WO2021234992A1 - ポリアリーレンスルフィドの製造方法 - Google Patents
ポリアリーレンスルフィドの製造方法 Download PDFInfo
- Publication number
- WO2021234992A1 WO2021234992A1 PCT/JP2020/047916 JP2020047916W WO2021234992A1 WO 2021234992 A1 WO2021234992 A1 WO 2021234992A1 JP 2020047916 W JP2020047916 W JP 2020047916W WO 2021234992 A1 WO2021234992 A1 WO 2021234992A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase separation
- mass
- reaction
- pas
- polyarylene sulfide
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/0204—Polyarylenethioethers
- C08G75/0231—Polyarylenethioethers containing chain-terminating or chain-branching agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/0204—Polyarylenethioethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/0204—Polyarylenethioethers
- C08G75/025—Preparatory processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/0204—Polyarylenethioethers
- C08G75/025—Preparatory processes
- C08G75/0254—Preparatory processes using metal sulfides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/0204—Polyarylenethioethers
- C08G75/025—Preparatory processes
- C08G75/0259—Preparatory processes metal hydrogensulfides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/0204—Polyarylenethioethers
- C08G75/0277—Post-polymerisation treatment
- C08G75/0281—Recovery or purification
Definitions
- the present invention relates to a method for producing polyarylene sulfide.
- PAS Polyphenylene sulfide
- PPS polyphenylene sulfide
- PPS polyphenylene sulfide
- PAS heat resistance, chemical resistance, flame retardancy, mechanical strength, electrical characteristics, and dimensions. It is an engineering plastic with excellent stability. PAS can be molded into various molded products, films, sheets, fibers and the like by general melt processing methods such as extrusion molding, injection molding and compression molding. For this reason, PAS is widely used in a wide range of technical fields such as electrical equipment, electronic equipment, automobile equipment, and packaging materials.
- PAS having a high melt viscosity is used as a burr suppressant.
- Step (1) to (3) (1) Preparation step for preparing a preparation mixture containing an organic amide solvent, a sulfur source, water, and a dihaloaromatic compound; (2) A prepolymer step in which the charged mixture is polymerized at a temperature of 170 to 280 ° C. to produce a prepolymer having a conversion rate of a dihaloaromatic compound of 50% or more; (3) A post-polymerization step of continuing the polymerization reaction of the reaction system containing the prepolymer at a temperature of 245 to 290 ° C.
- Patent Document 1 has a problem that it is difficult to obtain PAS having a high melt viscosity even if the generation of ultrafine powder can be suppressed. rice field.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a method for producing PAS capable of producing PAS having a high melt viscosity while suppressing the generation of ultrafine powder.
- the present inventors have carried out a charging step of preparing a charging mixture containing (1) an organic polar solvent, a sulfur source, and a dihalo aromatic compound, and (2) heating the charged mixture to initiate a polymerization reaction to initiate a prepolymer.
- the polymerization reaction is continued after the pre-polymerization step of forming the above, (3) the phase separation step of adding water as a phase separator to the reaction mixture in the reaction system to form a phase separation state, and (4) the phase separation step.
- the conversion rate of the dihalo aromatic compound was higher than 80% by mass and 93% by mass or less in the pre-stage polymerization step, and the weight average molecular weight of the prepolymer reached 10,000 or more.
- the above object was achieved by adding the polyhalo aromatic compound to the reaction mixture, and the present invention was completed.
- the method for producing PAS according to the present invention is as follows. (1) A charging step of preparing a charging mixture containing an organic polar solvent, a sulfur source, and a dihaloaromatic compound, and a charging step. (2) A pre-polymerization step in which the charged mixture is heated to initiate a polymerization reaction to produce a prepolymer. (3) A phase separation step of adding a phase separation agent to the reaction mixture in the reaction system to form a phase separation state.
- a post-stage polymerization step in which the polymerization reaction is continued after the phase separation step, and Including
- the prepolymer step when the conversion of the dihalo aromatic compound is higher than 80% by mass and 93% by mass or less, after the weight average molecular weight of the prepolymer reaches 10,000 or more, the aromatic ring is added to the reaction mixture in the reaction system. It is a method for producing a polyarylene sulfide by adding an aromatic compound having three or more halogen atoms bonded to.
- the amount of the organic polar solvent in the charged mixture to be subjected to the pre-stage polymerization step may be 500 g or less per mole of the sulfur source.
- the amount of the polyhaloaromatic compound added in the pre-polymerization step may be 0.010 to 0.050 mol with respect to 1 mol of the sulfur source.
- water and an organic carboxylic acid metal salt may be used in combination as a phase separation agent.
- the mass of water as a phase separation agent may be 10 times or more and 50 times or less the mass of the organic carboxylic acid metal salt.
- the mass of water as a phase separation agent may be 20 times or more and 30 times or less the mass of the organic carboxylic acid metal salt.
- the method for producing PAS in the present embodiment includes a charging step, a polymerization step, a phase separation step, and a post-stage polymerization step as essential steps.
- the method for producing PAS in the present embodiment may include a dehydration step, a cooling step, a post-treatment step, and the like, if desired.
- each material used in the present invention will be described in detail, and each step will be described in detail.
- dihaloaromatic compound means an aromatic compound in which two hydrogen atoms directly connected to an aromatic ring are replaced with halogen atoms.
- polyhaloaromatic compound means an aromatic compound having three or more halogen atoms attached to an aromatic ring.
- Organic polar solvents, sulfur sources, and dihaloaromatic compounds are not particularly limited, and those usually used in the production of PAS can be used.
- Each of the organic polar solvent, the sulfur source, and the dihaloaromatic compound may be used alone, or a mixture of two or more may be used as long as it is a combination capable of producing PAS having a desired chemical structure. May be.
- Examples of the organic polar solvent include an organic amide solvent; an aprotic organic polar solvent composed of an organic sulfur compound; and an aprotic organic polar solvent composed of a cyclic organic phosphorus compound.
- Examples of the organic amide solvent include amide compounds such as N, N-dimethylformamide and N, N-dimethylacetamide; N-alkylcaprolactam compounds such as N-methyl- ⁇ -caprolactam; and N-methyl-2-pyrrolidone (hereinafter, "" NMP ”), N-alkylpyrrolidone compounds such as N-cyclohexyl-2-pyrrolidone or N-cycloalkylpyrrolidone compounds; N, N-dialkylimidazolidinones such as 1,3-dialkyl-2-imidazolidinone.
- Tetraalkylurea compounds such as tetramethylurea
- Hexaalkylphosphoric acid triamide compounds such as hexamethylphosphoric acid triamide
- the aprotic organic polar solvent composed of an organic sulfur compound include dimethyl sulfoxide and diphenyl sulfone.
- the aprotic organic polar solvent composed of a cyclic organic phosphorus compound include 1-methyl-1-oxophosphoran.
