JP5607378B2 - 二軸延伸フィルム - Google Patents

二軸延伸フィルム Download PDF

Info

Publication number
JP5607378B2
JP5607378B2 JP2010012979A JP2010012979A JP5607378B2 JP 5607378 B2 JP5607378 B2 JP 5607378B2 JP 2010012979 A JP2010012979 A JP 2010012979A JP 2010012979 A JP2010012979 A JP 2010012979A JP 5607378 B2 JP5607378 B2 JP 5607378B2
Authority
JP
Japan
Prior art keywords
biaxially stretched
stretched film
film
breaking strength
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010012979A
Other languages
English (en)
Other versions
JP2011148940A (ja
Inventor
大 中川
欣治 長谷川
公典 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2010012979A priority Critical patent/JP5607378B2/ja
Publication of JP2011148940A publication Critical patent/JP2011148940A/ja
Application granted granted Critical
Publication of JP5607378B2 publication Critical patent/JP5607378B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Insulating Bodies (AREA)

Description

本発明は、二軸延伸フィルムに関する。
近年、電子機器の小型化が進み、それに伴いコンデンサーなどの電子部品の小型化が進んでいる。一方で、取り扱う電力の増大により、電子機器自体の発熱が大きくなり、またハイブリッド自動車や電気自動車等の進展もあり、高温環境下で使用することができる電子部品が求められている。そのため、コンデンサーに用いられるフィルムとしては、電気絶縁性とともに、高い耐熱性が必要とされてきている。
電気絶縁性材料、とりわけコンデンサーの絶縁体として用いられる電気絶縁性フィルムとしては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等からなるフィルムがよく知られている。さらに近年においては、コンデンサーの耐熱性を高める等の目的で、他の樹脂を用いる検討や、これらの樹脂を改質する検討が行われている。例えば、特許文献1、2においては、耐熱性に優れた熱可塑性ポリエーテルケトンフィルムを、コンデンサーなどの電気絶縁用途に用いることが検討されている。
しかし、熱可塑性ポリエーテルケトンフィルムは耐熱性には優れるものの、ポリプロピレンなどと比較してやや電気絶縁性に劣るという欠点を有している。また、ポリプロピレン等は、耐熱性が不十分である。
特開昭57−137116号公報 特開昭61−37419号公報 特開平1−205511号公報
本発明の目的は、上記従来技術の問題点を解決し、耐熱性および電気絶縁性に優れた二軸延伸フィルムを提供することにある。特に、高温環境下においても優れた絶縁破壊電圧特性を有する二軸延伸フィルムを提供することにある。
本発明者らは、前記課題を解決するために鋭意検討した結果、主たる成分として熱可塑性ポリエーテルケトン樹脂を用いた二軸延伸フィルムにおいて、特定の樹脂成分を配合することにより、耐熱性および電気絶縁性に優れた二軸延伸フィルムが得られることを見出し、本発明に到達した。
すなわち本発明は
(1)熱可塑性ポリエーテルケトン樹脂(A)を主たる成分とし、ガラス転移温度(Tg)が180℃以上でポリイミド系樹脂である樹脂成分(B)を14〜48質量%含有し、ガラス転移温度(Tg)が145℃以上180℃未満で、23℃における絶縁破壊電圧(BDV23)が380kV/mm以上である電気絶縁用として用いられる二軸延伸フィルムである。
また、本発明の二軸延伸フィルムは、
(3)140℃における絶縁破壊電圧(BDV140)と23℃における絶縁破壊電圧との比(BDV140/BDV23)が0.7以上であること、
(5)縦方向および横方向のそれぞれにおいて、23℃における破断強度(破断強度23)が200MPa以上であり、140℃における破断強度(破断強度140)と23℃における破断強度との比(破断強度140/破断強度23)が0.7以上であること、
(6)温度150℃で30分間熱処理した後の縦方向および横方向の熱収縮率の絶対値がそれぞれ1.0%以下であること、
のうち、少なくともいずれか1つの態様を具備することによってさらに優れた二軸延伸フィルムを得ることができる。
また本発明は、
(8)コンデンサー用として用いられる、
態様を包含する。
本発明によれば、耐熱性および電気絶縁性に優れた二軸延伸フィルムを提供することができる。特に、高温環境下における絶縁破壊電圧特性に優れた二軸延伸フィルムを提供することができる。このような特性を有する本発明の二軸延伸フィルムは、高温環境下において用いられる電気絶縁用として好適に用いることができ、とりわけ移動体用、特に自動車移動体、例えばハイブリッド自動車、電気自動車などのコンデンサー用として好適に用いることができ、その工業的価値は極めて高い。
以下、本発明を詳しく説明する。
[二軸延伸フィルム]
