WO2016199894A1 - 粒状ポリアリーレンスルフィドを製造する方法、及び粒状ポリアリーレンスルフィド - Google Patents
粒状ポリアリーレンスルフィドを製造する方法、及び粒状ポリアリーレンスルフィド Download PDFInfo
- Publication number
- WO2016199894A1 WO2016199894A1 PCT/JP2016/067380 JP2016067380W WO2016199894A1 WO 2016199894 A1 WO2016199894 A1 WO 2016199894A1 JP 2016067380 W JP2016067380 W JP 2016067380W WO 2016199894 A1 WO2016199894 A1 WO 2016199894A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyarylene sulfide
- granular
- alkali metal
- pas
- polymerization
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/0204—Polyarylenethioethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/0204—Polyarylenethioethers
- C08G75/0209—Polyarylenethioethers derived from monomers containing one aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B17/00—Sulfur; Compounds thereof
- C01B17/22—Alkali metal sulfides or polysulfides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/0204—Polyarylenethioethers
- C08G75/0227—Polyarylenethioethers derived from monomers containing two or more aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/0204—Polyarylenethioethers
- C08G75/025—Preparatory processes
- C08G75/0254—Preparatory processes using metal sulfides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/0204—Polyarylenethioethers
- C08G75/025—Preparatory processes
- C08G75/0259—Preparatory processes metal hydrogensulfides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/0204—Polyarylenethioethers
- C08G75/0277—Post-polymerisation treatment
- C08G75/0281—Recovery or purification
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/04—Polythioethers from mercapto compounds or metallic derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/281—Sorbents specially adapted for preparative, analytical or investigative chromatography
- B01J20/291—Gel sorbents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C25/00—Compounds containing at least one halogen atom bound to a six-membered aromatic ring
- C07C25/02—Monocyclic aromatic halogenated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C25/00—Compounds containing at least one halogen atom bound to a six-membered aromatic ring
- C07C25/18—Polycyclic aromatic halogenated hydrocarbons
Definitions
- the present invention relates to a method for producing granular polyarylene sulfide and granular polyarylene sulfide.
- PAS Polyarylene sulfide
- PPS polyphenylene sulfide
- PPS polyphenylene sulfide
- Engineering plastic with excellent stability.
- PAS can be molded into various molded products, films, sheets, fibers, etc. by general melt processing methods such as extrusion molding, injection molding, compression molding, etc., so it can be used in a wide range of fields such as electrical / electronic equipment and automotive equipment. It is widely used.
- a method of reacting a sulfur source with a dihaloaromatic compound in an organic amide solvent such as N-methyl-2-pyrrolidone is known.
- an alkali metal sulfide, an alkali metal hydrosulfide, or a mixture thereof is used as the sulfur source.
- the alkali metal hydrosulfide is used in combination with an alkali metal hydroxide.
- Patent Document 1 discloses a method for producing PPS using an alkali metal carboxylate as a polymerization aid.
- Patent Document 2 discloses a method for producing PPS using an alkaline earth metal salt or zinc salt of an aromatic carboxylic acid as a polymerization aid.
- Patent Document 3 discloses a method for producing PPS using an alkali metal halide as a polymerization aid.
- Patent Document 4 proposes a method for producing PPS using a sodium salt of an aliphatic carboxylic acid as a polymerization aid.
- Patent Document 5 discloses a method for producing PAS using water as a polymerization aid.
- phase separation aids By adjusting the amount and timing of addition of these polymerization aids, the temperature of the polymerization reaction system, etc., a phase separation state in which the produced polymer rich phase and the produced polymer dilute phase coexist in the liquid phase in the polymerization reaction system is created. be able to.
- the high molecular weight PAS can be obtained in a granular form by gradually increasing the molecular weight of the PAS and gradually cooling the polymerization reaction system after the polymerization reaction. Therefore, these polymerization aids are called phase separation agents.
- the desalting condensation reaction between monomers proceeds rapidly.
- the conversion rate of the dihaloaromatic compound is increased.
- the polymer in this state has a low melt viscosity (molecular weight) and is in the so-called prepolymer stage.
- the phase separation agent if a phase separation state in which the product polymer rich phase and the product polymer dilute phase are mixed in the liquid phase in the polymerization reaction system is created, the product polymer rich phase is mixed in the product polymer dilute phase by stirring. Dispersed and the condensation reaction between the prepolymers efficiently proceeds in the concentrated phase. As a result, high molecular weight advances.
- the granular high molecular weight PAS obtained by slow cooling from the state in which the rich phase is dispersed in the dilute phase can easily remove impurities such as by-product alkali metal salts and oligomers.
- impurities such as by-product alkali metal salts and oligomers.
- granular high molecular weight PAS is washed in combination with water washing, organic solvent washing, acid washing, etc. to obtain PAS substantially free of alkali metal salt such as NaCl. Be able to.
- the sufficiently washed granular high molecular weight PAS is substantially free of ash even when burned.
- the present invention has been made in view of the above problems, and produces granular PAS with improved particle strength while improving the yield of granular PAS by incorporating and recovering medium molecular weight PAS into granular PAS. It is an object to provide a method and a granular PAS.
- the present inventors started adding the phase separation agent to the reaction product mixture from the start of the polymerization process to before the start of the formation of the granular polyarylene sulfide in the cooling process. It has been found that the above object can be achieved by adding 50% by mass or more of the phase separation agent to the reaction product mixture while the temperature of the product mixture is 245 ° C. or higher.
- the present inventors also reduce the specific surface area of the granular polyarylene sulfide during the production of the granular PAS from the start of the polymerization process to before the start of the formation of the granular polyarylene sulfide in the cooling process. The present inventors have found that the above object is achieved. Thus, the present inventors have completed the present invention.
- a first embodiment of the present invention is a method for producing a granular polyarylene sulfide comprising: A polymerization step of obtaining a reaction product mixture by polymerizing at least one sulfur source selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides in an organic amide solvent and a dihaloaromatic compound; and the polymerization step A cooling step for later cooling the reaction product mixture, At the time from the start of the polymerization step to the start of the formation of the granular polyarylene sulfide in the cooling step, the addition of the phase separation agent to the reaction product mixture is started, While the temperature of the reaction product mixture is 245 ° C.
- the polymerization step is (1) The alkali metal sulfide and the dihaloaromatic compound are reacted at a temperature of 170 to 270 ° C. in an organic amide solvent containing 0.5 to 2.4 mol of water per mol of the charged alkali metal sulfide. And a step of forming a polyarylene sulfide prepolymer with a conversion rate of the dihaloaromatic compound of 50 to 98 mol%, and (2) 2.5 to 10 mol of water per mol of the charged alkali metal sulfide.
- the prepolymer Is a method for producing a granular polyarylene sulfide characterized by comprising a step of converting to a higher molecular weight polyarylene sulfide.
- a second embodiment of the present invention is a granular polyarylene sulfide having a weight average molecular weight of 60,000 or less, produced by the method for producing a granular polyarylene sulfide according to the first embodiment of the present invention, A granular polyarylene sulfide having a sieved screen content of 86.5% by mass or more and a particle strength of 88% or more with a screen having an opening diameter of 150 ⁇ m.
- a third embodiment of the present invention is a method of producing granular polyarylene sulfide, A polymerization step of obtaining a reaction product mixture by polymerizing at least one sulfur source selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides in an organic amide solvent and a dihaloaromatic compound; and the polymerization step A cooling step for later cooling the reaction product mixture, A granular polyarylene further comprising a specific surface area reducing step for reducing the specific surface area of the granular polyarylene sulfide between the start of the polymerization step and before the start of the formation of the granular polyarylene sulfide in the cooling step.
- This is a method for producing sulfide.
- a fourth embodiment of the present invention is a granular polyarylene sulfide produced by the method for producing a granular polyarylene sulfide according to the third embodiment of the present invention, It is a granular polyarylene sulfide having a specific surface area of 85 m 2 / g or less and a particle strength of 88% or more.
- a method for producing granular PAS with improved particle strength while improving the yield of granular PAS by incorporating and recovering medium molecular weight PAS into granular PAS, and granular PAS are provided. Can do.
- At least one sulfur source selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides is used as the sulfur source.
- the alkali metal sulfide include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, cesium sulfide, and a mixture of two or more thereof.
- the alkali metal hydrosulfide include lithium hydrosulfide, sodium hydrosulfide, potassium hydrosulfide, rubidium hydrosulfide, cesium hydrosulfide, and a mixture of two or more thereof.
- the alkali metal sulfide any of an anhydride, a hydrate, and an aqueous solution may be used. Among these, sodium sulfide and lithium sulfide are preferable because they can be obtained industrially at low cost.
- the alkali metal sulfide is preferably used as an aqueous mixture such as an aqueous solution (that is, a mixture with fluid water) from the viewpoint of processing operation, measurement, and the like.
- the alkali metal hydrosulfide may be any of anhydride, hydrate, and aqueous solution. Among these, sodium hydrosulfide and lithium hydrosulfide are preferable because they can be obtained industrially at low cost.
- the alkali metal hydrosulfide is preferably used as an aqueous mixture such as an aqueous solution (that is, a mixture with fluid water) from the viewpoint of processing operation, measurement, and the like.
- alkali metal hydrosulfide In the production process of alkali metal sulfide, generally, a small amount of alkali metal hydrosulfide is by-produced. A small amount of alkali metal hydrosulfide may be contained in the alkali metal sulfide used in the present invention. In this case, the total molar amount of the alkali metal sulfide and the alkali metal hydrosulfide becomes the charged sulfur source in the charging step after the dehydration step described later.
- a small amount of alkali metal sulfide is generally produced as a by-product in the production process of alkali metal hydrosulfide.
- a small amount of alkali metal sulfide may be contained in the alkali metal hydrosulfide used in the present invention.
- the total molar amount of the alkali metal hydrosulfide and the alkali metal sulfide becomes the charged sulfur source in the charging step after the dehydration step.
- a mixture of both serves as a charged sulfur source.
- an alkali metal hydroxide is used in combination.
- the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, and a mixture of two or more thereof.
- sodium hydroxide and lithium hydroxide are preferable because they can be obtained industrially at low cost.
- the alkali metal hydroxide is preferably used as an aqueous mixture such as an aqueous solution.
- the dihaloaromatic compound used in the present invention is a dihalogenated aromatic compound having two halogen atoms directly bonded to an aromatic ring.
- Specific examples of the dihaloaromatic compound include, for example, o-dihalobenzene, m-dihalobenzene, p-dihalobenzene, dihalotoluene, dihalonaphthalene, methoxy-dihalobenzene, dihalobiphenyl, dihalobenzoic acid, dihalodiphenyl ether, dihalodiphenyl sulfone.
- halogen atom refers to each atom of fluorine, chlorine, bromine and iodine, and in the same dihaloaromatic compound, the two halogen atoms may be the same or different.
- dihaloaromatic compounds can be used alone or in combination of two or more.
