JP7262664B2 - ポリアリーレンスルフィドの製造方法 - Google Patents

ポリアリーレンスルフィドの製造方法 Download PDF

Info

Publication number
JP7262664B2
JP7262664B2 JP2022509251A JP2022509251A JP7262664B2 JP 7262664 B2 JP7262664 B2 JP 7262664B2 JP 2022509251 A JP2022509251 A JP 2022509251A JP 2022509251 A JP2022509251 A JP 2022509251A JP 7262664 B2 JP7262664 B2 JP 7262664B2
Authority
JP
Japan
Prior art keywords
mol
organic
mixture
pas
sulfur source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022509251A
Other languages
English (en)
Other versions
JPWO2021192413A1 (ja
Inventor
剛 佐藤
義紀 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Publication of JPWO2021192413A1 publication Critical patent/JPWO2021192413A1/ja
Application granted granted Critical
Publication of JP7262664B2 publication Critical patent/JP7262664B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0272Preparatory processes using other sulfur sources
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0209Polyarylenethioethers derived from monomers containing one aromatic ring
    • C08G75/0213Polyarylenethioethers derived from monomers containing one aromatic ring containing elements other than carbon, hydrogen or sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0209Polyarylenethioethers derived from monomers containing one aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0254Preparatory processes using metal sulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0259Preparatory processes metal hydrogensulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0277Post-polymerisation treatment
    • C08G75/0281Recovery or purification

