強度は、JIS K7221-2:2006「硬質発泡プラスチック-曲げ試験- 第2部:曲げ特性の求め方」に記載の方法で測定される。
4-16.シャルピー衝撃強さ
 ポリウレア発泡体のシャルピー衝撃強さは、例えば、1.0~3.0kg・cm/cmとすることができ、1.2~3.0kg・cm/cmが好ましい。シャルピー衝撃強さがかかる範囲にある場合には、本発明の効果を有するポリウレア発泡体を得ることができる。シャルピー衝撃強さは、JIS K7111-1:2012「プラスチック-シャルピー衝撃特性の求め方-第1部:非計装化衝撃試験」に記載の方法で測定される。
4-17.吸水率
 ポリウレア発泡体の吸水率は、例えば、0.012~0.050%とすることができ、0.015~0.045%が好ましい。吸水率がかかる範囲にある場合には、本発明の効果を有するポリウレア発泡体を得ることができる。吸水率は、JIS A9511:2017「発泡プラスチック保温材」に記載のB法で測定した吸水量をポリウレア発泡体の初期重量で除して算出される。
4-18.打ち抜きせん断強度
 ポリウレア発泡体の打ち抜きせん断強度は、例えば、7~30N/cmとすることができ、8~25N/cmが好ましい。打ち抜きせん断強度がかかる範囲にある場合には、本発明の効果を有するポリウレア発泡体を得ることができる。打ち抜きせん断強度は、JIS K7214:1985「プラスチックの打抜きによる せん断試験方法」に記載の方法で測定される。
4-19.デュロメータ硬さ(C硬度)
 ポリウレア発泡体のデュロメータ硬さ(C硬度)は、例えば、25~65とすることができ、30~60が好ましい。デュロメータ硬さ(C硬度)がかかる範囲にある場合には、本発明の効果を有するポリウレア発泡体を得ることができる。デュロメータ硬さ(C硬度)は、JIS K7215:1986「プラスチックのデュロメータ硬さ試験方法」に記載の方法で測定される。
4-20.比熱
 ポリウレア発泡体の比熱は、例えば、0.15~0.35kJ/(kg・℃)とすることができ、0.17~0.30kJ/(kg・℃)が好ましい。比熱がかかる範囲にある場合には、本発明の効果を有するポリウレア発泡体を得ることができる。比熱は、JIS K7123:1987「プラスチックの比熱容量測定方法」に記載の入力補償示差走査熱量測定方法で測定される。
4-21.コーンカロリーメータ測定(総発熱量)
 ポリウレア発泡体の総発熱量は、ISO-5660の試験方法に準拠し、コーンカロリーメータを用いて、放射熱強度を50kW/mとして加熱した条件で測定する。また、10分経過時の総発熱量は、15MJ/m以下とすることができ、10MJ/m以下が好ましい。さらに、20分経過時の総発熱量は、15MJ/m以下とすることができ、10MJ/m以下が好ましく、8MJ/m以下がより好ましい。ポリウレア発泡体の総発熱量がかかる範囲にある場合には、特に難燃性に優れたポリウレア発泡体となる。
5.ポリウレア発泡体の製造方法
 本発明のウレア樹脂組成物は、ポリイソシアネート化合物(A)、ポリアミン化合物(B)、触媒、発泡剤、整泡剤、赤燐、その他の難燃剤、その他添加物をあらかじめ混合して作製する。ウレア樹脂組成物の混合方法としては公知の方法を用いることができる。具体的には、容器に、ポリイソシアネート(A)以外の原料を混合機(例えば、プロペラ式攪拌翼を取り付けた攪拌機)で混合し(例えば、前記攪拌機を用い2000rpmで5分間攪拌する)、ポリウレア発泡体製造用組成物を調整する。続いて、ポリイソシアネート(A)と、ポリウレア発泡体製造用組成物をそれぞれ所定の温度(例えば、10±1℃)に冷却する。その後、ポリイソシアネート(A)と、ポリウレア発泡体製造用組成物とを、混合し(例えば、前記攪拌機を用いて2000rpmで5秒間攪拌する)、ウレア樹脂組成物を得ることができる。さらに、ウレア樹脂組成物を発泡、硬化させて、ポリウレア発泡体を得ることができる。
 なお、吹付工法に用いる場合には、予めポリイソシアネート以外の原料を混合したポリウレア発泡体製造用組成物と、ポリイソシアネート化合物(A)を、スプレーガンにポンプなどを用いてそれぞれ供給し(この際スプレーガンのノズルを開放する)、スプレーガン内のチャンバーにおいてポリウレア発泡体製造用組成物とポリイソシアネート化合物(A)を混合し、躯体へ吹付を行い、ポリウレア発泡体を得ることができる。予めポリイソシアネート化合物(A)以外の原料を混合したポリウレア発泡体製造用組成物と、ポリイソシアネート化合物(A)と、を二液性のシステム液として取り扱うことができる。なお、ポリイソシアネート化合物(A)と反応しない難燃剤、整泡剤、発泡剤、分散剤、その他添加剤は、ポリイソシアネート化合物(A)と混合し、システム液として取り扱うこともできる。
 ポリアミン化合物(B)のウレア樹脂組成物中の含有量は、ウレア樹脂組成物の全量を100質量%とした場合に、2.0質量%以上であり、5.0質量%以上が好ましく、8.0質量%以上がより好ましい。前記ポリアミン化合物(B)の含有量の上限は、例えば、40.0質量%以下とすることができ、30.0質量%以下が好ましく、20.0質量%以下がより好ましい。ポリアミン化合物(B)のウレア樹脂組成物中の含有量は、別の観点では、ウレア樹脂組成物のイソシアネートインデックスが、200~600となるように配合することができ、200~500がより好ましい。ここで、イソシアネートインデックスとは、全原料配合である樹脂組成物のすべての活性水素のモル数と、ポリイソシアネート化合物(A)中のイソシアネート基のモル数の比に100を乗じた値(NCOのモル数/活性水素のモル数×100)をいう。樹脂組成物のイソシアネートインデックスがかかる範囲にある場合には、十分なイソシアヌレート構造が形成され、イソシアヌレート化率を適度なものとすることができる。そのため、ポリウレア発泡体の難燃性を優れたものとすることができる。
 なお、ポリイソシアネート化合物(A)以外の原料を混合したポリウレア発泡体製造用組成物と、ポリイソシアネート化合物(A)と、を二液性のシステム液として取り扱う場合には、ポリアミン化合物(B)のポリウレア発泡体製造用組成物中の含有量は、ポリウレア発泡体製造用組成物とポリイソシアネート化合物(A)との和を100質量%とした場合に、2.0質量%以上であり、5.0質量%以上が好ましく、8.0質量%以上がより好ましい。前記ポリアミン化合物(B)の含有量の上限は、例えば、40.0質量%以下とすることができ、30.0質量%以下が好ましく、20.0質量%以下がより好ましい。ポリアミン化合物(B)のポリウレア発泡体製造用組成物中の含有量は、別の観点では、ポリウレア発泡体製造用組成物とポリイソシアネート化合物(A)を混合した際のイソシアネートインデックスが、200~600となるように配合することができ、200~500がより好ましい。
