WO2021192413A1 - ポリアリーレンスルフィドの製造方法 - Google Patents

ポリアリーレンスルフィドの製造方法 Download PDF

Info

Publication number
WO2021192413A1
WO2021192413A1 PCT/JP2020/043898 JP2020043898W WO2021192413A1 WO 2021192413 A1 WO2021192413 A1 WO 2021192413A1 JP 2020043898 W JP2020043898 W JP 2020043898W WO 2021192413 A1 WO2021192413 A1 WO 2021192413A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfonic acid
mixture
metal salt
mol
organic sulfonic
Prior art date
Application number
PCT/JP2020/043898
Other languages
English (en)
French (fr)
Inventor
佐藤 剛
義紀 鈴木
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to KR1020227032411A priority Critical patent/KR102472752B1/ko
Priority to JP2022509251A priority patent/JP7262664B2/ja
Priority to CN202080097487.3A priority patent/CN115151597B/zh
Priority to US17/906,583 priority patent/US11795272B2/en
Publication of WO2021192413A1 publication Critical patent/WO2021192413A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0209Polyarylenethioethers derived from monomers containing one aromatic ring
    • C08G75/0213Polyarylenethioethers derived from monomers containing one aromatic ring containing elements other than carbon, hydrogen or sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0272Preparatory processes using other sulfur sources
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0209Polyarylenethioethers derived from monomers containing one aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0254Preparatory processes using metal sulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0259Preparatory processes metal hydrogensulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0277Post-polymerisation treatment
    • C08G75/0281Recovery or purification