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Description

本発明は、ポリアリーレンスルフィドの製造方法に関する。
ポリフェニレンスルフィド(以下、「PPS」とも称する。)に代表されるポリアリーレンスルフィド(以下、「PAS」とも称する。)は、耐熱性、耐薬品性、難燃性、機械的強度、電気特性、寸法安定性等に優れたエンジニアリングプラスチックである。PASは、押出成形、射出成形、圧縮成形等の一般的溶融加工法により、各種成形品、フィルム、シート、繊維等に成形可能である。このため、PASは、電気機器、電子機器、自動車機器、包装材料等の広範な技術分野において汎用されている。
かかるPASの製造方法としては、例えば、特許文献1に、
工程1:有機アミド溶媒、硫黄源、水、ジハロ芳香族化合物、及びアルカリ金属水酸化物を含有する混合物を調製する仕込み工程、
工程2:混合物を加熱して重合反応を開始させ、硫黄源1モル当たり等モル未満のアルカリ金属水酸化物の存在下で、ジハロ芳香族化合物の転化率が50%以上のプレポリマーを生成させる前段重合工程、
工程3:硫黄源1モル当たり等モル以上のアルカリ金属水酸化物の存在下で、重合反応を継続して、反応生成混合物を得る後段重合工程、並びに
工程4:後段重合工程後に反応生成混合物を冷却する冷却工程
を含み、
カルボン酸塩、アルカリ金属塩化物、有機スルホン酸塩、硫酸アルカリ金属塩、アルカリ土類金属酸化物、アルカリ金属リン酸塩、及びアルカリ土類金属リン酸塩からなる群より選択される少なくとも1種の助剤の存在下で工程4を行う、粒状ポリアリーレンスルフィドの製造方法が提案されている。
特開2017-179255号公報
しかしながら、本発明者らの検討によれば、特許文献1等に開示される従来の製造方法では、粒子径の小さなPASを製造しにくく、粒子径の大きなPASであるため、製造工程中に配管詰まりが発生したり、重合後の粒子を洗浄しにくかったりすることによりPASの生産性が悪化する場合があることが分かった。
他方、PASの粒子径が過度に小さいと、後処理工程で篩分する際に、スクリーンを通過するPASの量が増加することで、PASの回収量が減少したり、スクリーンの目詰まりを引き起こして、後処理効率が低下したりする問題がある。
本発明は、上記の課題に鑑みなされたものであって、平均粒子径として50μm以上550μm以下である粒子径の小さなPASを製造し得るPASの製造方法を提供することを目的とする。
本発明者らは、(1)有機極性溶媒、硫黄源、及びジハロ芳香族化合物を含有する仕込み混合物を調製する仕込み工程と、(2)仕込み混合物を加熱して重合反応を開始させ、プレポリマーを生成させる前段重合工程と、(3)反応系内の反応混合物に相分離剤として水を添加して相分離状態を形成する相分離工程と、(4)相分離工程後に重合反応を継続する後段重合工程とを含みPASの製造方法において、水に対して特定の溶解性を示す有機スルホン酸金属塩を仕込み混合物又は反応混合物に含有させることにより、上記目的が達成されることを見出し、本発明を完成するに至った。
本発明に係るPASの製造方法は、
(1)有機極性溶媒、硫黄源、及びジハロ芳香族化合物を含有する仕込み混合物を調製する仕込み工程と、
(2)仕込み混合物を加熱して重合反応を開始させ、プレポリマーを生成させる前段重合工程と、
(3)反応系内の反応混合物に相分離剤として水を添加して相分離状態を形成する相分離工程と、
(4)相分離工程後に重合反応を継続する後段重合工程と、
を含み、
後段重合工程よりも前に、仕込み混合物、又は反応混合物に有機スルホン酸金属塩を含有させ、
有機スルホン酸金属塩が、23℃において水1kgに対して3モル以上溶解し、回収されるポリアリーレンスルフィドの平均粒子径が、50μm以上550μm以下であるポリアリーレンスルフィドの製造方法である。
本発明にかかるPASの製造方法では、有機スルホン酸金属塩の使用量が、硫黄源のモル数に対して25モル%以下であってもよい。
本発明にかかるPASの製造方法では、相分離工程における水の添加量が、硫黄源1モル当たり0.1~5モルであってもよい。
本発明にかかるPASの製造方法では、有機スルホン酸金属塩を、仕込み混合物に含有させてもよい。
本発明にかかるPASの製造方法において、有機スルホン酸金属塩が、メタンスルホン酸ナトリウムであってもよい。
本発明によれば、平均粒子径として50μm以上550μm以下である粒子径の小さなPASを製造し得るPASの製造方法を提供することができる。
本発明に係るPASの製造方法の一実施形態について以下に説明する。本実施形態におけるPASの製造方法は、必須の工程として、仕込み工程と、重合工程と、相分離工程と、後段重合工程とを含む。本実施形態におけるPASの製造方法は、所望により、脱水工程、冷却工程、後処理工程等を含んでもよい。以下、本発明に用いられる各材料について詳細に説明するとともに、各工程について詳細に説明する。
(有機極性溶媒、硫黄源、及びジハロ芳香族化合物)
有機極性溶媒、硫黄源、及びジハロ芳香族化合物としては、特に限定されず、PASの製造において通常用いられるものを用いることができる。有機極性溶媒、硫黄源、及びジハロ芳香族化合物の各々は、単独で用いてもよいし、所望する化学構造を有するPASの製造が可能である組み合わせであれば、2種類以上を混合して用いてもよい。
有機極性溶媒としては、例えば、有機アミド溶媒;有機硫黄化合物からなる非プロトン性有機極性溶媒;環式有機リン化合物からなる非プロトン性有機極性溶媒が挙げられる。有機アミド溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド化合物;N-メチル-ε-カプロラクタム等のN-アルキルカプロラクタム化合物;N-メチル-2-ピロリドン(以下、「NMP」とも称する。)、N-シクロヘキシル-2-ピロリドン等のN-アルキルピロリドン化合物又はN-シクロアルキルピロリドン化合物;1,3-ジアルキル-2-イミダゾリジノン等のN,N-ジアルキルイミダゾリジノン化合物;テトラメチル尿素等のテトラアルキル尿素化合物;ヘキサメチルリン酸トリアミド等のヘキサアルキルリン酸トリアミド化合物等が挙げられる。有機硫黄化合物からなる非プロトン性有機極性溶媒としては、ジメチルスルホキシド、ジフェニルスルホン等が挙げられる。環式有機リン化合物からなる非プロトン性有機極性溶媒としては、1-メチル-1-オキソホスホラン等が挙げられる。中でも、入手性、取り扱い性等の点で、有機アミド溶媒が好ましく、N-アルキルピロリドン化合物、N-シクロアルキルピロリドン化合物、N-アルキルカプロラクタム化合物、及びN,N-ジアルキルイミダゾリジノン化合物がより好ましく、NMP、N-メチル-ε-カプロラクタム、及び1,3-ジアルキル-2-イミダゾリジノンがさらにより好ましく、NMPが特に好ましい。