本発明の二軸延伸フィルムは、熱可塑性ポリエーテルケトン樹脂を主たる成分とするものである。ここで「主たる」とは、二軸延伸フィルムを基準として、52質量%以上、好ましくは65質量%以上、さらに好ましくは75質量%以上が熱可塑性ポリエーテルケトン樹脂であることを表わす。
<熱可塑性ポリエーテルケトン樹脂(A)>
本発明における熱可塑性ポリエーテルケトン樹脂(A)は、構成単位
Figure 0005607378
または
Figure 0005607378
を単独で、あるいは該単位と他の構成単位からなるポリマーである。かかる他の構成単位としては、例えば
Figure 0005607378
等が挙げられる。上記構成単位において、Aは直接結合、酸素、−CO−、−SO−または二価の低級脂肪族炭化水素基であり、Q及びQ’は同一であっても相違してもよく、−CO−または−SO−であり、nは0または1である。これらポリマーは、特公昭60−32642号公報、特公昭61−10486号公報、特開昭57−137116号公報等に記載されている。
本発明における熱可塑性ポリエーテルケトン樹脂(A)としては、上記式[化2]を含む態様が好ましく、その含有量は、熱可塑性ポリエーテルケトン樹脂(A)の質量を基準として、好ましくは60質量%以上、より好ましくは66質量%以上、さらに好ましくは75質量%以上、特に好ましくは80質量%以上であり、このような態様とすることによって耐熱性を維持したまま、電気絶縁性の向上効果を高くすることができ、高温環境下における絶縁破壊電圧特性をより優れたものとすることができる。
熱可塑性ポリエーテルケトン樹脂は、上述の通り、それ自体公知であり、且つそれ自体公知の方法で製造することができる。
また、本発明における熱可塑性ポリエーテルケトン樹脂は、温度380℃、見かけの剪断速度1000sec−1の条件における見かけの溶融粘度が500〜10000ポイズ、さらには1000〜5000ポイズの範囲にあるものが、製膜性に優れるため好ましい。
<樹脂成分(B)>
本発明の二軸延伸フィルムは、ガラス転移温度(Tg)が180℃以上である樹脂成分(B)を含有する。樹脂成分(B)のTgが上記数値範囲にあると、耐熱性および電気絶縁性に優れる。また、高温環境下における絶縁破壊電圧を高くすることができる。Tgが180℃未満である場合は、電気絶縁性が低くなる傾向にある。このような観点から、樹脂成分(B)のTgは、190℃以上であることが好ましく、200℃以上であることがより好ましく、210℃以上であることがさらに好ましい。また樹脂成分(B)のTgは、高くなりすぎると熱可塑性ポリエーテルケトン樹脂(A)のTgとの差が大きくなり過ぎる傾向にあり、溶融時の相溶性・混錬性が悪くなる傾向にある。このような観点から、樹脂成分(B)のTgは、300℃以下であることが好ましく、260℃以下であることがより好ましく、230℃以下であることがさらに好ましい。また、相溶性・混錬性の観点からは、樹脂成分(B)は非結晶性であることが好ましい。
樹脂成分(B)を構成する樹脂としては、ポリアリレート系樹脂、ポリイミド系樹脂、ポリエーテルサルフォン系樹脂、ポリスルフォン系樹脂などが挙げられるが、中でもより優れた耐熱性、電気絶縁性、相溶性・混練性が得られるという観点から、ポリイミド系樹脂が好ましい。
本発明におけるポリイミド系樹脂としては、環状イミド基を含有する溶融成形性のポリマーであり、本発明の目的に適合できるものであれば特に限定されないが、脂肪族、脂環族または芳香族系のエーテル単位と環状イミド基を繰り返し単位として含有するポリエーテルイミドが好ましい。例えば、米国特許第4141927号明細書、特許第2622678号、特許第2606912号、特許第2606914号、特許第2596565号、特許第2596566号、特許第2598478号各公報に記載のポリエーテルイミド、特許第2598536号、特許第2599171号各公報、特開平9−48852号公報、特許第2565556号、特許第2564636号、特許第2564637号、特許第2563548号、特許第2563547号、特許第2558341号、特許第2558339号、特許第2834580号各公報に記載のポリマー等が挙げられる。
また、ポリイミドの主鎖に環状イミド、エーテル単位以外の構造単位、例えば、芳香族、脂肪族、脂環族エステル単位、オキシカルボニル単位等が含有されていても良い。
本発明で好ましく使用できるポリエーテルイミドの具体例としては、下記一般式で示されるポリマーを例示することができる。
Figure 0005607378
(ただし、上記式中、Rは、6〜30個の炭素原子を有する2価の芳香族または脂肪族残基であり、Rは、6〜30個の炭素原子を有する2価の芳香族残基、2〜20個の炭素原子を有するアルキレン基、2〜20個の炭素原子を有するシクロアルキレン基、及び2〜8個の炭素原子を有するアルキレン基で連鎖停止されたポリジオルガノシロキサン基からなる群より選択された2価の有機基である。)
上記R、Rとしては、例えば、下記式群に示される芳香族残基を挙げることができる。
Figure 0005607378
本発明では、熱可塑性ポリエーテルケトン樹脂(A)との相溶性・混練性、コスト、溶融成形性の観点から、ガラス転移温度(Tg)が好ましくは300℃以下、より好ましくは260℃以下、さらに好ましくは230℃以下のポリエーテルイミドが好ましく、下記式で示される構造単位を有する、2,2−ビス[4−(2,3−ジカルボキシフェノキシ)フェニル]プロパン二無水物とm−フェニレンジアミンまたはp−フェニレンジアミンとの縮合物およびこれらの共重合体ならびに変性体が最も好ましい。このポリエーテルイミドは、例えば、ジーイープラスチックス社製であり、「“Ultem”1000、5000、および6000シリーズ」の商標名で知られているものを例示することができる。
Figure 0005607378
または
Figure 0005607378