Definitions

  • the present invention relates to a method for producing polyarylene sulfide.
  • PAS Polyphenylene sulfide
  • PPS polyphenylene sulfide
  • PPS polyphenylene sulfide
  • PAS heat resistance, chemical resistance, flame retardancy, mechanical strength, electrical properties, and dimensions. It is an engineering plastic with excellent stability. PAS can be molded into various molded products, films, sheets, fibers and the like by general melt processing methods such as extrusion molding, injection molding and compression molding. For this reason, PAS is widely used in a wide range of technical fields such as electrical equipment, electronic equipment, automobile equipment, and packaging materials.
  • Step 1 Preparation step of preparing a mixture containing an organic amide solvent, a sulfur source, water, a dihaloaromatic compound, and an alkali metal hydroxide.
  • Step 2 The mixture is heated to initiate a polymerization reaction to produce a prepolymer with a dihaloaromatic compound conversion of 50% or more in the presence of less than equimolar alkali metal hydroxide per mole of sulfur source.
  • Step 3 A post-polymerization step of continuing the polymerization reaction in the presence of equimolar or more molars of alkali metal hydroxide per mole of the sulfur source to obtain a reaction product mixture
  • Step 4 a reaction product mixture after the post-polymerization step.
  • Including cooling process to cool At least one selected from the group consisting of carboxylates, alkali metal chlorides, organic sulfonates, alkali metal sulfates, alkaline earth metal oxides, alkali metal phosphates, and alkaline earth metal phosphates.
  • a method for producing granular polyallyrene sulfide has been proposed in which step 4 is carried out in the presence of an auxiliary agent.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a method for producing PAS capable of producing PAS having a small particle size having an average particle size of 50 ⁇ m or more and 550 ⁇ m or less.
  • the present inventors prepare a charging mixture containing (1) an organic polar solvent, a sulfur source, and a dihalo aromatic compound, and (2) heat the charged mixture to initiate a polymerization reaction to initiate a prepolymer.
  • the polymerization reaction is continued after the pre-polymerization step of producing the above, (3) the phase separation step of adding water as a phase separator to the reaction mixture in the reaction system to form a phase separation state, and (4) the phase separation step.
  • the above object can be achieved by incorporating an organic sulfonic acid metal salt exhibiting specific solubility in water into a charged mixture or a reaction mixture. The invention was completed.
  • the method for producing PAS according to the present invention is (1) A preparation step for preparing a preparation mixture containing an organic polar solvent, a sulfur source, and a dihaloaromatic compound, and a preparation step. (2) A pre-polymerization step in which the charged mixture is heated to initiate a polymerization reaction to produce a prepolymer. (3) A phase separation step of adding water as a phase separation agent to the reaction mixture in the reaction system to form a phase separation state. (4) A post-polymerization step in which the polymerization reaction is continued after the phase separation step, and Including Prior to the post-polymerization step, the charged mixture or the reaction mixture was made to contain an organic sulfonic acid metal salt.
  • the amount of the organic sulfonic acid metal salt used may be 25 mol% or less with respect to the number of moles of the sulfur source.
  • the amount of water added in the phase separation step may be 0.1 to 5 mol per 1 mol of the sulfur source.
  • an organic sulfonic acid metal salt may be contained in the charged mixture.
  • the organic sulfonic acid metal salt may be sodium methanesulfonate.
  • the present invention it is possible to provide a method for producing PAS capable of producing PAS having a small particle size having an average particle size of 50 ⁇ m or more and 550 ⁇ m or less.
  • the method for producing PAS in the present embodiment includes a preparation step, a polymerization step, a phase separation step, and a post-stage polymerization step as essential steps.
  • the method for producing PAS in the present embodiment may include a dehydration step, a cooling step, a post-treatment step, and the like, if desired.
  • each material used in the present invention will be described in detail, and each step will be described in detail.
  • Organic polar solvents, sulfur sources, and dihaloaromatic compounds are not particularly limited, and those usually used in the production of PAS can be used.
  • Each of the organic polar solvent, the sulfur source, and the dihaloaromatic compound may be used alone, or a mixture of two or more may be used as long as it is a combination capable of producing PAS having a desired chemical structure. You may.
  • Examples of the organic polar solvent include an organic amide solvent; an aprotic organic polar solvent composed of an organic sulfur compound; and an aprotic organic polar solvent composed of a cyclic organic phosphorus compound.
  • Examples of the organic amide solvent include amide compounds such as N, N-dimethylformamide and N, N-dimethylacetamide; N-alkylcaprolactam compounds such as N-methyl- ⁇ -caprolactam; and N-methyl-2-pyrrolidone (hereinafter, "" NMP ”), N-alkylpyrrolidone compounds such as N-cyclohexyl-2-pyrrolidone or N-cycloalkylpyrrolidone compounds; N, N-dialkylimidazolidinones such as 1,3-dialkyl-2-imidazolidinone.
  • tetraalkylurea compounds such as tetramethylurea
  • hexaalkylphosphate triamide compounds such as hexamethylphosphoric acid triamide
  • the aprotic organic polar solvent composed of an organic sulfur compound include dimethyl sulfoxide and diphenyl sulfone.
  • the aprotic organic polar solvent composed of the cyclic organic phosphorus compound include 1-methyl-1-oxophosphoran.
  • an organic amide solvent is preferable in terms of availability, handleability, etc.
  • N-alkylpyrrolidone compound, N-cycloalkylpyrrolidone compound, N-alkylcaprolactam compound, and N, N-dialkylimidazolidinone compound are more preferable.
  • NMP, N-methyl- ⁇ -caprolactam, and 1,3-dialkyl-2-imidazolidinone are even more preferred, with NMP being particularly preferred.
  • the amount of the organic polar solvent used is preferably 1 to 30 mol, more preferably 3 to 15 mol, with respect to 1 mol of the sulfur source, from the viewpoint of efficiency of the polymerization reaction and the like.
  • Examples of the sulfur source include alkali metal sulfide, alkali metal hydrosulfide, and hydrogen sulfide, and alkali metal sulfide and alkali metal hydrosulfide are preferable.
  • the sulfur source can be handled in either an aqueous slurry state or an aqueous solution state, and is preferably in an aqueous solution state from the viewpoint of handleability such as measurable property and transportability.
  • Examples of the alkali metal sulfide include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, and cesium sulfide.
  • Examples of the alkali metal hydrosulfide include lithium hydroxide, sodium hydrosulfide, potassium hydrosulfide, rubidium hydrosulfide, and cesium hydrosulfide.
  • the dihalo aromatic compound refers to an aromatic compound in which two hydrogen atoms directly connected to the aromatic ring are replaced with halogen atoms.
  • dihaloaromatic compound examples include o-dihalobenzene, m-dihalobenzene, p-dihalobenzene, dihalotoluene, dihalonaphthalene, methoxy-dihalobenzene, dihalobiphenyl, dihalobenzoic acid, dihalodiphenyl ether, dihalodiphenyl sulfone, and dihalo.
  • dihaloaromatic compounds such as diphenylsulfoxide and dihalodiphenylketone.
  • the halogen atom refers to each atom of fluorine, chlorine, bromine, and iodine, and two or more halogen atoms in the dihalo aromatic compound may be the same or different.
  • p-dichlorobenzene, m-dihalobenzene, and a mixture thereof are preferable, p-dichlorobenzene is more preferable, and p-dichlorobenzene (hereinafter, also referred to as "pDCB”) is preferable in terms of availability, reactivity, and the like. Especially preferable.
  • the amount of the dihalo aromatic compound used is preferably 0.90 to 1.50 mol, more preferably 0.92 to 1.10 mol, and even more preferably, with respect to 1 mol of the charged amount of the sulfur source. It is 0.95 to 1.05 mol.
  • the amount used is within the above range, a decomposition reaction is unlikely to occur, a stable polymerization reaction can be easily carried out, and a high molecular weight polymer can be easily produced.
  • an organic sulfonic acid metal salt is contained in the charged mixture or the reaction mixture before the subsequent polymerization step.
  • the organic sulfonic acid metal salt an organic sulfonic acid metal salt that dissolves in 3 mol or more per 1 kg of water at 23 ° C. is used.
  • the organic sulfonic acid metal salt is preferably a compound having a low number of carbon atoms in the substituent and a highly polar substituent. It is preferable to dissolve 3.5 mol or more, and more preferably 4 mol or more, with respect to 1 kg of water at 23 ° C.
  • the preparation mixture or the reaction mixture contains the above-mentioned highly water-soluble organic sulfonic acid metal salt before the post-stage polymerization step, it is formed through a phase separator addition step in which water is essentially added to the reaction mixture.
  • a phase-separated reaction solution consisting of a concentrated phase mainly composed of a high molecular weight PAS and a dilute phase mainly composed of an organic polar solvent, water, and a low molecular weight PAS
  • the organic sulfonic acid metal salt is distributed to the dilute phase.
  • salting out occurs in the dilute phase and low molecular weight PAS is precipitated.
  • the precipitated low molecular weight PAS elutes into the concentrated phase.
  • the viscosity of the thick layer is added, the droplets of the thick phase dispersed in the reaction mixture become finer, and PAS having a small particle size can be obtained.
  • the metal cation constituting the organic sulfonic acid metal salt is not particularly limited as long as the organic sulfonic acid metal salt has the above-mentioned solubility in the predetermined water.
  • Examples of the metal cation include alkali metal ions such as sodium ion, potassium ion, and lithium ion, and alkaline earth metal ions of calcium and magnesium.
  • the number of metal sulfonic acid bases contained in one molecule of an organic sulfonic acid metal salt is not particularly limited.
  • the number of metal sulfonic acid bases contained in one molecule of the organic sulfonic acid metal salt is typically 1 or more and 4 or less, preferably 1 or 2, and more preferably 1.
  • the organic sulfonic acid metal salt may have a substituent other than the sulfonic acid metal base as long as the object of the present invention is not impaired.