有機極性溶媒の使用量は、重合反応の効率等の観点から、上記硫黄源1モルに対し、1~30モルが好ましく、3~15モルがより好ましい。
硫黄源としては、アルカリ金属硫化物、アルカリ金属水硫化物、硫化水素を挙げることができ、アルカリ金属硫化物及びアルカリ金属水硫化物であることが好ましい。硫黄源は、例えば、水性スラリー及び水溶液のいずれかの状態で扱うことができ、計量性、搬送性等のハンドリング性の観点から、水溶液の状態であることが好ましい。アルカリ金属硫化物としては、硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、硫化セシウムが挙げられる。アルカリ金属水硫化物としては、水硫化リチウム、水硫化ナトリウム、水硫化カリウム、水硫化ルビジウム、水硫化セシウムが挙げられる。
ジハロ芳香族化合物とは、芳香環に直結した2個の水素原子がハロゲン原子で置換された芳香族化合物を指す。
ジハロ芳香族化合物としては、例えば、o-ジハロベンゼン、m-ジハロベンゼン、p-ジハロベンゼン、ジハロトルエン、ジハロナフタレン、メトキシ-ジハロベンゼン、ジハロビフェニル、ジハロ安息香酸、ジハロジフェニルエーテル、ジハロジフェニルスルホン、ジハロジフェニルスルホキシド、ジハロジフェニルケトン等のジハロ芳香族化合物が挙げられる。ハロゲン原子は、フッ素、塩素、臭素、及びヨウ素の各原子を指し、ジハロ芳香族化合物における2個以上のハロゲン原子は、同じでも異なっていてもよい。中でも、入手性、反応性等の点で、p-ジハロベンゼン、m-ジハロベンゼン、及びこれら両者の混合物が好ましく、p-ジハロベンゼンがより好ましく、p-ジクロロベンゼン(以下、「pDCB」とも称する。)が特に好ましい。
ジハロ芳香族化合物の使用量は、硫黄源の仕込み量1モルに対し、好ましくは0.90~1.50モルであり、より好ましくは0.92~1.10モルであり、さらにより好ましくは0.95~1.05モルである。上記使用量が上記範囲内であると、分解反応が生じにくく、安定的な重合反応の実施が容易であり、高分子量ポリマーを生成させやすい。
(有機スルホン酸金属塩)
上記のPASの製造方法では、後段重合工程よりも前に、仕込み混合物、又は反応混合物に有機スルホン酸金属塩を含有させる。
有機スルホン酸金属塩としては、23℃において水1kgに対して3モル以上溶解する有機スルホン酸金属塩が使用される。所望する効果の得やすさの点で、有機スルホン酸金属塩は、置換基の炭素数が少なく、極性の高い置換基を有する化合物が望ましい。23℃において水1kgに対して3.5モル以上溶解するのが好ましく、4モル以上溶解するのがより好ましい。
後段重合工程よりも前に、仕込み混合物、又は反応混合物に上記の水溶性が高い有機スルホン酸金属塩を含有させる場合、反応混合物に水を必須に加える相分離剤添加工程を経て形成される、主に高分子量PASからなる濃厚相と、主に有機極性溶媒、水、及び低分子量PASからなる希薄相とからなる相分離状態の反応液において、希薄相に有機スルホン酸金属塩が分配する。その結果、希薄相において塩析が生じ、低分子量PASが析出すると考えられる。析出した低分子量PASは濃厚相に溶出する。その結果として、濃厚の粘度が低下し、反応混合物中に分散する濃厚相の液滴が微細化し、粒子径の小さなPASが得られると考えられる。
有機スルホン酸金属塩を構成する金属カチオンは、有機スルホン酸金属塩が上記の所定の水への溶解性を有する限り特に限定されない。金属カチオンとしては、例えば、ナトリウムイオン、カリウムイオン、及びリチウムイオン等のアルカリ金属イオンや、カルシウムやマグネシウムのアルカリ土類金属イオン等が挙げられる。
有機スルホン酸金属塩が1分子中に有するスルホン酸金属塩基の数は特に限定されない。有機スルホン酸金属塩が1分子中に有するスルホン酸金属塩基の数は、典型的には1以上4以下であり1又は2が好ましく、1がより好ましい。
有機スルホン酸金属塩は、本発明の目的を阻害しない範囲において、スルホン酸金属塩基以外の置換基を有していてもよい。かかる置換基としては、例えば、炭素原子数1以上6以下のアルコキシ基、炭素原子数2以上6以下の脂肪族アシル基、及びベンゾイル基等が挙げられる。
有機スルホン酸金属塩が有する、スルホン酸金属塩基以外の置換基の数は、本発明の目的を阻害しない範囲で特に限定されない。有機スルホン酸金属塩基がスルホン酸金属塩基以外の置換基を有する場合、置換基の数は、1以上4以下が好ましく、1又は2がより好ましく、1が特に好ましい。
水への溶解性が良好である点から、有機スルホン酸金属塩を構成する有機スルホナートアニオンは、上記の置換基を持たないヒドロカルビルスルホナートアニオンが好ましく、アルカンスルホナートアニオンがより好ましく、炭素原子数1以上4以下のアルカンスルホナートアニオンがさらに好ましく、メタンスルホナートアニオンが特に好ましい。
有機スルホン酸金属塩の具体例としては、水への溶解性に優れることや、分子量が小さく少量の使用でも所望する効果を得やすいことや、入手が容易であること等からメタンスルホン酸ナトリウムが好ましい。
有機スルホン酸金属塩の使用量は、所望する効果が得られる限りにおいて特に限定されない。所望する効果の得やすさの点で、有機スルホン酸金属塩の使用量は、硫黄源のモル数に対して40モル%以下が好ましく、30モル%以下がより好ましく、25モル%以下がさらに好ましく、20モル%以下が特に好ましく、15モル%以下が最も好ましい。また、所望する効果の得やすさの点で、有機スルホン酸金属塩の使用量は、硫黄源のモル数に対して、3モル%以上が好ましく、5モル%以上がより好ましく、7モル%以上がさらにより好ましく、8モル%以上が特に好ましく、10モル%以上が最も好ましい。
前段重合工程、及び後段重合工程での重合反応促進の効果の点からは、有機スルホン酸金属塩の使用量は、硫黄源のモル数に対して、7モル%以上が好ましく、8モル%以上がより好ましい、10モル%以上がさらに好ましい。
PASの良好な収率と、得られるPASの適切な範囲内での小粒子径化との両立の点からは、有機スルホン酸金属塩の使用量は、硫黄源のモル数に対して、7モル%以上25モル%以下が好ましく、8モル%以上20モル%以上がより好ましい。
(脱水工程)
脱水工程は、仕込み工程の前に、有機極性溶媒、及び硫黄源を含有する混合物を含む系内から、水を含む留出物の少なくとも一部を系外に排出する工程である。脱水工程に供される混合物は、必要に応じて、アルカリ金属水酸化物を含んでいてもよい。硫黄源とジハロ芳香族化合物との重合反応は、重合反応系に存在する水分量によって促進又は阻害される等の影響を受ける。したがって、上記水分量が重合反応を阻害しないように、重合の前に脱水処理を行うことにより、重合反応系内の水分量を減らすことが好ましい。