- p-DCB p-Dichlorobenzene
- Branching / crosslinking agent and molecular weight control agent In order to introduce a branched or crosslinked structure into PAS, a polyhalo compound having 3 or more halogen atoms bonded thereto (not necessarily an aromatic compound), an active hydrogen-containing halogenated aromatic A compound, a halogenated aromatic nitro compound, or the like can be used in combination.
- the polyhalo compound as the branching / crosslinking agent is preferably trihalobenzene.
- a monohalo organic compound can be added at any stage of the polymerization process.
- monohalo organic compounds include monohalo-substituted saturated or unsaturated aliphatic hydrocarbons such as monohalopropane, monohalobutane, monohaloheptane, monohalohexane, aryl halide and chloroprene; monohalo-substituted saturated cyclic such as monohalocyclohexane and monohalodecalin Hydrocarbon: monohalobenzene, monohalonaphthalene, 4-chlorobenzoic acid, methyl 4-chlorobenzoate, 4-chlorodiphenylsulfone, 4-chlorobenzonitrile, 4-chlorobenzotrifluoride, 4-chloronitrobenzene, 4-chloro Monohalo-substituted aromatic hydrocarbons such as chloroacetophenone, 4-chlorobenzophenone and
- Halogen atoms refer to fluorine, chlorine, bromine, and iodine atoms. Of these halogen atoms, a chlorine atom is preferred. In addition, an organic compound substituted with one chlorine atom and having a substituent such as trifluoromethane, which is extremely less reactive than the chlorine atom, is also incorporated into the monohalo organic compound for convenience. I will do it.
- Organic Amide Solvent in the present invention, an organic amide solvent that is an aprotic polar organic solvent is used as a solvent for the dehydration reaction and the polymerization reaction.
- the organic amide solvent is preferably stable to alkali at high temperatures.
- organic amide solvent examples include amide compounds such as N, N-dimethylformamide and N, N-dimethylacetamide; N-alkylcaprolactam compounds such as N-methyl- ⁇ -caprolactam; N-methyl-2-pyrrolidone, N-alkylpyrrolidone compounds or N-cycloalkylpyrrolidone compounds such as N-cyclohexyl-2-pyrrolidone; N, N-dialkylimidazolidinone compounds such as 1,3-dialkyl-2-imidazolidinone; tetramethylurea, etc. Tetraalkylurea compounds; hexaalkylphosphoric acid triamide compounds such as hexamethylphosphoric acid triamide. These organic amide solvents may be used alone or in combination of two or more.
- N-alkylpyrrolidone compounds, N-cycloalkylpyrrolidone compounds, N-alkylcaprolactam compounds, and N, N-dialkylimidazolidinone compounds are preferable, and in particular, N-methyl-2-pyrrolidone, N-methyl- ⁇ -caprolactam and 1,3-dialkyl-2-imidazolidinone are preferably used.
- the amount of the organic amide solvent used in the polymerization reaction of the present invention is usually in the range of 0.1 to 10 kg, preferably 0.15 to 5 kg, per mole of sulfur source. If the amount of the organic amide solvent used is less than 0.1 kg, it is difficult to carry out the polymerization reaction stably, and if it exceeds 10 kg, the production cost increases.
- phase separation agents can be used to cause a liquid-liquid phase separation state.
- a phase separation agent is a compound that dissolves in an organic amide solvent by itself or in the presence of a small amount of water and has an action of reducing the solubility of PAS in an organic amide solvent.
- the phase separation agent itself is a compound that is not a solvent for PAS.
- phase separation agent generally known compounds can be used as the phase separation agent for PAS.
- phase separation agents include water, organic carboxylic acid metal salts such as alkali metal carboxylates, organic sulfonic acid metal salts, alkali metal halides such as lithium halides, alkaline earth metal halides, and aromatic carboxylic acids. Alkaline earth metal salts, alkali metal phosphates, alcohols, paraffin hydrocarbons and the like can be mentioned.
- phase separation agents can be used alone or in combination of two or more. Among these, water and organic carboxylic acid metal salts are preferable because they are inexpensive.
- the amount of phase separation agent used varies depending on the type of compound used, but is generally in the range of 0.01 to 15 moles per mole of the charged sulfur source.
- the amount is preferably 0.01 to 13 mol, more preferably 0.02 to 12 mol, and particularly preferably 0.03 to 10 mol.
- the amount of the phase separation agent used is less than 0.01 mol, it is difficult to cause a liquid-liquid phase separation state, and when it exceeds 15 mol, it is difficult to proceed the polymerization reaction well.
- a particle modifier having an effect of modifying the particle characteristics of the granular PAS is preferable from the viewpoint of the particle strength of the granular PAS.
- the particle modifier include water, organic carboxylic acid metal salts, organic sulfonic acid metal salts, alkali metal halides, alkaline earth metal halides, alkaline earth metal salts of aromatic carboxylic acids, and alkali metal phosphates. , Alcohols, and paraffinic hydrocarbons. These can be used in combination. Among these, water is particularly preferable.
- the polymerization reaction in at least a part of the polymerization process can be performed in the presence of a disulfide compound.
- the disulfide compound may be added at any stage of the polymerization process. For example, when the polymerization process includes a two-stage process including a pre-stage polymerization process and a post-stage polymerization process, it may be added in the pre-stage polymerization process or in the post-stage polymerization process. Moreover, you may add to the preparation process at the time of a pre-stage polymerization process start.
- the addition time of the disulfide compound may be determined based on the conversion rate of the dihaloaromatic compound.
- the conversion rate of the dihaloaromatic compound in the polymerization step is 0 to 100%, usually 45% or more, preferably 45 to 99.5%, more preferably 60 to 99%. More preferably, it is added at a point of 70 to 98.5%, particularly preferably 80 to 98%, and can be present in the polymerization step.
- disulfide compound examples include diphenyl disulfide (DPDS), p-p'ditolyl disulfide, dibenzyl disulfide, dibenzoyl disulfide, and dithiobenzoyl disulfide, and diphenyl disulfide is preferable.
- DPDS diphenyl disulfide
- p-p'ditolyl disulfide dibenzyl disulfide
- dibenzoyl disulfide dibenzoyl disulfide
- dithiobenzoyl disulfide diphenyl disulfide
- diphenyl disulfide is preferable.
- the disulfide compound which has a functional group can also be used as all or one part of a disulfide compound.
- the amount of disulfide compound added when the polymerization reaction is carried out in the presence of the disulfide compound is 0.0005 to 0.015 mol, preferably 0.0007 to 0.005 mol per mol of the charged sulfur source. 01 mol, more preferably 0.0008 to 0.008 mol, still more preferably 0.0009 to 0.006 mol, and particularly preferably 0.001 to 0.005 mol.
- the amount of the disulfide compound added within this range is a granular PAS with good thermal stability, low gas generation during molding, low halogen content, low melt viscosity, and high performance balance. It is important in getting.
- the disulfide compound may be added alone in the polymerization step, or may be added as a mixture with an organic amide solvent.
- a method of manufacturing a granular PAS is: In an organic amide solvent, a polymerization step of polymerizing at least one sulfur source selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides and a dihaloaromatic compound to obtain a reaction product mixture; Cooling the reaction product mixture after the polymerization step, At the time from the start of the polymerization step to before the start of granular PAS formation in the cooling step, the addition of the phase separation agent to the reaction product mixture is started, While the temperature of the reaction product mixture is 245 ° C.
- the polymerization step is (1) The alkali metal sulfide and the dihaloaromatic compound are reacted at a temperature of 170 to 270 ° C. in an organic amide solvent containing 0.5 to 2.4 mol of water per mol of the charged alkali metal sulfide. And a step of forming a polyarylene sulfide prepolymer with a conversion rate of the dihaloaromatic compound of 50 to 98 mol%, and (2) 2.5 to 10 mol of water per mol of the charged alkali metal sulfide.
- reaction product mixture refers to a mixture containing a reaction product generated by the polymerization reaction, and the production starts simultaneously with the start of the polymerization reaction.
- the addition of the phase separation agent to the reaction product mixture is started, and the temperature of the reaction product mixture is 245
- the medium molecular weight PAS in the molten state decreases in solubility in the dilute polymer phase, and the concentration of the high molecular weight PAS Shifts to a high polymer rich phase.
- the yield of the sieved product with a screen having an opening diameter of 150 ⁇ m is improved. Further, in the granular PAS formed in the cooling step, the specific surface area is reduced and the particle strength is improved.
- the phase separation agent is added to the reaction product mixture at the time after the completion of the polymerization step and before the start of the formation of the granular polyarylene sulfide in the cooling step. It is preferred to start the addition.
- the temperature of the reaction product mixture is 245 ° C. or higher, preferably 250 ° C. or higher, more preferably 255 ° C. or higher, even more preferably 260 ° C. or higher, even more preferably. Is at least 265 ° C. while it is at least 50% by weight (ie 50 to 100% by weight), preferably 60 to 100% by weight, more preferably 70 to 100% by weight, even more preferably 80 to 100% by weight, even more preferably 90-100% by weight, particularly preferably 95-100% by weight, are added to the reaction product mixture.
- the upper limit of the said temperature is not specifically limited, It is about 290 degreeC.
- a method for producing granular PAS includes: A polymerization step of obtaining a reaction product mixture by polymerizing at least one sulfur source selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides in an organic amide solvent and a dihaloaromatic compound; and the polymerization step A cooling step for later cooling the reaction product mixture, It further includes a specific surface area reduction step of reducing the specific surface area of the granular PAS from the start of the polymerization step to before the start of the formation of the granular PAS in the cooling step.
- the particle strength of the granular PAS can be improved by further including the specific surface area reduction step.
- the specific surface area reduction step for example, at the time from the start of the polymerization step to before the start of the formation of granular PAS in the cooling step, the addition of the phase separation agent to the reaction product mixture is started, and the temperature of the reaction product mixture is increased. Is 245 ° C. or higher, preferably 250 ° C. or higher, more preferably 255 ° C. or higher, even more preferably 260 ° C. or higher, even more preferably 265 ° C. or higher.
- the reaction product mixture preferably 60 to 100% by mass, more preferably 70 to 100% by mass, even more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, and particularly preferably 95 to 100% by mass. This can be achieved by adding 100% by weight to the reaction product mixture.
- the upper limit of the said temperature is not specifically limited, It is about 290 degreeC.
- the weight average molecular weight of the granular PAS is preferably 60,000 or less, more preferably the lower limit is 15,000, the upper limit is 50,000, from the viewpoint of the yield and particle strength of the granular PAS. Even more preferably the lower limit is 17,000 and the upper limit is 48,000, even more preferably the lower limit is 18,000 and the upper limit is 45,000, particularly preferably the lower limit is 20,000 and the upper limit is less than 40,000. .
- the production method according to the present invention may further include a dehydration step, a preparation step, a separation / recovery step, and the like.