 ポリイソシアネート化合物(A)のウレア樹脂組成物中の含有量は、ウレア樹脂組成物中のポリアミン化合物(B)の全含有量を100質量部とした場合に、100~1000質量部とすることができる。
 なお、ポリウレア発泡体製造用組成物と、ポリイソシアネート化合物(A)と、を二液性のシステム液として取り扱う場合には、ポリウレア発泡体製造用組成物中のポリアミン化合物(B)の全含有量を100質量部とした場合に、100~1000質量部とすることができる。
 整泡剤のウレア樹脂組成物中又はポリウレア発泡体製造用組成物中の含有量は、ウレア樹脂組成物中又はポリウレア発泡体製造用組成物中のポリアミン化合物(B)の全含有量を100質量部とした場合に、0.1~20質量部とすることができる。また、ポリウレア発泡体に含まれる整泡剤の含有量は、ポリウレア発泡体の全質量を100質量%とした場合に、0.1~20質量%とすることができ、0.5~15質量%が好ましい。
 難燃剤のウレア樹脂組成物中又はポリウレア発泡体製造用組成物中の含有量は、ウレア樹脂組成物中又はポリウレア発泡体製造用組成物中のポリアミン化合物(B)の全含有量を100質量部とした場合に、10~200質量部とすることができ、30~150質量部が好ましく、50~100質量部がより好ましい。難燃剤の含有量がかかる範囲にある場合には、難燃性に優れたポリウレア発泡体を得ることができる。また、ポリウレア発泡体に含まれる難燃剤の含有量は、ポリウレア発泡体の全質量を100質量%とした場合に、1~60質量%とすることができ、2~45質量%が好ましい。
 赤燐のウレア樹脂組成物中又はポリウレア発泡体製造用組成物中の含有量は、ウレア樹脂組成物中又はポリウレア発泡体製造用組成物中のポリアミン化合物(B)の全含有量を100質量部とした場合に、100質量部以下とすることができ、5~40質量部が好ましく、25~40質量部がより好ましい。また、ポリウレア発泡体に含まれる赤燐の含有量は、ポリウレア発泡体の全質量を100質量%とした場合に、0~30質量%とすることができ、1~30質量%が好ましく、2~25質量%がより好ましい。赤燐の含有量がかかる範囲にある場合には、より難燃性に優れたポリウレア発泡体を得ることができ、さらに湿熱環境下における経時劣化を抑制できる。特に発泡体の熱分解後の灰分が増加すること、及び、後述する接炎評価において、接炎初期に不燃性の炭化層を形成することで発泡体深部への燃焼進行を防止することができる。
 また、リン酸エステル、リン酸塩含有難燃剤、臭素含有難燃剤、ホウ素含有難燃剤、アンチモン含有難燃剤及び金属水酸化物から選ばれる難燃剤の合計の含有量は、ウレア樹脂組成物中のポリアミン化合物(B)の全含有量を100質量部とした場合に、10~200質量部とすることができる。また、ウレア樹脂組成物中の赤燐の含有量(Fp)と、リン酸エステル、リン酸塩含有難燃剤、臭素含有難燃剤、ホウ素含有難燃剤、アンチモン含有難燃剤及び金属水酸化物から選ばれる難燃剤の合計の含有量(Ft)との比(Fp/Ft)は、特に限定されないが、例えば、0.0~1.0とすることができ、0.0~0.8が好ましく、0.09~0.73がより好ましく、0.45~0.73がさらに好ましい。これら難燃剤の配合がかかる範囲にある場合には、優れた難燃性と燃焼時の保形性を有し、湿熱環境下における経時劣化を抑制できるポリウレア発泡体を得ることができる。
 三量化触媒のウレア樹脂組成物中又はポリウレア発泡体製造用組成物中の含有量は、樹脂組成物中又はポリウレア発泡体製造用組成物中のポリアミン化合物(B)の全含有量を100質量部とした場合に、0.1~30質量部とすることができ、1~20質量部が好ましく、5~20質量部がより好ましく、10~20質量部がさらに好ましい。三量化触媒の含有量がかかる範囲にある場合には、イソシアヌレート化が十分となり、優れた難燃性と燃焼時の保形性を有し、湿熱環境下における経時劣化を抑制できるポリウレア発泡体を得ることができる。また、ポリウレア発泡体に含まれる三量化触媒の含有量は、ポリウレア発泡体の全質量を100質量%とした場合に、0.01~20質量%とすることができ、0.05~15質量%が好ましい。
 発泡剤のウレア樹脂組成物中又はポリウレア発泡体製造用組成物中の含有量は、樹脂組成物中又はポリウレア発泡体製造用組成物中のポリアミン化合物(B)の全含有量を100質量部とした場合に、1~60質量部とすることができ、5~50質量部が好ましい。発泡剤の含有量がかかる範囲にある場合には、優れた難燃性と燃焼時の保形性を有し、湿熱環境下における経時劣化を抑制できるポリウレア発泡体を得ることができる。また、ポリウレア発泡体に含まれる発泡剤の含有量は、ポリウレア発泡体の全質量を100質量%とした場合に、1~40質量%とすることができ、3~30質量%が好ましい。
 三量化触媒以外の触媒(樹脂化触媒、泡化触媒等)を配合する場合において、三量化触媒以外の触媒の含有量は、ウレア樹脂組成物中又はポリウレア発泡体製造用組成物中のポリアミン化合物(B)の全含有量を100質量部とした場合に、1~10質量部とすることができる。なお、樹脂化触媒及び泡化触媒の両方の作用を有する化合物は樹脂化触媒として配合するものとする。また、ポリウレア発泡体に含まれる三量化触媒以外の触媒の含有量は、ポリウレア発泡体の全質量を100質量%とした場合に、0~20質量%とすることができ、0.5~15質量%が好ましい。
6.ポリウレア発泡体の用途
 本発明のポリウレア発泡体は、建築用途(壁、天井、屋根、床など)や、建具(窓、障子、扉戸、ふすま、欄間など)、石油及びガス運搬用船舶・貯蔵用タンク、車輛(エンジン、バッテリー、天井、フロア、ドアパネルなど)、航空機、輸送機、薬剤運搬用保冷バッグ、冷凍・冷蔵室、プラント施設、及び、冷蔵庫などの電化製品、土留壁の、保温材、熱材、冷熱抵抗緩和材や、地盤沈下防止工事や道路建設時の地下充填補強材、トンネルや橋梁、浮桟橋等土木用途注入補修材、不要地下室などの構造部充填材、エネルギー吸収材、防水材、止水材、浮力材等に用いられる。また、木造や鉄筋コンクリート造の建築などでは、断熱施工が容易であるため吹付工法用のポリウレア発泡体として用いることができる。
