WO2021230097A1 - エポキシアクリレート樹脂、アルカリ可溶性樹脂、それを含む樹脂組成物及びその硬化物 - Google Patents

エポキシアクリレート樹脂、アルカリ可溶性樹脂、それを含む樹脂組成物及びその硬化物 Download PDF

Info

Publication number
WO2021230097A1
WO2021230097A1 PCT/JP2021/017135 JP2021017135W WO2021230097A1 WO 2021230097 A1 WO2021230097 A1 WO 2021230097A1 JP 2021017135 W JP2021017135 W JP 2021017135W WO 2021230097 A1 WO2021230097 A1 WO 2021230097A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin
parts
alkali
resin composition
Prior art date
Application number
PCT/JP2021/017135
Other languages
English (en)
French (fr)
Inventor
正浩 宗
一男 石原
起煥 柳
▲清▼來 林
Original Assignee
日鉄ケミカル&マテリアル株式会社
株式会社国都化▲学▼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社, 株式会社国都化▲学▼ filed Critical 日鉄ケミカル&マテリアル株式会社
Priority to CN202180034251.XA priority Critical patent/CN115551914A/zh
Priority to JP2022521835A priority patent/JPWO2021230097A1/ja
Priority to KR1020227040044A priority patent/KR20230008105A/ko
Publication of WO2021230097A1 publication Critical patent/WO2021230097A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • C08F290/144Polymers containing more than one epoxy group per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders

Definitions

  • the present invention relates to an epoxy acrylate resin, a curable resin composition using the epoxy acrylate resin, an unsaturated group-containing alkali-soluble resin, a photosensitive resin composition containing the same as an essential component, and a cured product thereof.
  • the curable resin composition, the photosensitive resin composition and the cured product thereof of the present invention include permanent protective films such as overcoats, undercoats and insulating coats for manufacturing circuit boards, solder resists, plating resists, etching resists, and the like. It can be applied to an insulating film for multi-layering of a wiring board on which a semiconductor element is mounted, a semiconductor gate insulating film, a photosensitive adhesive, and the like.
  • Solder resist ink is used for the insulation protection film of the exposed conductor circuit of the printed wiring board and for preventing solder adhesion to the solder-free part of the circuit.
  • a coating film forming method a screen printing method has been conventionally adopted, and a cured film is required to have solder heat resistance, moisture resistance, adhesion, chemical resistance, plating resistance, and electrolytic corrosion resistance.
  • solder resists of this type thermosetting type and ultraviolet curable type.
  • the former is mainly epoxy resin and the latter is epoxy acrylate resin.
  • the insulation film formation by solder resist has become the mainstream instead of the screen printing method.
  • the temperature is required to be °C or higher, which not only increases the cost of heating equipment, but also, for example, when a glass epoxy substrate is used for the core substrate, the curing temperature is too high and there is a risk of discoloration or warping of the substrate.
  • the cured film obtained from these known epoxy acrylate resins or acid anhydride variants thereof is said to have insufficient solder heat resistance, moisture resistance, adhesion, chemical resistance, plating resistance, electrolytic corrosion resistance, and the like. There's a problem.
  • the insulation layer for chip mounting boards such as build-up boards for multi-chip modules (MCM) and chip size packages (CSP) has reliability, pressure cooker resistance, and thermal resistance. Cycleability is required, and when the above-mentioned known epoxy acrylate resin or an acid anhydride modified product thereof is used as a resin composition for a solder resist, there is also a problem that sufficient reliability cannot be exhibited.
  • the electronic components used therein are required to be smaller and have higher densities. Further, in terms of workability of the insulating materials used for them, miniaturization and optimization of the cross-sectional shape of the processed pattern are required.
  • a method of patterning by exposure and development is known as an effective means for microfabrication of an insulating material, and a photosensitive resin composition has been used there. Many properties such as heat resistance and chemical resistance are required.
  • various studies have been made on the use of an organic insulating material in a gate insulating film for an organic TFT, it is necessary to reduce the operating voltage of the organic TFT by thinning the gate insulating film.
  • an organic insulating material having an insulating withstand voltage of about 1 MV / cm the application of a thin film having an insulating film thickness of about 0.2 ⁇ m is being studied.
  • the conventional insulating material made of a photosensitive resin composition utilizes a photocuring reaction by a reaction between a photoreactive alkali-soluble resin and a photopolymerization initiator, and is mainly used as an exposure wavelength for photocuring.
  • the i-line (365 nm), which is one of the line spectra of the above, is used.
  • this i-ray is absorbed by the photosensitive resin itself or the colorant, and the degree of photocurability is lowered.
  • the exposed portion has a difference in the cross-linking density in the film thickness direction.
  • Patent Document 3 discloses that an alkali-soluble unsaturated compound having a polymerizable unsaturated group and a carboxyl group in one molecule is effective for forming a negative pattern such as a color filter.
  • a negative pattern such as a color filter.
  • the molecular weight and the amount of the carboxyl group of each molecule are widely distributed, the distribution of the alkali dissolution rate of the alkali-soluble resin is wide, and it is difficult to form a fine negative pattern.
  • Patent Document 4 discloses polyfunctionalization of an alkali-soluble resin composition that increases the molecular weight of the carboxyl group-containing copolymer.
  • the number of polymerizable unsaturated bonds is small and the crosslink density cannot be sufficiently obtained, there is room for improvement of the copolymer structure such as increasing the ratio of the polymerizable unsaturated bonds in one molecule.
  • the photosensitive resin composition is also being considered to use the photosensitive resin composition as an interlayer insulating film of a semiconductor device or a flattening film for covering a TFT electrode of a liquid crystal display device.
  • the photosensitive resin composition is required to have a low dielectric constant so as not to impair the function of the device.
  • Japanese Unexamined Patent Publication No. 61-243869 Japanese Patent Application Laid-Open No. 2003-0267662 Japanese Unexamined Patent Publication No. 4-340965 Japanese Unexamined Patent Publication No. 9-325494
  • an object of the present invention is to provide a novel epoxy acrylate resin which can be lightly or thermoset and has good dielectric properties, or to provide a photosensitive resin composition which can be patterned by alkaline development. Further, it is an object of the present invention to provide a curable resin composition having good dielectric properties and excellent reliability such as adhesion and chemical resistance required for solder resists and insulating films of printed wiring boards and cured products thereof. It is an object of the present invention to provide a cured product (cured film) that exhibits excellent chemical resistance when undergoing a processing process such as electrode formation.
  • the present inventors obtained by reacting a (meth) acrylic acid with a resin obtained by epoxidizing a dicyclopentadiene-type phenol resin having a dicyclopentenyl group as a substituent.
  • the curable resin composition using the epoxy acrylate resin to be obtained is suitable for obtaining a highly reliable cured product (insulating film), and the epoxy acrylate resin is composed of dicarboxylic acids, tricarboxylic acids or acid monoanhydrous thereof. It has been found that a photosensitive resin composition using an alkali-soluble resin obtained by reacting an object is suitable for a solder resist, an insulating film, or the like of a printed wiring board.
  • the present invention is an epoxy acrylate resin represented by the following general formula (1).
  • R 1 independently represents a hydrocarbon group having 1 to 8 carbon atoms.
  • R 2 is independently a hydrogen atom or a dicyclopentenyl group, one or more is a dicyclopentenyl group.
  • R 3 represents a hydrogen atom or a methyl group.
  • X is an unsaturated bond-containing group represented by the above formula (1a). n indicates the number of repetitions, and the average value thereof is 1 to 5.
  • the present invention is an alkali-soluble resin represented by the following general formula (2) and having a carboxyl group and a polymerizable unsaturated group in one molecule.
  • R 1 , R 2 , and R 3 are in agreement with the general formula (1), respectively.
  • Y represents an unsaturated bond-containing group represented by the above formula (2a)
  • L represents a hydrogen atom or a carboxyl group-containing group represented by the above formula (3), and 50 mol% or more of L contains a carboxyl group. It is the basis.
  • M indicates a p + 1 valent carboxylic acid residue, and p is 1 or 2.
  • the present invention is a curable resin composition characterized by containing the above-mentioned epoxy acrylate resin and a polymerization initiator.
  • the present invention is a photosensitive resin composition
  • a photosensitive resin composition comprising the above-mentioned alkali-soluble resin, a photopolymerizable monomer having at least one polymerizable unsaturated group, and a photopolymerization initiator.
  • the photosensitive resin composition preferably further contains an epoxy resin.
  • Another embodiment of the present invention relates to a cured product obtained by curing the curable resin composition or the photosensitive resin composition.
  • the epoxy acrylate resin of the present invention can be cured by light or heat, and is also useful as an intermediate of an alkali-soluble resin which is an acid anhydride adduct thereof.
  • the alkali-soluble resin of the present invention provides a photosensitive resin composition capable of forming a fine cured film pattern by photolithography. Further, according to the present invention, since it is excellent in chemical resistance (alkali resistance, etc.) and excellent in adhesion to a substrate, heat resistance, electrical reliability, etc., a solder resist of a printed wiring board and optical patterning are required. A cured film pattern such as an insulating film can also be provided.
  • R 1 represents a hydrocarbon group having 1 to 8 carbon atoms, an alkyl group having 1 to 8 carbon atoms, an aryl group having 6 to 8 carbon atoms, an aralkyl group having 7 to 8 carbon atoms, or an aralkyl group having 7 to 8 carbon atoms.
  • Aryl groups are preferred.
  • the alkyl group having 1 to 8 carbon atoms may be linear, branched or cyclic, and may be, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group or a sec-butyl group.
  • Examples thereof include, but are not limited to, cycloalkyl groups having 5 to 8 carbon atoms such as groups.
  • Examples of the aryl group having 6 to 8 carbon atoms include, but are not limited to, a phenyl group, a tolyl group, a xylyl group, an ethylphenyl group and the like.
  • Examples of the aralkyl group having 7 to 8 carbon atoms include, but are not limited to, a benzyl group and an ⁇ -methylbenzyl group.
  • substituents a methyl group or a phenyl group is preferable, and a methyl group is particularly preferable, from the viewpoint of easy availability and reactivity when prepared as a cured product.
  • R 2 independently represents a hydrogen atom and a dicyclopentenyl group, and one or more are dicyclopentenyl groups.
  • the dicyclopentenyl group is a group derived from dicyclopentadiene and is represented by the following formula (1b) or formula (1c). Due to the presence of this group, the cured product of the epoxy acrylate resin of the present invention can have a low dielectric constant.
  • n is the number of repetitions, which indicates a number of 1 or more, and the average value thereof indicates a number of 1 to 5, preferably 1.1 to 4.0, more preferably 1.2 to 3.0, and 1. 3 to 2.0 is more preferable.
  • the average value is a number average.
  • X is an unsaturated bond-containing group represented by formula (1a)
  • R 3 represents a hydrogen atom or a methyl group.
  • the epoxy acrylate resin of the general formula (1) can be advantageously obtained by reacting the epoxy resin represented by the following general formula (4) with (meth) acrylic acid.
  • the epoxy resin is obtained by epoxidizing a dicyclopentadiene-type phenol resin obtained by reacting 2,6-disubstituted phenols with dicyclopentadiene.
  • R 1 , R 2 , and n are synonymous with the definitions in the general formula (1), respectively.
  • G represents a glycidyl group.
  • a known method can be used for the reaction between the epoxy resin and (meth) acrylic acid.
  • equimolar (meth) acrylic acid is used for the epoxy group. Since the (meth) acrylic acid is reacted with all the epoxy groups, the (meth) acrylic acid may be used in a slightly larger amount than the equimolar of the epoxy group and the carboxyl group.
  • the reaction temperature is 50 to 150 ° C. and the reaction time is 1 to 20 hours. Further, the solvent, catalyst and other reaction conditions used at this time are not particularly limited.
  • the solvent for example, it is preferable that it does not have a hydroxyl group and has a boiling point higher than the reaction temperature.
  • solvents include cellosolvent solvents including ethyl cellosolve acetate and butyl cellosolve acetate, and high boiling ethers or esters including diglyme, ethyl carbitol acetate, butyl carbitol acetate and propylene glycol monomethyl ether acetate.
  • cellosolvent solvents including ethyl cellosolve acetate and butyl cellosolve acetate
  • high boiling ethers or esters including diglyme, ethyl carbitol acetate, butyl carbitol acetate and propylene glycol monomethyl ether acetate.
  • examples thereof include a based solvent, a ketone solvent containing cyclohexanone, diisobutyl ketone and the like, and aromatic compounds such as benzene, to
  • the catalyst examples include amines such as triethylamine and 1,4-diaza [5,4,0] bicycloundecene-7, ammonium salts containing tetraethylammonium bromide and triethylbenzylammonium chloride, triphenylphosphine and the like.
  • amines such as triethylamine and 1,4-diaza [5,4,0] bicycloundecene-7
  • ammonium salts containing tetraethylammonium bromide and triethylbenzylammonium chloride triphenylphosphine and the like.
  • phosphines containing tris (2,6-dimethoxyphenyl) phosphine and known catalysts such as imidazoles such as 2-methylimidazole and 2-ethyl-4-methylimidazole.
  • hydroquinone, 4-methylquinoline, phenothiazine and the like can be added as a polymerization inhibitor. Further, in order to suppress the polymerization reaction due to unsaturated bonds, the reaction is sometimes carried out under an air flow such as air.
  • the epoxy resin is first represented by the following general formula (5) by reacting a 2,6-di-substituted phenol compound and dicyclopentadiene in the presence of a catalyst such as boron trifluoride ether complex. Synthesize phenolic resin. Then, it can be obtained by reacting the obtained phenol resin with epichlorohydrin such as epichlorohydrin to epoxidize it.
  • R 1 , R 2 , and n are synonymous with the definitions in the general formula (1), respectively.
  • the above-mentioned phenol resin can be obtained by reacting 2,6-disubstituted phenol with dicyclopentadiene at a predetermined ratio, and dicyclopentadiene is added in several steps (division of two or more times). It may be added sequentially) and reacted intermittently.
  • the ratio is 0.28 to 2-fold mol of dicyclopentadiene to 2,6-di-substituted phenol.
  • the ratio of dicyclopentadiene to 2,6-disubstituted phenol is 0.25 to 1-fold mol, preferably 0.28 to 1-fold mol. More preferably, 0.3 to 0.5 times mol.
  • dicyclopentadiene When dicyclopentadiene is sequentially added in portions and reacted, 0.8 to 2 times mol is preferable as a whole, and 0.9 to 1.7 times mol is more preferable.
  • the ratio of dicyclopentadiene used at each stage is preferably 0.28 to 1-fold molar.
  • Dicyclopentadiene serves as a cross-linking group for linking 2,6-di-substituted phenol, and a part thereof becomes a part or all of R 2 as a dicyclopentadienyl group.
  • R 2 in one molecule has at least one dicyclopentadienyl group on average, preferably 0.5 to 1 per phenol ring. This is the same not only in the general formula (5) but also in R 2 in the general formula (1) and the general formula (2).
  • the phenols as raw materials for the phenolic resin represented by the general formula (5) are 2,6-dimethylphenol, 2,6-diethylphenol, 2,6-dipropylphenol, 2,6-diisopropylphenol, 2, 6-di (n-butyl) phenol, 2,6-di (t-butyl) phenol, 2,6-dihexylphenol, 2,6-dicyclohexylphenol, 2,6-diphenylphenol and the like can be obtained. From the viewpoint of ease and reactivity when prepared as a cured product, 2,6-diphenylphenol or 2,6-dimethylphenol is preferable, and 2,6-dimethylphenol is particularly preferable.
  • the acid catalyst used for reacting phenols with dicyclopentadiene is Lewis acid, specifically, boron trifluoride, boron trifluoride / phenol complex, boron trifluoride / ether complex, and the like.
  • Boron trifluoride compounds metal chlorides such as aluminum chloride, tin chloride, zinc chloride, titanium tetrachloride and iron chloride, and organic sulfonic acids such as methanesulfonic acid, ethanesulfonic acid and propanesulfonic acid, among others.
  • Boron trifluoride / ether complex is preferable because of its ease of handling.
  • the amount of the acid catalyst used is 0.001 to 20 parts by mass, preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of dicyclopentadiene.