- a dehydration step may further include a dehydration step, a preparation step, a separation / recovery step, and the like.
- a dehydration process As a pre-process of the polymerization process, it is preferable to arrange a dehydration process to adjust the amount of coexisting water (also referred to as water content) in the reaction system.
- the dehydration step is preferably carried out by heating and reacting a mixture containing an organic amide solvent and an alkali metal sulfide in an inert gas atmosphere, and discharging water out of the system by distillation.
- an alkali metal hydrosulfide is used as the sulfur source
- the reaction is carried out by heating and reacting a mixture containing the alkali metal hydrosulfide and the alkali metal hydroxide, and discharging water out of the system by distillation.
- the amount of water composed of hydrated water (crystal water), an aqueous medium, by-product water, etc. is preferably dehydrated until it falls within the range of the coexisting water amount required in the charging step described later. If the amount of coexisting water falls outside the range required in the preparation step, an additional amount of water shortage may be added.
- an alkali metal hydrosulfide is used as the sulfur source, in the dehydration step, 0.70 to 1.07 mol, more preferably 0.75, per mol of the organic amide solvent, the alkali metal hydrosulfide, and the alkali metal hydrosulfide. It is preferable to heat and react a mixture containing ⁇ 1.05 mol of alkali metal hydroxide, and to discharge at least a part of the distillate containing water from the system containing the mixture to the outside of the system. .
- the preferred mole of alkali metal hydroxide per mole of alkali metal hydrosulfide charged in this step is 0.70 to 1.07 mole, more preferably 0.75 to 1.05 mole.
- Alkali metal hydrosulfides often contain a small amount of alkali metal sulfide, and the amount of sulfur source is the total amount of alkali metal hydrosulfide and alkali metal sulfide. Even if the alkali metal hydrosulfide contains an alkali metal sulfide, there is no problem as a raw material of PAS.
- the mole with the alkali metal hydroxide is calculated based on the content (analytical value) of the alkali metal hydrosulfide, and the mole is adjusted. The same applies when an alkali metal sulfide is used.
- each raw material is generally charged into a reaction tank (reaction can) in a temperature range from room temperature (5-35 ° C.) to 300 ° C., preferably from room temperature to 200 ° C.
- the order in which the raw materials are input may be in any order, and further, each raw material may be additionally input during the dehydration process.
- An organic amide solvent is used as a solvent used in the dehydration step. This solvent is preferably the same as the organic amide solvent used in the polymerization step, and N-methyl-2-pyrrolidone is particularly preferred.
- the amount of the organic amide solvent used is usually 0.1 to 10 kg, preferably 0.15 to 5 kg, per mole of sulfur source charged into the reaction vessel.
- the mixture after the raw materials are charged into the reaction vessel is usually heated at a temperature of 300 ° C. or lower, preferably 100 to 250 ° C., usually for 15 minutes to 24 hours, preferably 30 minutes to 10 hours. Done.
- a heating method there are a method for maintaining a constant temperature, a stepwise or continuous temperature raising method, or a method in which both are combined.
- the dehydration step is performed by a batch method, a continuous method, or a combination method of both methods.
- the apparatus for performing the dehydration step may be the same as or different from the reaction vessel used in the subsequent polymerization step.
- the material of the device is preferably a corrosion resistant material such as titanium.
- part of the organic amide solvent is usually discharged with the water out of the reaction vessel. At that time, hydrogen sulfide is discharged out of the system as a gas.
- the preparation process includes the amount of coexisting water with respect to the prepared sulfur source, the amount of dihaloaromatic compound with respect to the prepared sulfur source, the amount of alkali metal hydroxide with respect to the prepared sulfur source, the amount of disulfide compound with respect to the prepared sulfur source, etc. It is a process of adjusting.
- an alkali metal hydroxide is generated by the equilibrium reaction and remains in the system. Therefore, it is necessary to accurately grasp the amount of volatilized hydrogen sulfide and determine the molar amount of the alkali metal hydroxide with respect to the sulfur source in the preparation step.
- an alkali metal hydroxide and water can be added to the mixture remaining in the system after the dehydration step, if necessary.
- the amount of coexisting water at the start of the polymerization reaction is usually 0.02 to 2 mol, preferably 0.05 to 1.9 mol, more preferably 0.5 to 1. mol, relative to 1 mol of the charged sulfur source in the charging step.
- the range is preferably 8 mol. Within this range, the amount of coexisting water can be increased during the polymerization reaction.
- the charged amount of the dihaloaromatic compound is usually 0.9 to 1.5 mol, preferably 0.95 to 1.2 mol, more preferably 1 to 1.1 mol, particularly preferably 1 mol per mol of the charged sulfur source. 1.01 to 1.08 mol.
- the amount of the alkali metal hydroxide per mol of the charged sulfur source is preferably 1.005 to 1.080 mol, more preferably 1.010 to 1.075 mol, particularly preferably 1.020 to 1.073 mol. It is. It is preferable to carry out the polymerization reaction with a small excess of alkali metal hydroxide in order to stably carry out the polymerization reaction and obtain a high-quality PAS.
- the sulfur source in the preparation step, is controlled so as to suppress the production of by-products during the polymerization reaction or to sufficiently reduce the nitrogen content derived from impurities in the produced PAS. It is also possible to prepare a mixture containing less than an equimolar amount of the alkali metal hydroxide with respect to (the charged sulfur source).
- the sulfur source (feed sulfur source) When the molar ratio of the alkali metal hydroxide per mole of the sulfur source (feed sulfur source) is 1 mole or more (naturally including 1.000 mole), the sulfur source (feed sulfur source) 1
- the molar ratio of alkali metal hydroxide per mole is preferably in the range of 0.7 to 0.99 mole, more preferably 0.75 to 0.98 mole, particularly preferably 0.8 to 0.97 mole. is there.
- the content of dihaloaromatic compounds such as pDCB is prepared by preparing a mixture containing less than an equimolar amount of alkali metal hydroxide with respect to the sulfur source (the charged sulfur source) in the charging step.
- the amount of the organic amide solvent is 0.1 to 10 kg, preferably 0.15 to 5 kg per mole of the sulfur source or the charged sulfur source.
- the polymerization process is carried out by heating a sulfur source and a dihaloaromatic compound in an organic amide solvent.
- the polymerization step is a phase separation polymerization step in which the polymerization reaction is continued in a liquid-liquid phase separation state in which the liquid phase in the polymerization reaction system is mixed with a polymer rich phase and a polymer thin phase in the presence of a phase separation agent. May be included.
- the polymerization process includes a phase separation polymerization process
- the polymerization process may be performed in a single-stage process including only the phase separation polymerization process, or may be performed in a two-stage process including a process without phase separation and a phase separation polymerization process. Also good.
- phase separation agent may be added before the cooling step after the polymerization reaction.
- the dihaloaromatic compound has a conversion rate of 45% or more and a disulfide compound is added. Moreover, you may mix a polymerization adjuvant and other additives before a polymerization process or during a polymerization process.
- the polymerization reaction is generally carried out at a temperature of 170 ° C. or higher (for example, 170 to 290 ° C.). From the viewpoint of the yield and particle strength of the granular PAS, the polymerization temperature is 250 ° C. or higher (for example, 250 to 290). ° C).
- the polymerization reaction is preferably performed in a two-stage process including a pre-stage polymerization process and a post-stage polymerization process.
- a heating method a method of maintaining a constant temperature, a stepwise or continuous temperature raising method, or a combination of both methods is used.
- the polymerization reaction time is generally in the range of 10 minutes to 72 hours, preferably 30 minutes to 48 hours.
- the organic amide solvent used in the polymerization step is usually 0.1 to 10 kg, preferably 0.15 to 5 kg, per mole of the charged sulfur source. Within this range, the amount may be changed during the polymerization reaction.
- a method is preferred in which the polymerization reaction is continued by converting the liquid phase in the polymerization reaction system to a phase-separated state at the stage when the conversion of the dihaloaromatic compound reaches 80 to 99 mol% after the start of the polymerization reaction.
- a phase separation agent or increase the amount of the additive acting as a phase separation agent.
- limit especially as a phase-separation agent Water is preferable at the point which is cheap and the control of a polymerization reaction and post-processing are easy.
- the polymerization reaction may be performed in the presence of a disulfide compound, and the polymerization step is preferably performed at least by a pre-stage polymerization step and a post-stage polymerization step.
- Polymerization is performed within a temperature range of 170 to 270 ° C., preferably 180 to 265 ° C. If the polymerization temperature is too low, the polymerization rate becomes too slow. Conversely, if the polymerization temperature is higher than 270 ° C., the produced PAS and the organic amide solvent are liable to decompose, and the degree of polymerization of the produced PAS becomes extremely low.
- the pre-stage polymerization process is a stage in which the conversion rate of the dihaloaromatic compound reaches 80 to 99%, preferably 85 to 98%, more preferably 90 to 97% after the start of the polymerization reaction, and This is a step before the liquid phase is in a phase separation state.
- the conversion rate of the dihaloaromatic compound was determined by gas chromatography to determine the amount of the dihaloaromatic compound remaining in the reaction mixture, and based on the residual amount, the charged amount of the dihaloaromatic compound, and the charged amount of the sulfur source, It is a value calculated by an equation.
- conversion rate [[DHA charge (mol) ⁇ DHA remaining amount (mol)] / [DHA charge (mol)]] ⁇ 100 To calculate the conversion.
- a polymer (also referred to as “prepolymer”) having a melt viscosity of usually 0.5 to 30 Pa ⁇ s measured at a temperature of 310 ° C. and a shear rate of 1,200 sec ⁇ 1 is produced. Is desirable.
- the liquid phase in the polymerization reaction system includes a polymer rich phase having a high content of polymer (prepolymer) produced by the previous polymerization and a polymer dilute phase having a low content of the polymer. Phase separate. The phase separation state can be clearly observed visually.
- the amount of coexisting water in the post-stage polymerization step is usually 2 to 5 mol, preferably 2.1 to 4 per mol of the charged sulfur source. It is desirable to adjust to a range of 0.5 mol, more preferably 2.2 to 4 mol, particularly preferably 2.3 to 3.5 mol.
- the amount of coexisting water in the reaction system is less than 2 mol or more than 5 mol, the degree of polymerization of the produced PAS decreases.
- phase separation agent other than water (organic carboxylic acid metal salt, organic sulfonic acid metal salt, alkali metal halide, alkaline earth metal halide, alkaline earth metal salt of aromatic carboxylic acid, phosphorus
- the phase separation agent is added in an amount of 0.01 to 3 per mole of the charged sulfur source. Mole, preferably 0.02 to 2 mol, more preferably 0.03 to 1 mol, particularly preferably 0.04 to 0.5 mol, is preferably present.
- the phase separation agent water and other phase separation agents other than water can be used in combination.
- the amount of coexisting water in the reaction system is 0.01 to 7 mol, preferably 0.1 to 4 mol, more preferably 1 to 3.5 mol, and other than water, per mol of the charged sulfur source.