<<樹脂組成物の作製>>
<原料>
(ポリアミン化合物(B))
・エタキュア420(アルベマール社製、アミン価:562mgKOH/G)
・エラスマー250P(クミアイ化学工業社製、アミン価:254mgKOH/g)
・ANCAMINE2049(Evonik社製、アミン価:484mgKOH/g)
・エラスマー1000P(クミアイ化学工業社製、アミン価:93mgKOH/g)
(ポリオール化合物)
・マキシモールRLK-505 (川崎化成工業社製、水酸基価:250mgKOH/g)
(難燃剤)
・リン酸トリス(2-クロロプロピル) (TMCPP、塩素含有リン酸エステル)
・レゾルシノールビス(ジフェニル)ホスフェート(PFR、リン酸エステル)
・赤燐
・ポリリン酸アンモニウム(リン酸塩含有難燃剤)
・次亜リン酸アルミニウム(ホスフィン酸塩含有難燃剤)
・次亜リン酸ナトリウム(ホスフィン酸塩含有難燃剤)
・デカブロモジフェニルオキサイド(臭素含有難燃剤) 
・ホウ酸亜鉛(ホウ素含有難燃剤)
・三酸化アンチモン(アンチモン含有難燃剤)
・水酸化アルミニウム(金属水酸化物難燃剤)
・膨張黒鉛
・DOWSIL TM-4 7081(ダウ東レ社製、アクリル変性シリコーン系樹脂、シリコーン系難燃剤)
(整泡剤)
・SF2937F(東レダウコーニング社製シリコーン系界面活性剤)
・ディスパロンSEI-1501(楠本化成社製、アクリル系重合物、有機系界面活性剤)
(触媒)
・2-エチルヘキサン酸ビスマス(ビスマス系触媒)
・ジブチルチンジメルカプチド(スズ系触媒)
・N,N-ジメチルアミノエタノール(泡化触媒)
・チタン-テトラ(2-エチルヘキソシド)(チタン系触媒)
・TEDA(トリエチレンジアミン、アミン系触媒)
・BDMAEE(ビス(ジメチルアミノエチル)エーテル)
・1,2-ジメチルイミダゾール
・PMDETA(ペンタメチルジエチルトリアミン)
・TOYOCAT-TRX(東ソー社製、三量化触媒)
・U-CAT 18X(サンアプロ社製、4級アンモニウム塩、三量化触媒)・ジアザビシクロウンデセン(三量化触媒)
・1,3,5-トリス(ジメチルアミノプロピル)ヘキサヒドロ-s-トリアジン(三量化触媒)
・オクチル酸カリウム(三量化触媒)
(発泡剤)
・Opteon1100(三井フロロケマーズ社製、HFO-1336mzZ、沸点33℃)
・Opteon1150(三井フロロケマーズ社製、沸点7℃)
・シクロペンタン(沸点49℃)
・水(沸点100℃)
(ポリイソシアネート化合物(A))
・ミリオネートMR-200(東ソー社製、NCO%:30.9%、クルードMDI)
・フォームライトMI(BASF INOACポリウレタン社製NCO%:33.3%、モノメリックMDI)
・コスモネートTM-50(三井化学SKCポリウレタン社製、NCO%:39.5%、TDI/MDI混合物)
・自社製ウレタンプレポリマー(NCO%:27.0%、イソシアネート基末端ウレタンプレポリマー)
 自社製ウレタンプレポリマーは、以下の方法で調整した。
 メカニカルスターラー、アンカー式攪拌翼、窒素導入管を取り付けた5Lのポリエチレン製容器に、クルードMDI(東ソー社製、ミリオネートMR-200)を所定量仕込み、イソシアネート(クルードMDI)の液温を25℃とした。ここに、ポリオールとしてポリプロピレングリコール(三井化学SKCポリウレタン社製、アクトコールD2000、水酸基価: 55.1)を、液温が80℃を超えないように、段階的に所定量を投入した。ポリプロピレングリコールの投入が完全に終了した時点から、攪拌速度60rpmで2時間攪拌し、上記のイソシアネートとポリオールを反応させることで、イソシアネート末端プレポリマーを得た。得られたプレポリマーのNCO基含有量は、JIS K1603-1(A法)に準拠して測定を行い、所定のNCO基含有量となっていることを確認した。
<発泡体の作製>
(接着性評価以外の評価に用いる混合液と発泡体の作製)
 500mLポリプロピレン製ディスポカップに、ポリアミン化合物、ポリオール化合物、三量化触媒、難燃剤、発泡剤、整泡剤、その他の添加物を、表1~7に示した各実施例及び比較例の含有量を秤取り、各実施例及び比較例の混合液とした。各混合液を、プロペラ式攪拌翼を取り付けた攪拌機を用い、2000rpm、5分間攪拌混合を行い、各実施例及び比較例のポリウレア発泡体製造用組成物及びポリオール混合物を得た。10℃の冷却炉にいれ、得られたポリアミン混合液と、表1~7に記載の含有量を秤取ったポリイソシアネートをそれぞれ個別に10±1℃になるまで冷却した。各実施例及び比較例のポリアミン混合液及びポリオール混合液と、ポリイソシアネートとを、プロペラ式攪拌翼を取り付けた攪拌機を用いて、2000rpmで5秒間攪拌混合して発泡、硬化させ、各実施例及び比較例の発泡体を得た。
 なお、接着性評価においては、各実施例及び比較例のポリアミン混合液及びポリオール混合液と表1~7に記載の含有量を秤取ったポリイソシアネートをそれぞれ個別に10±1℃になるまで冷却したものを、後述の硬質ウレタンフォーム吹付用ハンドスプレーにて混合し、対象物に吹き付けることで接着性評価用の発泡体を形成した。
<<評価>>
 以下の評価を各実施例及び比較例の発泡体について行った。各発泡体は、温度23±5℃及び相対湿度50±20%の環境下で、発泡後24時間静置し養生したものを用いた。また、「湿熱処理後の」と記載された評価は、養生後の各実施例及び比較例の発泡体を、80℃、RH85%の環境下で1か月間湿熱処理を行ったものを各実施例及び比較例の湿熱処理後の測定試料として測定したことを示す。測定方法は、「湿熱処理」をしていない場合の測定方法と同一とする。
<イソシアヌレート化率の測定>
 各実施例及び比較例の発泡体を、フーリエ変換赤外分光分析器(FT-IR、日本分光社製型式FT/IR-4200)を用いて、赤外線吸収スペクトルを測定した。測定は、ダイヤモンドプリズムを使用したATR法で行い、積算回数を50回として測定した。発泡体中のイソシアヌレート化率を、式1から算出した。測定は、発泡のライズ方向に対して、上部、中心部、底部の3点で測定し、平均値とした。測定結果を表1~7に示した。