  • a substituent include an alkoxy group having 1 to 6 carbon atoms, an aliphatic acyl group having 2 to 6 carbon atoms, and a benzoyl group.
  • the number of substituents other than the metal sulfonic acid base contained in the organic sulfonic acid metal salt is not particularly limited as long as the object of the present invention is not impaired.
  • the metal sulfonate metal base has a substituent other than the metal sulfonate metal base, the number of substituents is preferably 1 or more and 4 or less, more preferably 1 or 2, and particularly preferably 1.
  • the organic sulfonate anion constituting the organic sulfonic acid metal salt is preferably a hydrocarbyl sulfonate anion having no substituent as described above, more preferably an alkane sulfonate anion, and a carbon atom.
  • Alkane sulfonate anions having a number of 1 or more and 4 or less are more preferable, and methane sulfonate anions are particularly preferable.
  • organic sulfonic acid metal salt examples include sodium methanesulfonate because it has excellent solubility in water, has a small molecular weight and can easily obtain the desired effect even when used in a small amount, and is easily available. preferable.
  • the amount of the organic sulfonic acid metal salt used is not particularly limited as long as the desired effect can be obtained. From the viewpoint of easiness of obtaining the desired effect, the amount of the organic sulfonic acid metal salt used is preferably 40 mol% or less, more preferably 30 mol% or less, still more preferably 25 mol% or less, based on the number of moles of the sulfur source. Preferably, 20 mol% or less is particularly preferable, and 15 mol% or less is most preferable.
  • the amount of the organic sulfonic acid metal salt used is preferably 3 mol% or more, more preferably 5 mol% or more, and 7 mol% with respect to the number of moles of the sulfur source.
  • the above is even more preferable, 8 mol% or more is particularly preferable, and 10 mol% or more is most preferable.
  • the amount of the organic sulfonic acid metal salt used is preferably 7 mol% or more, preferably 8 mol% or more, based on the number of moles of the sulfur source.
  • the amount of the organic sulfonic acid metal salt used is 7 with respect to the number of moles of the sulfur source. It is preferably mol% or more and 25 mol% or less, and more preferably 8 mol% or more and 20 mol% or more.
  • the dehydration step is a step of discharging at least a part of the distillate containing water from the inside of the system containing the mixture containing the organic polar solvent and the sulfur source to the outside of the system before the preparation step.
  • the mixture subjected to the dehydration step may contain an alkali metal hydroxide, if necessary.
  • the polymerization reaction between the sulfur source and the dihalo aromatic compound is affected by the amount of water present in the polymerization reaction system, such as being promoted or inhibited. Therefore, it is preferable to reduce the amount of water in the polymerization reaction system by performing a dehydration treatment before the polymerization so that the amount of water does not inhibit the polymerization reaction.
  • organic sulfonic acid metal salt may be added to the mixture to be subjected to the dehydration step.
  • an organic sulfonic acid metal salt may be produced in the mixture by adding an organic sulfonic acid and a basic metal-containing compound or the like to the mixture.
  • the basic metal-containing compound include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and alkali metal carbonates such as sodium carbonate and potassium carbonate.
  • the organic sulfonic acid metal salt may be produced by the reaction between the organic sulfonic acid and the basic metal-containing compound or the like.
  • the organic sulfonic acid used in the method for producing PAS An organic sulfonic acid metal salt of preferably 50% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, particularly preferably 100% by mass with respect to the total amount is added to the mixture to be subjected to the dehydration step. It is preferably produced in a mixture that is subjected to a dehydration step.
  • the water to be dehydrated in the dehydration step is water contained in each raw material charged in the dehydration step, an aqueous medium of an aqueous mixture, water produced as a by-product by the reaction between each raw material, and the like.
  • the heating temperature in the dehydration step is not particularly limited as long as it is 300 ° C. or lower, and is preferably 100 to 250 ° C.
  • the heating time is preferably 15 minutes to 24 hours, more preferably 30 minutes to 10 hours.
  • the amount of water in the charged mixture is preferably 0.5 to 2 with respect to 1.0 mol of the sulfur source (hereinafter, also referred to as “charged sulfur source” or “effective sulfur source”). It is desirable to dehydrate to 4 mol.
  • water may be added in the preparation step prior to the pre-polymerization step to adjust the water content to a desired level.
  • the charging step is a step of preparing a mixture containing an organic polar solvent, a sulfur source, and a dihaloaromatic compound.
  • the mixture charged in the charging process is also referred to as "prepared mixture".
  • an organic sulfonic acid metal salt is contained in the charged mixture or the reaction mixture before the subsequent polymerization step. Therefore, in the charging step, an organic sulfonic acid metal salt may be added to the charging mixture.
  • the amount of the sulfur source in the charged mixture (hereinafter, also referred to as “the amount of the charged sulfur source” or “the amount of the effective sulfur source”) is determined from the molar amount of the sulfur source input as the raw material in the dehydration step. It can be calculated by subtracting the molar amount of hydrogen sulfide volatilized in.
  • the alkali metal hydroxide and water can be added to the mixture remaining in the system after the dehydration step as needed in the preparation step.
  • the alkali metal hydroxide can be added in consideration of the amount of hydrogen sulfide produced during dehydration and the amount of alkali metal hydroxide generated during dehydration.
  • the alkali metal hydroxide those usually used in the production of PAS can be used.
  • the alkali metal hydroxide may be used alone, or may be used as a mixture of two or more as long as it is a combination capable of producing PAS.
  • Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide.
  • the number of moles of the alkali metal hydroxide is the number of moles of the alkali metal hydroxide added as needed in the preparation step, and the alkali added as needed in the dehydration step when the dehydration step is performed. It is calculated based on the number of moles of the metal hydroxide and the number of moles of the alkali metal hydroxide generated with the production of hydrogen sulfide in the dehydration step.
  • the sulfur source contains alkali metal sulfide
  • the number of moles of alkali metal hydroxide per mol of sulfur source shall be calculated including the number of moles of alkali metal sulfide.
  • the number of moles of alkali metal hydroxide per mole of sulfur source shall be calculated including the number of moles of alkali metal sulfide to be produced. ..
  • the number of moles of alkali metal hydroxide added for other purposes for example, an organic carboxylic acid metal salt is used as a phase separator in the form of a combination of an organic carboxylic acid and an alkali metal hydroxide, ,
  • the number of moles of alkali metal hydroxide consumed in the reaction such as neutralization shall not be included in the number of moles of alkali metal hydroxide per mole of sulfur source (charged sulfur source).
  • the alkali metal hydroxide required to neutralize the at least one acid is used.
  • the number of moles shall not be included in the number of moles of alkali metal hydroxide per mole of the sulfur source (charged sulfur source).
  • the amounts of each of the organic polar solvent and the dihalo aromatic compound used are set in the ranges shown in the above description regarding the organic polar solvent and the dihalo aromatic compound, for example, with respect to 1 mol of the charged amount of the sulfur source. .. Further, when the entire amount of the organic sulfonic acid metal salt is added to the charging mixture in the charging step, the organic sulfonic acid metal salt is used, for example, in an amount within the above range. It is preferable to add the organic sulfonic acid metal salt to the charged mixture before the pre-polymerization step described later.
  • the organic sulfonic acid metal salt By adding the organic sulfonic acid metal salt to the charged mixture before the pre-stage polymerization step, the polymerization reaction in the pre-stage polymerization step and the post-stage polymerization step, which will be described later, is promoted, and it is easy to obtain a high-molecular-weight PAS.
  • the amount of the organic sulfonic acid metal salt added to the charging mixture in the charging step is 5 mass with respect to the total mass of the organic sulfonic acid metal salt. % Or more and 95% by mass or less is preferable, and 50% by mass or more and 90% by mass or less is more preferable.
  • the amount of the organic sulfonic acid metal salt added in the dehydration step and the amount of the organic sulfonic acid metal salt added in the preparation step is preferably 7 mol% or more, more preferably 8 mol% or more, still more preferably 10 mol% or more, based on the number of moles of the sulfur source.
  • the pre-polymerization step is a step of initiating the polymerization reaction of the charged mixture to produce a prepolymer.
  • the sulfur source and the dihaloaromatic compound are polymerized in an organic polar solvent to produce a PAS prepolymer.
  • reaction mixture The mixture heated in the first-stage polymerization step and the second-stage polymerization step, the mixture to which the phase separation agent is added in the phase separation agent addition step, and the mixture phase-separated in the phase separation agent addition step are referred to as "reaction mixture”.
  • the polymerization reaction is carried out in two or more stages. Specifically, the above-mentioned pre-stage polymerization step and the post-stage combination step of continuing the polymerization reaction in the presence of a phase separation agent are performed.
  • the phase separator is added to the reaction mixture in the phase separator addition step provided between the pre-polymerization step and the post-polymerization step.
  • Example II of US Pat. No. 4,038,260 a mixture consisting of sodium sulfide, sodium hydroxide, sodium benzenesulfonate, and NMP is dehydrated, and then p-dichlorobenzene is added to the dehydrated mixture.