- the phase separation agent is preferably present in the range of 0.01 to 3 mol, preferably 0.02 to 1 mol, more preferably 0.03 to 0.5 mol, per mol of the charged sulfur source. Strict adjustment of the ratio of phase separation agent / feeding sulfur source leads to reduction of low molecular weight substances and oligomers.
- the polymerization temperature in the post-stage polymerization step is in the range of 240 to 290 ° C. If the polymerization temperature in the subsequent polymerization step is less than 240 ° C, it is difficult to obtain a PAS having an adjusted melt viscosity, and if it exceeds 290 ° C, the produced PAS and the organic amide solvent may be decomposed. Further, a temperature range of 245 to 280 ° C., particularly 250 to 275 ° C. is preferable because a PAS having an adjusted melt viscosity is easily obtained.
- the latter polymerization step in the present invention is not a simple fractionation / granulation step of the PAS prepolymer produced in the former polymerization step, but is for raising the degree of polymerization of the PAS prepolymer.
- the polymerization reaction is continued in a phase separation state in which the liquid phase in the polymerization reaction system is mixed with the produced polymer rich phase and the produced polymer dilute phase in the presence of the phase separation agent.
- the PAS concentration of the concentrated phase is usually 30 to 70% by mass, preferably 40 to 60% by mass, more preferably 45 to 55% by mass.
- the PAS concentration of the dilute phase is usually 0.1 to 15% by mass, preferably 0.5 to 10% by mass, more preferably 1 to 8% by mass.
- the polymerization reaction method may be a batch method, a continuous method, or a combination of both methods.
- a system using two or more reaction vessels can be used as desired.
- the polymerization step is performed in terms of the yield of granular PAS and the particle strength.
- Water is added to the reaction system so that there is a mole of water, preferably 2.5 to 5.0 moles, more preferably 2.6 to 3.0 moles, and 245 to 290 ° C.
- the reaction is continued at a temperature of preferably 250 to 280 ° C., more preferably 260 to 270 ° C. for 0.5 to 20 hours, preferably 1.0 to 10 hours, more preferably 1.5 to 3.0 hours, Increasing the conversion of the dihaloaromatic compound and converting the prepolymer to a higher molecular weight polyarylene sulfide.
- Cooling step The present invention includes a cooling step of cooling the reaction product mixture after the polymerization step.
- the liquid phase containing the produced polymer is cooled.
- the slow cooling it is preferable to cool the liquid phase by controlling the temperature decreasing rate at 2.0 to 0.1 ° C./min.
- the slow cooling can be performed by a method in which the polymerization reaction system is exposed to an ambient temperature (for example, room temperature).
- an ambient temperature for example, room temperature.
- the temperature of the liquid phase in the polymerization reaction system is preferably 2.0 to 0 until the polymerization temperature in the liquid-liquid phase separation polymerization step or the liquid-liquid phase separation state is lowered to 220 ° C.
- the liquid phase is gradually cooled by controlling the temperature decreasing rate to 1 ° C./min, more preferably 1.5 to 0.2 ° C./min, more preferably 1.3 to 0.3 ° C./min. .
- Such control of the cooling rate can promote the granulation of the polymer. From 220 ° C., the liquid phase can be cooled to a desired temperature without temperature control.
- the polymerization reaction system can be allowed to stand at the ambient temperature, or the rate of temperature drop of the liquid phase can be increased.
- the final cooling temperature is a temperature not lower than room temperature and lower than 220 ° C. at which separation and recovery processes such as sieving are easy.
- it is 40 degreeC or more, More preferably, it is 45 degreeC or more.
- the upper limit preferably 200 ° C. or less, preferably less than 100 ° C.
- a method of separating / recovering granular PAS from a reaction solution by a method of sieving using a specific sieve sieve adopt.
- Sieving may be performed while the product slurry is in a high temperature state (eg, a temperature of room temperature or higher and lower than 220 ° C.).
- the produced PAS is sieved with a sieve having a sieve opening of 38 ⁇ m or more, and recovered as a sieved product after sieving.
- the sieving may be performed after washing, which will be described later, or after drying.
- sieving may be performed at each stage before washing, after washing, and after drying.
- PAS may be washed with hot water or the like.
- the produced PAS can also be treated with a salt such as an organic acid or ammonium chloride.
- the organic acid is preferably acetic acid. After washing, it is dried according to a conventional method.
- a sieve having an opening of 75 ⁇ m (200 mesh (number of items / inch)) and a sieve of an opening of 38 ⁇ m (400 mesh (number of items / inch) low molecular weight substances and oligomers are efficiently removed. be able to. More preferably, it is desirable to use a sieve having a sieve opening of 150 ⁇ m (100 mesh (number of meshes / inch)) that can efficiently remove fine by-product salt.
- the granular PAS collected by a sieve having a sieve opening of 150 ⁇ m is usually 86.5% by mass or more, preferably 87.5% by mass or more, more preferably 88.5% by mass. %, And even more preferably, it can be recovered in a yield of 89.0% by mass or more.
- the granular PAS according to an embodiment of the present invention has a sieved content of 86.5% by mass or more and a particle strength of 88% or more by a screen having a mesh size of 150 ⁇ m.
- the granular PAS according to another embodiment of the present invention has a specific surface area of 85 m 2 / g or less and a particle strength of 88% or more.
- the granular PAS according to still another embodiment of the present invention has a yield retention rate of 76% or more.
- a granular PAS according to yet another embodiment of the invention is produced by the method according to the invention for producing a granular PAS.
- the granular PAS produced as described above has a sieved content of 86.5% by mass or more and a particle strength of 88% or more by a screen having an opening diameter of 150 ⁇ m. Further, the granular PAS produced as described above has a specific surface area of 85 m 2 / g or less and a particle strength of 88% or more. Further, the granular PAS produced as described above has a yield retention of 76% or more. Thus, the granular PAS according to the present invention is excellent in terms of yield, particle strength and / or yield retention.
- the content of the sieved product by a screen having an aperture diameter of 150 ⁇ m is 86.5% by mass or more, preferably 87.5% by mass or more, more preferably 88.5% by mass. Or more, and more preferably 89.0% by mass or more.
- the granular PAS according to the present invention has a specific surface area of 85 m 2 / g or less, preferably 82 m 2 / g or less, more preferably 80 m 2 / g or less, and even more preferably 75 m 2 / g or less. is there. In the present specification, the specific surface area is measured by the BET method by nitrogen adsorption.
- the granular PAS according to the present invention has a particle strength of 88% or more, preferably 89% or more, more preferably 90% or more, and still more preferably 93% or more.
- the particle strength refers to a mixture of 500 g of glass beads and 30 g of granular PAS on a 100 mesh sieve, which is shaken with a shaker for 30 minutes, and then the granular PAS is sieved on a 100 mesh screen.
- the mass ratio calculated by (mass of 100 mesh sieve product) / (total mass of 100 mesh sieve product and 100 mesh sieve product) ⁇ 100.
- the granular PAS according to the present invention has a yield retention of 76% or more (for example, 76% or more and 100% or less), preferably 77% or more and 100% or less, more preferably 78% or more and 100% or less. More preferably 79% or more and 100% or less.
- the yield retention rate is defined as yield ⁇ particle strength ⁇ 10 ⁇ 2 .
- the weight average molecular weight produced by the method for producing the granular PAS according to Embodiment A is 60,000 or less, preferably 15,000 or more and 50,000 or less. More preferably 17,000 or more and 48,000 or less, still more preferably 18,000 or more and 45,000 or less, and even more preferably 20,000 or more and less than 40,000, and has a mesh size of 150 ⁇ m.
- the content of the sieved product by the screen of 86.5% by mass or more, preferably 87.5% by mass or more, more preferably 88.5% by mass or more, still more preferably 89.0% by mass or more, A granular PAS having a strength of 88% or more, preferably 89% or more, more preferably 90% or more, and even more preferably 93% or more is preferable.
- the granular PAS is a granular PAS produced by the method for producing the granular PAS according to Embodiment B, and the specific surface area is 85 m 2 / g or less, preferably 82 m 2 / g or less, more preferably 80 m 2 / g or less, still more preferably not more than 75 m 2 / g, particle strength 88% or more, preferably 89% or more, more preferably 90% or more, even more preferably 93% or more Granular PAS is preferred.
- the granular PAS of the present invention is used as it is or after being oxidatively cross-linked, either alone or by blending various synthetic resins, various fillers, various additives, and extrusion molding of various injection molded products, sheets, films, fibers, pipes, etc. Can be formed into a product.
- Granular PAS is also useful as a sealing agent or coating agent for electronic components.
- PPS is particularly preferable.
- the present invention is a method for improving the yield of a sieved product with a screen having an opening diameter of 150 ⁇ m in granular PAS,
- a phase separation agent is added to the reaction product mixture from the start of the polymerization step to before the start of granular PAS formation in the cooling step;
- the polymerization step is (1) The alkali metal sulfide and the dihaloaromatic compound are reacted at a temperature of 170 to 270 ° C.
- the yield improving method details of the polymerization step, the cooling step, and the like are as described above.
- the phase separation agent is added to the reaction product mixture between the start of the polymerization step and before the start of the formation of the granular PAS in the cooling step.
- the degree of molecular weight PAS decreases in solubility in the product polymer dilute phase and shifts to a product polymer rich phase in which the concentration of high molecular weight PAS is high.
- medium molecular weight PAS can be taken into granular PAS and recovered as a product.
- the yield of the sieved product with a screen having an opening diameter of 150 ⁇ m is improved.
- the present invention can provide a method for improving the particle strength of granular PAS.
- the particle strength improving method according to the present invention is as follows.
- a polymerization step of obtaining a reaction product mixture by polymerizing at least one sulfur source selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides in an organic amide solvent and a dihaloaromatic compound; and the polymerization step A cooling step for later cooling the reaction product mixture, It further includes a specific surface area reduction step of reducing the specific surface area of the granular polyarylene sulfide from the start of the polymerization step to before the start of the formation of the granular polyarylene sulfide in the cooling step.
- the particle strength of the granular PAS can be improved as described above.
- the polymerization step is (1) The alkali metal sulfide and the dihaloaromatic compound are reacted at a temperature of 170 to 270 ° C. in an organic amide solvent containing 0.5 to 2.4 mol of water per mol of the charged alkali metal sulfide. And a step of forming a polyarylene sulfide prepolymer with a conversion rate of the dihaloaromatic compound of 50 to 98 mol%, and (2) 2.5 to 10 mol of water per mol of the charged alkali metal sulfide.
- the addition of the phase separation agent to the reaction product mixture is started, and the temperature of the reaction product mixture is 245
- the particle strength of the granular PAS can be improved as described above.