(観測ピーク)
P1:赤外線分光分析法により得られた発泡体の吸収スペクトルに含まれるイソシアヌレート構造に由来するピーク面積(観察範囲:1380~1430cm-1
P2:赤外線分光分析法により得られたポリウレア発泡体の吸収スペクトルに含まれるウレア構造のC=Oに由来するピーク面積(観察範囲:1550~1640cm-1
P3:赤外線分光分析法により得られた発泡体の吸収スペクトルに含まれるウレタン構造及びイソシアヌレート構造のC=Oに由来するピーク面積(観察範囲:1680~1730cm-1
P4:赤外線分光分析法により得られた発泡体の吸収スペクトルに含まれるポリウレア構造及びウレア構造に含まれるN-Hに由来するピーク面積(観察範囲:1470~1550cm-1
(式1)
イソシアヌレート化率=P1/(P1+P2+P3+P4)×100
<密度>
 各実施例及び比較例の発泡体の見かけの密度をJIS K7222:2005「発泡プラスチック及びゴム-見掛け密度の求め方」に記載の方法で測定した。結果を表8~14に示した。
<平均セル(気泡)径及びセル形状>
 各実施例及び比較例のポリウレア発泡体製造用組成物及びポリオール混合物と、ポリイソシアネートとを、上記の方法で混合し、金型内で発泡、硬化させて各実施例及び比較例の発泡体を得た。得られた各発泡体から長さ50mm×幅50mm×厚み20mmの試験片を切り出し、デジタルマイクロスコープ(キーエンス社製VHX-800)を用いて、CD面内及びMD面内の気泡を観察し、その形状を確認した。その際、CD面における気泡を無作為に10個選択し、各気泡のCD面内の最も長い径(R1とする)と、その最も長い径に直交する方向の径(R2とする)の差(DR=R1-R2)を求め、選択した全ての気泡のDRの平均が、5mmを超える場合を楕円形状と判断した。また、0mm以上5mm以下を円形状と判断した。
 また、CD面内及びMD面内の気泡を無作為にそれぞれ10個選択し、その長軸の長さを測定し、それぞれ平均したものをCD面内の平均セル径及びCD面内の平均セル径とした。また、MD面内の平均セル径とCD面内の平均セル径の比(MD面内の平均セル径/CD面内の平均セル径)を算出した。結果を表8~14に示した。
<独立気泡率>
 各実施例及び比較例の発泡体の独立気泡率を以下の方法で測定した。各実施例及び比較例の発泡体を長さ30mm×幅30mm×厚み20mmの試験片に加工し、各辺の長さを正確に測定し試験片の見かけの体積(V)を算出した。試験片の質量(W)を測定した。乾式自動密度計(島津製作所製、マイクロメリテックス アキュピックII 1340)を用いて、試験片の真の体積(V1)を測定した。これらの値を用い、下式2~4により算出された値を独立気泡率とした。なお各測定は、温度23±5℃、相対湿度40~70%の環境下で行った。
(式2)
オープンセル率(%):Oc=(V-V1)/V×100
(式3)
ポリウレア発泡体の樹脂量:S=W/(V×D)×100
Dは、ポリウレア発泡体の樹脂自体の密度とする。
(式4)
独立気泡率:Cc=100-Oc-S
結果を表8~14に示した。
<5%重量減少温度>
 各実施例及び比較例の発泡体を、それぞれ約10mg採取し、熱重量分析装置(略称TGA)を用いて、25~600℃まで昇温した際に、試料重量が5重量%減少する温度を測定した。測定条件は、昇温速度10℃/分とし、200ミリリットル/分の空気気流下で行った。結果を表8~14に示した。また湿熱処理後の発泡体についても測定を行い、結果を表15~21に示した。
<灰分量(600℃、700℃)の測定>
 各実施例及び比較例の発泡体の中心部から3~5mgを採取し、アルミニウムパン(600℃の測定用)又は白金パン(700℃の測定用)の中にサンプルを充填し、TG/DTA測定器(SII社製型式TG/DTA7200)を用いて、25~600℃、又は25~700℃の温度領域について、サンプルの重量減少挙動を観測し、600℃、又は700℃でのサンプルの残量重量から、各発泡体の灰分量(%)を求めた。測定は、昇温速度を10℃/minとし、乾燥空気気流下(流速:250mm/min)として行った。結果を表8~14に示した。また湿熱処理後の発泡体についても測定を行い、結果を表15~21に示した。
<保持残量(300℃×30分、500℃×30分)>
 各実施例及び比較例の発泡体を、示差熱・熱重量同時測定器(TG/DTA)用いて、300℃又は500℃まで昇温し、さらに30分間保持したあとの各発泡体の残量重量を測定し、初期のポリウレア発泡体の重量で除して、保持重量(重量%)とした。測定は、昇温速度を10℃/minとし、所定の温度に昇温し保持した。また乾燥空気気流下(流速:250mm/min)で評価を行った。結果を表8~14に示した。また湿熱処理後の発泡体についても測定を行い、結果を表15~21に示した。
<圧縮強度>
 各実施例及び比較例の発泡体の圧縮強度をJIS K7220:2006「硬質発泡プラスチック-圧縮特性の求め方」に記載の方法で測定した。結果を表8~14に示した。また湿熱処理後の発泡体についても測定を行い、結果を表15~21に示した。
<接着強度>
 各実施例及び比較例の発泡体の接着強度をJIS A9526:2015「建築物断熱用吹付け硬質ウレタンフォーム」に記載の方法で測定した。結果を表8~14に示した。また湿熱処理後の発泡体についても測定を行い、結果を表15~21に示した。
<熱伝導率の測定>
 各実施例及び比較例の発泡体の熱伝導率をJIS A1412-1:2016「熱絶縁材の熱抵抗及び熱伝導率の測定方法-第1部:保護熱板法(GHP法)」に従って測定した。結果を表8~14に示した。また湿熱処理後の発泡体についても測定を行い、結果を表15~21に示した。
<圧縮弾性率>
 各実施例及び比較例の発泡体の圧縮弾性率をJIS K7220:2006「硬質発泡プラスチック-圧縮特性の求め方」に記載の方法で測定した。結果を表8~14に示した。また湿熱処理後の発泡体についても測定を行い、結果を表15~21に示した。
<透湿係数(水蒸気透過度)>
 各実施例及び比較例の発泡体の透湿係数を、JIS K7225:2018「硬質発泡プラスチック-水蒸気透過性の求め方」に記載の方法で測定した。結果を表8~14に示した。
<引張強度>
