WO2021227505A1 - 用于柔性印刷线路板的液晶高分子薄膜 - Google Patents

用于柔性印刷线路板的液晶高分子薄膜 Download PDF

Info

Publication number
WO2021227505A1
WO2021227505A1 PCT/CN2020/138793 CN2020138793W WO2021227505A1 WO 2021227505 A1 WO2021227505 A1 WO 2021227505A1 CN 2020138793 W CN2020138793 W CN 2020138793W WO 2021227505 A1 WO2021227505 A1 WO 2021227505A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
polymer film
crystal polymer
tensile strength
transverse
Prior art date
Application number
PCT/CN2020/138793
Other languages
English (en)
French (fr)
Inventor
金亚东
杨承翰
周玉波
王雄伟
朱正平
Original Assignee
宁波长阳科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波长阳科技股份有限公司 filed Critical 宁波长阳科技股份有限公司
Priority to EP20934920.8A priority Critical patent/EP4053219A4/en
Publication of WO2021227505A1 publication Critical patent/WO2021227505A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/10Polyamides derived from aromatically bound amino and carboxyl groups of amino-carboxylic acids or of polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3804Polymers with mesogenic groups in the main chain
    • C09K19/3809Polyesters; Polyester derivatives, e.g. polyamides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/10Polyamides derived from aromatically bound amino and carboxyl groups of amino carboxylic acids or of polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2451/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2481/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2481/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2481/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2481/04Polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0141Liquid crystal polymer [LCP]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/05Flexible printed circuits [FPCs]