前述の有機スルホン酸金属塩は、脱水工程に供される混合物に加えられてもよい。また、有機スルホン酸と、塩基性の含金属化合物等とを混合物に加えることにより、有機スルホン酸金属塩を混合物中で生成させてもよい。塩基性の含金属化合物としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物や、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩等が挙げられる。
なお、脱水工程に限らず、後段重合工程よりも前のいずれの工程においても、有機スルホン酸と、塩基性の含金属化合物等との反応により有機スルホン酸金属塩を生成させてよい。
有機スルホン酸金属塩とともに混合物に持ち込まれる水分や、有機スルホン酸と、塩基性の含金属化合物等との反応により副生する水分を除去できることから、PASの製造方法において使用される有機スルホン酸の全量に対して好ましくは50質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上、特に好ましくは100質量%の有機スルホン酸金属塩が、脱水工程に供される混合物に加えられるか、脱水工程に供される混合物中で生成するのが好ましい。
脱水工程では、不活性ガス雰囲気下での加熱により脱水を行うことが好ましい。脱水工程で脱水されるべき水分とは、脱水工程で仕込んだ各原料が含有する水、水性混合物の水媒体、各原料間の反応により副生する水等である。
脱水工程における加熱温度は、300℃以下であれば特に限定されず、好ましくは100~250℃である。加熱時間は、15分~24時間であることが好ましく、30分~10時間であることがより好ましい。
脱水工程では、水分量が所定の範囲内になるまで脱水する。即ち、脱水工程では、仕込み混合物(後述)における水分量が、硫黄源(以下、「仕込み硫黄源」又は「有効硫黄源」とも称する)1.0モルに対して、好ましくは0.5~2.4モルになるまで脱水することが望ましい。脱水工程で水分量が少なくなり過ぎた場合は、前段重合工程に先立つ仕込み工程において水を添加して所望の水分量に調節すればよい。
(仕込み工程)
仕込み工程は、有機極性溶媒、硫黄源、及びジハロ芳香族化合物を含有する混合物を調製する工程である。仕込み工程において仕込まれる混合物を、「仕込み混合物」とも称する。
上記のPASの製造方法では、後段重合工程よりも前に、仕込み混合物、又は反応混合物に有機スルホン酸金属塩を含有させる。このため、仕込み工程において、仕込み混合物に有機スルホン酸金属塩を添加してもよい。
脱水工程を行う場合、仕込み混合物における硫黄源の量(以下、「仕込み硫黄源の量」又は「有効硫黄源の量」とも称する。)は、原料として投入した硫黄源のモル量から、脱水工程で揮散した硫化水素のモル量を引くことによって、算出することができる。
脱水工程を行う場合、仕込み工程では脱水工程後に系内に残存する混合物に、必要に応じてアルカリ金属水酸化物及び水を添加することが出来る。特に、脱水時に生成した硫化水素の量と脱水時に生成したアルカリ金属水酸化物の量とを考慮したうえで、アルカリ金属水酸化物を添加することが出来る。アルカリ金属水酸化物としては、PASの製造において通常用いられるものを用いることができる。アルカリ金属水酸化物は、単独で用いてもよいし、PASの製造が可能である組み合わせであれば、2種類以上を混合して用いてもよい。アルカリ金属水酸化物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウムが挙げられる。なお、アルカリ金属水酸化物のモル数は、仕込み工程で必要に応じて添加するアルカリ金属水酸化物のモル数、並びに、脱水工程を行う場合には、脱水工程において必要に応じて添加したアルカリ金属水酸化物のモル数、及び、脱水工程において硫化水素の生成に伴い生成するアルカリ金属水酸化物のモル数に基づいて算出される。硫黄源がアルカリ金属硫化物を含む場合には、硫黄源(仕込み硫黄源)1モル当たりのアルカリ金属水酸化物のモル数は、アルカリ金属硫化物のモル数を含めて算出するものとする。硫黄源に硫化水素を使用する場合には、生成するアルカリ金属硫化物のモル数を含めて、硫黄源(仕込み硫黄源)1モル当たりのアルカリ金属水酸化物のモル数を算出するものとする。ただし、他の目的で添加されるアルカリ金属水酸化物のモル数、例えば、相分離剤として有機カルボン酸金属塩を有機カルボン酸とアルカリ金属水酸化物との組み合わせの態様で使用する場合には、中和等の反応で消費したアルカリ金属水酸化物のモル数は、硫黄源(仕込み硫黄源)1モル当たりのアルカリ金属水酸化物のモル数に含めないものとする。さらに、何らかの理由で、無機酸及び有機酸からなる群より選択される少なくとも1種の酸が使用される場合等は、上記少なくとも1種の酸を中和するに必要なアルカリ金属水酸化物のモル数は、硫黄源(仕込み硫黄源)1モル当たりのアルカリ金属水酸化物のモル数に含めないものとする。
仕込み混合物において、有機極性溶媒及びジハロ芳香族化合物の各々の使用量は、例えば、硫黄源の仕込み量1モルに対し、有機極性溶媒及びジハロ芳香族化合物に関する上記説明中で示す範囲に設定される。また、仕込み工程において、有機スルホン酸金属塩の全量を仕込み混合物に加える場合、有機スルホン酸金属塩は、例えば、前述の範囲内の量で使用される。
なお、後述する前段重合工程より前に有機スルホン酸金属塩を仕込み混合物に添加するのが好ましい。前段重合工程より前に仕込み混合物に有機スルホン酸金属塩を仕込み混合物に添加することにより、後述する前段重合工程及び後段重合工程における重合反応が促進され、高分子量のPASを得やすい。
仕込み工程において、有機スルホン酸金属塩の一部を仕込み混合物に加える場合、仕込み工程において仕込み混合物に加えられる有機スルホン酸金属塩の量は、有機スルホン酸金属塩の全質量に対して、5質量%以上95質量%以下が好ましく、50質量%以上90質量%以下がより好ましい。
なお、後述する前段重合工程及び後段重合工程での重合反応の促進の観点からは、脱水工程で添加された有機スルホン酸金属塩の量と、仕込み工程で添加された有機スルホン酸金属塩の量との合計が、硫黄源のモル数に対して、7モル%以上が好ましく、8モル%以上がより好ましい、10モル%以上がさらに好ましい。
(前段重合工程、相分離剤添加工程、及び後段重合工程)
前段重合工程は、仕込み混合物の重合反応を開始させ、プレポリマーを生成させる工程である。前段重合工程では、有機極性溶媒中で硫黄源と、ジハロ芳香族化合物とを重合させてPASのプレポリマーを生成させる。後段重合工程よりも前に、仕込み混合物、又は反応混合物に有機スルホン酸金属塩を含有させることにより、粒子径の小さなPASを高収率で製造し得る。なお、前段重合工程及び後段重合工程において加熱される混合物と、相分離剤添加工程において相分離剤が添加される混合物と、相分離剤添加工程において相分離した混合物とを、「反応混合物」と称する。