 各実施例及び比較例の発泡体の引張強度をJIS A9511:2017「発泡プラスチック保温材」に記載の方法で測定した。結果を表8~14に示した。
<引張伸び>
 各実施例及び比較例の発泡体の引張伸びを以下の方法で測定した。JIS A9511:2017「発泡プラスチック保温材」に記載に準拠して試験片を作製し、引張方向の間隔が50mmとなる標線を2本平行に引いた。この試験片を、材料試験機を用いて、引張速度500mm/minで試験を行い、破断に至った際の前記標線間の間隔を測定した。引張伸びは、測定結果(破断時の標線の間隔)/50mm(試験前の標線の間隔)×100として算出した結果を表8~14に示した。
<曲げ強度>
 各実施例及び比較例の発泡体の曲げ強度をJIS K7221-2:2006「硬質発泡プラスチック-曲げ試験- 第2部:曲げ特性の求め方」に記載の方法で測定した。結果を表8~14に示した。
<シャルピー衝撃強さ>
 各実施例及び比較例の発泡体のシャルピー衝撃強さをJIS K7111-1:2012「プラスチック-シャルピー衝撃特性の求め方-第1部:非計装化衝撃試験」に記載の方法で測定した。結果を表8~14に示した。
<吸水率>
 各実施例及び比較例の発泡体の吸水率をJIS A9511:2017「発泡プラスチック保温材」に記載のB法で測定した吸水量を各発泡体の初期重量で除して算出した。結果を表8~14に示した。
<打ち抜きせん断強度>
 各実施例及び比較例の発泡体の打ち抜きせん断強度を、JIS K7214:1985「プラスチックの打抜きによるせん断試験方法」に記載の方法で測定した。結果を表8~14に示した。
<デュロメータ硬さ(C硬度)>
 各実施例及び比較例の発泡体のデュロメータ硬さ(C硬度)をJIS K7215:1986「プラスチックのデュロメータ硬さ試験方法」に記載の方法で測定した。結果を表8~14に示した。
<比熱>
 各実施例及び比較例の発泡体の比熱は、JIS K7123:1987「プラスチックの比熱容量測定方法」に記載の入力補償示差走査熱量測定方法で測定した。結果を表8~14に示した。
<湿熱処理前後の寸法変化>
 各実施例及び比較例の発泡体を、80℃、RH85%の環境下で1か月間湿熱処理を行い、湿熱処理前後の寸法の変化率を測定した。発泡体の測定試料は、長さ100mm×幅100mm×厚み20mmとして、測定試料の寸法測定はノギスを用いて行った。結果を15~21に示した。
<体積変化率(600℃)>
 各実施例及び比較例の発泡体の中心部から、長さ5cm×幅5cm×厚さ5cmとなるようサンプルを切り出し、600℃に加熱した電気炉内に5分間静置し、体積変化率を測定した。加熱前の体積を100%とし、加熱後の体積を測定し、加熱後の体積から加熱前の体積を引いた値を、加熱前の体積で除して100を乗じた値を体積変化率とした。膨張した場合は正の値を示し、収縮した場合は負の値を示す。結果を表15~21に示した。
<接着性>
 各実施例及び比較例のポリアミン混合液及びポリオール混合物と、表1~7に記載の含有量を秤取ったポリイソシアネートとをそれぞれ個別に10±1℃になるまで冷却したものを、硬質ウレタンフォーム吹付用ハンドスプレー(ADY社製)を用い、表面温度を15℃にした木板の表面に混合噴霧し、木板表面上で発泡させた。その後、24時間養生し木板と発泡体の接着界面に剥がれや浮きがないものを1点、剥がれや浮きがあるものを0点として評価した。結果を表15~21に示した。
<接炎試験>
 発泡後24時間経過した各実施例及び比較例の発泡体から、長さ10cm、幅10cm、厚さ5cmの直方体をとなるようサンプルを切り出しサンプルとした。得られた各サンプルを長さ10cm、幅10cm、厚さ1mmの金網上に乗せ、ガスバーナーでサンプルの表面に3分間接炎した。燃焼ガスは、純度99.5%以上のメタンガスを使用し、燃焼ガスを0.2MPaで供給し、青白い火炎となるようにした。火の高さは5cmとし、炎とサンプル表面の間隔が1cmとなるように実施した。接炎後、サンプルを半分に切り、その断面におけるクラックの有無を目視にて観察した。また、断面における黒く炭化した部分の最大距離(断面の側表面から炭化している部分の長さ)を炭化層の深さとして計測した。結果を表1~3に示した。また、評価は以下の評価基準により判定し、結果を表15~21に示した。なお、表中の測定不可とは、接炎した際に、炎がサンプルを貫通したため、測定できなかったことを示す。
<総発熱量(50kW×10分、20分)測定>
 各実施例及び比較例の発泡体の中心部から、長さ10cm、幅10cm、厚さ5cmとなるようにサンプルを切り出し、ISO-5660(建築基準法第2号)の規格に従い、発泡体のコーンカロリーメータ総発熱量試験を実施し、サンプルの総発熱量及び最大発熱速度を測定した。測定は、放射熱量50kW/m、測定時間を10分、20分とした。結果を表15~21に示した。なお、表中の測定不可とは、試験において膨張したサンプルがコーンカロリーメータのスパークプラグの先端に接触し、スパークが発生せず、正常な測定ができなかったことを示す。
 各実施例及び比較例の発泡体について、UL94の難燃性試験を規格5VAに従って行い、燃焼距離、燃焼時間、ドリップ・綿着火の有無、炎の貫通の有無、貫通孔の大きさを測定した。
<実機(スプレー)による評価>
 ペール容器に、表1、2、7に記載の実施例1、18、92の配合に従って、ポリアミン化合物、難燃剤、触媒、整泡剤、発泡剤を秤量し、室温下でパワーミキサー(リョービ社製、型番PM-1511)で5分間攪拌して、アミン混合液(システム液)を作製した。スプレーガン(Graco社製、Fusion Gun)を装置本体(Graco社製、HR-V)に備え付け、ポンプ及びホースの温調を40℃になるように設定した。ポンプを稼働させ、アミン混合液(システム液)と、別途十分に攪拌したポリイソシアネートとを、送液の液圧の差が2.0MPa以内になるように調整した。スプレーガンのノズルを開け、ガン内のチャンバー内でアミン混合液(システム液)とイソシアネートを混合し、躯体へ吹付を行い、実施例1、18、92の発泡体を作製し、上述のスプレーを用いない方法と同様の評価を行った。実施例1、18、及び92と同一の配合の発泡体は、それぞれ実施例1、18、及び92の評価結果と同様の結果を得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021