Definitions

  • This application relates to the field of printed circuit boards, and in particular to a liquid crystal polymer film for flexible printed circuit boards.
  • the substrate is usually made of polyimide film, but the dielectric constant of polyimide film is usually about 4.0, the dielectric loss factor is usually 0.004 to 0.007, the dielectric constant and dielectric loss The factors are all high, which cannot meet the requirements of flexible printed circuit boards in high-frequency applications.
  • a liquid crystal polymer film for a flexible printed circuit board is provided.
  • the material of the liquid crystal polymer film includes parylene dimethyl amide resin and polyphenylene sulfide resin,
  • the longitudinal tensile strength of the liquid crystal polymer film is less than the transverse tensile strength, and the longitudinal elongation at break of the liquid crystal polymer film is greater than the transverse elongation at break.
  • the longitudinal tensile strength of the liquid crystal polymer film is 0.83 to 0.92 times of the transverse tensile strength; and/or, the longitudinal elongation at break of the liquid crystal polymer film is the transverse elongation at break. 1.05 times to 1.13 times the growth rate.
  • the elongation at break of the liquid crystal polymer film in the longitudinal direction is 55% to 65%, and the elongation at break in the transverse direction of the liquid crystal polymer film is 54% to 61%; and/or,
  • the longitudinal tensile strength of the liquid crystal polymer film is 120 MPa to 190 MPa, and the transverse tensile strength of the liquid crystal polymer film is 145 MPa to 200 MPa.
  • the difference between the longitudinal elongation at break of the liquid crystal polymer film and the transverse elongation at break is less than or equal to 7%.
  • the difference between the transverse tensile strength and the longitudinal tensile strength of the liquid crystal polymer film is less than or equal to 30 MPa.
  • the liquid crystal polymer film has a dielectric constant of 2.5 to 2.8 and a dielectric loss factor of 0.001 to 0.002 at 50 GHz.
  • the coefficient of thermal expansion is 10 ppm/K to 14 ppm/K, and the coefficient of thermal expansion in the longitudinal direction of the liquid crystal polymer film is 90% to 110% of the coefficient of thermal expansion in the transverse direction of the liquid crystal polymer film.
  • the mass percentage of the polyphenylene sulfide resin in the liquid crystal polymer film is 9%-29.8%.
  • the material of the liquid crystal polymer film further includes an auxiliary agent
  • the auxiliary agent includes a compatibilizer and a dispersant
  • the mass percentage of the compatibilizer in the liquid crystal polymer film It is 2% to 5%, and the mass percentage content of the dispersant in the liquid crystal polymer film is 0.2% to 1%.
  • the compatibilizer includes maleic anhydride grafted ethylene-butene copolymer, and the grafting rate of the maleic anhydride grafted ethylene-butene copolymer is greater than or equal to 0.5%.
  • the liquid crystal polymer film of the present application is mainly obtained by blending polyparaphenylene dimethylamide resin (LCP resin) and polyphenylene sulfide resin (PPS resin), and has extremely low dielectric constant and dielectric loss factor.
  • LCP resin polyparaphenylene dimethylamide resin
  • PPS resin polyphenylene sulfide resin
  • the longitudinal tensile strength of the liquid crystal polymer film is less than the transverse tensile strength, and the longitudinal elongation at break is greater than the transverse elongation at break, so that the transverse and longitudinal tensile strength and elongation at break are complementary to ensure that the liquid crystal
  • the mechanical properties of the polymer film are isotropic.
  • the present application uses the liquid crystal polymer film as the material of the substrate of the flexible printed circuit board, so that the flexible printed circuit board has excellent dielectric and mechanical properties, and meets the requirements of high-frequency (15GHz-100GHz) application fields.
  • the liquid crystal polymer film has extremely low dielectric constant and dielectric loss at high frequencies (15GHz-100GHz), and has the characteristics of flexibility of organic polymer materials, and the liquid crystal polymer film exhibits liquid crystal properties in the molten state and has excellent resistance Thermal, extremely low moisture absorption, dimensional stability, low thermal expansion coefficient and other advantages, it is an ideal material for the substrate of flexible printed circuit boards.
  • the lateral direction of the flexible printed circuit board is always quickly damaged during the service process, resulting in a short service life of the flexible printed circuit board.
  • MD Machine Direction
  • the mechanical direction also known as the longitudinal direction
  • TD direction Transverse Direction, also known as the transverse direction
  • a liquid crystal polymer film is used as the matrix material, and the material of the liquid crystal polymer film includes parylene dimethyl amide resin and polyphenylene sulfide resin, liquid crystal
  • the longitudinal tensile strength of the polymer film is less than the transverse tensile strength, and the longitudinal elongation of the liquid crystal polymer film is greater than the transverse elongation.
  • PPS resin has high fluidity and excellent processability. Blending PPS resin and LCP resin can make a synergy between the two and reduce the influence of shear force during the preparation process. The result is that the transverse tensile strength of the liquid crystal polymer film is greater than the longitudinal tensile strength , And the longitudinal elongation at break is greater than the transverse elongation at break, which directly changes the mechanical strength distribution of the liquid crystal polymer film, so that the transverse and longitudinal tensile strength and the elongation at break complement each other, making the liquid crystal polymer film Is isotropic. Therefore, when the liquid crystal polymer film is used as the material of the insulating matrix of the flexible printed circuit board, the matrix will not be rapidly damaged in a certain direction when the flexible printed circuit board undergoes mechanical deformation during service.
  • the longitudinal tensile strength of the liquid crystal polymer film is 0.83 to 0.92 times the transverse tensile strength , Further preferably 0.86 times; the longitudinal elongation at break of the liquid crystal polymer film is 1.05 to 1.13 times of the transverse elongation at break, more preferably 1.07 times.
  • the longitudinal tensile strength of the liquid crystal polymer film is preferably 120 MPa to 190 MPa, more preferably 150 MPa to 190 MPa,
  • the tensile strength in the transverse direction is preferably 145 MPa to 200 MPa, and more preferably 180 MPa to 200 MPa.
  • the difference between the transverse tensile strength and the longitudinal tensile strength of the liquid crystal polymer film of the present application is preferably less than or equal to 30 MPa, and more preferably less than or equal to 25 MPa.
  • the longitudinal elongation at break of the liquid crystal polymer film is preferably 55% to 65%, more preferably 60% to 65%, and the elongation at break in the transverse direction is preferably 54% to 61%, more preferably 58% to 61%.
  • the difference between the longitudinal elongation at break and the transverse elongation of the liquid crystal polymer film is preferably 7% or less, and more preferably 3% or less.
  • the mass percentage of PPS resin in the liquid crystal polymer film is 9%-29.8%. Therefore, the liquid crystal polymer film has a dielectric constant of 2.5 to 2.8 and a dielectric loss factor of 0.001 to 0.002 at 50 GHz, which is suitable for high-frequency flexible printed circuit boards.
  • the coefficient of thermal expansion (CTE) of the liquid crystal polymer film is 10 ppm/K to 14 ppm/K, and the coefficient of thermal expansion in the longitudinal direction is 90% to 110% of the coefficient of thermal expansion in the transverse direction, which is also isotropic. Therefore, when the liquid crystal polymer film is used as the material of the insulating substrate of the flexible printed circuit board, the liquid crystal polymer film will not be quickly damaged in a certain direction when the flexible printed circuit board undergoes thermal deformation during service.
  • liquid crystal polymer film provided by the present application when used as the material of the insulating matrix of the flexible printed circuit board, it has excellent dielectric properties, and the matrix of the flexible printed circuit board will not be quickly damaged in a certain direction during the service process. long lasting.
  • the isotropic liquid crystal polymer film used in the flexible printed circuit board of this application can be prepared with reference to the following preparation method.
  • step S1 the mass percentage of the polyphenylene sulfide resin in the mixture is 9%-29.8%.
  • the mixture further includes an auxiliary agent
  • the auxiliary agent includes a compatibilizer and a dispersant
  • the mass percentage of the auxiliary agent in the mixture is 2.2% to 6%.
  • the mass percentage of the compatibilizer in the mixture is 2% to 5%
  • the compatibilizer includes maleic anhydride grafted ethylene-butene copolymer, maleic anhydride grafted ethylene-butene copolymer grafted
  • the rate is greater than or equal to 0.5%.
  • the mass percentage content of the dispersant in the mixture is 0.2% to 1%, and the dispersant includes montan wax.
  • the dispersant includes montan wax.
  • the montan wax dispersant can make the PPS resin dispersed in the LCP resin more uniformly, and improve the fluidity of the liquid crystal polymer film during processing.
  • the process of melting and plasticizing can be carried out by a twin-screw extruder, where the temperature of the mixture is 100°C to 300°C, the die temperature of the twin-screw extruder is 290°C to 300°C, and the twin-screw extruder The temperature of the intercooling roll is 220°C-260°C.