  • an electrospray mass spectrometry method ESI-MS
  • FD-MS field decomposition method
  • the dicyclopentenyl group has been introduced by subjecting a sample obtained by separating components having different numbers of nuclei by mass spectrometry to GPC or the like.
  • a sample dissolved in an organic solvent such as THF is applied onto the KRS-5 cell, and the cell with a sample thin film obtained by drying the organic solvent is measured by FT-IR.
  • a peak derived from the C—O stretching vibration in the phenol nucleus appears near 1210 cm -1 , and only when a dicyclopentadiene group is introduced, a peak derived from the CH stretching vibration of the olefin moiety of the dicyclopentadiene skeleton appears. Appears near 3040 cm -1.
  • the amount of dicyclopentenyl group introduced can be quantified by the ratio of the peaks (A 1210 ) in the vicinity (A 3040 / A 1210). It has been confirmed that the larger the ratio, the better the physical property value, and the preferable ratio (A 3040 / A 1210 ) for satisfying the desired physical property is 0.05 or more, more preferably 0.1 or more.
  • reaction method a method in which 2,6-di-substituted phenol and a catalyst are charged in a reactor and dicyclopentadiene is added dropwise over 1 to 10 hours is preferable.
  • the reaction temperature is preferably 50 to 200 ° C, more preferably 100 to 180 ° C, and even more preferably 120 to 160 ° C.
  • the reaction time is preferably 1 to 10 hours, more preferably 3 to 10 hours, still more preferably 4 to 8 hours.
  • aromatic hydrocarbons such as benzene, toluene, and xylene
  • halogenated hydrocarbons such as chlorobenzene and dichlorobenzene
  • ethylene glycol dimethyl ether diethylene glucol dimethyl ether, etc., as necessary for adjusting the viscosity, etc.
  • a solvent such as ethers may be used.
  • the epoxy resin represented by the general formula (4) can be advantageously obtained by reacting the above phenol resin with epichlorohydrin such as epichlorohydrin. This reaction is carried out according to a conventionally known method.
  • an alkali metal hydroxide such as sodium hydroxide is added to a mixture of a phenol resin and epihalohydrin having an excess amount with respect to the hydroxyl group of the phenol resin as a solid or concentrated aqueous solution, and the reaction temperature is 30 to 120 ° C.
  • Polyhalohydro obtained by reacting for 5 to 10 hours or by adding a quaternary ammonium salt such as tetraethylammonium chloride to phenol resin and excess molar epihalohydrin as a catalyst and reacting at a temperature of 50 to 150 ° C. for 1 to 5 hours. It can be obtained by adding an alkali metal hydroxide such as sodium hydroxide to phosphorus ether as a solid or concentrated aqueous solution and reacting at a temperature of 30 to 120 ° C. for 1 to 10 hours.
  • the amount of epihalohydrin used is in the range of 1 to 10 times mol, preferably 2 to 5 times mol, with respect to the hydroxyl group of the phenol resin, and the amount of alkali metal hydroxide used is in the hydroxyl group of the phenol resin. On the other hand, it is in the range of 0.85 to 1.1 times the molar amount.
  • the epoxy resin obtained by these reactions contains unreacted epihalohydrin and alkali metal halide, the unreacted epihalohydrin is evaporated and removed from the reaction mixture, and the alkali metal halide is further extracted with water.
  • the target epoxy resin can be obtained by removing it by a method such as filtration.
  • the epoxy equivalent (g / eq.) Of the dicyclopentadiene type epoxy resin is preferably 244 to 3700, more preferably 260 to 2000, and even more preferably 270 to 700.
  • the molecular weight distribution of the dicyclopentadiene type epoxy resin can be changed by changing the charging ratio of the phenol resin and epihalohydrin in the epoxidation reaction, and the amount of epihalohydrin used can be brought closer to the equimolar to the hydroxyl group of the phenol resin.
  • the dicyclopentadiene type epoxy resin can be reacted with acrylic acid or methacrylic acid to obtain an epoxy acrylate resin represented by the general formula (1).
  • This epoxy acrylate resin is a curable resin composition as described later, and can be a cured product.
  • the alkali-soluble resin represented by the general formula (2) of the present invention can be obtained from the epoxy acrylate resin represented by the general formula (1).
  • the epoxy acrylate resin represented by the general formula (1) is also an intermediate of the alkali-soluble resin represented by the general formula (2).
  • R 1 , R 2 , and n agree with the general formula (1)
  • Y is an unsaturated bond-containing group represented by the formula (2a)
  • L is a hydrogen atom or a formula.
  • the carboxyl group-containing group represented by (3) is shown.
  • 50 mol% or more of L is a carboxyl group-containing group represented by the formula (3).
  • R 3 agrees with formula (1a)
  • M represents a p + 1 valent carboxylic acid residue
  • p is 1 or 2.
  • the carboxylic acid residue is a group formed by taking a carboxyl group or an acid anhydride group from a divalent or trivalent carboxylic acid or a carboxylic acid anhydride.
  • All of L may be a carboxyl group-containing group represented by the formula (3), but may have both a hydrogen atom and a carboxyl group-containing group.
  • the carboxyl group-containing group is 50 mol% or more in the total L, preferably 70 to 100 mol%, more preferably 90 to 100 mol%, still more preferably 100 mol%. Since the carboxyl group-containing group is reactive with alkali, it imparts alkali solubility to the alkali-soluble resin or its polymerization reaction product (uncured product). By changing the abundance ratio of the carboxyl group-containing group in L, the alkali solubility can be adjusted and the alkali developability can be optimized. Further, the resin properties such as alkali developability can also be changed by changing the type of the carboxyl group-containing group represented by the formula (3).
  • the alkali-soluble resin represented by the general formula (2) is selected from the hydroxyl group of the epoxy acrylate resin represented by the general formula (1) and a dicarboxylic acid, a tricarboxylic acid or an acid anhydride thereof (acid monoanhydride). It can be obtained by reacting with carboxylic acids.
  • carboxylic acids As the above-mentioned carboxylic acids, acid anhydrides are often used for the reaction, and therefore, they are exemplified as acid anhydrides.
  • the carboxylic acid residue generated from the carboxylic acids may be further substituted with a substituent such as an alkyl group, a cycloalkyl group or an aromatic group.
  • Saturated chain hydrocarbon dicarboxylic acid or tricarboxylic acid includes succinic acid, acetylsuccinic acid, adipic acid, azelaic acid, citralinic acid, malonic acid, glutaric acid, citric acid, tartaric acid, oxoglutaric acid, pimeric acid, sebacic acid, sverin.
  • Acid monoanhydrides such as acid and diglycolic acid are included.
  • saturated cyclic hydrocarbon dicarboxylic acid or tricarboxylic acid include acid monoanhydrides such as hexahydrophthalic acid, cyclobutanedicarboxylic acid, cyclopentanedicarboxylic acid, norbornandicarboxylic acid and hexahydrotrimellitic acid.
  • the unsaturated dicarboxylic acid or tricarboxylic acid includes acid monoanhydrides such as maleic acid, itaconic acid, tetrahydrophthalic acid, methylendomethylenetetrahydrophthalic acid and chlorendic acid.
  • dicarboxylic acids or tricarboxylic acids include acid anhydrides such as phthalic acid and trimellitic acid.
  • acid anhydrides of succinic acid, itaconic acid, tetrahydrophthalic acid, hexahydrotrimellitic acid, phthalic acid, or trimellitic acid are preferable, and acid anhydrides of succinic acid, itaconic acid, or tetrahydrophthalic acid are preferable. More preferred. It should be noted that these carboxylic acids may be used alone or in combination of two or more.
  • the reaction temperature when synthesizing the alkali-soluble resin is preferably 20 to 120 ° C, more preferably 40 to 90 ° C.
  • the molar ratio of the epoxy acrylate resin to the carboxylic acids may be selected so that the ratio of the carboxyl group-containing group in L is within the above range.
  • This alkali-soluble resin can be made into a photosensitive resin composition, and can be cured to make a cured product.
  • the epoxy acrylate resin or alkali-soluble resin of the present invention has two or more polymerizable unsaturated groups on average, it can be a curable resin composition.
  • an epoxy acrylate resin When an epoxy acrylate resin is used, it does not have alkali developability, but when an alkali-soluble resin is used, it may have alkali developability.
  • the curable resin composition of the present invention contains the epoxy acrylate resin of the present invention and a polymerization initiator.
  • the photosensitive resin composition of the present invention contains the alkali-soluble resin of the present invention, a photopolymerizable monomer, and a photopolymerization initiator.
  • the curable resin composition of the present invention may contain a photopolymerization initiator or a radical polymerization initiator as an initiator, and may also contain other polyfunctional acrylates and the like.
  • the resin component (a component that becomes an epoxy acrylate resin and a cured resin and does not contain a solvent) in the curable resin composition is preferably 30% by mass or more, more preferably 50% by mass or more, and further preferably 70% by mass or more. preferable.
  • photopolymerization initiator various known photopolymerization initiators can be used.
  • acetophenones such as acetophenone, 2,2-diethoxyacetophenone, p-dimethylacetophenone, p-dimethylaminopropiophenone, dichloroacetophenone, trichloroacetophenone, pt-butylacetophenone, benzophenone, 2-chlorobenzophenone, etc.
  • Benzophenones such as p, p'-bisdimethylaminobenzophenone, benzoin ethers such as benzyl, benzoin, benzoin methyl ether, benzoin isopropyl ether, and benzoin isobutyl ether, and 2- (o-chlorophenyl) -4,5-phenyl.
  • Biimidazole 2- (o-chlorophenyl) -4,5-di (m-methoxyphenyl)) biimidazole, 2- (o-fluorophenyl) -4,5-diphenyl biimidazole, 2- (o-methoxyphenyl) ) -4,5-Diphenylbiimidazole, 2,4,5-triarylbiimidazole and other biimidazole compounds, 2-trichloromethyl-5-stylyl-1,3,4-oxadiazole, 2- Halomethylthiazoles such as trichloromethyl-5- (p-cyanostyryl) -1,3,4-oxadiazole, 2-trichloromethyl-5- (p-methoxystyryl) -1,3,4-oxadiazole.
  • photopolymerization initiators examples thereof include organic peroxides, thiol compounds such as 2-mercaptobenzoimidazole, 2-mercaptobenzoxazole and 2-mercaptobenzothiazole, and tertiary amines such as triethanolamine and triethylamine. It should be noted that these photopolymerization initiators may be used alone or in combination of two or more.
  • photopolymerization initiators and known photosensitizers can be used at the same time.
  • the photosensitizer include Michler's ketone, N, N-dimethylaminobenzoic acid ethyl ester, N, N-dimethylaminobenzoic acid isoamyl ester, triethanolamine, triethylamine and the like.
  • the amount of the photosensitizer used is preferably 0 to 20 parts by mass, more preferably 0.02 to 10 parts by mass, still more preferably 0.05 to 2 parts by mass with respect to 100 parts by mass of the epoxy acrylate resin.
  • radical polymerization initiators include, for example, known peroxides such as benzoyl peroxide, p-chlorobenzoyl peroxide, diisopropyl peroxycarbonate, di-2-ethylhexyl peroxycarbonate, and t-butylperoxypipalate.
  • the amount of the polymerization initiator used is preferably 0.01 to 100 parts by mass, more preferably 0.5 to 40 parts by mass, still more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the epoxy acrylate resin.
  • the thermal polymerization initiator and the photopolymerization initiator may be used at the same time, or only one of them may be used.
  • the amount of the photopolymerization initiator used is preferably 0.01 to 100 parts by mass, more preferably 0.5 to 40 parts by mass, still more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the epoxy acrylate resin. Further, it is usually 0.01 to 50 parts by mass, preferably 1 to 20 parts by mass with respect to 100 parts by mass of the resin composition.
  • the amount of the thermal polymerization initiator used is preferably 0.01 to 100 parts by mass, more preferably 0.02 to 60 parts by mass, still more preferably 0.05 to 2 parts by mass with respect to 100 parts by mass of the epoxy acrylate resin. .. Further, 0.01 to 50 parts by mass is preferable, and 0.01 to 30 parts by mass is more preferable with respect to 100 parts by mass of the curable resin composition. stomach.
  • the alkali-soluble resin represented by the general formula (2) is contained in an amount of 30% by mass in the solid content excluding the solvent (the solid content includes a monomer that becomes a solid content after curing). It is preferably contained in an amount of 50% by mass or more, and more preferably 50% by mass or more.
  • the photosensitive resin composition it is preferable to contain the following components (A) to (C) as essential components, and it is more preferable to further contain the component (D).
  • Examples of the photopolymerizable monomer as the component (B) include a monomer having a hydroxyl group such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate and 2-ethylhexyl (meth) acrylate, and ethylene glycol.
  • Methylol ethanetri (meth) acrylate pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, Includes (meth) acrylic acid esters such as glycerol (meth) acrylates.
  • a photopolymerizable monomer having two or more polymerizable unsaturated groups, and three or more polymerizable unsaturated groups it is preferable to use a photopolymerizable monomer having the above. It should be noted that these compounds may be used alone or in combination of two or more.
  • the blending ratio [(A) / (B)] (mass ratio) of these (B) components and (A) components is preferably 20/80 to 90/10, more preferably 40/60 to 80/20.
  • the blending ratio of the alkali-soluble resin is small, the cured product after the photocuring reaction becomes brittle. Further, in the unexposed portion, since the acid value of the coating film is low, the solubility in the alkaline developer is lowered, so that there is a problem that the pattern edge is rattling and not sharpened.
  • the compounding ratio of the alkali-soluble resin is larger than the above range, the ratio of the photoreactive functional group in the resin is small, so that the formation of the crosslinked structure by the photocuring reaction may be insufficient.
  • the acid value of the resin component is too high, the exposed portion becomes highly soluble in the alkaline developer, so that the formed pattern tends to be thinner than the target line width, and the pattern is likely to be missing. Problems may occur.
  • Examples of the photopolymerization initiator of the component (C) include the same photopolymerization initiators mentioned in the description of the curable resin composition of the present invention.
  • the amount of the component (C) added is preferably 0.1 to 10 parts by mass, more preferably 2 to 5 parts by mass, based on 100 parts by mass of the total of the component (A) and the component (B).
  • the amount of the photopolymerization initiator added is less than 0.1 parts by mass, sufficient sensitivity cannot be obtained, and if the amount of the photopolymerization initiator added exceeds 10 parts by mass, the taper shape (film in the cross section of the developing pattern). Halation is likely to occur in which the hem is pulled without sharpening the shape in the thick direction. Further, decomposition gas may be generated when exposed to a high temperature in a subsequent process.
  • Examples of the (D) epoxy resin include phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, and alicyclic epoxy resin.
  • Epoxy resins such as, phenylglycidyl ether, p-butylphenol glycidyl ether, triglycidyl isocyanurate, diglycidyl isocyanurate, allyl glycidyl ether, glycidyl methacrylate and other compounds having at least one epoxy group.
  • a compound having at least two epoxy groups is preferable.
  • the amount added is preferably in the range of 10 to 40 parts by mass with respect to 100 parts by mass in total of the component (A) and the component (B).
  • one purpose of adding the epoxy resin is to reduce the amount of carboxyl groups remaining when the cured film is formed after patterning in order to improve the reliability of the cured film. In this case, If the amount of the epoxy resin used is less than 10 parts by mass, the moisture resistance and reliability when used as an insulating film may not be ensured. Further, when the amount of the epoxy resin used is more than 40 parts by mass, the amount of photosensitive groups in the resin component in the photosensitive resin composition may decrease, and sufficient sensitivity for patterning may not be obtained. ..
