WO2021235678A1 - 액상 고무 제조방법 및 이로부터 제조된 액상 고무 - Google Patents

액상 고무 제조방법 및 이로부터 제조된 액상 고무 Download PDF

Info

Publication number
WO2021235678A1
WO2021235678A1 PCT/KR2021/004074 KR2021004074W WO2021235678A1 WO 2021235678 A1 WO2021235678 A1 WO 2021235678A1 KR 2021004074 W KR2021004074 W KR 2021004074W WO 2021235678 A1 WO2021235678 A1 WO 2021235678A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
liquid rubber
mol
group
conjugated diene
Prior art date
Application number
PCT/KR2021/004074
Other languages
English (en)
French (fr)
Inventor
최지현
최경신
김원희
백종열
김희정
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202180004448.9A priority Critical patent/CN114127143B/zh
Priority to US17/625,576 priority patent/US20220289875A1/en
Priority to EP21809322.7A priority patent/EP3981803A4/en
Priority to JP2021571694A priority patent/JP7324877B2/ja
Publication of WO2021235678A1 publication Critical patent/WO2021235678A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/602Component covered by group C08F4/60 with an organo-aluminium compound
    • C08F4/6028Component covered by group C08F4/60 with an organo-aluminium compound with an alumoxane, i.e. a compound containing an -Al-O-Al-group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F136/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F136/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F136/04Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F136/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F136/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F136/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F136/04Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F136/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F136/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F136/04Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F136/08Isoprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/54Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with other compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • C08L9/08Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/10Latex