  • step S2 biaxial stretching is used to prepare the liquid crystal polymer film, which is conducive to the orientation and setting of the polymer in the LCP resin and PPS resin, improves the crystallinity of the polymer and the refinement of crystals, thereby greatly improving the mechanical strength of the liquid crystal polymer film And transparency.
  • the stretch ratio of the preformed film in the longitudinal direction is 1.5 to 3.0 times, and the stretch ratio in the transverse direction is 2.0 to 3.5 times.
  • the longitudinal stretch ratio refers to the ratio between the longitudinal length of the film after stretching and the longitudinal length of the film before stretching
  • the transverse stretch ratio refers to the ratio between the transverse length of the film after stretching and the The ratio between the length of the film in the transverse direction before stretching.
  • longitudinal stretching is performed first, so that the polymer is first oriented in the longitudinal direction, and then stretched in the transverse direction, so that the longitudinal tensile strength is less than the transverse tensile strength and the longitudinal fracture is obtained.
  • the stretching temperature of the biaxial stretching is 240° C. to 270° C., and the stretching temperature can be above the glass transition temperature of the mixture and below the melting point.
  • the liquid crystal polymer film prepared by the method has a thickness of 50 ⁇ m-100 ⁇ m, a melting point (Tm) of 270° C.-290° C., and a water absorption rate of 0.03%-0.04% (25° C., 24h immersion in water).
  • the production process for preparing the isotropic liquid crystal polymer film in the present application is simple, low in cost, and suitable for industrial production, and the liquid crystal polymer film prepared is suitable for making the substrate of a flexible printed circuit board.
  • the materials of the liquid crystal polymer film can be purchased from the following companies.
  • the LCP resin is purchased from Polyplastics Co., Ltd., Japan, with the brand name A950RX.
  • PPS resin is purchased from Polyplastics Co., Ltd. of Japan, and the brand is DURAFIDE 1130A64.
  • the compatibilizer is purchased from Kraton, USA, and the brand is FG1901.
  • the dispersant was purchased from BASF, Germany, under the brand name Luwax OP.
  • the melting point of the LCP resin is 280°C; under the condition of a shear rate of 100s -1 , the melt viscosity is 155 Pa ⁇ S; under the condition of a shear rate of 1000 s -1 , the melt viscosity is 45 Pa ⁇ S.
  • PPS resin has high fluidity, with a glass transition temperature (Tg) of 150°C and a melting point (Tm) of 280°C.
  • the compatibilizer is maleic anhydride (MAH) grafted ethylene-butene copolymer (SEBS), and its grafting rate is ⁇ 0.5.
  • the dispersant is Montan wax with a melting point of 100°C and a viscosity of 300mPa ⁇ S at 100°C.
  • the performance test methods are as follows. Thickness: Adopt GB/T 6672-2001 "Plastic Film and Sheet Thickness Determination Mechanical Measurement Method”; Thermal Expansion Coefficient: Adopt ISO 11359-2-1999 "Plastic Thermodynamic Analysis (TMA) Part 2: Linear Thermal Expansion Coefficient and Glass Transition Temperature” “Determination”, using PerkinElmer's TMA4000 instrument for measurement; melting point: using GB/T19466.1-2004 “Plastic Differential Scanning Calorimetry (DSC)” to test the melting point of the polymer, the equipment used Germany NETZSCH, model It is DSC214; Water absorption: ASTM D570 “Standard Test Method for Water Absorption of Plastics", tested after immersion in water at 25°C for 24h; Dielectric constant Dk and dielectric loss factor Df: Adopt GB/T 1409-2006 "Measurement of Electrical Insulation The recommended method for permittivity and dielectric loss factors of materials under power frequency, audio
  • the equipment uses the QS37a rubber plastic film dielectric constant of Beijing Zhide Innovation Instrument Equipment Co., Ltd. Testing equipment, tested under 50GHz conditions; tensile strength and elongation at break: tested with GB/T1040.1 "Determination of Plastic Tensile Properties", INSTRON universal material testing machine produced by Instron, USA; Foldability: GB/T2679.5 “Determination of Folding Resistance of Paper and Cardboard (MIT Folding Tester Method)" is adopted.
  • A950RX 75% of A950RX, 21% of DURAFIDE 1130A64, 3% of FG1901 and 1% of Luwax OP are mixed to form a mixture.
  • the mixture is placed in a twin-screw extruder for melting and plasticization.
  • the temperature of the mixture out of the machine is 100 DEG C to 300 DEG C
  • the die temperature is 290 DEG C to 300 DEG C
  • the cold roll temperature is 240 DEG C.
  • the preformed material after melting and plasticization is then cast to obtain a preformed film.
  • the prefabricated film is first stretched in the longitudinal direction with a stretch ratio of 2.5 times, and then stretched in the transverse direction.
  • the stretch ratio is 3 times, and the stretching temperature is 240°C. After stretching, it is wound and slit in the transverse direction to prepare the thickness. It is a 50 ⁇ m liquid crystal polymer film.
  • liquid crystal polymer film is used as the base material of the flexible printed circuit board to prepare the flexible printed circuit board.
  • 80% of A950RX, 17.5% of DURAFIDE 1130A64, 2% of FG1901 and 0.5% of Luwax OP are mixed to form a mixture, and the mixture is placed in a twin-screw extruder for melting and plasticization.
  • the temperature of the mixture out of the machine is 100 DEG C to 300 DEG C
  • the die temperature is 290 DEG C to 300 DEG C
  • the cold roll temperature is 220 DEG C
  • the preformed material after melting and plasticization is casted and cast to obtain a preformed film.
  • the prefabricated film is first stretched in the longitudinal direction with a stretch ratio of 2 times, and then stretched in the transverse direction.
  • the stretch ratio is 2.5 times, and the stretching temperature is 250°C.
  • liquid crystal polymer film is used as the base material of the flexible printed circuit board to prepare the flexible printed circuit board.
  • 85% of A950RX, 12.5% of DURAFIDE 1130A64, 2% of FG1901 and 0.5% of Luwax OP are mixed to form a mixture, and the mixture is placed in a twin-screw extruder for melting and plasticization.
  • the temperature of the mixture out of the machine is 100 DEG C to 300 DEG C
  • the die temperature is 290 DEG C to 300 DEG C
  • the cold roll temperature is 220 DEG C
  • the preformed material after melting and plasticization is casted and cast to obtain a preformed film.
  • the prefabricated film is first stretched in the longitudinal direction with a stretch ratio of 3 times, and then stretched in the transverse direction.
  • the stretch ratio is 3 times and the stretching temperature is 260°C. After stretching, it is wound and slit in the transverse direction to obtain the thickness. It is a 100 ⁇ m liquid crystal polymer film.
  • liquid crystal polymer film is used as the base material of the flexible printed circuit board to prepare the flexible printed circuit board.
  • the prefabricated film is first stretched longitudinally with a stretch ratio of 3 times, and then stretched longitudinally, with a stretch ratio of 3.5 times and a stretching temperature of 270°C. After stretching, it is rolled and slit in the transverse direction to prepare the thickness. It is a 100 ⁇ m liquid crystal polymer film.
  • liquid crystal polymer film is used as the base material of the flexible printed circuit board to prepare the flexible printed circuit board.
  • the mass ratio 90% of A950RX, 7% of DURAFIDE 1130A64, 2% of FG1901 and 1% of Luwax OP are mixed to form a mixture.
  • the mixture is placed in a twin-screw extruder for melting and plasticization.
  • the temperature of the mixture out of the machine is 100 DEG C to 300 DEG C
  • the die temperature is 290 DEG C to 300 DEG C
  • the cold roll temperature is 220 DEG C
  • the preformed material after melting and plasticization is casted and cast to obtain a preformed film.
  • the preformed film is first stretched longitudinally with a stretch ratio of 2.7 times, and then stretched longitudinally, with a stretch ratio of 3.0 times and a stretching temperature of 280°C. After stretching, it is rolled and slit in the transverse direction to obtain a thickness. It is a 100 ⁇ m liquid crystal polymer film.
  • liquid crystal polymer film is used as the base material of the flexible printed circuit board to prepare the flexible printed circuit board.
  • 70% of A950RX, 24.8% of DURAFIDE 1130A64, 5% of FG1901 and 0.2% of Luwax OP are mixed to form a mixture.
  • the mixture is placed in a twin-screw extruder for melting and plasticization.
  • the temperature of the mixture out of the machine is 100 DEG C to 300 DEG C
  • the die temperature is 290 DEG C to 300 DEG C
  • the cold roll temperature is 220 DEG C
  • the preformed material after melting and plasticization is casted and cast to obtain a preformed film.
  • the prefabricated film is first stretched in the longitudinal direction with a stretch ratio of 1.5 times, and then stretched in the transverse direction.
  • the stretch ratio is 1.9 times, and the stretching temperature is 270°C. After stretching, it is wound and slit in the transverse direction to prepare the thickness. It is a 100 ⁇ m liquid crystal polymer film.
  • liquid crystal polymer film is used as the base material of the flexible printed circuit board to prepare the flexible printed circuit board.
  • the liquid crystal polymer film obtained by the preparation method of the present application not only has extremely low dielectric constant and dielectric loss factor, but also has good mechanical properties. When used as a substrate material for flexible printed circuit boards, it can make Flexible printed circuit boards have better performance and longer service life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