  • the photosensitive resin composition containing the above-mentioned components (A) to (C) or (A) to (D) can be dissolved in a solvent or mixed with various additives, if necessary.
  • a solvent in addition to the above essential components.
  • solvents include alcohols such as methanol, ethanol, n-propanol, isopropanol, ethylene glycol and propylene glycol, terpenes such as ⁇ - or ⁇ -terpineol, acetone, methyl ethyl ketone, cyclohexanone and N-methyl-2.
  • -Ketones such as pyrrolidone, aromatic hydrocarbons such as toluene, xylene, tetramethylbenzene, cellosolve, methyl cellosolve, ethyl cellosolve, carbitol, methyl carbitol, ethyl carbitol, butyl carbitol, propylene glycol monomethyl.
  • Glycol ethers such as ether, propylene glycol monoethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, ethyl acetate, butyl acetate, cellosolve acetate, ethyl.
  • Acetate esters such as cellosolve acetate, butyl cellosolve acetate, carbitol acetate, ethyl carbitol acetate, butyl carbitol acetate, propylene glycol monomethyl ether acetate, and propylene glycol monoethyl ether acetate are included.
  • a curing accelerator for example, known compounds known as curing accelerators, curing catalysts, latent curing agents and the like usually applied to epoxy resins can be used, and tertiary amines, quaternary ammonium salts and tertiary. Includes phosphine, quaternary phosphonium salt, borate ester, Lewis acid, organic metal compounds, imidazoles, diazabicyclo-based compounds and the like.
  • thermal polymerization inhibitors and antioxidants examples include hydroquinone, hydroquinone monomethyl ether, pyrogallol, t-butylcatechol, phenothiazine, hindered phenolic compounds, phosphorus-based heat stabilizers and the like.
  • plasticizer examples include dibutyl phthalate, dioctyl phthalate, tricresyl phosphate and the like.
  • fillers include glass fiber, silica, mica, alumina and the like.
  • the defoaming agent and the leveling agent include silicone-based, fluorine-based, and acrylic-based compounds.
  • Examples of coupling agents include vinyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3- (glycidyloxy) propyltrimethoxysilane, 3-isosyanatopropyltriethoxysilane, 3-aminopropyltriethoxysilane, Includes 3- (phenylamino) propyltrimethoxysilane and 3-ureidopropyltriethoxysilane.
  • Examples of the surfactant include a fluorine-based surfactant, a silicone-based surfactant and the like.
  • the photosensitive resin composition of the present invention contains 70% by mass or more, preferably 80% by mass, more preferably 90% by mass or more of the above components (A) to (D) in the solid content excluding the solvent. It is good to be.
  • the amount of the solvent varies depending on the target viscosity, but is preferably 10 to 80% by mass based on the total amount.
  • the coating film (cured product) of the present invention is, for example, applied to a substrate or the like with a solution of a photosensitive resin composition, dried with a solvent, and irradiated with light (including ultraviolet rays, radiation, etc.) to be cured. Obtained at.
  • a coating film having a desired pattern can be obtained by providing a portion exposed to light and a portion not exposed to light using a photomask or the like, curing only the portion exposed to light, and dissolving the other portion with an alkaline solution. ..
  • a known solution dipping method, a spray method, and a roller coater machine are used.
  • a method using a land coater machine, a slit coat machine, a spinner machine, or the like can be adopted.
  • a film is formed by applying to a desired thickness and then removing the solvent (pre-baking).
  • Pre-baking is performed by heating with an oven, a hot plate, etc., vacuum drying, or a combination thereof.
  • the heating temperature and heating time in the prebake can be appropriately selected depending on the solvent used, but for example, it is preferably performed at 80 to 120 ° C. for 1 to 10 minutes.
  • the radiation used for exposure for example, visible light, ultraviolet light, far ultraviolet light, electron beam, g-ray, i-ray, X-ray and the like can be used, but the wavelength range of the radiation is 250 to 450 nm. preferable.
  • a developer suitable for this alkaline development for example, an aqueous solution of sodium carbonate, potassium carbonate, potassium hydroxide, diethanolamine, tetramethylammonium hydroxide or the like can be used.
  • These developers can be appropriately selected according to the characteristics of the resin layer, but it is also effective to add a surfactant if necessary.
  • the development temperature is preferably 20 to 35 ° C., and a fine image can be precisely formed by using a commercially available developing machine, an ultrasonic cleaner, or the like. After alkaline development, it is usually washed with water.
  • a shower developing method, a spray developing method, a dip (immersion) developing method, a paddle (liquid filling) developing method and the like can be applied.
  • post-baking heat treatment
  • This post-baking is performed for the purpose of enhancing the adhesion between the patterned coating film and the substrate. This is done by heating in an oven, hot plate, etc., similar to pre-baking.
  • the patterned coating film is formed through each step by the photolithography method.
  • polymerization or curing (sometimes referred to as curing together) is completed by heat to obtain a cured film such as an insulating film having a desired pattern.
  • the curing temperature at this time is preferably 160 to 250 ° C.
  • the cured product of the present invention can take various forms other than the cured film.
  • the photosensitive resin composition of the present invention has improved photocurability because the component (A) has a large number of polymerizable unsaturated groups in one molecule, and the crosslink density after curing without increasing the amount of the photopolymerization initiator. Can be enhanced. That is, when the thick film is irradiated with ultraviolet rays or electron beams, the cured portion is cured to the bottom, and the difference in solubility in the alkaline developer between the exposed portion and the unexposed portion becomes large. The pattern adhesion is improved and the pattern can be formed with high resolution. Further, even in the case of a thin film, the increased sensitivity makes it possible to significantly improve the amount of residual film in the exposed portion and suppress peeling during development.
  • the photosensitive composition of the present invention includes a solder resist, a plating resist, an etching resist for manufacturing a circuit board, an insulating film for multi-layering a wiring board on which a semiconductor element is mounted, a semiconductor gate insulating film, and a photosensitive adhesive ().
  • a photosensitive adhesive In particular, it is extremely useful for adhesives that require heat-adhesive performance even after pattern formation by photolithography).
  • Solid content concentration 100 ⁇ (W2-W0) / (W1-W0)
  • VNA vector network analyzer
  • VNA cavity resonator permittivity measuring device
  • a glass substrate with a cured film is immersed in a solution of a mixture of 30 parts of 2-aminoethanol and 70 parts of glycol ether held at 80 ° C., pulled up after 10 minutes, washed with pure water, dried, and soaked in chemicals. Was prepared and the adhesion was evaluated.
  • E1 Epoxy resin obtained in Synthesis Example 1
  • E2 Epoxy resin obtained in Synthesis Example 2
  • E3 Phenol novolac type epoxy resin (manufactured by Nittetsu Chemical & Materials Co., Ltd., YDPN-638, epoxy equivalent 177 g / eq.)
  • E4 Bisphenol A type liquid epoxy resin (manufactured by Nittetsu Chemical & Materials Co., Ltd., YD-127, epoxy equivalent 182 g / eq.)
  • E5 Cresol novolak type epoxy resin (manufactured by Nittetsu Chemical & Materials Co., Ltd., YDCN-700-3, epoxy equivalent 203 g / eq., Softening point 73 ° C.)
  • THPA 1,2,3,6-tetrahydrophthalic anhydride
  • TPP Triphenylphosphine HQ: Hydroquinone TEAB:
  • Synthesis example 1 970 parts of 2,6-xylenol and 14.5 parts of 47% BF 3 ether complex were charged into a reaction device equipped with a stirrer, a temperature controller, a nitrogen introduction device, a dropping device, and a reflux condenser, and 70 parts were stirred while stirring. It was heated to ° C. While maintaining the same temperature, 300 parts of dicyclopentadiene (0.29 times mol with respect to 2,6-xylenol) was added dropwise over 2 hours. Further, the reaction was carried out at a temperature of 125 to 135 ° C. for 6 hours, and 2.3 parts of calcium hydroxide was added. Further, 4.6 parts of a 10% oxalic acid aqueous solution was added.
  • Synthesis example 2 To the same reactor as in Synthesis Example 1, 95.0 parts of 2,6-xylenol, 47% BF 3 g of ether complex 6.3 parts, was heated with stirring to 70 ° C.. While maintaining the same temperature, 58.8 parts of dicyclopentadiene (0.56 times mol with respect to 2,6-xylenol) was added dropwise over 1 hour. After further reacting at a temperature of 115 to 125 ° C. for 3 hours, 69.2 parts of dicyclopentadiene (0.67 times mol with respect to 2,6-xylenol) was further added dropwise at the same temperature in 1 hour, and 115 ° C. to 125 ° C.
  • the reaction was carried out at a temperature of ° C. for 2 hours. 1.0 part of calcium hydroxide was added. Further, 2.0 parts of a 10% oxalic acid aqueous solution was added. Then, it was heated to 160 ° C. and dehydrated, and then heated to 200 ° C. under a reduced pressure of 5 mmHg to evaporate and remove the unreacted raw material. 520 parts of MIBK was added to dissolve the product, 150 parts of warm water at 80 ° C. was added and washed with water, and the lower water tank was separated and removed. Then, the MIBK was evaporated and removed by heating to 160 ° C. under a reduced pressure of 5 mmHg to obtain 221 parts of a reddish brown phenol resin.
  • the hydroxyl group equivalent was 377, the softening point was 102 ° C., and the absorption ratio (A 3040 / A 1210 ) was 0.18.
  • M- 253, 375, 507, 629 was confirmed.
  • Example 1 In a reaction vessel equipped with a stirrer, temperature controller, reflux condenser, and air introduction device, 282 parts of E1 was dissolved in 63 parts of PGMEA, and 72 parts of acrylic acid, 3.5 parts of TPP, and 0.1 part of HQ were dissolved. Was allowed to react at 110 ° C. for 8 hours while blowing air, and then 293 parts of PGMEA was added to obtain a PGMEA solution of epoxy acrylate resin (R1). The solid content concentration of the obtained resin solution was 50%.
  • the solvent was removed from the obtained resin solution by distillation under reduced pressure, 100 parts of the obtained solid content was placed in a fluororesin mold, 1 part of dicumyl peroxide was added, and the mixture was placed in an oven at 100 ° C. for 30 minutes for 170. It was heated at ° C. for 1 hour and cured to obtain a cured product. From this cured product, a test piece having a thickness of 0.2 mm and a thickness of 0.2 cm ⁇ 10 cm was prepared, and the relative permittivity and the dielectric loss tangent were measured.
  • Example 2 In the same apparatus as in Example 1, 446 parts of E2 were dissolved in 97 parts of PGMEA, 72 parts of acrylic acid, 3.5 parts of TPP, and 0.1 part of HQ were added, and the temperature was 110 ° C. while blowing air. After reacting for 8 hours, 450 parts of PGMEA was added to obtain a PGMEA solution of epoxy acrylate resin (R2). The solid content concentration of the obtained resin solution was 50%. The relative permittivity and the dielectric loss tangent were measured in the same manner as in Example 1.
  • Comparative Example 1 In the same apparatus as in Example 1, 177 parts of E3 was dissolved in 44 parts of PGMEA, 72 parts of acrylic acid, 3.5 parts of TPP, and 0.1 part of HQ were further added, and the temperature was 110 ° C. while blowing air. After reacting for 8 hours, 208 parts of PGMEA was added to obtain a PGMEA solution of epoxy acrylate resin (HR1). The solid content concentration of the obtained resin solution was 50%. The relative permittivity and the dielectric loss tangent were measured in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 450 parts of 50% PGMEA solution of R1, 95 parts of THPA, 1.8 parts of TEAB, and 38 parts of PGMEA were charged in the same apparatus as in Example 1, and the mixture was stirred at 120 to 125 ° C. for 6 hours to obtain an alkali-soluble resin solution (an alkali-soluble resin solution). A1) was obtained. The solid content concentration of the obtained resin solution was 55%.
  • a photosensitive resin composition was obtained by blending 53 parts of A1, 12.5 parts of B1, 1.3 parts of C1, 0.2 parts of C2, 6.3 parts of E5, and 28 parts of PGMEA. rice field.
  • the obtained photosensitive resin composition is applied onto a glass substrate of 125 mm ⁇ 125 mm using a spin coater so that the film thickness after post-baking is 30 ⁇ m, and prebaked at 110 ° C. for 5 minutes to prepare a coated plate. bottom.
  • a high-pressure mercury lamp of 500 W / cm 2 was irradiated with ultraviolet rays having a wavelength of 365 nm, and a photocuring reaction was carried out with full exposure.
  • this exposed coated plate was treated with a 0.8% aqueous solution of tetramethylammonium hydroxide (TMAH) in a shower at 23 ° C. for 60 seconds, and further washed with spray water. Then, it was heat-cured at 230 ° C. for 30 minutes using a hot air dryer to obtain a glass substrate with a cured film.
  • TMAH tetramethylammonium hydroxide
  • Example 4 450 parts of 50% PGMEA solution of R2, 62 parts of THPA, 1.8 parts of TEAB, and 11 parts of PGMEA were charged in the same apparatus as in Example 1, and the mixture was stirred at 120 to 125 ° C. for 6 hours to obtain an alkali-soluble resin solution (an alkali-soluble resin solution). A2) was obtained. The solid content concentration of the obtained resin solution was 55%.
  • Example 3 The same operation as in Example 3 was performed except that A2 was used instead of A1, to obtain a photosensitive resin composition and a glass substrate with a cured film.
  • Comparative Example 2 450 parts of 50% PGMEA solution of HR1, 135 parts of THPA, 1.8 parts of TEAB, and 70 parts of PGMEA were charged in the same apparatus as in Example 1, and the mixture was stirred at 120 to 125 ° C. for 6 hours to obtain an alkali-soluble resin solution (an alkali-soluble resin solution). HA1) was obtained. The solid content concentration of the obtained resin solution was 55%.
  • Example 3 The same operation as in Example 3 was performed except that HA1 was used instead of A1, to obtain a photosensitive resin composition and a glass substrate with a cured film.
  • Comparative Example 3 In the same apparatus as in Example 1, 182 parts of E4 was dissolved in 45 parts of PGMEA, 72 parts of acrylic acid, 3.5 parts of TPP, and 0.1 part of HQ were added, and the temperature was 110 ° C. while blowing air. After reacting for 8 hours, 212 parts of PGMEA was added to obtain a PGMEA solution of epoxy acrylate resin. The solid content concentration of the obtained resin solution was 50%. 291 parts of the obtained resin solution, 4.0 parts of dimethylolpropionic acid, 11.8 parts of 1,6-hexanediol, and 104 parts of PGMEA were charged and the temperature was raised to 45 ° C. Next, 61.8 parts of isophorone diisocyanate was added dropwise.
  • the mixture was stirred at 75-80 ° C. for 6 hours. Further, 21 parts of THPA were charged and stirred at 90 to 95 ° C. for 6 hours to obtain an alkali-soluble resin solution (HA2). The solid content concentration of the obtained resin solution was 55%.
  • Example 3 The same operation as in Example 3 was performed except that HA2 was used instead of A1, to obtain a photosensitive resin composition and a glass substrate with a cured film.
  • Table 2 shows the results of measuring the acid value (solid content equivalent) and molecular weight (Mw) of the obtained resin solution, and the results of adhesion, alkali resistance, and acid resistance tests on the obtained glass substrate with a cured film. It was shown to.
  • the curable resin composition, the photosensitive resin composition, and the cured product thereof of the present invention are a solder resist for manufacturing a circuit board, a plating resist, an etching resist, and an insulation for multi-layering of a wiring board on which a semiconductor element is mounted. It can be applied to films, semiconductor gate insulating films, photosensitive adhesives, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials For Photolithography (AREA)
  • Epoxy Resins (AREA)