- an organic amide solvent is preferable in terms of availability, handleability, etc.
- N-alkylpyrrolidone compound, N-cycloalkylpyrrolidone compound, N-alkylcaprolactam compound, and N, N-dialkylimidazolidinone compound are more preferable.
- NMP, N-methyl- ⁇ -caprolactam, and 1,3-dialkyl-2-imidazolidinone are even more preferred, with NMP being particularly preferred.
- the amount of the organic polar solvent used is preferably 1 to 30 mol, more preferably 3 to 15 mol, relative to 1 mol of the sulfur source, from the viewpoint of efficiency of the polymerization reaction and the like.
- Examples of the sulfur source include alkali metal sulfide, alkali metal hydrosulfide, and hydrogen sulfide, and alkali metal sulfide and alkali metal hydrosulfide are preferable, and alkali metal hydrosulfide is more preferable.
- the sulfur source can be handled in either the state of an aqueous slurry or an aqueous solution, and is preferably in the state of an aqueous solution from the viewpoint of handleability such as measurable property and transportability.
- Examples of the alkali metal sulfide include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, and cesium sulfide.
- Examples of the alkali metal hydrosulfide include lithium hydrosulfide, sodium hydrosulfide, potassium hydrosulfide, rubidium hydrosulfide, and cesium hydrosulfide.
- dihaloaromatic compound examples include o-dihalobenzene, m-dihalobenzene, p-dihalobenzene, dihalotoluene, dihalonaphthalene, methoxy-dihalobenzene, dihalobiphenyl, dihalobenzoic acid, dihalodiphenyl ether, dihalodiphenyl sulfone and dihalo.
- dihaloaromatic compounds such as diphenylsulfoxide and dihalodiphenylketone.
- the halogen atom refers to each atom of fluorine, chlorine, bromine, and iodine, and two or more halogen atoms in the dihaloaromatic compound may be the same or different.
- p-dichlorobenzene, m-dichlorobenzene, and a mixture thereof are preferable, p-dichlorobenzene is more preferable, and p-dichlorobenzene (hereinafter, also referred to as "pDCB”) is preferable in terms of availability, reactivity, and the like. Especially preferable.
- the amount of the dihalo aromatic compound used is preferably 0.90 to 1.50 mol, more preferably 0.92 to 1.10 mol, still more preferably, with respect to 1 mol of the charged amount of the sulfur source. It is 0.95 to 1.05 mol.
- the amount used is within the above range, a decomposition reaction is unlikely to occur, a stable polymerization reaction can be easily carried out, and a high molecular weight polymer can be easily produced.
- the dehydration step is a step of discharging at least a part of the distillate containing water from the inside of the system containing the organic polar solvent and the mixture containing the sulfur source to the outside of the system before the charging step.
- the mixture to be subjected to the dehydration step may contain an alkali metal hydroxide, if necessary.
- the polymerization reaction between the sulfur source and the dihaloaromatic compound is affected by the amount of water present in the polymerization reaction system, such as being promoted or inhibited. Therefore, it is preferable to reduce the amount of water in the polymerization reaction system by performing a dehydration treatment before the polymerization so that the amount of water does not inhibit the polymerization reaction.
- the water to be dehydrated in the dehydration step is water contained in each raw material charged in the dehydration step, an aqueous medium of an aqueous mixture, water produced as a by-product by the reaction between the raw materials, and the like.
- the heating temperature in the dehydration step is not particularly limited, and is preferably 300 ° C. or lower, more preferably 100 to 250 ° C.
- the heating time is preferably 15 minutes to 24 hours, more preferably 30 minutes to 10 hours.
- the amount of water in the charged mixture is preferably 0.5 to 2 with respect to 1.0 mol of the sulfur source (hereinafter, also referred to as “charged sulfur source” or “effective sulfur source”). It is desirable to dehydrate to 4.4 mol. If the water content becomes too low in the dehydration step, water may be added in the preparation step prior to the pre-polymerization step to adjust the water content to a desired level.
- the charging step is a step of preparing a mixture containing an organic polar solvent, a sulfur source, and a dihaloaromatic compound.
- the mixture charged in the charging process is also referred to as "prepared mixture”.
- the amount of the sulfur source in the charged mixture (hereinafter, also referred to as “the amount of the charged sulfur source” or “the amount of the effective sulfur source”) is determined from the molar amount of the sulfur source input as the raw material. It can be calculated by subtracting the molar amount of hydrogen sulfide volatilized in.
- an alkali metal hydroxide and water can be added to the mixture remaining in the system after the dehydration step, if necessary.
- the alkali metal hydroxide can be added in consideration of the amount of hydrogen sulfide produced during dehydration and the amount of alkali metal hydroxide generated during dehydration.
- the alkali metal hydroxide those usually used in the production of PAS can be used.
- the alkali metal hydroxide may be used alone or in combination of two or more as long as it is possible to produce PAS. Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide.
- the number of moles of the alkali metal hydroxide is the number of moles of the alkali metal hydroxide added as needed in the charging step, and the alkali added as needed in the dehydration step when the dehydration step is performed. It is calculated based on the number of moles of the metal hydroxide and the number of moles of the alkali metal hydroxide generated with the production of hydrogen sulfide in the dehydration step.
- the sulfur source contains an alkali metal sulfide
- the number of moles of the alkali metal hydroxide per mol of the sulfur source shall be calculated including the number of moles of the alkali metal sulfide.
- the number of moles of alkali metal hydroxide per mol of sulfur source shall be calculated including the number of moles of alkali metal sulfide generated. ..
- the number of moles of the alkali metal hydroxide added for other purposes for example, an organic carboxylic acid metal salt is used as a phase separator in the form of a combination of an organic carboxylic acid and an alkali metal hydroxide, ,
- the number of moles of alkali metal hydroxide consumed in the reaction such as neutralization shall not be included in the number of moles of alkali metal hydroxide per mole of sulfur source (charged sulfur source).
- the alkali metal hydroxide required to neutralize the at least one acid is used.
- the number of moles shall not be included in the number of moles of alkali metal hydroxide per mole of sulfur source (charged sulfur source).
- the amount of each of the organic polar solvent and the dihalo aromatic compound used is set, for example, in the range shown in the above description regarding the organic polar solvent and the dihalo aromatic compound with respect to 1 mol of the charged amount of the sulfur source. ..
- the amount of the organic polar solvent in the charged mixture to be subjected to the pre-polymerization step is preferably 500 g or less, more preferably 450 g or less, and particularly preferably 400 g or less per mol of the sulfur source.
- the lower limit of the amount of the organic polar solvent in the charged mixture is not particularly limited as long as the charged mixture can flow well in the pre-polymerization step.
- the lower limit of the amount of the organic polar solvent in the charged mixture is, for example, preferably 200 g or more, more preferably 250 g or more, still more preferably 300 g or more per mole of the sulfur source.