より高分子量のPASを得るために、重合反応は2段階以上に分けて行われる。具体的には、上記の前段重合工程と、相分離剤の存在下で重合反応を継続する後段合工程とが行われる。相分離剤は、前段重合工程と後段重合工程との間に設けられる相分離剤添加工程において反応混合物に加えられる。
例えば、米国特許第4038260号公報の実施例IIには、硫化ナトリウム、水酸化ナトリウム、ベンゼンスルホン酸ナトリウム、及びNMPからなる混合物を脱水した後に、脱水後の混合物にp-ジクロロベンゼンを加えて一段階で重合反応を行う、PASの製造方法が開示されている。しかし、このような方法では、過度に粒子径が小さくなった粉末状のPASが生成してしまい、適切な範囲内の小粒子径である、平均粒子径50μm以上550μm以下の顆粒状のPASを得られない。
他方、上記のように、前段重合工程、相分離剤添加工程、及び後段重合工程を含む方法において、有機スルホン酸金属塩を所定のタイミングで反応混合物に加えて重合反応を行うことにより、取り扱いの容易な、適切な範囲内で小粒子径化された顆粒状のPASを得ることができる。
前述の通り、有機スルホン酸金属塩は、後段重合工程よりも前に、仕込み混合物、又は反応混合物に加えられる。このため、前段重合工程、及び/又は相分離剤添加工程において、反応混合物に有機スルホン酸金属塩が、反応混合物に添加され得る。
前段重合工程、又は相分離剤添加工程において、有機スルホン酸金属塩の全量を仕込み混合物に加える場合、有機スルホン酸金属塩は、例えば、前述の範囲内の量で使用される。
前段重合工程、及び相分離剤添加工程において、有機スルホン酸金属塩の全量を分割して反応混合物に添加する場合、前段重合工程において添加される有機スルホン酸金属塩の量と、相分離剤添加工程において添加される有機スルホン酸金属塩の量との比率は特に限定されない。
前段重合工程より前に仕込み混合物に有機スルホン酸金属塩の一部を仕込み混合物に添加する場合、有機スルホン酸金属塩の使用量のうち残余の量が、前段重合工程、及び/又は後段重合工程における重合反応が促進され、高分子量のPASを得やすい。
前段重合工程において、ジハロ芳香族化合物の転化率は、好ましくは50~98モル%、より好ましくは60~97モル%、さらに好ましくは65~96モル%、特に好ましくは70~95モル%である。ジハロ芳香族化合物の転化率は、反応混合物中に残存するジハロ芳香族化合物の量をガスクロマトグラフィにより求め、その残存量とジハロ芳香族化合物の仕込み量と硫黄源の仕込み量に基づいて算出することができる。
前段重合工程に続く後段重合工程においては、前記プレポリマーの重合度が上昇する。
相分離剤としては、水が必須に添加される。相分離剤添加工程においてと、水とともに水以外の相分離剤を使用し得る。水と水以外の相分離剤とを併用する場合、水以外の相分離剤としては、特に限定されない。水以外の相分離剤としては、例えば、有機カルボン酸金属塩(例えば、酢酸ナトリウムのような脂肪族カルボン酸のアルカリ金属塩や、芳香族カルボン酸のアルカリ土類金属塩等)、有機スルホン酸金属塩、アルカリ金属ハライド、アルカリ土類金属ハライド、リン酸アルカリ金属塩、アルコール類、及び無極性溶媒からなる群より選ばれる少なくとも1種が挙げられる。なお、相分離剤として使用される上記の塩類は、対応する酸と塩基を別々に添加する態様であっても差しつかえない。
相分離剤の使用量は、用いる化合物の種類によって異なるが、有機極性溶媒1kgに対し、0.01~20モルの範囲内でよい。相分離剤として使用される水の量は、有機スルホン酸を良好に溶解させやすい点で、硫黄源1モル当たり0.1~5モルが好ましく、2~4モルがより好ましい。また、相分離剤として水を添加した場合の反応系内の水分量は、有機極性溶媒1kg当たり、4モル超過20モル以下でよく、4.1~14モルでもよく、4.2~10モルでもよい。
後段重合工程において、アルカリ金属水酸化物の量は、硫黄源1モルに対し、好ましくは1.00~1.10モル、より好ましくは1.01~1.08モル、さらにより好ましくは1.02~1.07モルである。アルカリ金属水酸化物の量が上記範囲内であると、得られるPASの分子量がより上昇しやすく、より高分子量のPASをより得やすい。後段重合工程では、前段重合工程後の反応混合物中に存在するアルカリ金属水酸化物の量に基づき、最終的なアルカリ金属水酸化物の量が上記範囲内となるように、該反応混合物にアルカリ金属水酸化物が添加されるのが好ましい。
前段重合工程、及び後段重合工程では、重合反応の効率等の観点から、温度170~300℃の加熱下で重合反応を行うことが好ましい。前段重合工程、及び後段重合工程における重合温度は、180~280℃の範囲であることが、副反応及び分解反応を抑制する上でより好ましい。特に、前段重合工程では、重合反応の効率等の観点から、温度170~270℃の加熱下で重合反応を開始させ、ジハロ芳香族化合物の転化率が50%モル以上のプレポリマーを生成させることが好ましい。前段重合工程における重合温度は、180~265℃の範囲から選択することが、副反応及び分解反応を抑制する上で好ましい。
前段重合工程、及び後段重合工程における重合反応は、バッチ式で行ってもよいし、連続的に行ってもよい。例えば、少なくとも、有機極性溶媒、硫黄源、及びジハロ芳香族化合物の供給と、有機極性溶媒中での硫黄源とジハロ芳香族化合物との反応によるPASの生成と、PASを含む反応混合物の回収と、を同時並行で行うことにより、重合反応を連続的に行うことができる。
(冷却工程)
冷却工程は、重合工程後に、前記反応混合物を冷却する工程である。冷却工程における具体的な操作は、例えば、特許第6062924号公報に記載の通りである。
(後処理工程(分離工程、洗浄工程、回収工程等))
本実施形態におけるPASの製造方法においては、重合反応後の後処理工程を、常法によって、例えば、特開2016-056232号公報に記載の方法によって、行うことができる。
(得られるPAS)
本実施形態におけるPASの製造方法によって得られるPASは、平均粒子径が小さい。より具体的には、上記のPASの製造方法によって得られるPASの平均粒子径を、好ましくは550μm以下、より好ましくは500μm以下、さらに好ましくは450μm以下、さらにより好ましくは400μm以下とすることができる。PASの平均粒子径の下限は特に限定されないが、典型的には50μm以上であってよく、100μm以上であってもよい。つまり、後段重合後の反応液から回収されるPASの平均粒子径は、50μm以上550μm以下であるのが好ましい。