Abstract

光又は熱硬化が可能なエポキシアクリレート樹脂又はアルカリ可溶性樹脂と、アルカリ現像によるパターニングが可能な感光性樹脂組成物を提供する。このエポキシアクリレート樹脂は、一般式(1)で表され、ジシクロペンタジエン型フェノール樹脂をエポキシ化した樹脂に、(メタ)アクリル酸を反応させて得られる。また、アルカリ可溶性樹脂はこのエポキシアクリレート樹脂に、多価カルボン酸類を反応させて得られる。ここで、Xは式(1a)で表される。

Description

エポキシアクリレート樹脂、アルカリ可溶性樹脂、それを含む樹脂組成物及びその硬化物
 本発明は、エポキシアクリレート樹脂、これを用いた硬化性樹脂組成物、不飽和基含有アルカリ可溶性樹脂、それを必須成分とする感光性樹脂組成物及びそれらの硬化物に関する。本発明の硬化性樹脂組成物、感光性樹脂組成物及びその硬化物は、回路基板作製のためのオーバーコート、アンダーコート、絶縁コート等の永久保護膜、ソルダーレジスト、メッキレジスト、エッチングレジストや、半導体素子を搭載する配線基板の多層化用の絶縁膜、半導体のゲート絶縁膜、感光性接着剤等に適用可能である。
 ソルダーレジストインキはプリント配線板の露出した導体回路の絶縁保護被膜用や回路のハンダ不要部分へのハンダ付着防止用等に用いられる。塗膜形成法としては通常スクリーン印刷法が従来から採用され、硬化被膜にはハンダ耐熱性、耐湿性、密着性、耐薬品性、耐メッキ性、耐電解腐蝕性が要求される。このタイプのソルダーレジストには熱硬化型と紫外線硬化型の二種があるが、前者は主にエポキシ樹脂、後者はエポキシアクリレート樹脂が多用されてきた。しかし、近年、各種プリント配線板における導体回路パターンの微細化と位置精度向上と、更に実装部品の小型化により、ソルダーレジストによる絶縁被膜形成はスクリーン印刷法に代わり、フォト法による画像形成が主流になりつつある。また、フォト法によるレジストの現像は、従来は有機溶剤が用いられてきたが、大気汚染や安全性の観点から希アルカリ水溶液を使用することが望まれている。このような背景により、ソルダーレジストには従来のスクリーン印刷対応のエポキシ樹脂やエポキシアクリレート樹脂では満足できないという問題が生じている。
 フォト法や希アルカリ水溶液現像への対応として、例えば、フェノールノボラック型エポキシアクリレート樹脂又はビスフェノールAエポキシアクリレート樹脂、あるいはこれらエポキシアクリレート樹脂と酸二無水物の反応によるハーフエステル化物等が知られている(特許文献1,2)。しかし、これらの公知のエポキシアクリレート樹脂又はその酸無水物変成物をソルダーレジスト用樹脂組成物として用いた場合、希アルカリ水溶液の現像性は満足するものの、物性を安定させるために硬化温度が少なくとも180℃以上必要であり、加熱設備にコストがかかるだけでなく、例えば、コア基板にガラスエポキシ基板を用いた場合、硬化温度が高すぎて基板の変色や反りをきたす恐れがある。更に、これら公知のエポキシアクリレート樹脂又はその酸無水物変成物から得られる硬化被膜は、ハンダ耐熱性、耐湿性、密着性、耐薬品性、耐メッキ性、又は耐電解腐蝕性等が十分でないという問題がある。
 近年、プリント配線板の高密度化に伴い、マルチチップモジュール(MCM)用ビルドアップ基板やチップサイズパッケージ(CSP)等のチップ実装基板用の絶縁層には信頼性と耐プレッシャークッカー性や耐サーマルサイクル性が要求されており、上記公知のエポキシアクリレート樹脂やその酸無水物変成物をソルダーレジスト用樹脂組成物とした場合、十分な信頼性を発揮できないという問題もある。
 また、近年の電子機器や表示部材等の高性能化、高精細化に伴い、そこに使用される電子部品においては小型化や高密度化が要求されている。そして、それらに使用されている絶縁材料の加工性においても微細化及び加工したパターンの断面形状の適正化が要求されるようになってきている。絶縁材料の微細加工の有効な手段として露光、現像によってパターニングする方法が知られており、そこには感光性樹脂組成物が用いられてきたが、高感度化、基板に対する密着性、信頼性、耐熱性、耐薬品性等の多くの諸特性が要求されるようになってきている。また、有機TFT用のゲート絶縁膜において有機絶縁材料を使用する検討も種々行われてきているが、ゲート絶縁膜を薄膜化して有機TFTの動作電圧を低減する必要性がある。ここで、絶縁材料の絶縁耐圧が1MV/cm程度の有機絶縁材料の場合、絶縁膜の膜厚は0.2μm程度の薄膜の適用が検討されている。
 従来の感光性樹脂組成物からなる絶縁材料は、光反応性を有するアルカリ可溶性樹脂と光重合開始剤との反応による光硬化反応が利用されており、光硬化させるための露光波長として主に水銀灯の線スペクトルの一つであるi線(365nm)が使用されている。しかし、このi線は感光性樹脂そのもの自身や着色剤により吸収され光硬化度の低下が発生する。しかも、厚膜であればその吸収量は増大する。そのため、露光された部分は膜厚方向に対する架橋密度に差が生じる。これにより、塗膜表面で十分に光硬化していても、塗膜底面では光硬化し難いため、露光部分と未露光部分における架橋密度の差をつけることは著しく困難である。それにより、所望するパターン寸法安定性、現像マージン、パターン密着性、パターンのエッジ形状及び断面形状を有する高解像度で現像できる感光性絶縁材料を得ることは困難である。
 また、特許文献3には、1分子中に重合性不飽和基とカルボキシル基とを有するアルカリ可溶性不飽和化合物が、カラーフィルター等のネガ型パターン形成に有効であることについて開示されている。しかしながら、各分子の分子量及びカルボキシル基の量に広い分布が生じることからアルカリ可溶性樹脂のアルカリ溶解速度の分布が広くなるので、微細なネガ型パターンを形成することが困難である。
 更に、特許文献4には、カルボキシル基含有共重合体の分子量を増加させるアルカリ可溶性樹脂組成物の多官能化が開示されている。しかしながら、重合性不飽和結合数が少なく、架橋密度が十分に得られないため、1分子中の重合性不飽和結合の割合を高める等の共重合体構造の改良の余地がある。
 また、感光性樹脂組成物を、半導体装置の層間絶縁膜や、液晶表示装置のTFT電極を被覆する平坦化膜に使用することも検討されている。この場合、感光性樹脂組成物は、デバイスの機能を阻害しないように、誘電率を低くすることが求められている。
 基板材料の耐熱性の制約や製造設備等の観点から低温硬化が可能でフォト法による希アルカリ水による現像が可能で、かつ誘電率を低くでき、プリント配線板のソルダーレジストに必要な密着性、耐薬品性等の高密度実装基板等の絶縁層硬化膜に要求される信頼性を十分に満足するものはなかった。
特開昭61-243869号公報 特開2003-026762号公報 特開平4-340965号公報 特開平9-325494号公報
 従って、本発明の目的は、光又は熱硬化が可能で誘電特性の良好な新規エポキシアクリレート樹脂を提供すること、又はアルカリ現像によるパターニングが可能な感光性樹脂組成物を提供することである。更に、誘電特性が良好であり、プリント配線板のソルダーレジストや絶縁膜等に必要な密着性、耐薬品性等の信頼性に優れた硬化性樹脂組成物及びその硬化物を提供することであり、電極形成等の加工プロセスを経る場合に優れた耐薬品性を示す硬化物(硬化膜)を提供することである。
 本発明者らは、上記課題を解決するために鋭意検討した結果、ジシクロペンテニル基を置換基として有するジシクロペンタジエン型フェノール樹脂をエポキシ化した樹脂に、(メタ)アクリル酸を反応させて得られるエポキシアクリレート樹脂を用いた硬化性樹脂組成物が信頼性に優れた硬化物(絶縁膜)を得るのに好適であること、そしてそのエポキシアクリレート樹脂に、ジカルボン酸類、トリカルボン酸類又はその酸一無水物を反応させて得られるアルカリ可溶性樹脂を用いた感光性樹脂組成物が、プリント配線板のソルダーレジストや絶縁膜等に好適であることを見出した。
 すなわち、本発明は、下記一般式(1)で表されるエポキシアクリレート樹脂である。
Figure JPOXMLDOC01-appb-C000003
 ここで、
は独立に、炭素数1~8の炭化水素基を示し、
は独立に、水素原子又はジシクロペンテニル基を示し、1以上はジシクロペンテニル基である。
は水素原子又はメチル基を示す。
Xは上記式(1a)で表される不飽和結合含有基である。
nは繰り返し数を示し、その平均値は1~5である。
 また、本発明は、下記一般式(2)で表されて、1分子内にカルボキシル基及び重合性不飽和基を有するアルカリ可溶性樹脂である。
Figure JPOXMLDOC01-appb-C000004
 ここで、R、R、Rは、それぞれ一般式(1)と同意である。
Yは上記式(2a)で表される不飽和結合含有基であり、Lは水素原子又は上記式(3)で表されるカルボキシル基含有基を示し、Lの50モル%以上はカルボキシル基含有基である。Mはp+1価のカルボン酸残基を示し、pは1又は2である。
 また、本発明は、上記エポキシアクリレート樹脂と重合開始剤とを含有することを特徴とする硬化性樹脂組成物である。
 また、本発明は、上記アルカリ可溶性樹脂と、少なくとも1個の重合性不飽和基を有する光重合性モノマーと、光重合開始剤とを含有することを特徴とする感光性樹脂組成物である。この感光性樹脂組成物は、更にエポキシ樹脂を含有することが好ましい。
 また、本発明の他の実施形態は、上記硬化性樹脂組成物又は上記感光性樹脂組成物を硬化させて得た硬化物に関する。
 本発明のエポキシアクリレート樹脂は、光又は熱で硬化可能であり、その酸無水物付加体であるアルカリ可溶性樹脂の中間体としても有用である。本発明のアルカリ可溶性樹脂は、フォトリソグラフィーにより微細な硬化膜パターンを形成できる感光性樹脂組成物を与える。
 更に、本発明によれば、耐薬品性(耐アルカリ性等)に優れ、基板に対する密着性、耐熱性、電気的信頼性等について優れるため、プリント配線板のソルダーレジストや、光パターニングを必要とする絶縁膜等の硬化膜パターンも提供することができる。
 以下、本発明を詳細に説明する。
 本発明のエポキシアクリレート樹脂は、上記一般式(1)で表される。
 一般式(1)において、Rは炭素数1~8の炭化水素基を示し、炭素数1~8のアルキル基、炭素数6~8のアリール基、炭素数7~8のアラルキル基、又はアリル基が好ましい。炭素数1~8のアルキル基としては、直鎖状、分岐状、環状のいずれでもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、t-ペンチル基、メチルブチル基、n-ヘキシル基、ジメチルブチル基、n-ヘプチル基、メチルヘキシル基、トリメチルブチル基、n-オクチル基、ジメチルペンチル基、エチルペンチル基、イソオクチル基、エチルヘキシル基などの炭化水素基や、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、メチルシクロヘキシル基、ジメチルシクロヘキシル基、エチルシクロヘキシル基、メチルシクロヘプチル基などの炭素数5~8のシクロアルキル基が挙げられるが、これらに限定されない。炭素数6~8のアリール基としては、フェニル基、トリル基、キシリル基、エチルフェニル基等が挙げられるが、これらに限定されない。炭素数7~8のアラルキル基としては、ベンジル基、α-メチルベンジル基等が挙げられるが、これらに限定されない。これらの置換基の中では、入手の容易性及び硬化物とするときの反応性の観点から、メチル基又はフェニル基が好ましく、メチル基が特に好ましい。
 上記Rは独立に、水素原子、ジシクロペンテニル基を示し、1以上はジシクロペンテニル基である。ジシクロペンテニル基は、ジシクロペンタジエンに由来する基であり、下記式(1b)又は式(1c)で表される。この基の存在によって、本発明のエポキシアクリレート樹脂の硬化物は誘電率を低くすることができる。
Figure JPOXMLDOC01-appb-C000005
 nは繰り返し数であって、1以上の数を示し、その平均値で1~5の数を示し、1.1~4.0が好ましく、1.2~3.0がより好ましく、1.3~2.0が更に好ましい。平均値は数平均である。
 Xは式(1a)で表される不飽和結合含有基であり、Rは水素原子又はメチル基を示す。式(1a)、(2a)及び(3)において、COはカルボニル基(C=O)であり、COで表しても、OCで表してもよい。
 一般式(1)のエポキシアクリレート樹脂は、下記一般式(4)で表されるエポキシ樹脂と、(メタ)アクリル酸とを反応させることにより有利に得られる。上記エポキシ樹脂は、2,6-ジ置換フェノール類をジシクロペンタジエンと反応させて得られるジシクロペンタジエン型フェノール樹脂をエポキシ化して得られる。
Figure JPOXMLDOC01-appb-C000006
 ここで、R、R、及びnは一般式(1)における定義とそれぞれ同義である。Gはグリシジル基を示す。
 エポキシ樹脂と(メタ)アクリル酸の反応は、公知の方法を使用することができる。例えば、エポキシ基に対し、等モルの(メタ)アクリル酸を使用して行う。全てのエポキシ基に(メタ)アクリル酸を反応させるため、エポキシ基とカルボキシル基の等モルよりも若干過剰に(メタ)アクリル酸を使用してもよい。通常、反応温度は50~150℃であり、反応時間は1~20時間である。また、このとき使用する溶媒、触媒及びその他の反応条件は、特に制限されない。
 溶媒としては、例えば、水酸基を持たず、反応温度より高い沸点を有することが好ましい。このような溶媒の例には、エチルセロソルブアセテート及びブチルセロソルブアセテートなどを含むセロソルブ系溶媒や、ジグライム、エチルカルビトールアセテート、ブチルカルビトールアセテート及びプロピレングリコールモノメチルエーテルアセテートなどを含む高沸点のエーテル系又はエステル系の溶媒や、シクロヘキサノン及びジイソブチルケトンなどを含むケトン系溶媒や、ベンゼン、トルエン、クロロベンゼン、ジクロロベンゼン等の芳香族化合物等が挙げられる。
 触媒としては、例えば、トリエチルアミン、1,4-ジアザ[5,4,0]ビシクロウンデセン-7等のアミン類や、テトラエチルアンモニウムブロマイド及びトリエチルベンジルアンモニウムクロライドなどを含むアンモニウム塩や、トリフェニルホスフィン及びトリス(2、6-ジメトキシフェニル)ホスフィンなどを含むホスフィン類や、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾール類等の公知の触媒が挙げられる。
 更に、その反応の際、重合禁止剤として、ハイドロキノン、4-メチルキノリン、フェノチアジン等を添加することもできる。また、不飽和結合による重合反応を抑制するため、場合により、空気等の気流下で反応が行われる。
 また、エポキシアクリレート樹脂の原料であるエポキシ樹脂の製造方法は、例えば、特開平5-339341号公報に記載の製造方法を参考にすることができる。
 上記エポキシ樹脂は、まず、2,6-ジ置換フェノール化合物とジシクロペンタジエンとを三フッ化ホウ素・エーテル錯体などの触媒の存在下で反応させることにより、下記一般式(5)で表されるフェノール樹脂を合成する。そして、得られたフェノール樹脂をエピクロルヒドリンなどのエピハロヒドリンと反応させてエポキシ化することにより得ることができる。
Figure JPOXMLDOC01-appb-C000007
 ここで、R、R、及びnは一般式(1)における定義とそれぞれ同義である。
 上記フェノール樹脂は、2,6-ジ置換フェノールに対して、ジシクロペンタジエンを所定の比率で反応させることにより得ることができ、ジシクロペンタジエンを数段階に分けて添加し(二回以上の分割逐次添加)、間欠的に反応させてもよい。比率は、2,6-ジ置換フェノールに対し、ジシクロペンタジエンを0.28~2倍モルである。ジシクロペンタジエンを連続的に添加し反応させる場合の比率は、2,6-ジ置換フェノールに対し、ジシクロペンタジエンを0.25~1倍モルであり、0.28~1倍モルが好ましく、0.3~0.5倍モルがより好ましい。ジシクロペンタジエンを分割逐次添加して反応させる場合は、全体として0.8~2倍モルが好ましく、0.9~1.7倍モルがより好ましい。なお、この場合の各段階でのジシクロペンタジエンの使用比率は、0.28~1倍モルが好ましい。
 ジシクロペンタジエンは、2,6-ジ置換フェノールを連結する架橋基となるほか、一部はジシクロペンタジエニル基として、Rの一部又は全部となる。
 一分子中のR中には、平均して少なくとも1個以上、好ましくはフェノール環1つ当たり、0.5~1個ジシクロペンタジエニル基を有する。これは、一般式(5)に限らず、一般式(1)及び一般式(2)におけるRにおいても同様である。
 上記一般式(5)で表されるフェノール樹脂の原料のフェノール類は、2,6-ジメチルフェノール、2,6-ジエチルフェノール、2,6-ジプロピルフェノール、2,6-ジイソプロピルフェノール、2,6-ジ(n-ブチル)フェノール、2,6-ジ(t-ブチル)フェノール、2,6-ジヘキシルフェノール、2,6-ジシクロヘキシルフェノール、2,6-ジフェニルフェノールなどが挙げられるが、入手の容易性及び硬化物とするときの反応性の観点から、2,6-ジフェニルフェノール、又は2,6-ジメチルフェノールが好ましく、2,6-ジメチルフェノールが特に好ましい。
 フェノール類とジシクロペンタジエンを反応させる際に用いられる酸触媒は、ルイス酸であり、具体的には、三フッ化ホウ素、三フッ化ホウ素・フェノール錯体、三フッ化ホウ素・エーテル錯体などの三フッ化ホウ素化合物や、塩化アルミニウム、塩化錫、塩化亜鉛、四塩化チタン、塩化鉄などの金属塩化物や、メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸などの有機スルホン酸などであるが、中でも取り扱いの容易さから、三フッ化ホウ素・エーテル錯体が好ましい。酸触媒の使用量は、三フッ化ホウ素・エーテル錯体の場合で、ジシクロペンタジエン100質量部に対して、0.001~20質量部であり、好ましくは0.5~10質量部である。
 上記一般式(5)で表されるフェノール樹脂中に、式(1b)又は式(1c)で表されるジシクロペンテニル基が導入されたことを確認する方法としては、質量分析法とFT-IR測定を用いることができる。
 質量分析方法を用いる場合、エレクトロスプレー質量分析法(ESI-MS)やフィールドデソープション法(FD-MS)などを用いることができる。GPC等で核体数が異なる成分を分離したサンプルを質量分析法にかけることにより、ジシクロペンテニル基が導入されたことを確認できる。
 FT-IR測定法を用いる場合、THF等の有機溶媒に溶解させたサンプルをKRS-5セル上に塗布し、有機溶媒を乾燥させて得られたサンプル薄膜付セルをFT-IRで測定すると、フェノール核におけるC-O伸縮振動に由来するピークが1210cm-1付近に現れ、ジシクロペンテニル基が導入されている場合のみ、ジシクロペンタジエン骨格のオレフィン部位のC-H伸縮振動に由来するピークが3040cm-1付近に現れる。目的のピークの始まりと終わりを直線的につないだものをベースラインとし、ピークの頂点からベースラインまでの長さをピーク高さとしたとき、3040cm-1付近のピーク(A3040)と1210cm-1付近のピーク(A1210)の比率(A3040/A1210)によって、ジシクロペンテニル基の導入量が定量できる。その比率は大きいほど物性値がよくなることが確認できており、目的の物性を満たすための好ましい比率(A3040/A1210)は0.05以上であり、より好ましくは0.1以上である。