- Yield of granular PAS Yield (mass%) of granular PAS is the total amount of PAS before sieving and sieve opening 38 ⁇ m (400 mesh (number of meshes / inch)) or sieve opening 150 ⁇ m (100 The amount of the sieving material or the sieving material collected with a mesh (number of meshes / inch) sieve was measured, and the value was calculated as (sieving or sieving material / total amount) ⁇ 100. The results are shown in Table 1.
- the average particle size of the granular PAS recovered in the separation / recovery step is 2,800 ⁇ m (7 mesh (number of meshes / inch)) and 1,410 ⁇ m (12 mesh openings).
- the specific surface area of granular PAS was measured by the BET method by nitrogen adsorption using Flowsorb II2300 manufactured by Shimadzu Corporation. Prior to measurement, granular PPS on a 100 mesh sieve was washed with acetone three times and with water five times and then vacuum-dried at 60 ° C. for 13 hours to obtain a granular PPS having a sieve opening of 500 ⁇ m (32 mesh (number of meshes / inch)). ) And passed through a sieve with a sieve opening of 500 ⁇ m (32 mesh (number of meshes / inch)), and further passed through a sieve with a sieve opening of 350 ⁇ m (45 mesh (number of meshes / inch)). Sifted. For the measurement, about 0.1 g of a sieve top having a sieve opening of 350 ⁇ m (45 mesh (number of meshes / inch)) was used.
- Weight average molecular weight The weight average molecular weight (Mw) of the polymer was measured using a high temperature gel permeation chromatograph (GPC) SSC-7000 manufactured by Senshu Kagaku Co., Ltd. under the following conditions. The weight average molecular weight was calculated as a polystyrene equivalent value.
- Solvent 1-chloronaphthalene, Temperature: 210 ° C Detector: UV detector (360 nm), Sample injection volume: 200 ⁇ l (concentration: 0.05% by mass), Flow rate: 0.7 ml / min, Standard polystyrene: Five standard polystyrenes of 616,000, 113,000, 26,000, 8,200, and 600.
- Example 1 (Dehydration process) In a 20 liter Ti-lined autoclave, 5,998 g of N-methyl-2-pyrrolidone (NMP), 2,004 g of an aqueous sodium hydrosulfide solution (NaSH: purity 62.5% by mass), sodium hydroxide (NaOH: purity 73.5) Mass%) 1,205 g was charged. After the inside of the autoclave was replaced with nitrogen gas, the temperature was gradually raised to 200 ° C. while stirring at a rotation speed of 250 rpm for 2.5 hours, and water (H 2 O) 981 g, NMP 921 g, hydrogen sulfide 11 g was distilled.
- NMP N-methyl-2-pyrrolidone
- NaSH aqueous sodium hydrosulfide solution
- NaOH sodium hydroxide
- the conversion rate of pDCB in the former polymerization was 92%.
- the rotation speed of the stirrer was increased to 400 rpm, and 449 g of water was injected while stirring the contents of the autoclave.
- H 2 O / feed S (mol / mol) was 2.63.
- the temperature was raised to 265 ° C. and the reaction was allowed to proceed for 2 hours to carry out post polymerization.
- 79 g of water started to be injected at 265 ° C. while cooling at a cooling rate of 0.8 to 1.0 ° C./min, and the injection was completed at 264 ° C.
- the H 2 O / charging S (mol / mol) during cooling was 2.83.
- the obtained PPS had a melt viscosity of 24 Pa ⁇ s, an average particle size of 480 ⁇ m, and a specific surface area of 70 m 2 / g.
- the particle strength was 94%.
- the yield retention rate defined by yield ⁇ particle strength ⁇ 10 ⁇ 2 was 83.9%.
- Example 2 In Example 1, after completion
- Granular PPS was obtained with a yield of 87.6% by mass.
- the obtained PPS had a melt viscosity of 25 Pa ⁇ s, an average particle size of 390 ⁇ m, and a specific surface area of 80 m 2 / g.
- the particle strength was 92%.
- the yield retention rate was 80.6%.
- Example 3 In Example 1, all the processes were carried out in the same manner as in Example 1 except that the press-fitting of water was started at 260 ° C. and the press-fitting was completed at 248 ° C. after the end polymerization was completed. A granular PPS as a product was obtained with a yield of 87.7% by mass. The obtained PPS had a melt viscosity of 24 Pa ⁇ s, an average particle size of 430 ⁇ m, and a specific surface area of 81 m 2 / g. The particle strength was 89%. The yield retention rate was 78.1%.
- Example 1 In Example 1, everything was carried out in the same manner as in Example 1 except that water was not added after completion of the post polymerization. Granular PPS was obtained with a yield of 86.1% by mass. The obtained PPS had a melt viscosity of 25 Pa ⁇ s, an average particle size of 460 ⁇ m, and a specific surface area of 86 m 2 / g. The particle strength was 87%. The yield retention rate was 74.9%.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
Abstract
Description
有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とジハロ芳香族化合物とを重合反応させて反応生成混合物を得る重合工程、及び
該重合工程後に該反応生成混合物を冷却する冷却工程
を含み、
該重合工程の開始から、該冷却工程における粒状ポリアリーレンスルフィド形成の開始前までの時点で、該反応生成混合物への相分離剤の添加を開始し、
該反応生成混合物の温度が245℃以上である間に、相分離剤の50質量%以上を該反応生成混合物に添加し、
該重合工程は、
(1)仕込みアルカリ金属硫化物1モル当たり0.5~2.4モルの水を含有する有機アミド溶媒中で、アルカリ金属硫化物とジハロ芳香族化合物とを170~270℃の温度で反応させて、ジハロ芳香族化合物の転化率を50~98モル%とし、ポリアリーレンスルフィドのプレポリマーを生成させる工程、及び
(2)仕込みアルカリ金属硫化物1モル当たり2.5~10モルの水が存在する状態となるように反応系に水を添加するとともに、245~290℃の温度で、0.5~20時間反応を継続し、ジハロ芳香族化合物の転化率を上昇させ、かつ、該プレポリマーをより高分子量のポリアリーレンスルフィドに転換する工程、を含むことを特徴とする粒状ポリアリーレンスルフィドを製造する方法である。
目開き径150μmのスクリーンによる篩上物の含有量が86.5質量%以上であり、粒子強度が88%以上である粒状ポリアリーレンスルフィドである。
有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とジハロ芳香族化合物とを重合反応させて反応生成混合物を得る重合工程、及び
該重合工程後に該反応生成混合物を冷却する冷却工程
を含み、
該重合工程の開始から、該冷却工程における粒状ポリアリーレンスルフィド形成の開始前までの間に、該粒状ポリアリーレンスルフィドの比表面積を低下させる比表面積低下工程を更に含むことを特徴とする粒状ポリアリーレンスルフィドを製造する方法である。
比表面積が85m2/g以下であり、粒子強度が88%以上である粒状ポリアリーレンスルフィドである。
1-1.硫黄源
本発明では、硫黄源としてアルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源を使用する。アルカリ金属硫化物としては、硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、硫化セシウム、及びこれらの2種以上の混合物などを挙げることができる。アルカリ金属水硫化物としては、水硫化リチウム、水硫化ナトリウム、水硫化カリウム、水硫化ルビジウム、水硫化セシウム、及びこれらの2種以上の混合物などを挙げることができる。
本発明で使用するジハロ芳香族化合物は、芳香環に直接結合した2個のハロゲン原子を有するジハロゲン化芳香族化合物である。ジハロ芳香族化合物の具体例としては、例えば、o-ジハロベンゼン、m-ジハロベンゼン、p-ジハロベンゼン、ジハロトルエン、ジハロナフタレン、メトキシ-ジハロベンゼン、ジハロビフェニル、ジハロ安息香酸、ジハロジフェニルエーテル、ジハロジフェニルスルホン、ジハロジフェニルスルホキシド、ジハロジフェニルケトン等が挙げられる。