  • a method for producing PAS in which a polymerization reaction is carried out in steps, is disclosed. However, in such a method, powdery PAS having an excessively small particle size is generated, and granular PAS having an average particle size of 50 ⁇ m or more and 550 ⁇ m or less, which is a small particle size within an appropriate range, is produced. I can't get it.
  • the organic sulfonic acid metal salt is added to the reaction mixture at a predetermined timing to carry out the polymerization reaction. It is possible to easily obtain granular PAS having a small particle size within an appropriate range.
  • the organic sulfonic acid metal salt is added to the charged mixture or the reaction mixture before the subsequent polymerization step. Therefore, an organic sulfonic acid metal salt can be added to the reaction mixture in the pre-polymerization step and / or the phase separation agent addition step.
  • the organic sulfonic acid metal salt is used, for example, in an amount within the above range.
  • the amount of the organic sulfonic acid metal salt added in the pre-stage polymerization step and the phase separator addition is not particularly limited.
  • the remaining amount of the amount of the organic sulfonic acid metal salt used is the pre-stage polymerization step and / or the post-stage polymerization step. The polymerization reaction in the above is promoted, and it is easy to obtain a high-molecular-weight PAS.
  • the conversion rate of the dihalo aromatic compound is preferably 50 to 98 mol%, more preferably 60 to 97 mol%, still more preferably 65 to 96 mol%, and particularly preferably 70 to 95 mol%. ..
  • the conversion rate of the dihalo aromatic compound is calculated based on the amount of the dihalo aromatic compound remaining in the reaction mixture determined by gas chromatography, the residual amount, the amount of the dihalo aromatic compound charged, and the amount of the sulfur source charged. Can be done.
  • the degree of polymerization of the prepolymer increases.
  • phase separating agent other than water Water is indispensably added as a phase separating agent.
  • a phase separating agent other than water can be used together with water.
  • the phase separating agent other than water is not particularly limited.
  • the phase separating agent other than water include organic carboxylic acid metal salts (for example, alkali metal salts of aliphatic carboxylic acids such as sodium acetate, alkaline earth metal salts of aromatic carboxylic acids, etc.), and organic sulfonic acids.
  • At least one selected from the group consisting of metal salts, alkali metal halides, alkaline earth metal halides, alkali metal phosphates, alcohols, and non-polar solvents can be mentioned.
  • the above-mentioned salts used as a phase separating agent may have a mode in which the corresponding acid and base are added separately.
  • the amount of the phase separating agent used varies depending on the type of compound used, but may be in the range of 0.01 to 20 mol with respect to 1 kg of the organic polar solvent.
  • the amount of water used as the phase separating agent is preferably 0.1 to 5 mol, more preferably 2 to 4 mol, per 1 mol of the sulfur source, in that the organic sulfonic acid can be easily dissolved.
  • the amount of water in the reaction system when water is added as a phase separating agent may be more than 4 mol and 20 mol or less per 1 kg of the organic polar solvent, and may be 4.1 to 14 mol, or 4.2 to 10 mol. It may be.
  • the amount of alkali metal hydroxide is preferably 1.00 to 1.10 mol, more preferably 1.01 to 1.08 mol, and even more preferably 1. It is 02 to 1.07 mol.
  • the amount of the alkali metal hydroxide is within the above range, the molecular weight of the obtained PAS is likely to increase, and a higher molecular weight PAS is more likely to be obtained.
  • the reaction mixture is alkaline so that the final amount of alkali metal hydroxide is within the above range. It is preferable that a metal hydroxide is added.
  • the polymerization temperature in the first-stage polymerization step and the second-stage polymerization step is more preferably in the range of 180 to 280 ° C. in order to suppress side reactions and decomposition reactions.
  • the polymerization reaction is started under heating at a temperature of 170 to 270 ° C. to produce a prepolymer having a conversion rate of a dihaloaromatic compound of 50% mol or more. Is preferable.
  • the polymerization temperature in the pre-stage polymerization step is preferably selected from the range of 180 to 265 ° C. in order to suppress side reactions and decomposition reactions.
  • the polymerization reaction in the first-stage polymerization step and the second-stage polymerization step may be carried out in a batch manner or continuously.
  • at least the supply of an organic polar solvent, a sulfur source, and a dihalo aromatic compound, the formation of PAS by the reaction of the sulfur source with the dihalo aromatic compound in the organic polar solvent, and the recovery of the reaction mixture containing PAS. Can be carried out in parallel to carry out the polymerization reaction continuously.
  • the cooling step is a step of cooling the reaction mixture after the polymerization step.
  • the specific operation in the cooling step is as described in, for example, Japanese Patent No. 6062924.
  • the post-treatment step after the polymerization reaction can be carried out by a conventional method, for example, by the method described in JP-A-2016-0562332.
  • the PAS obtained by the method for producing PAS in the present embodiment has a small average particle size. More specifically, the average particle size of PAS obtained by the above method for producing PAS can be preferably 550 ⁇ m or less, more preferably 500 ⁇ m or less, still more preferably 450 ⁇ m or less, still more preferably 400 ⁇ m or less. ..
  • the lower limit of the average particle size of PAS is not particularly limited, but is typically 50 ⁇ m or more, and may be 100 ⁇ m or more. That is, the average particle size of PAS recovered from the reaction solution after the subsequent polymerization is preferably 50 ⁇ m or more and 550 ⁇ m or less.
  • the average particle size of PAS is 2,800 ⁇ m (7 meshes (mesh / inch)), 1,410 ⁇ m (12 mesh (mesh / inch)), and 1, 000 ⁇ m (16 mesh (mesh / inch)), sieving opening 710 ⁇ m (24 mesh (mesh / inch)), sieving opening 500 ⁇ m (32 mesh (mesh / inch)), sieving opening 250 ⁇ m (60 mesh (60 mesh)) (Number of meshes / inch)), mesh opening 150 ⁇ m (100 mesh (number of meshes / inch)), mesh opening 105 ⁇ m (145 mesh (number of meshes / inch)), mesh opening 75 ⁇ m (200 mesh (number of meshes / inch)) ), Measured by the sieving method using a sieving with a mesh opening of 38 ⁇ m (400 mesh (mesh / inch)), and the average grain when the cumulative mass is 50% from the mass of the sieving material of each sieving. Calculated as a diameter.
  • the average molecular weight of the obtained PAS is not particularly limited as long as the object of the present invention is not impaired.
  • the average molecular weight is preferably 35,000 or more, more preferably 38,000 or more, even more preferably 40,000 or more, even more preferably 41,000 or more, and particularly preferably 42,000 or more, as the weight average molecular weight. ..
  • the upper limit of the weight average molecular weight is not particularly limited, and may be 100,000 or less, 8,000 or less, or 70,000 or less.
  • the weight average molecular weight means a polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography.
  • the yield of PAS is preferably 87% or more, more preferably 90% or more, and even more preferably 92% or more.
  • the PAS obtained by the method for producing PAS in the present embodiment can be used as it is, or after being oxidatively crosslinked, it can be used alone or, if desired, by blending various inorganic fillers, fibrous fillers, and various synthetic resins, and various injection moldings can be performed. It can be molded into products or extruded products such as sheets, films, fibers, and pipes.
  • PAS is not particularly limited and is preferably PPS.
  • Example 1 (Dehydration process) In a 20 liter autoclave, NMP 5,998 g, sodium hydroxide aqueous solution (NaSH: purity 62.20% by mass) 2,003 g, sodium hydroxide (NaOH: purity 73.22% by mass) 1,072 g, and sodium methanesulfonate was charged with 258 g. After replacing the inside of the autoclave with nitrogen gas, over a period of about 4 hours while stirring at a rotation speed of 250rpm by a stirrer, the temperature was gradually raised to 200 ° C., water (H 2 O) 895g, NMP805g , and hydrogen sulfide ( H 2 S) to distill 15 g.
  • NaSH sodium hydroxide aqueous solution
  • NaOH sodium hydroxide
  • H 2 S hydrogen sulfide
  • Pre-stage polymerization process While stirring the mixture prepared in the charging step, the temperature was raised from 220 ° C. to 260 ° C. over 1.5 hours to perform the first polymerization step.
  • the ratio (g / mol) of NMP / charged sulfur source (hereinafter abbreviated as “prepared S”) in the can is 391, pDCB / charged S (mol / mol) is 1.010, and H 2 O / charged S. (Mole / mol) was 1.50.
  • the conversion rate of pDCB in the first polymerization step was 92%.
  • the contents of the autoclave are screened with a screen having an opening diameter of 150 ⁇ m (100 mesh), washed with acetone and ion-exchanged water, washed with an acetic acid aqueous solution, washed again with ion-exchanged water, and then at 120 ° C. for 4 hours. Drying was performed to obtain granular PPS.
  • the yield of the obtained PPS was 92.7%, the weight average molecular weight (Mw) was 62,700, and the average particle size was 360 ⁇ m.
  • Example 2 Granular PPS was obtained in the same manner as in Example 1 except that the amount of the organic sulfonic acid metal salt used was changed to the amount shown in Table 1. The yield of the obtained PPS was 86.2%, the weight average molecular weight (Mw) was 56,600, and the average particle size was 384 ⁇ m.
  • Example 3 Granular PPS was obtained in the same manner as in Example 1 except that the amount of the organic sulfonic acid metal salt used was changed to the amount shown in Table 1. The yield of the obtained PPS was 94.7%, the weight average molecular weight (Mw) was 69,500, and the average particle size was 520 ⁇ m.
  • Example 1 when the charged mixture or the reaction mixture contains an organic sulfonic acid metal salt that dissolves in an amount of 3 mol or more per 1 kg of water at 23 ° C., the average particle size is 50 ⁇ m before the subsequent polymerization step. It can be seen that PAS having a small average particle size of 550 ⁇ m or less can be produced in a high yield. On the other hand, according to Comparative Examples 1 to 4, when an organic sulfonic acid metal salt that dissolves less than 3 mol in 1 kg of water at 23 ° C. is used, or when a salt other than the organic sulfonic acid metal salt is used, the average particle size is average. It can be seen that only large PAS can be manufactured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