 反応方法としては、2,6-ジ置換フェノールと触媒を反応器に仕込み、ジシクロペンタジエンを1~10時間かけて滴下していく方式がよい。
 反応温度としては、50~200℃が好ましく、100~180℃がより好ましく、120~160℃が更に好ましい。反応時間は1~10時間が好ましく、3~10時間がより好ましく、4~8時間が更に好ましい。
 反応終了後、水酸化ナトリウム、水酸化カリウム、水酸化カルシウムなどのアルカリを加えて触媒を失活させる。その後、トルエン、キシレン等の芳香族炭化水素類や、メチルエチルケトン、メチルイソブチルケトン等のケトン類等の溶媒を加えて溶解し、水洗した後、減圧下で溶媒を回収することにより、目的とするフェノール樹脂を得ることができる。なお、ジシクロペンタジエンを可及的に全量反応させ、2,6-ジ置換フェノール類の一部を未反応、好ましくは10%以下を未反応として、それを減圧回収することが好ましい。
 なお、反応に際しても、粘度調整など必要に応じてベンゼン、トルエン、キシレン等の芳香族炭化水素類や、クロロベンゼン、ジクロルベンゼン等のハロゲン化炭化水素類や、エチレングリコールジメチルエーテル、ジエチレングルコールジメチルエーテルなどエーテル類等の溶媒を用いてもよい。
 一般式(4)で表されるエポキシ樹脂は、上記フェノール樹脂にエピクロルヒドリン等のエピハロヒドリンを反応させることによって有利に得られる。この反応は従来公知の方法に従って行われる。
 例えば、フェノール樹脂と、フェノール樹脂の水酸基に対して過剰モルのエピハロヒドリンとの混合物に、水酸化ナトリウムなどのアルカリ金属水酸化物を固形又は濃厚水溶液として加え、30~120℃の反応温度で0.5~10時間反応させるか、又はフェノール樹脂と過剰モルのエピハロヒドリンにテトラエチルアンモニウムクロライドなどの4級アンモニウム塩を触媒として加え、50~150℃の温度で1~5時間反応して得られるポリハロヒドリンエーテルに水酸化ナトリウムなどのアルカリ金属水酸化物を固形又は濃厚水溶液として加え、30~120℃の温度で1~10時間反応させることにより得ることができる。
 上記反応において、エピハロヒドリンの使用量はフェノール樹脂の水酸基に対して1~10倍モルで、好ましくは2~5倍モルの範囲であり、またアルカリ金属水酸化物の使用量はフェノール樹脂の水酸基に対して0.85~1.1倍モルの範囲である。
 これらの反応で得られたエポキシ樹脂は、未反応のエピハロヒドリンとアルカリ金属のハロゲン化物を含有しているので、反応混合物より未反応のエピハロヒドリンを蒸発除去し、更にアルカリ金属のハロゲン化物を水による抽出、濾別などの方法により除去して、目的とするエポキシ樹脂を得ることができる。
 ジシクロペンタジエン型エポキシ樹脂のエポキシ当量(g/eq.)は、244~3700が好ましく、260~2000がより好ましく、270~700が更に好ましい。
 ジシクロペンタジエン型エポキシ樹脂の分子量分布は、エポキシ化反応の際のフェノール樹脂とエピハロヒドリンの仕込み比率を変更することにより変更可能であり、エピハロヒドリンの使用量をフェノール樹脂の水酸基に対して等モルに近づけるほど高分子量分布となり、20モル倍に近づけるほど低分子量分布となる。また、得られたエポキシ樹脂に対し、再度フェノール樹脂を作用させることにより、高分子量化させることも可能である。
 ジシクロペンタジエン型エポキシ樹脂と、アクリル酸又はメタアクリル酸を反応させて一般式(1)で表されるエポキシアクリレート樹脂とすることができる。このエポキシアクリレート樹脂は後記するように硬化性樹脂組成物とされ、硬化物とすることができる。
 本発明の一般式(2)で表されるアルカリ可溶性樹脂は、一般式(1)で表されるエポキシアクリレート樹脂から得ることができる。このような意味では、一般式(1)で表されるエポキシアクリレート樹脂は、一般式(2)で表されるアルカリ可溶性樹脂の中間体でもある。
 一般式(2)において、R、R、及びnは一般式(1)と同意であり、Yは式(2a)で表される不飽和結合含有基であり、Lは水素原子又は式(3)で表されるカルボキシル基含有基を示す。ここで、Lの50モル%以上は式(3)で表されるカルボキシル基含有基である。Rは式(1a)と同意であり、Mはp+1価のカルボン酸残基を示し、pは1又は2である。ここで、カルボン酸残基は2又は3価のカルボン酸又はカルボン酸無水物からカルボキシル基又は酸無水物基を取って生じる基である。
 Lは全部が式(3)で表されるカルボキシル基含有基であってもよいが、水素原子とカルボキシル基含有基の両方を有していてもよい。カルボキシル基含有基は、全L中の50モル%以上であり、70~100モル%が好ましく、90~100モル%がより好ましく、100モル%が更に好ましい。カルボキシル基含有基は、アルカリと反応性であるため、アルカリ可溶性樹脂又はその重合反応物(未硬化物)にアルカリ可溶性を与える。Lにおけるカルボキシル基含有基の存在比を変化させることにより、アルカリ可溶性を調整することができ、アルカリ現像性を最適化することができる。また、式(3)で表わされるカルボキシル基含有基の種類を変化させることによっても、アルカリ現像性を初めとする樹脂特性を変化させることができる。
 一般式(2)で表されるアルカリ可溶性樹脂は、一般式(1)で表されるエポキシアクリレート樹脂の水酸基と、ジカルボン酸、トリカルボン酸又はそれらの酸無水物(酸一無水物)から選ばれるカルボン酸類とを反応させることにより、得ることができる。
 上記カルボン酸類としては、酸無水物を使用して反応を行うことが多いので、酸無水物として例示する。カルボン酸類から生じるカルボン酸残基は、更にアルキル基、シクロアルキル基、芳香族基等の置換基により置換されていてもよい。
 飽和鎖式炭化水素ジカルボン酸又はトリカルボン酸としては、コハク酸、アセチルコハク酸、アジピン酸、アゼライン酸、シトラリンゴ酸、マロン酸、グルタル酸、クエン酸、酒石酸、オキソグルタル酸、ピメリン酸、セバシン酸、スベリン酸、ジグリコール酸等の酸一無水物が含まれる。
 飽和環式炭化水素ジカルボン酸又はトリカルボン酸としては、ヘキサヒドロフタル酸、シクロブタンジカルボン酸、シクロペンタンジカルボン酸、ノルボルナンジカルボン酸、ヘキサヒドロトリメリット酸等の酸一無水物が含まれる。
 不飽和ジカルボン酸又はトリカルボン酸としては、マレイン酸、イタコン酸、テトラヒドロフタル酸、メチルエンドメチレンテトラヒドロフタル酸、クロレンド酸等の酸一無水物が含まれる。
 その他のジカルボン酸又はトリカルボン酸としては、フタル酸、トリメリット酸等の酸無水物が含まれる。これらのなかでは、コハク酸、イタコン酸、テトラヒドロフタル酸、ヘキサヒドロトリメリット酸、フタル酸、又はトリメリット酸の酸無水物が好ましく、コハク酸、イタコン酸、又はテトラヒドロフタル酸の酸無水物がより好ましい。なお、これらのカルボン酸類は1種類で使用することも、2種類以上を併用することもできる。
 上記アルカリ可溶性樹脂を合成する際の反応温度は、20~120℃が好ましく、40~90℃がより好ましい。この際のエポキシアクリレート樹脂とカルボン酸類のモル比は、上記Lにおけるカルボキシル基含有基の割合が上記範囲となるように選択することがよい。
 このアルカリ可溶性樹脂は、感光性樹脂組成物とすることができ、それを硬化させて硬化物とすることができる。
 本発明のエポキシアクリレート樹脂、又はアルカリ可溶性樹脂は、重合性の不飽和基を平均して2個以上有するので硬化性の樹脂組成物とすることができる。
 エポキシアクリレート樹脂を使用した場合はアルカリ現像性を有しないが、アルカリ可溶性樹脂を使用した場合はアルカリ現像性を有し得る。
 本発明の硬化性樹脂組成物は、本発明のエポキシアクリレート樹脂と重合開始剤を含む。本発明の感光性樹脂組成物は、本発明のアルカリ可溶性樹脂と光重合性モノマーと光重合開始剤を含む
 本発明の硬化性樹脂組成物は、開始剤として光重合開始剤やラジカル重合開始剤を配合することができ、その他多官能アクリレート等を配合してもよい。硬化性樹脂組成物中の樹脂成分(エポキシアクリレート樹脂及び硬化後樹脂となる成分で、溶剤を含まない)は、30質量%以上が好ましく、50質量%以上がより好ましく、70質量%以上が更に好ましい。
 光重合開始剤としては、公知の種々の光重合開始剤を使用することができる。例えば、アセトフェノン、2,2-ジエトキシアセトフェノン、p-ジメチルアセトフェノン、p-ジメチルアミノプロピオフェノン、ジクロロアセトフェノン、トリクロロアセトフェノン、p-t-ブチルアセトフェノン等のアセトフェノン類や、ベンゾフェノン、2-クロロベンゾフェノン、p,p’-ビスジメチルアミノベンゾフェノン等のベンゾフェノン類や、ベンジル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾインエーテル類や、2-(o-クロロフェニル)-4,5-フェニルビイミダゾール、2-(o-クロロフェニル)-4,5-ジ(m-メトキシフェニル))ビイミダゾール、2-(o-フルオロフェニル)-4,5-ジフェニルビイミダゾール、2-(o-メトキシフェニル)-4,5-ジフェニルビイミダゾール、2,4,5-トリアリールビイミダゾール等のビイミダゾール系化合物類や、2-トリクロロメチル-5-スチリル-1,3,4-オキサジアゾール、2-トリクロロメチル-5-(p-シアノスチリル)-1,3,4-オキサジアゾール、2-トリクロロメチル-5-(p-メトキシスチリル)-1,3,4-オキサジアゾール等のハロメチルチアゾール化合物類や、2,4,6-トリス(トリクロロメチル)-1,3,5-トリアジン、2-メチル-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-フェニル-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(4-クロロフェニル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(4-メトキシナフチル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(4-メトキシスチリル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(3,4,5-トリメトキシスチリル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(4-メチルチオスチリル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン等のハロメチル-s-トリアジン系化合物類や、1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル]-,2-(o-ベンゾイルオキシム)、1-(4-フェニルスルファニルフェニル)ブタン-1,2-ジオン-2-オキシム-o-ベンゾアート、1-(4-メチルスルファニルフェニル)ブタン-1,2-ジオン-2-オキシム-o-アセタート、1-(4-メチルスルファニルフェニル)ブタン-1-オンオキシム-o-アセタート等のo-アシルオキシム系化合物類や、ベンジルジメチルケタール、チオキサンソン、2-クロロチオキサンソン、2,4-ジエチルチオキサンソン、2-メチルチオキサンソン、2-イソプロピルチオキサンソン等のイオウ化合物や、2-エチルアントラキノン、オクタメチルアントラキノン、1,2-ベンズアントラキノン、2,3-ジフェニルアントラキノン等のアントラキノン類や、アゾビスイソブチルニトリル、ベンゾイルパーオキサイド、クメンパーオキシド等の有機過酸化物や、2-メルカプトベンゾイミダゾール、2-メルカプトベンゾオキサゾール、2-メルカプトベンゾチアゾール等のチオール化合物や、トリエタノールアミン、トリエチルアミン等の第3級アミン等が挙げられる。なお、これらの光重合開始剤は、1種類で使用することも、2種類以上を併用することもできる。
 更に、これらの光重合開始剤と公知の光増感剤の1種又は2種以上を同時に使用することができる。光増感剤としては、例えば、ミヒラーズケトン、N,N-ジメチルアミノ安息香酸エチルエステル、N,N-ジメチルアミノ安息香酸イソアミルエステル、トリエタノールアミン、トリエチルアミン等を挙げることができる。光増感剤の使用量は、エポキシアクリレート樹脂100質量部に対して、0~20質量部が好ましく、0.02~10質量部がより好ましく、0.05~2質量部が更に好ましい。
 熱重合を行わせるためには、ラジカル重合開始剤を配合することが好ましいが、光硬化のみを行わせる場合は配合しなくてもよい。好ましいラジカル重合開始剤としては、例えば、公知のベンゾイルパーオキサイド、p-クロロベンゾイルパーオキサイド、ジイソプロピルパーオキシカーボネート、ジ-2-エチルヘキシルパーオキシカーボネート、t-ブチルパーオキシピパレート等の過酸化物、及び1,1’-アゾビスシクロヘキサン-1-カルボニトリル、2,2’-アゾビス-(2,4-ジメチルバレロニトリル)、2,2’-アゾビス-(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス-(メチルイソブチレート)、α,α-アゾビス-(イソブチロニトリル)、4,4’-アゾビス-(4-シアノバレイン酸)等のアゾ化合物等が挙げられる。
 重合開始剤の使用量はエポキシアクリレート樹脂100質量部に対して、0.01~100質量部が好ましく、0.5~40質量部がより好ましく、1~10質量部が更に好ましい。
 熱重合開始剤と光重合開始剤は同時に使用してもよく、どちらか一方だけを使用してもよい。
 光重合開始剤の使用量はエポキシアクリレート樹脂100質量部に対して、0.01~100質量部が好ましく、0.5~40質量部がより好ましく、1~10質量部が更に好ましい。また、樹脂組成物100質量部に対して、通常0.01~50質量部であり、好ましくは1~20質量部である。
 熱重合開始剤の使用量は、エポキシアクリレート樹脂100質量部に対して、0.01~100質量部が好ましく、0.02~60質量部がより好ましく、0.05~2質量部が更に好ましい。また、硬化性樹脂組成物100質量部に対して0.01~50質量部が好ましく、0.01~30質量部がより好ましい。
い。
 本発明の感光性樹脂組成物は、溶剤を除いた固形分(固形分には硬化後に固形分となるモノマーを含む)中に、一般式(2)で表されるアルカリ可溶性樹脂を30質量%以上含有することが好ましく、50質量%以上含有することがより好ましい。
 感光性樹脂組成物としての特徴を生かすためには、下記(A)~(C)成分を必須成分として含有することが好ましく、更に(D)成分を含有することがより好ましい。
 (A)上記アルカリ可溶性樹脂、
 (B)少なくとも1個の重合性不飽和基を有する光重合性モノマー、
 (C)光重合開始剤、
 (D)エポキシ樹脂
 (B)成分である光重合性モノマーの例には、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等の水酸基を有するモノマーや、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、グリセロール(メタ)アクリレート等の(メタ)アクリル酸エステル類が含まれる。アルカリ可溶性樹脂の分子同士の架橋構造を形成する必要性がある場合には、2個以上の重合性不飽和基を有する光重合性モノマーを用いることが好ましく、3個以上の重合性不飽和基を有する光重合性モノマーを用いることがより好ましい。なお、これらの化合物は、1種類で使用することも、2種類以上を併用することもできる。
 これら(B)成分と(A)成分との配合割合[(A)/(B)](質量比)は、20/80~90/10が好ましく、40/60~80/20がより好ましい。ここで、アルカリ可溶性樹脂の配合割合が少ないと、光硬化反応後の硬化物が脆くなる。また、未露光部は、塗膜の酸価が低いためにアルカリ現像液に対する溶解性が低下するため、パターンエッジががたつきシャープにならないといった問題が生じる。反対に、アルカリ可溶性樹脂の配合割合が上記範囲より多くなると、樹脂に占める光反応性官能基の割合が少なくなるため、光硬化反応による架橋構造の形成が不十分となるおそれがある。また、樹脂成分における酸価が高過ぎる場合、露光部は、アルカリ現像液に対する溶解性が高くなるため、形成されたパターンが目標とする線幅より細くなりやすく、パターンの欠落が生じやすくなるといった問題が生じるおそれがある。
 (C)成分の光重合開始剤には、前記本発明の硬化性樹脂組成物の説明において挙げられた光重合開始剤と同様のものが例示される。
 (C)成分添加量は、(A)成分と(B)成分の合計100質量部に対して、0.1~10質量部が好ましく、2~5質量部がより好ましい。ここで、光重合開始剤の添加量が0.1質量部未満であると感度が十分に得られず、光重合開始剤の添加量が10質量部を超えるとテーパー形状(現像パターン断面の膜厚方向形状)がシャープにならないで裾を引いた状態になるハレーションが起こりやすくなる。更に、後工程で高温に暴露した場合に分解ガスが発生するおそれがある。
 (D)エポキシ樹脂の例には、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、脂環式エポキシ樹脂等のエポキシ樹脂、フェニルグリシジルエーテル、p-ブチルフェノールグリシジルエーテル、トリグリシジルイソシアヌレート、ジグリシジルイソシアヌレート、アリルグリシジルエーテル、グリシジルメタクリレート等のエポキシ基を少なくとも1個有する化合物が含まれる。アルカリ可溶性樹脂の架橋密度を上げる必要性がある場合は、エポキシ基を少なくとも2個以上を有する化合物が好ましい。
 (D)成分を使用する場合の添加量は、(A)成分と(B)成分の合計100質量部に対して10~40質量部の範囲が好ましい。ここで、エポキシ樹脂を添加する1つの目的としては、硬化膜の信頼性を高めるためにパターニング後に硬化膜を形成した際に残存するカルボキシル基の量を少なくすることがあり、この目的の場合はエポキシ樹脂の使用量が10質量部より少ないと、絶縁膜として使用する際の耐湿信頼性が確保できないおそれがある。また、エポキシ樹脂の使用量が40質量部より多い場合は、感光性樹脂組成物中の樹脂成分における感光性基の量が減少して、パターニングするための感度が十分に得られないおそれがある。
 上記(A)~(C)成分、又は(A)~(D)成分含む感光性樹脂組成物は、必要により溶剤に溶解させたり、各種添加剤を配合して用いることもできる。例えば、本発明の感光性樹脂組成物を絶縁材料用途等に使用する場合においては、上記必須成分の他に溶剤を使用することが好ましい。溶剤の例には、メタノール、エタノール、n-プロパノール、イソプロパノール、エチレングリコール、プロピレングリコール等のアルコール類や、α-もしくはβ-テルピネオール等のテルペン類や、アセトン、メチルエチルケトン、シクロヘキサノン、N-メチル-2-ピロリドン等のケトン類や、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類や、セロソルブ、メチルセロソルブ、エチルセロソルブ、カルビトール、メチルカルビトール、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類や、酢酸エチル、酢酸ブチル、セロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等の酢酸エステル類が含まれる。これらを単独又は2種類以上を併用して溶解、混合させることにより、均一な溶液状の組成物とすることができる。