ここで、ハロゲン原子は、フッ素、塩素、臭素、及びヨウ素の各原子を指し、同一ジハロ芳香族化合物において、2つのハロゲン原子は、同じでも異なっていてもよい。これらのジハロ芳香族化合物は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。p-ジクロロベンゼン(p-DCB)が、通常、よく用いられる。
PASに分岐または架橋構造を導入するために、3個以上のハロゲン原子が結合したポリハロ化合物(必ずしも芳香族化合物でなくてもよい)、活性水素含有ハロゲン化芳香族化合物、ハロゲン化芳香族ニトロ化合物等を併用することができる。分岐・架橋剤としてのポリハロ化合物として、好ましくはトリハロベンゼンが挙げられる。
本発明では、脱水反応及び重合反応の溶媒として、非プロトン性極性有機溶媒である有機アミド溶媒を用いる。有機アミド溶媒は、高温でアルカリに対して安定なものが好ましい。
本発明では、液-液相分離状態を生起させるために、各種相分離剤を用いることができる。相分離剤とは、それ自身でまたは少量の水の共存下に、有機アミド溶媒に溶解し、PASの有機アミド溶媒に対する溶解性を低下させる作用を有する化合物である。相分離剤それ自体は、PASの溶媒ではない化合物である。
本発明では、低ハロゲン含有PASを得るために、重合工程における少なくとも一部の段階での重合反応は、ジスルフィド化合物の存在下で行うこともできる。ジスルフィド化合物の添加は、重合工程のどの段階でも良い。例えば、重合工程が、前段重合工程、後段重合工程の二段階工程を含む場合は、前段重合工程で添加しても良いし、後段重合工程で添加しても良い。また、前段重合工程開始時、すなわち、仕込み工程に添加してもよい。
ジスフィルド化合物の添加量をこの範囲にすることが、熱安定性がよく、成形加工時のガスの発生が少なく、低いハロゲン含有量と、低い溶融粘度を有し、性能が高度にバランスした粒状PASを得る上で重要である。
ジスフィルド化合物は、重合工程の中で単独で添加してもよいし、あるいは有機アミド溶媒との混合物として添加してもよい。
本発明の一実施形態(以下、「実施形態A」ともいう。)において、粒状PASを製造する方法は、
有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とジハロ芳香族化合物とを重合反応させて反応生成混合物を得る重合工程と、
該重合工程後に該反応生成混合物を冷却する冷却工程と、を含み、
該重合工程の開始から、該冷却工程における粒状PAS形成の開始前までの時点で、該反応生成混合物への相分離剤の添加を開始し、
該反応生成混合物の温度が245℃以上である間に、相分離剤の50質量%以上を該反応生成混合物に添加し、
該重合工程は、
(1)仕込みアルカリ金属硫化物1モル当たり0.5~2.4モルの水を含有する有機アミド溶媒中で、アルカリ金属硫化物とジハロ芳香族化合物とを170~270℃の温度で反応させて、ジハロ芳香族化合物の転化率を50~98モル%とし、ポリアリーレンスルフィドのプレポリマーを生成させる工程、及び
(2)仕込みアルカリ金属硫化物1モル当たり2.5~10モルの水が存在する状態となるように反応系に水を添加するとともに、245~290℃の温度で、0.5~20時間反応を継続し、ジハロ芳香族化合物の転化率を上昇させ、かつ、該プレポリマーをより高分子量のポリアリーレンスルフィドに転換する工程、を含む。本明細書において、反応生成混合物とは、上記重合反応で生じる反応生成物を含む混合物をいい、上記重合反応の開始と同時に生成が始まる。
有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とジハロ芳香族化合物とを重合反応させて反応生成混合物を得る重合工程、及び
該重合工程後に該反応生成混合物を冷却する冷却工程
を含み、
該重合工程の開始から、該冷却工程における粒状PAS形成の開始前までの間に、該粒状PASの比表面積を低下させる比表面積低下工程を更に含む。
重合工程の前工程として、脱水工程を配置して反応系内の共存水量(水分量ともいう)を調節することが好ましい。脱水工程は、望ましくは不活性ガス雰囲気下、有機アミド溶媒とアルカリ金属硫化物とを含む混合物を加熱して反応させ、蒸留により水を系外へ排出する方法により実施する。硫黄源としてアルカリ金属水硫化物を用いる場合には、アルカリ金属水硫化物とアルカリ金属水酸化物とを含む混合物を加熱して反応させ、蒸留により水を系外へ排出する方法により実施する。
仕込み工程は、重合工程で必要とされる、仕込み硫黄源に対する共存水量、仕込み硫黄源に対するジハロ芳香族化合物量、仕込み硫黄源に対するアルカリ金属水酸化物量、仕込み硫黄源に対するジスフィルド化合物量等を調整する工程である。
重合工程は、有機アミド溶媒中で硫黄源とジハロ芳香族化合物を加熱することにより行われる。重合工程は、相分離剤の存在下に、重合反応系内の液相に生成ポリマー濃厚相と生成ポリマー希薄相とが混在する液-液相分離状態で重合反応を継続する相分離重合工程を含んでもよい。重合工程が相分離重合工程を含む場合、重合工程は、相分離重合工程のみの1段階工程で行ってもよいし、相分離を伴わない工程と相分離重合工程との2段階工程で行ってもよい。
前段重合工程は、重合反応開始後、ジハロ芳香族化合物の転化率が80~99%、好ましくは85~98%、より好ましくは90~97%に達した段階であって、かつ、該液相が相分離状態となる前の工程である。ジハロ芳香族化合物の転化率は、反応混合物中に残存するジハロ芳香族化合物の量をガスクロマトグラフィにより求め、その残存量とジハロ芳香族化合物の仕込み量と硫黄源の仕込量に基づいて、以下の式により算出した値である。
転化率=[〔DHA仕込み量(モル)-DHA残存量(モル)〕/〔DHA仕込み量(モル)-DHA過剰量(モル)〕]×100
によって転化率を算出する。
転化率=[〔DHA仕込み量(モル)-DHA残存量(モル)〕/〔DHA仕込み量(モル)〕]×100
によって転化率を算出する。
後段重合工程で相分離剤として水を使用する場合には、後段重合工程における反応系の共存水量は、仕込み硫黄源1モル当たり、通常2~5モル、好ましくは2.1~4.5モル、さらに好ましくは2.2~4モル、特に好ましくは2.3~3.5モルの範囲に調整することが望ましい。反応系中の共存水量が2モル未満または5モル超過になると、生成PASの重合度が低下する。
(1)仕込みアルカリ金属硫化物1モル当たり0.5~2.4モル、好ましくは1.0~2.0モル、より好ましくは1.3~1.7モルの水を含有する有機アミド溶媒中で、アルカリ金属硫化物とジハロ芳香族化合物とを170~270℃、好ましくは200~265℃、より好ましくは250~262℃の温度で反応させて、ジハロ芳香族化合物の転化率を50~98モル%、好ましくは70~96モル%、より好ましくは90~94モル%とし、ポリアリーレンスルフィドのプレポリマーを生成させる工程、及び
(2)仕込みアルカリ金属硫化物1モル当たり2.5~10モル、好ましくは2.5~5.0モル、より好ましくは2.6~3.0モルの水が存在する状態となるように反応系に水を添加するとともに、245~290℃、好ましくは250~280℃、より好ましくは260~270℃の温度で、0.5~20時間、好ましくは1.0~10時間、より好ましくは1.5~3.0時間反応を継続し、ジハロ芳香族化合物の転化率を上昇させ、かつ、該プレポリマーをより高分子量のポリアリーレンスルフィドに転換する工程、を含む。
本発明は、重合工程後に該反応生成混合物を冷却する冷却工程を含む。
冷却工程では、生成ポリマーを含有する液相を冷却する。冷却工程では、溶剤のフラッシュなどにより液相を急冷するのではなく、徐冷することが、粒状ポリマーが得られやすいので好ましい。徐冷は、2.0~0.1℃/分の降温速度に制御して液相を冷却することが好ましい。徐冷は、重合反応系を周囲環境温度(例えば、室温)に曝す方法によって行うことができる。液相の冷却速度を制御するために、重合反応槽のジャケットに冷媒を流したり、液相をリフラックスコンデンサーで還流させたりする方法を採用することもできる。
本発明の製造方法によれば、粒状PASを生成させることができるため、特定の篩目開きの篩を用いて篩分する方法により粒状PASを反応液から分離・回収する方法を採用する。生成物スラリーが高温状態(例えば、室温以上220℃未満の温度)にある間に、篩い分けを行っても良い。本発明の製造方法においては、38μm以上の篩目開きを有する篩で生成PASの篩い分けを行い、篩い分け後の篩上物として回収する。篩い分けは、後述する洗浄後、または乾燥後に行ってもよい。また、篩い分けを、洗浄前、洗浄後、乾燥後の各段階で行ってよい。
本発明の一実施形態に係る粒状PASは、目開き径150μmのスクリーンによる篩上物の含有量が86.5質量%以上であり、粒子強度が88%以上である。本発明の別の実施形態に係る粒状PASは、比表面積が85m2/g以下であり、粒子強度が88%以上である。本発明の更に別の実施形態に係る粒状PASは、収率保持率が76%以上である。これらの粒状PASは、例えば、粒状PASを製造する本発明に係る方法により製造することができる。
本発明の更に別の実施形態に係る粒状PASは、粒状PASを製造する本発明に係る方法により製造される。上記の通りにして製造される粒状PASは、目開き径150μmのスクリーンによる篩上物の含有量が86.5質量%以上であり、粒子強度が88%以上である。また、上記の通りにして製造される粒状PASは、比表面積が85m2/g以下であり、粒子強度が88%以上である。更に、上記の通りにして製造される粒状PASは、収率保持率が76%以上である。
このように、本発明に係る粒状PASは、収率、粒子強度及び/又は収率保持率の点で優れる。
本発明に係る粒状PASは、比表面積が85m2/g以下であり、好ましくは82m2/g以下であり、より好ましくは80m2/g以下であり、更により好ましくは75m2/g以下である。なお、本明細書において、比表面積は、窒素吸着によるBET法で測定されたものである。
本発明に係る粒状PASは、粒子強度が88%以上であり、好ましくは89%以上であり、より好ましくは90%以上であり、更により好ましくは93%以上である。なお、本明細書において、粒子強度とは、ガラスビーズ500gと粒状PASの100メッシュ篩上物30gとの混合物を振盪器にて30分間振盪させた後、当該粒状PASを100メッシュスクリーンで篩分したときに、(100メッシュ篩上物の質量)/(100メッシュ篩上物と100メッシュ篩下物との合計の質量)×100で計算される質量比をいう。
本発明は、粒状PASにおいて、目開き径150μmのスクリーンによる篩上物の収率を向上させる方法であって、
有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とジハロ芳香族化合物とを重合反応させて反応生成混合物を得る重合工程、及び
該重合工程後に該反応生成混合物を冷却する冷却工程
を含み、
該重合工程の開始から、該冷却工程における粒状PAS形成の開始前までの間に、該反応生成混合物に相分離剤を添加し、
該重合工程は、
(1)仕込みアルカリ金属硫化物1モル当たり0.5~2.4モルの水を含有する有機アミド溶媒中で、アルカリ金属硫化物とジハロ芳香族化合物とを170~270℃の温度で反応させて、ジハロ芳香族化合物の転化率を50~98モル%とし、ポリアリーレンスルフィドのプレポリマーを生成させる工程、及び
(2)仕込みアルカリ金属硫化物1モル当たり2.5~10モルの水が存在する状態となるように反応系に水を添加するとともに、245~290℃の温度で、0.5~20時間反応を継続し、ジハロ芳香族化合物の転化率を上昇させ、かつ、該プレポリマーをより高分子量のポリアリーレンスルフィドに転換する工程、を含む方法を提供することができる。上記収率向上方法において、重合工程、冷却工程等の詳細は、上述の通りである。
本発明は、粒状PASの粒子強度向上方法を提供することができる。本発明に係る粒子強度向上方法は、一実施形態において、
有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とジハロ芳香族化合物とを重合反応させて反応生成混合物を得る重合工程、及び
該重合工程後に該反応生成混合物を冷却する冷却工程
を含み、
該重合工程の開始から、該冷却工程における粒状ポリアリーレンスルフィド形成の開始前までの間に、該粒状ポリアリーレンスルフィドの比表面積を低下させる比表面積低下工程を更に含む。
本実施形態では、上記比表面積低下工程を更に含むことにより、上述と同様に、該粒状PASの粒子強度を向上させることができる。
有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とジハロ芳香族化合物とを重合反応させて反応生成混合物を得る重合工程、及び
該重合工程後に該反応生成混合物を冷却する冷却工程
を含み、
該重合工程の開始から、該冷却工程における粒状ポリアリーレンスルフィド形成の開始前までの時点で、該反応生成混合物への相分離剤の添加を開始し、
該反応生成混合物の温度が245℃以上である間に、相分離剤の50質量%以上を該反応生成混合物に添加し、
該重合工程は、
(1)仕込みアルカリ金属硫化物1モル当たり0.5~2.4モルの水を含有する有機アミド溶媒中で、アルカリ金属硫化物とジハロ芳香族化合物とを170~270℃の温度で反応させて、ジハロ芳香族化合物の転化率を50~98モル%とし、ポリアリーレンスルフィドのプレポリマーを生成させる工程、及び
(2)仕込みアルカリ金属硫化物1モル当たり2.5~10モルの水が存在する状態となるように反応系に水を添加するとともに、245~290℃の温度で、0.5~20時間反応を継続し、ジハロ芳香族化合物の転化率を上昇させ、かつ、該プレポリマーをより高分子量のポリアリーレンスルフィドに転換する工程、を含む。