- the pre-polymerization step is a step of heating the charged mixture to initiate a polymerization reaction to produce a prepolymer.
- the sulfur source and the dihaloaromatic compound are polymerized in an organic polar solvent to produce a prepolymer of PAS in a non-branched state.
- the mixture heated in the first-stage polymerization step and the second-stage polymerization step, the mixture to which the phase separation agent is added in the phase separation agent addition step, and the phase-separated mixture in the phase separation agent addition step are referred to as "reaction mixture".
- the polymerization reaction is carried out in two or more stages. Specifically, the above-mentioned pre-stage polymerization step and the post-stage combination step in which the polymerization reaction is continued in the presence of the phase separation agent are performed.
- the phase separation agent is added to the reaction mixture in the phase separation agent addition step provided between the pre-stage polymerization step and the post-stage polymerization step.
- the polyhaloaromatic fragrance is added to the reaction mixture in the reaction system after the weight average molecular weight of the prepolymer reaches 10,000 or more. Add the group compound.
- the conversion rate of the dihalo aromatic compound is calculated by determining the amount of the dihalo aromatic compound remaining in the reaction mixture by gas chromatography and based on the residual amount, the amount of the dihalo aromatic compound charged and the amount of the sulfur source charged. Can be done.
- the weight average molecular weight means a polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography.
- the reaction containing the PAS prepolymer in a non-branched state is cooled to near room temperature without adding TCB.
- a mixture is obtained.
- the dihaloaromatic compound conversion rate and the weight average molecular weight of PAS measured by the above method were used as the dihaloaromatic compound conversion rate and the weight average molecular weight of the prepolymer when the polyhaloaromatic compound was added. can do.
- the timing of addition of the polyhaloaromatic compound can be determined in advance.
- the polyhaloaromatic fragrance is added to the reaction mixture in the reaction system after the weight average molecular weight of the prepolymer reaches 10,000 or more.
- Group compounds are added. Since the generation of ultrafine powder can be suppressed particularly well and PAS having a particularly high melt viscosity can be easily produced, the conversion rate of the dihalo aromatic compound when the polyhalo aromatic compound is added is preferably 83% by mass or more. , 86% by mass or more is more preferable, and 90% by mass or more is further preferable.
- the polyhaloaromatic compound can be added to the reaction mixture as a powder, melt, solution, or dispersion.
- the above-mentioned organic polar solvent can be preferably used as the solvent or dispersion medium.
- a polyhalo aromatic compound is an aromatic compound having three or more halogen atoms bonded to an aromatic ring.
- the halogen atom include fluorine, chlorine, bromine, iodine and the like.
- the three or more halogen atoms in the polyhaloaromatic compound may be the same or different.
- the number of halogen atoms bonded to the aromatic ring in the polyhaloaromatic compound is not particularly limited as long as it is 3 or more, and an integer of 3 to 5 is preferable, 3 or 4 is more preferable, and 3 is particularly preferable.
- the polyhaloaromatic compound may be used alone or in combination of two or more.
- polyhaloaromatic compound added to the reaction mixture in the pre-polymerization step are 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, 1,3,5-trichlorobenzene and hexachlorobenzene.
- 1,2,3,4-tetrachlorobenzene 1,2,4,5-tetrachlorobenzene, 1,3,5-trichloro-2,4,6-trimethylbenzene, 2,4,6-trichlorotoluene, 1 , 2,3-Trichloronaphthalene, 1,2,4-trichloronaphthalene, 1,2,3,4-tetrachloronaphthalene, 2,2', 4,4'-tetrachlorobiphenyl, 2,2', 4, Examples thereof include polyhaloaromatic compounds having a halogen substitution number of 3 or more, such as 4'-tetrachlorobenzophenone and 2,4,2'-trichlorobenzophenone.
- 1,2,4-trichlorobenzene is particularly preferable as the polyhaloaromatic compound from the viewpoint of reactivity with the oligomer or prepolymer, the degree of polymerization (melt viscosity) of the obtained PAS, the yield, and the like.
- 1,2,4-trichlorobenzene may be referred to as TCB.
- the amount of the polyhalo aromatic compound added in the first-stage polymerization step is preferably 0.005 to 0.200 mol, more preferably 0.005 to 0.150 mol, and 0.005 to 0.005 to 1 mol of the sulfur source. 0.100 mol is further preferable, 0.010 to 0.100 mol is further preferable, and 0.010 to 0.050 mol is particularly preferable. If the amount of polyhaloaromatic compound per mole of sulfur source is too small, it may be difficult to obtain PAS in high yield.
- the average particle size of the granular PAS may be reduced due to an increase in production cost or excessive progress of the cross-linking reaction, and the amount of PAS that can be recovered as a product may be reduced.
- the polymerization reaction In the first-stage polymerization step and the second-stage polymerization step, it is preferable to carry out the polymerization reaction under heating at a temperature of 170 to 300 ° C. from the viewpoint of the efficiency of the polymerization reaction and the like.
- the polymerization temperature in the pre-stage polymerization step and the post-stage polymerization step is more preferably in the range of 180 to 290 ° C. in order to suppress side reactions and decomposition reactions.
- the polymerization reaction is started under heating at a temperature of 170 to 270 ° C., and the conversion rate of the dihalo aromatic compound is higher than 80% by mass and 93% by mass or less.
- the polymerization temperature in the pre-stage polymerization step is preferably selected from the range of 180 to 265 ° C. in order to suppress side reactions and decomposition reactions.
- the degree of polymerization of the prepolymer is increased.
- the reaction system containing the prepolymer produced in the pre-stage polymerization step described above is heated to continue the polymerization reaction in a phase-separated state.
- the polymerization temperature in the post-stage polymerization step is usually preferably higher than that in the pre-stage polymerization step.
- the polymerization temperature in the subsequent polymerization step is preferably 240 to 290 ° C, more preferably 250 to 280 ° C, and even more preferably 255 to 275 ° C.
- the polymerization temperature in the subsequent polymerization step is too low, a phase-separated state is not exhibited, and it is difficult to obtain PAS with a high degree of polymerization. If the polymerization temperature is too high, the generated PAS and the organic polar solvent may be decomposed.
- the polymerization temperature is preferably maintained at a constant temperature. The polymerization temperature may be raised or lowered stepwise or continuously during the subsequent polymerization step, as needed.
- the polymerization reaction system Due to the presence of the phase separator, in the subsequent polymerization step, the polymerization reaction system (reaction mixture) has a polymer-rich phase (a phase having a high polymer concentration in the organic amide solvent) and a polymer-lean phase (the polymer concentration in the organic amide solvent). Phase separation with (low phase). The phase separation may occur in the middle of the subsequent polymerization step by adjusting the addition timing of the phase separation agent, adjusting the polymerization temperature, or the like.
- phase separation agent water is preferable because it is easy to form a good phase separation state.
- a phase separation agent other than water can be used.