本発明の二軸延伸フィルムにおける樹脂成分(B)の含有量は、二軸延伸フィルムの質量を基準として、5〜48質量%である。含有率が上記数値範囲であると、耐熱性および電気絶縁性に優れ、高温環境下における絶縁破壊電圧を高くすることができる。含有量が少なすぎると、耐熱性および電気絶縁性が低くなる傾向にある。このような観点から、樹脂成分(B)の含有量は、8質量%以上が好ましく、14質量%以上がさらに好ましい。また含有量が多過ぎると、フィルム製膜時に破断が起り易くなり、製膜性(延伸性)が悪くなる傾向にある。このような観点からは、樹脂成分(B)の含有量は35質量%未満が好ましく、25質量%以下がさらに好ましい。
<不活性粒子>
本発明の二軸延伸フィルムは、フィルムの取り扱い性を向上させるため、発明の効果を損なわない範囲で不活性粒子を含有することが好ましい。フィルムが不活性粒子を含有する態様とするためには、例えば熱可塑性ポリエーテルケトン樹脂にあらかじめ不活性粒子を含有することが挙げられ、好ましい。その他、熱可塑性ポリエーテルケトン樹脂を溶融押出する工程において不活性粒子を添加するなど、公知の方法を採用することができる。
かかる不活性粒子としては、例えば、周期律表第IIA、第IIB、第IVA、第IVBの元素を含有する無機粒子(例えば、カオリン、アルミナ、酸化チタン、炭酸カルシウム、二酸化ケイ素(シリカ)など)や、架橋シリコーン樹脂、架橋ポリスチレン樹脂、架橋アクリル樹脂等のごとき耐熱性の高いポリマーよりなる有機粒子等を例示することができる。これらのうち、耐熱性が高い等の理由により無機粒子が好ましく、特にシリカ粒子が好ましい。
かかる不活性粒子の平均粒径は、好ましくは0.01μm以上3μm以下、さらに好ましくは0.05μm以上2μm以下、特に好ましくは0.1μm以上1μm以下である。含有量は、二軸延伸フィルムの質量を基準として、好ましくは0.01質量%以上3.0質量%以下、さらに好ましくは0.03質量%以上2.0質量%以下、特に好ましくは0.05質量%以上1.0質量%以下である。上記のような平均粒径および含有量の態様とすることによって、取り扱い性をより効率的に向上させることができ、また二軸延伸フィルムの機械特性(破断強度、破断伸度、ヤング率等)や電気的特性(絶縁破壊電圧等)を低下させすぎることがない。
また、本発明における不活性粒子は、その形状が球状であることが好ましく、不活性粒子の長径と短径との比(長径/短径)を粒径比としたときに、かかる粒径比は、好ましくは1.20以下、さらに好ましくは1.10以下、特に好ましくは1.05以下であり、取り扱い性をさらに優れたものとすることができる。
<その他の添加剤>
本発明における熱可塑性ポリエーテルケトン樹脂には、流動性改良などの目的でポリアリーレンポリエーテル、ポリスルフォン、ポリアリレート、ポリエステル、ポリカーボネート等の樹脂をブレンドしても良く、また安定剤、酸化防止剤、紫外線吸収剤等の如き添加剤を含有させても良い。
[二軸延伸フィルムの製造方法]
本発明の二軸延伸フィルムは、機械軸方向(以下、縦方向またはMDと呼称する場合がある。)と、機械軸方向に垂直な方向(以下、横方向またはTDと呼称する場合がある。)の二軸方向に延伸されたものであるが、このように二軸延伸することにより機械特性(破断強度、破断伸度、ヤング率等)が向上し、また電気絶縁用、とりわけコンデンサー用の電気絶縁用としての高い耐熱性および電気絶縁性を発現することができ、高温環境下において高い絶縁破壊電圧を発現することができる。かかる二軸延伸は、同時二軸延伸、逐次二軸延伸の何れでも良いが、厚み斑をより良好にできるという観点から、逐次二軸延伸が好ましく、延伸の順序は、先に縦延伸を実施し、次いで横延伸を実施するのが、厚み斑をより良好にでき、また生産性の点からも好ましい。
以下、本発明の二軸延伸フィルムの製造方法について説明する。
<押出工程>
熱可塑性ポリエーテルケトン樹脂のペレットを押出機に投入し、(Tm+20)℃以上(Tm+90)℃以下の温度で加熱溶融し、シート状に押し出した後、冷却ロールに接触させる等により冷却固化して未延伸フィルムを得る。ここでTmは、示差走査熱量計(DSC)により求められる熱可塑性ポリエーテルケトン樹脂(A)と樹脂成分(B)との混合樹脂の融点(単位:℃)を表わす。
<延伸工程>
次いで、得られた未延伸フィルムを縦方向および横方向の二軸に延伸する。
縦方向の延伸(以下、縦延伸と呼称する場合がある。)は、温度(Tg−10)℃以上(Tg+45)℃以下、倍率1.5倍以上5.0倍以下で延伸する。延伸温度は、好ましくは(Tg)℃以上(Tg+30)℃以下であり、延伸倍率は、好ましくは2.0倍以上4.0倍以下、さらに好ましくは2.4倍以上3.5倍以下である。
横方向の延伸(以下、横延伸と呼称する場合がある。)は、温度(Tg+10)℃以上(Tg+40)℃以下、倍率2.5倍以上5.0倍以下で延伸する。延伸温度は、好ましくは(Tg+15)℃以上(Tg+30)℃以下であり、延伸倍率は、好ましくは2.5倍以上3.5倍以下である。ここでTgは、DSCにより求められる熱可塑性ポリエーテルケトン樹脂(A)と樹脂成分(B)との混合樹脂のガラス転移温度(単位:℃)を表わす。
縦方向および横方向の延伸条件(延伸温度および延伸倍率)を上記のような態様とすることによって、耐熱性および電気絶縁性の向上効果を高くすることができる。また、高温環境下における絶縁破壊電圧をより高くすることができきる。また、厚み斑をより良好な範囲とすることができる。延伸倍率を上げると、耐熱性および電気絶縁性が高くなる傾向にある。また、厚み斑が良化する傾向にある。また、同方向のヤング率、破断強度が上昇する傾向にある。延伸温度が低すぎるとフィルム破断が生じ易くなる傾向にあり、また厚み斑が悪くなる傾向にあり、他方、延伸温度が高すぎると、いわゆるフロー延伸する傾向にあり、厚み斑が悪くなる傾向にあり、電気絶縁性に劣る傾向にある。