本申请提供一种用于柔性印刷线路板的液晶高分子薄膜,液晶高分子薄膜的材料包括聚对亚苯基二甲基酰胺树脂及聚苯硫醚树脂,液晶高分子薄膜纵向的拉伸强度小于横向的拉伸强度,液晶高分子薄膜纵向的断裂伸长率大于横向的断裂伸长率。

Description

用于柔性印刷线路板的液晶高分子薄膜
相关申请
本申请要求2020年5月9日申请的,申请号为202010386569.1,发明名称为“用于柔性印刷线路板的液晶高分子薄膜”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及印刷线路板领域,特别是涉及一种用于柔性印刷线路板的液晶高分子薄膜。
背景技术
现在电子信息产品,特别是5G行业如微米波器材的高速发展,对柔性印刷线路板(FPC)的要求也越来越高。传统的柔性印刷线路板中,基体通常采用聚酰亚胺薄膜制成,但是,聚酰亚胺薄膜的介电常数通常在4.0左右,介质损耗因子通常在0.004~0.007,介电常数和介质损耗因子均较高,不能满足柔性印刷线路板在高频应用的要求。
发明内容
根据本申请的各种实施例,提供一种用于柔性印刷线路板的液晶高分子薄膜,所述液晶高分子薄膜的材料包括聚对亚苯基二甲基酰胺树脂及聚苯硫醚树脂,所述液晶高分子薄膜纵向的拉伸强度小于横向的拉伸强度,所述液晶高分子薄膜纵向的断裂伸长率大于横向的断裂伸长率。
在其中一个实施方式中,所述液晶高分子薄膜的纵向拉伸强度是横向拉 伸强度的0.83倍~0.92倍;及/或,所述液晶高分子薄膜的纵向断裂伸长率是横向断裂伸长率的1.05倍~1.13倍。
在其中一个实施方式中,所述液晶高分子薄膜纵向的断裂伸长率为55%~65%,所述液晶高分子薄膜横向的断裂伸长率为54%~61%;及/或,所述液晶高分子薄膜纵向的拉伸强度为120MPa~190MPa,所述液晶高分子薄膜横向的拉伸强度为145MPa~200MPa。
在其中一个实施方式中,所述液晶高分子薄膜纵向的断裂伸长率与横向的断裂伸长率之间的差值小于等于7%。
在其中一个实施方式中,所述液晶高分子薄膜横向的拉伸强度与纵向的拉伸强度之间的差值小于等于30MPa。
在其中一个实施方式中,所述液晶高分子薄膜在50GHz下具有2.5~2.8的介电常数和0.001~0.002的介电损耗因子。
在其中一个实施方式中,热膨胀系数为10ppm/K~14ppm/K,所述液晶高分子薄膜纵向的热膨胀系数是所述液晶高分子薄膜横向的热膨胀系数的90%~110%。
在其中一个实施方式中,所述聚苯硫醚树脂在所述液晶高分子薄膜中的质量百分含量为9%~29.8%。
在其中一个实施方式中,所述液晶高分子薄膜的材料还包括助剂,所述助剂包括相容剂及分散剂,所述相容剂在所述液晶高分子薄膜中的质量百分含量为2%~5%,所述分散剂在所述液晶高分子薄膜中的质量百分含量为0.2%~1%。
在其中一个实施方式中,所述相容剂包括马来酸酐接枝乙烯-丁烯共聚物,所述马来酸酐接枝乙烯-丁烯共聚物的接枝率大于或等于0.5%。
本申请的液晶高分子薄膜主要由聚对亚苯基二甲基酰胺树脂(LCP树脂) 和聚苯硫醚树脂(PPS树脂)共混得到,具有极低的介电常数和介质损耗因子。另一方面,液晶高分子薄膜纵向的拉伸强度小于横向的拉伸强度,纵向的断裂伸长率大于横向的断裂伸长率,使得横纵向的拉伸强度和断裂伸长率互补,保证液晶高分子薄膜的力学性能呈各向同性。
进而,本申请采用该液晶高分子薄膜作为柔性印刷电路板的基体的材料,使得柔性印刷电路板具有极好的介电性能和力学性能,满足高频(15GHz-100GHz)应用领域的要求。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
液晶高分子薄膜在高频(15GHz-100GHz)具有极低的介电常数和介质损耗,兼具有机高分子材料柔性的特点,并且液晶高分子薄膜在熔融状态下呈现液晶性,具有优异的耐热性、极低的吸湿性、尺寸稳定性、低热膨胀系数等优点,是用作柔性印刷线路板的基体的理想材料。
然而,将液晶高分子薄膜作为柔性印刷线路板的基体的材料时,柔性印 刷线路板在服役过程中基体的横向总是快速破损,导致柔性印刷线路板的使用寿命短。本申请人经过长期而深入的研究发现,基体的横向总是快速破损的原因在于:制备过程中剪切力的作用会导致液晶高分子薄膜具有高度取向性,具体表现为在MD(Machine Direction,机械方向,又称纵向)具有较高的力学性能,而在TD方向(Transverse Direction,垂直于机械方向,又称横向)上的力学性能很差,使得液晶高分子薄膜呈现各向异性。
为此,本申请提供的柔性印刷线路板中,采用液晶高分子薄膜作为基体的材料,而且,液晶高分子薄膜的材料包括聚对亚苯基二甲基酰胺树脂及聚苯硫醚树脂,液晶高分子薄膜纵向的拉伸强度小于横向的拉伸强度,液晶高分子薄膜纵向的断裂伸长率大于横向的断裂伸长率。
具体地,PPS树脂具有高流动性,加工性能优异。将PPS树脂与LCP树脂共混,可使得二者之间发生协同作用,降低制备过程中剪切力的影响,结果表现为:液晶高分子薄膜的横向的拉伸强度比纵向的拉伸强度大,而纵向的断裂伸长率大于横向的断裂伸长率,直接改变了液晶高分子薄膜的力学强度分布形式,从而,通过横纵向的拉伸强度和断裂伸长率互补,使得液晶高分子薄膜呈各向同性。因此,将该液晶高分子薄膜作为柔性印刷线路板的绝缘基体的材料时,柔性印刷线路板在服役过程中发生力学形变时,基体不会沿某一方向快速破损。
为了使得液晶高分子薄膜横向和纵向的力学性能相接近,并且降低各向同性液晶高分子薄膜的制作成本,所述液晶高分子薄膜的纵向拉伸强度是横向拉伸强度的0.83倍~0.92倍,进一步优选为0.86倍;所述液晶高分子薄膜的纵向断裂伸长率是横向断裂伸长率的1.05倍~1.13倍,进一步优选为1.07倍。