平均粒子径として50μm以上550μm以下である粒子径の小さなPASを製造し得るPASの製造方法を提供すること。 (1)有機極性溶媒、硫黄源、及びジハロ芳香族化合物を含有する仕込み混合物を調製する仕込み工程と、(2)仕込み混合物を加熱して重合反応を開始させ、プレポリマーを生成させる前段重合工程と、(3)反応系内の反応混合物に相分離剤として水を添加して相分離状態を形成する相分離工程と、(4)相分離工程後に重合反応を継続する後段重合工程とを含みPASの製造方法において、水に対して特定の溶解性を示す有機スルホン酸金属塩を仕込み混合物又は反応混合物に含有させる。

Description

ポリアリーレンスルフィドの製造方法
 本発明は、ポリアリーレンスルフィドの製造方法に関する。
 ポリフェニレンスルフィド(以下、「PPS」とも称する。)に代表されるポリアリーレンスルフィド(以下、「PAS」とも称する。)は、耐熱性、耐薬品性、難燃性、機械的強度、電気特性、寸法安定性等に優れたエンジニアリングプラスチックである。PASは、押出成形、射出成形、圧縮成形等の一般的溶融加工法により、各種成形品、フィルム、シート、繊維等に成形可能である。このため、PASは、電気機器、電子機器、自動車機器、包装材料等の広範な技術分野において汎用されている。
 かかるPASの製造方法としては、例えば、特許文献1に、
工程1:有機アミド溶媒、硫黄源、水、ジハロ芳香族化合物、及びアルカリ金属水酸化物を含有する混合物を調製する仕込み工程、
工程2:混合物を加熱して重合反応を開始させ、硫黄源1モル当たり等モル未満のアルカリ金属水酸化物の存在下で、ジハロ芳香族化合物の転化率が50%以上のプレポリマーを生成させる前段重合工程、
工程3:硫黄源1モル当たり等モル以上のアルカリ金属水酸化物の存在下で、重合反応を継続して、反応生成混合物を得る後段重合工程、並びに
工程4:後段重合工程後に反応生成混合物を冷却する冷却工程
を含み、
 カルボン酸塩、アルカリ金属塩化物、有機スルホン酸塩、硫酸アルカリ金属塩、アルカリ土類金属酸化物、アルカリ金属リン酸塩、及びアルカリ土類金属リン酸塩からなる群より選択される少なくとも1種の助剤の存在下で工程4を行う、粒状ポリアリーレンスルフィドの製造方法が提案されている。
特開2017-179255号公報
 しかしながら、本発明者らの検討によれば、特許文献1等に開示される従来の製造方法では、粒子径の小さなPASを製造しにくく、粒子径の大きなPASであるため、製造工程中に配管詰まりが発生したり、重合後の粒子を洗浄しにくかったりすることによりPASの生産性が悪化する場合があることが分かった。
 他方、PASの粒子径が過度に小さいと、後処理工程で篩分する際に、スクリーンを通過するPASの量が増加することで、PASの回収量が減少したり、スクリーンの目詰まりを引き起こして、後処理効率が低下したりする問題がある。
 本発明は、上記の課題に鑑みなされたものであって、平均粒子径として50μm以上550μm以下である粒子径の小さなPASを製造し得るPASの製造方法を提供することを目的とする。
 本発明者らは、(1)有機極性溶媒、硫黄源、及びジハロ芳香族化合物を含有する仕込み混合物を調製する仕込み工程と、(2)仕込み混合物を加熱して重合反応を開始させ、プレポリマーを生成させる前段重合工程と、(3)反応系内の反応混合物に相分離剤として水を添加して相分離状態を形成する相分離工程と、(4)相分離工程後に重合反応を継続する後段重合工程とを含みPASの製造方法において、水に対して特定の溶解性を示す有機スルホン酸金属塩を仕込み混合物又は反応混合物に含有させることにより、上記目的が達成されることを見出し、本発明を完成するに至った。
 本発明に係るPASの製造方法は、
 (1)有機極性溶媒、硫黄源、及びジハロ芳香族化合物を含有する仕込み混合物を調製する仕込み工程と、
 (2)仕込み混合物を加熱して重合反応を開始させ、プレポリマーを生成させる前段重合工程と、
 (3)反応系内の反応混合物に相分離剤として水を添加して相分離状態を形成する相分離工程と、
 (4)相分離工程後に重合反応を継続する後段重合工程と、
を含み、
 後段重合工程よりも前に、仕込み混合物、又は反応混合物に有機スルホン酸金属塩を含有させ、
 有機スルホン酸金属塩が、23℃において水1kgに対して3モル以上溶解し、回収されるポリアリーレンスルフィドの平均粒子径が、50μm以上550μm以下であるポリアリーレンスルフィドの製造方法である。
 本発明にかかるPASの製造方法では、有機スルホン酸金属塩の使用量が、硫黄源のモル数に対して25モル%以下であってもよい。
 本発明にかかるPASの製造方法では、相分離工程における水の添加量が、硫黄源1モル当たり0.1~5モルであってもよい。
 本発明にかかるPASの製造方法では、有機スルホン酸金属塩を、仕込み混合物に含有させてもよい。
 本発明にかかるPASの製造方法において、有機スルホン酸金属塩が、メタンスルホン酸ナトリウムであってもよい。
 本発明によれば、平均粒子径として50μm以上550μm以下である粒子径の小さなPASを製造し得るPASの製造方法を提供することができる。
 本発明に係るPASの製造方法の一実施形態について以下に説明する。本実施形態におけるPASの製造方法は、必須の工程として、仕込み工程と、重合工程と、相分離工程と、後段重合工程とを含む。本実施形態におけるPASの製造方法は、所望により、脱水工程、冷却工程、後処理工程等を含んでもよい。以下、本発明に用いられる各材料について詳細に説明するとともに、各工程について詳細に説明する。
(有機極性溶媒、硫黄源、及びジハロ芳香族化合物)
 有機極性溶媒、硫黄源、及びジハロ芳香族化合物としては、特に限定されず、PASの製造において通常用いられるものを用いることができる。有機極性溶媒、硫黄源、及びジハロ芳香族化合物の各々は、単独で用いてもよいし、所望する化学構造を有するPASの製造が可能である組み合わせであれば、2種類以上を混合して用いてもよい。
 有機極性溶媒としては、例えば、有機アミド溶媒;有機硫黄化合物からなる非プロトン性有機極性溶媒;環式有機リン化合物からなる非プロトン性有機極性溶媒が挙げられる。有機アミド溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド化合物;N-メチル-ε-カプロラクタム等のN-アルキルカプロラクタム化合物;N-メチル-2-ピロリドン(以下、「NMP」とも称する。)、N-シクロヘキシル-2-ピロリドン等のN-アルキルピロリドン化合物又はN-シクロアルキルピロリドン化合物;1,3-ジアルキル-2-イミダゾリジノン等のN,N-ジアルキルイミダゾリジノン化合物;テトラメチル尿素等のテトラアルキル尿素化合物;ヘキサメチルリン酸トリアミド等のヘキサアルキルリン酸トリアミド化合物等が挙げられる。有機硫黄化合物からなる非プロトン性有機極性溶媒としては、ジメチルスルホキシド、ジフェニルスルホン等が挙げられる。環式有機リン化合物からなる非プロトン性有機極性溶媒としては、1-メチル-1-オキソホスホラン等が挙げられる。中でも、入手性、取り扱い性等の点で、有機アミド溶媒が好ましく、N-アルキルピロリドン化合物、N-シクロアルキルピロリドン化合物、N-アルキルカプロラクタム化合物、及びN,N-ジアルキルイミダゾリジノン化合物がより好ましく、NMP、N-メチル-ε-カプロラクタム、及び1,3-ジアルキル-2-イミダゾリジノンがさらにより好ましく、NMPが特に好ましい。
 有機極性溶媒の使用量は、重合反応の効率等の観点から、上記硫黄源1モルに対し、1~30モルが好ましく、3~15モルがより好ましい。
 硫黄源としては、アルカリ金属硫化物、アルカリ金属水硫化物、硫化水素を挙げることができ、アルカリ金属硫化物及びアルカリ金属水硫化物であることが好ましい。硫黄源は、例えば、水性スラリー及び水溶液のいずれかの状態で扱うことができ、計量性、搬送性等のハンドリング性の観点から、水溶液の状態であることが好ましい。アルカリ金属硫化物としては、硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、硫化セシウムが挙げられる。アルカリ金属水硫化物としては、水硫化リチウム、水硫化ナトリウム、水硫化カリウム、水硫化ルビジウム、水硫化セシウムが挙げられる。
 ジハロ芳香族化合物とは、芳香環に直結した2個の水素原子がハロゲン原子で置換された芳香族化合物を指す。
 ジハロ芳香族化合物としては、例えば、o-ジハロベンゼン、m-ジハロベンゼン、p-ジハロベンゼン、ジハロトルエン、ジハロナフタレン、メトキシ-ジハロベンゼン、ジハロビフェニル、ジハロ安息香酸、ジハロジフェニルエーテル、ジハロジフェニルスルホン、ジハロジフェニルスルホキシド、ジハロジフェニルケトン等のジハロ芳香族化合物が挙げられる。ハロゲン原子は、フッ素、塩素、臭素、及びヨウ素の各原子を指し、ジハロ芳香族化合物における2個以上のハロゲン原子は、同じでも異なっていてもよい。中でも、入手性、反応性等の点で、p-ジハロベンゼン、m-ジハロベンゼン、及びこれら両者の混合物が好ましく、p-ジハロベンゼンがより好ましく、p-ジクロロベンゼン(以下、「pDCB」とも称する。)が特に好ましい。
 ジハロ芳香族化合物の使用量は、硫黄源の仕込み量1モルに対し、好ましくは0.90~1.50モルであり、より好ましくは0.92~1.10モルであり、さらにより好ましくは0.95~1.05モルである。上記使用量が上記範囲内であると、分解反応が生じにくく、安定的な重合反応の実施が容易であり、高分子量ポリマーを生成させやすい。
(有機スルホン酸金属塩)
 上記のPASの製造方法では、後段重合工程よりも前に、仕込み混合物、又は反応混合物に有機スルホン酸金属塩を含有させる。
 有機スルホン酸金属塩としては、23℃において水1kgに対して3モル以上溶解する有機スルホン酸金属塩が使用される。所望する効果の得やすさの点で、有機スルホン酸金属塩は、置換基の炭素数が少なく、極性の高い置換基を有する化合物が望ましい。23℃において水1kgに対して3.5モル以上溶解するのが好ましく、4モル以上溶解するのがより好ましい。
 後段重合工程よりも前に、仕込み混合物、又は反応混合物に上記の水溶性が高い有機スルホン酸金属塩を含有させる場合、反応混合物に水を必須に加える相分離剤添加工程を経て形成される、主に高分子量PASからなる濃厚相と、主に有機極性溶媒、水、及び低分子量PASからなる希薄相とからなる相分離状態の反応液において、希薄相に有機スルホン酸金属塩が分配する。その結果、希薄相において塩析が生じ、低分子量PASが析出すると考えられる。析出した低分子量PASは濃厚相に溶出する。その結果として、濃厚層の粘度が添加し、反応混合物中に分散する濃厚相の液滴が微細化し、粒子径の小さなPASが得られると考えられる。
 有機スルホン酸金属塩を構成する金属カチオンは、有機スルホン酸金属塩が上記の所定の水への溶解性を有する限り特に限定されない。金属カチオンとしては、例えば、ナトリウムイオン、カリウムイオン、及びリチウムイオン等のアルカリ金属イオンや、カルシウムやマグネシウムのアルカリ土類金属イオン等が挙げられる。
 有機スルホン酸金属塩が1分子中に有するスルホン酸金属塩基の数は特に限定されない。有機スルホン酸金属塩が1分子中に有するスルホン酸金属塩基の数は、典型的には1以上4以下であり1又は2が好ましく、1がより好ましい。