ここで本発明においては、電気絶縁性をより良好なものとするために、横延伸を複数の温度領域に分けて実施することが好ましく、この第1領域の温度と最終領域の温度とで、3℃以上60℃以下の温度差をつけることが好ましい。温度差は大きすぎても小さすぎても電気絶縁性の向上効果は低くなる傾向にある。かかる温度差が小さすぎると、例えば横延伸温度が中程度にある場合は、延伸開始部で延伸応力が低く、延伸終了部(最終領域)で延伸応力が高くなる傾向であり、延伸応力の差が大きくなりバラツキが出やすくなるためか、フィルムの厚み斑が悪くなる傾向にあり、電気絶縁性の向上効果が低くなる傾向にある。他方、温度差が大きすぎる場合は、近接している領域で温度が大きく変化している為か、局所的な温度斑や温度のバラツキが生じやすくなるようであり、厚み斑が悪くなる傾向にあり、電気絶縁性の向上効果が低くなる傾向にある。このような観点から、温度差の下限は、5℃以上がより好ましく、10℃以上がさらに好ましく、17℃以上が特に好ましく、温度差の上限は、50℃以下がより好ましく、40℃以下がさらに好ましく、30℃以下が特に好ましく、より好ましい電気絶縁性とすることができる。
横延伸工程において、第1領域と最終領域との温度差をつけるには、1の延伸ゾーンの中でゾーンの入口(第1領域)と出口(最終領域)とで温度差をつけてもよいし、温度の異なる2以上の連続した延伸ゾーンを設けて最初の延伸ゾーン(第1領域)と最後の延伸ゾーン(最終領域)とで温度差をつけてもよい。ここでゾーンとは、テンター等においてシャッター等で区切られた1の領域を示す。いずれの場合も、第1領域と最終領域の間をさらに分割し、第1領域から最終領域に向かって温度を上昇させるのが好ましく、特にその勾配が直線的となるように上昇させると良い。例えば、温度の異なる2以上の連続した延伸ゾーンの場合は、最初の延伸ゾーンと最後の延伸ゾーンの間に、さらに1以上の延伸ゾーンを設けることが好ましく、1以上10以下の延伸ゾーンを設けることがさらに好ましい。延伸ゾーンの合計を13以上とすることは、設備コストの面から不利である。
延伸倍率は、最終領域を出た直後のフィルム幅を、第1領域に入る直前のフィルム幅で除した値が目標の延伸倍率となるようにすればよく、段階的にフィルム幅を増加させることが好ましく、特にその勾配が直線的となるように増加させると良い。縦方向と横方向を同時に延伸する場合においても、同様に延伸の温度を複数段階に分け、この第1段階の温度と最終段階の温度とで温度差をつけるようにする。
さらに本発明においては、上記のような延伸条件において、面積延伸倍率(縦延伸倍率×横延伸倍率)を5倍以上とすることが好ましく、6倍以上にすることがより好ましく、7倍以上とすることがさらに好ましく、厚み斑をさらに良好にすることができる。面積延伸倍率が高すぎるとフィルムが破断しやすくなる傾向にあり、その上限は、好ましくは25倍以下、さらに好ましくは20倍以下、特に好ましくは15倍以下である。
<熱固定工程>
次いで、上記にて二軸延伸されたフィルムに熱処理を施し、熱固定する。かかる熱固定は、(Tg+27)℃以上(Tm)℃以下、好ましくは(Tg+60)℃以上(Tm−20)℃以下、さらに好ましくは(Tg+90)℃以上(Tm−30)℃以下の温度で、1秒〜10分、好ましくは2秒〜5分、好ましくは3〜120秒、さらに好ましくは5〜60秒の時間行う。熱固定は、二軸延伸フィルム製膜時の延伸工程の後に連続して行われる熱処理と、二軸延伸フィルム製膜後、別途に行われる熱処理とに分けるなど、2回以上に分離して実施してもよい。
熱固定条件(熱固定温度および熱固定時間)を上記のような態様とすることによって、耐熱性および電気絶縁性の向上効果を高くすることができる。また、厚み斑をより良好な範囲とすることができる。また、熱収縮率を本発明が好ましく規定する数値範囲とすることができる。熱固定温度が高すぎると耐熱性および電気絶縁性の向上効果が低くなる傾向にあり、また厚み斑が悪くなる傾向にあり、他方、低すぎると熱収縮率が高くなる傾向にある。
<熱弛緩処理>
次いで、上記にて熱固定されたフィルムについて、熱収縮率を調整するために幅方向に熱弛緩処理を行うことが好ましく、具体的には温度180℃以上320℃以下で、弛緩率1%以上7%以下の熱弛緩処理を行うことが好ましい。弛緩率が高すぎると、熱収縮率は低くなる傾向にあるが、フィルムの平面性に劣る傾向にある。他方、低すぎると、熱収縮率が高くなる傾向にある。このような観点から、弛緩率は、さらに好ましくは2%以上6%以下である。
かくして本発明の二軸延伸フィルムを得ることができる。
[二軸延伸フィルムの特性]
<フィルム厚み>
本発明の二軸延伸フィルムの厚みは、好ましくは0.3μm以上250μm以下である。フィルム厚みが薄すぎる場合は、製膜時に破断が生じ易くなり生産効率が悪くなる傾向にある。他方、フィルム厚みが厚すぎる場合は、延伸応力が高くなる傾向にあり、延伸倍率を高くすることが困難となる傾向にあり、その結果厚み斑が悪くなる傾向にある。また、耐熱性および電気絶縁性の向上効果が低くなる傾向にある。このような観点から、フィルム厚みの下限は、より好ましくは0.5μm以上、さらに好ましくは0.8μm以上、特に好ましくは1.2μm以上である。他方、フィルム厚みの上限は、より好ましくは128μm以下、さらに好ましくは50μm以下、特に好ましくは13μm以下である。
<厚み斑>
本発明の二軸延伸フィルムは、厚み斑が9%以下であることが好ましい。厚み斑が悪くなると電気絶縁性の面内バラツキが大きくなる傾向にあり、結果的に電気絶縁性、絶縁破壊電圧特性の向上効果が低くなる傾向にある。このような観点から、厚み斑は、好ましくは6%以下、さらに好ましくは3%以下である。厚み斑の下限は小さいほど好ましく、理想的には厚み斑が0%であるが、実際には0.1%以上程度である。
