WO2021206345A1 - 촉매 조성물 및 이를 이용한 이소부텐계 중합체의 제조방법 - Google Patents

촉매 조성물 및 이를 이용한 이소부텐계 중합체의 제조방법 Download PDF

Info

Publication number
WO2021206345A1
WO2021206345A1 PCT/KR2021/003908 KR2021003908W WO2021206345A1 WO 2021206345 A1 WO2021206345 A1 WO 2021206345A1 KR 2021003908 W KR2021003908 W KR 2021003908W WO 2021206345 A1 WO2021206345 A1 WO 2021206345A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
formula
isobutene
catalyst
based polymer
Prior art date
Application number
PCT/KR2021/003908
Other languages
English (en)
French (fr)
Inventor
김희정
최경신
김원희
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/630,358 priority Critical patent/US11718632B2/en
Priority to CN202180004714.8A priority patent/CN114174353B/zh
Priority to JP2022503969A priority patent/JP7229420B2/ja
Priority to EP21783712.9A priority patent/EP3988586B1/en
Publication of WO2021206345A1 publication Critical patent/WO2021206345A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/08Butenes
    • C08F110/10Isobutene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/08Butenes
    • C08F210/10Isobutene
    • C08F210/12Isobutene with conjugated diolefins, e.g. butyl rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/08Isoprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/52Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from boron, aluminium, gallium, indium, thallium or rare earths
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/54Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with other compounds thereof