为了满足柔性印刷线路板的使用强度,同时,降低通过断裂伸长率的互 补达到各向同性的难度,液晶高分子薄膜的纵向的拉伸强度优选为120MPa~190MPa,进一步优选为150MPa~190MPa,横向的拉伸强度优选为145MPa~200MPa,进一步优选为180MPa~200MPa。
另外,为了使断裂伸长率能够与拉伸强度互补,保证液晶高分子薄膜呈各向同性,液晶高分子薄膜的横纵向拉伸强度之间的差异不能过大。所以,本申请液晶高分子薄膜横向的拉伸强度与纵向的拉伸强度之间的差值优选小于等于30MPa,进一步优选小于等于25MPa。
在上述拉伸强度范围内,断裂伸长率过高,会使得液晶高分子薄膜的变形量过大,与拉伸强度失去互补的效果,所以,液晶高分子薄膜纵向的断裂伸长率优选为55%~65%,进一步优选为60%~65%,横向的断裂伸长率优选为54%~61%,进一步优选为58%~61%。
考虑到互补的效果,液晶高分子薄膜纵向的断裂伸长率与横向的断裂伸长率之间的差值优选小于等于7%,进一步优选小于等于3%。
当然,在LCP树脂中共混PPS树脂使得液晶高分子薄膜的拉伸强度和断裂伸长率能够互补外,还需要保证液晶高分子薄膜的介电性能。所以,液晶高分子薄膜中PPS树脂的质量百分含量为9%~29.8%。从而,使得液晶高分子薄膜在50GHz下具有2.5~2.8的介电常数和0.001~0.002的介电损耗因子,适用于高频柔性印刷线路板。
同时,液晶高分子薄膜的热膨胀系数(CTE)为10ppm/K~14ppm/K,且纵向的热膨胀系数是横向的热膨胀系数的90%~110%,也呈各向同性。因此,将该液晶高分子薄膜作为柔性印刷线路板的绝缘基体的材料时,柔性印刷线路板在服役过程中发生热形变时,液晶高分子薄膜也不会沿某一方向快速破损。
因此,将本申请提供的液晶高分子薄膜作为柔性印刷线路板的绝缘基体 的材料时,具有极好的介电性能,且柔性印刷线路板在服役过程中基体不会沿某一方向快速破损,使用寿命长。
考虑到采用吹塑法等传统方法制备时,很难得到厚度大于等于50μm且呈各向同性的液晶高分子薄膜,不能满足柔性印刷线路板的需求。本申请柔性印刷线路板使用的各向同性的液晶高分子薄膜可以参考下述制备方法制得。
S1,将聚对亚苯基二甲基酰胺树脂和聚苯硫醚树脂混合,得到混合物,将混合物进行熔融塑化、流延铸片得到预制膜。
S2,将预制膜双向拉伸,得到液晶高分子薄膜。
步骤S1中,聚苯硫醚树脂在混合物中的质量百分含量为9%~29.8%。
在一些实施例中,混合物中还包括助剂,助剂包括相容剂及分散剂,助剂在混合物中的质量百分含量为2.2%~6%。
其中,相容剂在混合物中的质量百分含量为2%~5%,相容剂包括马来酸酐接枝乙烯-丁烯共聚物,马来酸酐接枝乙烯-丁烯共聚物的接枝率大于或等于0.5%。从而,通过在马来酸酐上接枝强极性的反应性基团,能够帮助分子链延伸并提高分子链的极性,使得LCP树脂与PPS树脂更好地共混,并且能够限制高分子取向结晶,防止预制膜在拉伸时破裂。
分散剂在混合物中的质量百分含量为0.2%~1%,分散剂包括蒙旦蜡。从而,通过蒙旦蜡中具有非常强的极性中心的很长的非极性碳链,在其结构中在极性链段上能与塑料相容的部分起内润滑作用,并且具有低挥发性,对树脂的熔体张力和维卡软化点带来不利影响。因此蒙旦蜡分散剂能够使得PPS树脂在LCP树脂分散的更加均匀,提高液晶高分子薄膜在加工时的流动性。
具体地,熔融塑化的过程可以通过双螺杆挤出机进行,其中,混合物的温度为100℃~300℃,双螺杆挤出机的模头温度为290℃~300℃,双螺杆挤出机 中冷辊的温度为220℃-260℃。
步骤S2中,采用双向拉伸制备液晶高分子薄膜,有利于LCP树脂及PPS树脂中的高分子取向定型,提高高分子的结晶度和结晶的细微化,从而大大提高液晶高分子薄膜的机械强度和透明度。
具体地,双向拉伸时,预制膜纵向的拉伸比为1.5倍~3.0倍,横向的拉伸比为2.0倍~3.5倍。
需要特别说明的是,纵向的拉伸比是指,拉伸后薄膜纵向的长度与拉伸前薄膜纵向的长度之间的比例;横向的拉伸比是指,拉伸后薄膜横向的长度与拉伸前薄膜横向的长度之间的比例。
在一些实施例中,双向拉伸时,先进行纵向拉伸,使得高分子先进行纵向取向,然后再进行横向拉伸,从而获得纵向的拉伸强度小于横向的拉伸强度、且纵向的断裂伸长率大于横向的断裂伸长率的液晶高分子薄膜。
具体地,双向拉伸的拉伸温度为240℃~270℃,该拉伸温度能够在混合物的玻璃化温度以上,熔点以下进行拉伸。
具体地,该方法制备得到的液晶高分子薄膜的厚度为50μm-100μm,熔点(Tm)为270℃-290℃,吸水率为0.03%-0.04%(25℃,24h水中浸渍)。
因此,本申请制备各向同性的液晶高分子薄膜的生产工艺简单,成本低,适应于工业化生产,制备得到的液晶高分子薄膜适用于制作柔性印刷线路板的基体。
以下,将通过以下具体实施例对本申请提供的柔性印刷线路板做进一步的说明。
液晶高分子薄膜的材料可采购于以下公司。
1)LCP树脂采购于日本宝理塑料公司,牌号为A950RX。
2)PPS树脂采购于日本宝理塑料公司,牌号为DURAFIDE 1130A64。
3)相容剂采购于美国科腾公司,牌号为FG1901。
4)分散剂采购于德国巴斯夫公司,牌号为Luwax OP。
其中,LCP树脂熔点为280℃;在剪切速率为100s -1的条件下,熔体粘度为155Pa·S;在剪切速率为1000s -1的条件下,熔体粘度为45Pa·S。
PPS树脂为高流动性,玻璃化温度(Tg)为150℃,熔点(Tm)为280℃。
相容剂为马来酸酐(MAH)接枝乙烯-丁烯共聚物(SEBS),其接枝率≥0.5。
分散剂为蒙旦蜡,熔点为100℃,在100℃下粘度为300mPa·S。