- the phase separation agent other than water may be used alone or with water, and is preferably used with water.
- the phase separating agent other than water is not particularly limited. Examples of the phase separating agent other than water include organic carboxylic acid metal salts (for example, alkali metal salts of aliphatic carboxylic acids such as sodium acetate, alkaline earth metal salts of aromatic carboxylic acids, etc.), and organic sulfonic acids.
- At least one selected from the group consisting of metal salts, alkali metal halides, alkaline earth metal halides, alkali metal phosphates, alcohols, and non-polar solvents can be mentioned.
- the above-mentioned salts used as a phase separation agent may have a mode in which the corresponding acid and base are added separately. Since the effect of suppressing the generation of ultrafine powder is high, it is preferable to use water and an organic carboxylic acid metal salt in combination as a phase separation agent, and it is more preferable to use water and sodium acetate in combination.
- the mass of water as a phase separation agent is preferably 10 times or more and 50 times or less, and more preferably 20 times or more and 30 times or less the mass of the organic carboxylic acid metal salt. ..
- the amount of the phase separation agent used varies depending on the type of the compound used, but may be in the range of 0.01 to 20 mol with respect to 1 kg of the organic polar solvent.
- the amount of water used as the phase separation agent is preferably 2 or more and 10 mol or less, more preferably 2.1 mol or more and 7 mol or less, and 2.2 mol per 1 mol of the sulfur source. More preferably 5 mol or less.
- the amount of the alkali metal hydroxide is preferably 1.00 to 1.10 mol, more preferably 1.01 to 1.08 mol, still more preferably 1. It is 02 to 1.07 mol.
- the amount of the alkali metal hydroxide is within the above range, the molecular weight of the obtained PAS is likely to increase, and it is easier to obtain a higher molecular weight PAS.
- the reaction mixture is alkaline so that the final amount of alkali metal hydroxide is within the above range. It is preferable to add a metal hydroxide.
- the polymerization reaction in the pre-stage polymerization step and the post-stage polymerization step may be carried out in a batch manner or continuously.
- at least the supply of an organic polar solvent, a sulfur source, and a dihalo aromatic compound, the formation of PAS by the reaction of the sulfur source with the dihalo aromatic compound in the organic polar solvent, and the recovery of the reaction mixture containing PAS. Can be carried out continuously in parallel to carry out the polymerization reaction.
- the PAS produced by the method described above is usually recovered through a post-treatment step and a recovery step.
- the post-treatment step and the recovery step can be carried out by a conventional method. For example, cooling the reaction mixture after the post-polymerization step gives a slurry containing granular polymer products.
- PAS can be recovered by filtering the cooled product slurry as it is or by diluting it with water or the like, and then repeatedly washing and filtering to dry it.
- Granular PAS can be separated from the reaction solution by generating granular PAS by the above method, for example, by sieving using a screen. By doing so, PAS can be easily separated from by-products, oligomers and the like. Granular PAS may be sieved while the product slurry remains at high temperature. Specifically, granular PAS separated by a screen of 100 mesh (opening diameter 150 ⁇ m) (sometimes referred to as “100 mesh on”) can be recovered as a product.
- the granular PAS recovered from the product slurry as described above is preferably washed with the above-mentioned organic polar solvent, an organic solvent such as ketones (for example, acetone), and alcohols (for example, methanol).
- Granular PAS may be washed with hot water or the like.
- Granular PAS can also be treated with salts such as acids and ammonium chloride.
- the product that passes through the screen of the above-mentioned 100 mesh (sometimes referred to as “100 mesh pass”) is subjected to the same cleaning and other treatments, and further 400 mesh (opening diameter 38 ⁇ m).
- 100 mesh pass 400 mesh-on fine powder and 400 mesh pass ultra-fine powder are collected. do.
- the fine powder is a particulate PAS that is not recovered as a product because of its small particle size, and is a fine particle made of PAS having a molecular weight similar to that of the particulate PAS recovered as a product.
- the particle size of most of the fine particles is in the range of 38 ⁇ m or more and less than 150 ⁇ m.
- the ultrafine powder is a particulate PAS that is not recovered as a product because of its small particle size, and is a fine particle made of PAS having a small molecular weight due to the influence of a side reaction.
- the particle size of most of the ultrafine powder particles is less than 38 ⁇ m.
- the ultrafine powder contains an oligomer component. Therefore, the composition of the ultrafine powder is complicated. Therefore, it costs a lot of money to detoxify the ultrafine powder and dispose of it. According to the present invention, since the amount of fine powder and ultrafine powder, especially ultrafine powder, is reduced, the reduction of industrial waste contributes to environmental problems and the cost of treating industrial waste is also reduced. Will be done.
- PAS is not particularly limited and is preferably PPS.
- melt Viscosity The melt viscosity of the polymer was measured using Capillograph 1-C manufactured by Toyo Seiki Co., Ltd. using about 20 g of the dry polymer. At this time, the capillary used a die with an inflow angle of 2.095 mm ⁇ ⁇ 8.04 mmL, and the set temperature was set to 330 ° C. After introducing the polymer sample into the apparatus and holding it for 5 minutes , the melt viscosity at a shear rate of 2 sec -1 was measured (unit: Pa ⁇ s).
- the average particle size of the polymer is 7 mesh (opening diameter 2,800 ⁇ m) and 12 mesh (opening diameter 1) for polymer particles with 100 mesh (opening diameter 150 ⁇ m) on. , 410 ⁇ m), 16 mesh (opening diameter 1,000 ⁇ m), 24 mesh (opening diameter 710 ⁇ m), 32 mesh (opening diameter 500 ⁇ m), 60 mesh (opening diameter 250 ⁇ m) and 80 mesh (opening diameter 180 ⁇ m) was measured by the sieving method using.
- Example 1 An aqueous solution of sodium hydrosulfide (NaSH) was used as the sulfur source.
- N-Methyl-2-pyrrolidone hereinafter abbreviated as "NMP" 6,000 g, 62.53 mass% sodium hydrosulfide aqueous solution 2,010 g, 73.21 mass% in a 20 liter autoclave (reaction can) made of titanium. 1,146 g of the sodium hydroxide aqueous solution of the above was added.
- S sulfur source composed of sodium hydrosulfide and sodium sulfide
- the molar ratio (mol / mol) of sodium hydroxide / sulfur source NaOH / S
- the reaction in the reactor was replaced with nitrogen gas, over a period of about 3 hours, while stirring at a rotation speed 250rpm stirrer, and gradually heated to 200 ° C., water (H 2 O) 906g, NMP808g , and sulfide to distill hydrogen (H 2 S) 13.53g (0.40 mol).
- the reaction was further carried out at 230 ° C. for 0.25 hours.
- the conversion rate of pDCB at the time of adding TCB was 93% by mass.
- the conversion rate was measured by the method described herein.
- the weight average molecular weight of the prepolymer at the time of adding TCB was 13000.