PASの平均粒子径は、使用篩として、篩目開き2,800μm(7メッシュ(目数/インチ))、篩目開き1,410μm(12メッシュ(目数/インチ))、篩目開き1,000μm(16メッシュ(目数/インチ))、篩目開き710μm(24メッシュ(目数/インチ))、篩目開き500μm(32メッシュ(目数/インチ))、篩目開き250μm(60メッシュ(目数/インチ))、篩目開き150μm(100メッシュ(目数/インチ))、篩目開き105μm(145メッシュ(目数/インチ))、篩目開き75μm(200メッシュ(目数/インチ))、篩目開き38μm(400メッシュ(目数/インチ))の篩を用いた篩分法により測定し、各篩の篩上物の質量から、累積質量が50%質量となる時の平均粒径として算出される。
得られるPASの平均分子量は、本発明の目的を阻害しな範囲で特に限定されない。平均分子量は、重量平均分子量として、35,000以上が好ましく、38,000以上がより好ましく、40,000以上がさらにより好ましく、41,000以上が一層さらにより好ましく、42,000以上が特に好ましい。上記重量平均分子量が35,000以上であると、PASの靭性が高くなりやすい。上記重量平均分子量の上限は、特に限定されず、100,000以下でよく、8,0000以下でもよく、70,000以下でもよい。なお、本明細書において、重量平均分子量とは、ゲルパーミエーションクロマトグラフィにより測定されたポリスチレン換算の重量平均分子量をいう。
PASの収率は、87%以上が好ましく、90%以上がより好ましく、92%以上がさらに好ましい。
本実施形態におけるPASの製造方法により得られるPASは、そのまま、又は酸化架橋させた後、単独で、又は所望により各種無機充填剤、繊維状充填剤、各種合成樹脂を配合し、種々の射出成形品又はシート、フィルム、繊維、及びパイプ等の押出成形品に成形することができる。
本実施形態におけるPASの製造方法において、PASは、特に限定されず、PPSであることが好ましい。
本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。
以下に実施例及び比較例を挙げて、本発明についてより具体的に説明する。なお、本発明は、実施例に限られるものではない。以下に記すPPSの平均粒子径と重量平均分子量とについて、測定方法は前述の通りである。
[実施例1]
(脱水工程)
20リットルのオートクレーブに、NMP5,998g、水硫化ナトリウム水溶液(NaSH:純度62.20質量%)2,003g、水酸化ナトリウム(NaOH:純度73.22質量%)1,072g、及びメタンスルホン酸ナトリウムを258gを仕込んだ。該オートクレーブ内を窒素ガスで置換後、約4時間かけて、撹拌機により回転数250rpmで撹拌しながら、徐々に200℃まで昇温し、水(HO)895g、NMP805g、及び硫化水素(HS)15gを留出させた。
(仕込み工程)
脱水工程後、オートクレーブの内容物を150℃まで冷却し、pDCB3,235g、NMP3,328g、水酸化ナトリウム8g、及び水93gをオートクレーブ内に加えて第1重合工程に供する混合物を調製した。
(前段重合工程)
仕込み工程で調製された混合物を撹拌しながら、220℃から260℃まで1.5時間かけて昇温させて第1重合工程を行った。缶内のNMP/仕込み硫黄源(以下、「仕込みS」と略記する。)の比率(g/モル)は391、pDCB/仕込みS(モル/モル)は1.010、HO/仕込みS(モル/モル)は1.50であった。第1重合工程でのpDCBの転化率は、92%であった。
(相分離剤添加工程)
第1重合工程終了後、撹拌機の回転数を400rpmに上げ、オートクレーブの内容物を撹拌しながらイオン交換水444g、水酸化ナトリウム58gを圧入した。HO/S(モル/モル)は2.63であった。
(後段重合工程)
イオン交換水の圧入後、265℃まで昇温し、2.5時間反応させて第2重合工程を行った。
(冷却工程)
重合終了後、冷却を開始し、265℃から230℃まで60分かけて冷却し、その後、速やかに室温まで冷却を行った。
(後処理工程)
オートクレーブの内容物を目開き径150μm(100メッシュ)のスクリーンで篩分けし、アセトン、及びイオン交換水で洗浄後、酢酸水溶液で洗浄し、再度イオン交換水で洗浄した後、120℃4時間で乾燥を行い、粒状のPPSを得た。得られたPPSの収率は92.7%であり、重量平均分子量(Mw)は62,700であり、平均粒子径は360μmであった。
〔実施例2〕
有機スルホン酸金属塩の使用量を表1に記載の量に変更することの他は、実施例1と同様にして粒状のPPSを得た。得られたPPSの収率は86.2%であり、重量平均分子量(Mw)は56,600であり、平均粒子径は384μmであった。
〔実施例3〕
有機スルホン酸金属塩の使用量を表1に記載の量に変更することの他は、実施例1と同様にして粒状のPPSを得た。得られたPPSの収率は94.7%であり、重量平均分子量(Mw)は69,500であり、平均粒子径は520μmであった。
〔比較例1〕
有機スルホン酸金属塩を添加しないことの他は、実施例1と同様にして粒状のPPSを得た。得られたPPSの収率は80.8%であり、重量平均分子量(Mw)は47,700であり、平均粒子径は740μmであった。
〔比較例2〕
有機スルホン酸金属塩を酢酸ナトリウムに変更することの他は、実施例1と同様にして粒状のPPSを得た。得られたPPSの収率は87.7%であり、重量平均分子量(Mw)は62,100であり、平均粒子径は2810μmであった。
〔比較例3〕
有機スルホン酸金属塩をメタンスルホン酸ナトリウムからp-トルエンスルホン酸ナトリウム酢酸に変更することの他は、実施例1と同様にして粒状のPPSを得た。得られたPPSの収率は91.3%であり、重量平均分子量(Mw)は61,200であり、平均粒子径は1530μmであった。
〔比較例4〕
有機スルホン酸金属塩をスルファニル酸ナトリウムに変更することの他は、実施例1と同様にして粒状のPPSを得た。得られたPPSの収率は92.2%であり、重量平均分子量(Mw)は61,200であり、平均粒子径は650μmであった。
Figure 0007262664000001
実施例1によれば、後段重合工程よりも前に、仕込み混合物、又は反応混合物に23℃において水1kgに対して3モル以上溶解する有機スルホン酸金属塩を含有させる場合、平均粒子径として50μm以上550μm以下である平均粒子径の小さなPASを高い収率で製造できることが分かる。
他方、比較例1~4によれば、23℃において水1kgに対して3モル未満しか溶解しない有機スルホン酸金属塩を用いたり、有機スルホン金属塩以外の塩類を用いたりする場合、平均粒子径の大きなPASしか製造できないことが分かる。