Definitions

  • the present invention relates to a catalyst composition comprising an oxonium ion-based catalyst and an aluminum-based cocatalyst, and a method for preparing an isobutene-based polymer using the same.
  • Polyisobutene is divided into low molecular weight, medium molecular weight and high molecular weight ranges according to molecular weight ranges.
  • the low molecular weight polyisobutene has a number average molecular weight of 10,000 or less, and can be classified according to the content of carbon-carbon double bonds located at the ends, and common polybutenes having the terminal carbon-carbon double bond content of 20% or less.
  • the highly reactive polybutene may be used as a fuel additive or engine oil additive after introducing a functional group using a terminal vinylidene functional group (>80%).
  • butyl rubber is an isobutene-isoprene copolymer containing isobutene and about 1 to 6% isoprene, and has chemical resistance, moisture resistance, electrical insulation, etc. It is excellent and is used for applications such as adhesive compositions and adhesive sheets.
  • butyl rubber is used by crosslinking/compounding with other rubbers by performing an additional halogenation reaction on the double bond of isoprene, and has no gas permeability, so it is widely used in inner tubes and inner liners of tires.
  • a Lewis acid catalyst such as BF 3 or AlCl 3 is generally used.
  • Lewis acid catalysts are vulnerable to moisture, so when they react with water, strong acids such as HCl or HF are produced, which can be mixed with products to cause quality degradation.
  • strong acids such as HCl or HF are produced, which can be mixed with products to cause quality degradation.
  • due to the strong corrosiveness of the Lewis acid catalyst it is necessary to set a high investment cost considering corrosion resistance during process design.
  • Cationic polymerization is mostly carried out at a low temperature, and there is a difficulty in carefully controlling the polymerization temperature at around -100° C. depending on the molecular weight of the butyl rubber to be manufactured.
  • polymerization in order to increase the molecular weight of butyl rubber products with a high molecular weight or higher, polymerization must proceed by lowering the reaction temperature to a cryogenic temperature of -100°C. There is a problem in that the investment cost increases by designing the double or triple.
  • organic bases such as NaOH, KOH, NaNH 4 , KNH 4 are used for quenching after using a Lewis acid catalyst, which react with Lewis acid to form Na(BF 3 OH), Na(AlCl 3 ) OH), K(BF 3 OH), and K(AlCl 3 OH) are produced as highly toxic wastes, and when they are washed, a large amount of wastewater is generated.
  • the conventional method for producing an isobutene-based polymer has problems in several aspects, and therefore, it is still necessary to develop a method for efficiently producing an isobutene-based polymer using a method that is harmless to the environment.
  • Another object of the present invention is to provide a method for preparing an isobutene-based polymer using the catalyst composition.
  • the present invention provides a catalyst composition
  • R is an alkyl group having 2 to 12 carbon atoms
  • R 1 to R 4 are each independently a halogen group
  • o, p, q and r are each independently an integer of 1 to 5,
  • R a is a hydrocarbon group having 1 to 20 carbon atoms
  • Z is a halogen group
  • n is an integer from 0 to 3.
  • the present invention provides a method for producing an isobutene-based polymer comprising; polymerizing a monomer composition including an isobutene monomer in the presence of the catalyst composition.
  • the catalyst composition of the present invention is a combination of an oxonium ion-based catalyst having excellent catalytic activity and an aluminum-based cocatalyst.
  • an oxonium ion-based catalyst having excellent catalytic activity
  • an aluminum-based cocatalyst When the catalyst composition is used, it is possible to actively cationically polymerize the isobutene monomer even at a temperature other than cryogenic temperature, thereby producing an isobutene-based polymer with excellent efficiency.
  • the isobutene-based polymer prepared according to the present invention has excellent physical properties with a high weight average molecular weight and a narrow molecular weight distribution.
  • the catalyst composition of the present invention is characterized in that it comprises a catalyst represented by the following formula (1) and a cocatalyst represented by the formula (2).
  • R is an alkyl group having 2 to 12 carbon atoms
  • R 1 to R 4 are each independently a halogen group
  • o, p, q and r are each independently an integer of 1 to 5,
  • R a is a hydrocarbon group having 1 to 20 carbon atoms
  • Z is a halogen group
  • n is an integer from 0 to 3.
  • R is an alkyl group having 2 to 12 carbon atoms, specifically, an alkyl group having 2 to 8 carbon atoms, an alkyl group having 2 to 6 carbon atoms, an alkyl group having 2 to 4 carbon atoms, preferably an ethyl group, an isopropyl group or a butyl group can
  • R 1 to R 4 are each independently a halogen group, for example, each independently may be F or Cl, and preferably R 1 to R 4 may be all F.
  • o, p, q and r may each independently be an integer of 1 to 5, an integer of 3 to 5, specifically 4 or 5. Most preferably, R 1 to R 4 may be F and o, p, q and r may be 5.
  • the organic borate contained in the compound represented by Formula 1 may be at least one selected from the group consisting of tetrakis(pentafluorophenyl)borate and derivatives thereof, and preferably tetrakis(pentafluorophenyl)borate.
  • the catalyst of the present invention has a strong C-B bond because it contains, as an anion moiety, an organoborate containing one or more halogen group substituents having a strong electron-attracting phenomenon. Therefore, even when mixed with the cocatalyst represented by Chemical Formula 2, that is, the aluminum-based cocatalyst, the bond is maintained, so that it is used for cationic polymerization without losing catalytic activity, thereby exhibiting excellent efficiency.
  • a catalyst that does not correspond to Formula 1 such as a Lewis acid catalyst (eg, BF 3 )
  • an organic base such as NaOH, KOH, NaNH 4 , KNH 4 is used in a large amount in the quenching operation after the reaction,
  • These organic bases react with Lewis acids to form highly toxic wastes such as Na(BF 3 OH), Na(AlCl 3 OH), K(BF 3 OH), and K(AlCl 3 OH).
  • the catalyst represented by Chemical Formula 1 may be selected from the following Chemical Formulas 1-1 to 1-3, but is not limited thereto.
  • the catalyst composition of the present invention includes a cocatalyst represented by Formula 2 together with the catalyst represented by Formula 1 above.
  • the promoter represented by Chemical Formula 2 may be defined as aluminum trihalide, alkylaluminum dihalide, dialkylaluminum halide or trialkylaluminum depending on the value of m.
  • R a is a hydrocarbon group having 1 to 20 carbon atoms
  • Z is a halogen group
  • n is an integer from 0 to 3.
  • R a is each independently a hydrocarbon group having 1 to 20 carbon atoms, and specifically, R a is each independently an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or a cycloalkyl group having 6 to 12 carbon atoms. It may be an aryl group, preferably an alkyl group having 1 to 6 carbon atoms, an alkyl group having 1 to 3 carbon atoms, such as an ethyl group.
  • Z is each independently a halogen group, and specifically, may be Br or Cl, preferably Cl, and m, which means the number of R a bonded to Al, may be an integer of 0 to 3.
  • the catalyst composition of the present invention is suitable for use in the preparation of an isobutene-based polymer by cationic polymerization.
  • cationic polymerization it is important to stabilize the cationic site formed during the polymerization reaction.
  • the promoter represented by Formula 2 is a strong Lewis acid. It is possible to form an ion pair with an organic borate in the catalyst structure and thereby effectively stabilize the cationic site, thereby making it possible to prepare a high molecular weight isobutene-based polymer.
  • the catalyst and the cocatalyst used in the present invention react to form an aluminum cation, for example, [H(C 2 H 5 O) 2 ][B(C 6 F 5 ) 4 ] is used as a catalyst and (C If 2 H 5 ) 2 Al(Cl) is used, an aluminum cation with strong Lewis acid properties such as [Al(C 2 H 5 )Cl] + or [AlCl] 2+ is formed, which leads to cationic polymerization of the isobutene monomer.
  • the catalyst represented by Formula 1 and the promoter represented by Formula 2 are used as an appropriate combination capable of efficiently preparing an isobutene-based polymer by performing cationic polymerization at a high conversion rate.
  • the isoprene monomer is bonded to the cation chain being polymerized to form a resonance structure. It is more important to select and use a catalyst and co-catalyst having high reactivity so that premature termination may not occur in consideration of the possibility of progress or termination reaction.
  • the weight ratio of the catalyst represented by Formula 1 and the promoter represented by Formula 2 may be 1:0.1 to 1:50.
  • the promoter represented by Formula 2 is 0.1 parts by weight or more, 0.2 parts by weight or more, 0.5 parts by weight or more, 50 parts by weight or less, 30 parts by weight or less, 10 parts by weight or less, 8 parts by weight or less, 5 parts by weight or less, and 4 parts by weight or less.
  • the weight ratio of the catalyst represented by Formula 1 and the promoter represented by Formula 2 may be 1:0.2 to 1:30, 1:0.3 to 1:8, 1:0.5 to 1:4.
  • catalyst activation through the formation of a complex between the catalyst and the cocatalyst proceeds sufficiently, so that cationic polymerization occurs actively, and unreacted materials such as unreacted cocatalyst are prevented from remaining, thereby reducing the process cost can do.
  • the method for producing an isobutene-based polymer of the present invention comprises: polymerizing a monomer composition including an isobutene monomer in the presence of the catalyst composition.
  • the monomer composition may include only an isobutene monomer or a derivative thereof as a monomer, and may further include an isoprene monomer, a styrene monomer, an alpha-methyl styrene monomer, a tetrahydrofuran monomer, a butadiene monomer, or a combination thereof.
  • the isobutene-based polymer may be a polyisobutene in which an isobutene monomer or a derivative thereof is independently polymerized, an isobutene-isoprene copolymer in which an isobutene monomer and an isoprene monomer are polymerized.
  • the content of isoprene may be 1 to 10 mol%, 1 to 8 mol%, or 1 to 5 mol% based on the isobutene-isoprene copolymer.
  • the monomer composition may include a hydrocarbon solvent. That is, the polymerization of the monomer composition may be performed in a hydrocarbon solvent.
  • the monomer composition of the present invention includes a hydrocarbon solvent together with a catalyst and a cocatalyst, and the hydrocarbon solvent may be used as a mixture of a non-polar hydrocarbon solvent and a halogenated hydrocarbon solvent, or only a non-polar hydrocarbon solvent may be used alone.
  • the non-polar hydrocarbon solvent may be an aliphatic hydrocarbon solvent or an aromatic hydrocarbon solvent.
  • the aliphatic hydrocarbon solvent may be at least one selected from the group consisting of butane, pentane, neopentane, hexane, cyclohexane, methylcyclohexane, heptane and octane, and preferably hexane, but is not limited thereto.
  • the aromatic hydrocarbon solvent may be at least one selected from the group consisting of benzene, toluene, xylene and ethyl benzene, and preferably toluene, but is not limited thereto.
  • the halogenated hydrocarbon solvent may be at least one selected from the group consisting of chloromethane, dichloromethane, trichloromethane, 1-chlorobutane and chlorobenzene, but is not limited thereto.
  • the mixing ratio may be a volume ratio of 100:1 to 1:2, specifically, a volume ratio of 100:1 to 1:1, It is not limited thereto.
  • the amount of isobutene monomer may be 10 to 60% by weight, specifically 15 to 50% by weight, or 20 to 40% by weight based on the monomer composition.
  • concentration of the isobutene monomer is within the above range, cationic polymerization can be efficiently carried out and a high conversion rate can be achieved.
  • the hydrocarbon solvent may be the same as or different from the hydrocarbon solvent constituting the catalyst composition.
  • the catalyst represented by Formula 1 may be used in an amount of 0.005 to 0.5 parts by weight based on 100 parts by weight of the isobutene monomer, specifically 0.005 parts by weight or more, 0.01 parts by weight or more, 0.02 parts by weight or more, 0.5 parts by weight or less, 0.4 It may be less than or equal to 0.3 part by weight, or less than or equal to 0.2 part by weight.
  • the amount of catalyst compared to the monomer is sufficient, so that the copolymerization reaction proceeds smoothly and economical efficiency can be taken.
  • the promoter represented by Formula 2 may be used in an amount of 0.005 to 0.5 parts by weight based on 100 parts by weight of the isobutene monomer, specifically 0.005 parts by weight or more, 0.01 parts by weight or more, 0.02 parts by weight or more, 0.5 parts by weight or less, It may be 0.4 parts by weight or less, 0.3 parts by weight or less, or 0.2 parts by weight or less.
  • the polymerization may be carried out at a temperature of -50 to -10 °C, in order to efficiently prepare a high molecular weight isobutene-based polymer for the purpose of the present invention, specifically -50 °C or more, -45 °C Above, it may be carried out at a temperature of -10 °C or less, -15 °C or less.
  • the catalyst activity is excellent in the above range, it is possible to prevent the isobutene-based polymer having a low molecular weight from being produced by chain transfer while cationic polymerization is actively proceeding.
  • the polymerization may be carried out for 10 minutes to 3 hours, specifically 10 minutes or more, 30 minutes or more, 40 minutes or more, 3 hours or less, 2 hours or less, 1 hour or less in the above-mentioned temperature range.
  • an isobutene-based polymer having a high molecular weight and a narrow molecular weight distribution can be prepared by using a catalyst composition including the catalyst represented by Formula 1 and the cocatalyst represented by Formula 2.
  • an isobutene-based polymer having a weight average molecular weight of 100,000 to 1,000,000 g/mol can be prepared.
  • the weight average molecular weight of the isobutene-based polymer prepared according to the present invention is 100,000 g/mol or more, 120,000 g/mol or more, 130,000 g/mol or more, 1000,000 g/mol or less, 800,000 g/mol or less, 600,000 g/mol or less, and 550,000 g/mol or less.
  • the number average molecular weight of the isobutene-based polymer may be 30,000 g/mol or more, specifically, 50,000 g/mol or more, or 70,000 g/mol or more, 500,000 g/mol or less, 400,000 g/mol or less, 300,000 g/mol or more. mol or less.
  • the molecular weight distribution of the isobutene-based polymer may be 1.5 to 3.0, specifically 1.5 or more, 3.0 or less, 2.7 or less, 2.6 or less, 2.3 or less.
  • the production method of the present invention it is possible to prepare variously controlling the physical properties of the isobutene-based polymer within the above range, and in particular, it is easy to control the molecular weight and molecular weight distribution according to the desired purpose by adjusting the type or content of the cocatalyst. .
  • the weight average molecular weight and the number average molecular weight are polystyrene equivalent molecular weights analyzed by gel permeation chromatography (GPC), and the molecular weight distribution is calculated from the ratio of (weight average molecular weight)/(number average molecular weight).
  • a step of removing the catalyst may be further performed after the step of cationic polymerization of the monomer. Since the catalyst of the present invention can be efficiently removed through a physically simple filtration step, it is much easier to use and remove than the Lewis acid catalyst of the prior art.
  • the organic solvent may be removed to adjust the organic solvent to 40 wt% or less, 20 wt% or less, or 5 wt% or less of the oligomer or polymer.
  • a step of filtering insoluble substances is performed using a glass filter of 80 mesh or more, 100 mesh or more, or 200 mesh or more.
  • the catalyst can be removed by passing a fluid polymer through a silica, celite or zeolite filter.
  • a linear alkyl solvent such as pentane, cyclopentane, hexane, cyclohexane, heptane, octane, and ether solvents such as diethyl ether and petroleum ether is used.
  • ether solvents such as diethyl ether and petroleum ether
  • the produced isobutene-based polymer is dissolved in an organic solvent such as pentane, cyclopentane, hexane, cyclohexane, heptane, octane, diethyl ether or petroleum ether, and then washed with water to remove the catalyst.
  • an organic solvent such as pentane, cyclopentane, hexane, cyclohexane, heptane, octane, diethyl ether or petroleum ether.
  • a separate washing step may not be performed.
  • the manufacturing method of the present invention may further include drying the residual solvent after the filtration step.
  • the drying temperature may be 30 to 200 °C, or 40 to 150 °C
  • the vacuum degree may be 300 torr or less, 200 torr or less, or 100 torr or less.
  • the drying method is not particularly limited and may be performed by a conventional method.
  • the step of drying the halogenated hydrocarbon solvent before the filtration after the polymerization step may or may not be separately performed.
  • the drying conditions may be performed as described above and are not particularly limited.
  • the salt formed in the solution in the glove box was removed with a filter, and the clear solution was collected and vacuum dried to remove the solvent. After removal of the solvent, 5 mL of anhydrous hexane was washed 3 times and vacuum dried again to obtain the desired product.
  • a catalyst was prepared in the same manner as in Preparation Example 1, except that anhydrous diisopropyl ether was used instead of anhydrous dibutyl ether.
  • Brookhart's acid represented by the following formula was prepared.
  • a magnetic bar was put into a well-dried Andrew glass flask in a convection oven, and then a vacuum was applied and maintained for about 1 hour. After making an ice bath using acetone-dry ice and cooling the Andrew glass flask, an isobutene line was connected and an appropriate amount was condensed. The amount of isobutene monomer in the Andrew glass flask was checked, dried toluene was added, and the concentration of isobutene monomer was adjusted to 20% by weight based on the monomer composition. The temperature of the Andrew glass flask thus prepared was adjusted to -20 °C.
  • the catalyst of Preparation Example 1 and the cocatalyst Et 2 AlCl were prepared in a glove box, dissolved in toluene so as to be 0.05 parts by weight based on 100 parts by weight of each isobutene monomer, and then injected using a syringe. 45 minutes after injection, the Andrew glass flask was opened to remove the remaining isobutene monomer, and the reaction was quenched with methanol. After the remaining solvent was removed via rotary evaporator, the remaining polymer was completely dried under vacuum until there was no change in weight.
  • Polyisobutene was prepared in the same manner as in Example 1, except that the reaction conditions were changed as shown in Table 1 below.
  • Example 1 20 Preparation Example 1 0.05 Et 2 AlCl 0.05 toluene -20
  • Example 2 20
  • Example 3 40
  • Example 5 40
  • Example 6 20
  • Example 7 40
  • Example 8 50
  • a magnetic bar was placed in a well-dried Andrew glass flask in a convection oven, and then maintained in a vacuum state for about 1 hour. After cooling the Andrew glass flask using a low-temperature reactor, an isobutene line was connected and 20 g of isobutene monomer was added. The isoprene monomer was added in an amount of 2 to 5% by weight compared to the isobutene monomer using a syringe. The solvent used for the reaction was put into the Andrew glass flask, and the concentration of the isobutene monomer was adjusted to 40 wt% based on the monomer composition. The concentration of isobutene monomer was adjusted.
  • the Andrew glass flask thus prepared was adjusted to a reaction temperature of -40 °C.
  • the used catalyst and co-catalyst were prepared in a glove box, dissolved in a small amount of dichloromethane, and injected using a syringe. 45 minutes after injection, the Andrew glass flask was opened to remove the remaining isobutene monomer, and the reaction was quenched with methanol. At this time, the obtained isobutene-isoprene copolymer was completely dried under vacuum until there was no change in weight.
  • An isobutene-isoprene copolymer was prepared in the same manner as in Example 1, except that polymerization conditions were changed as shown in Table 1 below.
  • the polymerization conversion rate was calculated by measuring the weight of the dried isobutene-based polymer.
  • Example 1 >99 165,119 75,054 2.2
  • Example 2 >99 306,398 165,159 1.9
  • Example 3 >99 210,358 105,735 2.0
  • Example 4 >99 429,595 198,131 2.2
  • Example 5 >99 139,934 86,207 1.6
  • Example 6 65 403,953 220,877 1.8
  • Example 7 78 428,695 194,242 2.2
  • Example 8 73 431,061 227,838 1.9
  • Example 9 80 510,873 228,427 2.2
  • Example 10 85 403,953 220,877 1.8 Comparative Example 1 >99 23,828 9,694 2.5
  • Comparative Example 2 56 292,024 76,655 3.8 Comparative Example 3 - - - - Comparative Example 4 - - - - Comparative Example 5 - - - - Comparative Example 6 30 366,295 198,098 1.9
  • Example 12 >90 4.2 110,945 265,957 111,811 2.40
  • Example 13 70 1.8 260,600 410,252 349,919 1.57
  • Example 14 75 1.9 161,502 315,980 191,531 1.96
  • Example 15 78 2.0 173,949 322,954 230,034 1.86
  • Example 16 65 1.8 87,506 186,678 131,393 2.13
  • Example 17 >90 2.0 80,137 159,715 116,329 1.99 Comparative Example 7 - - - - - - - Comparative Example 8 - - - - - - Comparative Example 9 - - - - - - Comparative Example 10 ⁇ 3 1.8 5,431 26,238 24,784 4.83 Comparative Example 11 16 1.5 22,893 42,265 41,415 1.85
  • the isobutene-based polymer having a high molecular weight could be prepared while exhibiting a high polymerization conversion rate.
  • the manufacturing results of polyisobutene are as follows.
  • Comparative Example 1 in which no cocatalyst was used, the molecular weight of polyisobutene was remarkably low.
  • Comparative Example 2 in which aluminoxane not corresponding to Chemical Formula 2 was used as a cocatalyst, the polymerization conversion rate was low, and the molecular weight distribution of polyisobutene was also widened, resulting in deterioration of physical properties.
  • Comparative Examples 3 and 4 in which the catalyst represented by Formula 1 was not used polymerization did not proceed.
  • Comparative Example 5 using Comparative Preparation Example 1 as a catalyst polymerization did not proceed, so polyisobutene could not be prepared, and Comparative Example 6 using Comparative Preparation Example 2 as a catalyst showed a low polymerization conversion rate of 30%.
  • Comparative Example 11 using an aluminoxane-based cocatalyst instead of the cocatalyst represented by Chemical Formula 2, the polymerization conversion rate was low, and it was confirmed that the number average molecular weight of the copolymer was also very low compared to the Example.
  • Comparative Example 12 using aluminum oxide as a co-catalyst and Comparative Examples 13 and 14 using a Zn- or Fe-based compound as a co-catalyst cationic polymerization did not proceed properly, so that a copolymer could not be obtained.
  • Comparative Example 15 using a catalyst not corresponding to Formula 1 a copolymer could not be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymerization Catalysts (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 옥소늄 이온계 촉매 및 알루미늄계 조촉매를 포함하는 촉매 조성물, 및 이를 이용한 이소부텐계 중합체의 제조방법에 관한 것이다.