- the weight average molecular weight was measured by the method described herein.
- Post-treatment process After completion of the reaction, the reaction mixture was cooled to around room temperature, and then the reaction solution was passed through a 100 mesh screen to sieve the granular polymer. The separated polymer was washed twice with acetone, washed with water three times, then washed with 0.3% acetic acid water, and then washed with water four times to obtain a washed polymer. The washed polymer was dried at 105 ° C. for 13 hours. The granular PAS thus obtained had a melt viscosity of 288,000 Pa ⁇ s and an average particle size of 488 ⁇ m. The ratio of the ultrafine powder to the total mass of the recovered PAS was 7.8% by mass.
- Example 2 Granular PAS was obtained in the same manner as in Example 1 except that the production conditions were changed to the conditions shown in Table 1.
- the obtained granular PAS had a melt viscosity of 279000 Pa ⁇ s and an average particle size of 455 ⁇ m.
- the ratio of the ultrafine powder to the total mass of the recovered PAS was 6.5% by mass.
- Example 3 Granular PAS was obtained in the same manner as in Example 1 except that the production conditions were changed to the conditions shown in Table 1.
- the obtained granular PAS had a melt viscosity of 239000 Pa ⁇ s and an average particle size of 596 ⁇ m.
- the ratio of the ultrafine powder to the total mass of the recovered PAS was 5.4% by mass.
- Example 4 Granular PAS was obtained in the same manner as in Example 1 except that the production conditions were changed to the conditions shown in Table 1 and the reaction time at 230 ° C. in the pre-polymerization was set to 1 hour and 15 minutes.
- the obtained granular PAS had a melt viscosity of 248,000 Pa ⁇ s and an average particle size of 978 ⁇ m.
- the ratio of the ultrafine powder to the total mass of the recovered PAS was 10.8% by mass.
- Example 1 Granular PAS was obtained in the same manner as in Example 1 except that the production conditions were changed to the conditions shown in Table 1.
- TCB was added after the reaction was carried out at 220 ° C. for 3 hours.
- NMP was added.
- the reaction was continued at 230 ° C. for 0.25 hours.
- the obtained granular PAS had a melt viscosity of 207,000 Pa ⁇ s and an average particle size of 1546 ⁇ m.
- the ratio of the ultrafine powder to the total mass of the recovered PAS was 18.6% by mass.
- Example 2 Granular PAS was obtained in the same manner as in Example 1 except that the production conditions were changed to the conditions shown in Table 1.
- the reaction was carried out at 220 ° C. for 1 hour, and further the reaction was carried out at 230 ° C. for 2 hours, and then TCB was added. After the addition of TCB, NMP was added. After the addition of NMP, the reaction was continued at 230 ° C. for 0.25 hours.
- the obtained granular PAS had a melt viscosity of 183000 Pa ⁇ s and an average particle size of 732 ⁇ m.
- the ratio of the ultrafine powder to the total mass of the recovered PAS was 14.7% by mass.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
Abstract
Description
(1)有機アミド溶媒、硫黄源、水、及びジハロ芳香族化合物を含有する仕込み混合物を調製する仕込み工程;
(2)該仕込み混合物を170~280℃の温度で重合反応させて、ジハロ芳香族化合物の転化率が50%以上のプレポリマーを生成させる前段重合工程;並びに、
(3)該プレポリマーを含有する反応系を245~290℃の温度で、相分離状態で重合反応を継続する後段重合工程;
を含むポリアリーレンスルフィドの製造方法において、相分離状態の反応系に多官能化合物を添加することを特徴とするPASの製造方法が提案されている(特許文献1を参照)。
(1)有機極性溶媒、硫黄源、及びジハロ芳香族化合物を含有する仕込み混合物を調製する仕込み工程と、
(2)仕込み混合物を加熱して重合反応を開始させ、プレポリマーを生成させる前段重合工程と、
(3)反応系内の反応混合物に相分離剤を添加して相分離状態を形成する相分離工程と、
(4)相分離工程後に重合反応を継続する後段重合工程と、
を含み、
前段重合工程において、ジハロ芳香族化合物の転化率が80質量%より高く93質量%以下である時点において、プレポリマーの重量平均分子量が10000以上に達した後に、反応系内の反応混合物に芳香環に結合する3つ以上のハロゲン原子を有する芳香族化合物を添加する、ポリアリーレンスルフィドの製造方法である。
以下、本発明に用いられる各材料について詳細に説明するとともに、各工程について詳細に説明する。
本出願の明細書、及び請求の範囲において、「ポリハロ芳香族化合物」は、芳香環に結合する3つ以上のハロゲン原子を有する芳香族化合物を意味する。