Claims (5)

  1. (1)有機極性溶媒、硫黄源、及びジハロ芳香族化合物を含有する仕込み混合物を調製する仕込み工程と、
    (2)前記仕込み混合物を、170~300℃で加熱して重合反応をさ、プレポリマーを生成させ、前記ジハロ芳香族化合物の転化率を50~98モル%とする前段重合工程と、
    (3)反応系内の反応混合物に相分離剤として水を添加して相分離状態を形成する相分離工程と、
    (4)前記相分離工程後に、170~300℃で重合反応を継続する後段重合工程と、
    を含み、
    前記後段重合工程よりも前に、前記仕込み混合物、又は前記反応混合物に前記硫黄源1モルに対して3モル%以上の有機スルホン酸金属塩を含有させ、
    前記有機スルホン酸金属塩炭素原子数1以上4以下のアルカンスルホン酸のアルカリ金属塩であって、且つ23℃において水1kgに対して3モル以上溶解するものであり
    前記後段重合工程後の反応液に含まれるポリアリーレンスルフィドの平均粒子径が、50μm以上550μm以下であるポリアリーレンスルフィドの製造方法。
  2. 前記有機スルホン酸金属塩の使用量が、前記硫黄源のモル数に対して25モル%以下である、請求項1に記載のポリアリーレンスルフィドの製造方法。
  3. 前記相分離工程における前記水の添加量が、前記硫黄1モル当たり0.1~5モルである、請求項1又は2に記載のポリアリーレンスルフィドの製造方法。
  4. 前記有機スルホン酸金属塩を、前記仕込み混合物に含有させる、請求項1~3のいずれか1項に記載のポリアリーレンスルフィドの製造方法。
  5. 前記有機スルホン酸金属塩が、メタンスルホン酸ナトリウムである、請求項1~4のいずれか1項に記載のポリアリーレンスルフィドの製造方法。
JP2022509251A 2020-03-24 2020-11-25 ポリアリーレンスルフィドの製造方法 Active JP7262664B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020052798 2020-03-24
JP2020052798 2020-03-24
PCT/JP2020/043898 WO2021192413A1 (ja) 2020-03-24 2020-11-25 ポリアリーレンスルフィドの製造方法