 また、本発明の感光性樹脂組成物には、必要に応じて硬化促進剤、熱重合禁止剤、酸化防止剤、可塑剤、レベリング剤、消泡剤、カップリング剤、界面活性剤等の添加剤を配合することができる。このうち、硬化促進剤としては、例えばエポキシ樹脂に通常適用される硬化促進剤、硬化触媒、潜在性硬化剤等として知られる公知の化合物を利用でき、三級アミン、四級アンモニウム塩、三級ホスフィン、四級ホスホニウム塩、ホウ酸エステル、ルイス酸、有機金属化合物、イミダゾール類、ジアザビシクロ系化合物等が含まれる。熱重合禁止剤及び酸化防止剤の例には、ハイドロキノン、ハイドロキノンモノメチルエーテル、ピロガロール、t-ブチルカテコール、フェノチアジン、ヒンダードフェノール系化合物、リン系熱安定剤等が含まれる。可塑剤の例には、ジブチルフタレート、ジオクチルフタレート、リン酸トリクレジル等が含まれる。充填材の例には、グラスファイバー、シリカ、マイカ、アルミナ等が含まれる。また、消泡剤及びレベリング剤の例には、シリコーン系、フッ素系、アクリル系の化合物等が含まれる。カップリング剤の例には、ビニルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-(グリシジルオキシ)プロピルトリメトキシシラン、3-イソシアナトプロピルトリエトキシシラン、3-アミノプロピルトリエトキシシラン、3-(フェニルアミノ)プロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシランが含まれる。界面活性剤の例には、フッ素系界面活性剤、シリコーン系界面活性剤等が含まれる。
 本発明の感光性樹脂組成物は、溶剤を除いた固形分中に、上記(A)~(D)成分が合計で70質量%以上、好ましくは80質量%、より好ましくは90質量%以上含まれることがよい。
 溶剤の量は、目標とする粘度によって変化するが、全体量に対して10~80質量%が好ましい。
 また、本発明の塗膜(硬化物)は、例えば、感光性樹脂組成物の溶液を基板等に塗布し、溶剤を乾燥し、光(紫外線、放射線等を含む)を照射して硬化させることで得られる。フォトマスク等を使用して光が当たる部分と当たらない部分とを設けて、光が当たる部分だけを硬化させ、他の部分をアルカリ溶液で溶解させれば、所望のパターンの塗膜が得られる。
 感光性樹脂組成物の塗布・乾燥による成膜方法の各工程について、具体的に例示すると、感光性樹脂組成物を基板に塗布する際には、公知の溶液浸漬法、スプレー法、ローラーコーター機、ランドコーター機、スリットコート機やスピナー機を用いる方法等の何れの方法をも採用することができる。これらの方法によって、所望の厚さに塗布した後、溶剤を除去する(プレベーク)ことにより、被膜が形成される。プレベークはオーブン、ホットプレート等による加熱、真空乾燥又はこれらの組み合わせることによって行われる。プレベークにおける加熱温度及び加熱時間は使用する溶剤に応じて適宜選択されうるが、例えば、80~120℃で、1~10分間行われることが好ましい。
 露光に使用される放射線としては、例えば、可視光線、紫外線、遠紫外線、電子線、g線、i線、X線等を使用することができるが、放射線の波長の範囲は、250~450nmが好ましい。
 また、このアルカリ現像に適した現像液としては、例えば、炭酸ナトリウム、炭酸カリウム、水酸化カリウム、ジエタノールアミン、テトラメチルアンモニウムヒドロキシド等の水溶液を用いることができる。これらの現像液は、樹脂層の特性に合わせて適宜選択されうるが、必要に応じて界面活性剤を添加することも有効である。現像温度は、20~35℃が好ましく、市販の現像機や超音波洗浄機等を用いて微細な画像を精密に形成することができる。なお、アルカリ現像後は、通常、水洗される。現像処理法としては、シャワー現像法、スプレー現像法、ディップ(浸漬)現像法、パドル(液盛り)現像法等を適用することができる。
 このようにして現像した後、180~250℃で、20~100分間、熱処理(ポストベーク)が行われる。このポストベークは、パターニングされた塗膜と基板との密着性を高めるため等の目的で行われる。これはプレベークと同様に、オーブン、ホットプレート等により加熱することによって行われる。パターニングされた塗膜は、フォトリソグラフィー法による各工程を経て形成される。そして、熱により重合又は硬化(両者を合わせて硬化ということがある)を完結させ、所望のパターンの絶縁膜等の硬化膜とする。このときの硬化温度は160~250℃が好ましい。本発明の硬化物は、硬化膜の他種々の形態をとり得る。
 本発明の感光性樹脂組成物は、(A)成分が1分子内に有する重合性不飽和基数が多いために光硬化性が向上し、光重合開始剤を増量することなく硬化後の架橋密度を高めることができる。すなわち、厚膜で紫外線又は電子線を照射した場合、硬化部は底部まで硬化するため、露光部と未露光部分におけるアルカリ現像液に対する溶解度差が大きくなることから、パターン寸法安定性、現像マージン、パターン密着性が向上し、高解像度でパターン形成することができる。そして、薄膜の場合にも、高感度化されたことにより、露光部の残膜量の大幅な改善や現像時の剥離を抑制することができる。
 本発明の感光性組成物は回路基板作製のためのソルダーレジスト、メッキレジスト、エッチングレジストや、半導体素子を搭載する配線基板の多層化用の絶縁膜、半導体のゲート絶縁膜、感光性接着剤(特にフォトリスグラフィーによるパターン形成後にも加熱接着性能を必要とするような接着剤)等に極めて有用である。
 以下、本発明を実施例に基づいて具体的に説明するが本発明はこれに限定されるものではない。実施例において、特に断りがない限り「部」は質量部を表し、「%」は質量%を表す。また、これらの実施例における樹脂の評価は、断りのない限り以下のとおりに行った。
[固形分濃度]
 樹脂溶液、感光性樹脂組成物等(約1g)をガラスフィルター〔質量:W0(g)〕に含浸させて精秤し〔W1(g)〕、160℃で2時間加熱した後の質量〔W2(g)〕の値を用いて、下記式により算出した。
   固形分濃度(%)=100×(W2-W0)/(W1-W0)
[酸価]
 JIS K 0070規格に準拠して測定した。具体的には、樹脂溶液をジオキサンに溶解させ、電位差滴定装置「COM-1600」(平沼産業株式会社製)を用いて0.1N-KOH水溶液で滴定して、固形分1gあたりに必要としたKOHの量(mg)を酸価とした。
[分子量]
 ゲルパーミュエーションクロマトグラフィー(GPC)(「HLC-8220GPC」東ソー株式会社製、カラム:TSKgelSuperH2000(2本)+TSKgelSuperH3000(1本)+TSKgelSuperH4000(1本)+TSKgelSuperH5000(1本)(いずれも東ソー株式会社製)、溶媒:テトラヒドロフラン、温度:40℃、速度:0.6mL/min)にて測定し、標準ポリスチレン(「PS-オリゴマーキット」東ソー株式会社製)換算値として求めた値を重量平均分子量(Mw)とした。
[比誘電率、誘電正接]
 空洞共振法(ベクトルネットワークアナライザー(VNA)E8363B(アジレント・テクノロジー製)、空洞共振器摂動法誘電率測定装置(関東電子応用開発製))を用いて、絶乾後23℃、湿度50%の室内に24時間保管した後の、1GHzの値を測定した。
[密着性]
 硬化膜付きガラス基板の膜上に少なくとも100個の碁盤目状になるようにクロスカットを入れて、次いでセロハンテープを用いてピーリング試験を行い、碁盤目の状態を目視によって評価した。
  ◎:全く剥離がみられないもの
  ○:僅かに塗膜に剥離が確認できるもの
  △:一部塗膜に剥離が確認できるもの
  ×:膜が殆ど剥離してしまうもの
[耐アルカリ性]
 硬化膜付きガラス基板を、2-アミノエタノール30部、グリコールエーテル70部の混合液の80℃に保持した溶液に浸漬し、10分後に引き上げて純水で洗浄、乾燥して、薬品浸漬したサンプルを作製して、上記密着性を評価した。
[耐酸性]
 硬化膜付きガラス基板を、王水(塩酸:硝酸=7:3)の50℃に保持した溶液に浸漬し、10分後に引き上げて純水で洗浄、乾燥して、薬品浸漬したサンプルを作製して、上記密着性を評価した。
 また、使用する材料の略号は次のとおりである。
E1:合成例1で得られたエポキシ樹脂
E2:合成例2で得られたエポキシ樹脂
E3:フェノールノボラック型エポキシ樹脂(日鉄ケミカル&マテリアル株式会社製、YDPN-638、エポキシ当量177g/eq.)
E4:ビスフェノールA型液状エポキシ樹脂(日鉄ケミカル&マテリアル株式会社製、YD-127、エポキシ当量182g/eq.)
E5:クレゾールノボラック型エポキシ樹脂(日鉄ケミカル&マテリアル株式会社製、YDCN-700-3、エポキシ当量203g/eq.、軟化点73℃)
THPA:1,2,3,6-テトラヒドロフタル酸無水物
TPP:トリフェニルホスフィン
HQ:ハイドロキノン
TEAB:臭化テトラエチルアンモニウム
MIBK:メチルイソブチルケトン
PGMEA:プロピレングリコールモノメチルエーテルアセテート
B1:ジペンタエリスリトールヘキサアクリレート
C1:光重合開始剤(BASF社製、イルガキュア184)
C2:光重合開始剤(4,4’-ビス(ジメチルアミノ)ベンゾフェノン(ミヒラーケトン))
合成例1
 撹拌機、温度調節装置、窒素導入装置、滴下装置、及び還流冷却管を備えた反応装置に、2,6-キシレノール970部、47%BFエーテル錯体14.5部を仕込み、撹拌しながら70℃に加温した。同温度に保持しながら、ジシクロペンタジエン300部(2,6-キシレノールに対し0.29倍モル)を2時間で滴下した。更に125~135℃の温度で6時間反応し、水酸化カルシウム2.3部を加えた。更に10%のシュウ酸水溶液4.6部を添加した。その後、160℃まで加温して脱水した後、5mmHgの減圧下、200℃まで加温して未反応の原料を蒸発除去した。MIBK1000部を加えて生成物を溶解し、80℃の温水400部を加えて水洗し、下層の水槽を分離除去した。その後、5mmHgの減圧下、160℃に加温してMIBKを蒸発除去して、赤褐色のフェノール樹脂を540部得た。水酸基当量は213であり、軟化点は71℃であり、吸収比(A3040/A1210)は0.11であった。ESI-MS(ネガティブ)によるマススペクトルを測定したところ、M-=253、375、507、629が確認された。
 撹拌機、温度調節装置、真空度調節装置、窒素導入装置、滴下装置、及び還流冷却管を備えた反応装置に、得られたフェノール樹脂250部、エピクロルヒドリン544部とジエチレングリコールジメチルエーテル163部を加えて65℃に加温した。125mmHgの減圧下、63~67℃の温度に保ちながら、49%水酸化ナトリウム水溶液108部を4時間で滴下した。この間、エピクロルヒドリンは水と共沸させて、流出してくる水は順次系外へと除去した。反応終了後、5mmHg、180℃になる条件でエピクロルヒドリンを回収し、MIBK948部を加えて生成物を溶解した。その後、263部の水を加えて副生した食塩を溶解し、静置して下層の食塩水を分離除去した。リン酸水溶液にて中和した後、水洗液が中性になるまで樹脂溶液を水洗し、ろ過した。5mmHgの減圧下、180℃に加温して、MIBKを留去し、赤褐色透明の2,6-キシレノール・ジシクロペンタジエン型エポキシ樹脂(E1)を298部得た。エポキシ当量は282、全塩素含有量980ppm、室温半固形の樹脂であった。
合成例2
 合成例1と同様の反応装置に、2,6-キシレノール95.0部、47%BFエーテル錯体6.3部を仕込み、撹拌しながら70℃に加温した。同温度に保持しながら、ジシクロペンタジエン58.8部(2,6-キシレノールに対し0.56倍モル)を1時間で滴下した。更に115~125℃の温度で3時間反応した後、更に同温度でジシクロペンタジエン69.2部(2,6-キシレノールに対し0.67倍モル)を1時間で滴下し、115℃~125℃の温度で2時間反応した。水酸化カルシウム1.0部を加えた。更に10%のシュウ酸水溶液2.0部を添加した。その後、160℃まで加温して脱水した後、5mmHgの減圧下、200℃まで加温して未反応の原料を蒸発除去した。MIBK520部を加えて生成物を溶解し、80℃の温水150部を加えて水洗し、下層の水槽を分離除去した。その後、5mmHgの減圧下、160℃に加温してMIBKを蒸発除去して、赤褐色のフェノール樹脂を221部得た。水酸基当量は377であり、軟化点は102℃であり、吸収比(A3040/A1210)は0.18であった。ESI-MS(ネガティブ)によるマススペクトルを測定したところ、M-=253、375、507、629が確認された。
 合成例1と同様の反応装置に、得られたフェノール樹脂180部、エピクロルヒドリン221部とジエチレングリコールジメチルエーテル33部を加えて65℃に加温した。125mmHgの減圧下、63~67℃の温度に保ちながら、49%水酸化ナトリウム水溶液39部を4時間で滴下した。この間、エピクロルヒドリンは水と共沸させて、流出してくる水は順次系外へと除去した。反応終了後、5mmHg、180℃になる条件でエピクロルヒドリンを回収し、MIBK482部を加えて生成物を溶解した。その後、146部の水を加えて副生した食塩を溶解し、静置して下層の食塩水を分離除去した。リン酸水溶液にて中和した後、水洗液が中性になるまで樹脂溶液を水洗し、ろ過した。5mmHgの減圧下、180℃に加温して、MIBKを留去し、赤褐色透明の2,6-キシレノール・ジシクロペンタジエン型エポキシ樹脂(E2)を200部得た。エポキシ当量は446、全塩素含有量431ppm、軟化点91℃の樹脂であった。
実施例1
 撹拌機、温度調節装置、還流冷却器、及び空気導入装置を備えた反応容器に、282部のE1を63部のPGMEAに溶解し、更にアクリル酸72部、TPP3.5部、HQ0.1部を加えて、空気を吹きこみながら、110℃で8時間反応させた後、PGMEA293部加えて、エポキシアクリレート樹脂(R1)のPGMEA溶液を得た。得られた樹脂溶液の固形分濃度は50%であった。
 得られた樹脂溶液を減圧留去により溶剤を除去し、得られた固形分100部をフッ素樹脂製の型に入れ、ジクミルパーオキサイド1部を加え、100℃のオーブン中で30分、170℃で1時間加熱し硬化させて、硬化物を得た。この硬化物より、厚み0.2mm、0.2cm×10cmの試験片を作成し、比誘電率及び誘電正接を測定した。
実施例2
 実施例1と同様の装置に、446部のE2を97部のPGMEAに溶解し、更にアクリル酸72部、TPP3.5部、HQ0.1部を加えて、空気を吹きこみながら、110℃で8時間反応させた後、PGMEA450部加えて、エポキシアクリレート樹脂(R2)のPGMEA溶液を得た。得られた樹脂溶液の固形分濃度は50%であった。実施例1と同様にして比誘電率及び誘電正接を測定した。
比較例1
 実施例1と同様の装置に、177部のE3を44部のPGMEAに溶解し、更にアクリル酸72部、TPP3.5部、HQ0.1部を加えて、空気を吹きこみながら、110℃で8時間反応させた後、PGMEA208部加えて、エポキシアクリレート樹脂(HR1)のPGMEA溶液を得た。得られた樹脂溶液の固形分濃度は50%であった。実施例1と同様にして比誘電率及び誘電正接を測定した。
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000008
実施例3
 実施例1と同様の装置に、R1の50%PGMEA溶液450部と、THPA95部と、TEAB1.8部と、PGMEA38部とを仕込み、120~125℃で6時間撹拌し、アルカリ可溶性樹脂溶液(A1)を得た。得られた樹脂溶液の固形分濃度は55%であった。
 53部のA1、12.5部のB1、1.3部のC1、0.2部のC2、6.3部のE5、及び28部のPGMEAを配合して、感光性樹脂組成物を得た。
 得られた感光性樹脂組成物を、スピンコーターを用いて125mm×125mmのガラス基板上にポストベーク後の膜厚が30μmとなるように塗布し、110℃で5分間プリベークして塗布板を作製した。その後、500W/cmの高圧水銀ランプで波長365nmの紫外線を照射し、全面露光の光硬化反応を行った。次に、この露光済み塗板を0.8%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液、23℃のシャワー現像にて60秒間の処理を行い、更にスプレー水洗を行った。その後、熱風乾燥機を用いて230℃、30分間加熱硬化処理を行って、硬化膜付きガラス基板を得た。
実施例4
 実施例1と同様の装置に、R2の50%PGMEA溶液450部と、THPA62部と、TEAB1.8部と、PGMEA11部とを仕込み、120~125℃で6時間撹拌し、アルカリ可溶性樹脂溶液(A2)を得た。得られた樹脂溶液の固形分濃度は55%であった。
 A1の代わりにA2を使用した以外は、実施例3と同様の操作を行い、感光性樹脂組成物及び硬化膜付きガラス基板を得た。
比較例2
 実施例1と同様の装置に、HR1の50%PGMEA溶液450部と、THPA135部と、TEAB1.8部と、PGMEA70部とを仕込み、120~125℃で6時間撹拌し、アルカリ可溶性樹脂溶液(HA1)を得た。得られた樹脂溶液の固形分濃度は55%であった。
 A1の代わりにHA1を使用した以外は、実施例3と同様の操作を行い、感光性樹脂組成物及び硬化膜付きガラス基板を得た。
比較例3
 実施例1と同様の装置に、182部のE4を45部のPGMEAに溶解し、更にアクリル酸72部、TPP3.5部、HQ0.1部を加えて、空気を吹きこみながら、110℃で8時間反応させた後、PGMEA212部加えて、エポキシアクリレート樹脂のPGMEA溶液を得た。得られた樹脂溶液の固形分濃度は50%であった。得られた樹脂溶液291部と、ジメチロールプロピオン酸4.0部と、1,6-ヘキサンジオール11.8部と、PGMEA104部とを仕込み、45℃に昇温した。次に、イソホロンジイソシアネート61.8部を滴下した。滴下終了後、75~80℃で6時間撹拌した。更に、THPA21部を仕込み、90~95℃で6時間撹拌し、アルカリ可溶性樹脂溶液(HA2)を得た。得られた樹脂溶液の固形分濃度は55%であった。
 A1の代わりにHA2を使用した以外は、実施例3と同様の操作を行い、感光性樹脂組成物及び硬化膜付きガラス基板を得た。
 得られた樹脂溶液について酸価(固形分換算)と分子量(Mw)を測定した結果と、得られた硬化膜付きガラス基板について密着性、耐アルカリ性、及び耐酸性試験を行った結果を表2に示した。
Figure JPOXMLDOC01-appb-T000009
産業上の利用の可能性
 本発明の硬化性樹脂組成物、感光性樹脂組成物、及びその硬化物は、回路基板作製のためのソルダーレジスト、メッキレジスト、エッチングレジストや、半導体素子を搭載する配線基板の多層化用の絶縁膜、半導体のゲート絶縁膜、感光性接着剤等に適用可能である。