有機極性溶媒、硫黄源、及びジハロ芳香族化合物としては、特に限定されず、PASの製造において通常用いられるものを用いることができる。有機極性溶媒、硫黄源、及びジハロ芳香族化合物の各々は、単独で用いてもよいし、所望する化学構造を有するPASの製造が可能である組み合わせであれば、2種類以上を混合して用いてもよい。
脱水工程は、仕込み工程の前に、有機極性溶媒、及び硫黄源を含有する混合物を含む系内から、水を含む留出物の少なくとも一部を系外に排出する工程である。脱水工程に供される混合物は、必要に応じて、アルカリ金属水酸化物を含んでいてもよい。硫黄源とジハロ芳香族化合物との重合反応は、重合反応系に存在する水分量によって促進又は阻害される等の影響を受ける。したがって、上記水分量が重合反応を阻害しないように、重合の前に脱水処理を行うことにより、重合反応系内の水分量を減らすことが好ましい。
仕込み工程は、有機極性溶媒、硫黄源、及びジハロ芳香族化合物を含有する混合物を調製する工程である。仕込み工程において仕込まれる混合物を、「仕込み混合物」とも称する。
なお、前段重合工程に供される仕込み混合物における有機極性溶媒の量は、硫黄源1モル当たり500g以下が好ましく、450g以下がより好ましく、400g以下が特に好ましい。仕込み混合物における有機極性溶媒の量の下限は、前段重合工程において仕込み混合物を良好に流動させることができる限り特に限定されない。仕込み混合物における有機極性溶媒の量の下限は、例えば、硫黄源1モル当たり200g以上が好ましく、250g以上がより好ましく、300g以上がさらに好ましい。
前段重合工程は、仕込み混合物を加熱して重合反応を開始させ、プレポリマーを生成させる工程である。前段重合工程では、有機極性溶媒中で硫黄源と、ジハロ芳香族化合物とを重合させて分岐していない状態のPASのプレポリマーを生成させる。なお、前段重合工程及び後段重合工程において加熱される混合物と、相分離剤添加工程において相分離剤が添加される混合物と、相分離剤添加工程において相分離した混合物とを、「反応混合物」と称する。
このようにポリハロ芳香族化合物を添加することによって、超微粉の発生を抑制しつつ、高溶融粘度のPASを製造することができる。
ジハロ芳香族化合物の転化率は、反応混合物中に残存するジハロ芳香族化合物の量をガスクロマトグラフィにより求め、その残存量とジハロ芳香族化合物の仕込み量と硫黄源の仕込み量に基づいて算出することができる。
本明細書において、重量平均分子量とは、ゲルパーミエーションクロマトグラフィにより測定されたポリスチレン換算の重量平均分子量をいう。
このようにして、前段重合工程でのジハロ芳香族化合物転化率及びプレポリマーの重量平均分子量を把握しておくことにより、ポリハロ芳香族化合物の添加のタイミングをあらかじめ決定しておくことができる。
特に良好に超微粉の発生を抑制でき、また、特に高溶融粘度のPASを製造しやすいことから、ポリハロ芳香族化合物を添加する際のジハロ芳香族化合物の転化率は、83質量%以上が好ましく、86質量%以上がより好ましく、90質量%以上がさらに好ましい。
ポリハロ芳香族化合物は、粉体、融液、溶液、又は分散液として反応混合物に添加され得る。ポリハロ芳香族化合物を溶液又は分散液として添加する場合、溶媒又は分散媒体としては、前述の有機極性溶媒を好ましく使用できる。
後段重合工程において、先に説明した前段重合工程で生成したプレポリマーを含有する反応系を加熱して、相分離状態で重合反応を継続する。後段重合工程での重合温度は、通常前段重合工程より高い温度であるのが好ましい。後段重合工程での重合温度は、好ましくは240~290℃、より好ましくは250~280℃、さらに好ましくは255~275℃である。後段重合工程での重合温度が低すぎると、相分離状態を発現しないため高重合度のPASが得られにくい。重合温度が高すぎると、生成したPASや有機極性溶媒が分解するおそれがある。重合温度は、一定の温度に維持されるのが好ましい。重合温度は、必要に応じて、後段重合工程中に段階的に又は連続的に上げられても下げられてもよい。
超微粉の発生の抑制効果が高いことから、相分離剤として、水と有機カルボン酸金属塩とを組み合わせて用いるのが好ましく、水と酢酸ナトリウムとを組み合わせて用いるのがより好ましい。
水と有機カルボン酸金属塩とを組み合わせて用いる場合、相分離剤としての水の質量は、有機カルボン酸金属塩の質量の10倍以上50倍以下が好ましく、20倍以上30倍以下がより好ましい。
以上説明した方法により生成したPASは、通常、後処理工程、及び回収工程を経て回収される。後処理工程及び回収工程は、常法によって行うことができる。例えば、後段重合工程後の反応混合物を冷却することにより、粒状のポリマー生成物を含むスラリーが得られる。冷却した生成物スラリーをそのまま、又は水等で希釈してから、濾別し、洗浄・濾過を繰り返して乾燥することにより、PASを回収できる。
微粉体は、粒径が小さいため製品として回収されない粒子状PASであって、製品として回収される粒子状のPASと同程度の分子量を有するPASからなる微粒子である。微粉体のうちの大部分の粒子の粒子径は、38μm以上150μm未満の範囲内である。
超微粉体は、粒径が小さいため製品として回収されない粒子状PASであって、副反応の影響により分子量が小さいPASからなる微粒子である。超微粉体のうちの大部分の粒子の粒子径は、38μm未満である。
超微粉体はオリゴマー成分を含む。このため、超微粉体の組成は複雑である。それゆえ、超微粉体を無害化して廃棄処理する際に、多大な費用がかかる。
本発明によれば、微粉体及び超微粉体、中でも超微粉体の生成量が減少するので、産業廃棄物の減少による環境問題への寄与及び産業廃棄物処理費用の低減という効果も奏される。
ポリマーの溶融粘度は、乾燥ポリマー約20gを用いて、東洋精機製キャピログラフ1-Cを使用して測定した。この際、キャピラリーは、2.095mmφ×8.04mmLの流入角付きダイを使用し、設定温度は、330℃とした。ポリマー試料を装置に導入し、5分間保持した後、せん断速度2sec-1での溶融粘度を測定した(単位:Pa・s)。
ポリマーの平均粒径は、100メッシュ(目開き径150μm)オンのポリマー粒子について、さらに使用篩として、7メッシュ(目開き径2,800μm)、12メッシュ(目開き径1,410μm)、16メッシュ(目開き径1,000μm)、24メッシュ(目開き径710μm)、32メッシュ(目開き径500μm)、60メッシュ(目開き径250μm)及び80メッシュ(目開き径180μm)を使用する篩分法により測定した。
回収工程において、100メッシュ(目開き径150μm)のスクリーンを通過する生成物について、さらに400メッシュ(目開き径38μm)のスクリーンを使用して篩分することにより、400メッシュパスの超微粉体とを回収し、その量を測定した。測定された超微粉体の質量と回収されたポリマー全体の質量とに基づいて、回収されたポリマー全体の質量に対する超微粉体の質量の比率を算出した。
1.脱水工程:
硫黄源として、水硫化ナトリウム(NaSH)水溶液を用いた。チタン製20リットルオートクレーブ(反応缶)に、N-メチル-2-ピロリドン(以下、「NMP」と略記)6,000g、62.53質量%の水硫化ナトリウム水溶液2,010g、73.21質量%の水酸化ナトリウム水溶液1,146gを投入した。水硫化ナトリウムと硫化ナトリウムとからなる硫黄源を「S」と表記すると、水酸化ナトリウム/硫黄源(NaOH/S)のモル比(モル/モル)は0.937であった。
脱水工程の後、反応缶を温度150℃まで冷却し、p-ジクロロベンゼン(以下、「pDCB」と略記する。)3,467g、NMP2,839g、純度97%水酸化ナトリウム8g、及び水68gを加えて仕込み混合物を調製したところ、缶内の温度は140℃に低下した。缶内のNMP/Sの比率(g/モル)は365であり、pDCB/S(モル/モル)は1.072であり、H2O/S(モル/モル)は1.50であり、かつ、NaOH/S(モル/モル)は1.00であった。
(前段重合工程)
反応缶に備え付けた撹拌機を250rpmで回転して仕込み混合物を撹拌しながら220℃まで昇温し、220℃で1時間反応させた後、230℃で1.5時間反応させた。230℃で1.5時間反応させた時点で、1,2,4-トリクロロベンゼン(TCB)を、TCBのモル数の硫黄源(S)のモル数に対する比率がTCB/Sとして0.03モル/モルであるように反応混合物に添加した。TCBの添加後、NMP770gを添加した。NMPの添加後、さらに230℃で0.25時間反応を行った。
TCB添加時のpDCBの転化率は93質量%であった。転化率は、明細書において説明した方法により測定された。
TCB添加時のプレポリマーの重量平均分子量は、13000であった。重量平均分子量は、明細書において説明した方法により測定された。