Description

촉매 조성물 및 이를 이용한 이소부텐계 중합체의 제조방법
관련 출원과의 상호 인용
본 출원은 2020년 4월 8일자 한국 특허 출원 2020-0042803에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 옥소늄 이온계 촉매 및 알루미늄계 조촉매를 포함하는 촉매 조성물, 및 이를 이용한 이소부텐계 중합체의 제조방법에 관한 것이다.
폴리이소부텐은 분자량 범위에 따라 저분자량, 중분자량 및 고분자량 범위로 구분된다. 저분자량의 폴리이소부텐은 수평균 분자량 1만 이하 정도 범위로, 말단에 위치하는 탄소-탄소 이중결합의 함량에 따라 구분할 수 있는데, 상기 말단 탄소-탄소 이중결합 함량이 20% 이하인 통상의 폴리부텐(conventional PIB)과 고반응성 폴리부텐(high reactive polybutene, HR-PB)의 제품군이 있다. 상기 고반응성 폴리부텐은 말단의 비닐리덴 작용기(>80%)를 이용하여 기능기를 도입한 후 연료 첨가제나 엔진오일 첨가제로 사용될 수 있다.
부틸고무(이소부텐-이소프렌 고무, isobutene-isoprene rubber, IIR)는 이소부텐과 약 1 내지 6%의 이소프렌이 함유되어 있는 이소부텐-이소프렌 공중합체로서, 내화학성, 내습성, 전기절연성, 등이 우수하여 점착 조성물, 점착 시트 등의 용도로 이용된다. 또한, 부틸고무는 이소프렌의 이중결합에 추가적인 할로겐화 반응을 진행하여 다른 고무와 가교/컴파운딩시켜 사용되며, 기체 투과성이 없는 특징이 있어 타이어의 내부 튜브 및 내부 라이너 등에 널리 이용되고 있다.
폴리이소부텐, 부틸고무와 같은 이소부텐계 중합체의 제조를 위해 사용되는 합성 방법으로는 양이온 중합이 대표적이고, 촉매로서 BF3나 AlCl3와 같은 루이스 산 촉매가 일반적으로 사용된다. 루이스 산 촉매는 수분에 취약하여 물과 반응하게 되면 HCl 또는 HF와 같은 강산이 만들어지고 이는 제품에 섞여 품질 저하 문제를 발생시키기도 한다. 또한, 루이스 산 촉매의 강한 부식성으로 인해 공정 설계 시 내부식성을 고려한 높은 투자비 책정이 필요하다.
양이온 중합은 대부분 낮은 온도에서 이루어지고, 제조하고자 하는 부틸고무의 분자량에 따라 중합 온도를 -100℃ 부근에서 조심히 컨트롤해야 하는 어려움이 있다. 특히, 중분자 이상의 부틸고무 제품은 분자량을 높이기 위해 반응 온도를 극저온인 -100℃까지 내려 중합을 진행해야 하는데, 이를 조절하기 위해 갑비싼 에틸렌 냉동기를 설치해 사용해야 하며, 안전성 확보를 위해 여러대의 냉동기를 이중, 삼중으로 설계하여 투자비가 증가하게 되는 문제가 있다.
더욱이, 루이스 산 촉매를 사용한 후 퀜칭 작업에는 많은 양의 NaOH, KOH, NaNH4, KNH4와 같은 유기 염기가 사용되는데, 이러한 유기 염기는 루이스 산과 반응하여 Na(BF3OH), Na(AlCl3OH), K(BF3OH), K(AlCl3OH)와 같은 고독성 폐기물을 만들게 되고, 이를 세척할 경우 다량의 폐수가 발생된다.
상기와 같이 종래의 이소부텐계 중합체의 제조방법은 여러 측면의 문제점을 갖고 있었기에, 환경에 무해한 방법을 이용하여 효율적으로 이소부텐계 중합체를 제조하기 위한 방법의 개발이 여전히 필요한 실정이다.
[선행기술문헌]
[특허문헌]
JP 2000-191714 A
본 발명의 목적은 이소부텐계 중합체의 제조에 사용될 수 있는 신규한 촉매 조성물을 제공하는 것이다.
본 발명의 다른 목적은 상기 촉매 조성물을 이용한 이소부텐계 중합체의 제조방법을 제공하는 것이다.
상기 과제를 해결하기 위해, 본 발명은 하기 화학식 1로 표시되는 촉매 및 화학식 2로 표시되는 조촉매를 포함하는 촉매 조성물을 제공한다:
[화학식 1]
Figure PCTKR2021003908-appb-I000001
상기 화학식 1에서,
R은 탄소수 2 내지 12의 알킬기이고,
R1 내지 R4는 각각 독립적으로 할로겐기이고,
o, p, q 및 r은 각각 독립적으로 1 내지 5의 정수이고,
[화학식 2]
Figure PCTKR2021003908-appb-I000002
상기 화학식 2에서,
Ra는 탄소수 1 내지 20의 탄화수소기이고,
Z는 할로겐기이고,
m은 0 내지 3의 정수이다.
또한, 본 발명은 상기 촉매 조성물 존재 하에 이소부텐 단량체를 포함하는 단량체 조성물을 중합하는 단계;를 포함하는 이소부텐계 중합체의 제조방법을 제공한다.
본 발명의 촉매 조성물은 촉매 활성이 우수한 옥소늄 이온계 촉매와 알루미늄계 조촉매를 조합한 것이다. 상기 촉매 조성물을 이용할 경우, 극저온이 아닌 온도에서도 이소부텐 단량체를 활발하게 양이온 중합시키는 것이 가능하여, 우수한 효율로 이소부텐계 중합체를 제조할 수 있다.
또한, 본 발명에 따라 제조된 이소부텐계 중합체는 중량평균 분자량이 높고 분자량 분포가 좁은 우수한 물성을 가지게 된다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
촉매 조성물
본 발명의 촉매 조성물은 하기 화학식 1로 표시되는 촉매 및 화학식 2로 표시되는 조촉매를 포함하는 것을 특징으로 한다.
[화학식 1]
Figure PCTKR2021003908-appb-I000003
상기 화학식 1에서,
R은 탄소수 2 내지 12의 알킬기이고,
R1 내지 R4는 각각 독립적으로 할로겐기이고,
o, p, q 및 r은 각각 독립적으로 1 내지 5의 정수이고,
[화학식 2]
Figure PCTKR2021003908-appb-I000004
상기 화학식 2에서,
Ra는 탄소수 1 내지 20의 탄화수소기이고,
Z는 할로겐기이고,
m은 0 내지 3의 정수이다.
상기 화학식 1에서, R은 탄소수 2 내지 12의 알킬기이고, 구체적으로, 탄소수 2 내지 8의 알킬기, 탄소수 2 내지 6의 알킬기, 탄소수 2 내지 4의 알킬기, 바람직하게는 에틸기, 이소프로필기 또는 부틸기일 수 있다.
상기 화학식 1에서, R1 내지 R4는 각각 독립적으로 할로겐기이고, 예컨대, 각각 독립적으로 F 또는 Cl일 수 있고, 바람직하게 R1 내지 R4는 모두 F일 수 있다. 또한, 상기 o, p, q 및 r은 각각 독립적으로 1 내지 5의 정수, 3 내지 5의 정수, 구체적으로 4 또는 5일 수 있다. 가장 바람직하게는 상기 R1 내지 R4는 F이고 o, p, q 및 r은 5일 수 있다.
또한, 상기 화학식 1로 표시되는 화합물에 포함된 유기 보레이트인
Figure PCTKR2021003908-appb-I000005
는 구체적으로 테트라키스(펜타플루오로페닐)보레이트 및 그 유도체로 이루어진 군으로부터 선택되는 1종 이상일 수 있고, 바람직하게는 테트라키스(펜타플루오로페닐)보레이트일 수 있다.
본 발명의 촉매는, 전자 당김 현상이 강한 할로겐기 치환기를 1개 이상 함유하는 유기 보레이트를 음이온 부로 포함하고 있기 때문에 C-B 결합이 강하다. 따라서, 화학식 2로 표시되는 조촉매, 즉 알루미늄계 조촉매와 혼합하여도 결합이 유지되어 촉매 활성을 잃지 않고 양이온 중합에 사용되어 우수한 효율을 나타낼 수 있다.
반면, 음이온 부의 페닐기에 치환기가 없거나 알킬 치환기 등이 결합되어 있는 경우, 예컨대 페닐기에 트리플루오로메틸기가 결합되어 있는 경우, 본 발명의 화학식 2로 표시되는 조촉매와 조합되었을 때 부반응이 일어나 촉매가 분해되어 중합이 개시되지 못하는 등의 문제가 발생할 수 있다.
또한, 화학식 1에 해당하지 않는 촉매, 예컨대 루이스 산 촉매(예: BF3) 등을 사용할 경우, 반응 후 퀜칭 작업에는 NaOH, KOH, NaNH4, KNH4와 같은 유기 염기가 많은 양으로 사용되는데, 이러한 유기 염기는 루이스 산과 반응하여 Na(BF3OH), Na(AlCl3OH), K(BF3OH), K(AlCl3OH)와 같은 고독성 폐기물을 만들게 되고, 이를 세척할 경우 다량의 폐수가 발생된다.
예컨대, 상기 화학식 1로 표시되는 촉매는 하기 화학식 1-1 내지 화학식 1-3 중에서 선택되는 것일 수 있으나, 이에 제한되지 않는다.
[화학식 1-1]
Figure PCTKR2021003908-appb-I000006
[화학식 1-2]
Figure PCTKR2021003908-appb-I000007
[화학식 1-3]
Figure PCTKR2021003908-appb-I000008
본 발명의 촉매 조성물은 상기 화학식 1로 표시되는 촉매와 함께 화학식 2로 표시되는 조촉매를 포함한다. 여기서, 화학식 2로 표시되는 조촉매는 m 값에 따라 알루미늄트리할라이드, 알킬알루미늄디할라이드, 디알킬알루미늄할라이드 또는 트리알킬알루미늄을 정의하는 것일 수 있다.
[화학식 2]
Figure PCTKR2021003908-appb-I000009
상기 화학식 2에서,
Ra는 탄소수 1 내지 20의 탄화수소기이고,
Z는 할로겐기이고,
m은 0 내지 3의 정수이다.
상기 화학식 2에서, Ra는 각각 독립적으로 탄소수 1 내지 20의 탄화수소기이고, 구체적으로, 상기 Ra는 각각 독립적으로 탄소수 1 내지 12의 알킬기, 탄소수 3 내지 12의 사이클로알킬기 또는 탄소수 6 내지 12의 아릴기일 수 있고, 바람직하게는 탄소수 1 내지 6의 알킬기, 탄소수 1 내지 3의 알킬기, 예컨대 에틸기일 수 있다.