粒状PASの収率(質量%)は、篩い分けする前のPASの全量と、篩目開き38μm(400メッシュ(目数/インチ))または篩目開き150μm(100メッシュ(目数/インチ))の篩で捕集した篩上物又は篩下物の量を測定し、(篩上物又は篩下物/全量)×100で算出した。結果を表1に示す。
粒状PASの溶融粘度は、キャピラリーとして1.0mmφ、長さ10.0mmのノズルを装着した(株)東洋精機製作所製キャピログラフ1C(登録商標)により測定した。設定温度を310℃とした。ポリマー試料を装置内に導入し、5分間保持した後、剪断速度1,200sec-1で溶融粘度を測定した。
分離・回収工程で回収した粒状PASの平均粒径は、使用篩として、篩目開き2,800μm(7メッシュ(目数/インチ))、篩目開き1,410μm(12メッシュ(目数/インチ))、篩目開き1,000μm(16メッシュ(目数/インチ))、篩目開き710μm(24メッシュ(目数/インチ))、篩目開き500μm(32メッシュ(目数/インチ))、篩目開き250μm(60メッシュ(目数/インチ))、篩目開き150μm(100メッシュ(目数/インチ))、篩目開き105μm(145メッシュ(目数/インチ))、篩目開き75μm(200メッシュ(目数/インチ))、篩目開き38μm(400メッシュ(目数/インチ))の篩を用いた篩分法により測定し、各篩の篩上物の質量から、累積質量が50%質量となる時の平均粒径を算出した。結果を表1に示す。
粒状PASの比表面積は、島津製作所製フローソーブII2300を用い、窒素吸着によるBET法で測定した。測定に先立ち、100メッシュ篩上の粒状PPSをアセトンで3回、水で5回洗浄したのち60℃で13時間真空乾燥させた粒状PPSを、篩目開き500μm(32メッシュ(目数/インチ))の篩で篩分し、篩目開き500μm(32メッシュ(目数/インチ))の篩を通過した篩下物を、更に篩目開き350μm(45メッシュ(目数/インチ))の篩で篩分した。測定には、篩目開き350μm(45メッシュ(目数/インチ))の篩上物のうちおよそ0.1gを用いた。
1Lポリ瓶にガラスビーズ500gと粒状PASの100メッシュ篩上物30gを入れ、振盪器にて30分間振盪させた。振盪後、ポリ瓶内の粒状PASを100メッシュスクリーンで篩分し、100メッシュ篩上物と100メッシュ篩下物との合計に対する100メッシュ篩上物の質量比を求め、粒子強度とした。結果を表1に示す。
ポリマーの重量平均分子量(Mw)は、株式会社センシュー科学製の高温ゲルパーミエーションクロマトグラフ(GPC)SSC-7000を用いて、以下の条件で測定した。重量平均分子量は、ポリスチレン換算値として算出した。
溶媒: 1-クロロナフタレン、
温度: 210℃、
検出器: UV検出器(360nm)、
サンプル注入量: 200μl(濃度:0.05質量%)、
流速: 0.7ml/分、
標準ポリスチレン: 616,000、113,000、26,000、8,200、及び600の5種類の標準ポリスチレン。
(脱水工程)
20リットルのTi内張りオートクレーブに、N-メチル-2-ピロリドン(NMP)5,998gと水硫化ナトリウム水溶液(NaSH:純度62.5質量%)2,004g、水酸化ナトリウム(NaOH:純度73.5質量%)1,205gを仕込んだ。
該オートクレーブ内を窒素ガスで置換後、2.5時間かけて、撹拌機の回転数250rpmで撹拌しながら、徐々に200℃まで昇温し、水(H2O)981g、NMP921g、硫化水素11gを留出させた。
上記脱水工程後、オートクレーブの内容物を170℃まで冷却し、pDCB3,400g、NMP3,354g、水酸化ナトリウム(NaOH:純度97.0質量%)20.9g、及び水107gを加え、撹拌しながら、260℃の温度まで3時間かけて連続的に昇温させて、前段重合を行った。
缶内のNMP/仕込み硫黄源(以下、「仕込みS」と略記する。)の比率(g/モル)は、383、pDCB/仕込みS(モル/モル)は1.050、H2O/仕込みS(モル/モル)は1.50であった。
前段重合のpDCBの転化率は、92%であった。
前段重合終了後、撹拌機の回転数を400rpmに上げ、オートクレーブの内容物を撹拌しながら水449gを圧入した。H2O/仕込みS(モル/モル)は2.63であった。水の圧入後、265℃まで昇温し、2時間反応させて後段重合を行った。
後段重合終了後、冷却速度0.8~1.0℃/minで冷却を行いながら、265℃で水79gを圧入開始し、264℃で圧入完了した。冷却中のH2O/仕込みS(モル/モル)は2.83であった。
更に室温付近まで冷却速度0.8~1.0℃/minで冷却してから、内容物を目開き径150μm(100メッシュ)と38μm(400メッシュ)のスクリーンで篩分けし、目開き径150μmのスクリーンの篩上に、粒状PPSのウェットケーキ(好適造粒体)、目開き径38μmのスクリーンの篩上に小粒状PPSのウェットケーキ(38μm~150μmの微粉体)、篩下に分離液(固形分は38μmを通過する超微粉体)を得た。
その後、100メッシュ篩上の粒状PPSをアセトンで3回、水で5回洗浄したのち、収率89.3質量%で、粒状PPSを得た。得られたPPSの溶融粘度は24Pa・sであり、平均粒径は480μm、比表面積は70m2/gであった。粒子強度は、94%であった。収率×粒子強度×10-2で定義される収率保持率は83.9%であった。
実施例1において、後段重合終了後に、水を260℃で圧入開始し、255℃で圧入完了すること以外は、全て実施例1と同様に実施した。収率87.6質量%で、粒状PPSを得た。得られたPPSの溶融粘度は25Pa・sであり、平均粒径は390μm、比表面積は80m2/gであった。粒子強度は92%であった。収率保持率は80.6%であった。
実施例1において、後段重合終了後に、水を260℃で圧入開始し、248℃で圧入完了すること以外は、全て実施例1と同様に実施した。収率87.7質量%で、製品となる粒状PPSを得た。得られたPPSの溶融粘度は24Pa・sであり、平均粒径は430μm、比表面積は81m2/gであった。粒子強度は89%であった。収率保持率は78.1%であった。
実施例1において、後段重合終了後に水を加えないこと以外は、全て実施例1と同様に実施した。収率86.1質量%で、粒状PPSを得た。得られたPPSの溶融粘度は25Pa・sであり、平均粒径は460μm、比表面積は86m2/gであった。粒子強度は87%であった。収率保持率は74.9%であった。
Claims (7)
- 粒状ポリアリーレンスルフィドを製造する方法であって、
有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とジハロ芳香族化合物とを重合反応させて反応生成混合物を得る重合工程と、
該重合工程後に該反応生成混合物を冷却する冷却工程と、を含み、
該重合工程の開始から、該冷却工程における粒状ポリアリーレンスルフィド形成の開始前までの時点で、該反応生成混合物への相分離剤の添加を開始し、
該反応生成混合物の温度が245℃以上である間に、相分離剤の50質量%以上を該反応生成混合物に添加し、
該重合工程は、
(1)仕込みアルカリ金属硫化物1モル当たり0.5~2.4モルの水を含有する有機アミド溶媒中で、アルカリ金属硫化物とジハロ芳香族化合物とを170~270℃の温度で反応させて、ジハロ芳香族化合物の転化率を50~98モル%とし、ポリアリーレンスルフィドのプレポリマーを生成させる工程、及び
(2)仕込みアルカリ金属硫化物1モル当たり2.5~10モルの水が存在する状態となるように反応系に水を添加するとともに、245~290℃の温度で、0.5~20時間反応を継続し、ジハロ芳香族化合物の転化率を上昇させ、かつ、該プレポリマーをより高分子量のポリアリーレンスルフィドに転換する工程、を含むことを特徴とする粒状ポリアリーレンスルフィドを製造する方法。 - 前記重合工程の終了後から、該冷却工程における粒状ポリアリーレンスルフィド形成の開始前までの時点で、前記反応生成混合物への相分離剤の添加を開始する請求項1に記載の粒状ポリアリーレンスルフィドを製造する方法。
- 前記相分離剤は該粒状ポリアリーレンスルフィドの粒子特性を改質する作用を有する粒子改質剤であることを特徴とする請求項1又は2に記載の粒状ポリアリーレンスルフィドを製造する方法。
- 前記重合工程における重合温度が250℃以上である請求項1から3のいずれか1項に記載の粒状ポリアリーレンスルフィドを製造する方法。
- 請求項1から4のいずれか1項に記載の粒状ポリアリーレンスルフィドを製造する方法により製造される、重量平均分子量が60,000以下の粒状ポリアリーレンスルフィドであって、
目開き径150μmのスクリーンによる篩上物の含有量が86.5質量%以上であり、粒子強度が88%以上である粒状ポリアリーレンスルフィド。 - 粒状ポリアリーレンスルフィドを製造する方法であって、
有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とジハロ芳香族化合物とを重合反応させて反応生成混合物を得る重合工程、及び
該重合工程後に該反応生成混合物を冷却する冷却工程
を含み、
該重合工程の開始から、該冷却工程における粒状ポリアリーレンスルフィド形成の開始前までの間に、該粒状ポリアリーレンスルフィドの比表面積を低下させる比表面積低下工程を更に含むことを特徴とする粒状ポリアリーレンスルフィドを製造する方法。 - 請求項6に記載の粒状ポリアリーレンスルフィドを製造する方法により製造される粒状ポリアリーレンスルフィドであって、
比表面積が85m2/g以下であり、粒子強度が88%以上である粒状ポリアリーレンスルフィド。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680032378.7A CN107636045B (zh) | 2015-06-12 | 2016-06-10 | 制造粒状聚亚芳基硫醚的方法、以及粒状聚亚芳基硫醚 |
US15/580,074 US20180171078A1 (en) | 2015-06-12 | 2016-06-10 | Method of manufacturing granular polyarylene sulfide, and granular polyarylene sulfide |
KR1020177035094A KR101969258B1 (ko) | 2015-06-12 | 2016-06-10 | 입상 폴리아릴렌 설파이드를 제조하는 방법, 및 입상 폴리아릴렌 설파이드 |
JP2017523716A JP6517337B2 (ja) | 2015-06-12 | 2016-06-10 | 粒状ポリアリーレンスルフィドを製造する方法、及び粒状ポリアリーレンスルフィド |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-119248 | 2015-06-12 | ||
JP2015119248 | 2015-06-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016199894A1 true WO2016199894A1 (ja) | 2016-12-15 |
Family
ID=57503453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/067380 WO2016199894A1 (ja) | 2015-06-12 | 2016-06-10 | 粒状ポリアリーレンスルフィドを製造する方法、及び粒状ポリアリーレンスルフィド |
Country Status (5)
Country | Link |
---|---|
US (1) | US20180171078A1 (ja) |
JP (1) | JP6517337B2 (ja) |
KR (1) | KR101969258B1 (ja) |
CN (1) | CN107636045B (ja) |
WO (1) | WO2016199894A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017170225A1 (ja) * | 2016-03-31 | 2017-10-05 | 株式会社クレハ | 粒状ポリアリーレンスルフィドの製造方法、粒状ポリアリーレンスルフィドの平均粒子径増大方法、粒状ポリアリーレンスルフィドの粒子強度向上方法、及び粒状ポリアリーレンスルフィド |
WO2018147233A1 (ja) * | 2017-02-07 | 2018-08-16 | 株式会社クレハ | 粒状ポリアリーレンスルフィドの製造方法及び粒状ポリアリーレンスルフィド |
WO2020026590A1 (ja) * | 2018-07-31 | 2020-02-06 | 株式会社クレハ | ポリアリーレンスルフィドの製造方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102250242B1 (ko) | 2018-07-04 | 2021-05-10 | 주식회사 엘지화학 | 폴리아릴렌 설파이드의 제조 방법 |
WO2020009495A1 (ko) * | 2018-07-04 | 2020-01-09 | 주식회사 엘지화학 | 폴리아릴렌 설파이드의 제조 방법 |
US11407861B2 (en) | 2019-06-28 | 2022-08-09 | Ticona Llc | Method for forming a polyarylene sulfide |
KR102608800B1 (ko) * | 2019-08-08 | 2023-11-30 | 주식회사 엘지화학 | 폴리페닐렌 설파이드 제조 방법 및 제조 장치 |