Definitions

  • the present invention relates to a method for producing a liquid rubber using cationic polymerization and a liquid rubber prepared therefrom.
  • Oil which is a conventionally used petroleum-based plasticizer, has a phthalate or aromatic structure, has a small molecular weight, and is volatile, so that it evaporates during compounding of rubber, or when stored for a long time after compounding, bleeding or blooming from rubber products ), and the physical properties of rubber products may change.
  • the tire is worn out due to driving and is discharged together with the rubber, thereby adversely affecting the environment.
  • liquid rubber has recently attracted attention as a plasticizer. It is a substitute for process oil such as processing oil used for compounding rubber, and while improving the processability of rubber, it exists in a stable state through vulcanization with solid rubber.
  • process oil such as processing oil used for compounding rubber
  • added liquid rubber is known to help improve the physical properties of the rubber together with the solid rubber.
  • Such liquid rubber can be generally prepared through ionic polymerization, radical polymerization or coordination polymerization. Recently, as a method of manufacturing solid rubber, anionic polymerization and coordination polymerization have been widely used, and a method using an excess of a catalyst with respect to conventional polymerization is mainly used to prepare low molecular weight liquid rubber.
  • anionic polymerization and coordination polymerization have been widely used, and a method using an excess of a catalyst with respect to conventional polymerization is mainly used to prepare low molecular weight liquid rubber.
  • it is difficult to control heat generated in the initial stage of polymerization due to an excessive amount of catalyst so that there is a problem in that physical properties of the prepared liquid rubber are deteriorated.
  • batch polymerization or semi-batch polymerization is mainly performed, so there is a problem in that it is difficult to increase production.
  • Patent Document 1 KR10-2017-0068486A
  • the present invention has been devised to solve the problems of the prior art, and it is to provide a method for producing a low molecular weight liquid rubber having a high ratio of 1,4-trans bonds from a very small amount of a catalyst composition using cationic polymerization. The purpose.
  • an object of the present invention is to provide a liquid rubber having a low molecular weight having a high ratio of 1,4-trans bonds produced by the above liquid rubber manufacturing method.
  • the present invention includes a step (S10) of polymerizing a conjugated diene-based monomer in the presence of an organic solvent and a catalyst composition, wherein the catalyst composition is a catalyst comprising a compound represented by the following formula (1) It provides a liquid rubber manufacturing method comprising a.
  • R is an alkyl group having 1 to 12 carbon atoms
  • R 1 to R 4 are each independently hydrogen, a halogen group, or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms
  • o, p, q and r are each independently an integer from 1 to 5;
  • the present invention is prepared according to the liquid rubber manufacturing method, and contains a conjugated diene-based monomer unit alone, or contains a conjugated diene-based monomer unit and an aromatic vinyl-based monomer unit, and has a number average molecular weight of less than 100,000 g/mol and exists in a liquid state at room temperature (23 °C ⁇ 3 °C), and when the conjugated diene-based monomer unit is included alone, the ratio of trans-1,4 bonds of the conjugated diene-based monomer unit is 75% or more, The proportion of cis-1,4 bonds is 1% or less, and the other bonds are 1,2-bonds.
  • liquid rubber is prepared by cationic polymerization according to the liquid rubber production method of the present invention
  • a low molecular weight liquid rubber having a high ratio of 1,4-trans bonds can be prepared from a very small amount of the catalyst composition.
  • 1 is a 13 C NMR spectrum of a liquid rubber including a polyisoprene polymer according to an embodiment of the present invention.
  • FIG. 3 is a 1 H NMR spectrum of a liquid rubber including a polystyrene-b-polyisoprene copolymer and a polystyrene-rand-polyisoprene copolymer according to an embodiment of the present invention.
  • the term 'liquid rubber' may refer to a low molecular weight polymer exhibiting a rubbery phase, a number average molecular weight of less than 100,000 g/mol, and a liquid phase at room temperature (23 ⁇ 3 °C). rubber present.
  • the liquid state means that the rubber from which the solvent is removed shows flowability as the rubber itself.
  • substitution' may mean that hydrogen of a functional group, atomic group, or compound is substituted with a specific substituent.
  • substituents may be present depending on the number of hydrogens present, and when plural substituents are present, each substituent may be the same as or different from each other.
  • the term 'monovalent hydrocarbon group' may mean a substituent monovalently substituted with an atomic group containing carbon and hydrogen atoms, and specific examples include an alkyl group, an alkylene group, an alkynyl group, a cycloalkyl group containing carbon and hydrogen atoms. and all aryl groups.
  • the term 'alkyl group' may refer to a monovalent aliphatic saturated hydrocarbon group, and may include linear alkyl groups such as methyl, ethyl, propyl and butyl; branched alkyl groups such as isopropyl, sec-butyl, tert-butyl and neo-pentyl; and a cyclic saturated hydrocarbon group, or a cyclic unsaturated hydrocarbon group including one or two or more unsaturated bonds.
  • 'monomer unit' used in the present invention may refer to a repeating unit formed by participating in a polymerization reaction of a compound used as a monomer, a structure resulting therefrom, or a material itself.
  • the present invention provides a method for manufacturing liquid rubber.
  • the liquid rubber manufacturing method includes a step (S10) of polymerizing a conjugated diene-based monomer in the presence of an organic solvent and a catalyst composition, wherein the catalyst composition is a compound represented by the following formula (1) It may include a catalyst comprising a.
  • R may be an alkyl group having 1 to 12 carbon atoms
  • R 1 to R 4 may each independently be hydrogen, a halogen group, or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms
  • o, p , q and r may each independently be an integer of 1 to 5.
  • R may be an alkyl group having 1 to 10 carbon atoms
  • R 1 to R 4 may each independently be hydrogen, a halogen group, or an alkyl group having 1 to 10 carbon atoms substituted with a halogen group.
  • R may be a methyl group, an ethyl group, a propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group or a t-butyl group
  • R 1 to R 4 are each independently hydrogen, chlorine, bromine, fluorine, iodine or trifluoromethyl.
  • organic borate is tetrakis(phenyl)borate, tetrakis(pentafluorophenyl)borate, tetrakis[3,5-bis(trifluoro) It may be at least one selected from the group consisting of romethyl)phenyl]borate and derivatives thereof, and in this case, cationic polymerization of the conjugated diene-based polymer is possible from a very small amount of the catalyst composition, and regioselectivity for trans-1,4 bonds This high makes it possible to produce liquid rubber with a high ratio of trans-1,4 bonds.
  • the catalyst composition may include an aluminum-based cocatalyst.
  • the catalyst composition of the present invention is suitable for use in the preparation of a conjugated diene-based polymer by cationic polymerization.
  • cationic polymerization it may be important to stabilize the cationic site formed during the polymerization reaction.
  • the catalyst is a catalyst alone, or aluminum By forming a complex such as a strong Lewis acid by binding with a gray co-catalyst, it serves to effectively stabilize the cationic site, thereby making it possible to prepare a low-molecular-weight conjugated diene-based polymer.
  • the aluminum-based cocatalyst may be at least one selected from aluminum-based compounds represented by the following Chemical Formulas 2 to 4.
  • R a , R 5 and R 6 may each independently be a monovalent hydrocarbon group having 1 to 20 carbon atoms, Z may be a halogen group, m may be an integer of 1 to 3, a and b may each independently be an integer from 1 to 100.
  • R a , R 5 and R 6 may each independently be a monovalent hydrocarbon group having 1 to 10 carbon atoms, Z may be a halogen group, and m is 1 It may be an integer of to 3, a and b may each independently be an integer of 2 to 50.
  • R a may each independently be an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or an aryl group having 6 to 12 carbon atoms, preferably an alkyl group having 1 to 12 carbon atoms, 1 carbon atom. It may be an alkyl group of to 6, an alkyl group of 1 to 3 carbon atoms, or an ethyl group, wherein Z is preferably a chlorine atom or a bromine atom, preferably a chlorine atom, and m is 2 or 3 It may be an integer, preferably 3.
  • R 5 and R 6 may each independently represent an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
  • the aluminum-based cocatalyst is methylaluminoxane, modified methylaluminoxane, trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, Triisobutyl aluminum, tri-t-butyl aluminum, tripentyl aluminum, trihexyl aluminum, tricyclohexyl aluminum, trioctyl aluminum, tri-2-ethylhexyl aluminum, dimethyl aluminum chloride, diethyl aluminum chloride, diisopropyl aluminum It may be at least one selected from the group consisting of chloride, diisobutyl aluminum chloride, dimethyl aluminum bromide, methyl aluminum dichloride, ethyl aluminum dichloride, isopropyl aluminum dichloride, aluminum chloride and ethyl aluminum dibromide.
  • the aluminum-based promoter is methylaluminoxane (MAO), modified methylaluminoxane (MMAO), ethylaluminoxane, n-propylaluminoxane, isopropylaluminoxane, butylaluminoxane , isobutyl aluminoxane, n-pentyl aluminoxane, neopentyl aluminoxane, n-hexyl aluminoxane, n-octylaluminoxane, 2-ethylhexyl aluminoxane, cyclohexyl aluminoxane, 1-methylcyclopentyl aluminoxane, phenyl It may be at least one aluminoxane selected from the group consisting of aluminoxane and 2,6-dimethylphenyl aluminoxane
  • the modified methylaluminoxane is a methyl group of methylaluminoxane is substituted with a modifying group (R 7 ), specifically, a hydrocarbon group having 2 to 20 carbon atoms, specifically, Formula 5 It may be a compound represented by
  • R 7 is the same as R 5 as defined above, c and d may be each independently an integer of 2 or more, and Me represents a methyl group.
  • R 7 is an alkyl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a cycloalkenyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms. , an arylalkyl group having 7 to 20 carbon atoms, an alkylaryl group having 7 to 20 carbon atoms, an allyl group or an alkynyl group having 2 to 20 carbon atoms, more specifically, an ethyl group, an isobutyl group, a hexyl group or an octyl group. It is an alkyl group of 2 to 10, and more specifically, may be an isobutyl group.
  • the modified methylaluminoxane may be obtained by substituting about 50 to 90 mol% of the methyl group of methylaluminoxane with the above-described hydrocarbon group.
  • the modified methylaluminoxane may be prepared according to a conventional method, and specifically may be prepared using trimethylaluminum and alkylaluminum other than trimethylaluminum.
  • the alkylaluminum may be triisobutylaluminum, triethylaluminum, trihexylaluminum or trioctylaluminum, and any one or a mixture of two or more thereof may be used.
  • the isoprene monomer is bonded to the cation chain being polymerized to form a resonance structure, thereby reducing the additional reaction of the cations, so that the additional polymerization proceeds very slowly or There is a possibility that a termination reaction may occur, and in consideration of this, it is important to select and use a catalyst or catalyst and co-catalyst having high reactivity so that premature termination does not occur.
  • the catalyst and the promoter used in the present invention form a complex such as a strong Lewis acid due to the catalyst alone or the combination of the catalyst and the promoter, so that the catalyst system can exhibit high activity during polymerization of the conjugated diene-based monomer. It makes it possible to prepare a low molecular weight liquid rubber with a high ratio of 1,4-trans bonds from the composition.
  • the weight ratio of the catalyst including the compound represented by Formula 1 and the aluminum-based cocatalyst is 1:0.1 to 1:50, 1:0.2 to 1:30, 1:0.5 to 1:8 , or 1:1 to 1:10, and within this range, catalyst activation through a co-catalyst occurs sufficiently so that cationic polymerization can proceed efficiently.
  • the catalyst composition may include a solvent.
  • the solvent may be a halogenated hydrocarbon solvent, and more specifically, it may be at least one selected from the group consisting of chloromethane, dichloromethane, trichloromethane, 1-chlorobutane and chlorobenzene.
  • the step (S10) is a step for cationic polymerization of a conjugated diene-based monomer from the catalyst composition, wherein the conjugated diene-based monomer forms a conjugated diene-based monomer unit.
  • a conjugated diene-based monomer from the catalyst composition, wherein the conjugated diene-based monomer forms a conjugated diene-based monomer unit.
  • At least one selected from the group consisting of ,3-butadiene, 2,3-dimethyl-1,3-butadiene, piperylene, 3-butyl-1,3-octadiene, isoprene and 2-phenyl-1,3-butadiene can
  • the conjugated diene-based monomer may be 1,3-butadiene or isoprene, and more specifically, it may be isoprene.
  • the organic solvent may be a non-polar organic solvent, a polar aprotic solvent, or a mixture thereof.
  • the organic solvent may be a hydrocarbon solvent, a halogenated hydrocarbon solvent, or a mixture thereof.
  • the hydrocarbon solvent may be an aliphatic hydrocarbon solvent or an aromatic hydrocarbon solvent, and specifically, the aliphatic hydrocarbon solvent is butane, pentane, neo-pentane, hexane, cyclohexane, methyl cyclohexane, heptane and octane. It may be at least one selected from the group consisting of, and the aromatic hydrocarbon solvent may be at least one selected from the group consisting of benzene, toluene, xylene, and ethyl benzene.
  • the halogenated hydrocarbon solvent may be at least one selected from the group consisting of chloromethane, dichloromethane, trichloromethane, 1-chlorobutane and chlorobenzene.
  • the mixing ratio when a hydrocarbon solvent and a halogenated hydrocarbon solvent are mixed and used as an organic solvent, the mixing ratio may be in a weight ratio of 10:1 to 1:10, specifically, by mixing in a weight ratio of 5:1 to 1:5. Can be used.
  • the catalyst composition is 0.1 parts by weight or less, 0.05 parts by weight or less, 0.01 parts by weight to 0.05 parts by weight, or 0.01 parts by weight to 0.02 parts by weight based on 100 parts by weight of the organic solvent and the conjugated diene-based monomer. It may be a part by weight, and the cationic polymerization reaction can be efficiently performed even with a very small amount within this range.
  • the polymerization in step (S10) may be carried out at 0 °C to 50 °C, 10 °C to 30 °C, 20 °C to 30 °C, or room temperature (23 ⁇ 3 °C), within this range It has excellent catalyst activity and can secure a molecular weight for producing liquid rubber.
  • the polymerization in step (S10) may be carried out for 10 minutes to 3 hours, 10 minutes to 1 hour, or 20 minutes to 40 minutes.
  • the polymerization in step (S10) may be carried out including an aromatic vinyl-based monomer.
  • the liquid rubber manufacturing method may include a step (S1) of polymerizing an aromatic vinylic monomer in the presence of an organic solvent and a catalyst composition prior to step (S10).
  • the aromatic vinyl monomer is styrene, ⁇ -methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 1-vinylnaphthalene, 4-cyclohexylstyrene, 4-(p-methylphenyl)styrene and 1- It may be at least one selected from the group consisting of vinyl-5-hexylnaphthalene.
  • the prepared liquid rubber when the polymerization in step (S10) is carried out including an aromatic vinyl-based monomer, the prepared liquid rubber is a random copolymer including a conjugated diene-based monomer unit and an aromatic vinyl-based monomer unit. and, prior to the step (S10), in the presence of an organic solvent and a catalyst composition, when carried out including the step (S1) of polymerizing the aromatic vinyl-based monomer, the prepared liquid rubber is a polyconjugated diene block and poly It may be a block copolymer including an aromatic vinyl-based block.
  • each copolymer comprises 10% to 90% by weight of a conjugated diene-based monomer unit, 20 Weight % to 80 weight % or 30 weight % to 70 weight %, and 10 weight % to 90 weight %, 20 weight % to 80 weight %, or 30 weight % to 70 weight % of an aromatic vinylic monomer unit may be included. .
  • the liquid rubber manufacturing method according to an embodiment of the present invention may include a step (S20) of removing the catalyst after the step (S10).
  • a step (S20) of removing the catalyst after the step (S10) since the catalyst composition can be efficiently removed through a physically simple filtration and adsorption step, it is much easier to use and remove than a Lewis acid catalyst of the prior art.
  • step (S20) after polymerization of the liquid rubber, the organic solvent is removed to adjust the organic solvent to 40 wt% or less, 20 wt% or less, or 5 wt% or less of the oligomer or polymer.
  • a step of filtering and adsorbing insoluble substances may be performed using a glass filter of 80 mesh or more, 100 mesh or more, or 200 mesh or more.
  • the catalyst can be removed by passing a fluid polymer through a silica, celite or zeolite filter.
  • linear alkyl solvents such as pentane, cyclopentane, hexane, cyclohexane, heptane, octane, and ether solvents such as diethyl ether and petroleum ether
  • filtering and adsorption through the glass filter, silica, celite or zeolite filter may be performed.
  • the polymer polymerized in step (S10) is dissolved in an organic solvent such as pentane, cyclopentane, hexane, cyclohexane, heptane, octane, diethyl ether or petroleum ether and washed with water. to remove the catalyst.
  • an organic solvent such as pentane, cyclopentane, hexane, cyclohexane, heptane, octane, diethyl ether or petroleum ether
  • step (S10) since the polymer polymerized in step (S10) can efficiently remove the catalyst including the compound represented by Formula 1 through a simple filtration and adsorption step, a separate washing step is performed. may not perform.
  • the liquid rubber manufacturing method may further include a step (S30) of drying the residual solvent after the step (S20).
  • the drying temperature in step (S30) may be 30 °C to 200 °C, or 40 °C to 150 °C, and the vacuum degree may be 300 torr or less, 200 torr or less, or 100 torr or less.
  • the present invention provides a liquid rubber prepared according to the liquid rubber manufacturing method, and including a conjugated diene-based monomer unit.
  • the liquid rubber includes a conjugated diene-based monomer unit alone, or includes a conjugated diene-based monomer unit and an aromatic vinyl-based monomer unit, has a number average molecular weight of less than 100,000 g/mol, and is at room temperature (23 °C ⁇ 3 °C).
  • the ratio of trans-1,4 bonds of the conjugated diene-based monomer unit is 75% or more, and the ratio of cis-1,4 bonds is 1% Below, other bonds may be 1,2-bonds.
  • the liquid rubber may include a diene-based polymer including a conjugated diene-based monomer unit alone, or a copolymer including a conjugated diene-based monomer unit and an aromatic vinyl-based monomer unit.
  • the conjugated diene-based monomer may be the same as the above-described conjugated diene-based monomer.
  • the ratio of trans-1,4 bonds of the conjugated diene-based monomer unit is 75 mol% or more, the ratio of cis-1,4 bonds is 1 mol% or less, and the other bonds are 1 , may be a 2-bond.
  • the ratio of trans-1,4 bonds in the isoprene unit is 90 mol% or more, 95 mol% or more, 98 mol% or more, or 98 mol% to 100 mol%.
  • a cis-1,4 bond may not exist in the isoprene unit. This can also be confirmed in the 13 C NMR spectrum as shown in FIG. 1 .
  • the conjugated diene-based monomer is isoprene
  • a structure by a 1,2-addition reaction may be partially formed.
  • a cyclic structure may be formed between the 1,2-added monomer units due to the tertiary carbocation formed during polymerization. Therefore, the polyisoprene polymerized by the liquid rubber manufacturing method of the present invention may include a cyclic structure, and thus, physical properties such as thermal and viscosity characteristics of polyisoprene may change. As shown in FIG. 2, this can also be confirmed in the 1 H NMR spectrum.
  • the ratio of trans-1,4 bonds in the 1,3-butadiene unit is 75% or more, 75% to 90% , or 78% to 90%
  • the ratio of cis-1,4 bonds may be 1% or less, and other bonds may be 1,2-bonds.
  • the liquid rubber has a weight average molecular weight of 1,000 g/mol to 20,000 g/mol, and a number average molecular weight of 1,000 g/mol to 6,000 g/mol including a diene-based polymer.
  • the weight average molecular weight is 1,000 g/mol to 20,000 g/mol, 2,000 g/mol to 18,000 g/mol, or 3,000 g/mol to 16,000 g/mol. and may have a number average molecular weight of 1,000 g/mol to 6,000 g/mol, 1,500 g/mol to 6,000 g/mol or 2,000 g/mol to 6,000 g/mol, and a molecular weight distribution of 1.00 to 5.00, 1.20 to 4.50 , or 1.50 to 4.20.
  • the weight average molecular weight is 1,000 g/mol to 20,000 g/mol, 3,000 g/mol to 10,000 g/mol, or 5,000 g/mol to 7,000 g/mol, and a number average molecular weight of 1,000 g/mol to 6,000 g/mol, 1,500 g/mol to 5,000 g/mol or 2,000 g/mol to 3,000 g/mol, and a molecular weight distribution of 1.00 to 5.00, 2.00 to 4.00, or 2.30 to 3.00.
  • the weight average molecular weight and the number average molecular weight are polystyrene equivalent molecular weights analyzed by gel permeation chromatography (GPC), and the molecular weight distribution is calculated from the ratio of (weight average molecular weight)/(number average molecular weight) .
  • the liquid rubber when the liquid rubber includes the aromatic vinyl-based unit, the liquid rubber is a random copolymer or polyconjugated diene block including a conjugated diene-based monomer unit and an aromatic vinyl-based monomer unit; It may be a block copolymer including a polyaromatic vinyl-based block.
  • the aromatic vinyl-based monomer may be the same as the aforementioned aromatic vinyl-based monomer.
  • the random copolymer including the conjugated diene-based monomer unit and the aromatic vinyl-based monomer unit may be a polystyrene-rand-polyisoprene copolymer, in which case the weight average molecular weight is 1,000 g/mol to 20,000 g/mol, 3,000 g/mol to 10,000 g/mol or 5,000 g/mol to 7,000 g/mol, and a number average molecular weight of 1,000 g/mol to 6,000 g/mol, 1,500 g/mol to 5,000 g/mol or 2,000 g/mol mol to 3,000 g/mol, and a molecular weight distribution of 1.00 to 5.00, 2.00 to 4.00, or 2.30 to 3.00.
  • the block copolymer including the polyconjugated diene block and the polyaromatic vinyl block may be a polystyrene-b-polyisoprene block copolymer, and in this case, the weight average molecular weight is 1,000 g/mol to 20,000 g/ mol, 2,000 g/mol to 20,000 g/mol or 2,400 g/mol to 20,000 g/mol, and a number average molecular weight of 1,000 g/mol to 6,000 g/mol, 1,000 g/mol to 5,000 g/mol or 1,100 g/mol to 2,700 g/mol, and a molecular weight distribution of 1.00 to 5.00, 2.00 to 4.00, or 2.00 to 2.50.
  • cyclic between the 1,2-added monomer units due to the tertiary carbocation formed during polymerization A structure may be formed, and accordingly, the polystyrene-rand-polyisoprene copolymer and polystyrene-b-polyisoprene block copolymer polymerized by the liquid rubber manufacturing method of the present invention may include a cyclic structure. As shown in FIG. 3, this can also be confirmed in the 1 H NMR spectrum.
  • a magnetic bar was placed in a 0.5 L reaction flask dried in a glove box, a solvent was added in the content shown in Table 1, and then isoprene was added in the content shown in Table 1 using a syringe, followed by stirring for 10 minutes. . Then, the catalyst composition prepared in Preparation Example was put into the reaction flask, polymerization was performed at 23 ° C. for 30 minutes, 1 g of methanol was added to terminate the reaction, and the solvent was removed to obtain a liquid rubber. , the yield was calculated from the content of the obtained liquid rubber compared to the amount of the input monomer.
  • a magnetic bar was placed in a 0.5 L reaction flask dried in a glove box, a solvent was added at the content shown in Table 2, and then isoprene was added using a syringe at the content shown in Table 2 below, followed by stirring for 10 minutes. . Then, as a catalyst, n-butyllithium is dissolved in the same solvent as the introduced solvent, put into the reaction flask, and after polymerization for 1 hour, 1 g of methanol is added to terminate the reaction, and the solvent is removed. A liquid rubber was obtained, and the yield was calculated from the content of the obtained liquid rubber compared to the amount of the input monomer.
  • a magnetic bar was placed in a 0.5 L Andrew flask dried in a glove box, 1,3-butadiene was added to the content shown in Table 3 below, and condensed at -20 °C. Thereafter, the solvent in the content shown in Table 3 was put into the Andrew flask using a syringe, and the mixture was stirred while raising the temperature to 23 °C. Then, the catalyst composition prepared in Preparation Example was put into the Andrew flask, polymerization was performed at 23 ° C. for 60 minutes, 1 g of methanol was added to terminate the reaction, and the solvent was removed to obtain a liquid rubber. , the yield was calculated from the content of the obtained liquid rubber compared to the amount of the input monomer.
  • a magnetic bar was placed in a 0.5 L reaction flask dried in a glove box, a solvent was added in the content shown in Table 4, and then styrene and isoprene in the content shown in Table 4 were added using a syringe, and then for 10 minutes. stirred. Then, the catalyst composition prepared in Preparation Example was put into the reaction flask, polymerization was performed at 23 ° C. for 10 minutes, methanol 1 g was added to terminate the reaction, and the solvent was removed to obtain a liquid rubber. , the yield was calculated from the content of the obtained liquid rubber compared to the amount of the input monomer.
  • a magnetic bar was placed in a 0.5 L reaction flask dried in a glove box, a solvent was added at the content shown in Table 4, and then styrene was added at the content shown in Table 4 using a syringe, followed by stirring for 10 minutes. .
  • the catalyst composition prepared in Preparation Example was put into the reaction flask, polymerization was carried out at 23 ° C. for 10 minutes, isoprene was added in the amount shown in Table 4 using a syringe, and then for 10 minutes. stirred. Thereafter, 1 g of methanol was added, the reaction was terminated, and the solvent was removed to obtain a liquid rubber, and the yield was calculated from the content of the obtained liquid rubber compared to the amount of the added monomer.
  • the number average molecular weight (Mn), weight average molecular weight (Mw), and peak molecular weight (Mp) were measured under the following gel permeation chromatography (GPC) analysis conditions, and molecular weight as (weight average molecular weight) / (number average molecular weight) value The distribution was calculated.
  • the liquid rubber obtained in Examples and Comparative Examples was dissolved in CDCl 3 , a solvent for NMR measurement, and 1 H NMR was measured using 500 MHz NMR from Varian, and trans-1,4 bonds and trans-1,4 bonds and By confirming the cis-1,4 bond form, the trans-1,4 bond content (mol%) was calculated by Equation 1 below.
  • the cis-1,4 bond content and the 1,2-unit bond content of Comparative Example were calculated in the same manner.
  • liquid rubber with high trans-1,4 bond selectivity could be obtained in high yield using a small amount of catalyst.
  • the number average molecular weight, weight average molecular weight, molecular weight distribution, trans-1,4 bond content, and 1,2-unit bond content were measured in the same manner as in Experimental Example 1 to the following table. 7 is shown.
  • the 1,2-unit bond content was calculated from the content of the remainder excluding the content of trans-1,4 bonds and the content of cis-1,4 bonds from the total amount of the resulting conjugated diene bonds.
  • the number average molecular weight, weight average molecular weight, molecular weight distribution, and trans-1,4 bond content of the liquid rubber obtained in Examples 3-1 to 3-3 were measured in the same manner as in Experimental Example 1, and are shown in Table 8 below. indicated.
  • liquid rubber could be prepared using a small amount of catalyst according to the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerization Catalysts (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

본 발명은 액상 고무 제조방법에 관한 것으로, 유기 용매 및 촉매 조성물의 존재 하에, 공액디엔계 단량체를 중합 반응시키는 단계(S10)를 포함하고, 상기 촉매 조성물은 화학식 1로 표시되는 화합물(발명의 설명 참조)을 포함하는 촉매를 포함하는 것인 액상 고무 제조방법 및 이로부터 제조된 액상 고무에 관한 것이다.

Description

액상 고무 제조방법 및 이로부터 제조된 액상 고무
[관련출원과의 상호인용]
본 발명은 2020년 5월 22일에 출원된 한국 특허 출원 제10-2020-0061492호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
[기술분야]
본 발명은 양이온 중합을 이용한 액상 고무 제조방법 및 이로부터 제조된 액상 고무에 관한 것이다.
종래에 이용되는 석유계 가소제인 오일은 프탈레이트 또는 방향족 구조를 가지며, 분자량이 작아 휘발성을 갖고, 이로 인해 고무의 배합 도중에 증발되거나, 배합 후 장기간 보관할 때, 고무 제품으로부터 블리딩(bleeding) 또는 블루밍(blooming) 현상으로 배출되어 고무 제품의 물성이 변할 수 있다. 특히, 해당 고무가 타이어 등에 사용되는 경우에는 주행으로 인해 타이어가 마모되면서 고무와 함께 배출되어 환경에도 악영향을 끼치는 문제가 있다.
이와 관련하여, 액상 고무가 최근 가소제로 주목을 받고 있다. 이는 고무를 배합하는데 사용되는 가공 오일 등의 공정유의 대체제로 고무의 가공성을 향상시켜주면서, 고상 고무와 가황을 통해 안정한 상태로 존재하게 된다. 또한, 이렇게 첨가된 액상 고무는 고상 고무와 함께 고무의 물성 향상에 도움을 주는 것으로 알려져 있다.
이러한 액상 고무는 일반적으로 이온 중합, 라디칼 중합 또는 배위 중합을 통하여 제조될 수 있다. 최근 고상 고무를 제조하는 방법으로는 음이온 중합과 배위 중합이 많이 이용되고 있고, 저분자량의 액상 고무를 제조하기 위해 기존 중합에 대하여 과량의 촉매를 사용하는 방법이 주로 이용되고 있다. 하지만, 액상 고무 제조 시, 과량의 촉매로 인해 중합 반응 초기에 발생하는 열을 제어하기가 어려워 제조된 액상 고무의 물성이 저하되는 문제가 있다. 또한, 상기 액상 고무 제조 시에는 연속 중합을 실시하기 어려워 배치(batch) 중합 또는 세미-배치(semi-batch) 중합이 주로 실시되고 있어 생산량을 증대시키기 어려운 문제가 있다. 또한, 상기 액상 고무 제조 시에는 많은 양의 촉매를 이용할 수 밖에 없어 촉매 비용이 상승할 수 밖에 없어 제조 원가가 상승하게 되고, 제조된 액상 고무에 많은 양의 촉매가 잔류하여 촉매를 충분히 제거하기 어려운 문제가 있다.
한편, 이러한 문제를 해결하기 위해 고분자량의 고무를 산화에 의해 절단(scission)하여 저분자량의 고무를 제조하는 방법이 제안되고 있으나, 일정한 분자량으로 저분자량화 시키는게 쉽지 않고, 이렇게 제조된 고무는 대부분 매우 높은 분자량 분포(PDI)를 나타내어 목적하는 물성을 발현시키기 어려운 문제가 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) KR10-2017-0068486A
본 발명은 상기 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 양이온 중합을 이용하여, 매우 적은 양의 촉매 조성물로부터 1,4-트랜스 결합의 비율이 높은 저분자량의 액상 고무 제조방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 액상 고무 제조방법에 의해 제조되어, 1,4-트랜스 결합의 비율이 높은 저분자량의 액상 고무를 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위하여, 본 발명은 유기 용매 및 촉매 조성물의 존재 하에, 공액디엔계 단량체를 중합 반응시키는 단계(S10)를 포함하고, 상기 촉매 조성물은 하기 화학식 1로 표시되는 화합물을 포함하는 촉매를 포함하는 것인 액상 고무 제조방법을 제공한다.
[화학식 1]
Figure PCTKR2021004074-appb-I000001
상기 화학식 1에서, R은 탄소수 1 내지 12의 알킬기이고, R1 내지 R4는 각각 독립적으로 수소, 할로겐기, 또는 치환 또는 비치환된 탄소수 1 내지 20의 알킬기이고, o, p, q 및 r은 각각 독립적으로 1 내지 5의 정수이다.
또한, 본 발명은 상기 액상 고무 제조방법에 따라 제조되어, 공액디엔계 단량체 단위를 단독으로 포함하거나, 공액디엔계 단량체 단위 및 방향족 비닐계 단량체 단위를 포함하고, 수평균 분자량이 100,000 g/mol 미만이며, 상온(23 ℃ ± 3 ℃)에서 액체 상태로 존재하고, 상기 공액디엔계 단량체 단위를 단독으로 포함하는 경우, 공액디엔계 단량체 단위의 트랜스-1,4 결합의 비율이 75% 이상이고, 시스-1,4 결합의 비율이 1 % 이하이며, 이외의 결합은 1,2-결합인 액상 고무를 제공한다.
본 발명의 액상 고무 제조방법에 따라 양이온 중합을 이용하여 액상 고무를 제조하는 경우 매우 적은 양의 촉매 조성물로부터 1,4-트랜스 결합의 비율이 높은 저분자량의 액상 고무를 제조할 수 있다.
도 1은 본 발명의 일 실시예에 따른 폴리이소프렌 중합체를 포함하는 액상 고무의 13C NMR 스펙트럼이다.
도 2는 본 발명의 일 실시예에 따른 폴리이소프렌 중합체를 포함하는 액상 고무의 1H NMR 스펙트럼이다.
도 3은 본 발명의 일 실시예에 따른 폴리스티렌-b-폴리이소프렌 공중합체 및 폴리스티렌-rand-폴리이소프렌 공중합체를 포함하는 액상 고무의 1H NMR 스펙트럼이다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는, 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 사용하는 용어는 별도로 정의하지 않는 한 하기와 같이 정의될 수 있다.
본 발명에서 용어 '액상 고무'는 고무상을 나타내는 저분자량의 중합체를 의미하는 것일 수 있고, 수평균 분자량이 100,000 g/mol 미만이며, 상온(23±3 ℃)에서 액체 상태(liquid phase)로 존재하는 고무일 수 있다. 여기서, 액체 상태는 용매가 제거된 고무가 고무 자체로서 흐름성을 나타내는 것을 의미한다.
본 발명에서 용어 '치환'은 작용기, 원자단, 또는 화합물의 수소가 특정 치환기로 치환된 것을 의미할 수 있고, 작용기, 원자단 또는 화합물의 수소가 특정 치환기로 치환되는 경우에는 상기 작용기, 원자단 또는 화합물 내에 존재하는 수소의 개수에 따라 1개 또는 2개 이상의 복수의 치환기가 존재할 수 있으며, 복수의 치환기가 존재하는 경우 각각의 치환기는 서로 동일하거나 상이할 수 있다.
본 발명에서 용어 '1가 탄화수소기'는 탄소 및 수소 원자를 포함하는 원자단으로 1가로 치환되는 치환기를 의미할 수 있고, 구체적인 예로 탄소 및 수소 원자를 포함하는 알킬기, 알킬렌기, 알카이닐기, 시클로알킬기 및 아릴기를 모두 포함하는 의미일 수 있다.
본 발명에서 용어 '알킬기(alkyl group)'는 1가의 지방족 포화 탄화수소기를 의미할 수 있고, 메틸, 에틸, 프로필 및 부틸 등의 선형 알킬기; 이소프로필(isopropyl), 세크부틸(sec-butyl), 터셔리부틸(tert-butyl) 및 네오펜틸(neo-pentyl) 등의 분지형 알킬기; 및 환형의 포화 탄화수소기, 또는 불포화 결합을 1개 또는 2개 이상 포함하는 환형의 불포화 탄화수소기를 모두 포함하는 의미일 수 있다.
본 발명에서 사용하는 용어 '단량체 단위'는 단량체로 이용되는 화합물이 중합 반응에 참여하여 형성된 반복 단위, 그로부터 기인한 구조 또는 그 물질 자체를 의미할 수 있다.
본 발명은 액상 고무 제조방법을 제공한다.
본 발명의 일 실시예에 따르면 상기 액상 고무 제조방법은 유기 용매 및 촉매 조성물의 존재 하에, 공액디엔계 단량체를 중합 반응시키는 단계(S10)를 포함하고, 상기 촉매 조성물은 하기 화학식 1로 표시되는 화합물을 포함하는 촉매를 포함하는 것일 수 있다.
[화학식 1]
Figure PCTKR2021004074-appb-I000002
상기 화학식 1에서, R은 탄소수 1 내지 12의 알킬기일 수 있고, R1 내지 R4는 각각 독립적으로 수소, 할로겐기, 또는 치환 또는 비치환된 탄소수 1 내지 20의 알킬기일 수 있으며, o, p, q 및 r은 각각 독립적으로 1 내지 5의 정수일 수 있다.
본 발명의 일 실시예에 따르면, 상기 R은 탄소수 1 내지 10의 알킬기일 수 있고, R1 내지 R4는 각각 독립적으로 수소, 할로겐기, 또는 할로겐기로 치환된 탄소수 1 내지 10의 알킬기일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 R은 메틸기, 에틸기, 프로필기, iso-프로필기, n-부틸기, iso-부틸기 또는 t-부틸기일 수 있고, R1 내지 R4는 각각 독립적으로 수소, 염소, 브롬, 불소, 요오드 또는 트리플루오로메틸일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 화합물 중 유기 보레이트는 테트라키스(페닐)보레이트, 테트라키스(펜타플루오로페닐)보레이트, 테트라키스[3,5-비스(트리플루오로메틸)페닐]보레이트 및 이의 유도체로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이 경우 매우 적은 양의 촉매 조성물로부터 공액디엔계 중합체의 양이온 중합이 가능하면서도, 트랜스-1,4 결합에 대한 위치 선택성이 높아, 높은 트랜스-1,4 결합의 비율로 액상 고무를 제조하는 것이 가능하게 한다.
또한, 본 발명의 일 실시예에 따르면 상기 촉매 조성물은 알루미늄계 조촉매를 포함하는 것일 수 있다.
본 발명의 촉매 조성물은 양이온 중합으로 공액디엔계 중합체의 제조에 사용하기에 적합한 것으로서, 양이온 중합 시에는 중합 반응 중 형성되는 양이온 부위를 안정화시키는 것이 중요할 수 있는데, 상기 촉매는 촉매 단독, 또는 알루미늄계 조촉매와의 결합에 의해 강한 루이스 산과 같은 복합체를 형성하여 양이온 부위를 효과적으로 안정화시키는 역할을 하여, 저분자량의 공액디엔계 중합체 제조가 가능할 수 있다.
본 발명의 일 실시예에 따르면 상기 알루미늄계 조촉매는 하기 화학식 2 내지 화학식 4로 표시되는 알루미늄계 화합물로부터 선택된 1종 이상인 것일 수 있다.
[화학식 2]
Figure PCTKR2021004074-appb-I000003
[화학식 3]
Figure PCTKR2021004074-appb-I000004
[화학식 4]
Figure PCTKR2021004074-appb-I000005
상기 화학식 2 내지 4에서, Ra, R5 및 R6는 각각 독립적으로 탄소수 1 내지 20의 1가 탄화수소기일 수 있고, Z는 할로겐기일 수 있으며, m은 1 내지 3의 정수일 수 있고, a 및 b는 각각 독립적으로 1 내지 100의 정수일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 2 내지 4에서, Ra, R5 및 R6는 각각 독립적으로 탄소수 1 내지 10의 1가 탄화수소기일 수 있고, Z는 할로겐기일 수 있으며, m은 1 내지 3의 정수일 수 있고, a 및 b는 각각 독립적으로 2 내지 50의 정수일 수 있다.
구체적인 예로, 상기 화학식 2에서 Ra는 각각 독립적으로 탄소수 1 내지 12의 알킬기, 탄소수 3 내지 12의 사이클로알킬기 또는 탄소수 6 내지 12의 아릴기일 수 있고, 바람직하게는 탄소수 1 내지 12의 알킬기, 탄소수 1 내지 6의 알킬기, 또는 탄소수 1 내지 3의 알킬기, 또는 에틸기일 수 있으며, 상기 Z는 바람직하게는 염소 원자 또는 브롬 원자일 수 있고, 바람직하게는 염소 원자일 수 있으며, 상기 m은 2 또는 3의 정수, 바람직하게는 3일 수 있다.
또한, 구체적인 예로, 상기 화학식 3 및 4에서, R5 및 R6는 각각 독립적으로 탄소수 1 내지 12의 알킬기, 탄소수 3 내지 12의 사이클로알킬기 또는 탄소수 6 내지 12의 아릴기일 수 있다.
본 발명의 일 실시예에 따르면, 상기 알루미늄계 조촉매는 메틸알루미녹산, 변성 메틸알루미녹산, 트리메틸알루미늄, 트리에틸알루미늄, 트리-n-프로필알루미늄, 트리이소프로필알루미늄, 트리-n-부틸알루미늄, 트리이소부틸알루미늄, 트리-t-부틸알루미늄, 트리펜틸알루미늄, 트리헥실알루미늄, 트리시클로헥실알루미늄, 트리옥틸알루미늄, 트리-2-에틸헥실알루미늄, 디메틸알루미늄클로라이드, 디에틸알루미늄클로라이드, 디이소프로필알루미늄클로라이드, 디이소부틸알루미늄클로라이드, 디메틸알루미늄브로마이드, 메틸알루미늄디클로라이드, 에틸알루미늄디클로라이드, 이소프로필알루미늄디클로라이드, 알루미늄 클로라이드 및 에틸알루미늄디브로마이드로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 알루미늄계 조촉매는 메틸알루미녹산(MAO), 변성 메틸알루미녹산(MMAO), 에틸알루미녹산, n-프로필알루미녹산, 이소프로필알루미녹산, 부틸알루미녹산, 이소부틸알루미녹산, n-펜틸알루미녹산, 네오펜틸알루미녹산, n-헥실알루미녹산, n-옥틸알루미녹산, 2-에틸헥실알루미녹산, 시클로헥실알루미녹산, 1-메틸시클로펜틸알루미녹산, 페닐알루미녹산 및 2,6-디메틸페닐 알루미녹산으로 이루어진 군으로부터 선택된 1종 이상의 알루미녹산일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 변성 메틸알루미녹산은 메틸알루미녹산의 메틸기를 수식기(R7), 구체적으로는 탄소수 2 내지 20의 탄화수소기로 치환한 것으로, 구체적으로는 하기 화학식 5로 표시되는 화합물일 수 있다.
[화학식 5]
Figure PCTKR2021004074-appb-I000006
상기 화학식 5에서, R7은 앞서 정의한 R5와 같으며, c 및 d는 서로 독립적으로 2 이상의 정수일 수 있고, 상기 Me는 메틸기(methyl group)를 나타내는 것이다.
구체적인 예로, 상기 화학식 5에서 상기 R7은 탄소수 2 내지 20의 알킬기, 탄소수 3 내지 20의 시클로알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 3 내지 20의 시클로알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 아릴알킬기, 탄소수 7 내지 20의 알킬아릴기, 알릴기 또는 탄소수 2 내지 20의 알키닐기일 수 있으며, 보다 구체적으로는 에틸기, 이소부틸기, 헥실기 또는 옥틸기 등과 같은 탄소수 2 내지 10의 알킬기이고, 보다 더 구체적으로는 이소부틸기일 수 있다.
보다 구체적인 예로, 상기 변성 메틸알루미녹산은 메틸알루미녹산의 메틸기의 약 50 몰% 내지 90 몰%를 상기한 탄화수소기로 치환한 것일 수 있다. 상기 변성 메틸알루미녹산은 통상의 방법에 따라 제조될 수 있으며, 구체적으로는 트리메틸알루미늄과 트리메틸알루미늄 이외의 알킬알루미늄을 이용하여 제조될 수 있다. 이때 상기 알킬알루미늄은 트리이소부틸알루미늄, 트리에틸알루미늄, 트리헥실알루미늄 또는 트리옥틸알루미늄 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
본 발명의 일 실시예에 따르면 공액디엔계 단량체, 특히 이소프렌 단량체의 중합시에는 이소프렌 단량체가 중합 중인 양이온 사슬에 결합되어 공명구조를 이룰 수 있어 양이온의 추가 반응을 저하시켜 추가 중합이 매우 느리게 진행되거나 종결(termination) 반응이 일어날 우려가 있으며, 이를 고려하여 조기 종결이 일어나지 않도록 높은 반응성을 갖는 촉매 또는 촉매와 조촉매를 선택하여 사용하는 것이 중요하다. 본 발명에서 사용한 촉매 및 조촉매는 촉매 단독, 또는 촉매와 조촉매의 결합으로 인해 강한 루이스 산과 같은 복합체가 형성되어 공액디엔계 단량체의 중합 시 촉매 시스템이 높은 활성을 나타낼 수 있어 매우 적은 양의 촉매 조성물로부터 1,4-트랜스 결합의 비율이 높은 저분자량의 액상 고무를 제조하는 것을 가능하게 한다.
본 발명의 일 실시예에 따르면 상기 화학식 1로 표시되는 화합물을 포함하는 촉매 및 알루미늄계 조촉매의 중량비는 1:0.1 내지 1:50, 1:0.2 내지 1:30, 1:0.5 내지 1:8, 또는 1:1 내지 1:10일 수 있고, 이 범위 내에서 조촉매를 통한 촉매 활성화가 충분히 일어나 양이온 중합이 효율적으로 진행될 수 있다.
또한, 본 발명의 일 실시예에 따르면 상기 촉매 조성물은 용매를 포함하는 것일 수 있다. 구체적인 예로 상기 용매는 할로겐화 탄화수소 용매일 수 있고, 보다 구체적인 예로 클로로메탄, 디클로로메탄, 트리클로로메탄, 1-클로로부탄 및 클로로벤젠으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
본 발명의 일 실시예에 따르면 상기 (S10) 단계는 공액디엔계 단량체를 상기 촉매 조성물로부터 양이온 중합하기 위한 단계로, 상기 공액디엔계 단량체는 공액디엔계 단량체 단위를 형성하는 공액디엔계 단량체는 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 피페릴렌, 3-부틸-1,3-옥타디엔, 이소프렌 및 2-페닐-1,3-부타디엔으로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 구체적인 예로 상기 공액디엔계 단량체는 1,3-부타디엔 또는 이소프렌일 수 있고, 보다 구체적인 예로 이소프렌일 수 있다.
본 발명의 일 실시예에 따르면 상기 유기 용매는 비극성 유기 용매, 극성 비양성자성 용매 또는 이들의 혼합일 수 있다. 또 다른 예로, 상기 유기 용매는 탄화수소 용매, 할로겐화 탄화수소 용매 또는 이들의 혼합일 수 있다.
본 발명의 일 실시예에 따르면 상기 탄화수소 용매는 지방족 탄화수소 용매 또는 방향족 탄화수소 용매일 수 있고, 구체적인 예로 상기 지방족 탄화수소 용매는 부탄, 펜탄, 네오 펜탄, 헥산, 사이클로헥산, 메틸 사이클로헥산, 헵탄 및 옥탄으로 이루어진 군으로부터 선택되는 1종 이상일 수 있고, 상기 방향족 탄화수소 용매는 벤젠, 톨루엔, 자일렌 및 에틸 벤젠으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
또한, 본 발명의 일 실시예에 따르면 상기 할로겐화 탄화수소 용매는 클로로메탄, 디클로로메탄, 트리클로로메탄, 1-클로로부탄 및 클로로벤젠으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
본 발명에서 탄화수소 용매 및 할로겐화 탄화수소 용매를 혼합하여 유기 용매로서 사용하는 경우, 혼합 비율은 10:1 내지 1:10의 중량비일 수 있고, 구체적으로는 5:1 내지 1:5의 중량비로 혼합하여 사용할 수 있다.
본 발명의 일 실시예에 따르면 상기 촉매 조성물은 유기 용매 및 공액디엔계 단량체의 함량 100 중량부에 대하여 0.1 중량부 이하, 0.05 중량부 이하, 0.01 중량부 내지 0.05 중량부, 또는 0.01 중량부 내지 0.02 중량부일 수 있고, 이 범위 내에서 매우 적은 양으로도 양이온 중합 반응이 효율적으로 수행될 수 있다.
본 발명의 일 실시예에 따르면 상기 (S10) 단계의 중합은 0 ℃ 내지 50 ℃, 10 ℃ 내지 30 ℃, 20 ℃ 내지 30 ℃, 또는 상온(23±3 ℃)에서 실시될 수 있고, 이 범위 내에서 촉매의 활성이 우수하고, 액상 고무를 제조하기 위한 분자량을 확보할 수 있다. 또한, 상기 (S10) 단계의 중합은 10 분 내지 3 시간, 10 분 내지 1 시간, 또는 20 분 내지 40 분 동안 실시될 수 있다.
또한, 본 발명의 일 실시예에 따르면 상기 (S10) 단계의 중합은 방향족 비닐계 단량체를 포함하여 실시될 수 있다. 또 다른 예로, 상기 액상 고무 제조방법은 상기 (S10) 단계에 앞서, 유기 용매 및 촉매 조성물의 존재 하에, 방향족 비닐계 단량체를 중합 반응시키는 단계(S1)을 포함하는 것일 수 있다. 상기 방향족 비닐계 단량체는 스티렌, α-메틸스티렌, 3-메틸스티렌, 4-메틸스티렌, 4-프로필스티렌, 1-비닐나프탈렌, 4-시클로헥실스티렌, 4-(p-메틸페닐)스티렌 및 1-비닐-5-헥실나프탈렌으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
본 발명의 일 실시예에 따르면 상기 (S10) 단계의 중합이 방향족 비닐계 단량체를 포함하여 실시되는 경우, 제조된 액상 고무는 공액디엔계 단량체 단위 및 방향족 비닐계 단량체 단위를 포함하는 랜덤 공중합체일 수 있고, 상기 (S10) 단계에 앞서, 유기 용매 및 촉매 조성물의 존재 하에, 방향족 비닐계 단량체를 중합 반응시키는 단계(S1)을 포함하여 실시되는 경우, 제조된 액상 고무는 폴리공액디엔 블록과 폴리 방향족 비닐계 블록을 포함하는 블록 공중합체일 수 있다.
본 발명의 일 실시예에 따르면 상기 액상 고무가 방향족 비닐계 단량체 단위를 포함하는 랜덤 공중합체 또는 블록 공중합체를 포함하는 경우, 각 공중합체는 공액디엔계 단량체 단위 10 중량% 내지 90 중량%, 20 중량% 내지 80 중량% 또는 30 중량% 내지 70 중량%와, 방향족 비닐계 단량체 단위 10 중량% 내지 90 중량%, 20 중량% 내지 80 중량% 또는 30 중량% 내지 70 중량%을 포함하는 것일 수 있다.
본 발명의 일 실시예에 따른 액상 고무 제조방법은 상기 (S10) 단계 이후에 촉매를 제거하는 단계(S20)를 포함할 수 있다. 본 발명의 일 실시예에 따르면 상기 촉매 조성물은 물리적으로 단순 여과 및 흡착하는 단계를 통해 효율적으로 제거할 수 있기 때문에, 종래 기술의 루이스 산 촉매에 비해 사용 및 제거가 훨씬 용이하다.
본 발명의 일 실시예에 따르면, 상기 (S20) 단계는 액상 고무의 중합 후, 유기 용매를 제거하여 유기 용매를 올리고머 또는 중합체의 40중량% 이하, 20중량% 이하, 또는 5중량% 이하로 조절할 수 있다. 이어서, 유동성이 있는 중합체의 경우 80 메쉬 이상, 100 메쉬 이상, 또는 200 메쉬 이상의 유리 필터를 사용하여 불용성 물질을 여과 및 흡착해 주는 단계를 실시할 수 있다. 또는 실리카, 셀라이트 또는 제올라이트 필터를 사용하여 유동성이 있는 중합체를 통과시킴으로써 촉매를 제거할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 유동성이 작은 중합체의 경우 선형 알킬 용매, 예컨대 펜탄, 시클로펜탄, 헥산, 시클로헥산, 헵탄, 옥탄, 및 에테르 용매, 예컨대 디에틸에테르, 페트롤리움에테르로 이루어진 군으로부터 선택되는 1종 이상을 사용하여 유동성을 부여한 다음, 상기 유리 필터, 실리카, 셀라이트 또는 제올라이트 필터를 통해 여과 및 흡착해 주는 단계를 실시할 수 있다.
또한, 본 발명의 일 실시예에 따르면 상기 (S10) 단계에서 중합된 중합체는 펜탄, 시클로펜탄, 헥산, 시클로헥산, 헵탄, 옥탄, 디에틸에테르 또는 페트롤리움에테르 등의 유기용매에 용해시킨 후 수세하여 촉매를 제거할 수 있다.
또한, 본 발명의 일 실시예에 따르면 상기 (S10) 단계에서 중합된 중합체는 단순 여과 및 흡착 단계를 통해 화학식 1로 표시되는 화합물을 포함하는 촉매를 효율적으로 제거할 수 있으므로, 별도의 수세 단계를 수행하지 않을 수 있다.
또한, 본 발명의 일 실시예에 따르면 상기 액상 고무 제조방법은 상기 (S20) 단계 이후에, 잔류 용매를 건조시키는 단계(S30)를 더 포함할 수 있다. 구체적인 예로 상기 (S30) 단계의 건조온도는 30 ℃ 내지 200 ℃, 또는 40 ℃ 내지 150 ℃일 수 있고, 진공도는 300 torr 이하, 200 torr 이하, 또는 100 torr 이하일 수 있다. 이로써 목적하는 액상 고무를 효율적으로 수득할 수 있다.
또한, 본 발명은 상기 액상 고무 제조방법에 따라 제조되어, 공액디엔계 단량체 단위를 포함하는 액상 고무를 제공한다. 상기 액상 고무는 공액디엔계 단량체 단위를 단독으로 포함하거나, 공액디엔계 단량체 단위 및 방향족 비닐계 단량체 단위를 포함하고, 수평균 분자량이 100,000 g/mol 미만이며, 상온(23 ℃ ± 3 ℃)에서 액체 상태로 존재하고, 상기 공액디엔계 단량체 단위를 단독으로 포함하는 경우, 공액디엔계 단량체 단위의 트랜스-1,4 결합의 비율이 75% 이상이고, 시스-1,4 결합의 비율이 1 % 이하이며, 이외의 결합은 1,2-결합인 것일 수 있다.
본 발명의 일 실시예에 따르면 상기 액상 고무는 공액디엔계 단량체 단위를 단독으로 포함하는 디엔계 중합체, 또는 공액디엔계 단량체 단위 및 방향족 비닐계 단량체 단위를 포함하는 공중합체를 포함하는 것일 수 있다. 본 발명의 일 실시예에 따르면 상기 공액디엔계 단량체는 앞서 기재한 공액디엔계 단량체와 동일한 것일 수 있다.
본 발명의 일 실시예에 따르면 상기 공액디엔계 단량체 단위의 트랜스-1,4 결합의 비율이 75 몰% 이상이고, 시스-1,4 결합의 비율이 1 몰% 이하이며, 이외의 결합은 1,2-결합인 것일 수 있다.
본 발명의 일 실시예에 따르면 상기 공액디엔계 단량체가 이소프렌인 경우, 이소프렌 단위의 트랜스-1,4 결합의 비율은 90 몰% 이상, 95 몰% 이상, 98 몰% 이상, 또는 98 몰% 내지 100 몰%일 수 있다. 특히, 상기 공액디엔계 단량체가 이소프렌인 경우, 이소프렌 단위 내에 시스-1,4 결합은 존재하지 않을 수 있다. 이는 도 1에 나타낸 바와 같이 13C NMR 스펙트럼에서도 확인할 수 있다.
또한, 본 발명의 일 실시예에 따르면 상기 공액디엔계 단량체가 이소프렌인 경우, 트랜스-1,4 결합 이외에, 1,2-첨가 반응에 의한 구조가 일부 형성될 수 있는데, 이 때 하기 반응식 1에 나타난 바와 같이, 중합 중에 형성된 3차 탄소 양이온으로 인하여 1,2-첨가된 단량체 단위 사이에서 환형 구조가 형성될 수 있다. 따라서, 본 발명의 액상 고무 제조방법에 의하여 중합된 폴리이소프렌은 환형 구조를 포함할 수 있고, 이에 따라 폴리이소프렌의 열적 특성 및 점도 특성 등 물리적 성질이 변화할 수 있다. 이는 도 2에 나타낸 바와 같이, 1H NMR 스펙트럼에서도 확인할 수 있다.
[반응식 1]
Figure PCTKR2021004074-appb-I000007
또한, 본 발명의 일 실시예에 따르면, 상기 공액디엔계 단량체가 1,3-부타디엔인 경우, 1,3-부타디엔 단위의 트랜스-1,4 결합의 비율은 75 % 이상, 75 % 내지 90 %, 또는 78 % 내지 90 %일 수 있고, 시스-1,4 결합의 비율은 1 % 이하일 수 있으며, 이외의 결합은 1,2-결합인 것일 수 있다.
또한, 본 발명의 일 실시예에 따르면 상기 액상 고무는 중량평균 분자량이 1,000 g/mol 내지 20,000 g/mol이며, 수평균 분자량이 1,000 g/mol 내지 6,000 g/mol인 디엔계 중합체를 포함하는 것일 수 있다.
구체적인 예로, 상기 디엔계 중합체의 공액디엔계 단량체가 이소프렌인 경우 중량평균 분자량이 1,000 g/mol 내지 20,000 g/mol, 2,000 g/mol 내지 18,000 g/mol 또는 3,000 g/mol 내지 16,000 g/mol일 수 있고, 수평균 분자량이 1,000 g/mol 내지 6,000 g/mol, 1,500 g/mol 내지 6,000 g/mol 또는 2,000 g/mol 내지 6,000 g/mol일 수 있으며, 분자량 분포가 1.00 내지 5.00, 1.20 내지 4.50, 또는 1.50 내지 4.20일 수 있다.
또한, 구체적인 예로, 상기 디엔계 중합체의 공액디엔계 단량체가 1,3-부타디엔인 경우 중량평균 분자량이 1,000 g/mol 내지 20,000 g/mol, 3,000 g/mol 내지 10,000 g/mol 또는 5,000 g/mol 내지 7,000 g/mol일 수 있고, 수평균 분자량이 1,000 g/mol 내지 6,000 g/mol, 1,500 g/mol 내지 5,000 g/mol 또는 2,000 g/mol 내지 3,000 g/mol일 수 있으며, 분자량 분포가 1.00 내지 5.00, 2.00 내지 4.00, 또는 2.30 내지 3.00일 수 있다.
여기서 상기 중량평균 분자량과 수평균 분자량은 겔 투과형 크로마토그래피(GPC; gel permeation chromatography)로 분석되는 폴리스티렌 환산 분자량이며, 상기 분자량 분포는 (중량평균 분자량)/(수평균 분자량)의 비로부터 계산된 것이다.
또한, 본 발명의 일 실시예에 따르면 액상 고무가 상기 방향족 비닐계 단위를 포함하는 경우, 상기 액상 고무는 공액디엔계 단량체 단위 및 방향족 비닐계 단량체 단위를 포함하는 랜덤 공중합체 또는 폴리공액디엔 블록과 폴리 방향족 비닐계 블록을 포함하는 블록 공중합체일 수 있다. 본 발명의 일 실시예에 따르면 상기 방향족 비닐계 단량체는 앞서 기재한 방향족 비닐계 단량체와 동일한 것일 수 있다.
구체적인 예로, 상기 공액디엔계 단량체 단위 및 방향족 비닐계 단량체 단위를 포함하는 랜덤 공중합체는 폴리스티렌-rand-폴리이소프렌 공중합체일 수 있고, 이 경우 중량평균 분자량이 1,000 g/mol 내지 20,000 g/mol, 3,000 g/mol 내지 10,000 g/mol 또는 5,000 g/mol 내지 7,000 g/mol일 수 있고, 수평균 분자량이 1,000 g/mol 내지 6,000 g/mol, 1,500 g/mol 내지 5,000 g/mol 또는 2,000 g/mol 내지 3,000 g/mol일 수 있으며, 분자량 분포가 1.00 내지 5.00, 2.00 내지 4.00, 또는 2.30 내지 3.00일 수 있다.
또한, 구체적인 예로, 상기 폴리공액디엔 블록과 폴리 방향족 비닐계 블록을 포함하는 블록 공중합체는 폴리스티렌-b-폴리이소프렌 블록 공중합체일 수 있고, 이 경우 중량평균 분자량이 1,000 g/mol 내지 20,000 g/mol, 2,000 g/mol 내지 20,000 g/mol 또는 2,400 g/mol 내지 20,000 g/mol일 수 있고, 수평균 분자량이 1,000 g/mol 내지 6,000 g/mol, 1,000 g/mol 내지 5,000 g/mol 또는 1,100 g/mol 내지 2,700 g/mol일 수 있으며, 분자량 분포가 1.00 내지 5.00, 2.00 내지 4.00, 또는 2.00 내지 2.50일 수 있다.
또한, 본 발명의 일 실시예에 따르면 상기 방향족 비닐계 단량체를 포함하는 랜덤 공중합체 및 블록 공중합체에 있어서, 상기 공액디엔계 단량체가 이소프렌인 경우, 공액디엔계 단량체 단위 내에서 트랜스-1,4 결합 이외에, 1,2-첨가 반응에 의한 구조가 일부 형성될 수 있는데, 이 경우에도 상기 반응식 1에 나타난 바와 같이, 중합 중에 형성된 3차 탄소 양이온으로 인하여 1,2-첨가된 단량체 단위 사이에서 환형 구조가 형성될 수 있고, 이에 따라 본 발명의 액상 고무 제조방법에 의하여 중합된 폴리스티렌-rand-폴리이소프렌 공중합체 및 폴리스티렌-b-폴리이소프렌 블록 공중합체는 환형 구조를 포함할 수 있다. 이는 도 3에 나타낸 바와 같이, 1H NMR 스펙트럼에서도 확인할 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
제조예
글로브 박스에서 100 mg의 [H(Et2O)2][B(C6F5)4](Ashai Glass Co.)를 마그네틱바와 함께 바이알에 넣고 디클로로메탄 2mL에 용해시킨 다음, 3당량의 디부틸 에테르(Aldrich 구매)를 투입하고 30분 동안 진공 조건에서 교반하여 촉매 조성물을 제조하였다.
실시예
실시예 1-1 내지 1-5
글로브 박스에서 건조된 0.5 L의 반응 플라스크에 마그네틱 바를 넣고, 하기 표 1에 기재된 함량으로 용매를 투입하고, 이어서 하기 표 1에 기재된 함량으로 이소프렌을 실린지를 이용하여 투입한 후, 10 분 동안 교반하였다. 이어서, 상기 제조예에서 제조된 촉매 조성물을 상기 반응 플라스크에 투입하고, 23 ℃에서 30 분 동안 중합 반응을 실시한 뒤, 메탄올 1 g을 투입하고 반응을 종료하고, 용매를 제거하여 액상 고무를 수득하였고, 투입된 단량체 함량 대비 수득된 액상 고무의 함량으로부터 수득율을 계산하였다.
비교예 1-1 내지 1-3
글로브 박스에서 건조된 0.5 L의 반응 플라스크에 마그네틱 바를 넣고, 하기 표 2에 기재된 함량으로 용매를 투입하고, 이어서 하기 표 2에 기재된 함량으로 이소프렌을 실린지를 이용하여 투입한 후, 10 분 동안 교반하였다. 이어서, 촉매로 n-부틸리튬을 상기 투입된 용매와 동일한 용매에 용해시켜, 상기 반응 플라스크에 투입하고, 1 시간 동안 중합 반응을 실시한 뒤, 메탄올 1 g을 투입하고 반응을 종료하고, 용매를 제거하여 액상 고무를 수득하였고, 투입된 단량체 함량 대비 수득된 액상 고무의 함량으로부터 수득율을 계산하였다.
구분 실시예
1-1 1-2 1-3 1-4 1-53)
용매 종류 Toluene MC2) Toluene Toluene MC2)/
Toluene
함량(중량%) 80 80 60 60 60
단량체 종류 IP1) IP1) IP1) IP1) IP1)
함량(중량%) 20 20 40 40 40
촉매 종류 제조예 제조예 제조예 제조예 제조예
단량체 함량 100 중량부 대비 촉매 투입양 (중량부) 0.01 0.01 0.01 0.02 0.01
수득율(%) >99 >99 >99 >99 >99
1) IP: Isoprene
2) MC: Dichloromethane
3) MC:Toluene 중량비 = 1:1
구분 비교예
1-1 1-2 1-3
용매 종류 Toluene Hexane MC2)
함량(중량%) 80 80 80
단량체 종류 IP1) IP1) IP1)
함량(중량%) 20 20 20
촉매 종류 n-BuLi n-BuLi n-BuLi
단량체 함량 100 중량부 대비 촉매 투입양 (중량부) 0.01 0.01 0.01
수득율(%) 97 15 -
1) IP: Isoprene
2) MC: Dichloromethane
실시예 2
글로브 박스에서 건조된 0.5 L의 앤드류 플라스크에 마그네틱 바를 넣고, 하기 표 3에 기재된 함량으로 1,3-부타디엔을 투입하고, -20 ℃에서 응축시켰다. 이 후, 하기 표 3에 기재된 함량으로 용매를 실린지를 이용하여 앤드류 플라스크에 투입하고, 23 ℃로 승온하면서 교반하였다. 이어서, 상기 제조예에서 제조된 촉매 조성물을 상기 앤드류 플라스크에 투입하고, 23 ℃에서 60 분 동안 중합 반응을 실시한 뒤, 메탄올 1 g을 투입하고 반응을 종료하고, 용매를 제거하여 액상 고무를 수득하였고, 투입된 단량체 함량 대비 수득된 액상 고무의 함량으로부터 수득율을 계산하였다.
구분 실시예
2
용매 종류 MC2)
함량(중량%) 80
단량체 종류 BD4)
함량(중량%) 20
단량체 함량 100 중량부 대비 촉매 투입양
(중량부)
0.05
수득율(%) 75
2) MC: Dichloromethane
4) BD: 1,3-butadiene
실시예 3-1
글로브 박스에서 건조된 0.5 L 의 반응 플라스크에 마그네틱 바를 넣고, 하기 표 4에 기재된 함량으로 용매를 투입하고, 이어서 하기 표 4에 기재된 함량으로 스티렌 및 이소프렌을 실린지를 이용하여 투입한 후, 10 분 동안 교반하였다. 이어서, 상기 제조예에서 제조된 촉매 조성물을 상기 반응 플라스크에 투입하고, 23 ℃에서 10 분 동안 중합 반응을 실시한 뒤, 메탄올 1 g을 투입하고 반응을 종료하고, 용매를 제거하여 액상 고무를 수득하였고, 투입된 단량체 함량 대비 수득된 액상 고무의 함량으로부터 수득율을 계산하였다.
실시예 3-2 및 3-3
글로브 박스에서 건조된 0.5 L의 반응 플라스크에 마그네틱 바를 넣고, 하기 표 4에 기재된 함량으로 용매를 투입하고, 이어서 하기 표 4에 기재된 함량으로 스티렌을 실린지를 이용하여 투입한 후, 10 분 동안 교반하였다. 이어서, 상기 제조예에서 제조된 촉매 조성물을 상기 반응 플라스크에 투입하고, 23 ℃에서 10 분 동안 중합 반응을 실시한 뒤, 하기 표 4에 기재된 함량으로 이소프렌을 실린지를 이용하여 투입한 후, 10 분 동안 교반하였다. 이 후, 메탄올 1 g을 투입하고 반응을 종료하고, 용매를 제거하여 액상 고무를 수득하였고, 투입된 단량체 함량 대비 수득된 액상 고무의 함량으로부터 수득율을 계산하였다.
구분 실시예
3-1 3-2 3-3
용매 종류 Toluene MC2) Toluene
함량(중량%) 80 80 80
단량체 종류 SM5) SM5) SM5)
함량(중량%) 10 10 10
종류 IP1) IP1) IP1)
함량(중량%) 10 10 10
단량체 함량 100 중량부 대비 촉매 투입양
(중량부)
0.05 0.05 0.05
수득율(%) >99 >99 >99
공중합체 구조6) PS-rand-PIP PS-b-PIP PS-b-PIP
1) IP: Isoprene
2) MC: Dichloromethane
5) SM: Styrene
6) rand는 랜덤 공중합체, b는 블록 공중합체
실험예
실험예 1
상기 실시예 1-1 내지 1-5 및 비교예 1-1 내지 1-3에서 수득된 액상 고무에 대하여 수평균 분자량, 중량평균 분자량, 분자량 분포 및 트랜스-1,4 결합 함량을 하기의 방법으로 측정하여 하기 표 5 및 6에 나타내었다.
(1) 수평균 분자량, 중량평균 분자량, 분자량 분포
하기 겔 투과 크로마토그래피(GPC) 분석 조건 하에 측정하여 수평균 분자량(Mn), 중량평균 분자량(Mw), 피크 분자량(Mp)을 측정하고, (중량평균 분자량)/(수평균 분자량) 값으로 분자량 분포를 계산하였다.
- 컬럼: PL MiniMixed B Х 2
- 용매: THF
- 유속: 0.3 ml/min
- 시료농도: 2.0 mg/ml
- 주입량: 10 μL
- 컬럼온도: 40 ℃
- Detector: Agilent RI detector
- Standard: Polystyrene (3차 함수로 보정)
- Data processing: ChemStation
(2) 트랜스-1,4 결합 함량
실시예 및 비교예에서 수득된 액상 고무를 NMR 측정을 위한 용매인 CDCl3에 용해시키고, Varian社 500 MHz NMR을 이용하여 1H NMR을 측정하고, 결합의 위치에 따라 트랜스-1,4 결합 및 시스-1,4 결합 형태를 확인하여, 하기 수학식 1에 의해 트랜스-1,4 결합 함량(몰%)을 계산하였다. 비교예의 시스-1,4 결합 함량과 1,2-단위 결합 함량도 동일한 방법으로 계산하였다.
[수학식 1]
트랜스-1,4 결합 함량(몰%) = (트랜스-1,4 결합 함량(몰)/생성된 공액디엔 결합 총 함량(몰)) X 100
구분 실시예
1-1 1-2 1-3 1-4 1-5
분자량 Mn(g/mol) 2,146 5,622 2,632 2,562 3,784
Mw(g/mol) 3,377 14,566 8,592 7,293 15,727
PDI 1.57 2.59 3.26 2.84 4.15
결합 형태 트랜스-1,4 결합 함량(몰%) >98 >98 >98 >98 >98
시스-1,4 결합 함량(몰%) <1 <1 <1 <1 <1
1,2-단위 결합 함량(몰%) <1 <1 <1 <1 <1
상온에서 중합체 상태 액상 액상 액상 액상 액상
구분 비교예
1-1 1-2 1-3
분자량 Mn(g/mol) 42,940 21,944 -
Mw(g/mol) 48,310 31,185 -
PDI 1.1 1.4 -
결합 형태 트랜스-1,4 결합 함량(몰%) 5 4 -
시스-1,4 결합 함량(몰%) 75 76 -
1,2-단위 결합 함량(몰%) 20 20 -
상온에서 중합체 상태 액상 액상 -
상기 표 5 및 6에 나타낸 바와 같이, 본 발명에 따르는 경우 적은 양의 촉매를 이용하여 트랜스-1,4 결합의 선택성이 높은 액상 고무를 높은 수득률로 수득할 수 있음을 확인할 수 있었다.
반면, 비교예 1-1 및 1-2와 같이 n-부틸리튬을 이용한 음이온 중합에 의하는 경우, 시스-1,4 결합 함량이 매우 높고, 트랜스-1,4 결합의 선택성이 극히 낮은 것을 확인할 수 있었다. 또한, 실시예 대비 동일한 함량의 촉매를 투입하였음에도 4배 내지 20배 수준의 분자량을 갖는 고무가 제조되어, 유사 수준의 분자량을 갖는 액상 고무를 제조하기 위해서는 10배 이상의 촉매가 필요한 것을 확인할 수 있었다. 더욱이, 10배 이상의 촉매를 투입하는 경우 촉매로 인한 발열 제어 문제가 발생할 것으로 예상된다. 또한, 비교예 1-3의 경우, 디클로로메탄 용매 상에서는 중합을 진행할 수 없었다.
실험예 2
상기 실시예 2에서 수득된 액상 고무에 대하여 수평균 분자량, 중량평균 분자량, 분자량 분포, 트랜스-1,4 결합 함량 및 1,2-단위 결합 함량을 상기 실험예 1과 동일한 방법으로 측정하여 하기 표 7에 나타내었다. 여기서 1,2-단위 결합 함량은 생성된 공액디엔 결합 총 함량에서 트랜스-1,4 결합 함량 및 시스-1,4 결합 함량을 제외한 잔부의 함량으로부터 계산하였다.
구분 실시예
2
분자량 Mn(g/mol) 2,576
Mw(g/mol) 6,678
PDI 2.59
결합 형태 트랜스-1,4 결합 함량(몰%) 78
시스-1,4 결합 함량(몰%) 0
1,2-단위 결합 함량(몰%) 22
상기 표 7 나타낸 바와 같이, 본 발명에 따르는 경우 적은 양의 촉매를 이용하여 트랜스-1,4 결합의 선택성이 높은 액상 고무를 높은 수득률로 수득할 수 있음을 확인할 수 있었다.
실험예 3
상기 실시예 3-1 내지 3-3에서 수득된 액상 고무에 대하여 수평균 분자량, 중량평균 분자량, 분자량 분포 및 트랜스-1,4 결합 함량을 상기 실험예 1과 동일한 방법으로 측정하여 하기 표 8에 나타내었다.
구분 실시예
3-1 3-2 3-3
분자량 Mn(g/mol) 2,576 2,685 1,195
Mw(g/mol) 6,678 19,544 2,499
PDI 2.59 7.2 2.09
결합 형태 트랜스-1,4 결합 함량(몰%) >98 >98 >98
시스-1,4 결합 함량(몰%) <1 <1 <1
1,2-단위 결합 함량(몰%) <1 <1 <1
상기 표 8에 나타낸 바와 같이, 본 발명에 따르는 경우 적은 양의 촉매를 이용하여 액상 고무를 제조할 수 있음을 확인할 수 있었다.

Claims (12)

  1. 유기 용매 및 촉매 조성물의 존재 하에, 공액디엔계 단량체를 중합 반응시키는 단계(S10)를 포함하고,
    상기 촉매 조성물은 하기 화학식 1로 표시되는 화합물을 포함하는 촉매를 포함하는 것인 액상 고무 제조방법:
    [화학식 1]
    Figure PCTKR2021004074-appb-I000008
    상기 화학식 1에서,
    R은 탄소수 1 내지 12의 알킬기이고,
    R1 내지 R4는 각각 독립적으로 수소, 할로겐기, 또는 치환 또는 비치환된 탄소수 1 내지 20의 알킬기이고,
    o, p, q 및 r은 각각 독립적으로 1 내지 5의 정수이다.
  2. 제1항에 있어서,
    R1 내지 R4는 각각 독립적으로 수소, 할로겐기, 또는 할로겐기로 치환된 탄소수 1 내지 12의 알킬기인 액상 고무 제조방법.
  3. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물 중 유기 보레이트는 테트라키스(페닐)보레이트, 테트라키스(펜타플루오로페닐)보레이트, 테트라키스[3,5-비스(트리플루오로메틸)페닐]보레이트 및 이의 유도체로 이루어진 군으로부터 선택된 1종 이상인 액상 고무 제조방법.
  4. 제1항에 있어서,
    상기 촉매 조성물은 알루미늄계 조촉매를 포함하는 것인 액상 고무 제조방법.
  5. 제4항에 있어서,
    상기 알루미늄계 조촉매는 하기 화학식 2 내지 화학식 4로 표시되는 알루미늄계 화합물로부터 선택된 1종 이상인 액상 고무 제조방법:
    [화학식 2]
    Figure PCTKR2021004074-appb-I000009
    [화학식 3]
    Figure PCTKR2021004074-appb-I000010
    [화학식 4]
    Figure PCTKR2021004074-appb-I000011
    상기 화학식 2 내지 4에서,
    Ra, R5 및 R6는 각각 독립적으로 탄소수 1 내지 20의 1가 탄화수소기이고,
    Z는 할로겐기이며,
    m은 1 내지 3의 정수이고,
    a 및 b는 각각 독립적으로 1 내지 100의 정수이다.
  6. 제4항에 있어서,
    상기 알루미늄계 조촉매는 메틸알루미녹산, 변성 메틸알루미녹산, 트리메틸알루미늄, 트리에틸알루미늄, 트리-n-프로필알루미늄, 트리이소프로필알루미늄, 트리-n-부틸알루미늄, 트리이소부틸알루미늄, 트리-t-부틸알루미늄, 트리펜틸알루미늄, 트리헥실알루미늄, 트리시클로헥실알루미늄, 트리옥틸알루미늄, 트리-2-에틸헥실알루미늄, 디메틸알루미늄클로라이드, 디에틸알루미늄클로라이드, 디이소프로필알루미늄클로라이드, 디이소부틸알루미늄클로라이드, 디메틸알루미늄브로마이드, 메틸알루미늄디클로라이드, 에틸알루미늄디클로라이드, 이소프로필알루미늄디클로라이드, 알루미늄 클로라이드 및 에틸알루미늄디브로마이드로 이루어진 군으로부터 선택된 1종 이상인 액상 고무 제조방법.
  7. 제4항에 있어서,
    상기 화학식 1로 표시되는 화합물을 포함하는 촉매 및 알루미늄계 조촉매의 중량비는 1:0.1 내지 1:50인 액상 고무 제조방법.
  8. 제1항에 있어서,
    상기 촉매 조성물은 유기 용매 및 공액디엔계 단량체의 함량 100 중량부에 대하여 0.1 중량부 이하로 포함되는 것인 액상 고무 제조방법.
  9. 제1항에 있어서,
    상기 (S10) 단계의 중합은 방향족 비닐계 단량체를 포함하여 실시되는 것인 액상 고무 제조방법.
  10. 제1항에 있어서,
    상기 (S10) 단계에 앞서, 유기 용매 및 촉매 조성물의 존재 하에, 방향족 비닐계 단량체를 중합 반응시키는 단계(S1)을 포함하는 것인 액상 고무 제조방법.
  11. 공액디엔계 단량체 단위를 단독으로 포함하거나, 공액디엔계 단량체 단위 및 방향족 비닐계 단량체 단위를 포함하고,
    수평균 분자량이 100,000 g/mol 미만이며,
    상온(23 ℃ ± 3 ℃)에서 액체 상태로 존재하고,
    상기 공액디엔계 단량체 단위를 단독으로 포함하는 경우, 공액디엔계 단량체 단위의 트랜스-1,4 결합의 비율이 75% 이상이고, 시스-1,4 결합의 비율이 1 % 이하이며, 이외의 결합은 1,2-결합인 액상 고무.
  12. 제11항에 있어서,
    상기 액상 고무는 중량평균 분자량이 1,000 g/mol 내지 20,000 g/mol이며, 수평균 분자량이 1,000 g/mol 내지 6,000 g/mol인 디엔계 중합체를 포함하는 것인 액상 고무.
PCT/KR2021/004074 2020-05-22 2021-04-01 액상 고무 제조방법 및 이로부터 제조된 액상 고무 WO2021235678A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180004448.9A CN114127143B (zh) 2020-05-22 2021-04-01 制备液体橡胶的方法和由此制备的液体橡胶
US17/625,576 US20220289875A1 (en) 2020-05-22 2021-04-01 Method for Preparing Liquid Rubber and Liquid Rubber Prepared Therefrom
EP21809322.7A EP3981803A4 (en) 2020-05-22 2021-04-01 LIQUID RUBBER MANUFACTURING PROCESS AND LIQUID RUBBER MANUFACTURED THEREFORE
JP2021571694A JP7324877B2 (ja) 2020-05-22 2021-04-01 液状ゴムの製造方法およびそれから製造された液状ゴム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0061492 2020-05-22
KR20200061492 2020-05-22

Publications (1)

Publication Number Publication Date
WO2021235678A1 true WO2021235678A1 (ko) 2021-11-25

Family

ID=78707967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/004074 WO2021235678A1 (ko) 2020-05-22 2021-04-01 액상 고무 제조방법 및 이로부터 제조된 액상 고무

Country Status (6)

Country Link
US (1) US20220289875A1 (ko)
EP (1) EP3981803A4 (ko)
JP (1) JP7324877B2 (ko)
KR (1) KR20210144566A (ko)
CN (1) CN114127143B (ko)
WO (1) WO2021235678A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021040384A1 (ko) * 2019-08-26 2021-03-04 주식회사 엘지화학 촉매 조성물 및 이를 이용한 탄화수소 수지의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119708A1 (ja) * 2009-04-16 2010-10-21 株式会社ブリヂストン チオール含有液状ゴム組成物
KR20170068486A (ko) 2014-10-06 2017-06-19 스미토모 고무 고교 가부시키가이샤 타이어용의 고무 조성물, 공기 타이어 및 에어리스 타이어
CN108440698A (zh) * 2018-04-28 2018-08-24 中国科学院青岛生物能源与过程研究所 一种高反式-1,4-聚异戊二烯的制备方法
CN108690156A (zh) * 2018-04-28 2018-10-23 青岛科技大学 一种高单体转化率合成反式-1,4-聚异戊二烯的新方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136507A (ja) * 1984-12-07 1986-06-24 Kuraray Co Ltd トランス共役ジエンオリゴマ−の製造方法
JP3746339B2 (ja) * 1996-11-07 2006-02-15 三井化学株式会社 液状ゴム、その液状ゴム組成物およびその組成物からなる加硫ゴム
JP4040792B2 (ja) * 1999-06-01 2008-01-30 株式会社日本触媒 カチオン重合方法及びそれに用いる触媒
WO2003064484A1 (en) * 2002-01-28 2003-08-07 Dow Global Technologies Inc. Metal complex compositions based on cobalt and their use as polymerization catalyst for olefins and dienes
DE102005055817A1 (de) * 2005-11-21 2007-05-24 Basf Ag Verfahren zur Herstellung von hochreaktiven Isobutenhomo- oder -copolymeren mittels borhaltiger Katalysatorkomplexe
JP5237565B2 (ja) * 2007-02-09 2013-07-17 株式会社ブリヂストン 光硬化性液状ゴム組成物
CN101812151A (zh) * 2010-05-26 2010-08-25 中国科学院长春应用化学研究所 一种聚丁二烯的制备方法
CN103059368A (zh) * 2011-10-21 2013-04-24 黄宝琛 低分子反式-1,4-聚异戊二烯蜡的应用
CN103204973B (zh) 2012-01-12 2017-07-25 青岛科技大学 一种低分子量反式‑1,4‑聚二烯烃共聚物及其制备方法和用途
CN102887966B (zh) * 2012-10-30 2014-09-03 中国科学院长春应用化学研究所 一种稀土催化体系及在制备共轭二烯液体橡胶上的应用
CN107805288A (zh) * 2017-11-06 2018-03-16 山东玉皇化工有限公司 一种低分子量液体聚二烯烃的制备方法
CN107915797B (zh) 2017-11-22 2019-12-31 山东玉皇化工有限公司 液体聚丁二烯橡胶、环氧化液体聚丁二烯橡胶及其制备方法
CN110563861B (zh) * 2018-06-05 2022-02-01 中国石油天然气股份有限公司 一种端环氧基聚二烯烃液体橡胶及其制备方法
WO2021040384A1 (ko) * 2019-08-26 2021-03-04 주식회사 엘지화학 촉매 조성물 및 이를 이용한 탄화수소 수지의 제조방법
US20220195079A1 (en) * 2019-12-06 2022-06-23 Lg Chem, Ltd. Catalyst Composition and Method for Preparing Polyisobutene Using the Same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119708A1 (ja) * 2009-04-16 2010-10-21 株式会社ブリヂストン チオール含有液状ゴム組成物
KR20170068486A (ko) 2014-10-06 2017-06-19 스미토모 고무 고교 가부시키가이샤 타이어용의 고무 조성물, 공기 타이어 및 에어리스 타이어
CN108440698A (zh) * 2018-04-28 2018-08-24 中国科学院青岛生物能源与过程研究所 一种高反式-1,4-聚异戊二烯的制备方法
CN108690156A (zh) * 2018-04-28 2018-10-23 青岛科技大学 一种高单体转化率合成反式-1,4-聚异戊二烯的新方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CÁMPORA JUAN, ORTIZ DE LA TABLA LAURA, PALMA PILAR, ÁLVAREZ ELEUTERIO, LAHOZ FERNANDO, MEREITER KURT: "Synthesis and Catalytic Activity of Cationic Allyl Complexes of Nickel Stabilized by a Single N-Heterocyclic Carbene Ligand", ORGANOMETALLICS, AMERICAN CHEMICAL SOCIETY, vol. 25, no. 14, 1 July 2006 (2006-07-01), pages 3314 - 3316, XP055869043, ISSN: 0276-7333, DOI: 10.1021/om060439l *
NIU QINGTAO, XIUBO JIANG, AIHUA HE: "Synthesis of spherical trans-1,4-polyisoprene/trans-1,4-poly (butadiene-co-isoprene) rubber alloys within reactor", POLYMER, vol. 55, 13 March 2014 (2014-03-13), pages 2146 - 2152, XP055869039, DOI: 10.1016/j.polymer.2014.03.013 *
PETER JUTZI , CHRISTIAN MULLER , ANJA STAMMLER , HANS-GEORG STAMMLER: "Synthesis, Crystal Structure, and Application of the Oxonium Acid [H(OEt2)2]+[B(C6F5)4]", ORGANOMETALLICS, AMERICAN CHEMICAL SOCIETY, vol. 19, no. 7, 1 January 2000 (2000-01-01), pages 1442 - 1444, XP001037590, ISSN: 0276-7333, DOI: 10.1021/om990612w *
See also references of EP3981803A4

Also Published As

Publication number Publication date
EP3981803A4 (en) 2023-04-19
CN114127143A (zh) 2022-03-01
US20220289875A1 (en) 2022-09-15
KR20210144566A (ko) 2021-11-30
JP2022537911A (ja) 2022-08-31
CN114127143B (zh) 2024-02-23
EP3981803A1 (en) 2022-04-13
JP7324877B2 (ja) 2023-08-10

Similar Documents

Publication Publication Date Title
US5502130A (en) Anionic polymerization initiators containing adducts of cyclic secondary amines and conjugated dienes, and products therefrom
WO2015194786A1 (ko) 변성 공액 디엔계 중합체, 이를 포함하는 변성 고무 조성물 및 변성 공액 디엔계 중합체의 제조방법
WO2019078459A1 (ko) 변성 공액디엔계 중합체의 제조방법
WO2021235678A1 (ko) 액상 고무 제조방법 및 이로부터 제조된 액상 고무
US6706830B2 (en) Copolymerization of conjugated dienes with non-conjugated olefins by means of rare earth catalysts
WO2017111487A1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2018084546A1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2019083173A1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2019103383A1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2016111445A1 (ko) 변성 공역디엔계 중합체, 이를 포함하는 변성 고무 조성물 및 변성 공역디엔계 중합체의 제조방법
WO2019078653A2 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2021010718A1 (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
WO2019083092A1 (ko) 연속식 중합에 의한 공액디엔계 중합체의 제조방법
US20110098434A1 (en) Isoprene-based polymer cyclized product, alicyclic polymer, and optical resin
WO2016080764A1 (ko) 공액 디엔의 중합용 촉매 조성물
WO2018008911A1 (ko) 변성제, 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2021040384A1 (ko) 촉매 조성물 및 이를 이용한 탄화수소 수지의 제조방법
WO2021206345A1 (ko) 촉매 조성물 및 이를 이용한 이소부텐계 중합체의 제조방법
WO2016209046A1 (ko) 공액 디엔계 중합체 제조용 촉매 조성물 및 이를 이용하여 제조된 공액 디엔계 중합체
WO2016080766A1 (ko) 공액 디엔계 중합체의 제조방법
WO2016209042A1 (ko) 공액 디엔계 중합체 제조용 촉매 조성물 및 이를 이용하여 제조된 공액 디엔계 중합체
KR20190049433A (ko) 세척액 조성물 및 이를 이용한 중합 장치 세척 방법
WO2021206250A1 (ko) 촉매 조성물, 이를 포함하는 세척액 조성물 및 이를 이용한 중합장치의 세척방법
WO2018008912A1 (ko) 변성제, 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2021086039A1 (ko) 변성제, 변성 공액디엔계 중합체 및 이의 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021571694

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21809322

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021809322

Country of ref document: EP

Effective date: 20220104

NENP Non-entry into the national phase

Ref country code: DE