 有機スルホン酸金属塩は、本発明の目的を阻害しない範囲において、スルホン酸金属塩基以外の置換基を有していてもよい。かかる置換基としては、例えば、炭素原子数1以上6以下のアルコキシ基、炭素原子数2以上6以下の脂肪族アシル基、及びベンゾイル基等が挙げられる。
 有機スルホン酸金属塩が有する、スルホン酸金属塩基以外の置換基の数は、本発明の目的を阻害しない範囲で特に限定されない。有機スルホン酸金属塩基がスルホン酸金属塩基以外の置換基を有する場合、置換基の数は、1以上4以下が好ましく、1又は2がより好ましく、1が特に好ましい。
 水への溶解性が良好である点から、有機スルホン酸金属塩を構成する有機スルホナートアニオンは、上記の置換基を持たないヒドロカルビルスルホナートアニオンが好ましく、アルカンスルホナートアニオンがより好ましく、炭素原子数1以上4以下のアルカンスルホナートアニオンがさらに好ましく、メタンスルホナートアニオンが特に好ましい。
 有機スルホン酸金属塩の具体例としては、水への溶解性に優れることや、分子量が小さく少量の使用でも所望する効果を得やすいことや、入手が容易であること等からメタンスルホン酸ナトリウムが好ましい。
 有機スルホン酸金属塩の使用量は、所望する効果が得られる限りにおいて特に限定されない。所望する効果の得やすさの点で、有機スルホン酸金属塩の使用量は、硫黄源のモル数に対して40モル%以下が好ましく、30モル%以下がより好ましく、25モル%以下がさらに好ましく、20モル%以下が特に好ましく、15モル%以下が最も好ましい。また、所望する効果の得やすさの点で、有機スルホン酸金属塩の使用量は、硫黄源のモル数に対して、3モル%以上が好ましく、5モル%以上がより好ましく、7モル%以上がさらにより好ましく、8モル%以上が特に好ましく、10モル%以上が最も好ましい。
 前段重合工程、及び後段重合工程での重合反応促進の効果の点からは、有機スルホン酸金属塩の使用量は、硫黄源のモル数に対して、7モル%以上が好ましく、8モル%以上がより好ましい、10モル%以上がさらに好ましい。
 PASの良好な収率と、得られるPASの適切な範囲内での小粒子径化との両立の点からは、有機スルホン酸金属塩の使用量は、硫黄源のモル数に対して、7モル%以上25モル%以下が好ましく、8モル%以上20モル%以上がより好ましい。
(脱水工程)
 脱水工程は、仕込み工程の前に、有機極性溶媒、及び硫黄源を含有する混合物を含む系内から、水を含む留出物の少なくとも一部を系外に排出する工程である。脱水工程に供される混合物は、必要に応じて、アルカリ金属水酸化物を含んでいてもよい。硫黄源とジハロ芳香族化合物との重合反応は、重合反応系に存在する水分量によって促進又は阻害される等の影響を受ける。したがって、上記水分量が重合反応を阻害しないように、重合の前に脱水処理を行うことにより、重合反応系内の水分量を減らすことが好ましい。
 前述の有機スルホン酸金属塩は、脱水工程に供される混合物に加えられてもよい。また、有機スルホン酸と、塩基性の含金属化合物等とを混合物に加えることにより、有機スルホン酸金属塩を混合物中で生成させてもよい。塩基性の含金属化合物としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物や、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩等が挙げられる。
 なお、脱水工程に限らず、後段重合工程よりも前のいずれの工程においても、有機スルホン酸と、塩基性の含金属化合物等との反応により有機スルホン酸金属塩を生成させてよい。
 有機スルホン酸金属塩とともに混合物に持ち込まれる水分や、有機スルホン酸と、塩基性の含金属化合物等との反応により副生する水分を除去できることから、PASの製造方法において使用される有機スルホン酸の全量に対して好ましくは50質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上、特に好ましくは100質量%の有機スルホン酸金属塩が、脱水工程に供される混合物に加えられるか、脱水工程に供される混合物中で生成するのが好ましい。
 脱水工程では、不活性ガス雰囲気下での加熱により脱水を行うことが好ましい。脱水工程で脱水されるべき水分とは、脱水工程で仕込んだ各原料が含有する水、水性混合物の水媒体、各原料間の反応により副生する水等である。
 脱水工程における加熱温度は、300℃以下であれば特に限定されず、好ましくは100~250℃である。加熱時間は、15分~24時間であることが好ましく、30分~10時間であることがより好ましい。
 脱水工程では、水分量が所定の範囲内になるまで脱水する。即ち、脱水工程では、仕込み混合物(後述)における水分量が、硫黄源(以下、「仕込み硫黄源」又は「有効硫黄源」とも称する)1.0モルに対して、好ましくは0.5~2.4モルになるまで脱水することが望ましい。脱水工程で水分量が少なくなり過ぎた場合は、前段重合工程に先立つ仕込み工程において水を添加して所望の水分量に調節すればよい。
(仕込み工程)
 仕込み工程は、有機極性溶媒、硫黄源、及びジハロ芳香族化合物を含有する混合物を調製する工程である。仕込み工程において仕込まれる混合物を、「仕込み混合物」とも称する。
 上記のPASの製造方法では、後段重合工程よりも前に、仕込み混合物、又は反応混合物に有機スルホン酸金属塩を含有させる。このため、仕込み工程において、仕込み混合物に有機スルホン酸金属塩を添加してもよい。
 脱水工程を行う場合、仕込み混合物における硫黄源の量(以下、「仕込み硫黄源の量」又は「有効硫黄源の量」とも称する。)は、原料として投入した硫黄源のモル量から、脱水工程で揮散した硫化水素のモル量を引くことによって、算出することができる。
 脱水工程を行う場合、仕込み工程では脱水工程後に系内に残存する混合物に、必要に応じてアルカリ金属水酸化物及び水を添加することが出来る。特に、脱水時に生成した硫化水素の量と脱水時に生成したアルカリ金属水酸化物の量とを考慮したうえで、アルカリ金属水酸化物を添加することが出来る。アルカリ金属水酸化物としては、PASの製造において通常用いられるものを用いることができる。アルカリ金属水酸化物は、単独で用いてもよいし、PASの製造が可能である組み合わせであれば、2種類以上を混合して用いてもよい。アルカリ金属水酸化物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウムが挙げられる。なお、アルカリ金属水酸化物のモル数は、仕込み工程で必要に応じて添加するアルカリ金属水酸化物のモル数、並びに、脱水工程を行う場合には、脱水工程において必要に応じて添加したアルカリ金属水酸化物のモル数、及び、脱水工程において硫化水素の生成に伴い生成するアルカリ金属水酸化物のモル数に基づいて算出される。硫黄源がアルカリ金属硫化物を含む場合には、硫黄源(仕込み硫黄源)1モル当たりのアルカリ金属水酸化物のモル数は、アルカリ金属硫化物のモル数を含めて算出するものとする。硫黄源に硫化水素を使用する場合には、生成するアルカリ金属硫化物のモル数を含めて、硫黄源(仕込み硫黄源)1モル当たりのアルカリ金属水酸化物のモル数を算出するものとする。ただし、他の目的で添加されるアルカリ金属水酸化物のモル数、例えば、相分離剤として有機カルボン酸金属塩を有機カルボン酸とアルカリ金属水酸化物との組み合わせの態様で使用する場合には、中和等の反応で消費したアルカリ金属水酸化物のモル数は、硫黄源(仕込み硫黄源)1モル当たりのアルカリ金属水酸化物のモル数に含めないものとする。さらに、何らかの理由で、無機酸及び有機酸からなる群より選択される少なくとも1種の酸が使用される場合等は、上記少なくとも1種の酸を中和するに必要なアルカリ金属水酸化物のモル数は、硫黄源(仕込み硫黄源)1モル当たりのアルカリ金属水酸化物のモル数に含めないものとする。
 仕込み混合物において、有機極性溶媒及びジハロ芳香族化合物の各々の使用量は、例えば、硫黄源の仕込み量1モルに対し、有機極性溶媒及びジハロ芳香族化合物に関する上記説明中で示す範囲に設定される。また、仕込み工程において、有機スルホン酸金属塩の全量を仕込み混合物に加える場合、有機スルホン酸金属塩は、例えば、前述の範囲内の量で使用される。
 なお、後述する前段重合工程より前に有機スルホン酸金属塩を仕込み混合物に添加するのが好ましい。前段重合工程より前に仕込み混合物に有機スルホン酸金属塩を仕込み混合物に添加することにより、後述する前段重合工程及び後段重合工程における重合反応が促進され、高分子量のPASを得やすい。
 仕込み工程において、有機スルホン酸金属塩の一部を仕込み混合物に加える場合、仕込み工程において仕込み混合物に加えられる有機スルホン酸金属塩の量は、有機スルホン酸金属塩の全質量に対して、5質量%以上95質量%以下が好ましく、50質量%以上90質量%以下がより好ましい。
 なお、後述する前段重合工程及び後段重合工程での重合反応の促進の観点からは、脱水工程で添加された有機スルホン酸金属塩の量と、仕込み工程で添加された有機スルホン酸金属塩の量との合計が、硫黄源のモル数に対して、7モル%以上が好ましく、8モル%以上がより好ましい、10モル%以上がさらに好ましい。
(前段重合工程、相分離剤添加工程、及び後段重合工程)
 前段重合工程は、仕込み混合物の重合反応を開始させ、プレポリマーを生成させる工程である。前段重合工程では、有機極性溶媒中で硫黄源と、ジハロ芳香族化合物とを重合させてPASのプレポリマーを生成させる。後段重合工程よりも前に、仕込み混合物、又は反応混合物に有機スルホン酸金属塩を含有させることにより、粒子径の小さなPASを高収率で製造し得る。なお、前段重合工程及び後段重合工程において加熱される混合物と、相分離剤添加工程において相分離剤が添加される混合物と、相分離剤添加工程において相分離した混合物とを、「反応混合物」と称する。
 より高分子量のPASを得るために、重合反応は2段階以上に分けて行われる。具体的には、上記の前段重合工程と、相分離剤の存在下で重合反応を継続する後段合工程とが行われる。相分離剤は、前段重合工程と後段重合工程との間に設けられる相分離剤添加工程において反応混合物に加えられる。
 例えば、米国特許第4038260号公報の実施例IIには、硫化ナトリウム、水酸化ナトリウム、ベンゼンスルホン酸ナトリウム、及びNMPからなる混合物を脱水した後に、脱水後の混合物にp-ジクロロベンゼンを加えて一段階で重合反応を行う、PASの製造方法が開示されている。しかし、このような方法では、過度に粒子径が小さくなった粉末状のPASが生成してしまい、適切な範囲内の小粒子径である、平均粒子径50μm以上550μm以下の顆粒状のPASを得られない。
 他方、上記のように、前段重合工程、相分離剤添加工程、及び後段重合工程を含む方法において、有機スルホン酸金属塩を所定のタイミングで反応混合物に加えて重合反応を行うことにより、取り扱いの容易な、適切な範囲内で小粒子径化された顆粒状のPASを得ることができる。
 前述の通り、有機スルホン酸金属塩は、後段重合工程よりも前に、仕込み混合物、又は反応混合物に加えられる。このため、前段重合工程、及び/又は相分離剤添加工程において、反応混合物に有機スルホン酸金属塩が、反応混合物に添加され得る。
 前段重合工程、又は相分離剤添加工程において、有機スルホン酸金属塩の全量を仕込み混合物に加える場合、有機スルホン酸金属塩は、例えば、前述の範囲内の量で使用される。
 前段重合工程、及び相分離剤添加工程において、有機スルホン酸金属塩の全量を分割して反応混合物に添加する場合、前段重合工程において添加される有機スルホン酸金属塩の量と、相分離剤添加工程において添加される有機スルホン酸金属塩の量との比率は特に限定されない。