JP2023508316A (ja) | 2019-12-20 | 2023-03-02 | ティコナ・エルエルシー | ポリアリーレンスルフィドを形成するための方法 |
US11795272B2 (en) | 2020-03-24 | 2023-10-24 | Kureha Corporation | Method for producing polyarylene sulfide |
WO2023038889A1 (en) | 2021-09-08 | 2023-03-16 | Ticona Llc | Extraction technique for recovering an organic solvent from a polyarylene sulfide waste sludge |
US12024596B2 (en) | 2021-09-08 | 2024-07-02 | Ticona Llc | Anti-solvent technique for recovering an organic solvent from a polyarylene sulfide waste sludge |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS591536A (ja) * | 1982-06-04 | 1984-01-06 | フイリツプス・ペトロリユ−ム・コンパニ− | 粒状ポリ(アリ−レンスルフイド)の回収法 |
JPS617332A (ja) * | 1984-06-20 | 1986-01-14 | Kureha Chem Ind Co Ltd | 高分子量ポリアリ−レンスルフイドの製造法 |
JPH06145355A (ja) * | 1992-11-13 | 1994-05-24 | Kureha Chem Ind Co Ltd | ポリフェニレンスルフィドの製造方法 |
JPH07330903A (ja) * | 1994-06-03 | 1995-12-19 | Kureha Chem Ind Co Ltd | ポリアリーレンチオエーテル及びその製造方法 |
JPH08183858A (ja) * | 1994-12-28 | 1996-07-16 | Kureha Chem Ind Co Ltd | ポリフェニレンスルフィドの製造方法 |
JP2001089569A (ja) * | 1999-07-21 | 2001-04-03 | Toray Ind Inc | 粒状ポリアリーレンスルフィド樹脂の製造方法 |
JP2004051732A (ja) * | 2002-07-18 | 2004-02-19 | Kureha Chem Ind Co Ltd | ポリアリーレンスルフィドの製造方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4038263A (en) | 1975-05-27 | 1977-07-26 | Phillips Petroleum Company | Production of p-phenylene sulfide polymers |
JPS5212240A (en) | 1975-07-18 | 1977-01-29 | Matsushita Electric Ind Co Ltd | Process for preparing transparent coating compounds |
JPS59219332A (ja) | 1983-05-30 | 1984-12-10 | Dainippon Ink & Chem Inc | ポリフェニレンスルフィドの製造方法 |
JPS6333775A (ja) | 1986-07-28 | 1988-02-13 | シャープ株式会社 | ライトボックス |
JP2575430B2 (ja) | 1987-12-18 | 1997-01-22 | 東ソー株式会社 | ポリ(p−フェニレンスルフィド)の製造方法 |
EP1440996B1 (en) * | 2001-09-27 | 2010-05-26 | Kureha Corporation | Process for production of polyarylene sulfide |
JP4777610B2 (ja) * | 2003-12-26 | 2011-09-21 | 株式会社クレハ | ポリアリーレンスルフィド及びその製造方法 |
CN102428122B (zh) * | 2009-05-18 | 2013-08-21 | 株式会社吴羽 | 聚芳撑硫醚及其制造方法 |
EP2594598A4 (en) * | 2010-07-13 | 2016-09-07 | Kureha Corp | PROCESS FOR THE PRODUCTION OF POLY (ARYLENE SULFIDE) AND DEVICE FOR PRODUCING THE SAME |
WO2016133740A1 (en) * | 2015-02-19 | 2016-08-25 | Ticona Llc | Method of polyarylene sulfide precipitation |
-
2016
- 2016-06-10 CN CN201680032378.7A patent/CN107636045B/zh not_active Expired - Fee Related
- 2016-06-10 WO PCT/JP2016/067380 patent/WO2016199894A1/ja active Application Filing
- 2016-06-10 US US15/580,074 patent/US20180171078A1/en not_active Abandoned
- 2016-06-10 JP JP2017523716A patent/JP6517337B2/ja not_active Expired - Fee Related
- 2016-06-10 KR KR1020177035094A patent/KR101969258B1/ko active IP Right Grant
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS591536A (ja) * | 1982-06-04 | 1984-01-06 | フイリツプス・ペトロリユ−ム・コンパニ− | 粒状ポリ(アリ−レンスルフイド)の回収法 |
JPS617332A (ja) * | 1984-06-20 | 1986-01-14 | Kureha Chem Ind Co Ltd | 高分子量ポリアリ−レンスルフイドの製造法 |
JPH06145355A (ja) * | 1992-11-13 | 1994-05-24 | Kureha Chem Ind Co Ltd | ポリフェニレンスルフィドの製造方法 |
JPH07330903A (ja) * | 1994-06-03 | 1995-12-19 | Kureha Chem Ind Co Ltd | ポリアリーレンチオエーテル及びその製造方法 |
JPH08183858A (ja) * | 1994-12-28 | 1996-07-16 | Kureha Chem Ind Co Ltd | ポリフェニレンスルフィドの製造方法 |
JP2001089569A (ja) * | 1999-07-21 | 2001-04-03 | Toray Ind Inc | 粒状ポリアリーレンスルフィド樹脂の製造方法 |
JP2004051732A (ja) * | 2002-07-18 | 2004-02-19 | Kureha Chem Ind Co Ltd | ポリアリーレンスルフィドの製造方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017170225A1 (ja) * | 2016-03-31 | 2017-10-05 | 株式会社クレハ | 粒状ポリアリーレンスルフィドの製造方法、粒状ポリアリーレンスルフィドの平均粒子径増大方法、粒状ポリアリーレンスルフィドの粒子強度向上方法、及び粒状ポリアリーレンスルフィド |
US10731005B2 (en) | 2016-03-31 | 2020-08-04 | Kureha Corporation | Method for producing granular polyarylene sulfide, method for increasing average particle size of granular polyarylene sulfide, method for enhancing particle strength of granular polyarylene sulfide, and granular polyarylene sulfide |
WO2018147233A1 (ja) * | 2017-02-07 | 2018-08-16 | 株式会社クレハ | 粒状ポリアリーレンスルフィドの製造方法及び粒状ポリアリーレンスルフィド |
KR20190082955A (ko) * | 2017-02-07 | 2019-07-10 | 가부시끼가이샤 구레하 | 입상 폴리아릴렌 설파이드의 제조 방법 및 입상 폴리아릴렌 설파이드 |
CN110121521A (zh) * | 2017-02-07 | 2019-08-13 | 株式会社吴羽 | 粒状聚亚芳基硫醚的制造方法以及粒状聚亚芳基硫醚 |
JPWO2018147233A1 (ja) * | 2017-02-07 | 2019-11-07 | 株式会社クレハ | 粒状ポリアリーレンスルフィドの製造方法及び粒状ポリアリーレンスルフィド |
KR102141348B1 (ko) | 2017-02-07 | 2020-08-05 | 가부시끼가이샤 구레하 | 입상 폴리아릴렌 설파이드의 제조 방법 및 입상 폴리아릴렌 설파이드 |
CN110121521B (zh) * | 2017-02-07 | 2021-11-12 | 株式会社吴羽 | 粒状聚亚芳基硫醚的制造方法以及粒状聚亚芳基硫醚 |
WO2020026590A1 (ja) * | 2018-07-31 | 2020-02-06 | 株式会社クレハ | ポリアリーレンスルフィドの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20180004229A (ko) | 2018-01-10 |
KR101969258B1 (ko) | 2019-04-15 |
CN107636045B (zh) | 2020-02-18 |
CN107636045A (zh) | 2018-01-26 |
JPWO2016199894A1 (ja) | 2018-03-08 |
US20180171078A1 (en) | 2018-06-21 |
JP6517337B2 (ja) | 2019-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6517337B2 (ja) | 粒状ポリアリーレンスルフィドを製造する方法、及び粒状ポリアリーレンスルフィド | |
JP5623277B2 (ja) | 粒状ポリアリーレンスルフィドの製造方法 | |
JP5731196B2 (ja) | 末端ハロゲン基含量が低減されたポリアリーレンスルフィドの製造方法 | |
JP5221877B2 (ja) | ポリアリーレンスルフィドの製造方法 | |
JP6062924B2 (ja) | 粒状ポリアリーレンスルフィド及びその製造方法 | |
US9896548B2 (en) | Method of producing polyarylene sulfide | |
KR101827231B1 (ko) | 폴리아릴렌 설파이드의 제조 방법 및 폴리아릴렌 설파이드 | |
JP6751580B2 (ja) | 粒状ポリアリーレンスルフィドの製造方法、粒状ポリアリーレンスルフィドの平均粒子径増大方法、粒状ポリアリーレンスルフィドの粒子強度向上方法、及び粒状ポリアリーレンスルフィド | |
CN107207743B (zh) | 制造微粉聚亚芳基硫醚的方法以及微粉聚亚芳基硫醚 | |
JP6418852B2 (ja) | ポリアリーレンスルフィドの製造方法及びポリアリーレンスルフィド | |
WO2017057732A1 (ja) | ポリアリーレンスルフィドの製造方法 | |
EP3524632B1 (en) | Polyarylene sulfide preparation method | |
CN110709446B (zh) | 聚芳硫醚的制备方法 | |
JP6784782B2 (ja) | 粒状ポリアリーレンスルフィドの製造方法及び粒状ポリアリーレンスルフィド | |
TW202028306A (zh) | 分離與回收聚芳硫醚之方法以及聚芳硫醚的製備方法 | |
WO2020121785A1 (ja) | ポリアリーレンスルフィドの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16807599 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017523716 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20177035094 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15580074 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16807599 Country of ref document: EP Kind code of ref document: A1 |