 

Claims (8)

  1.  ポリイソシアネート化合物(A)、ポリアミン化合物(B)、三量化触媒、発泡剤、整泡剤及び難燃剤を含むウレア樹脂組成物。
  2.  難燃剤を含有し、イソシアヌレート構造を有する、ポリウレア発泡体。
  3.  ポリイソシアネート化合物(A)、ポリアミン化合物(B)、三量化触媒、発泡剤及び整泡剤を含むウレア樹脂組成物であって、
     ポリオール化合物を含まないか、又は、ポリオール化合物の含有量は前記ポリアミン化合物(B)の含有量に対して質量比で1/5以下である、ウレア樹脂組成物。
  4.  ポリアミン化合物(B)、三量化触媒、発泡剤、整泡剤及び難燃剤を含むポリウレア発泡体製造用組成物。
  5.  ポリアミン化合物(B)、三量化触媒、発泡剤及び整泡剤を含むポリウレア発泡体製造用組成物であって、
     ポリオール化合物を含まないか、又は、ポリオール化合物の含有量は前記ポリアミン化合物(B)の含有量に対して質量比で1/5以下である、ポリウレア発泡体製造用組成物。
  6.  ポリイソシアネート化合物(A)、ポリアミン化合物(B)、三量化触媒、発泡剤、整泡剤及び難燃剤を含むウレア樹脂組成物であって、
     前記ポリアミン化合物(B)の含有量は、前記ウレア樹脂組成物の全量を100質量%とした場合に、2.0質量%以上であり、
     前記三量化触媒の含有量は、前記ウレア樹脂組成物中のポリアミン化合物(B)の含有量を100質量部とした場合に、5~20質量部であることを特徴とする、ウレア樹脂組成物。
  7.  請求項6に記載のウレア樹脂組成物を発泡、硬化させてなるポリウレア発泡体。
  8.  イソシアヌレート構造を有する、ポリウレア発泡体であって、
     前記ポリウレア発泡体は、イソシアヌレート化率が25~50%であることを特徴とするポリウレア発泡体。
     なお、イソシアヌレート化率は、前記ポリウレア発泡体の赤外線分光分析法により得られた吸収スペクトルに基づいて下式(1)により算出された値である。
    (式1)
     イソシアヌレート化率(%)=P1/(P1+P2+P3+P4)×100
    P1:赤外線分光分析法により得られたポリウレア発泡体の吸収スペクトルに含まれるイソシアヌレート構造に由来するピーク面積
    P2:赤外線分光分析法により得られたポリウレア発泡体の吸収スペクトルに含まれるウレア構造のC=Oに由来するピーク面積
    P3:赤外線分光分析法により得られたポリウレア発泡体の吸収スペクトルに含まれるウレタン構造及びイソシアヌレート構造のC=Oに由来するピーク面積
    P4:赤外線分光分析法により得られたポリウレア発泡体の吸収スペクトルに含まれるウレタン構造及びウレア構造に含まれるN-Hに由来するピーク面積
     
     
PCT/JP2021/024879 2020-06-30 2021-06-30 ウレア樹脂組成物とポリウレア発泡体 WO2022004832A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2022534105A JPWO2022004832A1 (ja) 2020-06-30 2021-06-30
KR1020237002965A KR20230029901A (ko) 2020-06-30 2021-06-30 우레아 수지 조성물과 폴리우레아 발포체
EP21833798.8A EP4174101A4 (en) 2020-06-30 2021-06-30 UREA RESIN COMPOSITION AND POLYUREA FOAM
US18/003,488 US20230323012A1 (en) 2020-06-30 2021-06-30 Urea resin composition and polyurea foam
CA3184389A CA3184389A1 (en) 2020-06-30 2021-06-30 Urea resin composition and polyurea foam
CN202180043640.9A CN115884998A (zh) 2020-06-30 2021-06-30 尿素树脂组合物和聚脲发泡体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-113559 2020-06-30
JP2020113559 2020-06-30
JP2021-062458 2021-03-31
JP2021062458 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022004832A1 true WO2022004832A1 (ja) 2022-01-06

Family

ID=77364995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024879 WO2022004832A1 (ja) 2020-06-30 2021-06-30 ウレア樹脂組成物とポリウレア発泡体

Country Status (7)

Country Link
US (1) US20230323012A1 (ja)
EP (1) EP4174101A4 (ja)
JP (2) JP6925554B1 (ja)
KR (1) KR20230029901A (ja)
CN (1) CN115884998A (ja)
CA (1) CA3184389A1 (ja)
WO (1) WO2022004832A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57151613A (en) * 1981-03-13 1982-09-18 Asahi Oorin Kk Preparation of rigid polyurethane foam
JPH0282420A (ja) * 1988-09-19 1990-03-23 Mitsubishi Electric Corp 流水検知装置
JPH04356518A (ja) * 1990-10-09 1992-12-10 Kobe Steel Ltd ウレア・イソシアヌレート共重合体および該共重合体を含む成形体の製造方法
JPH08120048A (ja) * 1994-10-19 1996-05-14 Nippon Polyurethane Ind Co Ltd 硬質フォーム用ポリイソシアネート組成物及び該組成物を用いた硬質ポリウレタンフォームの製造方法
JPH08183832A (ja) * 1994-12-29 1996-07-16 Nippon Polyurethane Ind Co Ltd 硬質フォーム用ポリイソシアネート組成物、及び該組成物を用いた硬質ポリウレタンフォームの製造方法
JPH0971628A (ja) * 1995-09-06 1997-03-18 Sanyo Chem Ind Ltd 硬質ポリイソシアヌレートフォームの製造法
JPH10195225A (ja) * 1997-01-10 1998-07-28 Sanyo Chem Ind Ltd 無機有機複合発泡体及びその製造方法
JPH10219015A (ja) * 1997-02-03 1998-08-18 Tosoh Corp 硬質スプレーフォームの製造法
JP2000512331A (ja) * 1996-06-20 2000-09-19 インペリアル・ケミカル・インダストリーズ・ピーエルシー 硬質ポリウレタンフォームの製造方法
JP2013023510A (ja) 2011-07-15 2013-02-04 Nippon Polyurethane Ind Co Ltd 硬質ポリウレタンフォーム組成物
JP2014125623A (ja) * 2012-12-27 2014-07-07 Sanyo Chem Ind Ltd ポリウレタン樹脂の製造方法
JP2015052042A (ja) * 2013-09-06 2015-03-19 三洋化成工業株式会社 硬質ポリウレタンフォームの製造方法
JP2017075326A (ja) 2013-01-20 2017-04-20 積水化学工業株式会社 難燃性ウレタン樹脂組成物の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288766A (en) * 1992-02-28 1994-02-22 Basf Corporation Poyurea based dispersions, foams prepared therefrom, and a process for the preparation therein
US5478867A (en) * 1993-07-07 1995-12-26 The Dow Chemical Company Microporous isocyanate-based polymer compositions and method of preparation
JP2015063676A (ja) * 2013-08-27 2015-04-09 積水化学工業株式会社 ウレタン樹脂組成物
TW201546174A (zh) * 2014-02-27 2015-12-16 Sekisui Chemical Co Ltd 配管用或機器用耐火性絕熱被覆材
TW201605972A (zh) * 2014-07-14 2016-02-16 Sekisui Chemical Co Ltd 難燃性胺酯樹脂組成物
EP3339342B1 (en) * 2015-08-18 2021-01-27 Mitsui Chemicals, Inc. Foam polyurethane material, molded article, and method for producing foam polyurethane material
CN109153764B (zh) * 2016-05-18 2021-12-21 巴斯夫欧洲公司 制备聚异氰脲酸酯硬质泡沫的方法
JP6912174B2 (ja) * 2016-09-27 2021-07-28 積水化学工業株式会社 ウレタン樹脂組成物調製システム、ウレタン成形体を製造する方法、およびウレタン成形体
JP2018065937A (ja) * 2016-10-19 2018-04-26 積水化学工業株式会社 難燃性ウレタン樹脂組成物
EP3619250B1 (de) * 2017-05-05 2022-12-21 Basf Se Polyurethanhartschaumstoffe mit verbessertem brandverhalten
JP7325911B2 (ja) * 2019-10-16 2023-08-15 株式会社ディスコ 被加工物の加工方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57151613A (en) * 1981-03-13 1982-09-18 Asahi Oorin Kk Preparation of rigid polyurethane foam
JPH0282420A (ja) * 1988-09-19 1990-03-23 Mitsubishi Electric Corp 流水検知装置
JPH04356518A (ja) * 1990-10-09 1992-12-10 Kobe Steel Ltd ウレア・イソシアヌレート共重合体および該共重合体を含む成形体の製造方法
JPH08120048A (ja) * 1994-10-19 1996-05-14 Nippon Polyurethane Ind Co Ltd 硬質フォーム用ポリイソシアネート組成物及び該組成物を用いた硬質ポリウレタンフォームの製造方法
JPH08183832A (ja) * 1994-12-29 1996-07-16 Nippon Polyurethane Ind Co Ltd 硬質フォーム用ポリイソシアネート組成物、及び該組成物を用いた硬質ポリウレタンフォームの製造方法
JPH0971628A (ja) * 1995-09-06 1997-03-18 Sanyo Chem Ind Ltd 硬質ポリイソシアヌレートフォームの製造法
JP2000512331A (ja) * 1996-06-20 2000-09-19 インペリアル・ケミカル・インダストリーズ・ピーエルシー 硬質ポリウレタンフォームの製造方法
JPH10195225A (ja) * 1997-01-10 1998-07-28 Sanyo Chem Ind Ltd 無機有機複合発泡体及びその製造方法
JPH10219015A (ja) * 1997-02-03 1998-08-18 Tosoh Corp 硬質スプレーフォームの製造法
JP2013023510A (ja) 2011-07-15 2013-02-04 Nippon Polyurethane Ind Co Ltd 硬質ポリウレタンフォーム組成物
JP2014125623A (ja) * 2012-12-27 2014-07-07 Sanyo Chem Ind Ltd ポリウレタン樹脂の製造方法
JP2017075326A (ja) 2013-01-20 2017-04-20 積水化学工業株式会社 難燃性ウレタン樹脂組成物の製造方法
JP2015052042A (ja) * 2013-09-06 2015-03-19 三洋化成工業株式会社 硬質ポリウレタンフォームの製造方法