前段重合工程後、撹拌機の回転数を400rpmに上げ、撹拌を続けながら、相分離剤として、97%水酸化ナトリウム26gを溶解させた水297gを圧入し〔缶内の合計水量/NMPは5.6(モル/kg)であり、缶内の合計水量/有効Sは2.25(モル/モル)であり、かつ、NaOH/Sは1.029(モル/モル)であった。〕、次いで、反応混合物を温度255℃まで昇温したところ、相分離状態となった。その後、温度255℃を維持して2時間重合反応させた。
反応終了後、反応混合物を室温付近まで冷却してから、反応液を100メッシュのスクリーンに通して粒状ポリマーを篩分した。分離したポリマーについて、アセトンにより2回洗浄し、水洗を3回行った後、0.3%酢酸水洗を行い、さらに水洗を4回行って洗浄ポリマーを得た。洗浄ポリマーは、105℃で13時間乾燥した。このようにして得られた粒状のPASについて、溶融粘度が288000Pa・sであり、平均粒径が488μmであった。また、回収されたPASの全質量に対する超微粉体の比率は7.8質量%であった。
製造条件を表1に記載の条件に変更することの他は、実施例1と同様にして粒状のPASを得た。得られた粒状のPASについて、溶融粘度が279000Pa・sであり、平均粒径が455μmであった。また、回収されたPASの全質量に対する超微粉体の比率は6.5質量%であった。
製造条件を表1に記載の条件に変更することの他は、実施例1と同様にして粒状のPASを得た。得られた粒状のPASについて、溶融粘度が239000Pa・sであり、平均粒径が596μmであった。また、回収されたPASの全質量に対する超微粉体の比率は5.4質量%であった。
製造条件を表1に記載の条件に変更し、前段重合における230℃の反応時間を1時間15分にすることの他は、実施例1と同様にして粒状のPASを得た。得られた粒状のPASについて、溶融粘度が248000Pa・sであり、平均粒径が978μmであった。また、回収されたPASの全質量に対する超微粉体の比率は10.8質量%であった。
製造条件を表1に記載の条件に変更することの他は、実施例1と同様にして粒状のPASを得た。
なお、前段重合工程では、220℃で3時間反応を行った後に、TCBを添加した。TCBの添加後、NMPを添加した。NMPの添加後、230℃で0.25時間反応を続けた。
得られた粒状のPASについて、溶融粘度が207000Pa・sであり、平均粒径が1546μmであった。また、回収されたPASの全質量に対する超微粉体の比率は18.6質量%であった。
製造条件を表1に記載の条件に変更することの他は、実施例1と同様にして粒状のPASを得た。
なお、前段重合工程では、220℃で1時間反応を行い、さらに230℃で2時間反応を行った後に、TCBを添加した。TCBの添加後、NMPを添加した。NMPの添加後、230℃で0.25時間反応を続けた。
得られた粒状のPASについて、溶融粘度が183000Pa・sであり、平均粒径が732μmであった。また、回収されたPASの全質量に対する超微粉体の比率は14.7質量%であった。
他方、前段重合工程において、プレポリマーの重量平均分子量が10000に達する前か、pDCBの転化率が80質量%より高く93質量%以下である範囲から外れる時点でTCBを反応混合物に添加した比較例では、溶融粘度が高く、超微粉体の比率が少ないPASの製造が困難であった。
Claims (7)
- (1)有機極性溶媒、硫黄源、及びジハロ芳香族化合物を含有する仕込み混合物を調製する仕込み工程と、
(2)前記仕込み混合物を加熱して重合反応を開始させ、プレポリマーを生成させる前段重合工程と、
(3)反応系内の反応混合物に相分離剤を添加して相分離状態を形成する相分離工程と、
(4)相分離工程後に重合反応を継続する後段重合工程と、
を含み、
前記前段重合工程において、前記ジハロ芳香族化合物の転化率が80質量%より高く93質量%以下である時点において、前記プレポリマーの重量平均分子量が10000以上に達した後に、反応系内の前記反応混合物に芳香環に結合する3つ以上のハロゲン原子を有する芳香族化合物を添加する、ポリアリーレンスルフィドの製造方法。 - 前記前段重合工程に供される前記仕込み混合物における前記有機極性溶媒の量が、前記硫黄源1モル当たり500g以下である、請求項1に記載のポリアリーレンスルフィドの製造方法。
- 前記前段重合工程において添加される芳香環に結合する3つ以上のハロゲン原子を有する前記芳香族化合物の量が、前記硫黄源1モルに対して0.010~0.050モルである、請求項1又は2に記載のポリアリーレンスルフィドの製造方法。
- 前記相分離剤として、水と有機カルボン酸金属塩とを組み合わせて用いる、請求項1~3のいずれ1項に記載のポリアリーレンスルフィドの製造方法。
- 前記有機カルボン酸金属塩が酢酸ナトリウムである、請求項4に記載のポリアリーレンスルフィドの製造方法。
- 前記相分離剤としての前記水の質量が、前記有機カルボン酸金属塩の質量の10倍以上50倍以下である、請求項4又は5に記載のポリアリーレンスルフィドの製造方法。
- 前記相分離剤としての前記水の質量が、前記有機カルボン酸金属塩の質量の20倍以上30倍以下である、請求項4又は5に記載のポリアリーレンスルフィドの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/999,159 US20230192958A1 (en) | 2020-05-22 | 2020-12-22 | Polyarylene sulfide production method |
CN202080100044.5A CN115485320B (zh) | 2020-05-22 | 2020-12-22 | 聚亚芳基硫醚的制造方法 |
JP2022524872A JP7394987B2 (ja) | 2020-05-22 | 2020-12-22 | ポリアリーレンスルフィドの製造方法 |
KR1020227040266A KR20230008116A (ko) | 2020-05-22 | 2020-12-22 | 폴리아릴렌 설파이드의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-089533 | 2020-05-22 | ||
JP2020089533 | 2020-05-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021234992A1 true WO2021234992A1 (ja) | 2021-11-25 |
Family
ID=78708396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/047916 WO2021234992A1 (ja) | 2020-05-22 | 2020-12-22 | ポリアリーレンスルフィドの製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230192958A1 (ja) |
JP (1) | JP7394987B2 (ja) |
KR (1) | KR20230008116A (ja) |
CN (1) | CN115485320B (ja) |
WO (1) | WO2021234992A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004123958A (ja) * | 2002-10-04 | 2004-04-22 | Idemitsu Petrochem Co Ltd | ポリアリーレンスルフィドの製造方法 |
WO2006068159A1 (ja) * | 2004-12-21 | 2006-06-29 | Kureha Corporation | 分岐型ポリアリーレンスルフィド樹脂及びその製造方法、並びにその高分子改質剤としての使用 |
WO2011125480A1 (ja) * | 2010-03-31 | 2011-10-13 | 株式会社クレハ | 分岐状ポリアリーレンスルフィド樹脂及びその製造方法 |
JP2016108488A (ja) * | 2014-12-09 | 2016-06-20 | 株式会社クレハ | 微粒子状高分岐型ポリアリーレンスルフィド及びその製造方法、及び該ポリアリーレンスルフィドを含む高分子改質剤 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4070344A (en) * | 1975-05-05 | 1978-01-24 | The Firestone Tire And Rubber Company | Amine terminated polymers and the formation of block copolymers |
DE19513479A1 (de) * | 1995-04-13 | 1996-10-17 | Hoechst Ag | Verfahren zur Herstellung von Polyarylensulfid |