상기 화학식 2에서, Z는 각각 독립적으로 할로겐기이고, 구체적으로 Br 또는 Cl, 바람직하게는 Cl일 수 있고, Al에 결합한 Ra의 개수를 의미하는 상기 m은 0 내지 3의 정수일 수 있다.
본 발명에서, 상기 화학식 2로 표시되는 조촉매는 알루미늄트리클로라이드, 메틸알루미늄디클로라이드, 에틸알루미늄디클로라이드, 이소프로필알루미늄디클로라이드, 에틸알루미늄디브로마이드, 디메틸알루미늄클로라이드, 디에틸알루미늄클로라이드, 디이소프로필알루미늄클로라이드, 디이소부틸알루미늄클로라이드, 디메틸알루미늄브로마이드, 트리메틸알루미늄, 트리에틸알루미늄, 트리-n-프로필알루미늄, 트리이소프로필알루미늄, 트리-n-부틸알루미늄, 트리이소부틸알루미늄, 트리-t-부틸알루미늄, 트리펜틸알루미늄, 트리헥실알루미늄, 트리사이클로헥실알루미늄, 트리옥틸알루미늄 및 트리-2-에틸헥실알루미늄으로 이루어진 군에서 선택된 1종 이상일 수 있고, 바람직하게는 에틸알루미늄디클로라이드, 디에틸알루미늄클로라이드 또는 트리에틸알루미늄일 수 있으나, 이에 제한되지 않는다.
본 발명의 촉매 조성물은 양이온 중합으로 이소부텐계 중합체의 제조에 사용하기에 적합한 것으로서, 양이온 중합 시에는 중합 반응 중 형성되는 양이온 부위를 안정화시키는 것이 중요한데, 화학식 2로 표시되는 조촉매는 강한 루이스 산으로 촉매 구조 내 유기 보레이트와 이온쌍을 형성할 수 있고 이를 통해 양이온 부위를 효과적으로 안정화시키는 역할을 하여 고분자량의 이소부텐계 중합체를 제조하는 것이 가능하다.
본 발명에서 사용한 촉매와 조촉매는 반응하여 알루미늄 양이온을 형성하게 되는데, 예컨대 촉매로서 [H(C2H5O)2][B(C6F5)4]을 사용하고 조촉매로서 (C2H5)2Al(Cl)을 사용한다면 [Al(C2H5)Cl]+ 또는 [AlCl]2+와 같이 루이스 산 성질이 강한 알루미늄 양이온이 형성되며, 이는 이소부텐 단량체의 양이온 중합을 위한 중합 개시제로서 적합하게 사용될 수 있다. 반면, 알루미녹산과 같은 알루미늄 산화물, 아연(Zn), 철(Fe) 등의 원소를 포함하는 금속 화합물 등은 반응성이 낮아 촉매와의 반응으로 금속 양이온을 형성하기 어렵기 때문에, 양이온 중합 반응의 조촉매로 사용되기에 부적합하다. 이에, 본 발명에서는 높은 전환율로 양이온 중합을 수행하여 이소부텐계 중합체를 효율적으로 제조할 수 있는 적절한 조합으로서 화학식 1로 표시되는 촉매와 화학식 2로 표시되는 조촉매를 사용한 것이다.
특히, 이소부텐 단량체와 이소프렌 단량체의 공중합시에는, 이소부텐 단량체를 단독 중합하는 것과 달리 이소프렌 단량체가 중합 중인 양이온 사슬에 결합되어 공명구조를 이룰 수 있어 양이온의 추가 반응을 저하시켜 추가 중합이 매우 느리게 진행되거나 종결(termination) 반응이 일어날 우려가 있으며, 이를 고려하여 조기 종결이 일어나지 않도록 높은 반응성을 갖는 촉매와 조촉매를 선택하여 사용하는 것이 더욱 중요하다.
본 발명에서, 상기 화학식 1로 표시되는 촉매 및 화학식 2로 표시되는 조촉매의 중량비는 1:0.1 내지 1:50일 수 있다. 구체적으로, 화학식 1로 표시되는 촉매 1 중량부 기준, 화학식 2로 표시되는 조촉매는 0.1 중량부 이상, 0.2 중량부 이상, 0.5 중량부 이상, 50 중량부 이하, 30 중량부 이하, 10 중량부 이하, 8 중량부 이하, 5 중량부 이하, 4 중량부 이하일 수 있다. 예컨대, 화학식 1로 표시되는 촉매 및 화학식 2로 표시되는 조촉매의 중량비는 1:0.2 내지 1:30, 1:0.3 내지 1:8, 1:0.5 내지 1:4일 수 있다.
상기 범위를 충족할 때, 촉매와 조촉매의 복합체(complex) 형성을 통한 촉매 활성화가 충분히 진행되어 양이온 중합이 활발하게 일어나고, 미반응 조촉매 등의 미반응 물질이 남는 것을 방지하여 공정 비용을 절감할 수 있다.
이소부텐계 중합체의 제조방법
본 발명의 이소부텐계 중합체의 제조방법은, 상기 촉매 조성물 존재 하에 이소부텐 단량체를 포함하는 단량체 조성물을 중합하는 단계;를 포함하는 것을 특징으로 한다.
본 발명에서, 상기 단량체 조성물은 단량체로서 이소부텐 단량체 또는 이의 유도체만을 포함할 수 있고, 이소프렌 단량체, 스티렌 단량체, 알파-메틸 스티렌 단량체, 테트라하이드로퓨란 단량체, 부타디엔 단량체, 또는 이들의 조합을 더 포함할 수 있다.
상기 단량체 조성물의 구성에 따라, 본 발명에서 상기 이소부텐계 중합체는 이소부텐 단량체 또는 이의 유도체가 단독으로 중합된 폴리이소부텐, 이소부텐 단량체 및 이소프렌 단량체가 중합된 이소부텐-이소프렌 공중합체일 수 있다.
상기 이소부텐계 중합체가 이소부텐-이소프렌 공중합체일 때, 상기 이소프렌의 함량은 이소부텐-이소프렌 공중합체 기준 1 내지 10 몰%일 수 있고, 1 내지 8 몰%, 1 내지 5 몰%일 수 있다.
본 발명에서, 상기 단량체 조성물은 탄화수소 용매를 포함하는 것일 수 있다. 즉, 상기 단량체 조성물의 중합은 탄화수소 용매 하에서 수행되는 것일 수 있다.
구체적으로, 본 발명의 단량체 조성물은 촉매 및 조촉매와 함께 탄화수소 용매를 포함하며, 상기 탄화수소 용매는 비극성 탄화수소 용매와 할로겐화 탄화수소 용매를 혼합하여 사용할 수 있고, 또는 비극성 탄화수소 용매만을 단독으로 사용할 수 있다.
상기 비극성 탄화수소 용매는 지방족 탄화수소 용매 또는 방향족 탄화수소 용매일 수 있다. 예컨대, 상기 지방족 탄화수소 용매는 부탄, 펜탄, 네오펜탄, 헥산, 사이클로헥산, 메틸사이클로헥산, 헵탄 및 옥탄으로 이루어진 군에서 선택된 1종 이상일 수 있고, 바람직하게는 헥산일 수 있으나 이에 제한되지 않는다. 또한, 상기 방향족 탄화수소 용매는 벤젠, 톨루엔, 자일렌 및 에틸 벤젠으로 이루어진 군에서 선택된 1종 이상일 수 있고, 바람직하게는 톨루엔일 수 있으나 이에 제한되지 않는다.
상기 할로겐화 탄화수소 용매는 클로로메탄, 디클로로메탄, 트리클로로메탄, 1-클로로부탄 및 클로로벤젠으로 이루어진 군으로부터 선택되는 1종 이상일 수 있으나, 이에 제한되지 않는다.
상기 탄화수소 용매에 대하여 촉매의 용해도가 우수하고 이소부텐계 중합체의 용해도는 낮을 경우, 초기 반응 속도가 우수하여 중합 전환율이 높게 나타나는 반면 생성되는 이소부텐계 중합체에서는 사슬 이동 반응이 진행되어 상대적으로 분자량이 작은 이소부텐계 중합체가 제조될 수 있다. 반면, 상대적으로 탄화수소 용매에 대하여 촉매의 용해도가 낮고 이소부텐계 중합체의 용해도가 우수할 경우, 중합 전환율은 낮아지지만 사슬 성장이 원활하게 진행되어 높은 분자량의 이소부텐계 중합체를 제조할 수 있다. 이를 고려하여, 원하는 정도의 분자량과 전환율을 충족시키는 범위 내에서 적절한 탄화수소 용매를 선택하여 사용할 수 있다.
본 발명에서 비극성 탄화수소 용매 및 할로겐화 탄화수소 용매를 혼합하여 용매로서 사용할 경우, 혼합 비율은 100:1 내지 1:2의 부피비일 수 있고, 구체적으로는 100:1 내지 1:1의 부피비일 수 있으나, 이에 제한되지 않는다.
상기 단량체 조성물이 탄화수소 용매를 포함할 경우, 이소부텐 단량체는 단량체 조성물 기준 10 내지 60 중량%일 수 있고, 구체적으로 15 내지 50 중량%, 20 내지 40 중량%일 수 있다. 이소부텐 단량체의 농도가 상기 범위일 경우 효율적으로 양이온 중합이 진행되고 높은 전환율이 달성될 수 있다.
상기 탄화수소 용매는 촉매 조성물을 이루는 탄화수소 용매와 동일하거나 상이한 것을 사용할 수 있다.
본 발명에서, 상기 화학식 1로 표시되는 촉매는 이소부텐 단량체 100 중량부 기준 0.005 내지 0.5 중량부일 수 있고, 구체적으로 0.005 중량부 이상, 0.01 중량부 이상, 0.02 중량부 이상, 0.5 중량부 이하, 0.4 중량부 이하, 0.3 중량부 이하, 0.2 중량부 이하일 수 있다.
상기 범위에서 단량체 대비 촉매량이 충분하여 공중합 반응이 원활하게 진행되면서도 경제성을 취할 수 있다.
본 발명에서, 상기 화학식 2로 표시되는 조촉매는 이소부텐 단량체 100 중량부 기준 0.005 내지 0.5 중량부일 수 있고, 구체적으로 0.005 중량부 이상, 0.01 중량부 이상, 0.02 중량부 이상, 0.5 중량부 이하, 0.4 중량부 이하, 0.3 중량부 이하, 0.2 중량부 이하일 수 있다.
상기 범위에서 조촉매가 사용될 경우 조촉매의 적절한 사용 효과가 구현되어 이소부텐계 중합체를 우수한 효율로 제조할 수 있으며, 과량 첨가할 경우 최종 중합체 내 잔류 부산물의 함량 증가에 따른 공정 비용의 증가를 야기할 우려가 있어 상기 범위 내에서 조촉매의 적절한 함량을 제어하여 사용하는 것이 바람직하다.
본 발명에서, 상기 중합은 -50 내지 -10℃의 온도에서 수행될 수 있고, 본 발명의 목적과 같이 고분자량의 이소부텐계 중합체를 효율적으로 제조하기 위해, 구체적으로 -50℃ 이상, -45℃ 이상, -10℃ 이하, -15℃ 이하의 온도에서 수행될 수 있다.
상기 범위에서 촉매 활성이 우수하여 양이온 중합이 활발하게 진행되면서도 사슬 이동(chain transfer)에 의해 분자량이 낮은 이소부텐계 중합체가 제조되는 것을 방지할 수 있다.