各性能测试方法如下。厚度:采用GB/T 6672-2001《塑料薄膜和薄片厚度测定机械测量法》;热膨胀系数:采用ISO 11359-2-1999《塑料热力学分析(TMA)第2部分:线性热膨胀系数和玻璃化转变温度的测定》,使用PerkinElmer的TMA4000仪器进行测量;熔点:采用GB/T19466.1-2004《塑料差示扫描量热法(DSC)》中对聚合物的熔点进行了测试,设备使用德国NETZSCH,型号为DSC214;吸水率:采用ASTM D570《塑料吸水率的标准试验方法》,在25℃,24h水中浸渍后测试;介电常数Dk和介质损耗因子Df:采用GB/T 1409-2006《测量电气绝缘材料在工频、音频、高频(包括米数波波长在内)下电容率和介质损耗因素的推荐方法》进行测试,设备使用北京智德创新仪器设备有限公司的QS37a橡胶塑料薄膜介电常数检测仪器,在50GHz条件进行测试;拉伸强度和断裂伸长率:采用GB/T1040.1《塑料拉伸性能的测定》进行测试,美国英斯特朗公司生产的INSTRON万能材料试验机;耐折性:采用GB/T2679.5《纸和纸板耐折度的测定(MIT耐折度仪法)》。
实施例1
按质量比计,将75%的A950RX,21%的DURAFIDE 1130A64、3%的 FG1901和1%的Luwax OP混合,形成混合物,将混合物置于双螺杆挤出机中进行熔融塑化,双螺杆挤出机中混合物的温度为100℃~300℃,模头温度290℃-300℃,冷辊温度240℃,熔融塑化后的预制料再经流延铸片得到预制膜。
将预制膜先进行纵向拉伸,拉伸比为2.5倍,再进行横向拉伸,拉伸比为3倍,拉伸温度均为240℃,拉伸后横向收卷和分切,制备得到厚度为50μm的液晶高分子薄膜。
采用上述液晶高分子薄膜作为柔性印刷线路板的基体的材料,制备得到柔性印刷线路板。
实施例2
按质量比计,将80%的A950RX,17.5%的DURAFIDE 1130A64、2%的FG1901和0.5%的Luwax OP混合,形成混合物,将混合物置于双螺杆挤出机中进行熔融塑化,双螺杆挤出机中混合物的温度为100℃~300℃,模头温度290℃-300℃,冷辊温度220℃,熔融塑化后的预制料再经流延铸片得到预制膜。
将预制膜先进行纵向拉伸,拉伸比为2倍,再进行横向拉伸,拉伸比为2.5倍,拉伸温度均为250℃,拉伸后横向收卷和分切,制备得到厚度为80μm的液晶高分子薄膜。
采用上述液晶高分子薄膜作为柔性印刷线路板的基体的材料,制备得到柔性印刷线路板。
实施例3
按质量比计,将85%的A950RX,12.5%的DURAFIDE 1130A64、2%的FG1901和0.5%的Luwax OP混合,形成混合物,将混合物置于双螺杆挤出机中进行熔融塑化,双螺杆挤出机中混合物的温度为100℃~300℃,模头温度290℃-300℃,冷辊温度220℃,熔融塑化后的预制料再经流延铸片得到预制膜。
将预制膜先进行纵向拉伸,拉伸比为3倍,再进行横向拉伸,拉伸比为3倍,拉伸温度均为260℃,拉伸后横向收卷和分切,制备得到厚度为100μm的液晶高分子薄膜。
采用上述液晶高分子薄膜作为柔性印刷线路板的基体的材料,制备得到柔性印刷线路板。
实施例4
按质量比计,将90%的A950RX,7.8%的DURAFIDE 1130A64、2%的FG1901和0.2%的Luwax OP混合,形成混合物,将混合物置于双螺杆挤出机中进行熔融塑化,双螺杆挤出机中混合物的温度为100℃~300℃,模头温度290℃~300℃,冷辊温度220℃,熔融塑化后的预制料再经流延铸片得到预制膜。
将预制膜先进行纵向拉伸,拉伸比为3倍,再进行纵向拉伸,拉伸比为3.5倍,拉伸温度均为270℃,拉伸后横向收卷和分切,制备得到厚度为100μm的液晶高分子薄膜。
采用上述液晶高分子薄膜作为柔性印刷线路板的基体的材料,制备得到柔性印刷线路板。
实施例5
按质量比计,将90%的A950RX,7%的DURAFIDE 1130A64、2%的FG1901和1%的Luwax OP混合,形成混合物,将混合物置于双螺杆挤出机中进行熔融塑化,双螺杆挤出机中混合物的温度为100℃~300℃,模头温度290℃-300℃,冷辊温度220℃,熔融塑化后的预制料再经流延铸片得到预制膜。
将预制膜先进行纵向拉伸,拉伸比为2.7倍,再进行纵向拉伸,拉伸比为3.0倍,拉伸温度均为280℃,拉伸后横向收卷和分切,制备得到厚度为100μm的液晶高分子薄膜。
采用上述液晶高分子薄膜作为柔性印刷线路板的基体的材料,制备得到柔性印刷线路板。
实施例6
按质量比计,将70%的A950RX,24.8%的DURAFIDE 1130A64、5%的FG1901和0.2%的Luwax OP混合,形成混合物,将混合物置于双螺杆挤出机中进行熔融塑化,双螺杆挤出机中混合物的温度为100℃~300℃,模头温度290℃-300℃,冷辊温度220℃,熔融塑化后的预制料再经流延铸片得到预制膜。
将预制膜先进行纵向拉伸,拉伸比为1.5倍,再进行横向拉伸,拉伸比为1.9倍,拉伸温度均为270℃,拉伸后横向收卷和分切,制备得到厚度为100μm的液晶高分子薄膜。
采用上述液晶高分子薄膜作为柔性印刷线路板的基体的材料,制备得到柔性印刷线路板。
将上述实施例1~6获得的液晶高分子薄膜和柔性线路板进行性能测试,测试结果如表1所示。
表1
Figure PCTCN2020138793-appb-000001
从表1可知,本申请制备方法得到的液晶高分子薄膜不仅具有极低的介电常数和介质损耗因子,还具有较好地机械性能,用作柔性印刷线路板的基体的材料时,可使得柔性印刷线路板具有较好的使用性能和较长的使用寿命。
以上所述实施方式的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施方式中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
本技术领域的普通技术人员应当认识到,以上的实施方式仅是用来说明本申请,而并非用作为对本申请的限定,只要在本申请的实质精神范围内,对以上实施方式所作的适当改变和变化都落在本申请要求保护的范围内。