 前段重合工程より前に仕込み混合物に有機スルホン酸金属塩の一部を仕込み混合物に添加する場合、有機スルホン酸金属塩の使用量のうち残余の量が、前段重合工程、及び/又は後段重合工程における重合反応が促進され、高分子量のPASを得やすい。
 前段重合工程において、ジハロ芳香族化合物の転化率は、好ましくは50~98モル%、より好ましくは60~97モル%、さらに好ましくは65~96モル%、特に好ましくは70~95モル%である。ジハロ芳香族化合物の転化率は、反応混合物中に残存するジハロ芳香族化合物の量をガスクロマトグラフィにより求め、その残存量とジハロ芳香族化合物の仕込み量と硫黄源の仕込み量に基づいて算出することができる。
 前段重合工程に続く後段重合工程においては、前記プレポリマーの重合度が上昇する。
 相分離剤としては、水が必須に添加される。相分離剤添加工程においてと、水とともに水以外の相分離剤を使用し得る。水と水以外の相分離剤とを併用する場合、水以外の相分離剤としては、特に限定されない。水以外の相分離剤としては、例えば、有機カルボン酸金属塩(例えば、酢酸ナトリウムのような脂肪族カルボン酸のアルカリ金属塩や、芳香族カルボン酸のアルカリ土類金属塩等)、有機スルホン酸金属塩、アルカリ金属ハライド、アルカリ土類金属ハライド、リン酸アルカリ金属塩、アルコール類、及び無極性溶媒からなる群より選ばれる少なくとも1種が挙げられる。なお、相分離剤として使用される上記の塩類は、対応する酸と塩基を別々に添加する態様であっても差しつかえない。
 相分離剤の使用量は、用いる化合物の種類によって異なるが、有機極性溶媒1kgに対し、0.01~20モルの範囲内でよい。相分離剤として使用される水の量は、有機スルホン酸を良好に溶解させやすい点で、硫黄源1モル当たり0.1~5モルが好ましく、2~4モルがより好ましい。また、相分離剤として水を添加した場合の反応系内の水分量は、有機極性溶媒1kg当たり、4モル超過20モル以下でよく、4.1~14モルでもよく、4.2~10モルでもよい。
 後段重合工程において、アルカリ金属水酸化物の量は、硫黄源1モルに対し、好ましくは1.00~1.10モル、より好ましくは1.01~1.08モル、さらにより好ましくは1.02~1.07モルである。アルカリ金属水酸化物の量が上記範囲内であると、得られるPASの分子量がより上昇しやすく、より高分子量のPASをより得やすい。後段重合工程では、前段重合工程後の反応混合物中に存在するアルカリ金属水酸化物の量に基づき、最終的なアルカリ金属水酸化物の量が上記範囲内となるように、該反応混合物にアルカリ金属水酸化物が添加されるのが好ましい。
 前段重合工程、及び後段重合工程では、重合反応の効率等の観点から、温度170~300℃の加熱下で重合反応を行うことが好ましい。前段重合工程、及び後段重合工程における重合温度は、180~280℃の範囲であることが、副反応及び分解反応を抑制する上でより好ましい。特に、前段重合工程では、重合反応の効率等の観点から、温度170~270℃の加熱下で重合反応を開始させ、ジハロ芳香族化合物の転化率が50%モル以上のプレポリマーを生成させることが好ましい。前段重合工程における重合温度は、180~265℃の範囲から選択することが、副反応及び分解反応を抑制する上で好ましい。
 前段重合工程、及び後段重合工程における重合反応は、バッチ式で行ってもよいし、連続的に行ってもよい。例えば、少なくとも、有機極性溶媒、硫黄源、及びジハロ芳香族化合物の供給と、有機極性溶媒中での硫黄源とジハロ芳香族化合物との反応によるPASの生成と、PASを含む反応混合物の回収と、を同時並行で行うことにより、重合反応を連続的に行うことができる。
(冷却工程)
 冷却工程は、重合工程後に、前記反応混合物を冷却する工程である。冷却工程における具体的な操作は、例えば、特許第6062924号公報に記載の通りである。
(後処理工程(分離工程、洗浄工程、回収工程等))
 本実施形態におけるPASの製造方法においては、重合反応後の後処理工程を、常法によって、例えば、特開2016-056232号公報に記載の方法によって、行うことができる。
(得られるPAS)
 本実施形態におけるPASの製造方法によって得られるPASは、平均粒子径が小さい。より具体的には、上記のPASの製造方法によって得られるPASの平均粒子径を、好ましくは550μm以下、より好ましくは500μm以下、さらに好ましくは450μm以下、さらにより好ましくは400μm以下とすることができる。PASの平均粒子径の下限は特に限定されないが、典型的には50μm以上であってよく、100μm以上であってもよい。つまり、後段重合後の反応液から回収されるPASの平均粒子径は、50μm以上550μm以下であるのが好ましい。
 PASの平均粒子径は、使用篩として、篩目開き2,800μm(7メッシュ(目数/インチ))、篩目開き1,410μm(12メッシュ(目数/インチ))、篩目開き1,000μm(16メッシュ(目数/インチ))、篩目開き710μm(24メッシュ(目数/インチ))、篩目開き500μm(32メッシュ(目数/インチ))、篩目開き250μm(60メッシュ(目数/インチ))、篩目開き150μm(100メッシュ(目数/インチ))、篩目開き105μm(145メッシュ(目数/インチ))、篩目開き75μm(200メッシュ(目数/インチ))、篩目開き38μm(400メッシュ(目数/インチ))の篩を用いた篩分法により測定し、各篩の篩上物の質量から、累積質量が50%質量となる時の平均粒径として算出される。
 得られるPASの平均分子量は、本発明の目的を阻害しな範囲で特に限定されない。平均分子量は、重量平均分子量として、35,000以上が好ましく、38,000以上がより好ましく、40,000以上がさらにより好ましく、41,000以上が一層さらにより好ましく、42,000以上が特に好ましい。上記重量平均分子量が35,000以上であると、PASの靭性が高くなりやすい。上記重量平均分子量の上限は、特に限定されず、100,000以下でよく、8,0000以下でもよく、70,000以下でもよい。なお、本明細書において、重量平均分子量とは、ゲルパーミエーションクロマトグラフィにより測定されたポリスチレン換算の重量平均分子量をいう。
 PASの収率は、87%以上が好ましく、90%以上がより好ましく、92%以上がさらに好ましい。
 本実施形態におけるPASの製造方法により得られるPASは、そのまま、又は酸化架橋させた後、単独で、又は所望により各種無機充填剤、繊維状充填剤、各種合成樹脂を配合し、種々の射出成形品又はシート、フィルム、繊維、及びパイプ等の押出成形品に成形することができる。
 本実施形態におけるPASの製造方法において、PASは、特に限定されず、PPSであることが好ましい。
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。
 以下に実施例及び比較例を挙げて、本発明についてより具体的に説明する。なお、本発明は、実施例に限られるものではない。以下に記すPPSの平均粒子径と重量平均分子量とについて、測定方法は前述の通りである。
[実施例1]
(脱水工程)
 20リットルのオートクレーブに、NMP5,998g、水硫化ナトリウム水溶液(NaSH:純度62.20質量%)2,003g、水酸化ナトリウム(NaOH:純度73.22質量%)1,072g、及びメタンスルホン酸ナトリウムを258gを仕込んだ。該オートクレーブ内を窒素ガスで置換後、約4時間かけて、撹拌機により回転数250rpmで撹拌しながら、徐々に200℃まで昇温し、水(HO)895g、NMP805g、及び硫化水素(HS)15gを留出させた。
(仕込み工程)
 脱水工程後、オートクレーブの内容物を150℃まで冷却し、pDCB3,235g、NMP3,328g、水酸化ナトリウム8g、及び水93gをオートクレーブ内に加えて第1重合工程に供する混合物を調製した。
(前段重合工程)
 仕込み工程で調製された混合物を撹拌しながら、220℃から260℃まで1.5時間かけて昇温させて第1重合工程を行った。缶内のNMP/仕込み硫黄源(以下、「仕込みS」と略記する。)の比率(g/モル)は391、pDCB/仕込みS(モル/モル)は1.010、HO/仕込みS(モル/モル)は1.50であった。第1重合工程でのpDCBの転化率は、92%であった。
(相分離剤添加工程)
 第1重合工程終了後、撹拌機の回転数を400rpmに上げ、オートクレーブの内容物を撹拌しながらイオン交換水444g、水酸化ナトリウム58gを圧入した。HO/S(モル/モル)は2.63であった。
(後段重合工程)
 イオン交換水の圧入後、265℃まで昇温し、2.5時間反応させて第2重合工程を行った。
(冷却工程)
 重合終了後、冷却を開始し、265℃から230℃まで60分かけて冷却し、その後、速やかに室温まで冷却を行った。
(後処理工程)
 オートクレーブの内容物を目開き径150μm(100メッシュ)のスクリーンで篩分けし、アセトン、及びイオン交換水で洗浄後、酢酸水溶液で洗浄し、再度イオン交換水で洗浄した後、120℃4時間で乾燥を行い、粒状のPPSを得た。得られたPPSの収率は92.7%であり、重量平均分子量(Mw)は62,700であり、平均粒子径は360μmであった。
〔実施例2〕
 有機スルホン酸金属塩の使用量を表1に記載の量に変更することの他は、実施例1と同様にして粒状のPPSを得た。得られたPPSの収率は86.2%であり、重量平均分子量(Mw)は56,600であり、平均粒子径は384μmであった。
〔実施例3〕
 有機スルホン酸金属塩の使用量を表1に記載の量に変更することの他は、実施例1と同様にして粒状のPPSを得た。得られたPPSの収率は94.7%であり、重量平均分子量(Mw)は69,500であり、平均粒子径は520μmであった。
〔比較例1〕
 有機スルホン酸金属塩を添加しないことの他は、実施例1と同様にして粒状のPPSを得た。得られたPPSの収率は80.8%であり、重量平均分子量(Mw)は47,700であり、平均粒子径は740μmであった。
〔比較例2〕
 有機スルホン酸金属塩を酢酸ナトリウムに変更することの他は、実施例1と同様にして粒状のPPSを得た。得られたPPSの収率は87.7%であり、重量平均分子量(Mw)は62,100であり、平均粒子径は2810μmであった。
〔比較例3〕
 有機スルホン酸金属塩をメタンスルホン酸ナトリウムからp-トルエンスルホン酸ナトリウム酢酸に変更することの他は、実施例1と同様にして粒状のPPSを得た。得られたPPSの収率は91.3%であり、重量平均分子量(Mw)は61,200であり、平均粒子径は1530μmであった。
〔比較例4〕
 有機スルホン酸金属塩をスルファニル酸ナトリウムに変更することの他は、実施例1と同様にして粒状のPPSを得た。得られたPPSの収率は92.2%であり、重量平均分子量(Mw)は61,200であり、平均粒子径は650μmであった。
Figure JPOXMLDOC01-appb-T000001
 実施例1によれば、後段重合工程よりも前に、仕込み混合物、又は反応混合物に23℃において水1kgに対して3モル以上溶解する有機スルホン酸金属塩を含有させる場合、平均粒子径として50μm以上550μm以下である平均粒子径の小さなPASを高い収率で製造できることが分かる。
 他方、比較例1~4によれば、23℃において水1kgに対して3モル未満しか溶解しない有機スルホン酸金属塩を用いたり、有機スルホン金属塩以外の塩類を用いたりする場合、平均粒子径の大きなPASしか製造できないことが分かる。

Claims (5)

  1.  (1)有機極性溶媒、硫黄源、及びジハロ芳香族化合物を含有する仕込み混合物を調製する仕込み工程と、
     (2)前記仕込み混合物を加熱して重合反応を開始させ、プレポリマーを生成させる前段重合工程と、
     (3)反応系内の反応混合物に相分離剤として水を添加して相分離状態を形成する相分離工程と、
     (4)前記相分離工程後に重合反応を継続する後段重合工程と、
    を含み、
     前記後段重合工程よりも前に、前記仕込み混合物、又は前記反応混合物に有機スルホン酸金属塩を含有させ、
     前記有機スルホン酸金属塩が、23℃において水1kgに対して3モル以上溶解し、
     回収されるポリアリーレンスルフィドの平均粒子径が、50μm以上550μm以下であるポリアリーレンスルフィドの製造方法。
  2.  前記有機スルホン酸金属塩の使用量が、前記硫黄源のモル数に対して25モル%以下である、請求項1に記載のポリアリーレンスルフィドの製造方法。
  3.  前記相分離工程における前記水の添加量が、前記硫黄現1モル当たり0.1~5モルである、請求項1又は2に記載のポリアリーレンスルフィドの製造方法。
  4.  前記有機スルホン酸金属塩を、前記仕込み混合物に含有させる、請求項1~3のいずれか1項に記載のポリアリーレンスルフィドの製造方法。
  5.  前記有機スルホン酸金属塩が、メタンスルホン酸ナトリウムである、請求項1~4のいずれか1項に記載のポリアリーレンスルフィドの製造方法。
PCT/JP2020/043898 2020-03-24 2020-11-25 ポリアリーレンスルフィドの製造方法 WO2021192413A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227032411A KR102472752B1 (ko) 2020-03-24 2020-11-25 폴리아릴렌 설파이드의 제조 방법
JP2022509251A JP7262664B2 (ja) 2020-03-24 2020-11-25 ポリアリーレンスルフィドの製造方法
CN202080097487.3A CN115151597B (zh) 2020-03-24 2020-11-25 聚亚芳基硫醚的制造方法
US17/906,583 US11795272B2 (en) 2020-03-24 2020-11-25 Method for producing polyarylene sulfide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020052798 2020-03-24
JP2020-052798 2020-03-24

Publications (1)

Publication Number Publication Date
WO2021192413A1 true WO2021192413A1 (ja) 2021-09-30

Family

ID=77890073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043898 WO2021192413A1 (ja) 2020-03-24 2020-11-25 ポリアリーレンスルフィドの製造方法

Country Status (5)

Country Link
US (1) US11795272B2 (ja)
JP (1) JP7262664B2 (ja)
KR (1) KR102472752B1 (ja)
CN (1) CN115151597B (ja)
WO (1) WO2021192413A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61264024A (ja) * 1985-05-16 1986-11-21 Toyobo Co Ltd ポリアリレンスルフイドの製造法
JPS62190228A (ja) * 1986-02-17 1987-08-20 Dainippon Ink & Chem Inc ポリアリ−レンスルフイドの製造方法
JPH0733877A (ja) * 1993-07-20 1995-02-03 Idemitsu Petrochem Co Ltd ポリアリーレンスルフィド粒状体の連続回収方法およびポリアリーレンスルフィドの洗浄方法
JP2003176357A (ja) * 2001-12-10 2003-06-24 Tosoh Corp ポリアリーレンスルフィドの製造方法
JP2017179255A (ja) * 2016-03-31 2017-10-05 株式会社クレハ 粒状ポリアリーレンスルフィドの製造方法、粒状ポリアリーレンスルフィドの平均粒子径増大方法、粒状ポリアリーレンスルフィドの粒子強度向上方法、及び粒状ポリアリーレンスルフィド

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4038260A (en) 1975-05-27 1977-07-26 Phillips Petroleum Company Production of p-phenylene sulfide polymers
US4663431A (en) 1985-05-07 1987-05-05 Toyo Boseki Kabushiki Kaisha T/U Toyobo Co, Ltd. Process for preparing polyarylene sulfide with alkali metal salt of phenolic aromatic sulfonic acid
KR101660614B1 (ko) 2012-03-30 2016-09-27 가부시끼가이샤 구레하 입상 폴리아릴렌 설파이드 및 그 제조방법
JP6366683B2 (ja) * 2014-03-25 2018-08-01 株式会社クレハ 熱処理微粉ポリアリーレンスルフィド、及び該熱処理微粉ポリアリーレンスルフィドを製造する製造方法
JP6077175B2 (ja) 2014-03-31 2017-02-08 株式会社クレハ ポリアリーレンスルフィドの製造方法
US9908974B2 (en) * 2014-04-30 2018-03-06 Kureha Corporation Polyarylene sulfide production method and polyarylene sulfide production apparatus
WO2015178105A1 (ja) * 2014-05-22 2015-11-26 Dic株式会社 ポリアリーレンスルフィド分散体及び粉体粒子、並びにそれらの製造方法
JP6418852B2 (ja) 2014-09-05 2018-11-07 株式会社クレハ ポリアリーレンスルフィドの製造方法及びポリアリーレンスルフィド
JP6420668B2 (ja) * 2015-01-09 2018-11-07 株式会社クレハ ポリアリーレンスルフィドの製造方法及びポリアリーレンスルフィド
WO2016199894A1 (ja) * 2015-06-12 2016-12-15 株式会社クレハ 粒状ポリアリーレンスルフィドを製造する方法、及び粒状ポリアリーレンスルフィド
WO2018147233A1 (ja) * 2017-02-07 2018-08-16 株式会社クレハ 粒状ポリアリーレンスルフィドの製造方法及び粒状ポリアリーレンスルフィド

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61264024A (ja) * 1985-05-16 1986-11-21 Toyobo Co Ltd ポリアリレンスルフイドの製造法
JPS62190228A (ja) * 1986-02-17 1987-08-20 Dainippon Ink & Chem Inc ポリアリ−レンスルフイドの製造方法
JPH0733877A (ja) * 1993-07-20 1995-02-03 Idemitsu Petrochem Co Ltd ポリアリーレンスルフィド粒状体の連続回収方法およびポリアリーレンスルフィドの洗浄方法
JP2003176357A (ja) * 2001-12-10 2003-06-24 Tosoh Corp ポリアリーレンスルフィドの製造方法
JP2017179255A (ja) * 2016-03-31 2017-10-05 株式会社クレハ 粒状ポリアリーレンスルフィドの製造方法、粒状ポリアリーレンスルフィドの平均粒子径増大方法、粒状ポリアリーレンスルフィドの粒子強度向上方法、及び粒状ポリアリーレンスルフィド

Also Published As

Publication number Publication date
KR20220136442A (ko) 2022-10-07
US11795272B2 (en) 2023-10-24
CN115151597B (zh) 2023-08-11
US20230126671A1 (en) 2023-04-27
JP7262664B2 (ja) 2023-04-21
JPWO2021192413A1 (ja) 2021-09-30
KR102472752B1 (ko) 2022-11-30
CN115151597A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
JP5623277B2 (ja) 粒状ポリアリーレンスルフィドの製造方法
JP5731196B2 (ja) 末端ハロゲン基含量が低減されたポリアリーレンスルフィドの製造方法
US10647818B2 (en) Polyarylene sulfide production method and polyarylene sulfide
JP4782383B2 (ja) ポリアリーレンスルフィド及びその製造方法
JP6517337B2 (ja) 粒状ポリアリーレンスルフィドを製造する方法、及び粒状ポリアリーレンスルフィド
JP6374030B2 (ja) ポリアリーレンスルフィドの製造方法、及びポリアリーレンスルフィド
WO2017170225A1 (ja) 粒状ポリアリーレンスルフィドの製造方法、粒状ポリアリーレンスルフィドの平均粒子径増大方法、粒状ポリアリーレンスルフィドの粒子強度向上方法、及び粒状ポリアリーレンスルフィド
KR20180125342A (ko) 폴리아릴렌 설파이드의 제조방법
WO2015050053A1 (ja) 分岐型ポリアリーレンスルフィド樹脂及びその製造方法、並びにその高分子改質剤としての使用
US20200024402A1 (en) Method for producing granular polyarylene sulfide and granular polyarylene sulfide
WO2021192413A1 (ja) ポリアリーレンスルフィドの製造方法
JP2022126431A (ja) 精製されたポリアリーレンスルフィドの製造方法
JP6889271B2 (ja) ポリアリーレンスルフィドの製造方法
JP7394987B2 (ja) ポリアリーレンスルフィドの製造方法
KR102088007B1 (ko) 폴리아릴렌 설파이드의 제조방법
WO2021131985A1 (ja) ポリアリーレンスルフィドの製造方法
US20210115193A1 (en) Preparation method of polyarylene sulfide
WO2020121785A1 (ja) ポリアリーレンスルフィドの製造方法
JP2021095539A (ja) ポリアリーレンスルフィドの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927354

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227032411

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022509251

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927354

Country of ref document: EP

Kind code of ref document: A1