또한, 상기 중합은 전술한 온도 범위에서 10분 내지 3시간, 구체적으로 10분 이상, 30분 이상, 40분 이상, 3시간 이하, 2시간 이하, 1시간 이하 동안 수행될 수 있다.
상기 범위에서 양이온 중합이 충분히 진행되면서도, 과반응으로 인해 이소부텐계 중합체의 분자량이 낮아지거나 분자량 분포가 넓어지는 것을 방지할 수 있어 우수한 물성의 이소부텐계 중합체를 효율적으로 제조할 수 있다.
본 발명에서는 화학식 1로 표시되는 촉매 및 화학식 2로 표시되는 조촉매를 포함하는 촉매 조성물을 이용함으로써, 높은 분자량과 좁은 분자량 분포를 가지는 이소부텐계 중합체를 제조할 수 있다.
구체적으로, 본 발명의 제조방법에 따라 중량평균 분자량은 100,000 내지 1,000,000 g/mol인 이소부텐계 중합체를 제조할 수 있다. 구체적으로, 본 발명에 따라 제조된 이소부텐계 중합체의 중량평균 분자량은 100,000 g/mol 이상, 120,000 g/mol 이상, 130,000 g/mol 이상, 1000,000 g/mol 이하, 800,000 g/mol 이하, 600,000 g/mol 이하, 550,000 g/mol 이하일 수 있다. 또한, 상기 이소부텐계 중합체의 수평균 분자량은 30,000 g/mol 이상일 수 있고, 구체적으로는 50,000 g/mol 이상, 또는 70,000 g/mol 이상, 500,000 g/mol 이하, 400,000 g/mol 이하, 300,000 g/mol 이하일 수 있다.
또한, 상기 이소부텐계 중합체의 분자량 분포는 1.5 내지 3.0, 구체적으로 1.5 이상, 3.0 이하, 2.7 이하, 2.6 이하, 2.3 이하일 수 있다.
본 발명의 제조방법을 통해 상기 범위 내 이소부텐계 중합체의 물성을 다양하게 조절하여 제조하는 것이 가능하며, 특히 조촉매의 종류나 함량을 조절함으로써 원하는 목적에 따라 분자량과 분자량 분포를 제어하는 것이 용이하다.
상기 중량평균 분자량과 수평균 분자량은 겔 투과형 크로마토그래피(GPC; gel permeation chromatography)로 분석되는 폴리스티렌 환산 분자량이며, 상기 분자량 분포는 (중량평균 분자량)/(수평균 분자량)의 비로부터 계산된 것이다.
본 발명의 이소부텐계 중합체의 제조방법은 단량체를 양이온 중합하는 단계 이후에 촉매를 제거하는 단계를 더 수행할 수 있다. 본 발명의 촉매는 물리적으로 단순 여과하는 단계를 통해 효율적으로 제거할 수 있기 때문에, 종래 기술의 루이스 산 촉매에 비해 사용 및 제거가 훨씬 용이하다.
구체적으로, 이소부텐계 중합체의 중합 후, 유기용매를 제거하여 유기용매를 올리고머 또는 폴리머의 40 중량% 이하, 20 중량% 이하, 또는 5 중량% 이하로 조절할 수 있다. 이어서, 유동성이 있는 중합체의 경우 80 메쉬 이상, 100 메쉬 이상, 또는 200 메쉬 이상의 유리 필터를 사용하여 불용성 물질을 여과해 주는 단계를 수행한다. 또는 실리카, 셀라이트 또는 제올라이트 필터를 사용하여 유동성이 있는 중합체를 통과시킴으로써 촉매를 제거할 수 있다.
한편, 유동성이 적은 중합체의 경우 선형 알킬 용매, 예컨대 펜탄, 시클로펜탄, 헥산, 시클로헥산, 헵탄, 옥탄, 및 에테르 용매, 예컨대 디에틸에테르, 페트롤리움에테르로 이루어진 군으로부터 선택되는 1종 이상을 사용하여 유동성을 부여한 다음, 상기 유리 필터, 실리카, 셀라이트 또는 제올라이트 필터를 통해 여과해 주는 단계를 수행할 수 있다.
통상적으로, 생성된 이소부텐계 중합체를 펜탄, 시클로펜탄, 헥산, 시클로헥산, 헵탄, 옥탄, 디에틸에테르 또는 페트롤리움에테르 등의 유기용매에 용해시킨 후 수세하여 촉매를 제거한다. 그러나, 본 발명은 상기와 같은 단순 여과 단계를 통해 화학식 1로 표시되는 촉매를 효율적으로 제거할 수 있으므로, 별도의 수세 단계를 수행하지 않을 수 있다.
또한, 본 발명의 제조방법은 상기 여과하는 단계 후에, 잔류 용매를 건조시키는 단계를 더 포함할 수 있다. 예로서, 건조온도는 30 내지 200℃, 또는 40 내지 150℃일 수 있으며, 진공도는 300 torr 이하, 200 torr 이하, 또는 100 torr 이하일 수 있다. 이로써 원하는 이소부텐계 중합체를 효율적으로 수득할 수 있다. 또한, 건조 방식은 특별히 제한되지 않으며 통상의 방식에 의할 수 있다.
또한, 본 발명의 이소부텐계 중합체의 제조방법은 상기 중합하는 단계 후 상기 여과 전에 할로겐화 탄화수소 용매를 건조시키는 단계를 별도로 수행하거나, 수행하지 않을 수 있다. 건조 단계를 수행하는 경우 건조 조건은 상기한 바와 마찬가지로 수행될 수 있으며 특별히 제한되지 않는다.
할로겐화 탄화수소 용매를 건조시키는 단계를 별도로 수행하는 경우, 보다 고순도로 이소부텐계 중합체를 수득할 수 있는 이점이 있다. 다만, 본 발명에 따르면 상기한 바와 같은 단순 여과를 통해 용이하게 촉매를 제거할 수 있으므로, 상기 중합하는 단계 이후 상기 여과 전에 할로겐화 탄화수소 용매를 건조시키는 별도의 단계를 생략할 수 있어 공정이 단순화되는 이점이 있다.
실시예
이하, 실시예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것으로 이들만으로 본 발명의 범위가 한정되는 것은 아니다.
제조예 및 비교 제조예: 촉매의 제조
제조예 1
[화학식 1-1]
Figure PCTKR2021003908-appb-I000010
글로브 박스에서 100 mg의 [H(Et2O)2][B(C6F5)4](Ashai Glass Co.)를 마그네틱바와 함께 바이알에 넣고 디클로로메탄 2 mL에 용해시킨 다음, 3 당량의 무수 디부틸 에테르(Aldrich 구매)를 투입하고 30분 동안 진공 조건에서 교반하였다. 교반 후, 진공 조건에서 모든 용매를 제거하였고, 수득한 흰색 파우더를 무수 헥산을 이용하여 5 mL × 3회 세척한 후 다시 진공 조건에서 건조시켜 촉매를 수득하였다.
제조예 2
[화학식 1-3]
Figure PCTKR2021003908-appb-I000011
아르곤 조건의 글로브 박스에서 [Li(Et2O)n][B(C6F5)4](TCI社) 1 g을 라운드 플라스크에 넣고 무수 디에틸 에테르 10 mL를 투입하였다. 준비된 용액을 슈렝크 라인(Schlenk line)에 연결하여 아르곤 조건으로 설정하였다. 아세토나이트릴과 드라이아이스를 이용하여 쿨링 배스를 만들고, -40℃에서 준비된 용액을 교반하였다. 교반 중 용액에 디에틸 에테르 중 1 M HCl(Sigma-Aldrich) 5 당량을 실린지를 통해 주입하였다. -40℃에서 30분 동안 더 교반시킨 다음, 상온으로 온도를 천천히 승온시켰다.
글로브 박스 내에서 상기 용액에 생성된 염을 필터로 제거하고, 투명한 용액을 수집하여 진공 건조하여 용매를 제거하였다. 용매 제거 후 무수 헥산 5 mL × 3회 세척한 후 다시 진공 건조하여 원하는 생성물을 수득하였다.
제조예 3
[화학식 1-2]
Figure PCTKR2021003908-appb-I000012
무수 디부틸 에테르 대신 무수 디이소프로필 에테르를 사용한 것을 제외하고는, 상기 제조예 1과 동일한 방법으로 촉매를 제조하였다.
비교 제조예 1
공지된 방법에 따라 하기 화학식으로 표시되는 Brookhart's acid를 제조하였다.
Figure PCTKR2021003908-appb-I000013
구체적으로, 디에틸 에테르 중 NaBAr'4와 염소를 반응시키고, 소듐 테트라키스[3,5-비스(트리플루오로메틸)페닐]보레이트는 Sigma-Aldrich에서 구매하여 사용하였다.
NaBAr'4 + HCl + 2Et2O → [H(OEt2)2][BAr'4] + NaCl
비교 제조예 2
[Et3O][BF4](Sigma-Aldrich)를 구매하여 준비하였다.
비교 제조예 3
[BF3][OEt2](Sigma-Aldrich)를 구매하여 준비하였다.
실시예 및 비교예: 이소부텐계 중합체의 제조
(1) 폴리이소부텐의 제조
실시예 1
컨벡션 오븐에서 잘 건조된 앤드류 유리 플라스크에 마그네틱 바를 넣어 준 다음, 진공을 걸어 1시간 정도 유지시켜 주었다. 아세톤-드라이 아이스를 이용하여 아이스 배스를 만든 다음 앤드류 유리 플라스크를 냉각시켜 준 다음, 이소부텐 라인을 연결하고 적정량을 응축시켜 주었다. 앤드류 유리 플라스크에 들어간 이소부텐 단량체의 양을 확인하고, 건조 톨루엔을 넣고 이소부텐 단량체의 농도를 단량체 조성물 기준 20 중량%로 맞춰주었다. 이렇게 준비된 앤드류 유리 플라스크의 온도를 -20℃로 맞춰주었다.
상기 제조예 1의 촉매와 조촉매인 Et2AlCl은 글로브 박스에서 준비하여 각각 이소부텐 단량체 100 중량부 기준으로 0.05 중량부가 되도록 톨루엔에 녹인 후 실린지를 이용하여 주입하였다. 주입 후 45분이 지난 후, 앤드류 유리 플라스크를 열어 남아있는 이소부텐 단량체를 제거한 후, 메탄올로 반응을 퀜칭하였다. 남아있는 용매를 회전증발기를 통해 제거한 후, 남아있는 중합체를 진공 하에 무게 변화가 없을 때까지 완전히 건조시켰다.
실시예 2 내지 10, 비교예 1 내지 6
하기 표 1과 같이 반응 조건을 변경한 것을 제외하고는 실시예 1과 동일하게 폴리이소부텐을 제조하였다.
이소부텐 농도(중량%) 촉매 조촉매 반응 용매 중합 온도(℃)
종류 함량(100 중량부 기준) 종류 함량(IB 100 중량부 기준)
실시예 1 20 제조예 1 0.05 Et2AlCl 0.05 톨루엔 -20
실시예 2 20 제조예 1 0.05 Et2AlCl 0.05 톨루엔 -40
실시예 3 40 제조예 1 0.05 Et2AlCl 0.05 톨루엔 -20
실시예 4 40 제조예 1 0.05 Et2AlCl 0.05 톨루엔 -40
실시예 5 40 제조예 1 0.05 Et3Al 0.05 톨루엔 -40
실시예 6 20 제조예 1 0.05 Et2AlCl 0.05 헥산 -40
실시예 7 40 제조예 1 0.05 Et2AlCl 0.05 헥산 -40
실시예 8 50 제조예 1 0.05 Et2AlCl 0.05 헥산 -40
실시예 9 40 제조예 2 0.05 Et2AlCl 0.05 헥산 -40
실시예 10 40 제조예 3 0.05 Et2AlCl 0.05 헥산 -40
비교예 1 20 제조예 1 0.01 - - 톨루엔 -40
비교예 2 40 제조예 1 0.05 MAO 0.05 톨루엔 -40
비교예 3 20 - - Et2AlCl 0.05 톨루엔 -40
비교예 4 20 AlCl3 0.05 Et2AlCl 0.05 톨루엔 -40
비교예 5 40 비교 제조예 1 0.05 Et2AlCl 0.05 헥산 -40
비교예 6 40 비교 제조예 2 0.05 Et2AlCl 0.05 헥산 -40
(2) 이소부텐-이소프렌 공중합체의 제조
실시예 11
컨벡션 오븐에서 잘 건조된 앤드류 유리 플라스크에 마그네틱 바를 넣어준 다음, 진공 상태로 1시간 정도 유지시켰다. 저온 반응기를 이용하여 앤드류 유리 플라스크를 냉각시켜준 다음, 이소부텐 라인을 연결하고 이소부텐 단량체 20 g을 투입하였다. 이소프렌 단량체는 실린지를 이용하여 이소부텐 단량체 대비 2 내지 5 중량%를 투입하였다. 앤드류 유리 플라스크에 반응에 사용하는 용매를 넣어 이소부텐 단량체의 농도를 단량체 조성물 기준 40 중량%로 맞춰주었다. 이소부텐 단량체의 농도를 맞춰주었다. 이렇게 준비한 앤드류 유리 플라스크를 반응온도인 -40℃로 맞춰주었다. 사용한 촉매와 조촉매는 글로브 박스에서 준비하여 소량의 디클로로메탄에 녹여 실린지를 이용하여 주입하였다. 주입 후 45분이 지난 후, 앤드류 유리 플라스크를 열어 남아있는 이소부텐 단량체를 제거한 후, 메탄올로 반응을 퀜칭시켰다. 이 때 얻어진 이소부텐-이소프렌 공중합체를 진공 하에 무게 변화가 없을 때까지 완전히 건조하였다.
실시예 12 내지 17, 비교예 7 내지 15
하기 표 1과 같이 중합 조건을 변경한 것을 제외하고는, 상기 실시예 1과 동일하게 이소부텐-이소프렌 공중합체를 제조하였다.
이소부텐 농도(중량%) 촉매 조촉매
종류 함량(100 중량부 기준) 종류 함량(100 중량부 기준)
실시예 11 40 제조예 1 0.100 (Et)2AlCl 0.05
실시예 12 40 제조예 1 0.050 (Et)2AlCl 0.10
실시예 13 40 제조예 1 0.025 (Et)2AlCl 0.10
실시예 14 40 제조예 1 0.025 (Et)2AlCl 0.20
실시예 15 40 제조예 1 0.025 (Et)Al(Cl)2 0.05
실시예 16 40 제조예 1 0.025 (Et)Al(Cl)2 0.03
실시예 17 40 제조예 1 0.025 AlCl3 0.10
비교예 7 40 - - (Et)2AlCl 0.05
비교예 8 40 비교 제조예 1 0.025 (Et)2AlCl 0.10
비교예 9 40 비교 제조예 1 0.025 (Et)2AlCl 0.10
비교예 10 40 제조예 1 0.025 - -
비교예 11 40 제조예 1 0.025 MMAO 0.10
비교예 12 40 제조예 1 0.025 Al(O-secBu)3 0.10
비교예 13 40 제조예 1 0.025 ZnCl2 0.10
비교예 14 40 제조예 1 0.025 FeCl3 0.10
비교예 15 40 비교 제조예 3 0.025 - -
실험예: 이소부텐계 중합체의 분석
(1) 중합 전환율(%)
건조한 이소부텐계 중합체의 무게를 측정하여 중합 전환율을 계산하였다.
(2) 중량평균 분자량(Mw), 수평균 분자량(Mn), 피크 분자량(Mp), 분자량 분포(MWD)
하기 겔 투과 크로마토그래피(GPC) 분석 조건 하에 측정하고, 중량평균 분자량(Mw), 수평균 분자량(Mn)을 측정하고, (중량평균 분자량)/(수평균 분자량) 값으로 분자량 분포를 계산하였다.
- 컬럼: PL MiniMixed B × 2
- 용매: THF
- 유속: 0.3 mL/min
- 시료농도: 2.0 mg/mL
- 주입량: 10 μL
- 컬럼온도: 40℃
- Detector: RI detector(Agilent社)
- Standard: 폴리스티렌(3차 함수로 보정)
- Data processing: ChemStation
중합 전환율(%) Mw Mn MWD
실시예 1 >99 165,119 75,054 2.2
실시예 2 >99 306,398 165,159 1.9
실시예 3 >99 210,358 105,735 2.0
실시예 4 >99 429,595 198,131 2.2
실시예 5 >99 139,934 86,207 1.6
실시예 6 65 403,953 220,877 1.8
실시예 7 78 428,695 194,242 2.2
실시예 8 73 431,061 227,838 1.9
실시예 9 80 510,873 228,427 2.2
실시예 10 85 403,953 220,877 1.8
비교예 1 >99 23,828 9,694 2.5
비교예 2 56 292,024 76,655 3.8
비교예 3 - - - -
비교예 4 - - - -
비교예 5 - - - -
비교예 6 30 366,295 198,098 1.9
중합 전환율(%) 이소프렌(mol%) Mn Mw Mp MWD
실시예 11 60 4.9 109,231 295,648 138,833 2.71
실시예 12 >90 4.2 110,945 265,957 111,811 2.40
실시예 13 70 1.8 260,600 410,252 349,919 1.57
실시예 14 75 1.9 161,502 315,980 191,531 1.96
실시예 15 78 2.0 173,949 322,954 230,034 1.86
실시예 16 65 1.8 87,506 186,678 131,393 2.13
실시예 17 >90 2.0 80,137 159,715 116,329 1.99
비교예 7 - - - - - -
비교예 8 - - - - - -
비교예 9 - - - - - -
비교예 10 <3 1.8 5,431 26,238 24,784 4.83
비교예 11 16 1.5 22,893 42,265 41,415 1.85
비교예 12 - - - - - -
비교예 13 - - - - - -
비교예 14 - - - - - -
비교예 15 - - - - - -
상기 표에 기재한 바와 같이, 본 발명의 촉매 조성물을 이용하여 이소부텐계 중합체를 제조한 실시예들의 경우, 높은 중합 전환율을 나타내면서 고분자량의 이소부텐계 중합체를 제조할 수 있었다.
구체적으로, 폴리이소부텐의 제조 결과를 살펴보면 다음과 같다. 조촉매를 사용하지 않은 비교예 1의 경우 폴리이소부텐의 분자량이 현저히 낮았다. 화학식 2에 해당하지 않은 알루미녹산을 조촉매로 사용한 비교예 2는 중합 전환율이 낮았고, 폴리이소부텐의 분자량 분포도 넓어져 물성 저하가 발생하였다.
또한, 화학식 1로 표시되는 촉매를 사용하지 않은 비교예 3 및 4에서는 중합이 진행되지 않았다. 비교 제조예 1을 촉매로 사용한 비교예 5에서는 중합이 진행되지 않아 폴리이소부텐을 제조할 수 없었고, 비교 제조예 2을 촉매로 사용한 비교예 6에서는 중합 전환율이 30% 수준으로 낮게 나타났다.
한편, 이소부텐-이소프렌 공중합체의 제조 결과를 살펴보면 다음과 같다. 비교예 7과 같이 화학식 1의 촉매를 사용하지 않은 경우 양이온 중합이 진행되지 않아서 공중합체를 수득할 수 없었고, 비교예 10와 같이 조촉매를 사용하지 않은 경우 중합 전환율이 3% 미만으로 매우 낮게 나타나 사용한 반응물 대비 공중합체를 제대로 수득할 수 없었으며, 제조된 공중합체 또한 수평균 분자량이 매우 낮고 분자량 분포는 높은 것으로 나타났다.
비교예 8 및 9은 화학식 1의 촉매 대신 비교 제조예 1의 촉매를 사용한 것인데, 이 또한 양이온 중합이 일어나지 않아 공중합체를 수득하지 못하였다.
한편, 화학식 2로 표시되는 조촉매가 아닌 알루미녹산계 조촉매를 사용한 비교예 11의 경우에도, 중합 전환율이 낮게 나타나고 공중합체의 수평균 분자량 또한 실시예 대비 매우 낮은 값인 것을 확인하였다. 알루미늄 산화물을 조촉매로 사용한 비교예 12, Zn계 또는 Fe계 화합물을 조촉매로 사용한 비교예 13, 14에서는 양이온 중합이 제대로 진행되지 못하여 공중합체를 수득할 수 없었다. 화학식 1에 해당하지 않은 촉매를 사용한 비교예 15에서도 마찬가지로 공중합체를 수득할 수 없었다.
이와 같이, 본 발명에 따라 화학식 1로 표시되는 촉매와 화학식 2로 표시되는 조촉매를 사용함으로써, 고분자량의 이소부텐계 중합체를 우수한 전환율로 수득할 수 있음을 확인하였다.

Claims (15)

  1. 하기 화학식 1로 표시되는 촉매 및 화학식 2로 표시되는 조촉매를 포함하는 촉매 조성물:
    [화학식 1]
    Figure PCTKR2021003908-appb-I000014
    상기 화학식 1에서,
    R은 탄소수 2 내지 12의 알킬기이고,
    R1 내지 R4는 각각 독립적으로 할로겐기이고,
    o, p, q 및 r은 각각 독립적으로 1 내지 5의 정수이고,
    [화학식 2]
    Figure PCTKR2021003908-appb-I000015
    상기 화학식 2에서,
    Ra는 탄소수 1 내지 20의 탄화수소기이고,
    Z는 할로겐기이고,
    m은 0 내지 3의 정수이다.
  2. 청구항 1에 있어서,
    상기 화학식 1에서,
    R은 탄소수 2 내지 8의 알킬기이고,
    R1 내지 R4는 각각 독립적으로 F 또는 Cl이고,
    o, p, q 및 r은 각각 독립적으로 3 내지 5의 정수인 촉매 조성물.
  3. 청구항 1에 있어서,
    상기 화학식 1에서,
    R은 탄소수 2 내지 6의 알킬기이고,
    R1 내지 R4는 F이고,
    o, p, q 및 r은 각각 독립적으로 4 또는 5의 정수인 촉매 조성물.
  4. 청구항 1에 있어서,
    상기 화학식 2에서,
    Ra는 각각 독립적으로 탄소수 1 내지 12의 알킬기, 탄소수 3 내지 12의 사이클로알킬기 또는 탄소수 6 내지 12의 아릴기이고,
    Z는 Br 또는 Cl이고,
    m은 0 내지 3의 정수인 촉매 조성물.
  5. 청구항 1에 있어서,
    상기 화학식 2에서,
    Ra는 각각 독립적으로 탄소수 1 내지 6의 알킬기이고,
    Z는 Cl이고,
    m은 0 내지 3의 정수인 촉매 조성물.
  6. 청구항 1에 있어서,
    상기 화학식 2로 표시되는 조촉매는 알루미늄트리클로라이드, 메틸알루미늄디클로라이드, 에틸알루미늄디클로라이드, 이소프로필알루미늄디클로라이드, 에틸알루미늄디브로마이드, 디메틸알루미늄클로라이드, 디에틸알루미늄클로라이드, 디이소프로필알루미늄클로라이드, 디이소부틸알루미늄클로라이드, 디메틸알루미늄브로마이드, 트리메틸알루미늄, 트리에틸알루미늄, 트리-n-프로필알루미늄, 트리이소프로필알루미늄, 트리-n-부틸알루미늄, 트리이소부틸알루미늄, 트리-t-부틸알루미늄, 트리펜틸알루미늄, 트리헥실알루미늄, 트리사이클로헥실알루미늄, 트리옥틸알루미늄 및 트리-2-에틸헥실알루미늄으로 이루어진 군에서 선택된 1종 이상인 촉매 조성물.
  7. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 촉매 및 화학식 2로 표시되는 조촉매의 중량비는 1:0.1 내지 1:50인 촉매 조성물.
  8. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 촉매에 포함된 유기 보레이트는 테트라키스(펜타플루오로페닐)보레이트인 촉매 조성물.
  9. 청구항 1의 촉매 조성물 존재 하에, 이소부텐 단량체를 포함하는 단량체 조성물을 중합하는 단계;를 포함하는 이소부텐계 중합체의 제조방법.
  10. 청구항 9에 있어서,
    상기 화학식 1로 표시되는 촉매의 함량은 이소부텐 단량체 100 중량부 기준 0.005 내지 0.5 중량부인 이소부텐계 중합체의 제조방법.
  11. 청구항 9에 있어서,
    상기 화학식 2로 표시되는 조촉매의 함량은 이소부텐 단량체 100 중량부 기준 0.005 내지 0.5 중량부인 이소부텐계 중합체의 제조방법.
  12. 청구항 9에 있어서,
    상기 중합은 -50 내지 -10℃의 온도에서 수행되는 이소부텐계 중합체의 제조방법.
  13. 청구항 9에 있어서,
    상기 중합은 10분 내지 3시간 동안 수행되는 이소부텐계 중합체의 제조방법.
  14. 청구항 9에 있어서,
    상기 이소부텐계 중합체는 폴리이소부텐인 이소부텐계 중합체의 제조방법.
  15. 청구항 9에 있어서,
    상기 이소부텐계 중합체는 이소부텐-이소프렌 공중합체인 이소부텐계 중합체의 제조방법.
PCT/KR2021/003908 2020-04-08 2021-03-30 촉매 조성물 및 이를 이용한 이소부텐계 중합체의 제조방법 WO2021206345A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/630,358 US11718632B2 (en) 2020-04-08 2021-03-30 Catalyst composition and method for preparing isobutene-based oligomer using the same
CN202180004714.8A CN114174353B (zh) 2020-04-08 2021-03-30 催化剂组合物和使用该催化剂组合物制备异丁烯类低聚物的方法
JP2022503969A JP7229420B2 (ja) 2020-04-08 2021-03-30 触媒組成物及びこれを用いたイソブテン系重合体の製造方法
EP21783712.9A EP3988586B1 (en) 2020-04-08 2021-03-30 Catalyst composition and method for preparing isobutene-based polymer using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200042803 2020-04-08
KR10-2020-0042803 2020-04-08

Publications (1)

Publication Number Publication Date
WO2021206345A1 true WO2021206345A1 (ko) 2021-10-14

Family

ID=78022755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/003908 WO2021206345A1 (ko) 2020-04-08 2021-03-30 촉매 조성물 및 이를 이용한 이소부텐계 중합체의 제조방법

Country Status (6)

Country Link
US (1) US11718632B2 (ko)
EP (1) EP3988586B1 (ko)
JP (1) JP7229420B2 (ko)
KR (1) KR102516746B1 (ko)
CN (1) CN114174353B (ko)
WO (1) WO2021206345A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021040384A1 (ko) * 2019-08-26 2021-03-04 주식회사 엘지화학 촉매 조성물 및 이를 이용한 탄화수소 수지의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020247A2 (de) * 2005-08-12 2007-02-22 Basf Se Solvensstabilisierte metallkomplexe mit schwach koordinierenden gegenanionen als polymerisationskatalysatoren
KR20130008551A (ko) * 2010-02-17 2013-01-22 바스프 에스이 고반응성 이소부텐 단독중합체 또는 공중합체의 제조 방법
KR20160033736A (ko) * 2013-07-17 2016-03-28 바스프 에스이 측쇄 내의 비닐리덴 이중 결합의 백분율이 높은 고반응성 폴리이소부틸렌
KR20190110957A (ko) * 2018-03-21 2019-10-01 주식회사 엘지화학 양이온성 전이금속 복합체 및 보레이트계 벌키 음이온을 갖는 유기금속 촉매, 이의 제조 방법 및 이를 이용한 올리고머의 제조 방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6124513A (en) 1997-06-20 2000-09-26 Pennzoil-Quaker State Company Ethylene-alpha-olefin polymers, processes and uses
KR100324566B1 (ko) 1999-05-28 2002-02-16 박찬구 폴리이소부텐의 제조방법
JP2000191714A (ja) 1998-12-25 2000-07-11 Bridgestone Corp 重合用触媒及びそれを用いたイソブチレン―スチレン共重合体の製造方法
KR100486044B1 (ko) 2000-11-13 2005-04-29 대림산업 주식회사 폴리부텐의 제조방법
DE102005055817A1 (de) 2005-11-21 2007-05-24 Basf Ag Verfahren zur Herstellung von hochreaktiven Isobutenhomo- oder -copolymeren mittels borhaltiger Katalysatorkomplexe
DE102005055819A1 (de) 2005-11-21 2007-05-24 Basf Ag Verfahren zur Herstellung von hochreaktiven Isobutenhomo- oder -copolymeren aus technischen C4-Kohlenwasserstoffströmen mittels protonensaurer Katalysatorkomplexe
US9079990B2 (en) * 2010-06-01 2015-07-14 Exxonmobil Chemical Patents Inc. Methods of production of alkylstyrene/isoolefin polymers
SG11201403143VA (en) 2012-01-09 2014-10-30 Basf Se Method for the continuous production of polyisobutylene
KR101963009B1 (ko) 2016-12-15 2019-03-27 한화토탈 주식회사 에틸렌 올리고머화 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020247A2 (de) * 2005-08-12 2007-02-22 Basf Se Solvensstabilisierte metallkomplexe mit schwach koordinierenden gegenanionen als polymerisationskatalysatoren
KR20130008551A (ko) * 2010-02-17 2013-01-22 바스프 에스이 고반응성 이소부텐 단독중합체 또는 공중합체의 제조 방법
KR20160033736A (ko) * 2013-07-17 2016-03-28 바스프 에스이 측쇄 내의 비닐리덴 이중 결합의 백분율이 높은 고반응성 폴리이소부틸렌
KR20190110957A (ko) * 2018-03-21 2019-10-01 주식회사 엘지화학 양이온성 전이금속 복합체 및 보레이트계 벌키 음이온을 갖는 유기금속 촉매, 이의 제조 방법 및 이를 이용한 올리고머의 제조 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PETER JUTZI; CHRISTIAN MULLER; ANJA STAMMLER; HANS-GEORG STAMMLER: "Synthesis, Crystal Structure, and Application of the Oxonium Acid [H(OEt2)2]+[B(C6F5)4]", ORGANOMETALLICS, vol. 19, no. 7, 1 January 2000 (2000-01-01), pages 1442 - 1444, XP001037590, ISSN: 0276-7333, DOI: 10.1021/om990612w *
See also references of EP3988586A4 *

Also Published As

Publication number Publication date
CN114174353B (zh) 2023-07-28
EP3988586B1 (en) 2024-03-20
EP3988586A1 (en) 2022-04-27
CN114174353A (zh) 2022-03-11
KR102516746B1 (ko) 2023-04-03
US20220275006A1 (en) 2022-09-01
JP7229420B2 (ja) 2023-02-27
US11718632B2 (en) 2023-08-08
JP2022542352A (ja) 2022-10-03
EP3988586A4 (en) 2022-11-09
KR20210125423A (ko) 2021-10-18

Similar Documents

Publication Publication Date Title
EP0397081A2 (en) Process for preparation of polymer
WO2017099491A1 (ko) 올레핀계 중합체
WO2017003261A1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2019093630A1 (ko) 고용융장력 폴리프로필렌 수지 제조방법
WO2021206345A1 (ko) 촉매 조성물 및 이를 이용한 이소부텐계 중합체의 제조방법
WO2020130452A1 (ko) 올레핀 중합용 촉매 및 이를 이용하여 제조된 올레핀계 중합체
WO2019212308A1 (ko) 에틸렌/알파-올레핀 공중합체 및 이의 제조방법
WO2019182386A1 (ko) 양이온성 전이금속 복합체 및 보레이트계 벌키 음이온을 갖는 유기금속 촉매, 이의 제조 방법 및 이를 이용한 올리고머의 제조 방법
WO2019212304A1 (ko) 에틸렌/알파-올레핀 공중합체 및 이의 제조방법
WO2020101373A1 (ko) 프로필렌 중합용 담지촉매 및 이를 이용하는 폴리프로필렌 수지의 제조방법
WO2018097468A1 (ko) 폴리올레핀 촉매 및 이를 이용한 폴리올레핀 제조방법
WO2020105891A1 (ko) 폴리부텐 올리고머의 제조 방법
WO2021235678A1 (ko) 액상 고무 제조방법 및 이로부터 제조된 액상 고무
WO2019083173A1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2021075788A1 (ko) 올레핀 중합용 혼성 촉매의 제조방법, 올레핀 중합용 혼성 촉매 및 올레핀계 중합체
WO2021112617A1 (ko) 촉매 조성물 및 이를 이용한 폴리이소부텐의 제조방법
WO2017003262A1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2019190289A1 (ko) 블록 공중합체 조성물
WO2023191519A1 (ko) 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀
WO2017111553A1 (ko) 신규한 전이금속 화합물을 포함하는 촉매 조성물
WO2021210953A1 (ko) 폴리올레핀-폴리스티렌계 다중블록 공중합체 및 이의 제조방법
WO2022059990A1 (ko) 촉매 조성물 및 이를 이용한 이소부텐-이소프렌 공중합체의 제조방법
WO2022025701A1 (ko) 유기 아연 화합물 제조방법, 사슬 전달제, 블록 공중합체 및 수지 조성물
WO2020022833A1 (ko) 부텐 올리고머의 제조방법
WO2021066490A1 (ko) 올레핀계 중합체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21783712

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503969

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021783712

Country of ref document: EP

Effective date: 20220119

NENP Non-entry into the national phase

Ref country code: DE