厚み斑を上記数値範囲とするためには、延伸条件を前述した態様とすれば良い。とりわけ横延伸条件を上記した態様、すなわち複数の温度領域に分けて実施することが重要である。
<ガラス転移温度(Tg)>
本発明の二軸延伸フィルムは、ガラス転移温度(Tg)が145℃以上180℃未満である。Tgが上記数値範囲にあると、高温環境下においてもフィルムの剛性を維持することが容易となり、自動車用のコンデンサー用としてより好適に用いることができる。また、耐熱性の向上効果が高くなり、結果として高温環境下における絶縁破壊電圧を高くすることができる。このような観点から、Tgは、好ましくは150℃以上175℃以下である。
<絶縁破壊電圧>
本発明の二軸延伸フィルムは、23℃における絶縁破壊電圧(BDV23)が350kV/mm以上であることが好ましい。BDV23が上記数値範囲にあると、ハイブリッド型自動車のコンデンサー用として好適に用いることができる。BDV23が低い場合は、ハイブリッド型自動車のコンデンサー用として用いた場合において、大電流によりコンデンサー内における短絡が生じ、コンデンサーが破壊されるなどの問題が生じ易くなる。このような観点から、BDV23は、360kV/mm以上がより好ましく、380kV/mm以上がさらに好ましく、410kV/mm以上が特に好ましい。
また、本発明の二軸延伸フィルムは、高温環境下における絶縁破壊電圧が高いことが好ましく、140℃における絶縁破壊電圧(BDV140)とBDV23との比(BDV140/BDV23)が0.7以上であることが好ましい。かかる比が上記数値範囲にあると、高温環境下においても常温と同等の電気絶縁性を示すことを意味し、ハイブリッド型自動車のコンデンサー用として好適に用いることができる。かかる比が小さすぎる場合は、高温環境下においては電気絶縁性が低くなってしまうことを意味し、ハイブリッド自動車のコンデンサー用のごとく高温環境下で使用される用途への適用が困難となる。このような観点から、かかる比は、0.8以上であることがより好ましく、0.9以上であることがさらに好ましい。BDV140は、245kV/nn以上が好ましく、350kV/mm以上がより好ましく、400kV/mm以上がさらに好ましい。
上記のようなBDV23およびBDV140は、熱可塑性ポリエーテルケトン樹脂(A)に、本発明が規定する量の樹脂成分(B)を添加し、特定条件において延伸することにより達成することができる。
<破断強度>
本発明の二軸延伸フィルムは、縦方向および横方向のそれぞれにおいて、23℃における破断強度(破断強度23)が200MPa以上であることが好ましい。破断強度23が上記数値範囲にあるとフィルムの腰が強くなり屈曲性が良くなり、コンデンサー用等の電気絶縁用としてより好適に用いることができる。このような観点から破断強度23は、220MPa以上がより好ましく、250MPa以上がさらに好ましく、270MPa以上が特に好ましい。
また、本発明の二軸延伸フィルムは、縦方向および横方向のそれぞれにおいて、140℃における破断強度(破断強度140)と破断強度23との比(破断強度140/破断強度23)が0.7以上であることが好ましい。かかる比が0.7以上であるということは、高温環境下においても常温と同等の機械的特性を発現するということを意味し、とりわけ高温環境下において用いられるコンデンサー用等の電気絶縁用としてより好適に用いることができる。かかる比が0.7未満である、すなわち高温環境下になった際に破断強度が大きく低下するようでは、ハイブリッド自動車のコンデンサー用のごとく、高温で曝される用途に用いられた場合においては、高温環境下において破壊が生じやすくなる傾向にある。このような観点から、縦方向および横方向のそれぞれにおける、破断強度140/破断強度23℃の比は、0.8以上であることが好ましく、0.85以上であることがより好ましく、0.90以上であることがさらに好ましく、0.93以上であることが特に好ましい。破断強度140は、140MPa以上が好ましく、250MPa以上がより好ましく、300MPaがさらに好ましい。
上記比を上記数値範囲とするためには、延伸条件(延伸倍率、延伸温度など)を調整することにより達成することができる。また破断強度140℃を高くするためには、熱可塑性ポリエーテルケトン樹脂(A)に、本発明で規定する量の樹脂成分(B)を用いた上で、前述の延伸条件、熱固定条件他を樹脂組成に応じて調整することにより達成することができる。
<熱収縮率>
本発明の二軸延伸フィルムは、温度150℃で30分間熱処理した後の縦方向および横方向の熱収縮率の絶対値がいずれも1.0%以下であることが好ましい。熱収縮率の絶対値は、さらに好ましくは0.7%以下、特に好ましくは0.5%以下である。すなわちかかる熱収縮率は、0に近い程好ましい。熱収縮率が上記数値範囲にあると、熱寸法安定性に優れ、加工時に反り、カールなどが起りにくいなど、加工性に優れ、また取り扱い性も良好となる。
熱収縮率を上記のような態様とするには、二軸延伸フィルムを構成する主たる成分として熱可塑性ポリエーテルケトン樹脂(A)を用い、前述した製造条件によりフィルムを製造すればよい。特に、延伸倍率を高くすると熱収縮率は高くなる傾向にあり、熱固定温度を高くすると熱収縮率は低くなる傾向にあり、弛緩率を高くすると熱収縮率は低くなる傾向にあり、これらを調整することが重要である。
[用途]
本発明の二軸延伸フィルムは、耐熱性および電気絶縁性に優れ、高温環境下においても優れた絶縁破壊電圧特性が要求される電気絶縁用として好適に用いることができる。特に移動体用、特にハイブリッド自動車用、電気自動車用、燃料自動車用等のコンデンサー用のごとく、より高い耐熱性および電気絶縁特性(絶縁破壊電圧)が要求される用途に好適に使用することができる。
以下、実施例により本発明を詳述するが、本発明はこれらの実施例のみに限定されるものではない。なお、各特性値は以下の方法で測定した。また、実施例中の部および%は、特に断らない限り、それぞれ質量部および質量%を意味する。
(1)破断強度
フィルムを150mm長×10mm幅に切り出した試験片を用い、オリエンテック社製テンシロンUCT−100型を用いて、温度23℃、湿度60%RHに調節された室内において、チャック間100mm、引張速度10mm/分、チャート速度50mm/分で引張試験を実施し、破断時の応力から23℃における破断強度(破断強度23)を求めた。なお、縦方向の破断強度とはフィルムの縦方向(MD)を測定方向としたものであり、横方向の破断強度とはフィルムの横方向(TD)を測定方向としたものである。各破断強度はそれぞれ10回測定し、その平均値を用いた。
また、140℃の温度雰囲気下における破断強度(破断強度140)は、140℃の温度雰囲気に設定されたチャンバー内に試験片及びテンシロンのチャック部分をセットし、2分間静置後、上記の引張試験を行うことによって求めた。
(2)ガラス転移温度(Tg)および融点(Tm)
樹脂サンプルにおいてはサンプル約10mgを、フィルムサンプルにおいてはサンプル約20mgを測定用のアルミニウム製パンに封入して示差熱量計(TA Instruments社製:商品名DSC2920 Modulated)に装着し、25℃から20℃/分の速度で370℃まで昇温させ、370℃で3分間保持した後取り出し、直ちに氷の上に移して急冷した。このパンを再度示差熱量計に装着し、25℃から20℃/分の速度で昇温させてガラス転移温度(単位:℃)と融点(単位:℃)を測定した。
(3)熱収縮率
温度150℃に設定されたオーブン中に、フィルムの縦方向および横方向がマーキングされ、あらかじめ正確な長さを測定した長さ30cm四方のフィルムを無荷重で入れ、30分間保持処理した後取り出し、室温に戻してからその寸法の変化を読み取る。熱処理前の長さ(L)と熱処理による寸法変化量(ΔL)より、下記式(1)から縦方向および横方向の熱収縮率をそれぞれ求めた。
熱収縮率(%)=(ΔL/L)×100 ・・・(1)
(4)絶縁破壊電圧(BDV)
JIS C 2151に示される方法に従って測定した。23℃相対湿度50%の雰囲気にて、直流耐電圧試験機を用い、上部電極は直径25mmの真鍮製円柱、下部電極は直径75mmのアルミ製円柱を使用し、100V/秒の昇圧速度で昇圧し、フィルムが破壊し短絡した時の電圧を読み取った。得られた電圧をフィルム厚みで除して、23℃における絶縁破壊電圧(BDV23、単位:kV/mm)とした。
測定は41回実施し、大きい方の値10点、および小さい方の値10点を除き、21点の値の中央値を絶縁破壊電圧の測定値とした。
140℃における絶縁破壊電圧(BDV140)の測定は、熱風オーブンに電極、サンプルをセットし、耐熱コードで電源に接続し、140℃のオーブンにサンプルを投入後1分で昇圧を開始して、上記と同様にして測定した。
(5)延伸性
二軸延伸フィルムを100万m製膜する間に破断の発生する回数により、以下の如く判断した。
延伸性◎ : 10万mの製膜当り 破断が1回未満
延伸性○ : 10万mの製膜当り 破断が1回〜2回未満
延伸性△ : 10万mの製膜当り 破断が2回〜4回未満
延伸性× : 10万mの製膜当り 破断が4回〜8回未満
延伸性××: 10万mの製膜当り 破断が8回以上
(6)フィルム厚みおよび厚み斑
フィルムの厚みを、縦方向および横方向に電子マイクロメーターを用いて0.5mの長さを測定し、かかる測定長のうち最高厚さ(単位:μm)と最低厚さ(単位:μm)との差の、平均厚み(単位:μm)に対する比(百分率)を求め、厚み斑(単位:%)として求めた。縦方向および横方向の厚み斑を測定値とした。
比較例4、実施例2、3]
熱可塑性ポリエーテルケトン樹脂(A)としてのポリエーテルエーテルケトン樹脂(ビクトレックス社製:ポリエーテルエーテルケトン381G、Tg:142℃、Tm:343℃)と、樹脂成分(B)としてのポリエーテルイミド樹脂(ゼネラルエレクトリック社製:Ultem1010、Tg:217℃)との混合組成物(混合比率は表1中に示す)に、不活性粒子として平均粒径0.7μm、粒径比1.05の球状シリカ粒子を、得られる二軸延伸フィルムの質量に対して0.1質量%となるように添加し、160℃で4時間乾燥した後、押出機により380℃で溶融押出し、80℃に保持したキャスティングドラム上へキャストして、未延伸フィルムを作成した。次いで、表1に示す条件で縦方向、次いで横方向に逐次二軸延伸を行い、更に1表に示す条件で熱固定および熱弛緩処理することにより、厚さ3μmの二軸延伸フィルムを得た。得られた二軸延伸フィルムの特性を表1に示す。
[比較例1]
樹脂成分(B)としてのポリエーテルイミド樹脂を用いない以外は、比較例4と同様にして未延伸フィルムを作成した。次いで、表1に示す条件で縦方向、次いで横方向に逐次二軸延伸を行い、更に1表に示す条件で熱固定および熱弛緩処理することにより、厚さ3μmの二軸延伸フィルムを得た。得られた二軸延伸フィルムの特性を表1に示す。
[比較例2]
二軸延伸をしないこと以外は実施例2と同様にして、フィルム厚み12μmの未延伸フィルムを得た。なお、フィルム厚みは溶融押出時の吐出量および冷却ロールの回転速度により調整した。また、熱固定および熱弛緩処理は実施した。得られた未延伸フィルムの特性を表1に示す。
[比較例3]
熱可塑性ポリエーテルケトン樹脂(A)としてのポリエーテルエーテルケトン樹脂と、樹脂成分(B)としてのポリエーテルイミド樹脂との混合比率を40:60(質量%)とすること以外は実施例3と同様にしてサンプルを得ようとしたが、製膜時に破断が多くサンプルが得られなかった。
Figure 0005607378
本発明の二軸延伸フィルムは、電気絶縁性に優れるとともに耐熱性にも優れるため、高温雰囲気下において高い絶縁破壊電圧を示し、移動体の電気絶縁用、特にハイブリッド自動車用のコンデンサー用フィルムとして好適に用いることができる。