DE19623706A1 (de) * | 1996-06-14 | 1997-12-18 | Hoechst Ag | Verfahren zur Herstellung von schwefelhaltigen Polymeren |
DE19640737A1 (de) * | 1996-10-02 | 1998-04-09 | Hoechst Ag | Verfahren zur Herstellung von schwefelhaltigen Polymeren |
WO2006010139A2 (en) * | 2004-07-08 | 2006-01-26 | Exxonmobil Chemical Patents Inc. | Olefin polymerization catalyst system and process for use thereof |
FI20060681L (fi) * | 2006-07-12 | 2008-01-13 | Panipol Oy | Uudet koostumukset ja menetelmä niiden valmistamiseksi |
CN101595137B (zh) * | 2006-12-20 | 2012-03-28 | 埃克森美孚化学专利公司 | 在超临界条件下的聚合物制备 |
CN101855250B (zh) * | 2007-09-13 | 2013-01-02 | 埃克森美孚研究工程公司 | 增塑剂与基础聚合物的在线共混 |
EP2131433A1 (de) * | 2008-06-05 | 2009-12-09 | Reinz-Dichtungs-Gmbh | Elektrochemische Zelle und Verfahren zur ihrer Herstellung |
US20140128543A1 (en) * | 2012-11-08 | 2014-05-08 | Sabic Innovative Plastics Ip B.V. | Methods of making polyurethane coated articles, and articles made therefrom |
EP2837667A3 (de) * | 2014-09-29 | 2015-04-22 | Basf Se | Einkomponentige Aminoharzbeschichtungsmassen |
JP6420668B2 (ja) * | 2015-01-09 | 2018-11-07 | 株式会社クレハ | ポリアリーレンスルフィドの製造方法及びポリアリーレンスルフィド |
DE102016207548A1 (de) * | 2016-05-02 | 2017-11-02 | Tesa Se | Härtbare Klebemasse und darauf basierende Reaktivklebebänder |
-
2020
- 2020-12-22 CN CN202080100044.5A patent/CN115485320B/zh active Active
- 2020-12-22 JP JP2022524872A patent/JP7394987B2/ja active Active
- 2020-12-22 US US17/999,159 patent/US20230192958A1/en active Pending
- 2020-12-22 WO PCT/JP2020/047916 patent/WO2021234992A1/ja active Application Filing
- 2020-12-22 KR KR1020227040266A patent/KR20230008116A/ko active Search and Examination
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004123958A (ja) * | 2002-10-04 | 2004-04-22 | Idemitsu Petrochem Co Ltd | ポリアリーレンスルフィドの製造方法 |
WO2006068159A1 (ja) * | 2004-12-21 | 2006-06-29 | Kureha Corporation | 分岐型ポリアリーレンスルフィド樹脂及びその製造方法、並びにその高分子改質剤としての使用 |
WO2011125480A1 (ja) * | 2010-03-31 | 2011-10-13 | 株式会社クレハ | 分岐状ポリアリーレンスルフィド樹脂及びその製造方法 |
JP2016108488A (ja) * | 2014-12-09 | 2016-06-20 | 株式会社クレハ | 微粒子状高分岐型ポリアリーレンスルフィド及びその製造方法、及び該ポリアリーレンスルフィドを含む高分子改質剤 |
Also Published As
Publication number | Publication date |
---|---|
CN115485320B (zh) | 2024-08-06 |
CN115485320A (zh) | 2022-12-16 |
JPWO2021234992A1 (ja) | 2021-11-25 |
KR20230008116A (ko) | 2023-01-13 |
US20230192958A1 (en) | 2023-06-22 |
JP7394987B2 (ja) | 2023-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5221877B2 (ja) | ポリアリーレンスルフィドの製造方法 | |
JP6420668B2 (ja) | ポリアリーレンスルフィドの製造方法及びポリアリーレンスルフィド | |
JP6517337B2 (ja) | 粒状ポリアリーレンスルフィドを製造する方法、及び粒状ポリアリーレンスルフィド | |
JP5731196B2 (ja) | 末端ハロゲン基含量が低減されたポリアリーレンスルフィドの製造方法 | |
JP4782383B2 (ja) | ポリアリーレンスルフィド及びその製造方法 | |
JP6751580B2 (ja) | 粒状ポリアリーレンスルフィドの製造方法、粒状ポリアリーレンスルフィドの平均粒子径増大方法、粒状ポリアリーレンスルフィドの粒子強度向上方法、及び粒状ポリアリーレンスルフィド | |
JP5189293B2 (ja) | 分岐型ポリアリーレンスルフィド樹脂及びその製造方法、並びにその高分子改質剤としての使用 | |
JP6374030B2 (ja) | ポリアリーレンスルフィドの製造方法、及びポリアリーレンスルフィド | |
WO2004060973A1 (ja) | ポリアリーレンスルフィドの製造方法及び洗浄方法、並びに洗浄に使用した有機溶媒の精製方法 | |
JP2000191785A (ja) | ポリアリーレンスルフィドの製造方法 | |
JP6881818B2 (ja) | ポリアリーレンスルフィドの製造方法 | |
JP6833254B2 (ja) | ポリアリーレンスルフィドの製造方法 | |
JP2514832B2 (ja) | ポリアリ―レンスルフィド架橋重合体の製造方法 | |
WO2021234992A1 (ja) | ポリアリーレンスルフィドの製造方法 | |
CA2021393A1 (en) | Process for preparing polyarylene sulfides | |
JP2021147513A (ja) | 変性ポリアリーレンスルフィドの製造方法 | |
JP6889271B2 (ja) | ポリアリーレンスルフィドの製造方法 | |
JP7262664B2 (ja) | ポリアリーレンスルフィドの製造方法 | |
JP6794000B2 (ja) | ポリアリーレンスルフィドの製造方法 | |
WO2021131985A1 (ja) | ポリアリーレンスルフィドの製造方法 | |
WO2020121785A1 (ja) | ポリアリーレンスルフィドの製造方法 | |
JP2020075987A (ja) | 分岐型ポリアリーレンスルフィドの製造方法 | |
JP2021095539A (ja) | ポリアリーレンスルフィドの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20936984 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20227040266 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2022524872 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20936984 Country of ref document: EP Kind code of ref document: A1 |