Claims (10)

  1. 一种用于柔性印刷线路板的液晶高分子薄膜,其特征在于,所述液晶高分子薄膜的材料包括聚对亚苯基二甲基酰胺树脂及聚苯硫醚树脂,所述液晶高分子薄膜纵向的拉伸强度小于横向的拉伸强度,所述液晶高分子薄膜纵向的断裂伸长率大于横向的断裂伸长率。
  2. 根据权利要求1所述的液晶高分子薄膜,其特征在于,所述液晶高分子薄膜的纵向拉伸强度是横向拉伸强度的0.83倍~0.92倍;及/或,
    所述液晶高分子薄膜的纵向断裂伸长率是横向断裂伸长率的1.05倍~1.13倍。
  3. 根据权利要求1所述的液晶高分子薄膜,其特征在于,所述液晶高分子薄膜纵向的断裂伸长率为55%~65%,所述液晶高分子薄膜横向的断裂伸长率为54%~61%;及/或,
    所述液晶高分子薄膜纵向的拉伸强度为120MPa~190MPa,所述液晶高分子薄膜横向的拉伸强度为145MPa~200MPa。
  4. 根据权利要求3所述的液晶高分子薄膜,其特征在于,所述液晶高分子薄膜纵向的断裂伸长率与横向的断裂伸长率之间的差值小于等于7%。
  5. 根据权利要求3所述的液晶高分子薄膜,其特征在于,所述液晶高分子薄膜横向的拉伸强度与纵向的拉伸强度之间的差值小于等于30MPa。
  6. 根据权利要求1所述的液晶高分子薄膜,其特征在于,所述液晶高分子薄膜在50GHz下具有2.5~2.8的介电常数和0.001~0.002的介电损耗因子。
  7. 根据权利要求1所述的液晶高分子薄膜,其特征在于,所述液晶高分子薄膜的热膨胀系数为10ppm/K~14ppm/K,所述液晶高分子薄膜纵向的热膨胀系数是所述液晶高分子薄膜横向的热膨胀系数的90%~110%。
  8. 根据权利要求1所述的液晶高分子薄膜,其特征在于,所述聚苯硫醚树脂在所述液晶高分子薄膜中的质量百分含量为9%~29.8%。
  9. 根据权利要求1所述的液晶高分子薄膜,其特征在于,所述液晶高分子薄膜的材料还包括助剂,所述助剂包括相容剂及分散剂,所述相容剂在所述液晶高分子薄膜中的质量百分含量为2%~5%,所述分散剂在所述液晶高分子薄膜中的质量百分含量为0.2%~1%。
  10. 根据权利要求9所述的液晶高分子薄膜,其特征在于,所述相容剂包括马来酸酐接枝乙烯-丁烯共聚物,所述马来酸酐接枝乙烯-丁烯共聚物的接枝率大于或等于0.5%。
PCT/CN2020/138793 2020-05-09 2020-12-24 用于柔性印刷线路板的液晶高分子薄膜 WO2021227505A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20934920.8A EP4053219A4 (en) 2020-05-09 2020-12-24 LIQUID CRYSTAL POLYMER FILM FOR FLEXIBLE CIRCUIT BOARD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010386569.1A CN111500058B (zh) 2020-05-09 2020-05-09 用于柔性印刷线路板的液晶高分子薄膜
CN202010386569.1 2020-05-09

Publications (1)

Publication Number Publication Date
WO2021227505A1 true WO2021227505A1 (zh) 2021-11-18

Family

ID=71865187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138793 WO2021227505A1 (zh) 2020-05-09 2020-12-24 用于柔性印刷线路板的液晶高分子薄膜

Country Status (3)

Country Link
EP (1) EP4053219A4 (zh)
CN (1) CN111500058B (zh)
WO (1) WO2021227505A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111500058B (zh) * 2020-05-09 2021-11-16 宁波长阳科技股份有限公司 用于柔性印刷线路板的液晶高分子薄膜
CN114106579B (zh) * 2020-08-31 2024-01-09 宁波长阳科技股份有限公司 一种空心介孔硅球改性液晶高分子薄膜及其制备方法
WO2022131045A1 (ja) * 2020-12-14 2022-06-23 株式会社バルカー 液晶ポリマーフィルムおよび液晶ポリマーフィルムの製造方法
CN113308111A (zh) * 2021-06-03 2021-08-27 宁夏清研高分子新材料有限公司 一种用于柔性印刷线路板的液晶高分子薄膜及其制备方法
CN113480868B (zh) * 2021-06-29 2022-10-04 宁波长阳科技股份有限公司 一种液晶高分子薄膜及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029002A (ja) * 1999-10-07 2002-01-29 Toray Ind Inc 液晶性樹脂積層フィルム、その製造方法および液晶性樹脂積層フィルムを用いた回路基板
US6605324B1 (en) * 1999-10-07 2003-08-12 Toray Industries, Inc. Liquid crystal resin laminated film, method for manufacturing the same, and circuit board comprising liquid crystal resin laminated film
JP2004175995A (ja) * 2002-11-28 2004-06-24 Japan Gore Tex Inc 液晶ポリマーブレンドフィルム
JP2004244630A (ja) * 2003-01-22 2004-09-02 Toray Ind Inc ポリフェニレンスルフィド(pps)樹脂フィルム
JP2005169971A (ja) * 2003-12-15 2005-06-30 Toray Ind Inc 二軸配向積層フィルム
JP2005335226A (ja) * 2004-05-27 2005-12-08 Toray Ind Inc 耐熱性多層シート
JP2005342978A (ja) * 2004-06-02 2005-12-15 Toray Ind Inc 二軸配向積層フィルム
CN1735508A (zh) * 2003-01-06 2006-02-15 东丽株式会社 复合薄膜及其制造方法
CN108178906A (zh) * 2017-12-26 2018-06-19 上海普利特化工新材料有限公司 一种液晶聚合物/聚苯硫醚合金材料及其制备方法
CN111500058A (zh) * 2020-05-09 2020-08-07 宁波长阳科技股份有限公司 用于柔性印刷线路板的液晶高分子薄膜