Claims (9)

  1.  下記一般式(1)で表されるエポキシアクリレート樹脂。
    Figure JPOXMLDOC01-appb-C000001
     ここで、Rは独立に、炭素数1~8の炭化水素基を示し、
    は独立に、水素原子又はジシクロペンテニル基を示し、少なくとも1つはジシクロペンテニル基である。
    Xは上記式(1a)で表される不飽和結合含有基であり、Rは水素原子又はメチル基を示す。
    nは繰り返し数を示し、その平均値は1~5である。
  2.  請求項1に記載のエポキシアクリレート樹脂と重合開始剤とを含有することを特徴とする硬化性樹脂組成物。
  3.  請求項2に記載の硬化性樹脂組成物を硬化させた硬化物。
  4.  下記一般式(2)で表され、分子内にカルボキシル基及び重合性不飽和基を有するアルカリ可溶性樹脂。
    Figure JPOXMLDOC01-appb-C000002
     ここで、Rは独立に、炭素数1~8の炭化水素基を示し、
    は独立に、水素原子又はジシクロペンテニル基を示し、少なくとも1つはジシクロペンテニル基である。
    は水素原子又はメチル基を示す。
    Yは上記式(2a)で表される不飽和結合含有基であり、Rは水素原子又はメチル基を示す。
    nは繰り返し数を示し、その平均値は1~5である。
    Lは水素原子又は上記式(3)で表されるカルボキシル基含有基を示し、Lの50モル%以上はカルボキシル基含有基である。
    Mはp+1価のカルボン酸残基を示し、pは1又は2である。
  5.  請求項2に記載のアルカリ可溶性樹脂と、少なくとも1個の重合性不飽和基を有する光重合性モノマーと、光重合開始剤とを含有することを特徴とする感光性樹脂組成物。
  6.  更にエポキシ樹脂を含有することを特徴とする請求項5に記載の感光性樹脂組成物。
  7.  アルカリ可溶性樹脂と光重合性モノマーの合計100質量部に対して、光重合開始剤を0.1~10質量部含有する請求項5又は6に記載の感光性樹脂組成物。
  8.  アルカリ可溶性樹脂と光重合性モノマーの合計100質量部に対して、エポキシ樹脂を10~40質量部含有する請求項6又は7に記載の感光性樹脂組成物。
  9.  請求項5~8のいずれか一項に記載の感光性樹脂組成物を硬化させた硬化物。
PCT/JP2021/017135 2020-05-12 2021-04-30 エポキシアクリレート樹脂、アルカリ可溶性樹脂、それを含む樹脂組成物及びその硬化物 WO2021230097A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180034251.XA CN115551914A (zh) 2020-05-12 2021-04-30 环氧丙烯酸酯树脂、碱可溶性树脂、含有其的树脂组合物及其固化物
JP2022521835A JPWO2021230097A1 (ja) 2020-05-12 2021-04-30
KR1020227040044A KR20230008105A (ko) 2020-05-12 2021-04-30 에폭시아크릴레이트 수지, 알칼리 가용성 수지, 그것을 포함하는 수지 조성물 및 그 경화물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020083923 2020-05-12
JP2020-083923 2020-05-12

Publications (1)

Publication Number Publication Date
WO2021230097A1 true WO2021230097A1 (ja) 2021-11-18

Family

ID=78525743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017135 WO2021230097A1 (ja) 2020-05-12 2021-04-30 エポキシアクリレート樹脂、アルカリ可溶性樹脂、それを含む樹脂組成物及びその硬化物

Country Status (5)

Country Link
JP (1) JPWO2021230097A1 (ja)
KR (1) KR20230008105A (ja)
CN (1) CN115551914A (ja)
TW (1) TW202146505A (ja)
WO (1) WO2021230097A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024018918A1 (ja) * 2022-07-22 2024-01-25 日鉄ケミカル&マテリアル株式会社 多官能ビニル樹脂、その製造方法、多官能ビニル樹脂組成物及びその硬化物

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289719A (ja) * 1985-10-15 1987-04-24 Sanyo Kokusaku Pulp Co Ltd 新規ビニルエステル樹脂およびその製造法
JPH05214048A (ja) * 1992-01-31 1993-08-24 Nippon Oil Co Ltd 光硬化性樹脂組成物およびソルダーレジスト用光硬化性樹脂組成物
JPH101596A (ja) * 1996-06-19 1998-01-06 Dainippon Ink & Chem Inc 多層プリント配線板用層間電気絶縁材料
JP2002220425A (ja) * 2001-01-25 2002-08-09 Nippon Kayaku Co Ltd 樹脂組成物、ソルダーレジスト樹脂組成物及びこれらの硬化物
JP2002226560A (ja) * 2001-01-31 2002-08-14 Showa Highpolymer Co Ltd 硬化性樹脂および硬化性樹脂組成物
JP2004295084A (ja) * 2003-03-12 2004-10-21 Mitsubishi Chemicals Corp 感光性組成物、感光性着色組成物、カラーフィルタ、及び液晶表示装置
JP2006350153A (ja) * 2005-06-20 2006-12-28 Mitsubishi Chemicals Corp 感光性組成物、感光性着色成物、カラーフィルタ、及び液晶表示装置
JP2007016113A (ja) * 2005-07-07 2007-01-25 Nippon Kayaku Co Ltd エポキシ樹脂、感光性樹脂及び感光性樹脂組成物
JP2009102456A (ja) * 2007-10-19 2009-05-14 Jfe Chemical Corp ジシクロペンタジエン類変性フェノール樹脂の製造方法および未反応フェノール類の再利用方法
JP2020015823A (ja) * 2018-07-26 2020-01-30 日鉄ケミカル&マテリアル株式会社 エポキシ樹脂組成物、プリプレグ、積層板およびプリント配線板
WO2020129724A1 (ja) * 2018-12-19 2020-06-25 日鉄ケミカル&マテリアル株式会社 フェノール樹脂、エポキシ樹脂、エポキシ樹脂組成物およびその硬化物
JP2021046520A (ja) * 2019-09-20 2021-03-25 日鉄ケミカル&マテリアル株式会社 エポキシアクリレート樹脂、アルカリ可溶性樹脂、それを含む樹脂組成物及びその硬化物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243869A (ja) 1985-04-19 1986-10-30 Taiyo Ink Seizo Kk レジストインキ組成物
JP2764480B2 (ja) 1991-05-17 1998-06-11 日本化薬株式会社 カラーフィルター用光重合組成物
JP3813244B2 (ja) 1996-06-07 2006-08-23 新日鐵化学株式会社 アルカリ現像性不飽和樹脂組成物及びこれを用いた高感度ネガ型パターン形成材料
JP4812974B2 (ja) 2001-07-12 2011-11-09 新日鐵化学株式会社 硬化性樹脂、硬化性樹脂組成物及びその硬化物
CN101017324A (zh) * 2003-03-12 2007-08-15 三菱化学株式会社 光敏组合物、光敏着色组合物、滤色器和液晶显示设备
JP2005239817A (ja) * 2004-02-25 2005-09-08 Dainippon Ink & Chem Inc 酸ペンダント型エポキシアクリレート樹脂の製造方法および硬化性樹脂組成物
CN107540816B (zh) * 2016-06-23 2020-09-22 南亚塑胶工业股份有限公司 二环戊二烯-酚与2,6-二甲基苯酚的共聚物环氧树脂的制备与应用

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289719A (ja) * 1985-10-15 1987-04-24 Sanyo Kokusaku Pulp Co Ltd 新規ビニルエステル樹脂およびその製造法
JPH05214048A (ja) * 1992-01-31 1993-08-24 Nippon Oil Co Ltd 光硬化性樹脂組成物およびソルダーレジスト用光硬化性樹脂組成物
JPH101596A (ja) * 1996-06-19 1998-01-06 Dainippon Ink & Chem Inc 多層プリント配線板用層間電気絶縁材料
JP2002220425A (ja) * 2001-01-25 2002-08-09 Nippon Kayaku Co Ltd 樹脂組成物、ソルダーレジスト樹脂組成物及びこれらの硬化物
JP2002226560A (ja) * 2001-01-31 2002-08-14 Showa Highpolymer Co Ltd 硬化性樹脂および硬化性樹脂組成物
JP2004295084A (ja) * 2003-03-12 2004-10-21 Mitsubishi Chemicals Corp 感光性組成物、感光性着色組成物、カラーフィルタ、及び液晶表示装置
JP2006350153A (ja) * 2005-06-20 2006-12-28 Mitsubishi Chemicals Corp 感光性組成物、感光性着色成物、カラーフィルタ、及び液晶表示装置
JP2007016113A (ja) * 2005-07-07 2007-01-25 Nippon Kayaku Co Ltd エポキシ樹脂、感光性樹脂及び感光性樹脂組成物
JP2009102456A (ja) * 2007-10-19 2009-05-14 Jfe Chemical Corp ジシクロペンタジエン類変性フェノール樹脂の製造方法および未反応フェノール類の再利用方法
JP2020015823A (ja) * 2018-07-26 2020-01-30 日鉄ケミカル&マテリアル株式会社 エポキシ樹脂組成物、プリプレグ、積層板およびプリント配線板
WO2020129724A1 (ja) * 2018-12-19 2020-06-25 日鉄ケミカル&マテリアル株式会社 フェノール樹脂、エポキシ樹脂、エポキシ樹脂組成物およびその硬化物
JP2021046520A (ja) * 2019-09-20 2021-03-25 日鉄ケミカル&マテリアル株式会社 エポキシアクリレート樹脂、アルカリ可溶性樹脂、それを含む樹脂組成物及びその硬化物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024018918A1 (ja) * 2022-07-22 2024-01-25 日鉄ケミカル&マテリアル株式会社 多官能ビニル樹脂、その製造方法、多官能ビニル樹脂組成物及びその硬化物

Also Published As

Publication number Publication date
TW202146505A (zh) 2021-12-16
CN115551914A (zh) 2022-12-30
JPWO2021230097A1 (ja) 2021-11-18
KR20230008105A (ko) 2023-01-13

Similar Documents

Publication Publication Date Title
JP6482176B2 (ja) 絶縁膜用感光性樹脂組成物及び硬化物
KR102493938B1 (ko) 카르복실기 함유 수지, 감광성 수지 조성물, 드라이 필름, 프린트 배선판, 및 카르복실기 함유 수지의 제조 방법
JP4376290B2 (ja) ソルダーレジスト、そのドライフィルム及び硬化物ならびにプリント配線板
JP7479130B2 (ja) エポキシアクリレート樹脂、アルカリ可溶性樹脂、それを含む樹脂組成物及びその硬化物
US6528552B1 (en) Resist composition excellent in flame resistance
WO2021235299A1 (ja) 重合性不飽和基含有アルカリ可溶性樹脂及びその製造方法、並びに感光性樹脂組成物及びその硬化物
JP6767090B2 (ja) 感光性樹脂組成物、プリント配線板、支持体付きドライフィルム、及び多層プリント配線板
WO2021230097A1 (ja) エポキシアクリレート樹脂、アルカリ可溶性樹脂、それを含む樹脂組成物及びその硬化物
WO2019188897A1 (ja) 重合性不飽和基含有アルカリ可溶性樹脂の製造方法、重合性不飽和基含有アルカリ可溶性樹脂、それを必須成分とする感光性樹脂組成物、およびその硬化膜
JP7311493B2 (ja) 不飽和基含有アルカリ可溶性樹脂、それを必須成分とする感光性樹脂組成物およびその硬化物
JP7368162B2 (ja) 重合性不飽和基含有アルカリ可溶性樹脂、その製造方法、感光性樹脂組成物、及びその硬化膜。
JP7150230B2 (ja) カルボキシル基含有樹脂、感光性樹脂組成物、ドライフィルム、プリント配線板、及びカルボキシル基含有樹脂の製造方法
JP5356211B2 (ja) 感光性樹脂の製造方法、その製造方法から得られる感光性樹脂および感光性樹脂組成物
JP2003167331A (ja) 樹脂組成物及びその硬化物
JP4673996B2 (ja) 感光性樹脂組成物
KR102673645B1 (ko) 불포화기 함유 알칼리 가용성 수지, 그것을 필수 성분으로 하는 감광성 수지 조성물 및 그 경화물
JP5133104B2 (ja) エポキシ(メタ)アクリレート樹脂、それを含有する光硬化性・熱硬化性樹脂組成物およびその硬化物
KR102162595B1 (ko) 절연막용 감광성 수지 조성물 및 경화물
KR20210034525A (ko) 에폭시아크릴레이트 수지, 알칼리 가용성 수지, 그 제조 방법, 그것을 포함하는 수지 조성물 및 그 경화물
JPS607427A (ja) 感光性樹脂組成物
JPWO2002018313A1 (ja) オキセタン変性化合物とそれから誘導される光硬化性化合物、それらの製造方法及びそれらを含有する硬化性組成物
JP3132331B2 (ja) 感光性樹脂と感光性樹脂組成物
JP3241452B2 (ja) 不飽和基含有カルボン酸樹脂組成物およびソルダーレジスト樹脂組成物
JP2002196486A (ja) 感光性樹脂組成物及びプリント配線板
JP2004331768A (ja) エポキシ基含有多分岐化合物、それを含有する硬化性組成物及び該硬化性組成物を用いたプリント配線板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803716

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022521835

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227040044

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803716

Country of ref document: EP

Kind code of ref document: A1