Publications (2)

Publication Number Publication Date
JPWO2021192413A1 JPWO2021192413A1 (ja) 2021-09-30
JP7262664B2 true JP7262664B2 (ja) 2023-04-21

Family

ID=77890073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022509251A Active JP7262664B2 (ja) 2020-03-24 2020-11-25 ポリアリーレンスルフィドの製造方法

Country Status (5)

Country Link
US (1) US11795272B2 (ja)
JP (1) JP7262664B2 (ja)
KR (1) KR102472752B1 (ja)
CN (1) CN115151597B (ja)
WO (1) WO2021192413A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003176357A (ja) 2001-12-10 2003-06-24 Tosoh Corp ポリアリーレンスルフィドの製造方法
JP2017179255A (ja) 2016-03-31 2017-10-05 株式会社クレハ 粒状ポリアリーレンスルフィドの製造方法、粒状ポリアリーレンスルフィドの平均粒子径増大方法、粒状ポリアリーレンスルフィドの粒子強度向上方法、及び粒状ポリアリーレンスルフィド

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4038260A (en) 1975-05-27 1977-07-26 Phillips Petroleum Company Production of p-phenylene sulfide polymers
DE3615030A1 (de) 1985-05-07 1986-11-13 Toyo Boseki K.K., Osaka Verfahren zur herstellung von polyarylensulfid
JPS61264024A (ja) * 1985-05-16 1986-11-21 Toyobo Co Ltd ポリアリレンスルフイドの製造法
JPS62190228A (ja) * 1986-02-17 1987-08-20 Dainippon Ink & Chem Inc ポリアリ−レンスルフイドの製造方法
JP3235037B2 (ja) * 1993-07-20 2001-12-04 出光石油化学株式会社 ポリアリーレンスルフィド粒状体の連続回収方法
US9422400B2 (en) * 2012-03-30 2016-08-23 Kureha Corporation Granular polyarylene sulfide and process for manufacturing the same
WO2015147090A1 (ja) * 2014-03-25 2015-10-01 株式会社クレハ 熱処理微粉ポリアリーレンスルフィド、及び該熱処理微粉ポリアリーレンスルフィドを製造する製造方法
KR101758039B1 (ko) * 2014-03-31 2017-07-13 가부시끼가이샤 구레하 폴리아릴렌 설파이드의 제조방법
US9908974B2 (en) * 2014-04-30 2018-03-06 Kureha Corporation Polyarylene sulfide production method and polyarylene sulfide production apparatus
EP3147309B1 (en) * 2014-05-22 2018-09-26 DIC Corporation Polyarylene sulfide dispersion, powder particles, method for producing polyarylene sulfide dispersion, and method for producing powder particles
JP6418852B2 (ja) 2014-09-05 2018-11-07 株式会社クレハ ポリアリーレンスルフィドの製造方法及びポリアリーレンスルフィド
JP6420668B2 (ja) * 2015-01-09 2018-11-07 株式会社クレハ ポリアリーレンスルフィドの製造方法及びポリアリーレンスルフィド
KR101969258B1 (ko) * 2015-06-12 2019-04-15 가부시끼가이샤 구레하 입상 폴리아릴렌 설파이드를 제조하는 방법, 및 입상 폴리아릴렌 설파이드
JP6784782B2 (ja) 2017-02-07 2020-11-11 株式会社クレハ 粒状ポリアリーレンスルフィドの製造方法及び粒状ポリアリーレンスルフィド

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003176357A (ja) 2001-12-10 2003-06-24 Tosoh Corp ポリアリーレンスルフィドの製造方法
JP2017179255A (ja) 2016-03-31 2017-10-05 株式会社クレハ 粒状ポリアリーレンスルフィドの製造方法、粒状ポリアリーレンスルフィドの平均粒子径増大方法、粒状ポリアリーレンスルフィドの粒子強度向上方法、及び粒状ポリアリーレンスルフィド

Also Published As

Publication number Publication date
WO2021192413A1 (ja) 2021-09-30
KR20220136442A (ko) 2022-10-07
KR102472752B1 (ko) 2022-11-30
US20230126671A1 (en) 2023-04-27
JPWO2021192413A1 (ja) 2021-09-30
US11795272B2 (en) 2023-10-24
CN115151597B (zh) 2023-08-11
CN115151597A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
JP5731196B2 (ja) 末端ハロゲン基含量が低減されたポリアリーレンスルフィドの製造方法
JP5623277B2 (ja) 粒状ポリアリーレンスルフィドの製造方法
US10647818B2 (en) Polyarylene sulfide production method and polyarylene sulfide
JP3568054B2 (ja) ポリフェニレンスルフィドの製造方法
JP6517337B2 (ja) 粒状ポリアリーレンスルフィドを製造する方法、及び粒状ポリアリーレンスルフィド
JP3989785B2 (ja) ポリアリーレンスルフィドの製造方法
JP5189293B2 (ja) 分岐型ポリアリーレンスルフィド樹脂及びその製造方法、並びにその高分子改質剤としての使用
CN108602954B (zh) 粒状聚亚芳基硫醚的制造方法、粒状聚亚芳基硫醚的平均粒径增大方法、粒状聚亚芳基硫醚的粒子强度提高方法以及粒状聚亚芳基硫醚
JP2007314803A (ja) ポリアリーレンスルフィドの製造方法
JP6306601B2 (ja) 分岐型ポリアリーレンスルフィド樹脂及びその製造方法、並びにその高分子改質剤としての使用
US20200024402A1 (en) Method for producing granular polyarylene sulfide and granular polyarylene sulfide
JP7262664B2 (ja) ポリアリーレンスルフィドの製造方法
JP2022126431A (ja) 精製されたポリアリーレンスルフィドの製造方法
JP7394987B2 (ja) ポリアリーレンスルフィドの製造方法
JP7357695B2 (ja) ポリアリーレンスルフィドの製造方法
JP6889271B2 (ja) ポリアリーレンスルフィドの製造方法
WO2020121785A1 (ja) ポリアリーレンスルフィドの製造方法
KR20190033008A (ko) 폴리아릴렌 설파이드의 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220922

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230411

R150 Certificate of patent or registration of utility model

Ref document number: 7262664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150