Also Published As

Publication number Publication date
EP4174101A4 (en) 2024-07-03
KR20230029901A (ko) 2023-03-03
JP6925554B1 (ja) 2021-08-25
JP2022013668A (ja) 2022-01-18
CN115884998A (zh) 2023-03-31
CA3184389A1 (en) 2022-01-06
JPWO2022004832A1 (ja) 2022-01-06
US20230323012A1 (en) 2023-10-12
EP4174101A1 (en) 2023-05-03

Similar Documents

Publication Publication Date Title
CN104903370B (zh) 阻燃性聚氨酯树脂组合物
CN104334599B (zh) 聚异氰脲酸酯泡沫面板的制造
US20120189838A1 (en) Two-component polyisocyanurate adhesive and insulation panels prepared therefrom
CN104144961B (zh) 硬质聚氨酯泡沫
JP2012520915A (ja) 硬質ポリウレタンフォームの製造方法
KR102233859B1 (ko) 준불연 성능을 가지는 폴리우레탄폼 조성물
CN105658692B (zh) 改进的基于脂肪酸改性的聚醚多元醇的硬质聚氨酯和硬质聚异氰脲酸酯泡沫
CN108350137A (zh) 聚氨酯和聚异氰脲酸酯泡沫用的反应性阻燃剂
US20200298531A1 (en) Polyurethane-based insulation board
CN103608376B (zh) 制备刚性聚氨酯泡沫的方法
CN106794668A (zh) 用于建筑物立面的基于聚氨酯硬质泡沫的热复合系统
CN103619904A (zh) 用于改进聚异氰脲酸酯刚性泡沫体的原始强度的多元醇制剂
WO2022004832A1 (ja) ウレア樹脂組成物とポリウレア発泡体
JP6888158B1 (ja) 樹脂組成物及び発泡体
JP6876185B1 (ja) ウレア樹脂組成物とポリウレア発泡体
KR20210132653A (ko) 메타크릴레이트 공중합체, 및 폴리우레탄 폼의 제조를 위한 그것의 사용
KR102577106B1 (ko) 난연 접착제 조성물, 및 이를 포함하는 불연성을 갖는 샌드위치 패널
CN109422862A (zh) 聚氨酯硬质泡沫体系及其应用
JP6876186B1 (ja) 樹脂組成物及び発泡体
CN109795184A (zh) 聚氨酯泡沫复合板
JP2022022979A (ja) 樹脂組成物及び発泡体
CN107849236A (zh) 聚醚多元醇组合物和由其形成的聚氨酯泡沫
JP2022013710A (ja) 樹脂組成物及び発泡体
JP2021187964A (ja) ウレタン発泡体
JP2012140553A (ja) ポリイソシアヌレートフォーム形成用組成物、及び、ポリイソシアヌレートフォーム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833798

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2022534105

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3184389

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021833798

Country of ref document: EP

Effective date: 20230130