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857255A (en) * 1985-04-04 1989-08-15 Asahi Kasei Kogyo Kabushiki Kaisha Poly-p-phenylene-terephthalamide film and process for producing the same
JP4552633B2 (ja) * 2003-12-10 2010-09-29 東レ株式会社 低誘電性樹脂フィルム
JP2006316207A (ja) * 2005-05-16 2006-11-24 Toray Ind Inc 液晶性樹脂組成物およびそれからなるフィルム
WO2008139989A1 (ja) * 2007-05-09 2008-11-20 Toray Industries, Inc. 二軸配向ポリアリーレンスルフィドフィルムおよびその製造方法
CN101768358A (zh) * 2008-12-31 2010-07-07 深圳市科聚新材料有限公司 Pps/lcp复合材料及其制备方法
CN107400361B (zh) * 2017-08-25 2020-11-24 广东壹豪新材料科技股份有限公司 一种lcp/pps复合材料及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029002A (ja) * 1999-10-07 2002-01-29 Toray Ind Inc 液晶性樹脂積層フィルム、その製造方法および液晶性樹脂積層フィルムを用いた回路基板
US6605324B1 (en) * 1999-10-07 2003-08-12 Toray Industries, Inc. Liquid crystal resin laminated film, method for manufacturing the same, and circuit board comprising liquid crystal resin laminated film
JP2004175995A (ja) * 2002-11-28 2004-06-24 Japan Gore Tex Inc 液晶ポリマーブレンドフィルム
CN1735508A (zh) * 2003-01-06 2006-02-15 东丽株式会社 复合薄膜及其制造方法
JP2004244630A (ja) * 2003-01-22 2004-09-02 Toray Ind Inc ポリフェニレンスルフィド(pps)樹脂フィルム
JP2005169971A (ja) * 2003-12-15 2005-06-30 Toray Ind Inc 二軸配向積層フィルム
JP2005335226A (ja) * 2004-05-27 2005-12-08 Toray Ind Inc 耐熱性多層シート
JP2005342978A (ja) * 2004-06-02 2005-12-15 Toray Ind Inc 二軸配向積層フィルム
CN108178906A (zh) * 2017-12-26 2018-06-19 上海普利特化工新材料有限公司 一种液晶聚合物/聚苯硫醚合金材料及其制备方法
CN111500058A (zh) * 2020-05-09 2020-08-07 宁波长阳科技股份有限公司 用于柔性印刷线路板的液晶高分子薄膜

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KALKAR ARUN K.: "Nonisothermal Crystallization Kinetics of Poly (Phenylene Sulphide) in Composites with a Liquid Crystalline Polymer", JOURNAL OF POLYMER SCIENCE: PART B: POLYMER PHYSICS, vol. 48, no. 10, 7 April 2010 (2010-04-07), pages 1070 - 1100, XP055865989 *
T. RATH ET AL.: "Mechanical and Morphological Study of Polyphenylene Sulfide/Liquid Crystalline Polymer Blends Compatibilized with a Maleic Anhydride Grafted Copolymer", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 106, no. 6, 30 August 2007 (2007-08-30), pages 3721 - 3728, XP055866141, ISSN: 0021-8995 *

Also Published As

Publication number Publication date
EP4053219A4 (en) 2023-08-16
CN111500058A (zh) 2020-08-07
EP4053219A1 (en) 2022-09-07
CN111500058B (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
WO2021227505A1 (zh) 用于柔性印刷线路板的液晶高分子薄膜
KR930002990B1 (ko) 폴리이미드필름 및 그 제조방법
JP3896324B2 (ja) 液晶ポリマーブレンドフィルム
WO2021106768A1 (ja) 回路基板用lcp樹脂組成物、回路基板用lcpフィルム及びその製造方法
CN112759776A (zh) 一种聚芳酯改性液晶高分子薄膜及其制备方法
Yan et al. Effect of peroxide on compatibility, microstructure, rheology, crystallization, and mechanical properties of PBS/waxy starch composites
Han et al. Influence of fibrillated poly (tetrafluoroethylene) on microcellular foaming of polyamide 6 in the presence of supercritical CO2
JP2018083415A (ja) 積層フィルム及びその製造方法
JP2009179766A (ja) 二軸延伸熱可塑性樹脂フィルム
JP2011089111A (ja) 二軸配向ポリアリーレンスルフィドフィルム
JP7272263B2 (ja) ポリアリーレンスルフィドフィルム
CN114316522B (zh) 一种高性能液晶聚合物复合材料及其应用
JP6572703B2 (ja) ポリアリーレンスルフィドフィルム、及びそれを用いた金属・樹脂・フィルムの何れか1種以上との複合体からなる電池用部材、自動車用部材、電気・電子用部材
Wang et al. Crystallization, orientation morphology, and mechanical properties of biaxially oriented starch/polyvinyl alcohol films
JP2002064030A (ja) フィルムコンデンサー
KR20230142598A (ko) 액정 폴리에스터계 수지 조성물, 해당 조성물을 이용한 액정 폴리에스터계 필름, 해당 필름을 이용한 금속 라미네이트 필름, 회로 기판
JP2010126709A (ja) 耐熱フィルム
JP2022035328A (ja) 液晶ポリマー組成物、液晶ポリマー組成物の製造方法、成形品、フィルム、銅張積層板、及び成形品の製造方法
CN113308111A (zh) 一种用于柔性印刷线路板的液晶高分子薄膜及其制备方法
CN111674007A (zh) 用于5g通信的液晶聚合物薄膜及其制备方法
JP7392847B2 (ja) ポリアリーレンスルフィド樹脂組成物、並びこれを用いた二軸延伸フィルムおよび積層体
KR20220054745A (ko) 2축 배향 폴리아릴렌술피드 필름
JP5607378B2 (ja) 二軸延伸フィルム
JP2013139532A (ja) ポリアリーレンスルフィドフィルム
TW202246414A (zh) 液晶聚酯系樹脂組成物、使用該組成物之液晶聚酯系薄膜、使用該薄膜之金屬層合薄膜、電路基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934920

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020934920

Country of ref document: EP

Effective date: 20220530

NENP Non-entry into the national phase

Ref country code: DE