Claims (5)

  1. 熱可塑性ポリエーテルケトン樹脂(A)を主たる成分とし、ガラス転移温度(Tg)が180℃以上でポリイミド系樹脂である樹脂成分(B)を14〜48質量%含有し、ガラス転移温度(Tg)が145℃以上180℃未満で、23℃における絶縁破壊電圧(BDV23)が380kV/mm以上である電気絶縁用として用いられる二軸延伸フィルム。
  2. 140℃における絶縁破壊電圧(BDV140)と23℃における絶縁破壊電圧との比(BDV140/BDV23)が0.7以上である請求項1に記載の二軸延伸フィルム。
  3. 縦方向および横方向のそれぞれにおいて、23℃における破断強度(破断強度23)が200MPa以上であり、140℃における破断強度(破断強度140)と23℃における破断強度との比(破断強度140/破断強度23)が0.7以上である請求項1または2のいずれか1項に記載の二軸延伸フィルム。
  4. 温度150℃で30分間熱処理した後の縦方向および横方向の熱収縮率の絶対値がそれぞれ1.0%以下である請求項1〜のいずれか1項に記載の二軸延伸フィルム。
  5. コンデンサー用として用いられる請求項1に記載の二軸延伸フィルム。
JP2010012979A 2010-01-25 2010-01-25 二軸延伸フィルム Expired - Fee Related JP5607378B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010012979A JP5607378B2 (ja) 2010-01-25 2010-01-25 二軸延伸フィルム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010012979A JP5607378B2 (ja) 2010-01-25 2010-01-25 二軸延伸フィルム

Publications (2)

Publication Number Publication Date
JP2011148940A JP2011148940A (ja) 2011-08-04
JP5607378B2 true JP5607378B2 (ja) 2014-10-15

Family

ID=44536233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010012979A Expired - Fee Related JP5607378B2 (ja) 2010-01-25 2010-01-25 二軸延伸フィルム

Country Status (1)

Country Link
JP (1) JP5607378B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016137445A1 (en) 2015-02-24 2016-09-01 South Dakota Board Of Regents Polycarbonates having superior dielectric properties suitable for energy dense capacitors

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618149B2 (ja) * 1988-02-12 1994-03-09 帝人株式会社 コンデンサ
JPH0764023B2 (ja) * 1990-08-21 1995-07-12 三井東圧化学株式会社 二軸延伸ポリエーテルエーテルケトンフィルムの製造方法
JPH07178804A (ja) * 1993-12-24 1995-07-18 Mitsui Toatsu Chem Inc ポリイミド系延伸フィルムの製造方法
JP3355142B2 (ja) * 1998-01-21 2002-12-09 三菱樹脂株式会社 耐熱性積層体用フィルムとこれを用いたプリント配線基板用素板および基板の製造方法
JP3514646B2 (ja) * 1999-01-05 2004-03-31 三菱樹脂株式会社 フレキシブルプリント配線基板およびその製造方法
JP2003026914A (ja) * 2001-07-17 2003-01-29 Otsuka Chem Co Ltd プリント配線板用フィルム及びプリント配線板
JP3991668B2 (ja) * 2000-12-19 2007-10-17 東レ株式会社 ポリエーテルイミド含有熱可塑性樹脂組成物
US9006348B2 (en) * 2005-09-16 2015-04-14 Sabic Global Technologies B.V. Poly aryl ether ketone polymer blends

Also Published As

Publication number Publication date
JP2011148940A (ja) 2011-08-04

Similar Documents

Publication Publication Date Title
JP5798610B2 (ja) 高い絶縁破壊電圧性を有するプラスチックフィルム
JP5088322B2 (ja) 二軸配向ポリアリーレンスルフィドフィルムおよびその製造方法
KR100692277B1 (ko) 내열성 콘덴서용 폴리에스테르필름, 그 금속화 필름 및 그것을 사용한 내열성 필름콘덴서
KR20190059216A (ko) 폴리에스테르 수지 조성물 및 이를 포함하는 이축 연신 폴리에스테르 필름
JP2018083415A (ja) 積層フィルム及びその製造方法
JP2007169595A (ja) コンデンサ用ポリプロピレンフイルム
WO2019176756A1 (ja) ポリアリーレンスルフィドフィルム
JP5607378B2 (ja) 二軸延伸フィルム
JP2001261959A (ja) 二軸配向フィルム、金属化フィルムおよびフィルムコンデンサー
JP5607496B2 (ja) 二軸延伸フィルム
TW200804481A (en) Biaxial aligned polyarylenesulfide film
JP2009292902A (ja) 二軸配向ポリアリーレンスルフィドフィルムおよびそれを用いた接着材料
JP5423464B2 (ja) 二軸配向積層フィルム
JPS62251121A (ja) ポリフエニレンスルフイド未延伸フイルムの製造法
JP2013023590A (ja) 高絶縁性フィルム
JP4651146B2 (ja) 共重合ポリエステルエーテル及びそれからなるフィルム
JP2014189718A (ja) 二軸延伸ポリアリーレンスルフィドフィルム
JP4086598B2 (ja) コンデンサ用ポリエステルフィルム
JP6178165B2 (ja) 高絶縁性フィルム
JP5672735B2 (ja) 空洞含有ポリエステルフィルム
JP2010110898A (ja) 熱ラミネート積層フィルムおよびその製造方法
JP2009274411A (ja) 積層フィルムおよびその製造方法
JP4321026B2 (ja) コンデンサー用ポリエステルフィルム
JP2015193799A (ja) 二軸配向ポリエステルフィルム
Shin et al. Mechanical and dielectric breakdown properties of PBT/TPE, PBT/PBT/PET, and PBT/antioxidant blends

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110630

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140612

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140828

R150 Certificate of patent or registration of utility model

Ref document number: 5607378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees