WO2019083173A1 - 변성 공액디엔계 중합체 및 이의 제조방법 - Google Patents

변성 공액디엔계 중합체 및 이의 제조방법

Info

Publication number
WO2019083173A1
WO2019083173A1 PCT/KR2018/011302 KR2018011302W WO2019083173A1 WO 2019083173 A1 WO2019083173 A1 WO 2019083173A1 KR 2018011302 W KR2018011302 W KR 2018011302W WO 2019083173 A1 WO2019083173 A1 WO 2019083173A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
conjugated diene
hydride
aluminum hydride
Prior art date
Application number
PCT/KR2018/011302
Other languages
English (en)
French (fr)
Inventor
배효진
김수화
안정헌
강석연
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP18870421.7A priority Critical patent/EP3539994B1/en
Priority to US16/469,814 priority patent/US11041025B2/en
Priority to JP2019552918A priority patent/JP6857746B2/ja
Priority to CN201880005150.8A priority patent/CN110099930B/zh
Publication of WO2019083173A1 publication Critical patent/WO2019083173A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F136/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F136/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F136/04Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F136/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/54Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with other compounds thereof
    • C08F4/545Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with other compounds thereof rare earths being present, e.g. triethylaluminium + neodymium octanoate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer

Definitions

  • the present invention relates to a modified conjugated diene polymer having a high modification ratio with improved compatibility with a filler, and a method for producing the modified conjugated diene polymer.
  • a method for increasing the dispersibility of an inorganic filler such as silica or carbon black in a rubber composition in which a polymerizable active site of a conjugated diene polymer obtained by anion polymerization using organolithium is reacted with an inorganic filler
  • a method of modifying with a functional group has been developed. Specifically, a method of modifying the polymerization active terminal of the conjugated diene-based polymer with a tin-based compound, a method of introducing an amino group, or a method of modifying the polymerization terminal with an alkoxysilane derivative have been proposed.
  • a living polymer obtained by coordination polymerization using a catalyst containing a lanthanide-based rare earth element compound has been developed to modify the living active terminal by a specific coupling agent or denaturant.
  • a catalyst containing a conventionally known lanthanide-based rare earth element compound the activity of the resulting living end is weak and the terminal modification ratio is low, so that the effect of improving the physical properties of the rubber composition is insignificant.
  • the present invention has been made to overcome the problems of the prior art, and it is an object of the present invention to provide a modified conjugated diene polymer having an excellent affinity with a filler and a high modification ratio with improved compounding properties.
  • the present invention also provides a process for producing the modified conjugated diene polymer.
  • the present invention provides a modified conjugated diene polymer comprising a functional group derived from a compound represented by the following general formula (1) and having a modification ratio of 20 mol% to 50 mol%
  • R 1 and R 3 are each independently a group selected from the group consisting of a halogen group, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, and an aryl group having 6 to 30 carbon atoms and having 1 to 10 carbon atoms A trivalent hydrocarbon group; Or an unsubstituted divalent hydrocarbon group of 1 to 10 carbon atoms,
  • R 2 is a C 1-10 hydrocarbon group substituted with -R 6 COOR 7 ,
  • R 4 and R 6 are single bonds
  • R 7 is an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms,
  • R 9 to R 11 are each independently hydrogen or an alkyl group having 1 to 20 carbon atoms.
  • the present invention also relates to a method for producing an activated carbon comprising the steps of: polymerizing a conjugated diene monomer in the presence of a lanthanide-based rare earth element catalyst composition to prepare an active polymer containing an organic metal moiety; And reacting the active polymer with a compound represented by the following formula (1), wherein the lanthanide series rare earth element catalyst composition comprises a lanthanide series rare earth element-containing compound, a first alkylating agent, a second alkylating agent, a halide and a conjugated diene monomer In a molar ratio of 1: 100 to 200: 40 to 60: 2 to 4: 20 to 50, wherein the modified conjugated diene-
  • R 1 and R 3 are each independently a group selected from the group consisting of a halogen group, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, and an aryl group having 6 to 30 carbon atoms and having 1 to 10 carbon atoms A trivalent hydrocarbon group; Or an unsubstituted divalent hydrocarbon group of 1 to 10 carbon atoms,
  • R 2 is a tricyclic hydrocarbon group of 1 to 10 substituted with -R 6 COOR 7 ,
  • R 4 and R 6 are single bonds
  • R 7 is an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms,
  • R 9 to R 11 are each independently hydrogen or an alkyl group having 1 to 20 carbon atoms.
  • the modified conjugated diene polymer according to the present invention contains at least one functional group-derived functional group represented by the formula (1), specifically a cyclic tertiary amine group which is a filler affinity functional group capable of enhancing affinity with a filler, Can be excellent in affinity, and can be applied to a rubber composition to exhibit excellent processability, tensile strength and viscoelasticity.
  • a functional group-derived functional group represented by the formula (1) specifically a cyclic tertiary amine group which is a filler affinity functional group capable of enhancing affinity with a filler, Can be excellent in affinity, and can be applied to a rubber composition to exhibit excellent processability, tensile strength and viscoelasticity.
  • the modified conjugated diene polymer according to one embodiment of the present invention can be prepared in the presence of the catalyst composition according to the present invention, so that the compound-derived functional group represented by the formula (1) can be easily introduced to at least one end of the polymer chain, Therefore, it can have a high rate of change.
  • substituted means that the hydrogen of a functional group, an atomic group or a compound is substituted with a specific substituent, and when a hydrogen atom of a functional group, an atomic group or a compound is substituted with a specific substituent, One or more than two substituents may be present depending on the number of hydrogen atoms. When a plurality of substituents are present, the respective substituents may be the same as or different from each other.
  • alkyl group used in the present invention may mean a monovalent aliphatic saturated hydrocarbon and includes linear alkyl groups such as methyl, ethyl, propyl and butyl, and isopropyl, sec-butyl, , Tert-butyl, and neo-pentyl.
  • alkyl &quot alkyl "
  • alkylene group used in the present invention may mean a bivalent aliphatic saturated hydrocarbon such as methylene, ethylene, propylene, and butylene.
  • cycloalkyl group may mean a cyclic saturated hydrocarbon or a cyclic unsaturated hydrocarbon containing one or more unsaturated bonds.
  • aryl group used in the present invention means a cyclic aromatic hydrocarbon, and may be a monocyclic aromatic hydrocarbon having one ring formed therein or a polycyclic aromatic hydrocarbon having two or more rings bonded thereto polycyclic aromatic hydrocarbons.
  • derived unit and " derived functional group” used in the present invention may refer to a component, structure, or the substance itself resulting from a substance.
  • monovalent hydrocarbon group means a monovalent substituent derived from a hydrocarbon group, and includes, for example, alkyl groups, alkenyl groups, alkynyl groups, cycloalkyl groups, cycloalkyl groups containing at least one unsaturated bond, And the monovalent atomic group may have a linear or branched structure depending on the structure of the bond.
  • divalent hydrocarbon group used in the present invention indicates a divalent substituent derived from a hydrocarbon group, and includes, for example, an alkylene group, an alkenylene group, an alkynylene group, a cycloalkylene group, a cycloalkyl group containing at least one unsaturated bond And a bivalent atomic group in which carbon and hydrogen are bonded, such as a phenanthrene group, a phenanthrene group, a phenanthrene group, a phenanthrene group, a phenanthrene group and a phenanthrene group.
  • the present invention provides a modified conjugated diene polymer having a high modification ratio with improved compatibility with a filler.
  • the modified conjugated diene polymer according to one embodiment of the present invention comprises a functional group derived from a compound represented by the following general formula (1), and has a modification ratio of 20 mol% to 50 mol%.
  • R 1 and R 3 are each independently a group selected from the group consisting of a halogen group, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, and an aryl group having 6 to 30 carbon atoms and having 1 to 10 carbon atoms A trivalent hydrocarbon group; Or an unsubstituted divalent hydrocarbon group of 1 to 10 carbon atoms,
  • R 2 is a C 1-10 hydrocarbon group substituted with -R 6 COOR 7 ,
  • R 4 and R 6 are single bonds
  • R 7 is an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms,
  • R 9 to R 11 are each independently hydrogen or an alkyl group having 1 to 20 carbon atoms.
  • R 1 and R 3 are each independently a substituted or unsubstituted C 3 -C 10 hydrocarbon group or an unsubstituted C 1 -C 10 divalent hydrocarbon group, and R 1 and R 3 are each independently an unsubstituted divalent hydrocarbon having 1 to 10 carbon atoms, R 1 and R 3 are each an alkylene group having 1 to 10 carbon atoms such as a methylene group, an ethylene group or a propylene group; An arylene group having 6 to 10 carbon atoms such as a phenylene group and the like.
  • R 1 and R 3 are each independently if the trivalent hydrocarbon group having 1 to 10 carbon atoms substituted with a substituent, wherein R 1 and R 3 are each independently has 1 or more hydrogen atom of the substituent bonded to the carbon atoms in the hydrocarbon group ,
  • the substituent is at least one selected from the group consisting of a halogen group, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, and an aryl group having 6 to 30 carbon atoms, An alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 6 to 12 carbon atoms, and an aryl group having 6 to 12 carbon atoms.
  • trivalent hydrocarbon group substituted with a substituent refers to a hydrocarbon group having 3 substituents in total from a bond (divalent) in the ring containing N atom and a bond (monovalent) with the above-defined substituent .
  • R 2 is a trivalent hydrocarbon group having 1 to 10 carbon atoms substituted with -R 6 COOR 7 wherein R 6 is a single bond and R 7 is an alkyl group having 1 to 20 carbon atoms or an alkyl group having 3 to 20 carbon atoms, Lt; / RTI > cycloalkyl group.
  • single bond means a single covalent bond itself, which does not include a separate atom or a molecular end.
  • R 1 and R 3 in the general formula (1) are each independently an alkylene group having 1 to 10 carbon atoms
  • R 2 is a trivalent hydrocarbon having 1 to 3 carbon atoms substituted with -R 6 COOR 7
  • R 4 and R 6 are single bonds
  • R 7 is an alkyl group having 1 to 20 carbon atoms
  • R 9 to R 11 each independently may be an alkyl group having 1 to 20 carbon atoms, specifically, R 1 and R 3 are each independently a carbon number of 1 to 3 alkylene group
  • R 2 is a 3-substituted with -R 6 COOR 7 is a hydrocarbon group having a carbon number of 1, R 4 and R 6 is a single bond
  • R 7 is a group having 1 to 6 carbon atoms
  • R 9 to R 11 each independently represent an alkyl group having 1 to 10 carbon atoms.
  • the compound represented by Formula 1 may be one selected from the group consisting of compounds represented by Chemical Formulas 1-1 to 1-3.
  • the modified conjugated diene polymer according to one embodiment of the present invention comprises at least one functional group-derived functional group represented by the formula (1), specifically, a cyclic tertiary amine group which is a filler affinity functional group capable of enhancing affinity with a filler It is possible to prevent the aggregation between the fillers and improve the dispersibility of the fillers.
  • a cyclic tertiary amine group which is a filler affinity functional group capable of enhancing affinity with a filler It is possible to prevent the aggregation between the fillers and improve the dispersibility of the fillers.
  • silica which is a kind of inorganic filler
  • flocculation is likely to occur due to hydrogen bonding between hydroxyl groups present on the surface of the silica.
  • the cyclized tertiary amine groups interfere with hydrogen bonding between the hydroxyl groups of silica, Can be improved.
  • the processability of the rubber composition containing the modified conjugated diene polymer according to the present invention can be improved, and as a result, the tensile strength, abrasion resistance and viscoelastic properties of a molded article produced using the rubber composition, such as a tire, .
  • the modified conjugated diene polymer according to an embodiment of the present invention can be produced by a production method using a catalyst composition described later so that the functional group derived from the compound represented by the formula 1 is easily introduced to at least one end of the polymer chain And can have a high rate of variability. Therefore, the modified conjugated diene polymer according to the present invention can greatly increase the affinity with a filler relative to a polymer having a relatively low modification ratio, and as a result, the tensile strength, abrasion resistance And viscoelastic properties can be improved.
  • the modified conjugated diene polymer according to an embodiment of the present invention may have a modification ratio of 20 mol% to 50 mol%, more specifically 30 mol% to 40 mol%.
  • the 'modification rate' represents the ratio of the functional group derived from the compound represented by the formula (1) in the modified conjugated diene polymer, and the conjugated diene monomer Except for the derived unit, that is, the mol% of the functional group derived from the compound represented by the general formula (1).
  • the modification ratio is calculated by using a chromatogram obtained from a chromatographic measurement.
  • each of the polymers was dissolved in tetrahydrofuran (THF) under the condition of 40 ° C to prepare samples.
  • THF tetrahydrofuran
  • Each sample was injected into gel permeation chromatography (GPC) and dissolved in tetrahydrofuran To obtain a chromatogram.
  • the rate of modification was calculated from the obtained chromatogram by the following equation (1).
  • the conjugated diene-based polymer may be a butadiene homopolymer such as polybutadiene, or a butadiene copolymer such as a butadiene-isoprene copolymer.
  • the conjugated diene-based polymer contains 80 to 100% by weight of repeating units derived from 1,3-butadiene monomer and 20% by weight or less of other conjugated diene monomer-derived repeating units copolymerizable with 1,3-butadiene And the 1,4-cis bond content in the polymer is not lowered within the above range.
  • 1,3-butadiene monomer examples include 1,3-butadiene, such as 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, And other conjugated diene monomers copolymerizable with 1,3-butadiene may include 2-methyl-1,3-pentadiene, 1,3-pentadiene, 3-methyl-1,3-pentadiene , 4-methyl-1,3-pentadiene, 1,3-hexadiene or 2,4-hexadiene, and any one or two or more of them may be used.
  • 1,3-butadiene such as 1,3-butadiene, 2,3-dimethyl-1,3-butadiene
  • conjugated diene monomers copolymerizable with 1,3-butadiene may include 2-methyl-1,3-pentadiene, 1,3-pentadiene, 3-methyl-1,3-pentadiene , 4-methyl-1,3-pentadiene, 1,3-he
  • the conjugated diene-based polymer may be a conjugated diene-based polymer derived from a catalyst composition containing a lanthanide-based rare earth element-containing compound, that is, And a neodymium-catalyzed butadiene-based polymer containing a 1,3-butadiene monomer-derived repeating unit.
  • the activated organometal moiety of the conjugated diene polymer means an activated organometal moiety at the terminal of the conjugated diene polymer (an activated organometal moiety at the molecular chain terminal), an activated organometallic moiety in the main chain or a side chain , and among these, when an activated organometallic moiety of the conjugated diene polymer is obtained by anionic polymerization or coordination anionic polymerization, the activated organometallic moiety may be a terminal activated organic metal moiety .
  • the modified conjugated diene polymer according to one embodiment of the present invention can be produced in the presence of a catalyst composition described later, so that the rubber composition has an optimized molecular weight distribution such as viscoelasticity, tensile properties and workability, And the like, and can have high linearity.
  • the modified conjugated diene polymer may have a narrow molecular weight distribution (Mw / Mn) of 2.0 to 3.0, and when applied to a rubber composition within this range, the modified conjugated diene polymer is excellent in tensile properties and viscoelasticity.
  • the molecular weight distribution may be, for example, from 2.0 to 2.8, or from 2.0 to 2.5.
  • the molecular weight distribution of the modified conjugated diene polymer can be calculated from the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn).
  • Mn the number average molecular weight
  • Mw The molecular weight distribution of the composition is shown. All molecular weight averages can be expressed in grams per mole (g / mol).
  • the weight average molecular weight and the number average molecular weight may mean the polystyrene reduced molecular weight as analyzed by gel permeation chromatography (GPC), respectively.
  • the modified conjugated diene polymer according to an embodiment of the present invention may have a weight average molecular weight (Mw) of 4 x 10 < 5 > to 1.0 x 10 < 6 & And the molecular weight (Mn) may be 2.0 X 10 5 to 5.0 X 10 5 g / mol.
  • Mw weight average molecular weight
  • Mn molecular weight
  • the weight average molecular weight may be, for example, 4.5 X 10 5 to 1.0 X 10 6 g / mol, or 5 X 10 5 to 1.0 X 10 6 g / mol, and the number average molecular weight may be 2.0 X 10 5 to 4.5 X 10 5 g / mol, or 2.0 X 10 5 to 4.0 X 10 5 g / mol.
  • the modified conjugated diene polymer according to an embodiment of the present invention satisfies both the weight average molecular weight and the number average molecular weight condition together with the molecular weight distribution described above, the tensile properties , Viscoelasticity and processability, and has an excellent balance of physical properties among them.
  • the modified conjugated diene polymer according to an embodiment of the present invention may have a Mooney viscosity (MV) at 100 ° C of 30 to 70, and exhibits better processability within this range.
  • the Mooney viscosity at 100 DEG C may be 40 to 70, for example.
  • the Mooney viscosity can be measured using a Mooney viscometer, for example, Monsanto MV2000E at 100 ⁇ ⁇ using Rotor Speed 2 ⁇ 0.02 rpm, Large Rotor. At this time, the used sample is allowed to stand at room temperature (23 ⁇ 3 ° C) for more than 30 minutes, and 27 ⁇ 3 g can be collected, filled in the die cavity, and measured by operating a platen.
  • a Mooney viscometer for example, Monsanto MV2000E at 100 ⁇ ⁇ using Rotor Speed 2 ⁇ 0.02 rpm, Large Rotor.
  • the present invention also provides a process for producing the modified conjugated diene polymer.
  • the method for producing a modified conjugated diene polymer comprises polymerizing a conjugated diene monomer in the presence of a lanthanide series rare earth element catalyst composition to produce an active polymer containing an organic metal moiety ); And reacting the active polymer with a compound represented by the following formula (1) (step 2), wherein the lanthanide series rare earth element catalyst composition comprises a lanthanide series rare earth element-containing compound, a first alkylating agent, a second alkylating agent, And a conjugated diene monomer in a molar ratio of 1: 100 to 200: 40 to 60: 2 to 4: 20 to 50.
  • R 1 and R 3 are each independently a group selected from the group consisting of a halogen group, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, and an aryl group having 6 to 30 carbon atoms and having 1 to 10 carbon atoms A trivalent hydrocarbon group; Or an unsubstituted divalent hydrocarbon group of 1 to 10 carbon atoms,
  • R 2 is a C 1-10 hydrocarbon group substituted with -R 6 COOR 7 ,
  • R 4 and R 6 are single bonds
  • R 7 is an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms,
  • R 9 to R 11 are each independently hydrogen or an alkyl group having 1 to 20 carbon atoms.
  • the conjugated diene monomer can be polymerized using the catalyst composition described above to form an active polymer that is easy to modify, A conjugated diene polymer can be produced.
  • Step 1 is a step of polymerizing a conjugated diene monomer to produce an active polymer containing an organometallic moiety, and may be carried out by polymerizing a conjugated diene monomer in the presence of a lanthanide-based rare earth element catalyst composition.
  • the lanthanide-based rare earth element catalyst composition may include a lanthanide-based rare earth element-containing compound, a first alkylating agent, a second alkylating agent, a halide, and a conjugated diene-based monomer.
  • the first alkylating agent, the second alkylating agent, the halide, and the conjugated diene monomer may have a molar ratio of 1: 100 to 200: 40 to 60: 2 to 4:20 to 50.
  • the lanthanide-based rare earth element-containing compound, the first alkylating agent, the second alkylating agent, the halide and the conjugated diene monomer have a molar ratio of 1: 100 to 150: 40 to 50: 2 to 3:20 to 30 .
  • the lanthanum-based rare earth element catalyst composition is prepared by mixing a lanthanide-based rare earth element-containing compound, aluminoxane, an organoaluminum compound, a halide and a conjugated diene monomer in a hydrocarbon solvent at a temperature of -30 ° C to -20 ° C, Lt; 0 > C to -20 < 0 > C for 24 hours to 36 hours.
  • the lanthanide-based rare earth element catalyst composition may be prepared by sequentially charging a lanthanide-based rare-earth element-containing compound, a first alkylating agent, a second alkylating agent, a halogen compound, and optionally a conjugated diene- have.
  • the hydrocarbon solvent may be a non-polar solvent which is not reactive with the constituents of the catalyst composition.
  • the hydrocarbon-based solvent may be an aliphatic hydrocarbon-based solvent such as pentane, hexane, isopentane, heptane, octane, isooctane and the like; Cyclic aliphatic hydrocarbon solvents such as cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, ethylcyclohexane and the like; Or an aromatic hydrocarbon solvent such as benzene, toluene, ethylbenzene, xylene, and the like.
  • the hydrocarbon-based solvent may be an aliphatic hydrocarbon-based solvent such as hexane.
  • the lanthanide-based rare earth element catalyst composition according to one embodiment of the present invention has the above-described composition and can be produced as described above, thereby increasing the activity of the subsequent modification reaction of the active polymer. As a result, the modification ratio of the modified conjugated diene- Height is effective.
  • a part of the conjugated diene-based monomer used in the present polymerization reaction is premixed with the above catalyst composition and used in the form of a preforming catalyst composition to improve catalytic activity, There is an effect of stabilizing the polymer.
  • the above-mentioned " preforming” means that when the catalyst composition, i.e., diisobutylaluminum hydride (DIBAH) or the like is contained in the catalyst system, in order to reduce the possibility of generating various catalytically active species, A small amount of a conjugated diene monomer such as butadiene is added, which means that pre-polymerization is carried out in the catalyst system together with butadiene addition. Further, “ premix " may mean that the polymerization is not carried out in the catalyst system and each compound is homogeneously mixed.
  • DIBAH diisobutylaluminum hydride
  • conjugated diene monomer examples include 1,3-butadiene, isoprene, 1,3-pentadiene, 1,3-hexadiene, 2,3-dimethyl-1,3-butadiene, Butadiene, 2-methyl-1,3-pentadiene, 3-methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene and 2,4- .
  • the conjugated diene monomer which can be used in the preparation of the catalyst composition may be used in an amount within a total amount of the conjugated diene monomer used in the polymerization reaction.
  • the lanthanide-based rare earth element-containing compound may be a compound containing any one or two or more elements selected from neodymium, praseodymium, cerium, lanthanum or gadolinium and rare earth elements of atomic number 57 to 71 in the periodic table, Lt; / RTI >
  • the lanthanide-based rare earth element-containing compound may be a salt soluble in a hydrocarbon solvent such as a carboxylate, an alkoxide, a ⁇ -diketone complex, a phosphate or a phosphite of a lanthanide rare earth element, and specifically, a neodymium- have.
  • a hydrocarbon solvent such as a carboxylate, an alkoxide, a ⁇ -diketone complex, a phosphate or a phosphite of a lanthanide rare earth element, and specifically, a neodymium- have.
  • hydrocarbon solvent examples include saturated aliphatic hydrocarbons having 4 to 10 carbon atoms such as butane, pentane, hexane and heptane; Saturated alicyclic hydrocarbons having 5 to 20 carbon atoms such as cyclopentane and cyclohexane; Monoolefins such as 1-butene and 2-butene; aromatic hydrocarbons such as benzene, toluene and xylene; Or halogenated hydrocarbons such as methylene chloride, chloroform, trichlorethylene, perchlorethylene, 1,2-dichloroethane, chlorobenzene, bromobenzene and chlorotoluene.
  • saturated aliphatic hydrocarbons having 4 to 10 carbon atoms such as butane, pentane, hexane and heptane
  • Saturated alicyclic hydrocarbons having 5 to 20 carbon atoms such as cyclopentane and cyclohe
  • the lanthanide-based rare earth element-containing compound may include a neodymium compound represented by the following general formula (3)
  • R a to R c each independently may be hydrogen or an alkyl group having 1 to 12 carbon atoms, provided that R a to R c may not all be hydrogen at the same time.
  • the neodymium compound is Nd (neodecanoate) 3, Nd (2- ethylhexanoate) 3, Nd (2,2- diethyl decanoate) 3, Nd (2,2- dipropyl having decanoate) 3, Nd (2,2- di-butyl decanoate) 3, Nd (2,2- di-hexyl decanoate) 3, Nd (2,2- dioctyl decanoate) 3, Nd (2 -ethyl-2-propyl decanoate) 3, Nd (2- ethyl-2-butyl decanoate) 3, Nd (2- ethyl-2-hexyl decanoate) 3, Nd (2- propyl-2 butyl decanoate) 3, Nd (2- propyl-2-hexyl decanoate) 3, Nd (2- propyl-2-isopropyl decanoate) 3, Nd (2- butyl-2-hexyl decanoate) 3,
  • the lanthanide rare earth element-containing compound is more specifically represented by the formula , R a is a linear or branched alkyl group of 4 to 12 carbon atoms, R b and R c are each independently hydrogen or an alkyl group of 2 to 8 carbon atoms, provided that R b and R c are not simultaneously hydrogen have.
  • R a is a linear or branched alkyl group having 6 to 8 carbon atoms
  • R b and R c are each independently hydrogen or an alkyl group having 2 to 6 carbon atoms, wherein R b And R c may not simultaneously be hydrogen.
  • Nd (2,2-diethyldecanoate) 3 Nd (2,2-dipropyldecanoate) 3 , Nd butyl decanoate) 3, Nd (2,2- di-hexyl decanoate) 3, Nd (2,2- dioctyl decanoate) 3, Nd (2- ethyl-2-propyl decanoate) 3, Nd (2- ethyl-2-butyl decanoate) 3, Nd (2- ethyl-2-hexyl decanoate) 3, Nd (2- butyl-2-propyl decanoate) 3, Nd (2- propyl 2-hexyl decanoate) 3, Nd (2- propyl-2-isopropyl decanoate) 3, Nd (2- butyl-2-hexyl decanoate) 3, Nd (2- cyclohexyl-2-octyl Decanoate) 3 , Nd (2-t-butyl
  • R a is a linear or branched alkyl group having 6 to 8 carbon atoms
  • R b and R c are each independently an alkyl group having 2 to 6 carbon atoms.
  • the neodymium compound represented by Formula 3 includes a carboxylate ligand that contains an alkyl group having various lengths of at least 2 carbon atoms as a substituent at the alpha -position, thereby inducing a three-dimensional change around the neodymium center metal, It is possible to inhibit oligomerization.
  • the neodymium compound has high solubility in a polymerization solvent and has a low neodymium ratio in a central portion, which is difficult to convert to a catalytically active species, and thus has a high conversion ratio to a catalytically active species.
  • the weight average molecular weight (Mw) of the neodymium compound represented by Formula 3 may be 600 to 2000 g / mol. When the weight average molecular weight is within the above-mentioned range, more excellent catalytic activity can be exhibited.
  • the solubility of the lanthanide-based rare earth element-containing compound may be about 4 g or more per 6 g of the non-polar solvent at room temperature (25 ° C), for example.
  • the solubility of the lanthanide-based rare-earth element-containing compound means a degree of solubility without cloudy phenomenon, and exhibits such high solubility that it can exhibit excellent catalytic activity.
  • the lanthanoid rare earth element-containing compound can be used in an amount of 0.1 to 0.5 mmol, more specifically 0.1 to 0.2 mmol, per 100 g of the conjugated diene monomer used for polymerization, It has an appropriate catalyst concentration and does not require a separate demining step.
  • the lanthanide-based rare earth element-containing compound may be used in the form of a reactant with a Lewis base, for example.
  • This reactant has the effect of improving the solubility of the lanthanide-based rare-earth element-containing compound in a solvent by Lewis base and storing it in a stable state for a long period of time.
  • the Lewis base may be used in a proportion of, for example, 30 moles or less, or 1 to 10 moles, per mole of the rare earth element.
  • the Lewis base may be, for example, acetylacetone, tetrahydrofuran, pyridine, N, N-dimethylformamide, thiophene, diphenylether, triethylamine, organic phosphorus compounds or monohydric or dihydric alcohols.
  • the first alkylating agent may be aluminoxane, and the aluminoxane may be one prepared by reacting a trihydrocarbyl aluminum compound with water.
  • the aluminoxane may be straight-chain aluminoxane of the following formula (4a) or cyclic aluminoxane of the formula (4b).
  • R is a monovalent organic group which is bonded to an aluminum atom through a carbon atom and may be a hydrocarbyl group
  • x and y are independently an integer of 1 or more, , And more specifically, an integer of 2 to 50.
  • the aluminoxane is selected from the group consisting of methyl aluminoxane (MAO), modified methyl aluminoxane (MMAO), ethyl aluminoxane, n-propyl aluminoxane, isopropyl aluminoxane, n- butyl aluminoxane, , n-pentyl aluminoxane, neopentyl aluminoxane, n-hexyl aluminoxane, n-octyl aluminoxane, 2-ethylhexyl aluminoxane, cyclohexyl aluminoxane, 1-methyl cyclopentyl aluminoxane, Dimethylphenylaluminoxane, and the like, and any one or a mixture of two or more thereof may be used.
  • MAO methyl aluminoxane
  • the modified methylaluminoxane is obtained by replacing the methyl group of methylaluminoxane with a silane group (R), specifically a hydrocarbon group having 2 to 20 carbon atoms.
  • R silane group
  • the modified methylaluminoxane may be a compound represented by the following formula (5).
  • R is the same as defined above, and m and n may be independently an integer of 2 or more.
  • Me represents a methyl group.
  • R is an alkyl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a cycloalkenyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, An arylalkyl group having 7 to 20 carbon atoms, an alkylaryl group having 7 to 20 carbon atoms, an allyl group, or an alkynyl group having 2 to 20 carbon atoms, and more specifically, an alkyl group having 2 to 20 carbon atoms such as an ethyl group, an isobutyl group, To 10 carbon atoms, and more specifically an isobutyl group.
  • the modified methylaluminoxane may be obtained by substituting about 50 to 90 mol% of the methyl group of methylaluminoxane with the hydrocarbon group described above.
  • the alkylation can be promoted to increase the catalytic activity.
  • Such modified methylaluminoxane can be prepared by a conventional method, and specifically, it can be produced using alkylaluminum other than trimethylaluminum and trimethylaluminum.
  • the alkylaluminum may be triisobutylaluminum, triethylaluminum, trihexylaluminum or trioctylaluminum, and any one or a mixture of two or more thereof may be used.
  • the second alkylating agent may be hydrocarbylaluminum dihydride.
  • the second alkylating agent may be diethylaluminum hydride, di-n-propylaluminum hydride, diisopropylaluminum hydride, di- Aluminum hydride, diisobutyl aluminum hydride (DIBAH), di-n-octyl aluminum hydride, diphenyl aluminum hydride, di-p-tolyl aluminum hydride, dibenzyl aluminum hydride, phenylethyl aluminum hydride, Phenyl-n-propyl aluminum hydride, phenyl isopropyl aluminum hydride, phenyl-n-butyl aluminum hydride, phenyl isobutyl aluminum hydride, phenyl-n-octyl aluminum hydride, p- -Tolyl-n-propyl aluminum hydride, p-tolyl isopropyl aluminum
  • the alkylating agent may be an organometallic compound capable of transferring a hydrocarbyl group to another metal, and may serve as a cocatalyst.
  • the catalyst composition according to an embodiment of the present invention may further include a conventional alkylating agent used as an alkylating agent when preparing the conventionally conjugated diene-based polymer in addition to the first and second alkylating agents, if necessary, Include trialkylaluminums such as trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri- Alkyl aluminum such as hexyl aluminum and trioctyl aluminum; And alkyl magnesium compounds such as diethyl magnesium, di-n-propyl magnesium, diisopropyl magnesium, dibutyl magnesium, dihexyl magnesium, diphenyl magnesium and dibenzyl magnesium. n-butyl lithium, and the like.
  • halide examples include, but are not limited to, a halogen alone, an interhalogen compound, a hydrogen halide, an organic halide, a nonmetal halide, a metal halide or an organic metal halide, Any one or a mixture of two or more of them may be used.
  • halides any one or a mixture of two or more selected from the group consisting of an organic halide, a metal halide, and an organometallic halide may be used, considering that the catalytic activity is improved and the effect of improving the reactivity is excellent.
  • halogen group examples include fluorine, chlorine, bromine and iodine.
  • interhalogen compound examples include iodine monochloride, iodine monobromide, iodine trichloride, iodopentafluoride, iodine monofluoride, iodotrifluoride, and the like.
  • Examples of the hydrogen halide include hydrogen fluoride, hydrogen chloride, hydrogen bromide, and hydrogen iodide.
  • organic halide examples include t-butyl chloride (t-BuCl), t-butyl bromide, allyl chloride, allyl bromide, benzyl chloride, benzyl bromide, chloro-di-phenyl methane, bromo- But are not limited to, phenyl methyl chloride, triphenyl methyl bromide, benzylidene chloride, benzylidene bromide, methyltrichlorosilane, phenyltrichlorosilane, dimethyldichlorosilane, diphenyldichlorosilane, trimethylchlorosilane (TMSCl), benzoyl chloride, benzoyl bromide, (Also referred to as "iodoform”), tetraiodomethane, 1-iodo-2-iodo-2-methylpropionate, Iodopropane, 1,3-diio
  • non-metallic halides include phosphorus trichloride, phosphorus tribromide, phosphorus pentachloride, phosphorus oxychloride, oxy-bromide, phosphorus, boron trifluoride, boron trichloride, boron tribromide, used silicon tetrafluoride, silicon tetrachloride (SiCl 4), tetrabromide silicon , Arsenic trichloride, arsenic tribromide, selenium tetrabromide, selenium tetrabromide, tellurium tetrachloride, tellurium tetrabromide, silicon tetrabromide, silicon tetrabromide, arsenic triiodide, tellurium tetraiodide, boron triiodide, phosphorous iodide or selenium tetraiodide .
  • metal halide examples include tin tetrachloride, tin tetrabromide, aluminum trichloride, aluminum tribromide, antimony trichloride, antimony trichloride, antimony tribromide, antimony tribromide, aluminum trifluoride, gallium trichloride, gallium tribromide, gallium trifluoride, There may be mentioned indium tribromide, indium trifluoride, titanium tetrachloride, titanium tetrabromide, zinc dichloride, zinc bromide, zinc fluoride, aluminum triiodide, gallium triiodide, indium triiodide, titanium iodide, zinc iodide, Germanium, tin iodide, tin iodide, antimony triiodide or magnesium iodide.
  • organometallic halide examples include dimethylaluminum chloride, diethylaluminum chloride, dimethylaluminum bromide, diethylaluminum bromide, dimethylaluminum fluoride, diethylaluminum fluoride, methylaluminum dichloride, ethylaluminum dichloride, methylaluminum di (EASC), isobutylaluminum sesquichloride, methylmagnesium chloride, methylmagnesium bromide, ethyl bromide, ethyl bromide, ethyl bromide, ethyl bromide, ethyl bromide, Magnesium chloride, ethylmagnesium bromide, n-butylmagnesium chloride, n-butylmagnesium bromide, phenylmagnesium chloride, phenylmagnesium bromide, benzylmagnesium chloride
  • the catalyst composition according to an embodiment of the present invention may include a non-coordinating anion-containing compound or a non-coordinating anion precursor compound instead of or in addition to the halide.
  • the non-coordinating anion is a sterically bulky anion which does not form a coordination bond with the active center of the catalyst system due to steric hindrance, and is a tetraaryl borate anion or tetraaryl fluoride Borate anions, and the like.
  • the compound containing the non-coordinating anion may include a carbonium cation such as a triarylcarbonium cation together with the above-mentioned non-coordinating anion; An ammonium cation such as N, N-dialkyl anilinium cation or the like, or a relative cation such as a phosphonium cation.
  • the compound comprising the non-coordinating anion is selected from the group consisting of triphenylcarbonium tetrakis (pentafluorophenyl) borate, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, triphenylcarboniumtetra 3,5-bis (trifluoromethyl) phenyl] borate, or N, N-dimethylanilinium tetrakis [3,5-bis (trifluoromethyl) phenyl] borate.
  • nonpolar anionic precursors examples include triarylboron compounds (BE 3 , wherein E is a pentafluorophenyl group or a 3,5-bis (trifluoromethyl) phenyl group and the like, which is capable of forming a non- And a strong electron withdrawing aryl group.
  • the active polymer In order to react the active polymer with the modifier compound in the production of the modified conjugated diene polymer, it is preferable that the active polymer has a living property or a pseudo living property.
  • the polymerization reaction of the polymer having living properties coordination anionic polymerization can be used.
  • the polymerization in the step 1 may be carried out by radical polymerization, and specific examples thereof may be bulk polymerization, solution polymerization, suspension polymerization or emulsion polymerization, and more specific examples may be solution polymerization.
  • the polymerization reaction may be carried out by any of a batch process and a continuous process.
  • the polymerization reaction for producing the conjugated diene-based polymer may be carried out by reacting the conjugated diene-based monomer to the catalyst composition in an organic solvent.
  • the polymerization may be carried out in a hydrocarbon-based solvent.
  • the hydrocarbon-based solvent may be added in addition to the amount of the hydrocarbon-based solvent that can be used to prepare the catalyst composition, wherein the hydrocarbon-based solvent may be the same as described above.
  • the concentration of the monomer may be 3 to 80% by weight, or 10 to 30% by weight.
  • a reaction terminator for completing a polymerization reaction such as polyoxyethylene glycol phosphate or the like in a polymerization reaction for preparing the active polymer;
  • antioxidants such as 2,6-di-t-butyl paracresol and the like
  • additives such as a chelating agent, a dispersing agent, a pH adjusting agent, an oxygen scavenger or an oxygen scavenger may be further optionally used in addition to those which facilitate the solution polymerization usually.
  • the polymerization reaction for the production of the active polymer may be carried out at a temperature of from 20 to 200 ⁇ , or from 20 to 100 ⁇ for from 15 minutes to 3 hours, or from 30 minutes to 2 hours, The polymerization reaction rate and efficiency are excellent, and the produced active polymer has a high cis-1,4 bond content.
  • the polymerization reaction is preferably carried out to prevent the incorporation of a compound having an inactivating action such as oxygen, water or carbon dioxide gas in the polymerization reaction system can do.
  • a diene-based polymer is produced, and the produced conjugated diene-based polymer can have pseudo-living properties.
  • Step 2 is a step for preparing a modified conjugated diene polymer, and the compound represented by the formula (1) or the compound represented by the formula (2) is added to the active polymer in a stoichiometric amount or more And reacting it with an activated organometallic moiety attached to the polymer.
  • the compound represented by Formula 1 may be used in an amount of 0.5 to 20 moles, or 0.1 to 10 moles per mole of the lanthanide-based rare earth element-containing compound used in the production of the active polymer.
  • the reaction of Step 2 may be a denaturing reaction, and the denaturing reaction may be carried out, for example, by a solution reaction or a solid phase reaction, and may be carried out by a solution reaction.
  • the denaturation reaction may be performed using a batch reactor, or may be performed continuously using an apparatus such as a multi-stage continuous reactor or an inline mixer.
  • the modification reaction can be carried out under the same temperature and pressure conditions as the polymerization reaction, and can be carried out at a temperature of 20 to 100 DEG C as a specific example. Within this range, the viscosity of the polymer does not rise, The activated end of the membrane is not inactivated.
  • an isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) or the like may be added to the polymerization reaction system to terminate the polymerization reaction.
  • BHT 2,6-di-t-butyl-p-cresol
  • the modified conjugated diene polymer can be obtained through desolvation treatment or vacuum drying treatment such as steam stripping which lowers the partial pressure of the solvent through supply of water vapor.
  • the reaction product obtained as a result of the above-mentioned denaturation reaction may contain an unmodified active polymer together with the above-mentioned modified conjugated diene polymer.
  • the method for producing a modified conjugated diene-based polymer according to an embodiment of the present invention may further include a precipitation and separation step for the produced modified conjugated diene-based polymer.
  • the filtration, separation and drying of the precipitated denatured conjugated diene polymer may be carried out according to a conventional method.
  • a modified conjugated diene polymer having excellent physical properties including a narrow molecular weight distribution can be obtained.
  • a modified neodymium-catalyzed butadiene- Can be prepared.
  • the present invention provides a rubber composition comprising the conjugated diene-based polymer and a molded article produced from the rubber composition.
  • the rubber composition according to an embodiment of the present invention contains 0.1 to 100% by weight, specifically 10 to 100% by weight, more specifically 20 to 90% by weight, of the conjugated diene polymer . If the content of the conjugated diene polymer is less than 0.1% by weight, the effect of improving the abrasion resistance and crack resistance of a molded article produced using the rubber composition, such as a tire, may be insignificant.
  • the rubber composition may further include other rubber components, if necessary, in addition to the modified conjugated diene polymer, wherein the rubber component may be contained in an amount of 90 wt% or less based on the total weight of the rubber composition. Specifically, it may be contained in an amount of 1 part by weight to 900 parts by weight based on 100 parts by weight of the modified conjugated diene-based copolymer.
  • the rubber component may be natural rubber or synthetic rubber, for example natural rubber (NR) comprising cis-1,4-polyisoprene; Modified natural rubbers such as epoxidized natural rubber (ENR), deproteinized natural rubber (DPNR), and hydrogenated natural rubber, which are modified or refined with the general natural rubber; Butadiene copolymers (SBR), polybutadiene (BR), polyisoprenes (IR), butyl rubbers (IIR), ethylene-propylene copolymers, polyisobutylene-co-isoprene, neoprene, poly Butadiene), poly (styrene-co-butadiene), poly (styrene-co-butadiene) Synthetic rubber such as polysulfide rubber, acrylic rubber, urethane rubber, silicone rubber, epichlorohydrin rubber, butyl rubber, halogenated butyl rubber and the like may be used, and any one or a mixture of two or more thereof may be used have
  • the rubber composition may contain 0.1 to 150 parts by weight of a filler based on 100 parts by weight of the conjugated diene polymer, and the filler may be silica-based, carbon black or a combination thereof. Specifically, the filler may be carbon black.
  • the carbon black filler is not particularly limited, but may have a nitrogen adsorption specific surface area (measured according to N 2 SA, JIS K 6217-2: 2001) of 20 m 2 / g to 250 m 2 / g.
  • the carbon black may have a dibutyl phthalate oil absorption (DBP) of 80 cc / 100 g to 200 cc / 100 g. If the nitrogen adsorption specific surface area of the carbon black exceeds 250 m 2 / g, the workability of the rubber composition may deteriorate. If it is less than 20 m 2 / g, the reinforcing performance by carbon black may be insufficient.
  • the workability of the rubber composition may decrease. If the DBP oil absorption is less than 80 cc / 100 g, the reinforcing performance by carbon black may be insufficient.
  • the silica is not particularly limited, but may be, for example, wet silica (hydrated silicic acid), dry silica (silicic anhydride), calcium silicate, aluminum silicate or colloidal silica.
  • the silica may be a wet silica having the most remarkable effect of improving the breaking property and the wet grip.
  • the silica has a nitrogen surface area per gram (N 2 SA) of 120 m 2 / g to 180 m 2 / g and a cetyl trimethyl ammonium bromide (CTAB) adsorption specific surface area of 100 m 2 / / g.
  • N 2 SA nitrogen surface area per gram
  • CTAB cetyl trimethyl ammonium bromide
  • the reinforcing performance by silica may be lowered. If it exceeds 180 m < 2 > / g, If the CTAB adsorption specific surface area of the silica is less than 100 m < 2 > / g, the reinforcing performance by the silica as a filler may be deteriorated. If it exceeds 200 m < 2 > / g, the workability of the rubber composition may deteriorate.
  • silica when used as the filler, a silane coupling agent may be used together to improve the reinforcing property and the low heat build-up.
  • silane coupling agent examples include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane , 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyltetrasulfide Triethoxysilylpropyl-N, N-dimethylthiocarbamoyltetrasulfide Triethoxys
  • the silane coupling agent may be bis (3-triethoxysilylpropyl) polysulfide or 3-trimethoxysilylpropyl benzothiazine tetrasulfide.
  • the rubber composition according to an embodiment of the present invention may be sulfur-crosslinkable and may further include a vulcanizing agent.
  • the vulcanizing agent may be specifically a sulfur powder and may be included in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the rubber component. When contained in the above content range, the required elastic modulus and strength of the vulcanized rubber composition can be ensured, and at the same time, the low fuel consumption ratio can be obtained.
  • the rubber composition according to one embodiment of the present invention may contain various additives commonly used in the rubber industry, such as a vulcanization accelerator, a process oil, a plasticizer, an antioxidant, a scorch inhibitor, zinc white ), Stearic acid, a thermosetting resin, or a thermoplastic resin.
  • a vulcanization accelerator such as a vulcanization accelerator, a process oil, a plasticizer, an antioxidant, a scorch inhibitor, zinc white ), Stearic acid, a thermosetting resin, or a thermoplastic resin.
  • the vulcanization accelerator is not particularly limited and specifically includes M (2-mercaptobenzothiazole), DM (dibenzothiazyl disulfide), CZ (N-cyclohexyl-2-benzothiazyl sulfenamide) Based compound, or a guanidine-based compound such as DPG (diphenylguanidine) can be used.
  • the vulcanization accelerator may be included in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the rubber component.
  • the process oil may be a paraffinic, naphthenic, or aromatic compound. More specifically, considering the tensile strength and abrasion resistance, the process oil may be an aromatic process oil, a hysteresis loss And naphthenic or paraffinic process oils may be used in view of the low temperature characteristics.
  • the process oil may be contained in an amount of 100 parts by weight or less based on 100 parts by weight of the rubber component. When the content is included in the above amount, the tensile strength and low heat build-up (low fuel consumption) of the vulcanized rubber can be prevented from lowering.
  • the antioxidant examples include N-isopropyl-N'-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N'- 2, 4-trimethyl-1,2-dihydroquinoline, or high-temperature condensates of diphenylamine and acetone.
  • the antioxidant may be used in an amount of 0.1 part by weight to 6 parts by weight based on 100 parts by weight of the rubber component.
  • the rubber composition according to one embodiment of the present invention can be obtained by kneading by using a kneader such as Banbury mixer, roll, internal mixer or the like by the above compounding formula. Further, the rubber composition can be obtained by a vulcanization step after molding, This excellent rubber composition can be obtained.
  • a kneader such as Banbury mixer, roll, internal mixer or the like by the above compounding formula. Further, the rubber composition can be obtained by a vulcanization step after molding, This excellent rubber composition can be obtained.
  • the rubber composition can be applied to various members such as tire tread, under-tread, sidewall, carcass coated rubber, belt coated rubber, bead filler, pancake fur, or bead coated rubber, vibration proof rubber, belt conveyor, Can be useful for the production of various industrial rubber products.
  • the molded article produced using the rubber composition may be one comprising a tire or tire tread.
  • Neodymium neodecanoate was added to a hexane solvent under nitrogen, and methylaluminoxane (MAO), diisobutylaluminum hydride (DIBAH), diethylaluminum chloride (DEAC) and 1,3-butadiene were mixed with neodymium neodecane
  • the prepared catalyst composition was stored at -30 ⁇ to -20 ⁇ for 24 hours under nitrogen.
  • Neodymium neodecanoate was added to a hexane solvent under a nitrogen atmosphere and methylaluminoxane (MAO), diisobutylaluminum hydride (DIBAH), diethylaluminum chloride (DEAC) and 1,3-butadiene were added to neodemium neo
  • the prepared catalyst composition was stored at -30 ⁇ to -20 ⁇ for 24 hours under nitrogen.
  • Neodymium neodecanoate was added to a hexane solvent under nitrogen, and methylaluminoxane (MAO), diisobutylaluminum hydride (DIBAH), diethylaluminum chloride (DEAC) and 1,3-butadiene were mixed with neodymium neodecane
  • the prepared catalyst composition was stored at -30 ⁇ to -20 ⁇ for 24 hours under nitrogen.
  • DIBAH diethylaluminum chloride
  • DEAC diethylaluminum chloride
  • 1,3-butadiene 1,3-butadiene were added to a neodymium neodecanoate (DIBAH: DEAC: DEAC) solution in a hexane solvent under a nitrogen atmosphere by adding neodymium neodecanoate in a hexane solvent, and adding diisobutylaluminum hydride 1,3-butadiene in a molar ratio of 1: 9 to 10: 2 to 3:30, followed by mixing at 20 DEG C to prepare a catalyst composition. At this time, the polymer was prepared immediately before preparation of the polymer and immediately used.
  • Neodymium neodecanoate was added to a hexane solvent under nitrogen, and methylaluminoxane (MAO), diisobutylaluminum hydride (DIBAH), diethylaluminum chloride (DEAC) and 1,3-butadiene were mixed with neodymium neodecane
  • the prepared catalyst composition was stored at -30 ⁇ to -20 ⁇ for 24 hours under nitrogen.
  • Neodymium neodecanoate was added to a hexane solvent under nitrogen, and methylaluminoxane (MAO), diisobutylaluminum hydride (DIBAH), diethylaluminum chloride (DEAC) and 1,3-butadiene were mixed with neodymium decano
  • the prepared catalyst composition was used after being stored at 20 DEG C under a nitrogen atmosphere for 24 hours.
  • Hexane solution containing 1.15 g of the compound prepared in Preparation Example 4 was added to the active polymer, and the mixture was allowed to react for 30 minutes under the same temperature conditions as the polymerization conditions. Thereafter, a hexane solution containing a polymerization terminator was added to terminate the reaction, and a hexane solution containing an antioxidant was added to prepare a modified butadiene polymer.
  • the modified conjugated diene polymer was prepared in the same manner as in Example 1, except that the catalyst composition of Preparation Example 2 was used as the catalyst composition in the preparation of the active polymer.
  • the modified conjugated diene polymer was prepared in the same manner as in Example 1, except that the catalyst composition of Preparation Example 3 was used as the catalyst composition in the preparation of the active polymer.
  • Example 1 was repeated except that each composition of Preparation Example 3 was used as a catalyst composition in the preparation of the active polymer in Example 1 and the compound prepared in Preparation Example 5 was used in place of the compound prepared in Preparation Example 4. [ The same procedure was followed to prepare a modified conjugated diene polymer.
  • BR1208 (manufactured by LG Chemical Co., Ltd.) was used as unmodified Nd-BR.
  • the modified conjugated diene polymer was prepared in the same manner as in Example 1, except that the catalyst composition of Comparative Preparation Example 1 was used as the catalyst composition in the preparation of the active polymer.
  • the modified conjugated diene polymer was prepared in the same manner as in Example 1, except that the catalyst composition of Comparative Preparation Example 2 was used as the catalyst composition in the preparation of the active polymer.
  • the modified conjugated diene polymer was prepared in the same manner as in Example 1, except that the catalyst composition of Comparative Preparation Example 3 was used as the catalyst composition in the preparation of the active polymer.
  • the number average molecular weight (Mn), the weight average molecular weight (Mw), the molecular weight distribution (MWD) and the Mooney viscosity (MV) of the respective polymers prepared in the above Examples and Comparative Examples were measured Respectively.
  • VNMRS 500 MHz NMR was used to measure the amount of cis-bonds in each polymer, and 1,1,2,2-tetrachloroethane-D2 (DLM-35, Cambridge Isotope) was used as the solvent.
  • Each of the polymers was dissolved in tetrahydrofuran (THF) for 30 minutes under the condition of 40 ⁇ ⁇ and loaded on gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • two columns of PLgel Olexis column and one column of PLgel mixed-C column of Polymer Laboratories were used in combination.
  • a column of a mixed bed type was used as a new column, and polystyrene was used as a gel permeation chromatography (GPC) standard material.
  • the Mooney viscosity (ML1 + 4, @ 100 ° C) (MU) was measured at 100 ° C under Rotor Speed 2 ⁇ 0.02 rpm using Monsanto MV2000E with a large rotor.
  • the sample used was allowed to stand at room temperature (23 ⁇ 3 ° C) for more than 30 minutes, and then 27 ⁇ 3 g was sampled and filled in the die cavity. Platen was operated to measure the Mooney viscosity by applying torque.
  • the denaturation rate was calculated using the chromatogram obtained from the chromatographic measurement.
  • each of the polymers was dissolved in tetrahydrofuran (THF) under the condition of 40 ° C to prepare samples.
  • THF tetrahydrofuran
  • Each sample was injected into gel permeation chromatography (GPC) and dissolved in tetrahydrofuran To obtain a chromatogram.
  • the rate of modification was calculated from the obtained chromatogram by the following equation (1).
  • the polymers of Examples 1 to 4 prepared in the presence of the catalyst composition according to an embodiment of the present invention exhibited a high modification ratio with a modification ratio of 30 mol% or more.
  • the polymers of Comparative Examples 3 to 5 showed a modifying ratio of less than 20 mol%.
  • the polymers of Comparative Examples 3 to 5 were prepared by the same method as in Example 1, except that the catalyst composition prepared under conditions other than the conditions set forth in one embodiment of the present invention was used.
  • the modified conjugated diene polymer according to one embodiment of the present invention can be produced by a process comprising the step of polymerizing the conjugated diene monomer in the presence of the catalyst composition presented in the present invention, And it can be seen that it can have a high rate of variability.
  • the rubber compositions and rubber specimens were prepared using the polymers prepared in the above Examples and Comparative Examples, and tensile strength, 300% modulus, elongation and viscoelasticity were measured by the following methods. The results are shown in Table 2 below.
  • the rubber composition was prepared by mixing 70 parts by weight of carbon black, 22.5 parts by weight of process oil, 2 parts by weight of antioxidant (TMDQ), 3 parts by weight of zinc oxide (ZnO) and 100 parts by weight of stearic acid 2 parts by weight of stearic acid were blended to prepare respective rubber compositions. Subsequently, 2 parts by weight of sulfur, 2 parts by weight of a vulcanization accelerator (CZ) and 0.5 parts by weight of a vulcanization accelerator (DPG) were added to each of the rubber compositions, mixed at 50 rpm for 1.5 minutes at 50 rpm, To obtain a vulcanizing blend in sheet form. The obtained vulcanization compound was vulcanized at 160 DEG C for 25 minutes to prepare a rubber specimen.
  • Each vulcanized rubber composition was vulcanized at 150 ⁇ for 90 minutes, and the tensile strength of the vulcanized product, the modulus at 300% elongation (M-300%) and elongation at break were measured according to ASTM D412.
  • the viscoelasticity (Tan ⁇ ) at 60 °C was measured at a frequency of 10 Hz, 3% of prestrain and 3% of dynamic strain.
  • the lower the tan? Value at 60 ⁇ ⁇ is, the lower the hysteresis loss is, and the better the rolling resistance characteristic is, that is, the better the fuel efficiency.
  • the Index value of the tensile properties was calculated by the following equation (2) with the value of the comparative example 2 being 100, and the Index value of the elastic properties was calculated by the following equation (3) Respectively.
  • the rubber specimens prepared from the rubber compositions containing the polymers of Examples 1 to 4 according to one embodiment of the present invention are the rubber compositions containing the polymers of Comparative Examples 1 to 5
  • the tensile and viscoelastic properties of the prepared rubber specimens were greatly improved.
  • the modified conjugated diene polymer has a high modification ratio, which shows that the affinity with a polymer having a relatively low modification ratio is increased with the filler.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerization Catalysts (AREA)

Abstract

본 발명은 충전제와 친화력이 우수하여 배합 물성이 개선된 고변성율을 갖는 변성 공액디엔계 중합체 및 이의 제조방법에 관한 것이다. 이에 따른 변성 공액디엔계 중합체는 적어도 일 말단에 화학식 1로 표시되는 화합물 유래 작용기를 포함함으로써 충진제와의 친화성이 우수할 수 있으며, 고무 조성물에 적용되어 우수한 가공성, 인장강도 및 점탄성을 나타낼 수 있다.

Description

변성 공액디엔계 중합체 및 이의 제조방법
[관련출원과의 상호인용]
본 출원은 2017.10.25자 한국 특허 출원 제10-2017-0139405호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
[기술분야]
본 발명은 충전제와 친화력이 우수하여 배합 물성이 개선된 고변성율을 갖는 변성 공액디엔계 중합체 및 이의 제조방법에 관한 것이다.
최근 에너지 절약 및 환경 문제에 대한 관심이 높아짐에 따라 자동차의 저연비화가 요구되고 있다. 이를 실현하기 위한 방법 중의 하나로서, 타이어 형성용 고무 조성물 내 실리카 또는 카본블랙 등의 무기 충전제를 사용하여 타이어의 발열성을 낮추는 방법이 제안되었으나, 고무 조성물 내 상기 무기 충전제의 분산이 용이하지 않아 오히려 내마모성, 내크랙성 또는 가공성 등을 비롯한 고무 조성물의 물성이 전체적으로 저하되는 문제가 있었다.
이와 같은 문제를 해결하기 위해, 고무 조성물 내 실리카 또는 카본블랙 등의 무기 충전제의 분산성을 높이기 위한 방법으로 유기 리튬을 이용한 음이온 중합으로 얻어지는 공액디엔계 중합체의 중합활성 부위를 무기 충전제와 상호작용 가능한 관능기로 변성하는 방법이 개발되었다. 구체적으로는 공액디엔계 중합체의 중합활성 말단을 주석계 화합물로 변성하거나, 아미노기를 도입하는 방법 또는 알콕시실란 유도체로 변성하는 방법 등이 제안되었다.
그러나, 전술한 방법으로 변성된 변성 공액디엔계 중합체를 이용하여 고무 조성물의 제조 시, 저발열성은 확보할 수 있지만 내마모성, 가공성 등의 고무 조성물에 대한 물성 개선 효과는 충분하지 않았다.
또 다른 방법으로, 란탄 계열 희토류 원소 화합물을 포함하는 촉매를 이용한 배위 중합에 의해 얻어지는 리빙 중합체에 있어서, 리빙 활성 말단을 특정의 커플링제나 변성제에 의해 변성하는 방법이 개발되었다. 그러나, 종래 알려진 란탄 계열 희토류 원소 화합물을 포함하는 촉매에서는, 생성되는 리빙 말단의 활성이 약하고, 말단 변성률이 낮아 고무 조성물의 물성 개선 효과가 미미하다.
본 발명은 상기 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 충전제와 친화력이 우수하여 배합 물성이 개선된 고변성율을 갖는 변성 공액디엔계 중합체를 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 변성 공액디엔계 중합체의 제조방법을 제공하는 것을 목적으로 한다.
상기의 과제를 해결하기 위하여, 본 발명은 하기 화학식 1로 표시되는 화합물 유래 작용기를 포함하고, 변성율이 20 mol% 내지 50 mol%인 것인 변성 공액디엔계 중합체를 제공한다:
[화학식 1]
Figure PCTKR2018011302-appb-I000001
상기 화학식 1에서,
R1 및 R3은 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 시클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군으로부터 선택된 1종 이상의 치환기로 치환된 탄소수 1 내지 10의 3가 탄화수소기; 또는 비치환된 탄소수 1 내지 10의 2가 탄화수소기이고,
R2는 -R6COOR7로 치환된 탄소수 1 내지 10의 3가 탄화수소기이며,
R4 및 R6은 단일 결합이고,
R7은 탄소수 1 내지 20의 알킬기, 또는 탄소수 3 내지 20의 시클로알킬기이며,
R9 내지 R11은 각각 독립적으로 수소 또는, 탄소수 1 내지 20의 알킬기이다.
또한, 본 발명은 란탄 계열 희토류 원소 촉매 조성물의 존재 하, 공액디엔계 단량체를 중합하여 유기 금속 부위를 포함하는 활성 중합체를 제조하는 단계; 및 상기 활성 중합체에 하기 화학식 1로 표시되는 화합물을 반응시키는 단계를 포함하고, 상기 란탄 계열 희토류 원소 촉매 조성물이 란탄 계열 희토류 원소 함유 화합물, 제1 알킬화제, 제2 알킬화제, 할로겐화물 및 공액디엔계 단량체를 1:100 내지 200:40 내지 60:2 내지 4:20 내지 50의 몰비로 포함하는 것인 상기의 변성 공액디엔계 중합체의 제조방법을 제공한다:
[화학식 1]
Figure PCTKR2018011302-appb-I000002
상기 화학식 1에서,
R1 및 R3은 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 시클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군으로부터 선택된 1종 이상의 치환기로 치환된 탄소수 1 내지 10의 3가 탄화수소기; 또는 비치환된 탄소수 1 내지 10의 2가 탄화수소기이고,
R2는 -R6COOR7로 치환된 1 내지 10의 3가 탄화수소기이며,
R4 및 R6은 단일 결합이고,
R7은 탄소수 1 내지 20의 알킬기, 또는 탄소수 3 내지 20의 시클로알킬기이며,
R9 내지 R11은 각각 독립적으로 수소 또는, 탄소수 1 내지 20의 알킬기이다.
본 발명에 따른 변성 공액디엔계 중합체는 적어도 일 말단에 화학식 1로 표시되는 화합물 유래 작용기, 구체적으로 충진제와의 친화력을 높일 수 있는 충진제 친화성 작용기인 고리화된 3급 아민기를 포함함으로써 충진제와의 친화성이 우수할 수 있으며, 고무 조성물에 적용되어 우수한 가공성, 인장강도 및 점탄성을 나타낼 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 본 발명에 따른 촉매 조성물 존재 하에 제조됨으로써 화학식 1로 표시되는 화합물 유래 작용기가 중합체 사슬의 적어도 일 말단에 용이하게 도입될 수 있고, 이에 고변성률을 가질 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는, 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 사용하는 용어 "치환"은 작용기, 원자단 또는 화합물의 수소가 특정 치환기로 치환된 것을 의미할 수 있으며, 작용기, 원자단 또는 화합물의 수소가 특정 치환기로 치환되는 경우 작용기, 원자단 또는 화합물 내에 존재하는 수소의 개수에 따라 1개 또는 2개 이상의 복수의 치환기가 존재할 수 있다. 또한, 복수의 치환기가 존재하는 경우에는 각각의 치환기는 서로 동일하거나, 상이할 수 있다.
본 발명에서 사용하는 용어 "알킬기(alkyl group)"는 1가의 지방족 포화 탄화수소를 의미할 수 있으며, 메틸, 에틸, 프로필 및 부틸 등의 선형 알킬기 및 이소프로필(isopropyl), 세크부틸(sec-butyl), 터셔리 부틸(tert-butyl) 및 네오펜틸(neo-pentyl) 등의 분지형 알킬기를 모두 포함할 수 있다.
본 발명에서 사용하는 용어 "알킬렌기(alkylene group)"는 메틸렌, 에틸렌, 프로필렌 및 부틸렌 등과 같은 2가의 지방족 포화 탄화수소를 의미할 수 있다.
본 발명에서 "사이클로알킬기(cycloalkyl group)"는 환형의 포화 탄화수소, 또는 불포화 결합을 1개 또는 2개 이상 포함하는 환형의 불포화 탄화수소를 모두 포함하는 의미일 수 있다.
본 발명에서 사용하는 용어 "아릴기(aryl group)"는 환형의 방향족 탄화수소를 의미할 수 있고, 또한 1개의 환이 형성된 단환 방향족 탄화수소(monocyclic aromatic hydrocarbon), 또는 2개 이상의 환이 결합된 다환 방향족 탄화수소(polycyclic aromatic hydrocarbon)을 모두 포함하는 의미일 수 있다.
본 발명에서 사용하는 용어 "유래 단위" 및 "유래 작용기"는 어떤 물질로부 터 기인한 성분, 구조 또는 그 물질 자체를 나타내는 것일 수 있다.
본 발명에서 사용하는 용어 "1가 탄화수소기"는 탄화수소기로부터 유도된 1가 치환기를 나타내는 것으로, 예컨대 알킬기, 알케닐기, 알카이닐기, 사이클로알킬기, 불포화 결합을 1이상 포함하는 사이클로알킬기 및 아릴기 등의 탄소와 수소가 결합된 1가의 원자단을 나타낼 수 있으며, 상기 1가의 원자단은 그 결합의 구조에 따라 선형 또는 분지형 구조를 가지는 것일 수 있다.
본 발명에서 사용하는 용어 "2가 탄화수소기"는 탄화수소기로부터 유도된 2가 치환기를 나타내는 것으로, 예컨대 알킬렌기, 알케닐렌기, 알카이닐렌기, 사이클로알킬렌기, 불포화 결합을 1이상 포함하는 사이클로알킬렌기 및 아릴렌기 등의 탄소와 수소가 결합된 2가의 원자단을 나타낼 수 있으며, 상기 2가의 원자단은 그 결합의 구조에 따라 선형 또는 분지형 구조를 가지는 것일 수 있다.
본 발명은 충전제와 친화력이 우수하여 배합 물성이 개선된 고변성율을 갖는 변성 공액디엔계 중합체를 제공한다.
본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 하기 화학식 1로 표시되는 화합물 유래 작용기를 포함하고, 변성율이 20 mol% 내지 50 mol%인 것을 특징으로 한다.
[화학식 1]
Figure PCTKR2018011302-appb-I000003
상기 화학식 1에서,
R1 및 R3은 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 시클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군으로부터 선택된 1종 이상의 치환기로 치환된 탄소수 1 내지 10의 3가 탄화수소기; 또는 비치환된 탄소수 1 내지 10의 2가 탄화수소기이고,
R2는 -R6COOR7로 치환된 탄소수 1 내지 10의 3가 탄화수소기이며,
R4 및 R6은 단일 결합이고,
R7은 탄소수 1 내지 20의 알킬기, 또는 탄소수 3 내지 20의 시클로알킬기이며,
R9 내지 R11은 각각 독립적으로 수소 또는, 탄소수 1 내지 20의 알킬기이다.
구체적으로, 상기 화학식 1에 있어서 R1 및 R3은 각각 독립적으로 치환기로 치환된 탄소수 1 내지 10의 3가 탄화수소기 또는 비치환된 탄소수 1 내지 10의 2가 탄화수소기일 수 있고, R1 및 R3가 각각 독립적으로 비치환된 탄소수 1 내지 10의 2가 탄화수소인 경우 상기 R1 및 R3는 각각 메틸렌기, 에틸렌기 또는 프로필렌기 등과 같은 탄소수 1 내지 10의 알킬렌기; 페닐렌기 등과 같은 6 내지 10의 아릴렌기일 수 있다. 또한, 상기 R1 및 R3가 각각 독립적으로 치환기로 치환된 탄소수 1 내지 10의 3가 탄화수소기인 경우, 상기 R1 및 R3는 각각 독립적으로 탄화수소기 내 탄소원자에 결합된 1 이상의 수소원자가 치환기로 치환된 것일 수 있고, 여기에서 치환기는 할로겐기, 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 시클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군으로부터 선택된 1종 이상, 구체적으로는 탄소수 1 내지 10의 알킬기, 탄소수 6 내지 12의 시클로알킬기 및 탄소수 6 내지 12의 아릴기로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
한편, 상기에서 '치환기로 치환된 3가 탄화수소기'는 N원자를 포함하는 고리 내의 결합(2가) 및 상기 정의된 치환기와의 결합(1가)으로부터 총 3가로 치환된 탄화수소기를 의미하는 것이다.
상기 화학식 1에 있어서, R2는 -R6COOR7로 치환된 탄소수 1 내지 10의 3가 탄화수소기일 수 있으며, 여기에서 R6는 단일 결합이고 R7은 탄소수 1 내지 20의 알킬기 또는 탄소수 3 내지 20의 시클로알킬기일 수 있다.
여기에서, 상기 '단일 결합'은 별도의 원자 또는 분자단을 포함하지 않는, 단일 공유 결합 자체를 의미하는 것이다.
본 발명의 일 실시예에서, 상기 화학식 1에 있어서 R1 및 R3은 각각 독립적으로 탄소수 1 내지 10의 알킬렌기이고, R2는 -R6COOR7로 치환된 탄소수 1 내지 3의 3가 탄화수소기이며, R4 및 R6은 단일 결합이고, R7은 탄소수 1 내지 20의 알킬기이고, R9 내지 R11은 각각 독립적으로 탄소수 1 내지 20의 알킬기일 수 있고, 구체적으로 R1 및 R3은 각각 독립적으로 탄소수 1 내지 3의 알킬렌기이고, R2는 -R6COOR7로 치환된 3가 탄소수 1의 탄화수소기이며, R4 및 R6은 단일 결합이고, R7은 탄소수 1 내지 6의 알킬기이고, R9 내지 R11은 각각 독립적으로 탄소수 1 내지 10의 알킬기인 것일 수 있다.
보다 더 구체적으로, 본 발명의 일 실시예에서 상기 화학식 1로 표시되는 화합물은 하기 화학식 1-1 내지 화학식 1-3으로 표시되는 화합물로 이루어진 군으로부터 선택된 1종인 것일 수 있다.
[화학식 1-1]
Figure PCTKR2018011302-appb-I000004
[화학식 1-2]
Figure PCTKR2018011302-appb-I000005
[화학식 1-3]
Figure PCTKR2018011302-appb-I000006
본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 적어도 일 말단에 화학식 1로 표시되는 화합물 유래 작용기, 구체적으로 충진제와의 친화력을 높일 수 있는 충진제 친화성 작용기인 고리화된 3급 아민기를 포함함으로써 충진제 간의 응집을 방지하여 충진제의 분산성을 향상시킬 수 있다. 일례로 충진제로서 무기 충전제의 일종인 실리카를 이용하는 경우, 실리카의 표면에 존재하는 수산화기 간의 수소 결합에 의해 응집이 발생하기 쉬운데, 상기 고리화된 3급 아민기가 실리카의 수산화기 간의 수소 결합을 방해하여 실리카의 분산성을 향상시킬 수 있다. 이에, 본 발명에 따른 상기 변성 공액디엔계 중합체를 포함하는 고무 조성물의 가공성이 개선될 수 있고, 결과적으로 상기 고무 조성물을 이용하여 제조된 성형품, 예컨대 타이어의 인장강도, 내마모성 및 점탄성 특성이 개선될 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 후술하는 촉매 조성물을 사용한 제조방법에 의해서 제조됨으로써 상기 화학식 1로 표시되는 화합물 유래 작용기가 중합체 사슬의 적어도 일 말단에 용이하게 도입될 수 있고, 이에 고변성률을 가질 수 있다. 이에, 본 발명에 따른 상기 변성 공액디엔계 중합체는 상대적으로 낮은 변성률을 갖는 중합체 대비 충진제와의 친화성이 크게 증가할 수 있고, 결과적으로 이를 사용하여 제조된 성형품, 예컨대 타이어의 인장강도, 내마모성 및 점탄성 특성이 개선될 수 있다.
구체적으로, 본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 20 mol% 내지 50 mol%, 보다 구체적으로는 30 mol% 내지 40 mol%의 변성율을 가질 수 있다.
여기에서, 상기 '변성율(modification rate)'은 상기 변성 공액디엔계 중합체 중에 화학식 1로 표시되는 화합물 유래 작용기의 비율을 나타내는 것으로, 상기 변성 공액디엔계 중합체 100 mol%를 기준으로 공액디엔계 단량체 유래 단위를 제외한 나머지, 즉 화학식 1로 표시되는 화합물 유래 작용기의 mol%를 나타내는 것이다.
한편, 본 발명의 일 실시예에서 상기 변성률은 변성율은 크로마토그래피 측정으로부터 얻어진 크로마토그램을 이용하여 계산하였다.
구체적으로, 각 중합체를 40℃ 조건 하에서 테트라히드로퓨란(THF)에 녹여 시료를 준비하고, 각 시료를 겔 투과 크로마토 그래피(GPC: gel permeation chromatography)에 주입하고, 용리제(Eluent)로 테트라히드로퓨란을 흘려주어 크로마토그램을 얻고, 얻어진 크로마토그램으로부터 하기 수학식 1에 의하여 변성율을 계산하였다.
[수학식 1]
Figure PCTKR2018011302-appb-I000007
상기 공액디엔계 중합체는 폴리부타디엔과 같은 부타디엔 단독 중합체일 수 있고, 또는 부타디엔-이소프렌 공중합체와 같은 부타디엔 공중합체일 수 있다.
구체적인 예로, 상기 공액디엔계 중합체는 1,3-부타디엔 단량체 유래 반복단위 80 내지 100 중량%, 및 선택적으로 1,3-부타디엔과 공중합 가능한 그 외의 공액디엔계 단량체 유래 반복단위 20 중량% 이하를 포함할 수 있고, 상기 범위 내에서 중합체 내 1,4-시스 결합 함량이 저하되지 않는 효과가 있다. 이 때, 상기 1,3-부타디엔 단량체로는 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 또는 2-에틸-1,3-부타디엔 등의 1,3-부타디엔 또는 그 유도체를 들 수 있고, 상기 1,3-부타디엔과 공중합 가능한 그 외의 공액디엔계 단량체로는 2-메틸-1,3-펜타디엔, 1,3-펜타디엔, 3-메틸-1,3-펜타디엔, 4-메틸-1,3-펜타디엔, 1,3-헥사디엔 또는 2,4-헥사디엔 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 사용될 수 있다.
본 발명의 일 실시예에 따르면, 상기 공액디엔계 중합체는 란탄 계열 희토류 원소 함유 화합물을 포함하는 촉매 조성물로부터 유래된, 즉 촉매로부터 활성화된 유기 금속 부위를 포함하는 공액디엔계 중합체일 수 있고, 구체적으로 1,3-부타디엔 단량체 유래 반복단위를 포함하는 네오디뮴 촉매화 부타디엔계 중합체일 수 있다.
본 발명에 있어서, 공액디엔계 중합체의 활성화된 유기 금속 부위란, 공액디엔계 중합체의 말단의 활성화된 유기 금속 부위(분자쇄 말단의 활성화된 유기 금속 부위), 주쇄 중의 활성화된 유기 금속 부위 또는 측쇄 중의 활성화된 유기 금속 부위일 수 있으며, 이 중에서도 음이온 중합 또는 배위 음이온 중합에 의해 공액디엔계 중합체의 활성화된 유기 금속 부위를 얻는 경우 상기 활성화된 유기 금속 부위는 말단의 활성화된 유기 금속 부위일 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는, 후술하는 촉매 조성물의 존재하에 제조됨으로써 고무 조성물의 점탄성, 인장 특성 및 가공성 등의 물성 밸런스가 개선되도록 최적화된 분자량 분포, 무니점도 등의 특성을 가질 수 있고, 높은 선형성을 가질 수 있다.
또한, 상기 변성 공액디엔계 중합체는 2.0 내지 3.0의 좁은 분자량 분포(Mw/Mn)를 갖는 것일 수 있고, 이 범위 내에서 고무 조성물에 적용 시 인장 특성 및 점탄성이 우수한 효과가 있다. 상기 분자량 분포는 일례로 2.0 내지 2.8, 혹은 2.0 내지 2.5일 수 있다.
본 발명에 있어서, 변성 공액디엔계 중합체의 분자량 분포는 중량평균 분자량(Mw) 대 수평균 분자량(Mn)의 비(Mw/Mn)로부터 계산될 수 있다. 이때 상기 수평균 분자량(Mn)은 n개의 중합체 분자의 분자량을 측정하고 이들 분자량의 총합을 구하여 n으로 나누어 계산한 개별 중합체 분자량의 공통 평균(common average)이며, 상기 중량평균 분자량(Mw)은 고분자 조성물의 분자량 분포를 나타낸다. 모든 분자량 평균은 몰당 그램(g/mol)으로 표현될 수 있다. 또한, 상기 중량평균 분자량 및 수평균 분자량은 각각 겔 투과형 크로마토그래피(GPC)로 분석되는 폴리스티렌 환산 분자량을 의미할 수 있다.
본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 상기한 분자량 분포 조건을 충족하는 동시에, 중량평균 분자량(Mw)이 4 X 105 내지 1.0 X 106 g/mol일 수 있고, 수평균 분자량(Mn)이 2.0 X 105 내지 5.0 X 105 g/mol일 수 있으며, 이 범위 내에서 고무 조성물에 적용 시 인장특성이 뛰어나고, 가공성이 우수하여 고무 조성물의 작업성 개선으로 인해 혼반죽이 용이해, 고무 조성물의 기계적 물성 및 물성 밸런스가 우수한 효과가 있다. 상기 중량평균 분자량은 일례로 4.5 X 105 내지 1.0 X 106 g/mol, 또는 5 X 105 내지 1.0 X 106 g/mol일 수 있고, 수평균 분자량은 일례로 2.0 X 105 내지 4.5 X 105 g/mol, 또는 2.0 X 105 내지 4.0 X 105 g/mol일 수 있다.
보다 구체적으로, 본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 상기한 분자량 분포와 함께 중량평균 분자량 및 수평균 분자량 조건을 동시에 충족하는 경우, 고무 조성물에 적용 시 고무 조성물에 대한 인장특성, 점탄성 및 가공성이 우수하고, 이들 간의 물성 밸런스가 우수한 효과가 있다.
또한, 본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 100℃에서의 무니점도(mooney viscosity, MV)가 30 내지 70일 수 있고, 이 범위 내에서 보다 우수한 가공성을 나타내는 효과가 있다. 상기 100℃에서의 무니점도는 일례로 40 내지 70일 수 있다.
본 발명에 있어서, 무니점도는 무니점도계, 예를 들어, Monsanto사 MV2000E로 100℃에서 Rotor Speed 2±0.02rpm, Large Rotor를 사용하여 측정할 수 있다. 이때 사용된 시료는 실온(23±3℃)에서 30분 이상 방치한 후 27±3g을 채취하여 다이 캐비티 내부에 채워 놓고 플래턴(Platen)을 작동시켜 측정할 수 있다.
또한, 본 발명은 상기 변성 공액디엔계 중합체의 제조방법을 제공한다.
본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체의 제조방법은 란탄 계열 희토류 원소 촉매 조성물의 존재 하, 공액디엔계 단량체를 중합하여 유기 금속 부위를 포함하는 활성 중합체를 제조하는 단계(단계 1); 및 상기 활성 중합체에 하기 화학식 1로 표시되는 화합물을 반응시키는 단계(단계 2)를 포함하고, 상기 란탄 계열 희토류 원소 촉매 조성물이 란탄 계열 희토류 원소 함유 화합물, 제1 알킬화제, 제2 알킬화제, 할로겐화물 및 공액디엔계 단량체를 1:100 내지 200:40 내지 60:2 내지 4:20 내지 50의 몰비로 포함하는 것을 특징으로 한다.
[화학식 1]
Figure PCTKR2018011302-appb-I000008
상기 화학식 1에서,
R1 및 R3은 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 시클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군으로부터 선택된 1종 이상의 치환기로 치환된 탄소수 1 내지 10의 3가 탄화수소기; 또는 비치환된 탄소수 1 내지 10의 2가 탄화수소기이고,
R2는 -R6COOR7로 치환된 탄소수 1 내지 10의 3가 탄화수소기이며,
R4 및 R6은 단일 결합이고,
R7은 탄소수 1 내지 20의 알킬기, 또는 탄소수 3 내지 20의 시클로알킬기이며,
R9 내지 R11은 각각 독립적으로 수소 또는, 탄소수 1 내지 20의 알킬기이다.
본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체의 제조방법은 상기의 촉매 조성물을 이용하여 공액디엔계 단량체를 중합함으로써 변성반응에 용이한 활성 중합체를 형성할 수 있고, 이에 고변성률의 변성 공액디엔계 중합체를 제조할 수 있다.
구체적으로, 이하 상기 변성 공액디엔계 중합체의 제조방법을 단계별로 나누어 설명한다.
상기 단계 1은 공액디엔계 단량체를 중합하여 유기 금속 부위를 포함하는 활성 중합체를 제조하는 단계로, 란탄 계열 희토류 원소 촉매 조성물의 존재 하, 공액디엔계 단량체를 중합하여 수행할 수 있다.
여기에서, 상기 란탄 계열 희토류 원소 촉매 조성물은 란탄 계열 희토류 원소 함유 화합물, 제1 알킬화제, 제2 알킬화제, 할로겐화물 및 공액디엔계 단량체를 포함하는 것일 수 있고, 이때 상기 란탄 계열 희토류 원소 함유 화합물, 제1 알킬화제, 제2 알킬화제, 할로겐화물 및 공액디엔계 단량체는 1:100 내지 200:40 내지 60:2 내지 4:20 내지 50의 몰비를 갖는 것일 수 있다. 구체적으로는, 상기 란탄 계열 희토류 원소 함유 화합물, 제1 알킬화제, 제2 알킬화제, 할로겐화물 및 공액디엔계 단량체는 1:100 내지 150:40 내지 50:2 내지 3:20 내지 30의 몰비를 갖는 것일 수 있다.
또한, 상기 란탄 계열 희토류 원소 촉매 조성물은 탄화수소계 용매 중에서 란탄 계열 희토류 원소 함유 화합물, 알루미녹산, 유기 알루미늄 화합물, 할로겐화물 및 공액디엔계 단량체를 -30℃ 내지 -20℃ 온도에서 혼합하고, -30℃ 내지 -20℃의 온도에서 24시간 내지 36시간동안 정치시켜 제조할 수 있다.
구체적으로, 상기 란탄 계열 희토류 원소 촉매 조성물은 탄화수소계 용매 중에 란탄계열 희토류 원소 함유 화합물, 제1 알킬화제, 제2 알킬화제, 할로겐 화합물, 그리고 선택적으로 공액디엔계 단량체를 순차로 투입하여 혼합함으로써 제조될 수 있다. 이때, 상기 탄화수소계 용매는 상기한 촉매 조성물의 구성 성분들과 반응성이 없는 비극성 용매일 수 있다. 구체적으로 상기 탄화수소계 용매는 펜탄, 헥산, 이소펜탄, 헵탄, 옥탄, 이소옥탄 등과 같은 지방족 탄화수소계 용매; 시클로펜탄, 메틸시클로펜탄, 시클로헥산, 메틸시클로헥산, 에틸시클로헥산 등과 같은 시클로지방족 탄화수소계 용매; 또는 벤젠, 톨루엔, 에틸벤젠, 크실렌 등과 같은 방향족 탄화수소계 용매 등으로 이루어진 군으로부터 선택된 1종 이상을 사용할 수 있다. 구체적인 예로 상기 탄화수소계 용매는 헥산 등과 같은 지방족 탄화수소계 용매일 수 있다.
본 발명의 일 실시예에 따른 상기 란탄 계열 희토류 원소 촉매 조성물은 전술한 조성을 가지고, 전술한 바와 같이 제조됨으로써 활성 중합체의 이후 변성반응 활성을 높일 수 있으며, 결과적으로 변성 공액디엔계 중합체의 변성율을 높이는 효과가 있다.
또한, 본 중합 반응에 사용되는 공액디엔계 단량체의 일부를 상기 촉매 조성물과 예비혼합(premix)하여 예비중합(preforming) 촉매 조성물의 형태로 사용하는 함으로써 촉매 활성을 향상시키고, 나아가 제조된 공액디엔계 중합체를 안정화시키는 효과가 있다.
본 발명에 있어서, 상기 "예비중합(preforming)"이란, 촉매 조성물, 즉 촉매 시스템에서 디이소부틸알루미늄 하이드라이드(DIBAH) 등을 포함하는 경우, 이와 함께 다양한 촉매 활성종의 생성 가능성을 줄이기 위해, 부타디엔 등의 공액디엔계 단량체를 소량 첨가하게 되며, 부타디엔 첨가와 함께 촉매 시스템 내에서 전(pre) 중합이 이루어지는 것을 의미할 수 있다. 또한, "예비혼합(premix)"이란 촉매 시스템에서 중합이 이루어지지 않고 각 화합물들이 균일하게 혼합된 상태를 의미할 수 있다.
구체적인 예로 상기 공액디엔계 단량체는 1,3-부타디엔, 이소프렌, 1,3-펜타디엔, 1,3-헥사디엔, 2,3-디메틸-1,3-부타디엔, 2-에틸-1,3-부타디엔, 2-메틸-1,3-펜타디엔, 3-메틸-1,3-펜타디엔, 4-메틸-1,3-펜타디엔 및 2,4-헥사디엔 등으로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 상기 촉매 조성물의 제조에 사용 가능한 공액디엔계 단량체는 상기 중합 반응에 사용되는 공액디엔계 단량체의 총 사용량 범위 내에서 일부의 양이 사용될 수 있다.
상기 란탄 계열 희토류 원소 함유 화합물은 네오디뮴, 프라세오디뮴, 세륨, 란탄 또는 가돌리늄 등과 같은 주기율표의 원자번호 57 내지 71의 희토류 원소 중 어느 하나 또는 둘 이상의 원소를 포함하는 화합물일 수 있으며, 구체적으로 네오디뮴을 포함하는 화합물일 수 있다.
또 다른 예로, 상기 란탄 계열 희토류 원소 함유 화합물은 란탄 계열 희토류 원소의 카르복시산염, 알콕사이드, β-디케톤 착체, 인산염 또는 아인산염 등과 같은 탄화수소 용매에 가용인 염일 수 있고, 구체적으로 네오디뮴 함유 카르복시산염일 수 있다.
상기 탄화수소 용매는 일례로 부탄, 펜탄, 헥산, 헵탄 등의 탄소수 4 내지 10의 포화 지방족 탄화수소; 시클로펜탄, 시클로헥산 등의 탄소수 5 내지 20의 포화 지환식 탄화수소; 1-부텐, 2-부텐 등의 모노 올레핀류, 벤젠, 톨루엔, 크실렌 등의 방향족 탄화수소; 또는 염화메틸렌, 클로로포름, 트리클로로에틸렌, 퍼클로로에틸렌, 1,2-디클로로에탄, 클로로벤젠, 브로모벤젠, 클로로톨루엔 등의 할로겐화 탄화수소일 수 있다.
본 발명의 일 실시예에 따르면, 상기 란탄 계열 희토류 원소 함유 화합물은 하기 화학식 3으로 표시되는 네오디뮴 화합물을 포함할 수 있다:
[화학식 3]
Figure PCTKR2018011302-appb-I000009
상기 화학식 3에서,
Ra 내지 Rc는 각각 독립적으로 수소, 또는 탄소수 1 내지 12의 알킬기일 수 있고, 단, Ra 내지 Rc가 모두 동시에 수소는 아닐 수 있다.
구체적인 예로, 상기 네오디뮴 화합물은 Nd(네오데카노에이트)3, Nd(2-에틸헥사노에이트)3, Nd(2,2-디에틸 데카노에이트)3, Nd(2,2-디프로필 데카노에이트)3, Nd(2,2-디부틸 데카노에이트)3, Nd(2,2-디헥실 데카노에이트)3, Nd(2,2-디옥틸 데카노에이트)3, Nd(2-에틸-2-프로필 데카노에이트)3, Nd(2-에틸-2-부틸 데카노에이트)3, Nd(2-에틸-2-헥실 데카노에이트)3, Nd(2-프로필-2-부틸 데카노에이트)3, Nd(2-프로필-2-헥실 데카노에이트)3, Nd(2-프로필-2-이소프로필 데카노에이트)3, Nd(2-부틸-2-헥실 데카노에이트)3, Nd(2-헥실-2-옥틸 데카노에이트)3, Nd(2-t-부틸 데카노에이트)3, Nd(2,2-디에틸 옥타노에이트)3, Nd(2,2-디프로필 옥타노에이트)3, Nd(2,2-디부틸 옥타노에이트)3, Nd(2,2-디헥실 옥타노에이트)3, Nd(2-에틸-2-프로필 옥타노에이트)3, Nd(2-에틸-2-헥실 옥타노에이트)3, Nd(2,2-디에틸 노나노에이트)3, Nd(2,2-디프로필 노나노에이트)3, Nd(2,2-디부틸 노나노에이트)3, Nd(2,2-디헥실 노나노에이트)3, Nd(2-에틸-2-프로필 노나노에이트)3 및 Nd(2-에틸-2-헥실 노나노에이트)3로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
또 다른 예로, 올리고머화에 대한 우려 없이 중합 용매에 대한 우수한 용해도, 촉매 활성종으로의 전환율 및 이에 따른 촉매 활성 개선 효과의 우수함을 고려할 때, 상기 란탄 계열 희토류 원소 함유 화합물은 보다 구체적으로 상기 화학식 3에서 Ra이 탄소수 4 내지 12의 선형 또는 분지형 알킬기이고, Rb 및 Rc는 각각 독립적으로 수소 또는 탄소수 2 내지 8의 알킬기이되, 단 Rb 및 Rc이 동시에 수소가 아닌 네오디뮴 화합물일 수 있다.
보다 구체적인 예로, 상기 화학식 3에서 상기 Ra는 탄소수 6 내지 8의 선형 또는 분지형 알킬기이고, Rb 및 Rc는 각각 독립적으로 수소, 또는 탄소수 2 내지 6의 알킬기일 수 있으며, 이때 상기 Rb 및 Rc는 동시에 수소가 아닐 수 있고, 그 구체적인 예로는 Nd(2,2-디에틸 데카노에이트)3, Nd(2,2-디프로필 데카노에이트)3, Nd(2,2-디부틸 데카노에이트)3, Nd(2,2-디헥실 데카노에이트)3, Nd(2,2-디옥틸 데카노에이트)3, Nd(2-에틸-2-프로필 데카노에이트)3, Nd(2-에틸-2-부틸 데카노에이트)3, Nd(2-에틸-2-헥실 데카노에이트)3, Nd(2-프로필-2-부틸 데카노에이트)3, Nd(2-프로필-2-헥실 데카노에이트)3, Nd(2-프로필-2-이소프로필 데카노에이트)3, Nd(2-부틸-2-헥실 데카노에이트)3, Nd(2-헥실-2-옥틸 데카노에이트)3, Nd(2-t-부틸 데카노에이트)3, Nd(2,2-디에틸 옥타노에이트)3, Nd(2,2-디프로필 옥타노에이트)3, Nd(2,2-디부틸 옥타노에이트)3, Nd(2,2-디헥실 옥타노에이트)3, Nd(2-에틸-2-프로필 옥타노에이트)3, Nd(2-에틸-2-헥실 옥타노에이트)3, Nd(2,2-디에틸 노나노에이트)3, Nd(2,2-디프로필 노나노에이트)3, Nd(2,2-디부틸 노나노에이트)3, Nd(2,2-디헥실 노나노에이트)3, Nd(2-에틸-2-프로필 노나노에이트)3 및 Nd(2-에틸-2-헥실 노나노에이트)3로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 이 중에서도 상기 네오디뮴 화합물은 Nd(2,2-디에틸 데카노에이트)3, Nd(2,2-디프로필 데카노에이트)3, Nd(2,2-디부틸 데카노에이트)3, Nd(2,2-디헥실 데카노에이트)3, 및 Nd(2,2-디옥틸 데카노에이트)3로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
보다 더 구체적으로, 상기 화학식 3에서, 상기 Ra는 탄소수 6 내지 8의 선형 또는 분지형 알킬기이고, Rb 및 Rc는 각각 독립적으로 탄소수 2 내지 6의 알킬기일 수 있다.
이와 같이, 상기 화학식 3으로 표시되는 네오디뮴 화합물은 α 위치에 탄소수 2 이상의 다양한 길이의 알킬기를 치환기로 포함하는 카르복실레이트 리간드를 포함함으로써, 네오디뮴 중심 금속 주위에 입체적인 변화를 유도하여 화합물 간의 엉김 현상을 차단할 수 있고, 이에 따라, 올리고머화를 억제할 수 있는 효과가 있다. 또한, 이와 같은 네오디뮴 화합물은 중합 용매에 대한 용해도가 높고, 촉매 활성종으로의 전환에 어려움이 있는 중심 부분에 위치하는 네오디뮴 비율이 감소되어 촉매 활성종으로의 전환율이 높은 효과가 있다.
또 다른 예로, 상기 화학식 3으로 표시되는 네오디뮴 화합물의 중량평균 분자량(Mw)은 600 내지 2000 g/mol일 수 있다. 상기한 범위의 중량평균 분자량을 가질 때 보다 안정적으로 우수한 촉매 활성을 나타낼 수 있다.
또한, 상기 란탄 계열 희토류 원소 함유 화합물의 용해도는 일례로 상온(25℃)에서 비극성 용매 6 g 당 약 4 g 이상일 수 있다. 본 발명에 있어서, 란탄 계열 희토류 원소 함유 화합물의 용해도는 탁한 현상 없이 맑게 용해되는 정도를 의미하는 것으로, 이와 같이 높은 용해도를 나타냄으로써 우수한 촉매 활성을 나타낼 수 있다.
상기 란탄 계열 희토류 원소 함유 화합물은 일례로 중합에 사용되는 공액디엔계 단량체 100 g당 0.1 내지 0.5 mmol, 보다 구체적으로는 0.1 내지 0.2 mmol의 함량으로 사용될 수 있고, 이 범위 내에서 촉매 활성이 높고, 적정 촉매 농도를 가져, 별도의 탈회 공정을 거치지 않아도 되는 효과가 있다.
상기 란탄 계열 희토류 원소 함유 화합물은 일례로 루이스 염기와의 반응물의 형태로 사용될 수도 있다. 이 반응물은 루이스 염기에 의해, 란탄 계열 희토류 원소 함유 화합물의 용매에 대한 용해성을 향상시키고, 장기간 안정한 상태로 저장할 수 있는 효과가 있다. 상기 루이스 염기는 일례로 희토류 원소 1 몰 당 30 몰 이하, 또는 1 내지 10 몰의 비율로 사용될 수 있다. 상기 루이스 염기는 일례로 아세틸아세톤, 테트라히드로푸란, 피리딘, N,N-디메틸포름아미드, 티오펜, 디페닐에테르, 트리에틸아민, 유기인 화합물 또는 1가 또는 2가의 알코올 등일 수 있다.
상기 제1 알킬화제는 알루미녹산일 수 있으며, 상기 알루미녹산은 트리히드로카르빌 알루미늄계 화합물에 물을 반응시킴으로써 제조된 것일 수 있다. 구체적으로, 상기 알루미녹산은 하기 화학식 4a의 직쇄 알루미녹산 또는 화학식 4b의 환형 알루미녹산일 수 있다.
[화학식 4a]
Figure PCTKR2018011302-appb-I000010
[화학식 4b]
Figure PCTKR2018011302-appb-I000011
상기 화학식 4a 및 4b에서, R은 탄소 원자를 통해 알루미늄 원자에 결합하는 1가의 유기기로서, 하이드로카르빌기일 수 일 수 있으며, x 및 y는 서로 독립적으로 1 이상의 정수, 구체적으로는 1 내지 100, 더 구체적으로는 2 내지 50의 정수일 수 있다.
보다 더 구체적으로는, 상기 알루미녹산은 메틸알루미녹산(MAO), 변성 메틸알루미녹산(MMAO), 에틸알루미녹산, n-프로필알루미녹산, 이소프로필알루미녹산, n-부틸알루미녹산, 이소부틸알루미녹산, n-펜틸알루미녹산, 네오펜틸알루미녹산, n-헥실알루미녹산, n-옥틸알루미녹산, 2-에틸헥실알루미녹산, 사이클로헥실알루미녹산, 1-메틸사이클로펜틸알루미녹산, 페닐알루미녹산 또는 2,6-디메틸페닐 알루미녹산 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또한, 상기 변성 메틸알루미녹산은 메틸알루미녹산의 메틸기를 수식기(R), 구체적으로는 탄소수 2 내지 20의 탄화수소기로 치환한 것으로, 구체적으로는 하기 화학식 5로 표시되는 화합물일 수 있다.
[화학식 5]
Figure PCTKR2018011302-appb-I000012
상기 화학식 5에서, R은 앞서 정의한 바와 같으며, m 및 n은 서로 독립적으로 2 이상의 정수일 수 있다. 또한, 상기 화학식 5에서, Me는 메틸기(methyl group)을 나타내는 것이다.
구체적으로, 상기 화학식 5에서 상기 R은 탄소수 2 내지 20의 알킬기, 탄소수 3 내지 20의 시클로알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 3 내지 20의 시클로알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 아릴알킬기, 탄소수 7 내지 20의 알킬아릴기, 알릴기 또는 탄소수 2 내지 20의 알키닐기일 수 있으며, 보다 구체적으로는 에틸기, 이소부틸기, 헥실기 또는 옥틸기 등과 같은 탄소수 2 내지 10의 알킬기이고, 보다 더 구체적으로는 이소부틸기일 수 있다.
더 구체적으로, 상기 변성 메틸알루미녹산은 메틸알루미녹산의 메틸기의 약 50 몰% 내지 90 몰%를 상기한 탄화수소기로 치환한 것일 수 있다. 변성 메틸알루미녹산 내 치환된 탄화수소기의 함량이 상기 범위 내일 때, 알킬화를 촉진시켜 촉매활성을 증가시킬 수 있다.
이와 같은 변성 메틸알루미녹산은 통상의 방법에 따라 제조될 수 있으며, 구체적으로는 트리메틸알루미늄과 트리메틸알루미늄 이외의 알킬알루미늄을 이용하여 제조될 수 있다. 이때 상기 알킬알루미늄은 트리이소부틸알루미늄, 트리에틸알루미늄, 트리헥실알루미늄 또는 트리옥틸알루미늄 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 제2 알킬화제는 히드로카르빌알루미늄 디하이드라이드일 수 있으며, 구체적으로 상기 제2 알킬화제는 디에틸알루미늄 하이드라이드, 디-n-프로필알루미늄 하이드라이드, 디이소프로필알루미늄 하이드라이드, 디-n-부틸알루미늄 하이드라이드, 디이소부틸알루미늄 하이드라이드(DIBAH), 디-n-옥틸알루미늄 하이드라이드, 디페닐알루미늄 하이드라이드, 디-p-톨릴알루미늄 하이드라이드, 디벤질알루미늄 하이드라이드, 페닐에틸알루미늄 하이드라이드, 페닐-n-프로필알루미늄 하이드라이드, 페닐이소프로필알루미늄 하이드라이드, 페닐-n-부틸알루미늄 하이드라이드, 페닐이소부틸알루미늄 하이드라이드, 페닐-n-옥틸알루미늄 하이드라이드, p-톨릴에틸알루미늄 하이드라이드, p-톨릴-n-프로필알루미늄 하이드라이드, p-톨릴이소프로필알루미늄 하이드라이드, p-톨릴-n-부틸알루미늄 하이드라이드, p-톨릴이소부틸알루미늄 하이드라이드, p-톨릴-n-옥틸알루미늄 하이드라이드, 벤질에틸알루미늄 하이드라이드, 벤질-n-프로필알루미늄 하이드라이드, 벤질이소프로필알루미늄 하이드라이드, 벤질-n-부틸알루미늄 하이드라이드, 벤질이소부틸알루미늄 하이드라이드 또는 벤질-n-옥틸알루미늄 하이드라이드 등의 디히드로카르빌알루미늄 하이드라이드; 에틸알루미늄 디하이드라이드, n-프로필알루미늄 디하이드라이드, 이소프로필알루미늄 디하이드라이드, n-부틸알루미늄 디하이드라이드, 이소부틸알루미늄 디하이드라이드 및 n-옥틸알루미늄 디하이드라이드로 이루어진 군에서 선택된 1종 이상인 것일 수 있다.
한편, 본 발명의 일 실시예에 따른 상기 촉매 조성물에 있어서 알킬화제는 히드로카르빌기를 다른 금속으로 전달할 수 있는 유기금속 화합물로서 조촉매의 역할을 하는 것일 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 촉매 조성물은 필요에 따라 상기의 제1 및 제2 알킬화제 외 통상 공액디엔계 중합체의 제조시 알킬화제로서 사용되는 통상적인 알킬화제를 더 포함할 수 있으며, 이러한 알킬화제로는 트리메틸알루미늄, 트리에틸알루미늄, 트리-n-프로필알루미늄, 트리이소프로필알루미늄, 트리-n-부틸알루미늄, 트리이소부틸알루미늄, 트리-t-부틸알루미늄, 트리펜틸알루미늄, 트리헥실알루미늄, 트리시클로헥실알루미늄, 트리옥틸알루미늄 등의 알킬알루미늄; 디에틸마그네슘, 디-n-프로필마그네슘, 디이소프로필마그네슘, 디부틸마그네슘, 디헥실마그네슘, 디페닐마그네슘, 또는 디벤질마그네슘과 같은 알킬마그네슘 화합물 등을 들 수 있고, 또 상기 유기 리튬 화합물로는 n-부틸리튬 등과 같은 알킬 리튬 화합물 등을 들 수 있다.
또한, 상기 할로겐화물은 특별히 제한하는 것은 아니나, 예컨대 할로겐 단체(單體), 할로겐간 화합물(interhalogen compound), 할로겐화수소, 유기 할라이드, 비금속 할라이드, 금속 할라이드 또는 유기금속 할라이드 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이중에서도 촉매 활성 향상 및 이에 따른 반응성 개선 효과의 우수함을 고려할 때 상기 할로겐화물로는 유기 할라이드, 금속 할라이드 및 유기금속 할라이드로 이루어진 군으로부터 선택된 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 할로겐 단체로는 불소, 염소, 브롬 또는 요오드를 들 수 있다.
또한, 상기 할로겐간 화합물로는 요오드 모노클로라이드, 요오드 모노브로마이드, 요오드 트리클로라이드, 요오드 펜타플루오라이드, 요오드 모노플루오라이드 또는 요오드 트리플루오라이드 등을 들 수 있다.
또한, 상기 할로겐화수소로는 불화수소, 염화수소, 브롬화수소 또는 요오드화수소를 들 수 있다.
또한, 상기 유기 할라이드로는 t-부틸 클로라이드(t-BuCl), t-부틸 브로마이드, 알릴 클로라이드, 알릴 브로마이드, 벤질 클로라이드, 벤질 브로마이드, 클로로-디-페닐메탄, 브로모-디-페닐메탄, 트리페닐메틸 클로라이드, 트리페닐메틸 브로마이드, 벤질리덴 클로라이드, 벤질리덴 브로마이드, 메틸트리클로로실란, 페닐트리클로로실란, 디메틸디클로로실란, 디페닐디클로로실란, 트리메틸클로로실란(TMSCl), 벤조일 클로라이드, 벤조일 브로마이드, 프로피오닐 클로라이드, 프로피오닐 브로마이드, 메틸 클로로포르메이트, 메틸 브로모포르메이트, 요오도메탄, 디요오도메탄, 트리요오도메탄 ('요오도포름'으로도 불리움), 테트라요오도메탄, 1-요오도프로판, 2-요오도프로판, 1,3-디요오도프로판, t-부틸 요오다이드, 2,2-디메틸-1-요오도프로판 ('네오펜틸 요오다이드'로도 불리움), 알릴 요오다이드, 요오도벤젠, 벤질 요오다이드, 디페닐메틸 요오다이드, 트리페닐메틸 요오다이드, 벤질리덴 요오다이드 ('벤잘 요오다이드'로도 불리움), 트리메틸실릴 요오다이드, 트리에틸실릴 요오다이드, 트리페닐실릴 요오다이드, 디메틸디요오도실란, 디에틸디요오도실란, 디페닐디요오도실란, 메틸트리요오도실란, 에틸트리요오도실란, 페닐트리요오도실란, 벤조일 요오다이드, 프로피오닐 요오다이드 또는 메틸 요오도포르메이트 등을 들 수 있다.
또한, 상기 비금속 할라이드로는 삼염화인, 삼브롬화인, 오염화인, 옥시염화인, 옥시브롬화인, 삼불화붕소, 삼염화붕소, 삼브롬화붕소, 사불화규소, 사염화규소(SiCl4), 사브롬화규소, 삼염화비소, 삼브롬화비소, 사염화셀레늄, 사브롬화셀레늄, 사염화텔루르, 사브롬화텔루르, 사요오드화규소, 삼요오드화비소, 사요오드화텔루르, 삼요오드화붕소, 삼요오드화인, 옥시요오드화인 또는 사요오드화셀레늄 등을 들 수 있다.
또한, 상기 금속 할라이드로는 사염화주석, 사브롬화주석, 삼염화알루미늄, 삼브롬화알루미늄, 삼염화안티몬, 오염화안티몬, 삼브롬화안티몬, 삼불화알루미늄, 삼염화갈륨, 삼브롬화갈륨, 삼불화갈륨, 삼염화인듐, 삼브롬화인듐, 삼불화인듐, 사염화티타늄, 사브롬화티타늄, 이염화아연, 이브롬화아연, 이불화아연, 삼요오드화알루미늄, 삼요오드화갈륨, 삼요오드화인듐, 사요오드화티타늄, 이요오드화아연, 사요오드화게르마늄, 사요오드화주석, 이요오드화주석, 삼요오드화안티몬 또는 이요오드화마그네슘을 들 수 있다.
또한, 상기 유기금속 할라이드로는 디메틸알루미늄 클로라이드, 디에틸알루미늄 클로라이드, 디메틸알루미늄 브로마이드, 디에틸알루미늄 브로마이드, 디메틸알루미늄 플루오라이드, 디에틸알루미늄 플루오라이드, 메틸알루미늄 디클로라이드, 에틸알루미늄 디클로라이드, 메틸알루미늄 디브로마이드, 에틸알루미늄 디브로마이드, 메틸알루미늄 디플루오라이드, 에틸알루미늄 디플루오라이드, 메틸알루미늄 세스퀴클로라이드, 에틸알루미늄 세스퀴클로라이드(EASC), 이소부틸알루미늄 세스퀴클로라이드, 메틸마그네슘 클로라이드, 메틸마그네슘 브로마이드, 에틸마그네슘 클로라이드, 에틸마그네슘 브로마이드, n-부틸마그네슘 클로라이드, n-부틸마그네슘 브로마이드, 페닐마그네슘 클로라이드, 페닐마그네슘 브로마이드, 벤질마그네슘 클로라이드, 트리메틸주석 클로라이드, 트리메틸주석 브로마이드, 트리에틸주석 클로라이드, 트리에틸주석 브로마이드, 디-t-부틸주석 디클로라이드, 디-t-부틸주석 디브로마이드, 디-n-부틸주석 디클로라이드, 디-n-부틸주석 디브로마이드, 트리-n-부틸주석 클로라이드, 트리-n-부틸주석 브로마이드, 메틸마그네슘 요오다이드, 디메틸알루미늄 요오다이드, 디에틸알루미늄 요오다이드, 디-n-부틸알루미늄 요오다이드, 디이소부틸알루미늄 요오다이드, 디-n-옥틸알루미늄 요오다이드, 메틸알루미늄 디요오다이드, 에틸알루미늄 디요오다이드, n-부틸알루미늄 디요오다이드, 이소부틸알루미늄 디요오다이드, 메틸알루미늄 세스퀴요오다이드, 에틸알루미늄 세스퀴요오다이드, 이소부틸알루미늄 세스퀴요오다이드, 에틸마그네슘 요오다이드, n-부틸마그네슘 요오다이드, 이소부틸마그네슘 요오다이드, 페닐마그네슘 요오다이드, 벤질마그네슘 요오다이드, 트리메틸주석 요오다이드, 트리에틸주석 요오다이드, 트리-n-부틸주석 요오다이드, 디-n-부틸주석 디요오다이드 또는 디-t-부틸주석 디요오다이드 등을 들 수 있다.
또한, 본 발명의 일 실시예에 따른 촉매 조성물은, 상기 할로겐화물 대신에 또는 상기 할로겐화물과 함께, 비배위성 음이온 함유 화합물 또는 비배위 음이온 전구체 화합물을 포함할 수도 있다.
구체적으로, 상기 비배위성 음이온을 포함하는 화합물에 있어서, 비배위성 음이온은 입체 장애로 인해 촉매계의 활성 중심과 배위결합을 형성하지 않는, 입체적으로 부피가 큰 음이온으로서, 테트라아릴보레이트 음이온 또는 불화 테트라아릴보레이트 음이온 등일 수 있다. 또한, 상기 비배위성 음이온을 포함하는 화합물은 상기한 비배위성 음이온과 함께 트리아릴 카르보늄 양이온과 같은 카르보늄 양이온; N,N-디알킬 아닐리늄 양이온 등과 같은 암모늄 양이온, 또는 포스포늄 양이온 등의 상대 양이온을 포함하는 것일 수 있다. 보다 구체적으로, 상기 비배위성 음이온을 포함하는 화합물은, 트리페닐 카르보늄 테트라키스(펜타플루오로 페닐) 보레이트, N,N-디메틸아닐리늄 테트라키스(펜타플루오로 페닐) 보레이트, 트리페닐 카르보늄 테트라키스[3,5-비스(트리플루오로메틸) 페닐]보레이트, 또는 N,N-디메틸아닐리늄 테트라키스[3,5-비스(트리플루오로메틸) 페닐]보레이트 등일 수 있다.
또한, 상기 비배위성 음이온 전구체로서는, 반응 조건하에서 비배위성 음이온이 형성 가능한 화합물로서, 트리아릴 붕소 화합물(BE3, 이때 E는 펜타플루오로페닐기 또는 3,5-비스(트리플루오로메틸) 페닐기 등과 같은 강한 전자흡인성의 아릴기임)을 들 수 있다.
또한, 상기 변성 공액디엔계 중합체의 제조에 있어서 상기 활성 중합체와 변성제 화합물을 반응시키기 위해서는, 상기 활성 중합체가 리빙성(living property) 또는 슈도 리빙성(pseudo living property)을 갖는 것이 바람직할 수 있고, 이러한 리빙성을 갖는 중합체의 중합 반응으로는 배위 음이온 중합을 이용할 수 있다.
따라서, 상기 단계 1의 중합은 라디칼 중합에 의해 실시될 수 있고, 구체적인 예로 벌크 중합, 용액 중합, 현탁 중합 또는 유화 중합일 수 있으며, 보다 구체적인 예로 용액 중합일 수 있다. 또 다른 예로, 상기 중합 반응은 회분식 및 연속식 중 어느 방법으로도 수행될 수 있다. 구체적인 예로, 상기 공액디엔계 중합체 제조를 위한 중합 반응은 유기용매 중에서 상기 촉매 조성물에 대해 공액디엔계 단량체를 투입하여 반응시킴으로써 실시될 수 있다.
또 다른 예로, 상기 중합은 탄화수소계 용매 중에서 수행될 수 있다. 상기 탄화수소계 용매는 촉매 조성물을 제조하는데 사용될 수 있는 탄화수소계 용매의 양에 추가로 첨가될 수 있으며, 이때 상기 탄화수소계 용매는 앞서 설명한 바와 동일한 것일 수 있다. 또한, 상기 탄화수소계 용매의 사용 시 단량체의 농도는 3 내지 80 중량%, 또는 10 내지 30 중량%일 수 있다.
본 발명의 일 실시예에 따르면, 상기 활성 중합체 제조를 위한 중합 반응 시 폴리옥시에틸렌글리콜포스페이트 등과 같은 중합반응을 완료시키기 위한 반응정지제; 또는 2,6-디-t-부틸파라크레졸 등과 같은 산화방지제 등의 첨가제가 더 사용될 수 있다. 이외에도, 통상 용액 중합을 용이하도록 하는 첨가제, 구체적으로는 킬레이트제, 분산제, pH 조절제, 탈산소제 또는 산소포착제(oxygen scavenger)와 같은 첨가제가 선택적으로 더 사용될 수도 있다.
또 다른 예로, 상기 활성 중합체 제조를 위한 중합 반응은 20 내지 200℃, 또는 20 내지 100℃의 온도에서 15분 내지 3시간, 또는 30분 내지 2시간 동안 수행될 수 있고, 이 범위 내에서 반응 제어가 용이하고, 중합 반응 속도 및 효율이 우수하며, 제조된 활성 중합체의 시스-1,4 결합 함량이 높은 효과가 있다. 또한, 상기 중합 반응은 상기 란탄 계열 희토류 원소 화합물을 포함하는 촉매 조성물 및 중합체를 실활시키지 않기 위해, 일례로 중합 반응계 내에 산소, 물, 탄산가스 등의 실활 작용이 있는 화합물의 혼입을 방지하는 것이 바람직할 수 있다.
상기와 같은 중합 반응의 결과로서, 상기 란탄 계열 희토류 원소 함유 화합물을 포함하는 촉매로부터 활성화된 유기 금속 부위를 포함하는 활성 중합체, 보다 구체적으로는 1,3-부타디엔 단량체 단위를 포함하는 네오디뮴 촉매화 공액디엔계 중합체가 생성되고, 상기 제조된 공액디엔계 중합체는 슈도 리빙 특성을 가질 수 있다.
상기 단계 2는 변성 공액디엔계 중합체를 제조하기 위한 단계로, 상기 활성 중합체에 화학식 1로 표시되는 화합물 또는 화학식 2로 표시되는 화합물을 상기 활성 중합체의 유기 금속 부위에 대하여 화학양론적 양 이상으로 첨가하여, 상기 중합체에 결합되어 있는 활성화된 유기 금속 부위와 반응시킴으로써 수행될 수 있다.
여기에서, 상기 화학식 1로 표시되는 화합물의 구체적인 물질은 앞서 정의한 바와 같다.
이때, 상기 화학식 1로 표시되는 화합물은 상기 활성 중합체의 제조 시 사용되는 란탄 계열 희토류 원소 함유 화합물 1 몰에 대하여 0.5 내지 20 몰, 또는 0.1 내지 10 몰로 사용될 수 있다.
상기 단계 2의 반응은 변성 반응일 수 있고, 상기 변성 반응은 일례로 용액 반응 또는 고상 반응에 의해 수행될 수 있고, 구체적인 예로 용액 반응에 의해 수행될 수 있다. 또 다른 예로, 상기 변성 반응은 배치(batch)식 반응기를 이용하여 수행될 수도 있고, 다단 연속식 반응기나 인라인 믹서 등의 장치를 이용하여 연속식으로 수행될 수도 있다.
또 다른 예로, 상기 변성 반응은 통상 중합반응과 동일한 온도 및 압력 조건에서 수행될 수 있고, 구체적인 예로 20 내지 100℃의 온도에서 수행될 수 있으며, 이 범위 내에서 중합체의 점도가 상승하지 않고, 중합체의 활성화된 말단이 실활되지 않는 효과가 있다.
상기한 변성 반응의 종료 후, 2,6-디-t-부틸-p-크레졸(BHT)의 이소프로판올 용액 등을 중합 반응계에 첨가하여 중합 반응을 정지시킬 수 있다. 이후 수증기의 공급을 통해 용제의 분압을 낮추는 스팀 스트립핑 등의 탈용매 처리나 진공 건조 처리를 거쳐서 변성 공액디엔계 중합체가 수득될 수 있다. 또한, 상기한 변성 반응의 결과로 수득되는 반응생성물 중에는 상기한 변성 공액디엔 중합체와 함께, 변성되지 않은, 활성 중합체가 포함될 수도 있다.
본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체 제조방법은 제조된 변성 공액디엔계 중합체에 대한 침전 및 분리 공정을 더 포함할 수도 있다. 상기 침전된 변성 공액디엔계 중합체에 대한 여과, 분리 및 건조 공정은 통상의 방법에 따라 실시될 수 있다.
상기한 바와 같이, 본 발명의 일 실시예에 따른 변성 공액디엔계 중합체 제조방법에 의하는 경우, 좁은 분자량 분포를 비롯한 우수한 물성적 특성을 갖는 변성 공액디엔계 중합체, 구체적인 예로 네오디뮴 촉매화 부타디엔계 중합체가 제조될 수 있다.
더 나아가, 본 발명은 상기 공액디엔계 중합체를 포함하는 고무 조성물 및 상기 고무 조성물로부터 제조된 성형품을 제공한다.
본 발명의 일 실시예에 따른 상기 고무 조성물은 공액디엔계 중합체를 0.1 중량% 이상 100 중량% 이하, 구체적으로는 10 중량% 내지 100 중량%, 더욱 구체적으로는 20 중량% 내지 90 중량%로 포함하는 것일 수 있다. 만약, 상기 공액디엔계 중합체의 함량이 0.1 중량% 미만인 경우 결과적으로 상기 고무 조성물을 이용하여 제조된 성형품, 예컨대 타이어의 내마모성 및 내균열성 등의 개선효과가 미미할 수 있다.
또한, 상기 고무 조성물은 상기 변성 공액디엔계 중합체 외에 필요에 따라 다른 고무 성분을 더 포함할 수 있으며, 이때 상기 고무 성분은 고무 조성물 총 중량에 대하여 90 중량% 이하의 함량으로 포함될 수 있다. 구체적으로는 상기 변성 공액디엔계 공중합체 100 중량부에 대하여 1 중량부 내지 900 중량부로 포함되는 것일 수 있다.
상기 고무 성분은 천연고무 또는 합성고무일 수 있으며, 예컨대 상기 고무 성분은 시스-1,4-폴리이소프렌을 포함하는 천연고무(NR); 상기 일반적인 천연고무를 변성 또는 정제한, 에폭시화 천연고무(ENR), 탈단백 천연고무(DPNR), 수소화 천연고무 등의 변성 천연고무; 스티렌-부타디엔 공중합체(SBR), 폴리부타디엔(BR), 폴리이소프렌(IR), 부틸고무(IIR), 에틸렌-프로필렌 공중합체, 폴리이소부틸렌-코-이소프렌, 네오프렌, 폴리(에틸렌-코-프로필렌), 폴리(스티렌-코-부타디엔), 폴리(스티렌-코-이소프렌), 폴리(스티렌-코-이소프렌-코-부타디엔), 폴리(이소프렌-코-부타디엔), 폴리(에틸렌-코-프로필렌-코-디엔), 폴리설파이드 고무, 아크릴 고무, 우레탄 고무, 실리콘 고무, 에피클로로히드린 고무, 부틸 고무, 할로겐화 부틸 고무 등과 같은 합성고무일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또한, 상기 고무 조성물은 공액디엔계 중합체 100 중량부에 대하여 0.1 중량부 내지 150 중량부의 충진제를 포함하는 것일 수 있으며, 상기 충진제는 실리카계, 카본블랙 또는 이들 조합인 것일 수 있다. 구체적으로는, 상기 충진제는 카본블랙인 것일 수 있다.
상기 카본블랙계 충진제는 특별히 제한하는 것은 아니나, 예컨대 질소 흡착 비표면적(N2SA, JIS K 6217-2:2001에 준거해서 측정함)이 20 ㎡/g 내지 250 ㎡/g인 것일 수 있다. 또, 상기 카본블랙은 디부틸프탈레이트 흡유량(DBP)이 80 cc/100g 내지 200 cc/100g인 것일 수 있다. 상기 카본블랙의 질소흡착 비표면적이 250 m2/g을 초과하면 고무 조성물의 가공성이 저하될 우려가 있고, 20 m2/g 미만이면 카본블랙에 의한 보강 성능이 미미할 수 있다. 또한, 상기 카본블랙의 DBP 흡유량이 200 cc/100g을 초과하면 고무 조성물의 가공성이 저하될 우려가 있고, 80 cc/100g 미만이면 카본블랙에 의한 보강 성능이 미미할 수 있다.
또한, 상기 실리카는 특별히 제한하는 것은 아니나, 예컨대 습식 실리카(함수규산), 건식 실리카(무수규산), 규산칼슘, 규산알루미늄 또는 콜로이드 실리카 등일 수 있다. 구체적으로는, 상기 실리카는 파괴 특성의 개량 효과 및 웨트 그립성(wet grip)의 양립 효과가 가장 현저한 습식 실리카일 수 있다. 또한, 상기 실리카는 질소흡착 비표면적(nitrogen surface area per gram, N2SA)이 120 ㎡/g 내지 180 ㎡/g이고, CTAB(cetyl trimethyl ammonium bromide) 흡착 비표면적이 100 ㎡/g 내지 200 ㎡/g일 수 있다. 상기 실리카의 질소흡착 비표면적이 120 ㎡/g 미만이면 실리카에 의한 보강 성능이 저하될 우려가 있고, 180 ㎡/g을 초과하면 고무 조성물의 가공성이 저하될 우려가 있다. 또한, 상기 실리카의 CTAB 흡착 비표면적이 100 ㎡/g 미만이면 충진제인 실리카에 의한 보강 성능이 저하될 우려가 있고, 200 ㎡/g을 초과하면 고무 조성물의 가공성이 저하될 우려가 있다.
한편, 상기 충진제로서 실리카가 사용될 경우 보강성 및 저발열성 개선을 위해 실란 커플링제가 함께 사용될 수 있다.
상기 실란 커플링제로는 구체적으로 비스(3-트리에톡시실릴프로필)테트라술피드, 비스(3-트리에톡시실릴프로필)트리술피드, 비스(3-트리에톡시실릴프로필)디술피드, 비스(2-트리에톡시실릴에틸)테트라술피드, 비스(3-트리메톡시실릴프로필)테트라술피드, 비스(2-트리메톡시실릴에틸)테트라술피드, 3-머캅토프로필트리메톡시실란, 3-머캅토프로필트리에톡시실란, 2-머캅토에틸트리메톡시실란, 2-머캅토에틸트리에톡시실란, 3-트리메톡시실릴프로필-N,N-디메틸티오카르바모일테트라술피드, 3-트리에톡시실릴프로필-N,N-디메틸티오카르바모일테트라술피드, 2-트리에톡시실릴에틸-N,N-디메틸티오카르바모일테트라술피드, 3-트리메톡시실릴프로필벤조티아졸릴테트라술피드, 3-트리에톡시실릴프로필벤졸릴테트라술피드, 3-트리에톡시실릴프로필메타크릴레이트모노술피드, 3-트리메톡시실릴프로필메타크릴레이트모노술피드, 비스(3-디에톡시메틸실릴프로필)테트라술피드, 3-머캅토프로필디메톡시메틸실란, 디메톡시메틸실릴프로필-N,N-디메틸티오카르바모일테트라술피드 또는 디메톡시메틸실릴프로필벤조티아졸릴테트라술피드 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 보다 구체적으로는 보강성 개선 효과를 고려할 때 상기 실란커플링제는 비스(3-트리에톡시실릴프로필)폴리술피드 또는 3-트리메톡시실릴프로필벤조티아질테트라술피드일 수 있다.
또한, 본 발명에 따른 일 실시예에 따른 고무 조성물은 황 가교성일 수 있으며, 이에 따라 가황제를 더 포함할 수 있다.
상기 가황제는 구체적으로 황분말일 수 있으며, 고무 성분 100 중량부에 대하여 0.1 중량부 내지 10 중량부로 포함될 수 있다. 상기 함량범위로 포함될 때, 가황 고무 조성물의 필요한 탄성률 및 강도를 확보할 수 있으며, 동시에 저연비성을 얻을 수 있다.
또한, 본 발명에 따른 일 실시예에 따른 고무 조성물은 상기한 성분들 외에, 통상 고무 공업계에서 사용되는 각종 첨가제, 구체적으로는 가황 촉진제, 공정유, 가소제, 노화 방지제, 스코치 방지제, 아연화(zinc white), 스테아르산, 열경화성 수지, 또는 열가소성 수지 등을 더 포함할 수 있다.
상기 가황 촉진제는 특별히 한정되는 것은 아니며, 구체적으로는 M(2-머캅토벤조티아졸), DM(디벤조티아질디술피드), CZ(N-시클로헥실-2-벤조티아질술펜아미드) 등의 티아졸계 화합물, 혹은 DPG(디페닐구아니딘) 등의 구아니딘계 화합물이 사용될 수 있다. 상기 가황촉진제는 고무 성분 100 중량부에 대하여 0.1 중량부 내지 5 중량부로 포함될 수 있다.
또한, 상기 공정유는 고무 조성물내 연화제로서 작용하는 것으로, 구체적으로는 파라핀계, 나프텐계, 또는 방향족계 화합물일 수 있으며, 보다 구체적으로는 인장 강도 및 내마모성을 고려할 때 방향족계 공정유가, 히스테리시스 손실 및 저온 특성을 고려할 때 나프텐계 또는 파라핀계 공정유가 사용될 수 있다. 상기 공정유는 고무 성분 100 중량부에 대하여 100 중량부 이하의 함량으로 포함될 수 있으며, 상기 함량으로 포함될 때, 가황 고무의 인장 강도, 저발열성(저연비성)의 저하를 방지할 수 있다.
또한, 상기 노화방지제로는 구체적으로 N-이소프로필-N'-페닐-p-페닐렌디아민, N-(1,3-디메틸부틸)-N'-페닐-p-페닐렌디아민, 6-에톡시-2,2,4-트리메틸-1,2-디히드로퀴놀린, 또는 디페닐아민과 아세톤의 고온 축합물 등을 들 수 있다. 상기 노화방지제는 고무 성분 100 중량부에 대하여 0.1 중량부 내지 6 중량부로 사용될 수 있다.
본 발명의 일 실시예에 따른 고무 조성물은 상기 배합 처방에 의해 밴버리 믹서, 롤, 인터널 믹서 등의 혼련기를 사용하여 혼련함으로써 수득될 수 있으며, 또 성형 가공 후 가황 공정에 의해 저발열성이며 내마모성이 우수한 고무 조성물이 수득될 수 있다.
이에 따라 상기 고무 조성물은 타이어 트레드, 언더 트레드, 사이드 월, 카카스 코팅 고무, 벨트 코팅 고무, 비드 필러, 췌이퍼, 또는 비드 코팅 고무 등의 타이어의 각 부재나, 방진고무, 벨트 컨베이어, 호스 등의 각종 공업용 고무 제품의 제조에 유용할 수 있다.
상기 고무 조성물을 이용하여 제조된 성형품은 타이어 또는 타이어 트레드를 포함하는 것일 수 있다.
이하, 실시예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것으로 이들 만으로 본 발명의 범위가 한정되는 것은 아니다.
제조예
제조예 1
질소 조건 하에서 헥산 용매 중에, 네오디뮴 네오데카노에이트를 첨가하고, 메틸알루미녹산(MAO), 디이소부틸알루미늄 하이드라이드(DIBAH), 염화디에틸알루미늄(DEAC) 및 1,3-부타디엔을 네오디뮴 네오데카노에이트:MAO:DIBAH:DEAC:1,3-부타디엔=1:120:43:2~3:30의 몰비가 되도록 순차 투입한 후 -20℃에서 12시간 동안 혼합하여 촉매 조성물을 제조하였다. 제조된 촉매 조성물은 -30℃ 내지 -20℃에서 질소 조건 하에 24시간 보관 후 사용하였다.
제조예 2
질소 조건 하에서 헥산 용매 중에, 네오디뮴 네오데카노에이트를 첨가하고, 메틸알루미녹산(MAO), 디이소부틸알루미늄 하이드라이드(DIBAH), 염화디에틸알루미늄(DEAC) 및 1,3-부타디엔을 네오데뮴 네오데카노에이트:MAO:DIBAH:DEAC:1,3-부타디엔=1:150:48:2~3:30의 몰비가 되도록 순차 투입한 후 -20℃에서 12시간 동안 혼합하여 촉매 조성물을 제조하였다. 제조된 촉매 조성물은 -30℃ 내지 -20℃에서 질소 조건 하에 24시간 보관 후 사용하였다.
제조예 3
질소 조건 하에서 헥산 용매 중에, 네오디뮴 네오데카노에이트를 첨가하고, 메틸알루미녹산(MAO), 디이소부틸알루미늄 하이드라이드(DIBAH), 염화디에틸알루미늄(DEAC) 및 1,3-부타디엔을 네오디뮴 네오데카노에이트:MAO:DIBAH:DEAC:1,3-부타디엔=1:100:40:2~3:30의 몰비가 되도록 순차 투입한 후 -20℃에서 12시간 동안 혼합하여 촉매 조성물을 제조하였다. 제조된 촉매 조성물은 -30℃ 내지 -20℃에서 질소 조건 하에 24시간 보관 후 사용하였다.
제조예 4: 에틸 1-(트리메틸실릴)피페리딘-3-카르복실레이트의 제조
디클로로메탄(CH2Cl2) 중 에틸 피페리딘-3-카르복실레이트 (ethyl piperidine-3-carboxylate) 2 g이 용해된 용액에, 0℃에서 트리에틸아민(Et3N) 1.77 ml 및 염화트리메틸실릴(TMSCl) 1.62 ml를 첨가하고, 이 혼합물을 0℃에서 3시간 동안 교반하였다. 이어서 휘발성 용매를 감압 하에 제거하고, 잔류물(residue)을 헥산으로 2회 반복하여 여과하였다. 여과된 원재료(crude material)를 감압 증류를 통해 정제하여, 하기와 같은 구조의 화합물을 수득하고, 1H 핵자기 공명 분광학적 스펙트럼을 관찰하였다.
Figure PCTKR2018011302-appb-I000013
1H NMR (500 MHz, CDCl3) δ 4.10-4.09 (m, 2H), δ 3.19-3.17 (m, 1H), δ 2.93 (m, 1H), δ 2.79-2.72 (m, 1H), δ 2.54 (m, 1H), δ 2.24 (m, 1H), δ 1.94-1.92 (m, 1H), δ 1.63-1.58 (m, 2H), δ 1.28-1.21 (m, 4H), δ 0.00 (m, 9H).
제조예 5: 에틸 1-(트리메틸실릴)피페리딘-4-카르복실레이트의 제조
디클로로메탄(CH2Cl2) 중 에틸 피페리딘-4-카르복실레이트 (ethyl piperidine-3-carboxylate) 2 g이 용해된 용액에, 0℃에서 트리에틸아민(Et3N) 1.77 ml 및 염화트리메틸실릴(TMSCl) 1.62 ml를 첨가하고, 이 반응 혼합물을 0℃에서 5시간 동안 교반하였다. 이어서, 생성된 용액 중 용매를 감압 하에 증발시키고, 헥산에 재용해 시킨 후, 여과하여 하기와 같은 구조의 화합물을 수득하고, 1H 핵자기 공명 분광학적 스펙트럼을 관찰하였다.
Figure PCTKR2018011302-appb-I000014
1H NMR (500 MHz, CDCl3) δ 4.11-4.08 (m, 2H), δ 3.13-3.11 (m, 2H), δ 2.61-2.54 (m, 2H), δ 2.34-2.32 (m, 1H), δ 1.74 (m, 2H), δ 1.42 (m, 2H), δ 1.23-1.22 (m, 3H), δ 0.05-0.00 (m, 9H).
비교 제조예 1
질소 조건 하에서 헥산 용매 중에, 네오디뮴 네오데카노에이트를 첨가하고, 디이소부틸알루미늄 하이드라이드(DIBAH), 염화디에틸알루미늄(DEAC) 및 1,3-부타디엔을 네오디뮴 네오데카노에이트:DIBAH:DEAC:1,3-부타디엔=1:9~10:2~3:30의 몰비가 되도록 순차 투입한 후 20℃에서 혼합하여 촉매 조성물을 제조하였다. 이때, 중합체 제조 직전에 제조하여 즉시 사용하였다.
비교 제조예 2
질소 조건 하에서 헥산 용매 중에, 네오디뮴 네오데카노에이트를 첨가하고, 메틸알루미녹산(MAO), 디이소부틸알루미늄 하이드라이드(DIBAH), 염화디에틸알루미늄(DEAC) 및 1,3-부타디엔을 네오디뮴 네오데카노에이트:MAO:DIBAH:DEAC:1,3-부타디엔=1:50:33:2~3:30의 몰비가 되도록 순차 투입한 후 -20℃에서 12시간 동안 혼합하여 촉매 조성물을 제조하였다. 제조된 촉매 조성물은 -30℃ 내지 -20℃에서 질소 조건 하에 24시간 보관 후 사용하였다.
비교 제조예 3
질소 조건 하에서 헥산 용매 중에, 네오디뮴 네오데카노에이트를 첨가하고, 메틸알루미녹산(MAO), 디이소부틸알루미늄 하이드라이드(DIBAH), 염화디에틸알루미늄(DEAC) 및 1,3-부타디엔을 네오디뮴 데카노에이트:MAO:DIBAH:DEAC:1,3-부타디엔=1:120:64:2~3:30의 몰비가 되도록 순차 투입한 후 20℃에서 12시간 동안 혼합하여 촉매 조성물을 제조하였다. 제조된 촉매 조성물은 20℃에서 질소 조건 하에 24시간 보관 후 사용하였다.
실시예
실시예 1: 변성 공액디엔계 중합체 제조
완전히 건조시킨 반응기에 진공과 질소를 교대로 가한 뒤, 진공상태의 15 L 반응기에 4.2 kg 헥산과 500 g의 1,3-부타디엔을 투입하고, 70℃로 승온하였다. 여기에 상기 제조예 1의 촉매 조성물을 첨가한 후, 60분 동안 중합을 진행하여, 말단에 활성화된 알루미늄 부위를 포함하는 활성 중합체를 제조하였다.
활성 중합체에 상기 제조예 4에서 제조된 화합물 1.15 g이 포함된 헥산 용액을 첨가한 후, 중합 조건과 같은 온도 조건에서 30분 동안 반응시켰다. 이후, 중합 정지제가 포함된 헥산 용액을 투입하여 반응을 종결시키고, 산화 방지제가 포함된 헥산 용액을 투입하여 변성 부타디엔계 중합체를 제조하였다.
실시예 2: 변성 공액디엔계 중합체 제조
상기 실시예 1에서, 활성 중합체 제조 시 촉매 조성물로 상기 제조예 2의 촉매 조성물을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 실시하여 변성 공액디엔계 중합체를 제조하였다.
실시예 3: 변성 공액디엔계 중합체 제조
상기 실시예 1에서, 활성 중합체 제조 시 촉매 조성물로 상기 제조예 3의 촉매 조성물을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 실시하여 변성 공액디엔계 중합체를 제조하였다.
실시예 4: 변성 공액디엔계 중합체 제조
상기 실시예 1에서, 활성 중합체 제조 시 촉매 조성물로 상기 제조예 3의 매 조성물을 사용하고, 제조예 4에서 제조된 화합물 대신 제조예 5에서 제조된 화합물을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하여 변성 공액디엔계 중합체를 제조하였다.
비교예 1
미변성 Nd-BR로서 BR1208(제조사 LG화학 사)을 사용하였다.
비교예 2
미변성 Nd-BR로서 CB24(제조사 Lanxess 사)를 사용하였다.
비교예 3
상기 실시예 1에서, 활성 중합체 제조 시 촉매 조성물로 상기 비교 제조예 1의 촉매 조성물을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 실시하여 변성 공액디엔계 중합체를 제조하였다.
비교예 4
상기 실시예 1에서, 활성 중합체 제조 시 촉매 조성물로 상기 비교 제조예 2의 촉매 조성물을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 실시하여 변성 공액디엔계 중합체를 제조하였다.
비교예 5
상기 실시예 1에서, 활성 중합체 제조 시 촉매 조성물로 상기 비교 제조예 3의 촉매 조성물을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 실시하여 변성 공액디엔계 중합체를 제조하였다.
실험예
실험예 1
상기 실시예 및 비교예에서 제조된 각 중합체에 대해 하기와 같은 방법으로 미세구조 분석, 수평균 분자량(Mn), 중량평균 분자량(Mw), 분자량 분포(MWD) 및 무니 점도(MV)를 각각 측정하였다.
1) 미세구조 분석
Varian VNMRS 500 MHz NMR을 이용하여 각 중합체 내 시스 결합량을 측정하였으며, 용매로는 1,1,2,2-테트라클로로에탄-D2(DLM-35, Cambridge Isotope 社)를 사용하였다.
2) 중량평균 분자량(Mw), 수평균 분자량(Mn), 및 분자량 분포(MWD)
각 중합체를 40℃ 조건 하에서 테트라히드로퓨란(THF)에 30분간 녹인 후 겔 투과 크로마토 그래피(GPC: gel permeation chromatography)에 적재하여 흘려주었다. 이때, 칼럼은 폴리머 라보레토리즈사(Polymer Laboratories)의 상품명 PLgel Olexis 칼럼 두 자루와 PLgel mixed-C 칼럼 한 자루를 조합 사용하였다. 또 새로 교체한 칼럼은 모두 혼합상(mixed bed) 타입의 칼럼을 사용하였으며, 겔 투과 크로마토그래피 표준 물질(GPC Standard material)로서 폴리스티렌(Polystyrene)을 사용하였다.
3) 무니점도 (ML1+4, @100℃) (MU)
각 중합체에 대해 Monsanto사 MV2000E로 Large Rotor를 사용하여 100℃에서 Rotor Speed 2±0.02 rpm의 조건에서 무니점도(ML1+4, @100℃)(MU)를 측정하였다. 이때 사용된 시료는 실온(23±3℃)에서 30분 이상 방치한 후 27±3g을 채취하여 다이 캐비티 내부에 채워 놓고 플래턴(Platen)을 작동시켜 토크를 인가하면서 무니점도를 측정하였다.
4) 변성율
변성율은 크로마토그래피 측정으로부터 얻어진 크로마토그램을 이용하여 계산하였다.
구체적으로, 각 중합체를 40℃ 조건 하에서 테트라히드로퓨란(THF)에 녹여 시료를 준비하고, 각 시료를 겔 투과 크로마토 그래피(GPC: gel permeation chromatography)에 주입하고, 용리제(Eluent)로 테트라히드로퓨란을 흘려주어 크로마토그램을 얻고, 얻어진 크로마토그램으로부터 하기 수학식 1에 의하여 변성율을 계산하였다.
[수학식 1]
Figure PCTKR2018011302-appb-I000015
Figure PCTKR2018011302-appb-T000001
표 1에 나타난 바와 같이, 본 발명의 일 실시예에 따른 촉매 조성물 존재 하에서 제조된 실시예 1 내지 실시예 4의 중합체는 변성율이 모두 30 mol% 이상으로 고변성율을 나타내었다. 반면에, 비교예 3 내지 비교예 5의 중합체는 변성율이 20 mol% 미만으로 낮은 변성율을 나타내었다. 이때, 비교예 3 내지 비교예 5의 중합체는 본 발명의 일 실시예에서 제시하는 조건이 아닌 다른 조건에서 제조된 촉매 조성물을 사용한 것을 제외하고는 실시예 1과 동일한 방법에 의하여 제조된 것이다.
상기의 결과를 통하여, 본 발명의 일 실시예에 따른 변성 공액디엔계 중합체는 본 발명에서 제시하는 촉매 조성물 존재 하에서 공액디엔계 단량체를 중합하는 단계를 포함하는 제조방법에 의하여 제조됨으로써 변성반응이 용이하게 이루어질 수 있고, 이에 고변성률을 가질 수 있는 것임을 알 수 있다.
실험예 2
상기 실시예 및 비교예에서 제조한 각 중합체를 이용하여 고무 조성물 및 고무 시편을 제조한 후, 하기와 같은 방법으로 인장강도, 300% 모듈러스, 신율 그리고 점탄성 특성을 각각 측정하였다. 그 결과를 하기 표 2에 나타내었다.
구체적으로, 상기 고무 조성물은 상기 각 중합체 100 중량부에 카본블랙 70 중량부, 공정오일(process oil) 22.5 중량부, 노화방지제(TMDQ) 2 중량부, 산화아연(ZnO) 3 중량부 및 스테아린산(stearic acid) 2 중량부를 배합하여 각각의 고무 조성물을 제조하였다. 이후, 상기 각 고무 조성물에 황 2 중량부, 가류 촉진제(CZ) 2 중량부 및 가류 촉진제(DPG) 0.5 중량부를 첨가하고 50℃에서 1.5분 동안 50 rpm으로 약하게 혼합한 후 50℃의 롤을 이용하여 시트 형태의 가황 배합물을 얻었다. 얻은 가황 배합물을 160℃에서 25분 동안 가류하여 고무시편을 제조하였다.
1) 인장강도(tensile strength, kg·f/cm2), 300% 모듈러스(300% modulus, kg·f/cm2) 및 신율(Elongation)
상기 각 고무 조성물을 150℃에서 t90분 가류 후 ASTM D412에 준하여 가류물의 인장강도, 300% 신장시의 모듈러스(M-300%) 및 파단시 가류물의 신율을 측정하였다.
2) 점탄성 특성(Tanδ @ 60℃)
저 연비 특성에 가장 중요한 Tan δ 물성은 독일 Gabo사 DMTS 500N을 사용하여 주파수 10㎐, Prestrain 3%, Dynamic Strain 3%에서 60℃에서의 점탄성 계수(Tan δ)를 측정하였다. 이때, 60℃에서의 Tanδ 값이 낮을수록 히스테리시스 손실이 적고, 회전저항성 특성이 우수함을 나타내는 것으로, 즉 연비성이 우수함을 나타내는 것이다.
Figure PCTKR2018011302-appb-T000002
여기에서, 인장특성의 Index 값은 비교예 2의 값을 100으로 하여 하기 수학식 2를 통해 계산하였고, 잠탄성 특성의 Index 값은 비교예 2의 값을 100으로 하여 하기 수학식 3을 통해 계산하였다.
[수학식 2]
Index=(측정값/기준값)×100
[수학식 3]
Index=(기준값/측정값)×100
상기 표 2에 나타난 바와 같이, 본 발명의 일 실시예에 따른 실시예 1 내지 실시예 4의 중합체를 포함하는 고무 조성물로부터 제조된 고무 시편이 비교예 1 내지 비교예 5의 중합체를 포함하는 고무 조성물로부터 제조된 고무 시편 대비 인장특성 및 점탄성 특성이 크게 향상된 것을 확인하였다.
특히, 촉매 조성물을 제외하고는 동일한 조건에서 제조된 비교예 3 및 비교예 5와 비교하여 실시예 1 내지 실시예 4의 인장특성 및 점탄성 특성이 크게 개선되었으며, 이는 본 발명의 일 실시예에 따른 변성 공액디엔계 중합체가 고변성율을 가짐으로써 상대적으로 낮은 변성율을 갖는 중합체 대비 충진제와의 친화성이 증가하였음을 나타내는 결과이다.

Claims (8)

  1. 하기 화학식 1로 표시되는 화합물 유래 작용기를 포함하고,
    변성율이 20 mol% 내지 50 mol%인 것인 변성 공액디엔계 중합체:
    [화학식 1]
    Figure PCTKR2018011302-appb-I000016
    상기 화학식 1에서,
    R1 및 R3은 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 시클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군으로부터 선택된 1종 이상의 치환기로 치환된 탄소수 1 내지 10의 3가 탄화수소기; 또는 비치환된 탄소수 1 내지 10의 2가 탄화수소기이고,
    R2는 -R6COOR7로 치환된 탄소수 1 내지 10의 3가 탄화수소기이며,
    R4 및 R6은 단일 결합이고,
    R7은 탄소수 1 내지 20의 알킬기, 또는 탄소수 3 내지 20의 시클로알킬기이며,
    R9 내지 R11은 각각 독립적으로 수소 또는, 탄소수 1 내지 20의 알킬기이다.
  2. 청구항 1에 있어서,
    상기 화학식 1에서 R1 및 R3은 각각 독립적으로 탄소수 1 내지 10의 알킬렌기이고,
    R2는 -R6COOR7로 치환된 탄소수 1 내지 10의 3가 탄화수소기이며,
    R4 및 R6은 단일 결합이고,
    R7은 탄소수 1 내지 20의 알킬기이고,
    R9 내지 R11은 각각 독립적으로 탄소수 1 내지 20의 알킬기인 것인 변성 공액디엔계 중합체.
  3. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 1-1 내지 1-3으로 표시되는 화합물로 이루어진 군으로부터 선택된 1종인 것인 변성 공액디엔계 중합체:
    [화학식 1-1]
    Figure PCTKR2018011302-appb-I000017
    [화학식 1-2]
    Figure PCTKR2018011302-appb-I000018
    [화학식 1-3]
    Figure PCTKR2018011302-appb-I000019
  4. 란탄 계열 희토류 원소 촉매 조성물의 존재 하, 공액디엔계 단량체를 중합하여 유기 금속 부위를 포함하는 활성 중합체를 제조하는 단계; 및
    상기 활성 중합체에 하기 화학식 1로 표시되는 화합물을 반응시키는 단계를 포함하고,
    상기 란탄 계열 희토류 원소 촉매 조성물이 란탄 계열 희토류 원소 함유 화합물, 제1 알킬화제, 제2 알킬화제, 할로겐화물 및 공액디엔계 단량체를 1:100 내지 200:40 내지 60:2 내지 4:20 내지 50의 몰비로 포함하는 것인 청구항 1에 기재된 변성 공액디엔계 중합체의 제조방법:
    [화학식 1]
    Figure PCTKR2018011302-appb-I000020
    상기 화학식 1에서,
    R1 및 R3은 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 시클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군으로부터 선택된 1종 이상의 치환기로 치환된 탄소수 1 내지 10의 3가 탄화수소기; 또는 비치환된 탄소수 1 내지 10의 2가 탄화수소기이고,
    R2는 -R6COOR7로 치환된 탄소수 1 내지 10의 3가 탄화수소기이며,
    R4 및 R6은 단일 결합이고,
    R7은 탄소수 1 내지 20의 알킬기, 또는 탄소수 3 내지 20의 시클로알킬기이며,
    R9 내지 R11은 각각 독립적으로 수소 또는, 탄소수 1 내지 20의 알킬기이다.
  5. 청구항 4에 있어서,
    상기 촉매 조성물은 탄화수소계 용매 중에서 란탄 계열 희토류 원소 함유 화합물, 제1 알킬화제, 제2 알킬화제, 할로겐화물 및 공액디엔계 단량체를 -30℃ 내지 -20℃ 온도에서 혼합하고, -30℃ 내지 -20℃의 온도에서 24시간 내지 36시간동안 정치시켜 제조된 것인 변성 공액디엔계 중합체의 제조방법.
  6. 청구항 4에 있어서,
    상기 란탄 계열 희토류 원소 함유 화합물은 하기 화학식 3으로 표시되는 네오디뮴 화합물을 포함하는 것인 변성 공액디엔계 중합체 제조방법:
    [화학식 3]
    Figure PCTKR2018011302-appb-I000021
    상기 화학식 3에서,
    Ra 내지 Rc는 각각 독립적으로 수소, 또는 탄소수 1 내지 12의 알킬기이고,
    단, Ra 내지 Rc가 모두 동시에 수소는 아니다.
  7. 청구항 4에 있어서,
    상기 제1 알킬화제는 메틸알루미녹산, 변성 메틸알루미녹산, 에틸알루미녹산, n-프로필알루미녹산, 이소프로필알루미녹산, n-부틸알루미녹산, 이소부틸알루미녹산, n-펜틸알루미녹산, 네오펜틸알루미녹산, n-헥실알루미녹산, n-옥틸알루미녹산, 2-에틸헥실알루미녹산, 사이클로헥실알루미녹산, 1-메틸사이클로펜틸알루미녹산, 페닐알루미녹산 및 2,6-디메틸페닐 알루미녹산으로 이루어진 군에서 선택된 1종 이상의 알루미녹산인 것인 변성 공액디엔계 중합체의 제조방법.
  8. 청구항 4에 있어서,
    상기 제2 알킬화제는 디에틸알루미늄 하이드라이드, 디-n-프로필알루미늄 하이드라이드, 디이소프로필알루미늄 하이드라이드, 디-n-부틸알루미늄 하이드라이드, 디이소부틸알루미늄 하이드라이드, 디-n-옥틸알루미늄 하이드라이드, 디페닐알루미늄 하이드라이드, 디-p-톨릴알루미늄 하이드라이드, 디벤질알루미늄 하이드라이드, 페닐에틸알루미늄 하이드라이드, 페닐-n-프로필알루미늄 하이드라이드, 페닐이소프로필알루미늄 하이드라이드, 페닐-n-부틸알루미늄 하이드라이드, 페닐이소부틸알루미늄 하이드라이드, 페닐-n-옥틸알루미늄 하이드라이드, p-톨릴에틸알루미늄 하이드라이드, p-톨릴-n-프로필알루미늄 하이드라이드, p-톨릴이소프로필알루미늄 하이드라이드, p-톨릴-n-부틸알루미늄 하이드리아드, p-톨릴이소부틸알루미늄 하이드라이드, p-톨릴-n-옥틸알루미늄 하이드라이드, 벤질에틸알루미늄 하이드라이드, 벤질-n-프로필알루미늄 하이드라이드, 벤질이소프로필알루미늄 하이드라이드, 벤질-n-부틸알루미늄 하이드라이드, 벤질이소부틸알루미늄 하이드라이드 및 벤질-n-옥틸알루미늄 하이드라이드로 이루어진 군에서 선택된 1종 이상인 것인 변성 공액디엔계 중합체의 제조방법.
PCT/KR2018/011302 2017-10-25 2018-09-21 변성 공액디엔계 중합체 및 이의 제조방법 WO2019083173A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18870421.7A EP3539994B1 (en) 2017-10-25 2018-09-21 Modified conjugated diene-based polymer and preparation method therefor
US16/469,814 US11041025B2 (en) 2017-10-25 2018-09-21 Modified conjugated diene-based polymer and method for preparing the same
JP2019552918A JP6857746B2 (ja) 2017-10-25 2018-09-21 変性共役ジエン系重合体およびその製造方法
CN201880005150.8A CN110099930B (zh) 2017-10-25 2018-09-21 改性共轭二烯类聚合物及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170139405A KR102132755B1 (ko) 2017-10-25 2017-10-25 변성 공액디엔계 중합체 및 이의 제조방법
KR10-2017-0139405 2017-10-25

Publications (1)

Publication Number Publication Date
WO2019083173A1 true WO2019083173A1 (ko) 2019-05-02

Family

ID=66247947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011302 WO2019083173A1 (ko) 2017-10-25 2018-09-21 변성 공액디엔계 중합체 및 이의 제조방법

Country Status (6)

Country Link
US (1) US11041025B2 (ko)
EP (1) EP3539994B1 (ko)
JP (1) JP6857746B2 (ko)
KR (1) KR102132755B1 (ko)
CN (1) CN110099930B (ko)
WO (1) WO2019083173A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3715386A4 (en) * 2017-11-21 2020-10-21 LG Chem, Ltd. RUBBER COMPOSITION
WO2021054785A1 (ko) * 2019-09-19 2021-03-25 주식회사 엘지화학 변성 공액디엔계 중합체의 제조방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101997596B1 (ko) * 2016-07-04 2019-07-08 주식회사 엘지화학 변성제, 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6030987A (en) * 1996-05-17 2000-02-29 Fmc Corporation Insecticidal N-(substituted arylmethyl)-4-[bis(substituted phenyl or pyridyl)methyl]piperidines
JP2008274067A (ja) * 2007-04-27 2008-11-13 Kuraray Co Ltd 末端ヒンダードアミノ基変性重合体の製造方法
KR20110070871A (ko) * 2008-10-14 2011-06-24 아사히 가세이 케미칼즈 가부시키가이샤 변성 공액 디엔계 중합체, 그의 제조 방법, 변성 공액 디엔계 중합체 조성물, 및 타이어
KR20140056163A (ko) * 2011-08-31 2014-05-09 제이에스알 가부시끼가이샤 변성 공액 디엔계 중합체의 제조 방법
KR20160062950A (ko) * 2014-11-26 2016-06-03 주식회사 엘지화학 아민을 포함하는 변성 공역디엔계 중합체, 이를 포함하는 변성 고무 조성물 및 변성 공역디엔계 중합체의 제조방법
WO2018008911A1 (ko) * 2016-07-04 2018-01-11 주식회사 엘지화학 변성제, 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE380099B (ko) 1974-02-07 1975-10-27 Monega Anstalt
JP4155073B2 (ja) 2003-03-26 2008-09-24 住友化学株式会社 変性ジエン系重合体ゴム、その製造方法及びゴム組成物
BRPI0714302A2 (pt) 2006-07-24 2013-04-16 Asahi Kasei Chemicals Corp polÍmero de dieno conjugado modificado, processo para produzir o mesmo, composiÇço de polÍmero de dieno conjugado modificado, e, pneu
ZA200711158B (en) * 2006-12-28 2009-03-25 Bridgestone Corp A method for producing functionalized cis-1,4-polydienes having high cis-1,4-linkage content and high functionality
WO2008156788A2 (en) 2007-06-18 2008-12-24 Bridgestone Corporation Polymers functionalized with halosilanes containing an amino group
US8110635B2 (en) 2007-06-27 2012-02-07 Sumitomo Chemical Company, Limited Method for producing conjugated diene polymer, conjugated diene polymer, and polymer composition
JP6085077B2 (ja) 2008-04-30 2017-02-22 株式会社ブリヂストン ゴム組成物及びそれを用いたタイヤ
CN102361887B (zh) 2009-01-23 2013-06-26 株式会社普利司通 用包含被保护氨基的腈化合物官能化的聚合物
JP5484005B2 (ja) * 2009-11-10 2014-05-07 旭化成ケミカルズ株式会社 ゴム組成物
JP5793315B2 (ja) 2011-02-23 2015-10-14 株式会社ブリヂストン ゴム組成物及びそれを用いた空気入りタイヤ
EP3029099B1 (en) 2011-02-23 2018-04-04 Bridgestone Corporation Rubber composition and tire produced using same, and process of producing rubber composition
JP2013018813A (ja) 2011-07-07 2013-01-31 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物及び空気入りタイヤ
KR20160065015A (ko) * 2014-11-28 2016-06-08 주식회사 엘지화학 변성 부타디엔계 중합체 및 이의 제조에 유용한 변성제
US10077323B2 (en) 2015-07-24 2018-09-18 Bridgestone Corporation Polymers functionalized with imine compounds containing a protected thiol group
KR102058693B1 (ko) * 2015-12-22 2019-12-24 주식회사 엘지화학 고무 조성물 및 이로부터 제조된 타이어
KR102010458B1 (ko) 2015-12-28 2019-10-21 주식회사 엘지화학 변성제, 이를 이용한 변성 공액디엔계 중합체의 제조방법 및 변성 공액디엔계 중합체
KR102059670B1 (ko) 2015-12-28 2019-12-26 주식회사 엘지화학 변성제, 이를 이용한 변성 공액디엔계 중합체의 제조방법 및 변성 공액디엔계 중합체
KR101997596B1 (ko) 2016-07-04 2019-07-08 주식회사 엘지화학 변성제, 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6030987A (en) * 1996-05-17 2000-02-29 Fmc Corporation Insecticidal N-(substituted arylmethyl)-4-[bis(substituted phenyl or pyridyl)methyl]piperidines
JP2008274067A (ja) * 2007-04-27 2008-11-13 Kuraray Co Ltd 末端ヒンダードアミノ基変性重合体の製造方法
KR20110070871A (ko) * 2008-10-14 2011-06-24 아사히 가세이 케미칼즈 가부시키가이샤 변성 공액 디엔계 중합체, 그의 제조 방법, 변성 공액 디엔계 중합체 조성물, 및 타이어
KR20140056163A (ko) * 2011-08-31 2014-05-09 제이에스알 가부시끼가이샤 변성 공액 디엔계 중합체의 제조 방법
KR20160062950A (ko) * 2014-11-26 2016-06-03 주식회사 엘지화학 아민을 포함하는 변성 공역디엔계 중합체, 이를 포함하는 변성 고무 조성물 및 변성 공역디엔계 중합체의 제조방법
WO2018008911A1 (ko) * 2016-07-04 2018-01-11 주식회사 엘지화학 변성제, 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3715386A4 (en) * 2017-11-21 2020-10-21 LG Chem, Ltd. RUBBER COMPOSITION
US11680153B2 (en) 2017-11-21 2023-06-20 Lg Chem, Ltd. Rubber composition
WO2021054785A1 (ko) * 2019-09-19 2021-03-25 주식회사 엘지화학 변성 공액디엔계 중합체의 제조방법
JP2022544242A (ja) * 2019-09-19 2022-10-17 エルジー・ケム・リミテッド 変性共役ジエン系重合体の製造方法
JP7462735B2 (ja) 2019-09-19 2024-04-05 エルジー・ケム・リミテッド 変性共役ジエン系重合体の製造方法

Also Published As

Publication number Publication date
EP3539994B1 (en) 2020-11-04
US20200087419A1 (en) 2020-03-19
JP2020512460A (ja) 2020-04-23
EP3539994A1 (en) 2019-09-18
KR20190046160A (ko) 2019-05-07
CN110099930B (zh) 2022-02-08
CN110099930A (zh) 2019-08-06
KR102132755B1 (ko) 2020-07-13
US11041025B2 (en) 2021-06-22
EP3539994A4 (en) 2020-04-01
JP6857746B2 (ja) 2021-04-14

Similar Documents

Publication Publication Date Title
WO2019112260A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2018128288A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2019078459A1 (ko) 변성 공액디엔계 중합체의 제조방법
WO2018128285A1 (ko) 변성 공액디엔계 중합체 제조방법
WO2017217720A1 (ko) 변성 공액디엔계 중합체의 제조방법 및 이를 이용하여 제조된 변성 공액디엔계 중합체
WO2019216645A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2020130740A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2019216636A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2019083173A1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2019103383A1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2018084546A1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2019088634A1 (ko) 공액디엔 중합용 촉매의 제조방법, 촉매 및 이를 이용한 공액디엔계 중합체의 제조방법
WO2018128291A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2019078653A2 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2021010718A1 (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
WO2019112262A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2019083092A1 (ko) 연속식 중합에 의한 공액디엔계 중합체의 제조방법
WO2018128289A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2016209046A1 (ko) 공액 디엔계 중합체 제조용 촉매 조성물 및 이를 이용하여 제조된 공액 디엔계 중합체
WO2016209042A1 (ko) 공액 디엔계 중합체 제조용 촉매 조성물 및 이를 이용하여 제조된 공액 디엔계 중합체
WO2021086039A1 (ko) 변성제, 변성 공액디엔계 중합체 및 이의 제조방법
WO2020130738A1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2018105920A1 (ko) 변성제 및 이로부터 유래된 작용기를 포함하는 변성 공액디엔계 중합체
WO2020130741A1 (ko) 변성 공액디엔계 중합체의 제조방법
WO2018084579A1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18870421

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018870421

Country of ref document: EP

Effective date: 20190614

ENP Entry into the national phase

Ref document number: 2019552918

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE