WO2018105920A1 - 변성제 및 이로부터 유래된 작용기를 포함하는 변성 공액디엔계 중합체 - Google Patents

변성제 및 이로부터 유래된 작용기를 포함하는 변성 공액디엔계 중합체 Download PDF

Info

Publication number
WO2018105920A1
WO2018105920A1 PCT/KR2017/013130 KR2017013130W WO2018105920A1 WO 2018105920 A1 WO2018105920 A1 WO 2018105920A1 KR 2017013130 W KR2017013130 W KR 2017013130W WO 2018105920 A1 WO2018105920 A1 WO 2018105920A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
carbon atoms
conjugated diene
group
polymer
Prior art date
Application number
PCT/KR2017/013130
Other languages
English (en)
French (fr)
Inventor
김수화
배효진
안정헌
박성호
최수영
김동희
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170153284A external-priority patent/KR102122470B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP17878318.9A priority Critical patent/EP3409718B1/en
Priority to US16/084,072 priority patent/US10730984B2/en
Priority to CN201780020176.5A priority patent/CN108884271B/zh
Priority to JP2019519972A priority patent/JP6857721B2/ja
Publication of WO2018105920A1 publication Critical patent/WO2018105920A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • C08K5/5445Silicon-containing compounds containing nitrogen containing at least one Si-N bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/52Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from boron, aluminium, gallium, indium, thallium or rare earths
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen

Definitions

  • the present invention relates to a modifier represented by the formula (1), a modified conjugated diene-based polymer of a high modification rate containing the functional group derived from the modifier, a method for producing the polymer.
  • a method of reducing the hysteresis loss of the vulcanized rubber In order to reduce the running resistance of the tire, there is a method of reducing the hysteresis loss of the vulcanized rubber.
  • a rebound elasticity of 50 ° C. to 80 ° C., Tan ⁇ , Goodrich heat generation and the like are used. That is, a rubber material having a high rebound elasticity at the above temperature, or a small Tan ⁇ or good rich heat generation is preferable.
  • conjugated diene-based (co) polymers such as styrene-butadiene rubber (hereinafter referred to as SBR) or butadiene rubber (hereinafter referred to as BR) have been produced by emulsion polymerization or solution polymerization and used as rubber for tires. .
  • SBR styrene-butadiene rubber
  • BR butadiene rubber
  • BR or SBR is used as a rubber material for tires
  • fillers such as silica and carbon black are usually blended together in order to obtain required tire properties.
  • the affinity between the BR or SBR and the filler is not good, but there is a problem in that physical properties including wear resistance, crack resistance, or processability are deteriorated.
  • a method for improving the dispersibility of fillers such as SBR and silica or carbon black a method of modifying the polymerization active site of the conjugated diene-based polymer obtained by anionic polymerization using organolithium into a functional group capable of interacting with the filler has been proposed.
  • a method of modifying the polymerizable active end of the conjugated diene polymer with a tin compound, introducing an amino group, or modifying an alkoxysilane derivative has been proposed.
  • the BR or SBR modified by the above-described method has a low terminal denaturation rate, so that the improvement of physical properties is insignificant in a tire manufactured using the same.
  • the present invention has been made to solve the problems of the prior art, and an object thereof is to provide a modifier useful for polymer modification.
  • Still another object of the present invention is to provide a modified conjugated diene-based polymer having a high modification rate including the functional group derived from the modifier.
  • Another object of the present invention is to provide a method for producing the modified conjugated diene polymer.
  • the present invention provides a modifier represented by the following formula (1).
  • R 1 , R 2 and R 5 are each independently substituted or unsubstituted with one or more substituents selected from the group consisting of an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms and an aryl group having 6 to 30 carbon atoms.
  • substituents selected from the group consisting of an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms and an aryl group having 6 to 30 carbon atoms.
  • R 3 and R 4 are independently of each other a C 1 to C 20 divalent hydrocarbon group unsubstituted or substituted with an alkyl group of 1 to 20 carbon atoms,
  • n is an integer of 1-3.
  • the present invention provides a modified conjugated diene-based polymer comprising a functional group derived from a modifier represented by the following formula (1).
  • R 1 , R 2 and R 5 are each independently substituted or unsubstituted with one or more substituents selected from the group consisting of an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms and an aryl group having 6 to 30 carbon atoms.
  • substituents selected from the group consisting of an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms and an aryl group having 6 to 30 carbon atoms.
  • R 3 and R 4 are independently of each other a C 1 to C 20 divalent hydrocarbon group unsubstituted or substituted with an alkyl group of 1 to 20 carbon atoms,
  • n is an integer of 1-3.
  • the present invention comprises the steps of polymerizing the conjugated diene-based monomer in the presence of a catalyst composition comprising a lanthanum-based rare earth element-containing compound in a hydrocarbon solvent (step 1); And it provides a method for producing the modified conjugated diene-based polymer comprising the step (step 2) of reacting the active polymer with a modifier represented by the formula (1).
  • the modifying agent represented by Formula 1 according to the present invention has a high anion reactivity due to the introduction of a polymer reactive functional group, such as an ester group, and thus can easily act with the active site of the polymer.
  • modified conjugated diene-based polymer according to the present invention may be excellent in affinity with a filler such as carbon black by including a modifier-derived functional group represented by the formula (1).
  • the method for producing a modified conjugated diene-based polymer according to the present invention can easily prepare a modified conjugated diene-based polymer having a high modification rate by using a modifier represented by the formula (1).
  • the present invention provides a modifier useful for the modification of the modified conjugated diene-based polymer.
  • the denaturing agent according to an embodiment of the present invention is characterized in that represented by the following formula (1).
  • R 1 , R 2 and R 5 are each independently substituted or unsubstituted with one or more substituents selected from the group consisting of an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms and an aryl group having 6 to 30 carbon atoms.
  • substituents selected from the group consisting of an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms and an aryl group having 6 to 30 carbon atoms.
  • R 3 and R 4 are independently of each other a C 1 to C 20 divalent hydrocarbon group unsubstituted or substituted with an alkyl group of 1 to 20 carbon atoms,
  • n is an integer of 1-3.
  • R 1 , R 2 and R 5 are independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, R 1 , R 2 and R 5 is substituted with a substituent R 1 , R 2 and R 5 are each independently a C 1-20 alkyl group, a C 3-20 cycloalkyl group and a C 6-20 aryl group. It may be an alkyl group having 1 to 20 carbon atoms substituted with one or more selected substituents.
  • R 1 , R 2, and R 5 are each independently substituted with one or more substituents selected from the group consisting of an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, and an aryl group having 6 to 12 carbon atoms. It may be an alkyl group having 1 to 10 carbon atoms, and more specifically, may be an alkyl group having 1 to 10 carbon atoms substituted with an alkyl group having 1 to 10 carbon atoms.
  • the R 1 , R 2 and R 5 may be an unsubstituted alkyl group having 1 to 20 carbon atoms, specifically, an alkyl group having 1 to 10 carbon atoms, and more specifically an alkyl group having 1 to 6 carbon atoms. It may be
  • R 3 and R 4 independently of each other substituted or unsubstituted carbon atoms of 1 to 20 carbon atoms substituted with an alkyl group, and R 3 and R 4 substituted with an alkyl group 2 to 1 to 20 carbon atoms
  • R 3 and R 4 may be independently an alkylene group having 1 to 10 carbon atoms substituted with an alkyl group having 1 to 10 carbon atoms
  • R 3 and R 4 may be independently selected from 1 to 10 carbon atoms. It may be an alkylene group having 1 to 6 carbon atoms substituted with an alkyl group of 6.
  • R 3 and R 4 when R 3 and R 4 are independently an unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms, R 3 and R 4 may be independently an alkylene group of 1 to 10 and , may be specifically, the R 3 and R 4 are, independently of each other may be an alkylene date of 1 to 6 carbon atoms, and more specifically to the R 3 and R 4 are together an alkylene group having 1 to 3 carbon atoms with each other.
  • R 1 , R 2 and R 3 are independently an alkyl group having 1 to 10 carbon atoms unsubstituted or substituted with an alkyl group having 1 to 10 carbon atoms, and R 3 and R 4 are independent of each other N may be an alkylene group having 1 to 6 carbon atoms, n may be an integer of 1 to 3, and more specifically, in Chemical Formula 1, R 1 , R 2, and R 3 may be each independently an alkyl group having 1 to 10 carbon atoms, R 3 and R 4 are independently of each other an alkylene group having 1 to 6 carbon atoms, n may be an integer of 1 to 3.
  • Chemical Formula 1 may be represented by Chemical Formula 1-1 to Chemical Formula 1-5.
  • the denaturant may be one having a solubility of at least 10 g in a nonpolar solvent such as 100 g of normal hexane at 25 ° C. and 1 atmosphere.
  • the solubility of the denaturant means the degree of clear dissolution without a hazy phenomenon when observed by the naked eye.
  • the modifier according to an embodiment of the present invention can be used as a modifier for the polymer to improve the modification rate of the polymer.
  • the modifying agent represented by the formula (1) according to the present invention can be easily modified to a high modification rate of the conjugated diene polymer by including a reactive functional group, a filler affinity functional group and a solvent affinity functional group for the conjugated diene-based polymer
  • the denaturant of Chemical Formula 1 may include an ester group and an amine group, which are reactive functional groups for the polymer, as described above, and the reactive functional groups exhibit high reactivity with respect to the active site of the conjugated diene-based polymer.
  • the conjugated diene-based polymer can be modified at a high modification rate, and consequently, a functional group substituted with the modifier can be introduced into the conjugated diene-based polymer at a high yield.
  • the amine group may be further reacted with the conjugated diene-based polymer terminal to be converted into a primary or secondary amino group to further improve affinity with the filler, particularly carbon black.
  • the present invention provides a modified conjugated diene-based polymer comprising a functional group derived from a modifier represented by the following formula (1).
  • R 1 , R 2 and R 5 are each independently substituted or unsubstituted with one or more substituents selected from the group consisting of an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms and an aryl group having 6 to 30 carbon atoms.
  • substituents selected from the group consisting of an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms and an aryl group having 6 to 30 carbon atoms.
  • R 3 and R 4 are independently of each other a C 1 to C 20 divalent hydrocarbon group unsubstituted or substituted with an alkyl group of 1 to 20 carbon atoms,
  • n is an integer of 1-3.
  • the modified conjugated diene-based polymer according to an embodiment of the present invention may be prepared by reacting the active polymer and the modifier represented by the formula (1) through the manufacturing method described below, the modified conjugated diene-based polymer is the formula 1 Physical properties may be improved by including a modifier-derived functional group represented by.
  • the modifier represented by Formula 1 may be as described above.
  • the modified conjugated diene-based polymer may include a filler affinity functional group and a solvent affinity functional group by including a modifier-derived functional group represented by the formula (1), a rubber composition comprising the same, and a tire prepared therefrom. Wear resistance, low fuel consumption characteristics and workability of the molded article can be improved.
  • the modified conjugated diene-based polymer may have a number average molecular weight (Mn) of 100,000 g / mol to 500,000 g / mol, specifically 100,000 g / mol to 400,000 g / mol.
  • Mn number average molecular weight
  • the modified conjugated diene-based polymer may have a weight average molecular weight (Mw) of 300,000 g / mol to 1,000,000 g / mol, specifically 400,000 g / mol to 1,000,000 g / mol.
  • Mw weight average molecular weight
  • the modified conjugated diene-based polymer may have a narrow molecular weight distribution (Mw / Mn), specifically, the molecular weight distribution of the modified conjugated diene-based polymer may be 2.0 to 3.0.
  • the modified conjugated diene-based polymer according to an embodiment of the present invention may have a narrow molecular weight distribution as described above, thereby improving tensile properties and viscoelasticity of the rubber composition and the rubber specimen to which the modified conjugated diene polymer is applied.
  • the modified conjugated diene-based polymer according to an embodiment of the present invention has a weight distribution range as described above when considering the good effect of balancing the mechanical properties, elastic modulus and processability of the rubber composition when applied to the rubber composition
  • the average molecular weight and the number average molecular weight may be one that satisfies the conditions of the aforementioned range at the same time.
  • the modified conjugated diene polymer may have a molecular weight distribution of 3.0 or less, a weight average molecular weight of 300,000 g / mol to 1,000,000 g / mol, and a number average molecular weight of 100,000 g / mol to 500,000 g / mol.
  • the molecular weight distribution may be 2.8 or less, a weight average molecular weight of 400,000 g / mol to 1,000,000 g / mol, and a number average molecular weight of 100,000 g / mol to 400,000 g / mol.
  • the weight average molecular weight and the number average molecular weight are polystyrene equivalent molecular weights respectively analyzed by gel permeation chromatography (GPC), and the molecular weight distribution (Mw / Mn) is also called polydispersity, and the weight average molecular weight (Mw) And the ratio (Mw / Mn) to the number average molecular weight (Mn).
  • GPC gel permeation chromatography
  • the modified conjugated diene-based polymer according to an embodiment of the present invention may be a polymer having a high linearity of the value of -S / R (stress / relaxation) at 0.7 °C or more.
  • the -S / R represents a change in the stress (stress) in response to the same amount of strain generated in the material, it is an index indicating the linearity of the polymer.
  • the lower the -S / R value the lower the linearity of the polymer.
  • the lower the linearity the higher the rolling resistance or rolling resistance when applied to the rubber composition.
  • the degree of branching and molecular weight distribution of the polymer can be predicted from the value of -S / R.
  • the lower the value of -S / R the higher the degree of branching, the broader molecular weight distribution, and as a result, the processability of the polymer is excellent while Characteristics are low.
  • the modified conjugated diene-based polymer according to an embodiment of the present invention has a high -S / R value of 0.7 or more at 100 °C as described above, when applied to the rubber composition may be excellent in resistance properties and fuel economy characteristics.
  • the -S / R value of the modified conjugated diene-based polymer may be 0.7 to 1.0.
  • the -S / R value was measured under a condition of 100 ° C. and a Rotor Speed of 2 ⁇ 0.02 rpm using a Mooney Viscometer, for example, a Large Rotor of Monsanto MV2000E. Specifically, the polymer is allowed to stand at room temperature (23 ⁇ 5 ° C.) for at least 30 minutes, and then 27 ⁇ 3 g is collected and filled into the die cavity, and the platen is operated to measure the Mooney viscosity while applying torque. The -S / R value was obtained by measuring the slope value of the Mooney viscosity change appearing as the torque was released.
  • the modified conjugated diene-based polymer may have a cis-1,4 bond content of 95% or more, more specifically 96% or more of the conjugated diene portion measured by Fourier transform infrared spectroscopy (FT-IR).
  • FT-IR Fourier transform infrared spectroscopy
  • the modified conjugated diene-based polymer may have a vinyl content of 5% or less, more specifically 2% or less, as measured by Fourier transform infrared spectroscopy.
  • vinyl content in the polymer exceeds 5%, there is a fear that the wear resistance, crack resistance, and ozone resistance of the rubber composition including the same deteriorate.
  • the cis-1,4 bond content and vinyl content in the polymer by the Fourier Transform Infrared Spectroscopy are conjugated diene polymers prepared at a concentration of 5 mg / mL by blanking carbon disulfide in the same cell.
  • the maximum peak value (a, baseline) near 1130 cm ⁇ 1 of the measurement spectrum, and the smallest peak near 967 cm ⁇ 1 indicating a trans-1,4 bond Each content is determined using the value (b), the minimum peak value (c) near 911 cm -1 representing vinyl bonds, and the minimum peak value (d) near 736 cm -1 representing cis-1,4 bonds. I got it.
  • the present invention provides a method for producing a modified conjugated diene-based polymer comprising a modifier derived group represented by the formula (1).
  • the preparation method according to an embodiment of the present invention comprises the steps of preparing an active polymer by polymerizing a conjugated diene monomer in the presence of a catalyst composition comprising a lanthanum-based rare earth element-containing compound in a hydrocarbon solvent (step 1); And reacting the active polymer with a denaturant represented by Formula 1 below (step 2).
  • R 1 , R 2 and R 5 are each independently substituted or unsubstituted with one or more substituents selected from the group consisting of an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms and an aryl group having 6 to 30 carbon atoms.
  • substituents selected from the group consisting of an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms and an aryl group having 6 to 30 carbon atoms.
  • R 3 and R 4 are independently of each other a C 1 to C 20 divalent hydrocarbon group unsubstituted or substituted with an alkyl group of 1 to 20 carbon atoms,
  • n is an integer of 1-3.
  • the modifier represented by Formula 1 may be as described above.
  • Step 1 is a step for preparing an active metal combined with an organic metal using a catalyst composition comprising a lanthanum-based rare earth element-containing compound, which is performed by polymerizing a conjugated diene monomer in the presence of the catalyst composition in a hydrocarbon solvent.
  • a catalyst composition comprising a lanthanum-based rare earth element-containing compound, which is performed by polymerizing a conjugated diene monomer in the presence of the catalyst composition in a hydrocarbon solvent.
  • the conjugated diene monomer is not particularly limited, but for example, 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, piperylene, 3-butyl-1,3-octadiene, isoprene and 2-phenyl It may be one or more selected from the group consisting of -1,3-butadiene.
  • the hydrocarbon solvent is not particularly limited, but may be, for example, one or more selected from the group consisting of n-pentane, n-hexane, n-heptane, isooctane, cyclohexane, toluene, benzene and xylene.
  • the catalyst composition may be used in an amount such that the lanthanum-based rare earth element-containing compound is 0.1 mmnol to 0.5 mmol based on 100 g of the total conjugated diene-based monomer, and specifically, the lanthanum-based rare earth element-containing compound is conjugated diene. It may be used in an amount such that 0.1 mmol to 0.4 mmol, more specifically 0.1 mmol to 0.25 mmol, based on 100 g of the total monomers.
  • the lanthanum-based rare earth element-containing compound is not particularly limited, but may be any one or two or more compounds of atomic number 57 to 71 rare earth metals such as lanthanum, neodymium, cerium, gadolinium or praseodymium, and more specifically, neodymium It may be a compound containing at least one selected from the group consisting of, lanthanum and gadolinium.
  • the lanthanum-based rare earth element-containing compound is a rare earth element-containing carboxylate (for example, neodymium acetate, neodymium acrylate, neodymium methacrylate, neodymium acetate, neodymium gluconate, neodymium citrate, neodymium fumarate, Neodymium lactate, neodymium maleate, neodymium oxalate, neodymium 2-ethylhexanoate, neodymium neodecanoate and the like); Organophosphates (e.g., neodymium dibutyl phosphate, neodymium dipentyl phosphate, neodymium dihexyl phosphate, neodymium diheptyl phosphate, neodymium dioctyl phosphate, neodym
  • neodymium butyl phosphonate neodymium pentyl phosphonate, neodymium hexyl phosphonate, neodymium heptyl phosphonate, neodymium octyl phosphonate, neodymium (1-methylheptyl) phosphonate, Neodymium (2-ethylhexyl) phosphonate, neodymium disyl phosphonate, neodymium dodecyl phosphonate or neodymium octadecyl phosphonate, and the like); Organic phosphinates (e.g., neodymium butylphosphinate, neodymium pentylphosphinate, neodymium hexyl phosphinate, neodymium heptyl phosphinate, neodymium oc
  • the lanthanum-based rare earth element-containing compound may include a neodymium-based compound represented by Formula 3 below.
  • R a to R c may be independently hydrogen or an alkyl group having 1 to 12 carbon atoms, provided that R a to R c are not all hydrogen at the same time.
  • the neodymium compound may be Nd (neodecanoate) 3 , Nd (2-ethylhexanoate) 3 , Nd (2,2-diethyl decanoate) 3 , Nd (2,2-dipropyl Decanoate) 3 , Nd (2,2-dibutyl decanoate) 3 , Nd (2,2-dihexyl decanoate) 3 , Nd (2,2-dioctyl decanoate) 3 , Nd ( 2-ethyl-2-propyl decanoate) 3 , Nd (2-ethyl-2-butyl decanoate) 3 , Nd (2-ethyl-2-hexyl decanoate) 3 , Nd (2-propyl-2 -Butyl decanoate) 3 , Nd (2-propyl-2-hexyl decanoate) 3 , Nd (2-propyl-2 -Butyl decan
  • the lanthanum-based rare earth element-containing compound is more specifically represented by Chemical Formula 3 in view of excellent solubility in a polymerization solvent, conversion to catalytic active species, and thus an improvement in catalytic activity without concern for oligomerization.
  • R a is a linear or branched alkyl group having 4 to 12 carbon atoms
  • R b and R c are independently hydrogen or an alkyl group having 2 to 8 carbon atoms, provided that R b and R c are neodymium compounds Can be.
  • R a is a linear or branched alkyl group having 6 to 8 carbon atoms
  • R b and R c may each independently be hydrogen or an alkyl group having 2 to 6 carbon atoms, wherein R b And R c may not be hydrogen at the same time
  • specific examples include Nd (2,2-diethyl decanoate) 3 , Nd (2,2-dipropyl decanoate) 3 , Nd (2,2-di Butyl decanoate) 3 , Nd (2,2-dihexyl decanoate) 3 , Nd (2,2-dioctyl decanoate) 3 , Nd (2-ethyl-2-propyl decanoate) 3 , Nd (2-ethyl-2-butyl decanoate) 3 , Nd (2-ethyl-2-hexyl decanoate) 3 , Nd (2-propyl-2-butyl decanoate) 3 ,
  • R a may be a linear or branched alkyl group having 6 to 8 carbon atoms
  • R b and R c may each independently be an alkyl group having 2 to 6 carbon atoms.
  • the neodymium-based compound represented by Chemical Formula 3 includes a carboxylate ligand including an alkyl group having various lengths of 2 or more carbon atoms at the ⁇ (alpha) position as a substituent, thereby inducing steric changes around the neodymium center metal. It is possible to block the entanglement of the liver, whereby there is an effect that can suppress the oligomerization.
  • such a neodymium-based compound has a high solubility in the polymerization solvent, the rate of neodymium is located in the central portion that is difficult to convert to the catalytic active species is reduced, there is a high conversion rate to the catalytic active species.
  • solubility of the lanthanum-based rare earth element-containing compound according to an embodiment of the present invention may be about 4 g or more per 6 g of nonpolar solvent at room temperature (25 ° C.).
  • the solubility of the neodymium-based compound means the degree of clear dissolution without turbid phenomenon, it can exhibit excellent catalytic activity by showing such a high solubility.
  • the lanthanum-based rare earth element-containing compound according to an embodiment of the present invention may be used in the form of a reactant with a Lewis base.
  • This reactant has the effect of improving the solubility of the lanthanum series rare earth element-containing compound in the solvent with a Lewis base and storing it in a stable state for a long time.
  • the Lewis base may be used in an amount of 30 mol or less, or 1 to 10 mol, for example, per mol of rare earth elements.
  • the Lewis base may be, for example, acetylacetone, tetrahydrofuran, pyridine, N, N-dimethylformamide, thiophene, diphenylether, triethylamine, organophosphorus compound or monovalent or dihydric alcohol and the like.
  • the catalyst composition may further include at least one of (a) an alkylating agent, (b) a halide, and (c) a conjugated diene monomer together with a lanthanum-based rare earth element-containing compound.
  • the alkylating agent may serve as a cocatalyst composition as an organometallic compound capable of transferring a hydrocarbyl group to another metal.
  • the alkylating agent can be used without particular limitation as long as it is usually used as an alkylating agent in the preparation of the diene polymer, and is soluble in a polymerization solvent, such as, for example, an organoaluminum compound, an organic magnesium compound, or an organolithium compound. It may be an organometallic compound containing.
  • organoaluminum compound trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t-butylaluminum, and tripentyl Alkyl aluminum, such as aluminum, trihexyl aluminum, tricyclohexyl aluminum, and trioctyl aluminum; Diethylaluminum hydride, di-n-propylaluminum hydride, diisopropylaluminum hydride, di-n-butylaluminum hydride, diisobutylaluminum hydride (DIBAH), di-n-octylaluminum hydride, Diphenylaluminum hydride, di-p-tolylaluminum hydride, dibenzylaluminum hydride, phenylethylaluminum hydride
  • organic magnesium compound examples include alkylmagnesium compounds such as diethylmagnesium, di-n-propylmagnesium, diisopropylmagnesium, dibutylmagnesium, dihexylmagnesium, diphenylmagnesium, or dibenzylmagnesium.
  • organolithium compound examples include alkyl lithium compounds such as n-butyllithium.
  • the organoaluminum compound may be aluminoxane.
  • the aluminoxane may be prepared by reacting a trihydrocarbyl aluminum compound with water, and specifically, may be a linear aluminoxane of Formula 4a or a cyclic aluminoxane of Formula 4b.
  • R is a monovalent organic group bonded to an aluminum atom through a carbon atom, and may be a hydrocarbyl group, and x and y are each independently an integer of 1 or more, specifically 1 to 100 More specifically, it may be an integer of 2 to 50.
  • the aluminoxane is methyl aluminoxane (MAO), modified methyl aluminoxane (MMAO), ethyl aluminoxane, n-propyl aluminoxane, isopropyl aluminoxane, butyl aluminoxane, isobutyl aluminoxane, n Pentyl aluminoxane, neopentyl aluminoxane, n-hexyl aluminoxane, n-octyl aluminoxane, 2-ethylhexyl aluminoxane, cyclohexyl aluminoxane, 1-methylcyclopentyl aluminoxane, phenyl aluminoxane or 2,6- Dimethylphenyl aluminoxane and the like, and any one or a mixture of two or more thereof may be
  • the modified methyl aluminoxane is a methyl group of methyl aluminoxane is substituted with a modification group (R), specifically a hydrocarbon group having 2 to 20 carbon atoms, specifically, may be a compound represented by the following formula (5).
  • R is as defined above, m and n may be an integer of 2 or more independently of each other.
  • Me represents a methyl group.
  • R is an alkyl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a cycloalkenyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, It may be an arylalkyl group having 7 to 20 carbon atoms, an alkylaryl group having 7 to 20 carbon atoms, an allyl group or an alkynyl group having 2 to 20 carbon atoms, and more specifically, has 2 carbon atoms such as an ethyl group, an isobutyl group, a hexyl group, an octyl group, or the like. It is an alkyl group of 10 to 10, and may be an isobutyl group more specifically.
  • the modified methyl aluminoxane may be obtained by substituting about 50 mol% to 90 mol% of the methyl group of methyl aluminoxane with the aforementioned hydrocarbon group.
  • the content of the substituted hydrocarbon group in the modified methylaluminoxane is within the above range, it is possible to promote the alkylation to increase the catalytic activity.
  • Such modified methylaluminoxane may be prepared according to a conventional method, specifically, may be prepared using alkyl aluminum other than trimethylaluminum and trimethylaluminum.
  • the alkyl aluminum may be triisobutyl aluminum, triethyl aluminum, trihexyl aluminum, trioctyl aluminum, or the like, and any one or a mixture of two or more thereof may be used.
  • the catalyst composition according to an embodiment of the present invention is a 1 to 200 molar ratio, specifically 1 to 100 molar ratio, more specifically 3 to 20 molar ratio of the alkylating agent relative to 1 mole of the lanthanum-based rare earth element-containing compound. It may be to include. If the alkylating agent is included in an amount exceeding 200 molar ratio, it is not easy to control the catalytic reaction during the preparation of the polymer, and the excess alkylating agent may cause side reactions.
  • the halide is not particularly limited, and examples thereof include a halogen alone, an interhalogen compound, a hydrogen halide, an organic halide, a nonmetal halide, a metal halide, or an organometallic halide.
  • a halogen alone, an interhalogen compound, a hydrogen halide, an organic halide, a nonmetal halide, a metal halide, or an organometallic halide One or more than one mixture may be used.
  • any one or two or more mixtures selected from the group consisting of an organic halide, a metal halide and an organometallic halide may be used as the halide.
  • halogen examples include fluorine, chlorine, bromine or iodine.
  • interhalogen compounds include iodine monochloride, iodine monobromide, iodine trichloride, iodine pentafluoride, iodine monofluoride or iodine trifluoride.
  • the hydrogen halide may include hydrogen fluoride, hydrogen chloride, hydrogen bromide or hydrogen iodide.
  • the organic halides include t-butyl chloride (t-BuCl), t-butyl bromide, allyl chloride, allyl bromide, benzyl chloride, benzyl bromide, chloro-di-phenylmethane, bromo-di-phenylmethane, tri Phenylmethyl chloride, triphenylmethyl bromide, benzylidene chloride, benzylidene bromide, methyltrichlorosilane, phenyltrichlorosilane, dimethyldichlorosilane, diphenyldichlorosilane, trimethylchlorosilane (TMSCl), benzoyl chloride, benzoyl bromide, propy Onyl chloride, propionyl bromide, methyl chloroformate, methyl bromoformate, iodomethane, diiodomethane, triiodomethane (also called
  • non-metal halides include phosphorus trichloride, phosphorus tribromide, phosphorus pentachloride, phosphorus oxychloride, phosphorus oxybromide, boron trifluoride, boron trichloride, boron tribromide, silicon tetrafluoride, silicon tetrachloride (SiCl 4 ), silicon tetrabromide , Arsenic trichloride, arsenic tribromide, selenium tetrachloride, selenium tetrabromide, tellurium tetrachloride, tellurium tetrabromide, silicon iodide, arsenic triiode, tellurium iodide, boron triiodide, phosphorus triiode, phosphorus oxyiodide or phosphorus iodide Can be mentioned.
  • the metal halide may be tin tetrachloride, tin tetrabromide, aluminum trichloride, aluminum tribromide, antimony trichloride, antimony trichloride, antimony tribromide, aluminum trifluoride, gallium trichloride, gallium tribromide, gallium trifluoride, indium trichloride, Indium tribromide, indium trifluoride, titanium tetrachloride, titanium tetrabromide, zinc dichloride, zinc dibromide, zinc difluoride, aluminum triiode, gallium iodide, indium trioxide, titanium iodide, zinc iodide, zinc iodide Germanium, tin iodide, tin iodide, antimony triiodide or magnesium iodide.
  • the organometallic halide may be dimethylaluminum chloride, diethylaluminum chloride, dimethylaluminum bromide, diethylaluminum bromide, dimethylaluminum fluoride, diethylaluminum fluoride, methylaluminum dichloride, ethylaluminum dichloride, methylaluminum dichloride.
  • the catalyst composition according to an embodiment of the present invention is 1 to 20 moles, more specifically 1 to 5 moles, more specifically 2 to the halide relative to 1 mole of the lanthanum-based rare earth element-containing compound Moles to 3 moles. If the halide is contained in excess of 20 molar ratios, the catalytic reaction may not be easily removed, and an excess of halide may cause side reactions.
  • the catalyst composition for preparing a conjugated diene polymer according to an embodiment of the present invention may include a non-coordinating anion-containing compound or a non-coordinating anion precursor compound instead of or together with the halide.
  • the non-coordinating anion is a steric bulky anion that does not form a coordination bond with the active center of the catalyst system due to steric hindrance, and is a tetraarylborate anion or a tetraaryl fluoride Borate anions and the like.
  • the compound containing the non-coordinating anion may include a carbonium cation such as a triaryl carbonium cation together with the above non-coordinating anion; It may include an ammonium cation such as an N, N-dialkyl aninium cation, or a counter cation such as a phosphonium cation.
  • the compound containing the non-coordinating anion is triphenyl carbonium tetrakis (pentafluoro phenyl) borate, N, N-dimethylanilinium tetrakis (pentafluoro phenyl) borate, triphenyl carbonium tetra Kiss [3,5-bis (trifluoromethyl) phenyl] borate, or N, N-dimethylanilinium tetrakis [3,5-bis (trifluoromethyl) phenyl] borate and the like.
  • non-coordinating anion precursor as a compound capable of forming non-coordinating anions under reaction conditions, a triaryl boron compound (BE 3 , where E is a pentafluorophenyl group or a 3,5-bis (trifluoromethyl) phenyl group or the like) The same strong electron-withdrawing aryl group).
  • the catalyst composition may further include a conjugated diene monomer, and a prepolymerization catalyst composition in which a part of the conjugated diene monomer used in the polymerization reaction is premixed with the catalyst composition for polymerization.
  • the catalyst composition activity can be improved and the conjugated diene polymer to be produced can be stabilized.
  • the "preforming” is a catalyst composition comprising a lanthanum-based rare earth element-containing compound, an alkylating agent and a halide, i.e., when diisobutylaluminum hydride (DIBAH) is included in the catalyst system.
  • DIBAH diisobutylaluminum hydride
  • a small amount of conjugated diene-based monomers such as 1,3-butadiene is added to reduce the possibility of generating various catalyst compositions active species, and pre-polymerization is performed in the catalyst composition system with addition of 1,3-butadiene. It may mean.
  • premix may refer to a state in which each compound is uniformly mixed without polymerization in the catalyst composition system.
  • the conjugated diene monomer used in the preparation of the catalyst composition may be a part of the amount used within the total amount of the conjugated diene monomer used in the polymerization reaction, for example, the lanthanum-based rare earth element-containing compound 1 It may be used to 1 to 100 moles, specifically 10 to 50 moles, or 20 to 50 moles per mole.
  • the catalyst composition according to an embodiment of the present invention is at least one of the above-described lanthanum-based rare earth element-containing compound and alkylating agent, halide and conjugated diene-based monomer in an organic solvent, specifically, a lanthanum-based rare earth element-containing compound, alkylating agent and halogen It can be prepared by sequentially mixing the cargo and optionally conjugated diene-based monomers.
  • the organic solvent may be a nonpolar solvent which is not reactive with the above catalyst components.
  • the nonpolar solvent is n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane, isopentane, isohexane, isopentane, isooctane, 2,2-dimethylbutane, cyclo Linear, branched or cyclic aliphatic hydrocarbons having 5 to 20 carbon atoms such as pentane, cyclohexane, methylcyclopentane or methylcyclohexane; Mixed solvents of aliphatic hydrocarbons having 5 to 20 carbon atoms such as petroleum ether, petroleum spirits, kerosene, and the like; Or an aromatic hydrocarbon solvent such as benzene, toluene, ethylbenzene, xylene, or the like, and any one or a mixture of two or more thereof may be used.
  • the nonpolar solvent may be a linear, branched or cyclic aliphatic hydrocarbon or aliphatic hydrocarbon having 5 to 20 carbon atoms, and more specifically n-hexane, cyclohexane, or a mixture thereof. Can be.
  • organic solvent may be appropriately selected depending on the kind of constituent materials constituting the catalyst composition, especially the alkylating agent.
  • an aromatic hydrocarbon solvent may be appropriately used because it is not easily dissolved in an aliphatic hydrocarbon solvent.
  • an aliphatic hydrocarbon solvent may be appropriately used.
  • an aliphatic hydrocarbon solvent such as hexane which is mainly used as a polymerization solvent, it may be more advantageous for the polymerization reaction.
  • the aliphatic hydrocarbon solvent can promote the catalytic activity, and by this catalytic activity can further improve the reactivity.
  • the organic solvent may be used in an amount of 20 mol to 20,000 mol, and more specifically, 100 mol to 1,000 mol, based on 1 mol of the lanthanum-based rare earth element-containing compound.
  • step 1 may be carried out using coordination anion polymerization, or by radical polymerization, specifically, may be bulk polymerization, solution polymerization, suspension polymerization or emulsion polymerization, more specifically in solution Can be summed.
  • coordination anion polymerization or by radical polymerization, specifically, may be bulk polymerization, solution polymerization, suspension polymerization or emulsion polymerization, more specifically in solution Can be summed.
  • the polymerization may be carried out by any of batch and continuous methods. Specifically, the polymerization in Step 1 may be carried out by adding a conjugated diene monomer to the catalyst composition in an organic solvent and reacting.
  • the organic solvent may be added to the amount of the organic solvent that can be used to prepare the catalyst composition, the specific kind may be as described above.
  • the concentration of the monomer when using the organic solvent may be 3% by weight to 80% by weight, or 10% by weight to 30% by weight.
  • the polymerization may include a reaction terminator for completing a polymerization reaction such as polyoxyethylene glycol phosphate; Or additives such as antioxidants such as 2,6-di-t-butylparacresol may be used.
  • additives such as chelating agents, dispersants, pH adjusting agents, deoxygenants or oxygen scavengers, which are typically used to facilitate solution polymerization, may optionally be further used.
  • the polymerization may be elevated temperature polymerization, isothermal polymerization or constant temperature polymerization (thermal insulation polymerization).
  • the constant temperature polymerization refers to a polymerization method including a step of polymerizing with self-heating reaction without adding heat after the addition of the organometallic compound
  • the temperature rising polymerization is a temperature by optionally applying heat after adding the organometallic compound
  • the isothermal polymerization refers to a polymerization method of increasing the heat by adding heat after the addition of the organometallic compound or increasing the heat or taking away the heat to maintain a constant temperature of the polymerization product.
  • the polymerization may be performed at a temperature range of -20 ° C to 200 ° C, specifically, 20 ° C to 150 ° C, more specifically, to be performed for 15 minutes to 3 hours at a temperature range of 10 ° C to 120 ° C. Can be. If the temperature of the polymerization exceeds 200 °C, it is difficult to fully control the polymerization reaction, there is a fear that the cis-1,4 bond content of the resulting diene-based polymer is lowered, if the temperature is less than -20 °C polymerization reaction There is a fear that the speed and efficiency are lowered.
  • Step 2 is a step of reacting the active polymer with a modifier represented by Chemical Formula 1 to prepare a modified conjugated diene-based polymer.
  • the modifier represented by Formula 1 may be as described above, and may be used in the reaction by mixing one or two or more kinds.
  • the modifying agent represented by Formula 1 may be used in an amount of 0.5 mol to 20 mol relative to 1 mol of the lanthanum-based rare earth element-containing compound in the catalyst composition. Specifically, the modifying agent represented by Formula 1 may be used in an amount of 1 to 10 mol based on 1 mol of the lanthanum-based rare earth element-containing compound in the catalyst composition. If the denaturant is used in an amount within the ratio range, it is possible to perform a modification reaction of optimum performance, thereby obtaining a conjugated diene polymer having a high modification rate.
  • the reaction of step 2 is a modification reaction for introducing a functional group into the polymer, it may be to perform the reaction for 1 minute to 5 hours at 0 °C to 90 °C.
  • modified conjugated diene-based polymer manufacturing method may be carried out by a batch polymerization (batch) or a continuous polymerization method comprising one or more reactors.
  • an isopropanol solution of 2,6-di-t-butyl-p-cresol (BHT) or the like can be added to the polymerization reaction system to stop the polymerization reaction.
  • BHT 2,6-di-t-butyl-p-cresol
  • the modified conjugated diene-based polymer may be obtained through desolvent treatment or vacuum drying such as steam stripping to lower the partial pressure of the solvent through supply of steam.
  • the reaction product obtained as a result of the above-described modification reaction may include an active polymer, which is not modified, together with the above-mentioned modified conjugated diene polymer.
  • the preparation method according to an embodiment of the present invention may further include one or more steps of recovering and drying the solvent and the unreacted monomer, if necessary after step 2 above.
  • the present invention provides a rubber composition comprising the modified conjugated diene-based polymer and a molded article prepared from the rubber composition.
  • the rubber composition according to an embodiment of the present invention is 0.1 to 100% by weight of the modified conjugated diene-based polymer, specifically 10 to 100% by weight, more specifically 20 to 90% by weight It may be to include. If the content of the modified conjugated diene-based polymer is less than 0.1% by weight, as a result, improvement effects such as abrasion resistance and crack resistance of a molded article manufactured using the rubber composition, such as a tire, may be insignificant.
  • the rubber composition may further include other rubber components as needed in addition to the modified conjugated diene-based polymer, wherein the rubber components may be included in an amount of 90% by weight or less based on the total weight of the rubber composition.
  • the modified conjugated diene copolymer may be included in an amount of 1 part by weight to 900 parts by weight based on 100 parts by weight.
  • the rubber component may be natural rubber or synthetic rubber, for example, the rubber component may include natural rubber (NR) including cis-1,4-polyisoprene; Modified natural rubbers such as epoxidized natural rubber (ENR), deproteinized natural rubber (DPNR), and hydrogenated natural rubber obtained by modifying or refining the general natural rubber; Styrene-butadiene copolymer (SBR), polybutadiene (BR), polyisoprene (IR), butyl rubber (IIR), ethylene-propylene copolymer, polyisobutylene-co-isoprene, neoprene, poly (ethylene-co- Propylene), poly (styrene-co-butadiene), poly (styrene-co-isoprene), poly (styrene-co-isoprene-co-butadiene), poly (isoprene-co-butadiene), poly (ethylene-co-propylene Co-diene),
  • the rubber composition may include a 0.1 to 150 parts by weight of a filler with respect to 100 parts by weight of the modified conjugated diene-based polymer, the filler may be a silica-based, carbon black or a combination thereof. Specifically, the filler may be carbon carbon rack.
  • the carbon black filler is not particularly limited, for example, the nitrogen adsorption specific surface area (measured based on N 2 SA, JIS K 6217-2: 2001) may be 20 m 2 / g to 250 m 2 / g.
  • the carbon black may have a dibutyl phthalate oil absorption (DBP) of 80 cc / 100g to 200 cc / 100g.
  • DBP dibutyl phthalate oil absorption
  • the nitrogen adsorption specific surface area of the carbon black exceeds 250 m 2 / g, the workability of the rubber composition may be lowered. If the carbon black has a specific surface area of less than 20 m 2 / g, the reinforcing performance by the carbon black may be insignificant.
  • the workability of the rubber composition may be lowered. If the DBP oil absorption of the carbon black is less than 80 cc / 100 g, the reinforcing performance by the carbon black may be insignificant.
  • the silica is not particularly limited, but may be, for example, wet silica (silicate silicate), dry silica (silicate anhydride), calcium silicate, aluminum silicate or colloidal silica.
  • the silica may be a wet silica having the most remarkable effect of improving the breaking characteristics and the wet grip property.
  • the silica has a nitrogen adsorption specific surface area (N 2 SA) of 120 m 2 / g to 180 m 2 / g, and CTAB (cetyl trimethyl ammonium bromide) adsorption specific surface area of 100 m 2 / g to 200 m 2 / g.
  • N 2 SA nitrogen adsorption specific surface area
  • CTAB cetyl trimethyl ammonium bromide
  • the nitrogen adsorption specific surface area of the silica is less than 120 m 2 / g, the reinforcing performance by silica may be deteriorated.
  • the nitrogen adsorption specific surface area is less than 180 m 2 / g, the workability of the rubber composition may be deteriorated.
  • the CTAB adsorption specific surface area of the silica is less than 100 m 2 / g, reinforcing performance by silica as a filler may be deteriorated, and when it exceeds 200 m 2 / g, the workability of the rubber composition may be deteriorated.
  • silica when silica is used as the filler, a silane coupling agent may be used together to improve reinforcement and low heat generation.
  • silane coupling agent examples include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane , 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasul Feed, 3-triethoxysilylpropyl-N, N
  • the silane coupling agent may be bis (3-triethoxysilylpropyl) polysulfide or 3-trimethoxysilylpropylbenzothiazyl tetrasulfide.
  • the amount of the silane coupling agent used can be reduced than usual.
  • the silane coupling agent may be used in an amount of 1 to 20 parts by weight based on 100 parts by weight of the filler.
  • the silane coupling agent may be used in 5 parts by weight to 15 parts by weight based on 100 parts by weight of silica.
  • the rubber composition according to an embodiment of the present invention may be sulfur crosslinkable, and thus may further include a vulcanizing agent.
  • the vulcanizing agent may be specifically sulfur powder, and may be included in an amount of 0.1 parts by weight to 10 parts by weight based on 100 parts by weight of the rubber component. When included in the content range, it is possible to ensure the required elastic modulus and strength of the vulcanized rubber composition, and at the same time obtain a low fuel consumption.
  • the rubber composition according to an embodiment of the present invention in addition to the above components, various additives commonly used in the rubber industry, in particular, vulcanization accelerators, process oils, plasticizers, anti-aging agents, anti-scoring agents, zinc white (zinc white) ), Stearic acid, a thermosetting resin, or a thermoplastic resin may be further included.
  • the vulcanization accelerator is not particularly limited, and specifically M (2-mercaptobenzothiazole), DM (dibenzothiazyl disulfide), CZ (N-cyclohexyl-2-benzothiazyl sulfenamide) Thiazole compounds, or guanidine compounds such as DPG (diphenylguanidine) can be used.
  • the vulcanization accelerator may be included in an amount of 0.1 parts by weight to 5 parts by weight based on 100 parts by weight of the rubber component.
  • the process oil acts as a softener in the rubber composition, specifically, may be a paraffinic, naphthenic, or aromatic compound, and more specifically, aromatic process oil, hysteresis loss in consideration of tensile strength and wear resistance. And naphthenic or paraffinic process oils may be used when considering low temperature properties.
  • the process oil may be included in an amount of 100 parts by weight or less with respect to 100 parts by weight of the rubber component, when included in the content, it is possible to prevent the degradation of tensile strength, low heat generation (low fuel consumption) of the vulcanized rubber.
  • the anti-aging agent specifically N-isopropyl-N'-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, 6- Methoxy-2,2,4-trimethyl-1,2-dihydroquinoline, or a high temperature condensate of diphenylamine and acetone.
  • the anti-aging agent may be used in an amount of 0.1 parts by weight to 6 parts by weight based on 100 parts by weight of the rubber component.
  • the rubber composition according to an embodiment of the present invention can be obtained by kneading using a kneading machine such as a Banbury mixer, a roll, an internal mixer, etc. by the above formulation, and also has low heat resistance and abrasion resistance by a vulcanization process after molding. This excellent rubber composition can be obtained.
  • a kneading machine such as a Banbury mixer, a roll, an internal mixer, etc.
  • the rubber composition may be used for tire members such as tire treads, under treads, sidewalls, carcass coated rubbers, belt coated rubbers, bead fillers, pancreapers, or bead coated rubbers, dustproof rubbers, belt conveyors, hoses, and the like. It may be useful for the production of various industrial rubber products.
  • the molded article manufactured using the rubber composition may include a tire or a tire tread.
  • a hexane solution containing 0.23 mmol of the denaturant represented by Chemical Formula 1-1 prepared in Preparation Example 1 was added thereto, followed by a modification reaction at 70 ° C. for 30 minutes.
  • hexane solution containing 1.0 g of polymerization terminator and WINGSTAY, an antioxidant 33 g of (Eliokem SAS, France) dissolved 30% by weight in hexane was added.
  • the resulting polymer was placed in hot water heated with steam, stirred to remove the solvent, and then dried in rolls to remove residual solvent and water to prepare a modified butadiene polymer.
  • Example 1 except that the modification reaction was carried out using the modification agent represented by Formula 1-2 prepared in Preparation Example 2 instead of the modification agent represented by Formula 1-1 prepared in Preparation Example 1
  • a modified butadiene polymer was prepared in the same manner as in Example 1.
  • Example 1 except that the modification reaction was carried out using the modification agent represented by Formula 1-3 prepared in Preparation Example 3 instead of the modification agent represented by Formula 1-1 prepared in Preparation Example 1
  • a modified butadiene polymer was prepared in the same manner as in Example 1.
  • Example 1 except that the modification reaction was carried out using the modification agent represented by Formula 1-4 prepared in Preparation Example 4 instead of the modification agent represented by Formula 1-1 prepared in Preparation Example 1
  • a modified butadiene polymer was prepared in the same manner as in Example 1.
  • Example 1 except that the modification was carried out using the modification agent represented by Formula 1-5 prepared in Preparation Example 5 instead of the modification agent represented by Formula 1-1 prepared in Preparation Example 1 A modified butadiene polymer was prepared in the same manner as in Example 1.
  • NdV Neodymium compound 0.10 mmol hexane solution
  • DIBAH diisobutylaluminum hydride
  • diethylaluminum chloride diethylaluminum chloride
  • BR1208 (SEETEC Co., Ltd.) was used as a comparative example as an unmodified butadiene polymer.
  • CB25 (Lanxess, Inc.) was used as a comparative example as an unmodified butadiene polymer.
  • Example 1 except that the modification reaction was carried out using the modification agent represented by Formula (I) prepared in Comparative Preparation Example 1 instead of the modification agent represented by Formula 1-1 prepared in Preparation Example 1 A modified butadiene polymer was prepared in the same manner as in Example 1.
  • Example 1 except that the modification was carried out using the modification agent represented by Formula ii prepared in Comparative Preparation Example 2 instead of the modification agent represented by Formula 1-1 prepared in Preparation Example 1
  • a modified butadiene polymer was prepared in the same manner as in Example 1.
  • GPC gel permeation chromatography
  • the Mooney viscosity (MV) was measured under conditions of Rotor Speed 2 ⁇ 0.02 rpm at 100 ° C. using a Large Rotor with Monsanto MV2000E. At this time, the sample used was left at room temperature (23 ⁇ 3 °C) for more than 30 minutes, and collected 27 ⁇ 3g filled inside the die cavity and operated the platen (Platen) to measure the Mooney viscosity.
  • Comparative Example 1 to Example 1 to Example 5 modified butadiene polymer prepared by using an example modifier of the modifier represented by Formula 1 according to an embodiment of the present invention is not modified It was confirmed that the -S / R value of the butadiene polymer of Comparative Example 3 and the modified butadiene polymer of Comparative Examples 4 and 5 increased. This means that the modified butadiene polymer according to an embodiment of the present invention has a higher linearity than the modified or unmodified butadiene polymer of Comparative Examples 1 to 5, and as a result, a rubber prepared from a rubber composition comprising the same. It indicates that the resistance and fuel efficiency of the specimen may be excellent.
  • the rubber composition is 70 parts by weight of carbon black, 100 parts by weight of each modified butadiene polymer and butadiene polymer, 22.5 parts by weight of process oil, 2 parts by weight of antioxidant (TMDQ), zinc oxide (ZnO) 3
  • TMDQ antioxidant
  • ZnO zinc oxide
  • Each rubber composition was prepared by combining parts by weight and 2 parts by weight of stearic acid. Then, 2 parts by weight of sulfur, 2 parts by weight of vulcanization accelerator (CZ) and 0.5 parts by weight of vulcanization accelerator (DPG) were added to each of the rubber compositions, and vulcanized at 160 ° C. for 25 minutes to prepare a rubber specimen.
  • Tan ⁇ properties which are most important for low fuel efficiency, were measured using a Gabo DMTS 500N from Germany and measured the viscoelastic modulus (Tan ⁇ ) at 60 ° C at a frequency of 10 Hz, 3% prestrain and 3% dynamic strain.
  • Tan ⁇ viscoelastic modulus
  • the rubber composition comprising the modified butadiene polymer of Examples 1 to 5 prepared by using the modifier according to an embodiment of the present invention and the rubber specimen prepared therefrom are Comparative Examples 1 to The rubber composition comprising the unmodified butadiene polymer of 3 and the modified butadiene polymer of Comparative Example 4 and Comparative Example 5, respectively, and markedly improved viscoelastic properties (Tan at 60 ° C.) with improved abrasion resistance and tensile properties. Index is greatly increased by decreasing the value of ⁇ ).
  • the butadiene polymer of Comparative Example 1 prepared under the same conditions as the modified butadiene polymers of Examples 1 to 5 except that the modification agent is not modified using a modifier, and commercialized and commercially available Comparative Example 2 and Comparative Example
  • the butadiene polymer of 3 tensile properties were similar to those of the modified butadiene polymers of Examples 1 to 5, but the wear resistance was greatly reduced and the viscoelastic properties were significantly reduced.
  • the modified butadiene polymer of Examples 1 to 5 includes an alkoxysilane group, an amine group, and an ester group, such as a modifier represented by Formula 1 according to an embodiment of the present invention, but is prepared by modifying a material having a different structure. Compared with the modified butadiene polymers of Comparative Examples 4 and 5, the wear resistance and tensile properties were excellent, and the viscoelastic properties were improved.
  • the above result is equivalent to or more than that of the modified butadiene polymer of the embodiment according to an embodiment of the present invention by being modified with a specific modifier represented by the formula (1), but unmodified or similar but modified with a modifier of a different structure. It shows that it can have excellent low rotational resistance, that is, fuel economy, while having tensile properties and wear resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 화학식 1로 표시되는 변성제, 상기 변성제 유래 작용기를 포함하는 고변성률의 변성 공액디엔계 중합체, 상기 중합체의 제조방법에 관한 것이다.

Description

변성제 및 이로부터 유래된 작용기를 포함하는 변성 공액디엔계 중합체
[관련출원과의 상호인용]
본 출원은 2016.12.08자 한국 특허 출원 제10-2016-0166994호 및 2017.11.16자 한국 특허 출원 제10-2017-0153284호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
[기술분야]
본 발명은 화학식 1로 표시되는 변성제, 상기 변성제 유래 작용기를 포함하는 고변성률의 변성 공액디엔계 중합체, 상기 중합체의 제조방법에 관한 것이다.
최근 자동차에 대한 저연비화의 요구에 따라, 타이어용 고무 재료로서 주행저항이 적고, 내마모성, 인장 특성이 우수하며, 웨트 스키드 저항으로 대표되는 조정 안정성도 겸비한 공액디엔계 중합체가 요구되고 있다.
타이어의 주행저항을 감소시키기 위해서는 가황 고무의 히스테리시스 손실을 작게하는 방안이 있으며, 이러한 가황 고무의 평가 지표로서는 50℃ 내지 80℃의 반발탄성, Tan δ, 굿리치 발열 등이 이용된다. 즉, 상기 온도에서의 반발탄성이 크거나 Tan δ 또는 굿리치 발열이 작은 고무 재료가 바람직하다.
히스테리시스 손실이 작은 고무 재료로서는, 천연 고무, 폴리이소프렌고무 또는 폴리부타디엔 고무 등이 알려져있지만, 이들은 웨트 스키드 저항성이 작은 문제가 있다. 이에 최근에는 스티렌-부타디엔 고무(이하, SBR이라 함) 또는 부타디엔 고무(이하, BR이라 함)와 같은 공액디엔계 (공)중합체가 유화중합이나 용액중합에 의해 제조되어 타이어용 고무로서 이용되고 있다.
상기의 BR 또는 SBR을 타이어용 고무 재료로 이용하는 경우에는, 타이어 요구 물성을 얻기 위하여 통상적으로 실리카나 카본블랙 등의 충진제를 함께 블렌딩하여 사용하고 있다. 그러나, 상기 BR 또는 SBR과 충진제의 친화성이 좋지 못하여 오히려 내마모성, 내크랙성 또는 가공성 등을 비롯한 물성이 저하되는 문제가 있다.
이에, SBR과 실리카나 카본블랙 등의 충진제의 분산성을 높이기 위한 방법으로서, 유기 리튬을 이용한 음이온 중합으로 얻어지는 공액디엔계 중합체의 중합활성 부위를 충진제와 상호작용 가능한 관능기로 변성하는 방법이 제안되었다. 예컨대, 공액디엔계 중합체의 중합활성 말단을 주석계 화합물로 변성하거나, 아미노기를 도입하는 방법 또는 알콕시실란 유도체로 변성하는 방법 등이 제안되었다.
또한, BR과 실리카나 카본블랙 등의 충진제의 분산성을 높이기 위한 방법으로서 란탄 계열 희토류 원소 화합물을 포함하는 촉매 조성물을 이용한 배위 중합에 의해 얻어지는 리빙 중합체에 있어서, 리빙 활성 말단을 특정의 커플링제나 변성제에 의해 변성하는 방법이 개발되었다.
그러나, 전술한 방법으로 변성된 BR 또는 SBR은 말단 변성율이 낮아 이를 이용하여 제조된 타이어의 경우 물성 개선 효과가 미미하였다.
본 발명은 상기 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 중합체 변성에 유용한 변성제를 제공하는 것을 목적으로 한다.
본 발명의 또 다른 목적은 상기 변성제 유래 작용기를 포함하는 고변성률의 변성 공액디엔계 중합체를 제공하는 것이다.
더 나아가, 본 발명의 또 다른 목적은 상기의 변성 공액디엔계 중합체의 제조방법을 제공하는 것이다.
상기의 과제를 해결하기 위하여, 본 발명은 하기 화학식 1로 표시되는 변성제를 제공한다.
[화학식 1]
Figure PCTKR2017013130-appb-I000001
상기 화학식 1에서,
R1, R2 및 R5는 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환되거나 비치환된 탄소수 1 내지 20의 1가 탄화수소기이고,
R3 및 R4는 서로 독립적으로 탄소수 1 내지 20의 알킬기로 치환되거나 비치환된 탄소수 1 내지 20의 2가 탄화수소기이며,
n은 1 내지 3의 정수이다.
또한, 본 발명은 하기 화학식 1로 표시되는 변성제 유래 작용기를 포함하는 변성 공액디엔계 중합체를 제공한다.
[화학식 1]
Figure PCTKR2017013130-appb-I000002
상기 화학식 1에서,
R1, R2 및 R5는 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환되거나 비치환된 탄소수 1 내지 20의 1가 탄화수소기이고,
R3 및 R4는 서로 독립적으로 탄소수 1 내지 20의 알킬기로 치환되거나 비치환된 탄소수 1 내지 20의 2가 탄화수소기이며,
n은 1 내지 3의 정수이다.
아울러, 본 발명은 탄화수소 용매 중에서, 란탄 계열 희토류 원소 함유 화합물을 포함하는 촉매 조성물 존재 하에서 공액디엔계 단량체를 중합하여 유기 금속이 결합된 활성 중합체를 제조하는 단계(단계 1); 및 상기 활성 중합체를 상기 화학식 1로 표시되는 변성제와 반응시키는 단계(단계 2)를 포함하는 상기의 변성 공액디엔계 중합체의 제조방법을 제공한다
본 발명에 따른 화학식 1로 표시되는 변성제는 중합체 반응성 작용기, 예컨대 에스테르기가 도입되어 있음으로써 음이온 반응성이 높아 중합체의 활성 부위와 용이하게 작용할 수 있으며, 이에 변성을 용이하게 수행할 수 있다.
또한, 본 발명에 따른 변성 공액디엔계 중합체는 화학식 1로 표시되는 변성제 유래 작용기를 포함함으로써 카본블랙 등의 충진제와의 친화성이 우수할 수 있다.
아울러, 본 발명에 따른 변성 공액디엔계 중합체의 제조방법은 화학식 1로 표시되는 변성제를 이용함으로써 고변성률을 갖는 변성 공액디엔계 중합체를 용이하게 제조할 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명은 변성 공액디엔계 중합체의 변성에 유용한 변성제를 제공한다.
본 발명의 일 실시예에 따른 상기 변성제는 하기 화학식 1로 표시되는 것인 것을 특징으로 한다.
[화학식 1]
Figure PCTKR2017013130-appb-I000003
상기 화학식 1에서,
R1, R2 및 R5는 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환되거나 비치환된 탄소수 1 내지 20의 1가 탄화수소기이고,
R3 및 R4는 서로 독립적으로 탄소수 1 내지 20의 알킬기로 치환되거나 비치환된 탄소수 1 내지 20의 2가 탄화수소기이며,
n은 1 내지 3의 정수이다.
구체적으로, 상기 화학식 1에 있어서 R1, R2 및 R5는 서로 독립적으로 치환기로 치환되거나 비치환된 탄소수 1 내지 20의 1가 탄화수소기로, 상기 R1, R2 및 R5가 치환기로 치환된 탄소수 1 내지 20의 1가 탄화수소기인 경우, 상기 R1, R2 및 R5는 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기 및 탄소수 6 내지 20의 아릴기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환된 탄소수 1 내지 20의 알킬기인 것일 수 있다.
더욱 구체적으로는 상기 R1, R2 및 R5는 서로 독립적으로 탄소수 1 내지 10의 알킬기, 탄소수 3 내지 8의 사이클로알킬기 및 탄소수 6 내지 12의 아릴기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환된 탄소수 1 내지 10의 알킬기인 것일 수 있고, 보다 더 구체적으로는 탄소수 1 내지 10의 알킬기로 치환된 탄소수 1 내지 10의 알킬기인 것일 수 있다.
또한, 상기 R1, R2 및 R5가 비치환된 탄소수 1 내지 20의 알킬기인 것일 수 있고, 구체적으로는 탄소수 1 내지 10의 알킬기인 것일 수 있으며, 더욱 구체적으로는 탄소수 1 내지 6의 알킬기인 것일 수 있다.
또한, 상기 화학식 1에서, R3 및 R4는 서로 독립적으로 알킬기로 치환되거나비치환된 탄소수 1 내지 20의 2가 탄화수소기로, 상기 R3 및 R4가 알킬기로 치환된 탄소수 1 내지 20의 2가 탄화수소기인 경우 상기 R3 및 R4는 서로 독립적으로 탄소수 1 내지 10 알킬기로 치환된 탄소수 1 내지 10의 알킬렌기인 것일 수 있고, 구체적으로는 상기 R3 및 R4는 서로 독립적으로 탄소수 1 내지 6의 알킬기로 치환된 탄소수 1 내지 6의 알킬렌기인 것일 수 있다.
또한, 상기 화학식 1에서, R3 및 R4가 서로 독립적으로 비치환된 탄소수 1 내지 20의 2가 탄화수소기인 경우, 상기 R3 및 R4는 서로 독립적으로 1 내지 10의 알킬렌기인 것일 수 있고, 구체적으로는 상기 R3 및 R4는 서로 독립적으로 탄소수 1 내지 6의 알킬렌기일 수 있으며, 더욱 구체적으로는 상기 R3 및 R4는 서로 동시에 탄소수 1 내지 3의 알킬렌기인 것일 수 있다.
구체적으로, 상기 변성제는 화학식 1에서, R1, R2 및 R3는 서로 독립적으로 탄소수 1 내지 10의 알킬기로 치환되거나 비치환된 탄소수 1 내지 10의 알킬기이고, R3 및 R4는 서로 독립적으로 탄소수 1 내지 6의 알킬렌기이며, n은 1 내지 3의 정수인 것일 수 있고, 더욱 구체적으로는 상기 화학식 1에서, R1, R2 및 R3는 서로 독립적으로 탄소수 1 내지 10의 알킬기이고, R3 및 R4는 서로 독립적으로 탄소수 1 내지 6의 알킬렌기이며, n은 1 내지 3의 정수인 것일 수 있다.
보다 더 구체적으로는, 상기 화학식 1로 표시되는 변성제는 화학식 1-1 내지 화학식 1-5로 표시되는 것일 수 있다.
[화학식 1-1]
Figure PCTKR2017013130-appb-I000004
[화학식 1-2]
Figure PCTKR2017013130-appb-I000005
[화학식 1-3]
Figure PCTKR2017013130-appb-I000006
[화학식 1-4]
Figure PCTKR2017013130-appb-I000007
[화학식 1-5]
Figure PCTKR2017013130-appb-I000008
상기 변성제는 25℃, 1기압에서 비극성 용매, 예컨대 노말헥산 100 g에 대한 용해도(solubility)가 10 g 이상인 것일 수 있다. 여기에서, 변성제의 용해도는 육안에 의한 관찰시 탁한 현상 없이 맑게 용해되는 정도를 의미하는 것이다. 이에, 본 발명의 일 실시예에 따른 상기 변성제는 중합체용 변성제로 사용되어 중합체의 변성율을 향상시킬 수 있다.
또한, 본 발명에 따른 상기 화학식 1로 표시되는 변성제는 공액디엔계 중합체에 대한 반응성 작용기, 충진제 친화성 작용기 및 용매 친화성 작용기를 포함함으로써 공액디엔계 중합체를 고 변성율로 용이하게 변성시킬 수 있으며, 이를 포함하는 고무 조성물 및 이로부터 제조된 타이어 등의 성형품의 내마모성, 저연비특성 및 가공성을 개선시킬 수 있다. 구체적으로, 상기 화학식 1의 변성제는 전술한 바와 같이 분자 내에 중합체에 대한 반응성 작용기인 에스테르기 및 아민기를 포함하는 것일 수 있으며, 상기 반응성 작용기는 공액디엔계 중합체의 활성 부위에 대해 높은 반응성을 나타냄으로써 공액디엔계 중합체를 높은 변성율로 변성시킬 수 있어 결과적으로 변성제에 치환된 관능성 작용기를 공액디엔계 중합체 내로 높은 수율로 도입시킬 수 있다. 또한, 상기 아민기는 공액디엔계 중합체 말단과 반응하여 1급 또는 2급 아미노기로 전환되면서 충진제, 특히 카본블랙과의 친화성을 더욱 향상시킬 수 있다.
또한, 본 발명은 하기 화학식 1로 표시되는 변성제 유래 작용기를 포함하는 변성 공액디엔계 중합체를 제공한다.
[화학식 1]
Figure PCTKR2017013130-appb-I000009
상기 화학식 1에서,
R1, R2 및 R5는 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환되거나 비치환된 탄소수 1 내지 20의 1가 탄화수소기이고,
R3 및 R4는 서로 독립적으로 탄소수 1 내지 20의 알킬기로 치환되거나 비치환된 탄소수 1 내지 20의 2가 탄화수소기이며,
n은 1 내지 3의 정수이다.
본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 후술하는 제조방법을 통해 활성 중합체와 상기 화학식 1로 표시되는 변성제를 반응시킴으로써 제조되는 것일 수 있으며, 상기 변성 공액디엔계 중합체는 상기 화학식 1로 표시되는 변성제 유래 작용기를 포함함으로써 물성이 개선될 수 있다.
구체적인, 상기 화학식 1로 표시되는 변성제는 전술한 바와 같을 수 있다.
구체적으로, 상기 변성 공액디엔계 중합체는 상기 화학식 1로 표시되는 변성제 유래 작용기를 포함함으로써 충진제 친화성 작용기 및 용매 친화성 작용기를 포함할 수 있으며, 이에 이를 포함하는 고무 조성물 및 이로부터 제조된 타이어 등의 성형품의 내마모성, 저연비특성 및 가공성이 개선될 수 있다.
상기 변성 공액디엔계 중합체는 수평균 분자량(Mn)이 100,000 g/mol 내지 500,000 g/mol, 구체적으로는 100,000 g/mol 내지 400,000 g/mol일 수 있다.
또한, 상기 변성 공액디엔계 중합체는 중량평균 분자량(Mw)이 300,000 g/mol 내지 1,000,000 g/mol, 구체적으로는 400,000 g/mol 내지 1,000,000 g/mol일 수 있다.
또한, 상기 변성 공액디엔계 중합체는 좁은 분자량 분포(Mw/Mn)를 갖는 것일 수 있으며, 구체적으로, 상기 변성 공액디엔계 중합체의 분자량 분포는 2.0 내지 3.0 인 것일 수 있다. 본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 전술한 바와 같이 좁은 분자량 분포를 가짐으로써 이를 적용한 고무 조성물 및 고무시편의 인장특성과 점탄성을 향상시킬 수 있다.
아울러, 본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 고무 조성물에 적용시 고무 조성물의 기계적 물성, 탄성률 및 가공성의 발란스 좋은 개선 효과를 고려할 때, 상기와 같은 분자량 분포 범위를 가지면서 중량평균 분자량 및 수평균 분자량을 동시에 전술한 범위의 조건에 충족되는 것일 수 있다.
구체적으로는, 상기 변상 공액디엔계 중합체는 분자량 분포가 3.0 이하이고, 중량평균 분자량이 300,000 g/mol 내지 1,000,000 g/mol이고, 수평균 분자량이 100,000 g/mol 내지 500,000 g/mol인 것일 수 있고, 더 구체적으로는 분자량 분포가 2.8 이하이고, 중량평균 분자량이 400,000 g/mol 내지 1,000,000 g/mol이고, 수평균 분자량이 100,000 g/mol 내지 400,000 g/mol인 것일 수 있다.
여기에서, 상기 중량평균 분자량 및 수평균 분자량은 각각 겔 투과형 크로마토그래피(GPC)로 분석되는 폴리스티렌 환산 분자량이며, 분자량 분포(Mw/Mn)는 다분산성(polydispersity)이라고도 불리며, 중량평균 분자량(Mw)과 수평균 분자량(Mn)과의 비(Mw/Mn)로 계산하였다.
또한, 본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 100℃에서의 -S/R(stress/relaxation)의 값이 0.7 이상인 높은 선형성을 갖는 중합체인 것일 수 있다. 이때, 상기 -S/R은 물질내 발생된 동일 양의 변형(strain)에 대한 반응으로 나타나는 스트레스(stress)의 변화를 나타내는 것으로, 중합체의 선형성을 나타내는 지수이다. 통상 -S/R 값이 낮을수록 중합체의 선형성이 낮음을 의미하며, 선형성이 낮을수록 고무 조성물에 적용시 구름 저항 또는 회전 저항이 증가하게 된다. 또한, 상기 -S/R 값으로부터 중합체의 분지화도 및 분자량 분포를 예측할 수 있으며, -S/R 값이 낮을수록 분지화도가 높고, 분자량 분포가 넓으며, 그 결과로서 중합체의 가공성은 우수한 반면 기계적 특성은 낮다.
본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 전술한 바와 같이 100℃에서 0.7 이상의 높은 -S/R 값을 가짐으로써, 고무 조성물에 적용시 저항 특성 및 연비 특성이 우수할 수 있다. 구체적으로는, 상기 변성 공액디엔계 중합체의 -S/R 값은 0.7 내지 1.0일 수 있다.
여기에서, 상기 -S/R 값은 무니점도계, 예를 들어, Monsanto社 MV2000E의 Large Rotor를 사용하여 100℃ 및 Rotor Speed 2±0.02rpm의 조건에서 측정하였다. 구체적으로는 중합체를 실온(23±5℃)에서 30분 이상 방치한 후 27±3g을 채취하여 다이 캐비티 내부에 채워 놓고 플래턴(Platen)을 작동시켜 토크를 인가하면서 무니점도를 측정하고, 또 토크가 풀리면서 나타나는 무니점도 변화의 기울기 값을 측정함으로써 -S/R값을 얻었다.
또한, 구체적으로, 상기 변성 공액디엔계 중합체는 푸리에 변환 적외 분광법(FT-IR)으로 측정한 공액디엔부의 시스-1,4 결합 함량이 95% 이상, 보다 구체적으로는 96% 이상인 것일 수 있다. 이에, 고무 조성물에 적용시 고무 조성물의 내마모성, 내균열성 및 내오존성이 향상될 수 있다.
또한, 상기 변성 공액디엔계 중합체는 푸리에 변환 적외 분광법으로 측정한 공액디엔부의 비닐 함량이 5% 이하, 보다 구체적으로는 2% 이하일 수 있다. 중합체내 비닐 함량이 5%를 초과할 경우, 이를 포함하는 고무 조성물의 내마모성, 내균열성, 내오존성이 열화될 우려가 있다.
여기에서, 상기 푸리에 변환 적외 분광법(FT-IR)에 의한 중합체 내 시스-1,4 결합 함량 및 비닐 함량은, 동일 셀의 이황화탄소를 블랭크로 하여 5 mg/mL의 농도로 조제한 공액디엔계 중합체의 이황화탄소 용액의 FT-IR 투과율 스펙트럼을 측정한 후, 측정 스펙트럼의 1130 cm-1 부근의 최대 피크값(a, 베이스라인), 트랜스-1,4 결합을 나타내는 967 cm-1 부근의 최소 피크값(b), 비닐결합을 나타내는 911 cm-1 부근의 최소 피크값(c), 그리고 시스-1,4 결합을 나타내는 736 cm-1 부근의 최소 피크값(d)을 이용하여 각각의 함량을 구한 것이다.
아울러, 본 발명은 상기 화학식 1로 표시되는 변성제 유래기를 포함하는 변성 공액디엔계 중합체의 제조방법을 제공한다.
본 발명의 일 실시예에 따른 상기 제조방법은 탄화수소 용매 중에서, 란탄 계열 희토류 원소 함유 화합물을 포함하는 촉매 조성물 존재 하에서 공액디엔계 단량체를 중합하여 활성 중합체를 제조하는 단계(단계 1); 및 상기 활성 중합체를 하기 화학식 1로 표시되는 변성제와 반응시키는 단계(단계 2)를 포함하는 것을 특징으로 한다.
[화학식 1]
Figure PCTKR2017013130-appb-I000010
상기 화학식 1에서,
R1, R2 및 R5는 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환되거나 비치환된 탄소수 1 내지 20의 1가 탄화수소기이고,
R3 및 R4는 서로 독립적으로 탄소수 1 내지 20의 알킬기로 치환되거나 비치환된 탄소수 1 내지 20의 2가 탄화수소기이며,
n은 1 내지 3의 정수이다.
구체적인, 화학식 1로 표시되는 변성제는 전술한 바와 같을 수 있다.
상기 단계 1은 란탄 계열 희토류 원소 함유 화합물을 포함하는 촉매 조성물을 이용하여 유기 금속이 결합된 활성 중합체를 제조하기 위한 단계로, 탄화수소 용매 중에서 상기 촉매 조성물의 존재 하 공액디엔계 단량체를 중합함으로써 수행할 수 있다.
상기 공액디엔계 단량체는 특별히 제한되는 것은 아니나, 예컨대 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 피페릴렌, 3-부틸-1,3-옥타디엔, 이소프렌 및 2-페닐-1,3-부타디엔으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
상기 탄화수소 용매는 특별히 제한되는 것은 아니나, 예컨대 n-펜탄, n-헥산, n-헵탄, 이소옥탄, 사이클로 헥산, 톨루엔, 벤젠 및 크실렌으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
상기 촉매 조성물은 공액디엔계 단량체 총 100 g을 기준으로 란탄 계열 희토류 원소 함유 화합물이 0.1 mmnol 내지 0.5 mmol이 되게 하는 양으로 사용하는 것일 수 있으며, 구체적으로는 상기 란탄 계열 희토류 원소 함유 화합물이 공액디엔계 단량체 총 100 g을 기준으로 0.1 mmol 내지 0.4 mmol, 더욱 구체적으로는 0.1 mmol 내지 0.25 mmol이 되게 하는 양으로 사용하는 것일 수 있다.
상기 란탄 계열 희토류 원소 함유 화합물은 특별히 제한되는 것은 아니나, 예컨대 란탄, 네오디뮴, 세륨, 가돌리늄 또는 프라세오디뮴 등과 같은 원자번호 57 내지 71의 희토류 금속 중 어느 하나 또는 둘 이상의 화합물일 수 있으며, 더 구체적으로는 네오디뮴, 란탄 및 가돌리늄으로 이루어진 군에서 선택된 1 이상을 포함하는 화합물일 수 있다.
또한, 상기 란탄 계열 희토류 원소 함유 화합물은 상기한 희토류 원소 함유 카르복실산염(예를 들면, 네오디뮴 초산염, 네오디뮴 아크릴산염, 네오디뮴 메타크릴산염, 네오디뮴 초산염, 네오디뮴 글루콘산염, 네오디뮴 구연산염, 네오디뮴 푸마르산염, 네오디뮴 유산염, 네오디뮴 말레산염, 네오디뮴 옥살산염, 네오디뮴 2-에틸헥사노에이트, 네오디뮴 네오 데카노에이트 등); 유기인산염(예를 들면, 네오디뮴 디부틸 인산염, 네오디뮴 디펜틸 인산염, 네오디뮴 디헥실 인산염, 네오디뮴 디헵틸 인산염, 네오디뮴 디옥틸 인산염, 네오디뮴 비스(1-메틸 헵틸) 인산염, 네오디뮴 비스(2-에틸헥실) 인산염, 또는 네오디뮴 디데실 인산염 등); 유기 포스폰산염(예를 들면, 네오디뮴 부틸 포스폰산염, 네오디뮴 펜틸 포스폰산염, 네오디뮴 헥실 포스폰산염, 네오디뮴 헵틸 포스폰산염, 네오디뮴 옥틸 포스폰산염, 네오디뮴(1-메틸 헵틸) 포스폰산염, 네오디뮴(2-에틸헥실) 포스폰산염, 네오디뮴 디실 포스폰산염, 네오디뮴 도데실 포스폰산염 또는 네오디뮴 옥타데실 포스폰산염 등); 유기 포스핀산염(예를 들면, 네오디뮴 부틸포스핀산염, 네오디뮴 펜틸포스핀산염, 네오디뮴 헥실 포스핀산염, 네오디뮴 헵틸 포스핀산염, 네오디뮴 옥틸 포스핀산염, 네오디뮴(1-메틸 헵틸) 포스핀산염 또는 네오디뮴(2-에틸헥실) 포스핀산염 등); 카르밤산염(예를 들면, 네오디뮴 디메틸 카르밤산염, 네오디뮴 디에틸 카르밤산염, 네오디뮴 디이소프로필 카르밤산염, 네오디뮴 디부틸 카르밤산염 또는 네오디뮴 디벤질 카르밤산염 등); 디티오 카르밤산염(예를 들면, 네오디뮴 디메틸디티오카르바민산염, 네오디뮴 디에틸디티오카르바민산염, 네오디뮴 디이소프로필 디티오 카르밤산염 또는 네오디뮴 디부틸디티오카르바민산염 등); 크산토겐산염(예를 들면, 네오디뮴 메틸 크산토겐산염, 네오디뮴 에틸 크산토겐산염, 네오디뮴 이소프로필 크산토겐산염, 네오디뮴 부틸 크산토겐산염, 또는 네오디뮴 벤질 크산토겐산염 등); β-디케토네이트(예를 들면, 네오디뮴 아세틸아세토네이트, 네오디뮴 트리플루오로아세틸 아세토네이트, 네오디뮴 헥사플루오로아세틸 아세토네이트 또는 네오디뮴 벤조일 아세토네이트 등); 알콕시드 또는 알릴옥시드(예를 들면, 네오디뮴 메톡사이드, 네오디뮴 에톡시드, 네오디뮴 이소프로폭사이드, 네오디뮴 페녹사이드 또는 네오디뮴 노닐 페녹사이드 등); 할로겐화물 또는 의사 할로겐화물(네오디뮴 불화물, 네오디뮴 염화물, 네오디뮴 브롬화물, 네오디뮴 요오드화물, 네오디뮴 시안화물, 네오디뮴 시안산염, 네오디뮴 티오시안산염, 또는 네오디뮴 아지드 등); 옥시할라이드(예를 들면, 네오디뮴 옥시플루오라이드, 네오디뮴 옥시 클로라이드, 또는 네오디뮴 옥시 브로마이드 등); 또는 1 이상의 희토류 원소-탄소 결합을 포함하는 유기 란탄 계열 희토류 원소 함유 화합물(예를 들면, Cp3Ln, Cp2LnR, Cp2LnCl, CpLnCl2, CpLn(사이클로옥타테트라엔), (C5Me5)2LnR, LnR3, Ln(알릴)3, 또는 Ln(알릴)2Cl 등, 상기 식중 Ln은 희토류 금속 원소이고, R은 하이드로카르빌기이다) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물을 포함할 수 있다.
구체적으로는, 상기 란탄 계열 희토류 원소 함유 화합물은 하기 화학식 3으로 표시되는 네오디뮴계 화합물을 포함하는 것일 수 있다.
[화학식 3]
Figure PCTKR2017013130-appb-I000011
상기 화학식 3에서, Ra 내지 Rc는 서로 독립적으로 수소, 또는 탄소수 1 내지 12의 알킬기일 수 있고, 단, Ra 내지 Rc가 모두 동시에 수소는 아니다.
구체적인 예로, 상기 네오디뮴계 화합물은 Nd(네오데카노에이트)3, Nd(2-에틸헥사노에이트)3, Nd(2,2-디에틸 데카노에이트)3, Nd(2,2-디프로필 데카노에이트)3, Nd(2,2-디부틸 데카노에이트)3, Nd(2,2-디헥실 데카노에이트)3, Nd(2,2-디옥틸 데카노에이트)3, Nd(2-에틸-2-프로필 데카노에이트)3, Nd(2-에틸-2-부틸 데카노에이트)3, Nd(2-에틸-2-헥실 데카노에이트)3, Nd(2-프로필-2-부틸 데카노에이트)3, Nd(2-프로필-2-헥실 데카노에이트)3, Nd(2-프로필-2-이소프로필 데카노에이트)3, Nd(2-부틸-2-헥실 데카노에이트)3, Nd(2-헥실-2-옥틸 데카노에이트)3, Nd(2-t-부틸 데카노에이트)3, Nd(2,2-디에틸 옥타노에이트)3, Nd(2,2-디프로필 옥타노에이트)3, Nd(2,2-디부틸 옥타노에이트)3, Nd(2,2-디헥실 옥타노에이트)3, Nd(2-에틸-2-프로필 옥타노에이트)3, Nd(2-에틸-2-헥실 옥타노에이트)3, Nd(2,2-디에틸 노나노에이트)3, Nd(2,2-디프로필 노나노에이트)3, Nd(2,2-디부틸 노나노에이트)3, Nd(2,2-디헥실 노나노에이트)3, Nd(2-에틸-2-프로필 노나노에이트)3 및 Nd(2-에틸-2-헥실 노나노에이트)3로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
또 다른 예로, 올리고머화에 대한 우려 없이 중합 용매에 대한 우수한 용해도, 촉매 활성종으로의 전환율 및 이에 따른 촉매 활성 개선 효과의 우수함을 고려할 때, 상기 란탄 계열 희토류 원소 함유 화합물은 보다 구체적으로 상기 화학식 3에서 Ra가 탄소수 4 내지 12의 선형 또는 분지형 알킬기이고, Rb 및 Rc는 서로 독립적으로 수소 또는 탄소수 2 내지 8의 알킬기이되, 단 Rb 및 Rc이 동시에 수소가 아닌 네오디뮴계 화합물일 수 있다.
보다 구체적인 예로, 상기 화학식 3에서 상기 Ra는 탄소수 6 내지 8의 선형 또는 분지형 알킬기이고, Rb 및 Rc는 각각 독립적으로 수소, 또는 탄소수 2 내지 6의 알킬기일 수 있으며, 이때 상기 Rb 및 Rc는 동시에 수소가 아닐 수 있고, 그 구체적인 예로는 Nd(2,2-디에틸 데카노에이트)3, Nd(2,2-디프로필 데카노에이트)3, Nd(2,2-디부틸 데카노에이트)3, Nd(2,2-디헥실 데카노에이트)3, Nd(2,2-디옥틸 데카노에이트)3, Nd(2-에틸-2-프로필 데카노에이트)3, Nd(2-에틸-2-부틸 데카노에이트)3, Nd(2-에틸-2-헥실 데카노에이트)3, Nd(2-프로필-2-부틸 데카노에이트)3, Nd(2-프로필-2-헥실 데카노에이트)3, Nd(2-프로필-2-이소프로필 데카노에이트)3, Nd(2-부틸-2-헥실 데카노에이트)3, Nd(2-헥실-2-옥틸 데카노에이트)3, Nd(2-t-부틸 데카노에이트)3, Nd(2,2-디에틸 옥타노에이트)3, Nd(2,2-디프로필 옥타노에이트)3, Nd(2,2-디부틸 옥타노에이트)3, Nd(2,2-디헥실 옥타노에이트)3, Nd(2-에틸-2-프로필 옥타노에이트)3, Nd(2-에틸-2-헥실 옥타노에이트)3, Nd(2,2-디에틸 노나노에이트)3, Nd(2,2-디프로필 노나노에이트)3, Nd(2,2-디부틸 노나노에이트)3, Nd(2,2-디헥실 노나노에이트)3, Nd(2-에틸-2-프로필 노나노에이트)3 및 Nd(2-에틸-2-헥실 노나노에이트)3로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 이 중에서도 상기 네오디뮴계 화합물은 Nd(2,2-디에틸 데카노에이트)3, Nd(2,2-디프로필 데카노에이트)3, Nd(2,2-디부틸 데카노에이트)3, Nd(2,2-디헥실 데카노에이트)3, 및 Nd(2,2-디옥틸 데카노에이트)3로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
보다 더 구체적으로, 상기 화학식 3에서, 상기 Ra는 탄소수 6 내지 8의 선형 또는 분지형 알킬기이고, Rb 및 Rc는 각각 독립적으로 탄소수 2 내지 6의 알킬기일 수 있다.
이와 같이, 상기 화학식 3으로 표시되는 네오디뮴계 화합물은 α(알파) 위치에 탄소수 2 이상의 다양한 길이의 알킬기를 치환기로 포함하는 카르복실레이트 리간드를 포함함으로써, 네오디뮴 중심 금속 주위에 입체적인 변화를 유도하여 화합물 간의 엉김 현상을 차단할 수 있고, 이에 따라, 올리고머화를 억제할 수 있는 효과가 있다. 또한, 이와 같은 네오디뮴계 화합물은 중합 용매에 대한 용해도가 높고, 촉매 활성종으로의 전환에 어려움이 있는 중심 부분에 위치하는 네오디뮴 비율이 감소되어 촉매 활성종으로의 전환율이 높은 효과가 있다.
또한, 본 발명의 일 실시예에 따른 상기 란탄 계열 희토류 원소 함유 화합물의 용해도는 상온(25℃)에서 비극성 용매 6 g 당 약 4 g 이상일 수 있다.
본 발명에 있어서, 네오디뮴계 화합물의 용해도는 탁한 현상 없이 맑게 용해되는 정도를 의미하는 것으로, 이와 같이 높은 용해도를 나타냄으로써 우수한 촉매 활성을 나타낼 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 란탄 계열 희토류 원소 함유 화합물은 루이스 염기와의 반응물의 형태로 사용될 수도 있다. 이 반응물은 루이스 염기에 의해, 란탄 계열 희토류 원소 함유 화합물의 용매에 대한 용해성을 향상시키고, 장기간 안정한 상태로 저장할 수 있는 효과가 있다. 상기 루이스 염기는 일례로 희토류 원소 1 몰 당 30 몰 이하, 또는 1 내지 10 몰의 비율로 사용될 수 있다. 상기 루이스 염기는 일례로 아세틸아세톤, 테트라히드로푸란, 피리딘, N,N-디메틸포름아미드, 티오펜, 디페닐에테르, 트리에틸아민, 유기인 화합물 또는 1가 또는 2가의 알코올 등일 수 있다.
한편, 상기 촉매 조성물은 란탄 계열 희토류 원소 함유 화합물과 함께 (a) 알킬화제, (b) 할로겐화물 및 (c) 공액디엔계 단량체 중 적어도 하나를 더 포함하는 것일 수 있다.
이하, 상기 (a) 알킬화제, (b) 할로겐화물 및 (c) 공액디엔계 단량체를 나누어 구체적으로 설명한다.
(a) 알킬화제
상기 알킬화제는 히드로카르빌기를 다른 금속으로 전달할 수 있는 유기금속 화합물로서 조촉매 조성물의 역할을 하는 것일 수 있다. 상기 알킬화제는 통상 디엔계 중합체의 제조시 알킬화제로서 사용되는 것이라면 특별한 제한하지 않고 사용할 수 있으며, 예컨대 유기 알루미늄 화합물, 유기 마그네슘 화합물, 또는 유기 리튬 화합물 등과 같이, 중합 용매에 가용성이며, 금속-탄소 결합을 함유하는 유기금속 화합물일 수 있다.
구체적으로는, 상기 유기 알루미늄 화합물로는 트리메틸알루미늄, 트리에틸알루미늄, 트리-n-프로필알루미늄, 트리이소프로필알루미늄, 트리-n-부틸알루미늄, 트리이소부틸알루미늄, 트리-t-부틸알루미늄, 트리펜틸알루미늄, 트리헥실알루미늄, 트리시클로헥실알루미늄, 트리옥틸알루미늄 등의 알킬알루미늄; 디에틸알루미늄 하이드라이드, 디-n-프로필알루미늄 하이드라이드, 디이소프로필알루미늄 하이드라이드, 디-n-부틸알루미늄 하이드라이드, 디이소부틸알루미늄 하이드라이드(DIBAH), 디-n-옥틸알루미늄 하이드라이드, 디페닐알루미늄 하이드라이드, 디-p-톨릴알루미늄 하이드라이드, 디벤질알루미늄 하이드라이드, 페닐에틸알루미늄 하이드라이드, 페닐-n-프로필알루미늄 하이드라이드, 페닐이소프로필알루미늄 하이드라이드, 페닐-n-부틸알루미늄 하이드라이드, 페닐이소부틸알루미늄 하이드라이드, 페닐-n-옥틸알루미늄 하이드라이드, p-톨릴에틸알루미늄 하이드라이드, p-톨릴-n-프로필알루미늄 하이드라이드, p-톨릴이소프로필알루미늄 하이드라이드, p-톨릴-n-부틸알루미늄 하이드라이드, p-톨릴이소부틸알루미늄 하이드라이드, p-톨릴-n-옥틸알루미늄 하이드라이드, 벤질에틸알루미늄 하이드라이드, 벤질-n-프로필알루미늄 하이드라이드, 벤질이소프로필알루미늄 하이드라이드, 벤질-n-부틸알루미늄 하이드라이드, 벤질이소부틸알루미늄 하이드라이드 또는 벤질-n-옥틸알루미늄 하이드라이드 등의 디히드로카르빌알루미늄 하이드라이드; 에틸알루미늄 디하이드라이드, n-프로필알루미늄 디하이드라이드, 이소프로필알루미늄 디하이드라이드, n-부틸알루미늄 디하이드라이드, 이소부틸알루미늄 디하이드라이드 또는 n-옥틸알루미늄 디하이드라이드 등과 같은 히드로카르빌알루미늄 디하이드라이드 등을 들 수 있다. 상기 유기 마그네슘 화합물로는 디에틸마그네슘, 디-n-프로필마그네슘, 디이소프로필마그네슘, 디부틸마그네슘, 디헥실마그네슘, 디페닐마그네슘, 또는 디벤질마그네슘과 같은 알킬마그네슘 화합물 등을 들 수 있고, 또 상기 유기 리튬 화합물로는 n-부틸리튬 등과 같은 알킬 리튬 화합물 등을 들 수 있다.
또한, 상기 유기 알루미늄 화합물은 알루미녹산일 수 있다.
상기 알루미녹산은 트리히드로카르빌 알루미늄계 화합물에 물을 반응시킴으로써 제조된 것일 수 있으며, 구체적으로는 하기 화학식 4a의 직쇄 알루미녹산 또는 하기 화학식 4b의 환형 알루미녹산일 수 있다.
[화학식 4a]
Figure PCTKR2017013130-appb-I000012
[화학식 4b]
Figure PCTKR2017013130-appb-I000013
상기 화학식 4a 및 4b에서, R은 탄소 원자를 통해 알루미늄 원자에 결합하는 1가의 유기기로서, 하이드로카르빌기일 수 일 수 있으며, x 및 y는 서로 독립적으로 1 이상의 정수, 구체적으로는 1 내지 100, 더 구체적으로는 2 내지 50의 정수일 수 있다.
보다 더 구체적으로는, 상기 알루미녹산은 메틸알루미녹산(MAO), 변성 메틸알루미녹산(MMAO), 에틸알루미녹산, n-프로필알루미녹산, 이소프로필알루미녹산, 부틸알루미녹산, 이소부틸알루미녹산, n-펜틸알루미녹산, 네오펜틸알루미녹산, n-헥실알루미녹산, n-옥틸알루미녹산, 2-에틸헥실알루미녹산, 사이클로헥실알루미녹산, 1-메틸사이클로펜틸알루미녹산, 페닐알루미녹산 또는 2,6-디메틸페닐 알루미녹산 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또한, 상기 변성 메틸알루미녹산은 메틸알루미녹산의 메틸기를 수식기(R), 구체적으로는 탄소수 2 내지 20의 탄화수소기로 치환한 것으로, 구체적으로는 하기 화학식 5로 표시되는 화합물일 수 있다.
[화학식 5]
Figure PCTKR2017013130-appb-I000014
상기 화학식 5에서, R은 앞서 정의한 바와 같으며, m 및 n은 서로 독립적으로 2 이상의 정수일 수 있다. 또한, 상기 화학식 10에서, Me는 메틸기(methyl group)을 나타내는 것이다.
구체적으로, 상기 화학식 5에서 상기 R은 탄소수 2 내지 20의 알킬기, 탄소수 3 내지 20의 시클로알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 3 내지 20의 시클로알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 아릴알킬기, 탄소수 7 내지 20의 알킬아릴기, 알릴기 또는 탄소수 2 내지 20의 알키닐기일 수 있으며, 보다 구체적으로는 에틸기, 이소부틸기, 헥실기 또는 옥틸기 등과 같은 탄소수 2 내지 10의 알킬기이고, 보다 더 구체적으로는 이소부틸기일 수 있다.
더 구체적으로, 상기 변성 메틸알루미녹산은 메틸알루미녹산의 메틸기의 약 50 몰% 내지 90 몰%를 상기한 탄화수소기로 치환한 것일 수 있다. 변성 메틸알루미녹산 내 치환된 탄화수소기의 함량이 상기 범위 내일 때, 알킬화를 촉진시켜 촉매활성을 증가시킬 수 있다.
이와 같은 변성 메틸알루미녹산은 통상의 방법에 따라 제조될 수 있으며, 구체적으로는 트리메틸알루미늄과 트리메틸알루미늄 이외의 알킬알루미늄을 이용하여 제조될 수 있다. 이때 상기 알킬알루미늄은 트리이소부틸알루미늄, 트리에틸알루미늄, 트리헥실알루미늄 또는 트리옥틸알루미늄 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 촉매 조성물은 상기 알킬화제를 상기 란탄 계열 희토류 원소 함유 화합물 1 몰에 대하여 1 내지 200 몰비, 구체적으로는 1 내지 100 몰비, 더욱 구체적으로는 3 내지 20 몰비로 포함하는 것일 수 있다. 만약, 상기 알킬화제를 200 몰비를 초과하여 포함하는 경우에는 중합체 제조 시 촉매 반응 제어가 용이하지 않고, 과량의 알킬화제가 부반응을 일으킬 우려가 있다.
(b) 할로겐화물
상기 할로겐화물은 특별히 제한하는 것은 아니나, 예컨대 할로겐 단체(單體), 할로겐간 화합물(interhalogen compound), 할로겐화수소, 유기 할라이드, 비금속 할라이드, 금속 할라이드 또는 유기금속 할라이드 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이중에서도 촉매 활성 향상 및 이에 따른 반응성 개선 효과의 우수함을 고려할 때 상기 할로겐화물로는 유기 할라이드, 금속 할라이드 및 유기금속 할라이드로 이루어진 군으로부터 선택된 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 할로겐 단체로는 불소, 염소, 브롬 또는 요오드를 들 수 있다.
또한, 상기 할로겐간 화합물로는 요오드 모노클로라이드, 요오드 모노브로마이드, 요오드 트리클로라이드, 요오드 펜타플루오라이드, 요오드 모노플루오라이드 또는 요오드 트리플루오라이드 등을 들 수 있다.
또한, 상기 할로겐화수소로는 불화수소, 염화수소, 브롬화수소 또는 요오드화수소를 들 수 있다.
또한, 상기 유기 할라이드로는 t-부틸 클로라이드(t-BuCl), t-부틸 브로마이드, 알릴 클로라이드, 알릴 브로마이드, 벤질 클로라이드, 벤질 브로마이드, 클로로-디-페닐메탄, 브로모-디-페닐메탄, 트리페닐메틸 클로라이드, 트리페닐메틸 브로마이드, 벤질리덴 클로라이드, 벤질리덴 브로마이드, 메틸트리클로로실란, 페닐트리클로로실란, 디메틸디클로로실란, 디페닐디클로로실란, 트리메틸클로로실란(TMSCl), 벤조일 클로라이드, 벤조일 브로마이드, 프로피오닐 클로라이드, 프로피오닐 브로마이드, 메틸 클로로포르메이트, 메틸 브로모포르메이트, 요오도메탄, 디요오도메탄, 트리요오도메탄 ('요오도포름'으로도 불리움), 테트라요오도메탄, 1-요오도프로판, 2-요오도프로판, 1,3-디요오도프로판, t-부틸 요오다이드, 2,2-디메틸-1-요오도프로판 ('네오펜틸 요오다이드'로도 불리움), 알릴 요오다이드, 요오도벤젠, 벤질 요오다이드, 디페닐메틸 요오다이드, 트리페닐메틸 요오다이드, 벤질리덴 요오다이드 ('벤잘 요오다이드'로도 불리움), 트리메틸실릴 요오다이드, 트리에틸실릴 요오다이드, 트리페닐실릴 요오다이드, 디메틸디요오도실란, 디에틸디요오도실란, 디페닐디요오도실란, 메틸트리요오도실란, 에틸트리요오도실란, 페닐트리요오도실란, 벤조일 요오다이드, 프로피오닐 요오다이드 또는 메틸 요오도포르메이트 등을 들 수 있다.
또한, 상기 비금속 할라이드로는 삼염화인, 삼브롬화인, 오염화인, 옥시염화인, 옥시브롬화인, 삼불화붕소, 삼염화붕소, 삼브롬화붕소, 사불화규소, 사염화규소(SiCl4), 사브롬화규소, 삼염화비소, 삼브롬화비소, 사염화셀레늄, 사브롬화셀레늄, 사염화텔루르, 사브롬화텔루르, 사요오드화규소, 삼요오드화비소, 사요오드화텔루르, 삼요오드화붕소, 삼요오드화인, 옥시요오드화인 또는 사요오드화셀레늄 등을 들 수 있다.
또한, 상기 금속 할라이드로는 사염화주석, 사브롬화주석, 삼염화알루미늄, 삼브롬화알루미늄, 삼염화안티몬, 오염화안티몬, 삼브롬화안티몬, 삼불화알루미늄, 삼염화갈륨, 삼브롬화갈륨, 삼불화갈륨, 삼염화인듐, 삼브롬화인듐, 삼불화인듐, 사염화티타늄, 사브롬화티타늄, 이염화아연, 이브롬화아연, 이불화아연, 삼요오드화알루미늄, 삼요오드화갈륨, 삼요오드화인듐, 사요오드화티타늄, 이요오드화아연, 사요오드화게르마늄, 사요오드화주석, 이요오드화주석, 삼요오드화안티몬 또는 이요오드화마그네슘을 들 수 있다.
또한, 상기 유기금속 할라이드로는 디메틸알루미늄 클로라이드, 디에틸알루미늄 클로라이드, 디메틸알루미늄 브로마이드, 디에틸알루미늄 브로마이드, 디메틸알루미늄 플루오라이드, 디에틸알루미늄 플루오라이드, 메틸알루미늄 디클로라이드, 에틸알루미늄 디클로라이드, 메틸알루미늄 디브로마이드, 에틸알루미늄 디브로마이드, 메틸알루미늄 디플루오라이드, 에틸알루미늄 디플루오라이드, 메틸알루미늄 세스퀴클로라이드, 에틸알루미늄 세스퀴클로라이드(EASC), 이소부틸알루미늄 세스퀴클로라이드, 메틸마그네슘 클로라이드, 메틸마그네슘 브로마이드, 에틸마그네슘 클로라이드, 에틸마그네슘 브로마이드, n-부틸마그네슘 클로라이드, n-부틸마그네슘 브로마이드, 페닐마그네슘 클로라이드, 페닐마그네슘 브로마이드, 벤질마그네슘 클로라이드, 트리메틸주석 클로라이드, 트리메틸주석 브로마이드, 트리에틸주석 클로라이드, 트리에틸주석 브로마이드, 디-t-부틸주석 디클로라이드, 디-t-부틸주석 디브로마이드, 디-n-부틸주석 디클로라이드, 디-n-부틸주석 디브로마이드, 트리-n-부틸주석 클로라이드, 트리-n-부틸주석 브로마이드, 메틸마그네슘 요오다이드, 디메틸알루미늄 요오다이드, 디에틸알루미늄 요오다이드, 디-n-부틸알루미늄 요오다이드, 디이소부틸알루미늄 요오다이드, 디-n-옥틸알루미늄 요오다이드, 메틸알루미늄 디요오다이드, 에틸알루미늄 디요오다이드, n-부틸알루미늄 디요오다이드, 이소부틸알루미늄 디요오다이드, 메틸알루미늄 세스퀴요오다이드, 에틸알루미늄 세스퀴요오다이드, 이소부틸알루미늄 세스퀴요오다이드, 에틸마그네슘 요오다이드, n-부틸마그네슘 요오다이드, 이소부틸마그네슘 요오다이드, 페닐마그네슘 요오다이드, 벤질마그네슘 요오다이드, 트리메틸주석 요오다이드, 트리에틸주석 요오다이드, 트리-n-부틸주석 요오다이드, 디-n-부틸주석 디요오다이드 또는 디-t-부틸주석 디요오다이드 등을 들 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 촉매 조성물은 상기 할로겐화물을 상기 란탄 계열 희토류 원소 함유 화합물 1 몰에 대하여 1 몰 내지 20 몰, 보다 구체적으로는 1 몰 내지 5 몰, 보다 구체적으로는 2 몰 내지 3 몰로 포함할 수 있다. 만약, 상기 할로겐화물을 20 몰비를 초과하여 포함하는 경우에는, 촉매 반응의 제거가 용이하지 않고, 과량의 할로겐화물이 부반응을 일으킬 우려가 있다.
또한, 본 발명의 일 실시예에 따른 공액 디엔 중합체 제조용 촉매 조성물은, 상기 할로겐화물 대신에 또는 상기 할로겐화물과 함께, 비배위성 음이온 함유 화합물 또는 비배위 음이온 전구체 화합물을 포함할 수도 있다.
구체적으로, 상기 비배위성 음이온을 포함하는 화합물에 있어서, 비배위성 음이온은 입체 장애로 인해 촉매계의 활성 중심과 배위결합을 형성하지 않는, 입체적으로 부피가 큰 음이온으로서, 테트라아릴보레이트 음이온 또는 불화 테트라아릴보레이트 음이온 등일 수 있다. 또한, 상기 비배위성 음이온을 포함하는 화합물은 상기한 비배위성 음이온과 함께 트리아릴 카르보늄 양이온과 같은 카르보늄 양이온; N,N-디알킬 아닐리늄 양이온 등과 같은 암모늄 양이온, 또는 포스포늄 양이온 등의 상대 양이온을 포함하는 것일 수 있다. 보다 구체적으로, 상기 비배위성 음이온을 포함하는 화합물은, 트리페닐 카르보늄 테트라키스(펜타플루오로 페닐) 보레이트, N,N-디메틸아닐리늄 테트라키스(펜타플루오로 페닐) 보레이트, 트리페닐 카르보늄 테트라키스[3,5-비스(트리플루오로메틸) 페닐]보레이트, 또는 N,N-디메틸아닐리늄 테트라키스[3,5-비스(트리플루오로메틸) 페닐]보레이트 등일 수 있다.
또한, 상기 비배위성 음이온 전구체로서는, 반응 조건하에서 비배위성 음이온이 형성 가능한 화합물로서, 트리아릴 붕소 화합물(BE3, 이때 E는 펜타플루오로페닐기 또는 3,5-비스(트리플루오로메틸) 페닐기 등과 같은 강한 전자흡인성의 아릴기임)을 들 수 있다.
(c) 공액디엔계 단량체
또한, 상기 촉매 조성물은 공액디엔계 단량체를 더 포함할 수 있으며, 중합반응에 사용되는 공액디엔계 단량체의 일부를 중합용 촉매 조성물과 미리 혼합하여 전(pre) 중합한 예비중합(preforming) 촉매 조성물의 형태로 사용함으로써, 촉매 조성물 활성을 향상시킬 수 있을 뿐만 아니라, 제조되는 공액디엔계 중합체를 안정화시킬 수 있다.
본 발명에 있어서, 상기 "예비중합(preforming)"이란, 란탄 계열 희토류 원소 함유 화합물, 알킬화제 및 할로겐화물을 포함하는 촉매 조성물, 즉 촉매 시스템에서 디이소부틸알루미늄 하이드라이드(DIBAH) 등을 포함하는 경우, 이와 함께 다양한 촉매 조성물 활성종 생성가능성을 줄이기 위해 1,3-부타디엔 등의 공액디엔계 단량체를 소량 첨가하게 되며, 1,3-부타디엔 첨가와 함께 촉매 조성물 시스템 내에서 전(pre) 중합이 이루어짐을 의미할 수 있다. 또한 "예비혼합(premix)"이란 촉매 조성물 시스템에서 중합이 이루어지지 않고 각 화합물들이 균일하게 혼합된 상태를 의미할 수 있다.
이때, 상기 촉매 조성물의 제조에 사용되는 공액디엔계 단량체는 상기 중합반응에 사용되는 공액디엔계 단량체의 총 사용량 범위 내에서 일부의 양이 사용되는 것일 수 있으며, 예컨대 상기 란탄 계열 희토류 원소 함유 화합물 1 몰에 대하여 1 몰 내지 100 몰, 구체적으로는 10 몰 내지 50 몰, 또는 20 몰 내지 50 몰로 사용되는 것일 수 있다.
본 발명의 일 실시예에 따른 상기 촉매 조성물은 유기용매 중에서 전술한 란탄 계열 희토류 원소 함유 화합물 및 알킬화제, 할로겐화물 및 공액디엔계 단량체 중 적어도 하나, 구체적으로는 란탄 계열 희토류 원소 함유 화합물, 알킬화제 및 할로겐화물, 그리고 선택적으로 공액디엔계 단량체를 순차적으로 혼합함으로써 제조할 수 있다. 이때, 상기 유기용매는 상기한 촉매 구성 성분들과 반응성이 없는 비극성 용매일 수 있다. 구체적으로, 상기 비극성 용매는 n-펜탄, n-헥산, n-헵탄, n-옥탄, n-노난, n-데칸, 이소펜탄, 이소헥산, 이소펜탄, 이소옥탄, 2,2-디메틸부탄, 시클로펜탄, 시클로헥산, 메틸시클로펜탄 또는 메틸시클로헥산 등과 같은 선형, 분지형 또는 환형의 탄소수 5 내지 20의 지방족 탄화수소; 석유 에테르(petroleum ether) 또는 석유 주정제(petroleum spirits), 또는 케로센(kerosene) 등과 같은 탄소수 5 내지 20의 지방족 탄화수소의 혼합용매; 또는 벤젠, 톨루엔, 에틸벤젠, 크실렌 등과 같은 방향족 탄화수소계 용매 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 보다 구체적으로 상기 비극성 용매는 상기한 선형, 분지형 또는 환형의 탄소수 5 내지 20의 지방족 탄화수소 또는 지방족 탄화수소의 혼합용매일 수 있으며, 보다 더 구체적으로는 n-헥산, 시클로헥산, 또는 이들의 혼합물일 수 있다.
또한, 상기 유기용매는 촉매 조성물을 구성하는 구성 물질, 특히 알킬화제의 종류에 따라 적절히 선택될 수 있다.
구체적으로, 알킬화제로서 메틸알루미녹산(MAO) 또는 에틸알루미녹산 등의 알킬알루미녹산의 경우 지방족 탄화수소계 용매에 쉽게 용해되지 않기 때문에 방향족 탄화수소계 용매가 적절히 사용될 수 있다.
또한, 알킬화제로서 변성 메틸알루미녹산이 사용되는 경우, 지방족 탄화수소계 용매가 적절히 사용될 수 있다. 이 경우, 중합 용매로서 주로 사용되는 헥산 등의 지방족 탄화수소계 용매와 함께 단일 용매 시스템의 구현이 가능하므로 중합 반응에 더욱 유리할 수 있다. 또한, 지방족 탄화수소계 용매는 촉매 활성을 촉진시킬 수 있으며, 이러한 촉매 활성에 의해 반응성을 더욱 향상시킬 수 있다.
한편, 상기 유기용매는 란탄 계열 희토류 원소 함유 화합물 1 몰에 대하여 20 몰 내지 20,000 몰로, 보다 구체적으로는 100 몰 내지 1,000 몰로 사용되는 것일 수 있다.
한편, 상기 단계 1의 중합은 배위 음이온 중합을 이용하여 수행하거나, 라디칼 중합에 의해 수행될 수 있으며, 구체적으로는 벌크중합, 용액중합, 현탁중합 또는 유화중합일 수 있고, 더 구체적으로는 용액중합일 수 있다.
또한, 상기 중합은 회분식 및 연속식 중 어느 방법으로도 수행될 수 있다. 구체적으로는, 상기 단계 1의 중합은 유기용매 중에서 상기 촉매 조성물에 대해 공액디엔계 단량체를 투입하여 반응시킴으로써 실시될 수 있다.
여기에서, 상기 유기용매는 촉매 조성물을 제조하는데 사용될 수 있는 유기용매의 양에 추가로 첨가되는 것일 수 있고, 구체적인 종류는 전술한 바와 같을 수 있다. 또한, 상기 유기용매의 사용 시 단량체의 농도는 3 중량% 내지 80 중량%, 또는 10 중량% 내지 30 중량%일 수 있다.
또한, 상기 중합은 폴리옥시에틸렌글리콜포스페이트 등과 같은 중합반응을 완료시키기 위한 반응정지제; 또는 2,6-디-t-부틸파라크레졸 등과 같은 산화방지제 등의 첨가제가 더 사용될 수 있다. 이외에도, 통상 용액중합을 용이하도록 하는 첨가제, 구체적으로는 킬레이트제, 분산제, pH 조절제, 탈산소제 또는 산소포착제(oxygen scavenger)와 같은 첨가제가 선택적으로 더 사용될 수 있다.
또한, 상기 중합은 승온 중합, 등온 중합 또는 정온 중합(단열 중합)일 수 있다.
여기에서, 정온 중합은 유기 금속 화합물을 투입한 이후 임의로 열을 가하지 않고 자체 반응열로 중합시키는 단계를 포함하는 중합방법을 나타내는 것이고, 상기 승온 중합은 상기 유기 금속 화합물을 투입한 이후 임의로 열을 가하여 온도를 증가시키는 중합방법을 나타내는 것이며, 상기 등온 중합은 상기 유기 금속 화합물을 투입한 이후 열을 가하여 열을 증가시키거나 열을 뺏어 중합물의 온도를 일정하게 유지하는 중합방법을 나타내는 것이다.
상기 중합은 -20℃ 내지 200℃의 온도범위에서 수행하는 것일 수 있으며, 구체적으로는 20℃ 내지 150℃, 더욱 구체적으로는 10℃ 내지 120℃의 온도범위에서 15분 내지 3시간 동안 수행하는 것일 수 있다. 만약, 상기 중합 시 온도가 200℃를 초과하는 경우에는 중합 반응을 충분히 제어하기 어렵고, 생성된 디엔계 중합체의 시스-1,4 결합 함량이 낮아질 우려가 있으며, 온도가 -20℃ 미만이면 중합반응 속도 및 효율이 저하될 우려가 있다.
상기 단계 2는 변성 공액디엔계 중합체를 제조하기 위하여, 상기 활성 중합체와 상기 화학식 1로 표시되는 변성제와 반응시키는 단계이다.
상기 화학식 1로 표시되는 변성제는 전술한 바와 같을 수 있으며, 1종 또는 2종 이상을 혼합하여 상기 반응에 사용하는 것일 수 있다.
상기 화학식 1로 표시되는 변성제는 촉매 조성물 내 란탄 계열 희토류 원소 함유 화합물 1 몰 대비 0.5 몰 내지 20 몰로 사용하는 것일 수 있다. 구체적으로는 상기 화학식 1로 표시되는 변성제는 촉매 조성물 내 란탄 계열 희토류 원소 함유 화합물 1 몰 대비 1 몰 내지 10 몰로 사용하는 것일 수 있다. 만약, 상기 변성제를 상기의 비율범위가 되는 양으로 사용하는 경우 최적 성능의 변성반응을 수행할 수 있어, 고변성율의 공액디엔계 중합체를 얻을 수 있다.
상기 단계 2의 반응은 중합체에 관능기를 도입시키기 위한 변성반응으로, 0℃ 내지 90℃에서 1분 내지 5시간 동안 반응을 수행하는 것일 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체의 제조방법은 회분식(배치식) 또는 1종 이상의 반응기를 포함하는 연속식 중합방법에 의하여 수행하는 것일 수 있다.
상기한 변성반응의 종료 후, 2,6-디-t-부틸-p-크레졸(BHT)의 이소프로판올 용액 등을 중합 반응계에 첨가하여 중합 반응을 정지시킬 수 있다. 이후 수증기의 공급을 통해 용제의 분압을 낮추는 스팀 스트립핑 등의 탈용매 처리나 진공 건조 처리를 거쳐서 변성 공액디엔계 중합체가 수득될 수 있다. 또한, 상기한 변성 반응의 결과로 수득되는 반응생성물 중에는 상기한 변성 공액디엔 중합체와 함께, 변성되지 않은, 활성 중합체가 포함될 수도 있다.
본 발명의 일 실시예에 따른 제조방법은 상기 단계 2 이후에 필요에 따라 용매 및 미반응 단량체 회수 및 건조 중 1 이상의 단계를 더 포함할 수 있다.
더 나아가, 본 발명은 상기 변성 공액디엔계 중합체를 포함하는 고무 조성물 및 상기 고무 조성물로부터 제조된 성형품을 제공한다.
본 발명의 일 실시예에 따른 상기 고무 조성물은 변성 공액디엔계 중합체를 0.1 중량% 이상 100 중량% 이하, 구체적으로는 10 중량% 내지 100 중량%, 더욱 구체적으로는 20 중량% 내지 90 중량%로 포함하는 것일 수 있다. 만약, 상기 변성 공액디엔계 중합체의 함량이 0.1 중량% 미만인 경우 결과적으로 상기 고무 조성물을 이용하여 제조된 성형품, 예컨대 타이어의 내마모성 및 내균열성 등의 개선효과가 미미할 수 있다.
또한, 상기 고무 조성물은 상기 변성 공액디엔계 중합체 외에 필요에 따라 다른 고무 성분을 더 포함할 수 있으며, 이때 상기 고무 성분은 고무 조성물 총 중량에 대하여 90 중량% 이하의 함량으로 포함될 수 있다. 구체적으로는 상기 변성 공액디엔계 공중합체 100 중량부에 대하여 1 중량부 내지 900 중량부로 포함되는 것일 수 있다.
상기 고무 성분은 천연고무 또는 합성고무일 수 있으며, 예컨대 상기 고무 성분은 시스-1,4-폴리이소프렌을 포함하는 천연고무(NR); 상기 일반적인 천연고무를 변성 또는 정제한, 에폭시화 천연고무(ENR), 탈단백 천연고무(DPNR), 수소화 천연고무 등의 변성 천연고무; 스티렌-부타디엔 공중합체(SBR), 폴리부타디엔(BR), 폴리이소프렌(IR), 부틸고무(IIR), 에틸렌-프로필렌 공중합체, 폴리이소부틸렌-코-이소프렌, 네오프렌, 폴리(에틸렌-코-프로필렌), 폴리(스티렌-코-부타디엔), 폴리(스티렌-코-이소프렌), 폴리(스티렌-코-이소프렌-코-부타디엔), 폴리(이소프렌-코-부타디엔), 폴리(에틸렌-코-프로필렌-코-디엔), 폴리설파이드 고무, 아크릴 고무, 우레탄 고무, 실리콘 고무, 에피클로로히드린 고무, 부틸 고무, 할로겐화 부틸 고무 등과 같은 합성고무일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또한, 상기 고무 조성물은 변성 공액디엔계 중합체 100 중량부에 대하여 0.1 중량부 내지 150 중량부의 충진제를 포함하는 것일 수 있으며, 상기 충진제는 실리카계, 카본블랙 또는 이들 조합인 것일 수 있다. 구체적으로는, 상기 충진제는 카본븐랙인 것일 수 있다.
상기 카본블랙계 충진제는 특별히 제한하는 것은 아니나, 예컨대 질소 흡착 비표면적(N2SA, JIS K 6217-2:2001에 준거해서 측정함)이 20 ㎡/g 내지 250 ㎡/g인 것일 수 있다. 또, 상기 카본블랙은 디부틸프탈레이트 흡유량(DBP)이 80 cc/100g 내지 200 cc/100g인 것일 수 있다. 상기 카본블랙의 질소흡착 비표면적이 250 m2/g을 초과하면 고무 조성물의 가공성이 저하될 우려가 있고, 20 m2/g 미만이면 카본블랙에 의한 보강 성능이 미미할 수 있다. 또한, 상기 카본블랙의 DBP 흡유량이 200 cc/100g을 초과하면 고무 조성물의 가공성이 저하될 우려가 있고, 80 cc/100g 미만이면 카본블랙에 의한 보강 성능이 미미할 수 있다.
또한, 상기 실리카는 특별히 제한하는 것은 아니나, 예컨대 습식 실리카(함수규산), 건식 실리카(무수규산), 규산칼슘, 규산알루미늄 또는 콜로이드 실리카 등일 수 있다. 구체적으로는, 상기 실리카는 파괴 특성의 개량 효과 및 웨트 그립성(wet grip)의 양립 효과가 가장 현저한 습실 실리카일 수 있다. 또한, 상기 실리카는 질소흡착 비표면적(nitrogen surface area per gram, N2SA)이 120 ㎡/g 내지 180 ㎡/g이고, CTAB(cetyl trimethyl ammonium bromide) 흡착 비표면적이 100 ㎡/g 내지 200 ㎡/g일 수 있다. 상기 실리카의 질소흡착 비표면적이 120 ㎡/g 미만이면 실리카에 의한 보강 성능이 저하될 우려가 있고, 180 ㎡/g을 초과하면 고무 조성물의 가공성이 저하될 우려가 있다. 또한, 상기 실리카의 CTAB 흡착 비표면적이 100 ㎡/g 미만이면 충진제인 실리카에 의한 보강 성능이 저하될 우려가 있고, 200 ㎡/g을 초과하면 고무 조성물의 가공성이 저하될 우려가 있다.
한편, 상기 충진제로서 실리카가 사용될 경우 보강성 및 저발열성 개선을 위해 실란 커플링제가 함께 사용될 수 있다.
상기 실란 커플링제로는 구체적으로 비스(3-트리에톡시실릴프로필)테트라술피드, 비스(3-트리에톡시실릴프로필)트리술피드, 비스(3-트리에톡시실릴프로필)디술피드, 비스(2-트리에톡시실릴에틸)테트라술피드, 비스(3-트리메톡시실릴프로필)테트라술피드, 비스(2-트리메톡시실릴에틸)테트라술피드, 3-머캅토프로필트리메톡시실란, 3-머캅토프로필트리에톡시실란, 2-머캅토에틸트리메톡시실란, 2-머캅토에틸트리에톡시실란, 3-트리메톡시실릴프로필-N,N-디메틸티오카르바모일테트라술피드, 3-트리에톡시실릴프로필-N,N-디메틸티오카르바모일테트라술피드, 2-트리에톡시실릴에틸-N,N-디메틸티오카르바모일테트라술피드, 3-트리메톡시실릴프로필벤조티아졸릴테트라술피드, 3-트리에톡시실릴프로필벤졸릴테트라술피드, 3-트리에톡시실릴프로필메타크릴레이트모노술피드, 3-트리메톡시실릴프로필메타크릴레이트모노술피드, 비스(3-디에톡시메틸실릴프로필)테트라술피드, 3-머캅토프로필디메톡시메틸실란, 디메톡시메틸실릴프로필-N,N-디메틸티오카르바모일테트라술피드 또는 디메톡시메틸실릴프로필벤조티아졸릴테트라술피드 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 보다 구체적으로는 보강성 개선 효과를 고려할 때 상기 실란커플링제는 비스(3-트리에톡시실릴프로필)폴리술피드 또는 3-트리메톡시실릴프로필벤조티아질테트라술피드일 수 있다.
또한, 본 발명에 따른 일 실시예에 따른 상기 고무 조성물에 있어서는, 고무 성분으로서 활성 부위에 충진제와의 친화성이 높은 관능기가 도입된 변성 공액디엔계 중합체가 사용되고 있기 때문에, 실란 커플링제의 배합량은 통상의 경우보다 저감될 수 있다. 구체적으로, 상기 실란 커플링제는 충진제 100 중량부에 대하여 1 중량부 내지 20 중량부로 사용될 수 있다. 상기한 범위로 사용될 때, 커플링제로서의 효과가 충분히 발휘되면서도 고무 성분의 겔화를 방지할 수 있다. 보다 구체적으로는 상기 실란 커플링제는 실리카 100 중량부에 대하여 5 중량부 내지 15 중량부로 사용될 수 있다.
또한, 본 발명에 따른 일 실시예에 따른 고무 조성물은 황 가교성일 수 있으며, 이에 따라 가황제를 더 포함할 수 있다.
상기 가황제는 구체적으로 황분말일 수 있으며, 고무 성분 100 중량부에 대하여 0.1 중량부 내지 10 중량부로 포함될 수 있다. 상기 함량범위로 포함될 때, 가황 고무 조성물의 필요한 탄성률 및 강도를 확보할 수 있으며, 동시에 저연비성을 얻을 수 있다.
또한, 본 발명에 따른 일 실시예에 따른 고무 조성물은 상기한 성분들 외에, 통상 고무 공업계에서 사용되는 각종 첨가제, 구체적으로는 가황 촉진제, 공정유, 가소제, 노화 방지제, 스코치 방지제, 아연화(zinc white), 스테아르산, 열경화성 수지, 또는 열가소성 수지 등을 더 포함할 수 있다.
상기 가황 촉진제는 특별히 한정되는 것은 아니며, 구체적으로는 M(2-머캅토벤조티아졸), DM(디벤조티아질디술피드), CZ(N-시클로헥실-2-벤조티아질술펜아미드) 등의 티아졸계 화합물, 혹은 DPG(디페닐구아니딘) 등의 구아니딘계 화합물이 사용될 수 있다. 상기 가황촉진제는 고무 성분 100 중량부에 대하여 0.1 중량부 내지 5 중량부로 포함될 수 있다.
또한, 상기 공정유는 고무 조성물내 연화제로서 작용하는 것으로, 구체적으로는 파라핀계, 나프텐계, 또는 방향족계 화합물일 수 있으며, 보다 구체적으로는 인장 강도 및 내마모성을 고려할 때 방향족계 공정유가, 히스테리시스 손실 및 저온 특성을 고려할 때 나프텐계 또는 파라핀계 공정유가 사용될 수 있다. 상기 공정유는 고무 성분 100 중량부에 대하여 100 중량부 이하의 함량으로 포함될 수 있으며, 상기 함량으로 포함될 때, 가황 고무의 인장 강도, 저발열성(저연비성)의 저하를 방지할 수 있다.
또한, 상기 노화방지제로는 구체적으로 N-이소프로필-N'-페닐-p-페닐렌디아민, N-(1,3-디메틸부틸)-N'-페닐-p-페닐렌디아민, 6-에톡시-2,2,4-트리메틸-1,2-디히드로퀴놀린, 또는 디페닐아민과 아세톤의 고온 축합물 등을 들 수 있다. 상기 노화방지제는 고무 성분 100 중량부에 대하여 0.1 중량부 내지 6 중량부로 사용될 수 있다.
본 발명의 일 실시예에 따른 고무 조성물은 상기 배합 처방에 의해 밴버리 믹서, 롤, 인터널 믹서 등의 혼련기를 사용하여 혼련함으로써 수득될 수 있으며, 또 성형 가공 후 가황 공정에 의해 저발열성이며 내마모성이 우수한 고무 조성물이 수득될 수 있다.
이에 따라 상기 고무 조성물은 타이어 트레드, 언더 트레드, 사이드 월, 카카스 코팅 고무, 벨트 코팅 고무, 비드 필러, 췌이퍼, 또는 비드 코팅 고무 등의 타이어의 각 부재나, 방진고무, 벨트 컨베이어, 호스 등의 각종 공업용 고무 제품의 제조에 유용할 수 있다.
상기 고무 조성물을 이용하여 제조된 성형품은 타이어 또는 타이어 트레드를 포함하는 것일 수 있다.
이하, 실시예 및 실험예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 그러나, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것으로 이들 만으로 본 발명의 범위가 한정되는 것은 아니다.
제조예 1
1 L 둥근바닥 플라스크에 메틸 피페라진-1-카르복실레이트 10 g(63.2 mmol)이 용해된 염화메틸렌 용액을 첨가한 후 0℃에서 트리에틸아민 17.6 ml(126.4 mmol)과 트리메틸실릴클로라이드 8.8 ml(69.5 mmol)가 용해된 염화메틸렌 용액을 순차적으로 투입하였다. 이후, 상온에서 12시간 동안 교반하면서 반응시키고, 반응을 종료시킨 다음 헥산을 투입하여 희석한 후 감압하여 용매를 제거하였다. 그 후, 헥산을 이용하여 3회의 세척과정을 반복하여 하기 화학식 1-1로 표시되는 변성제를 수득하였다. 수득한 화학식 1-1로 표시되는 변성제의 1H의 핵자기공명 분광학적 데이터는 아래와 같다.
[화학식 1-1]
Figure PCTKR2017013130-appb-I000015
1H-NMR (500 MHz, DMSO) δ 3.86-3.67(3H, m), 3.25-3.14(4H, m), 2.84-2.75(4H, m), 0.09(9H, s).
제조예 2
1 L 둥근바닥 플라스크에 에틸 피페라진-1-카르복실레이트 11 g(63.2 mmol)이 용해된 염화메틸렌 용액을 첨가한 후 0℃에서 트리에틸아민 17.6 ml(126.4 mmol)과 트리메틸실릴클로라이드 8.8 ml(69.5 mmol)가 용해된 염화메틸렌 용액을 순차적으로 투입하였다. 이후, 상온에서 12시간 동안 교반하면서 반응시키고, 반응을 종료시킨 다음 헥산을 투입하여 희석한 후 감압하여 용매를 제거하였다. 그 후, 헥산을 이용하여 3회의 세척과정을 반복하여 하기 화학식 1-2로 표시되는 변성제를 수득하였다. 수득한 화학식 1-2로 표시되는 변성제의 1H의 핵자기공명 분광학적 데이터는 아래와 같다.
[화학식 1-2]
Figure PCTKR2017013130-appb-I000016
1H-NMR (500 MHz, DMSO) δ 4.24-4.01(2H, m), 3.25-3.14(4H, m), 2.84-2.75(4H, m), 1.32-1.10(3H, m), 0.09(9H, s).
제조예 3
1 L 둥근바닥 플라스크에 프로필 피페라진-1-카르복실레이트 12 g(63.2 mmol)이 용해된 염화메틸렌 용액을 첨가한 후 0℃에서 트리에틸아민 17.6 ml(126.4 mmol)과 트리메틸실릴클로라이드 8.8 ml(69.5 mmol)가 용해된 염화메틸렌 용액을 순차적으로 투입하였다. 이후, 상온에서 12시간 동안 교반하면서 반응시키고, 반응을 종료시킨 다음 헥산을 투입하여 희석한 후 감압하여 용매를 제거하였다. 그 후, 헥산을 이용하여 3회의 세척과정을 반복하여 하기 화학식 1-3으로 표시되는 변성제를 수득하였다. 수득한 화학식 1-3으로 표시되는 변성제의 1H의 핵자기공명 분광학적 데이터는 아래와 같다.
[화학식 1-3]
Figure PCTKR2017013130-appb-I000017
1H-NMR (500 MHz, DMSO) δ 4.24-4.01(2H, m), 3.25-3.14(4H, m), 2.84-2.75(4H, m), 1.83-1.64(2H, m), 1.12-0.93(3H, m), 0.09(9H, s).
제조예 4
1 L 둥근바닥 플라스크에 부틸 피페라진-1-카르복실레이트 13 g(63.2 mmol)이 용해된 염화메틸렌 용액을 첨가한 후 0℃에서 트리에틸아민 17.6 ml(126.4 mmol)과 트리메틸실릴클로라이드 8.8 ml(69.5 mmol)가 용해된 염화메틸렌 용액을 순차적으로 투입하였다. 이후, 상온에서 12시간 동안 교반하면서 반응시키고, 반응을 종료시킨 다음 헥산을 투입하여 희석한 후 감압하여 용매를 제거하였다. 그 후, 헥산을 이용하여 3회의 세척과정을 반복하여 하기 화학식 1-4로 표시되는 변성제를 수득하였다. 수득한 화학식 1-4로 표시되는 변성제의 1H의 핵자기공명 분광학적 데이터는 아래와 같다.
[화학식 1-4]
Figure PCTKR2017013130-appb-I000018
1H-NMR (500 MHz, DMSO) δ 4.01-3.79(2H, m), 3.25-3.14(4H, m), 2.84-2.75(4H, m), 1.56-1.38(2H, m), 1.38-1.16(2H, m), 1.00-0.81(3H, m), 0.09(9H, s).
제조예 5
1 L 둥근바닥 플라스크에 펜틸 피페라진-1-카르복실레이트 14 g(63.2 mmol)이 용해된 염화메틸렌 용액을 첨가한 후 0℃에서 트리에틸아민 17.6 ml(126.4 mmol)과 트리메틸실릴클로라이드 8.8 ml(69.5 mmol)가 용해된 염화메틸렌 용액을 순차적으로 투입하였다. 이후, 상온에서 12시간 동안 교반하면서 반응시키고, 반응을 종료시킨 다음 헥산을 투입하여 희석한 후 감압하여 용매를 제거하였다. 그 후, 헥산을 이용하여 3회의 세척과정을 반복하여 하기 화학식 1-5로 표시되는 변성제를 수득하였다. 수득한 화학식 1-5로 표시되는 변성제의 1H의 핵자기공명 분광학적 데이터는 아래와 같다.
[화학식 1-5]
Figure PCTKR2017013130-appb-I000019
1H-NMR (500 MHz, DMSO) δ 4.02-3.82(2H, m), 3.25-3.14(4H, m), 2.84-2.75(4H, m), 1.71-1.50(2H, m), 1.48-1.29(4H, m), 1.00-0.81(3H, m), 0.09(9H, s).
비교 제조예 1
1 L 둥근바닥 플라스크에 메틸 2-(피페라진-1-일)아세테이트 11 g(63.2 mmol)이 용해된 염화메틸렌 용액을 첨가한 후 0℃에서 트리에틸아민 17.6 ml(126.4 mmol)과 트리메틸실릴클로라이드 8.8 ml(69.5 mmol)가 용해된 염화메틸렌 용액을 순차적으로 투입하였다. 이후, 상온에서 12시간 동안 교반하면서 반응시키고, 반응을 종료시킨 다음 헥산을 투입하여 희석한 후 감압하여 용매를 제거하였다. 그 후, 헥산을 이용하여 3회의 세척과정을 반복하여 하기 화학식 i로 표시되는 변성제를 수득하였다. 수득한 화학식 i로 표시되는 변성제의 1H의 핵자기공명 분광학적 데이터는 아래와 같다.
Figure PCTKR2017013130-appb-I000020
(i)
1H-NMR (500 MHz, DMSO) δ 3.75-3.58(3H, s), 3.45-3.24(2H, m), 2.84-2.75(4H, m), 2.44-2.22(4H, m), 0.09(9H, s).
비교 제조예 2
1 L 둥근바닥 플라스크에 메틸 피페라진-1-카르복실레이트 10 g(63.2 mmol)이 용해된 염화메틸렌 용액을 첨가한 후 0℃에서 트리에틸아민 17.6 ml(126.4 mmol)과 (클로로메틸)트리메틸실란 10 ml(69.5 mmol)가 용해된 염화메틸렌 용액을 순차적으로 투입하였다. 이후, 상온에서 12시간 동안 교반하면서 반응시키고, 반응을 종료시킨 다음 헥산을 투입하여 희석한 후 감압하여 용매를 제거하였다. 그 후, 헥산을 이용하여 3회의 세척과정을 반복하여 하기 화학식 ii로 표시되는 변성제를 수득하였다. 수득한 화학식 ii로 표시되는 변성제의 1H의 핵자기공명 분광학적 데이터는 아래와 같다.
Figure PCTKR2017013130-appb-I000021
(ii)
1H-NMR (500 MHz, DMSO) δ 3.87-3.68(3H, s), 3.30-3.11(4H, m), 2.58-2.37(4H, m), 1.80-1.59(2H, s), 0.31-0.13(9H, s).
실시예 1
20 L 오토클레이브 반응기에 1,3-부타디엔 900 g 및 노말헥산 6.6 kg을 넣은 후 반응기 내부온도를 70℃로 승온하였다. 네오디뮴 화합물(NdV, neodymium versatate) 0.10 mmol 헥산 용액과 디이소부틸알루미늄 히드리드(diisobutylaluminum hydride, DIBAH) 0.89 mmol, 디에틸알루미늄 클로라이드(diethylaluminum chloride) 0.24 mmol, 1,3-부타디엔 3.3 mmol과의 반응을 통해 제조한 촉매 조성물을 반응기에 첨가한 후 60분 동안 중합을 진행하였다. 이후, 상기 제조예 1에서 제조된 화학식 1-1로 표시되는 변성제 0.23 mmol이 포함된 헥산용액을 첨가한 후 70℃에서 30분 동안 변성반응을 진행시켰다. 이후 중합정지제 1.0 g이 포함된 헥산용액과 산화방지제인 WINGSTAY (Eliokem SAS, France)가 헥산에 30 중량% 녹아있는 용액 33 g을 첨가하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거한 다음, 롤 건조하여 잔량의 용매와 물을 제거하여, 변성 부타디엔 중합체를 제조하였다.
실시예 2
상기 실시예 1에 있어서, 제조예 1에서 제조된 화학식 1-1로 표시되는 변성제대신에 제조예 2에서 제조된 화학식 1-2로 표시되는 변성제를 사용하여 변성반응을 진행한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 변성 부타디엔 중합체를 제조하였다.
실시예 3
상기 실시예 1에 있어서, 제조예 1에서 제조된 화학식 1-1로 표시되는 변성제대신에 제조예 3에서 제조된 화학식 1-3으로 표시되는 변성제를 사용하여 변성반응을 진행한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 변성 부타디엔 중합체를 제조하였다.
실시예 4
상기 실시예 1에 있어서, 제조예 1에서 제조된 화학식 1-1로 표시되는 변성제대신에 제조예 4에서 제조된 화학식 1-4로 표시되는 변성제를 사용하여 변성반응을 진행한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 변성 부타디엔 중합체를 제조하였다.
실시예 5
상기 실시예 1에 있어서, 제조예 1에서 제조된 화학식 1-1로 표시되는 변성제대신에 제조예 5에서 제조된 화학식 1-5로 표시되는 변성제를 사용하여 변성반응을 진행한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 변성 부타디엔 중합체를 제조하였다.
비교예 1
20 L 오토클레이브 반응기에 1,3-부타디엔 900 g 및 노말헥산 6.6 kg을 넣은 후 반응기 내부온도를 70℃로 승온하였다. 네오디뮴 화합물(NdV) 0.10 mmol 헥산 용액과 디이소부틸알루미늄 히드리드(diisobutylaluminum hydride, DIBAH) 0.89 mmol, 디에틸알루미늄 클로라이드(diethylaluminum chloride) 0.24 mmol, 1,3-부타디엔 3.3 mmol과의 반응을 통해 제조한 촉매 조성물을 반응기에 첨가한 후 60분 동안 중합을 진행하였다. 이후, 중합정지제 1.0 g이 포함된 헥산용액과 산화방지제인 WINGSTAY (Eliokem SAS, France) 가 헥산에 30 중량% 녹아있는 용액 33 g을 첨가하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거한 다음, 롤 건조하여 잔량의 용매와 물을 제거하여, 부타디엔 중합체를 제조하였다.
비교예 2
미변성 부타디엔 중합체로서 BR1208(SEETEC 社)를 비교예로 사용하였다.
비교예 3
미변성 부타디엔 중합체로서 CB25(Lanxess 社)를 비교예로 사용하였다.
비교예 4
상기 실시예 1에 있어서, 제조예 1에서 제조된 화학식 1-1로 표시되는 변성제 대신에 비교 제조예 1에서 제조된 화학식 i로 표시되는 변성제를 사용하여 변성반응을 진행한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 변성 부타디엔 중합체를 제조하였다.
비교예 5
상기 실시예 1에 있어서, 제조예 1에서 제조된 화학식 1-1로 표시되는 변성제 대신에 비교 제조예 2에서 제조된 화학식 ii로 표시되는 변성제를 사용하여 변성반응을 진행한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 변성 부타디엔 중합체를 제조하였다.
실험예 1
상기 실시예 1 내지 5 및 비교예 1 내지 5에서 제조한 변성 혹은 미변성 부타디엔 중합체에 대해 하기와 같은 방법으로 각각의 물성을 측정하고, 그 결과를 하기 표 1에 나타내었다.
1) 중량평균 분자량(Mw), 수평균 분자량(Mn), 및 분자량 분포
각 중합체를 40 ℃ 조건 하에서 테트라히드로퓨란(THF)에 30분간 녹인 후 겔 투과 크로마토 그래피(GPC: gel permeation chromatography)에 적재하여 흘려주었다. 이때, 칼럼은 폴리머 라보레토리즈사(Polymer Laboratories)의 상품명 PLgel Olexis 칼럼 두 자루와 PLgel mixed-C 칼럼 한 자루를 조합 사용하였다. 또 새로 교체한 칼럼은 모두 혼합상(mixed bed) 타입의 칼럼을 사용하였으며, 겔 투과 크로마토그래피 표준 물질(GPC STandard material)로서 폴리스티렌(Polystyrene)을 사용하였다.
2) 무니점도 및 -S/R 값
각 중합체에 대해 Monsanto사 MV2000E로 Large Rotor를 사용하여 100℃에서 Rotor Speed 2±0.02 rpm의 조건에서 무니점도(MV)를 측정하였다. 이때 사용된 시료는 실온(23±3℃)에서 30분 이상 방치한 후 27±3g을 채취하여 다이 캐비티 내부에 채워 놓고 플래턴(Platen)을 작동시켜 토크를 인가하면서 무니점도를 측정하였다.
또한, 상기 무니점도의 측정시 토크가 풀어지면서 나타나는 무니점도의 변화를 1분간 관찰하고, 그 기울기값으로부터 -S/R값을 결정하였다.
3) 구조분석
각 중합체에 대해 푸리에 변환 적외 분광 분석을 실시하고, 그 결과로부터 각 중합체 내 시스-1,4 결합, 트랜스-1,4-결합 및 비닐 함량을 구하였다.
4) 용액 점도(Solution Viscosity, MU): 각 중합체를 5 중량%로 포함하는 톨루엔 중합체 용액을 제조한 후, 20℃에서 각 용액의 점도를 측정하였다.
Figure PCTKR2017013130-appb-T000001
상기 표 1에 나타난 바와 같이, 본 발명의 일 실시예에 따른 화학식 1로 표시되는 변성제의 일 예시 변성제를 이용하여 제조된 실시예 1 내지 실시예 5의 변성 부타디엔 중합체가 변성되지 않은 비교예 1 내지 비교예 3의 부타디엔 중합체와 비교예 4 및 비교예 5의 변성 부타디엔 중합체 대비 -S/R 값이 증가하는 것을 확인하였다. 이는, 본 발명의 일 실시예에 따른 변성 부타디엔 중합체가 비교예 1 내지 비교예 5의 변성 혹은 미변성의 부타디엔 중합체 대비 높은 선형성을 가지는 것을 의미하는 것이며, 결과적으로 이를 포함하는 고무 조성물로부터 제조된 고무 시편의 저항 특성 및 연비 특성이 우수할 수 있음을 나타내는 것이다.
실험예 2
상기 실시예 1 내지 5 및 비교예 1 내지 5의 변성 혹은 미변성 부타디엔 중합체를 이용하여 고무 조성물 및 고무 시편을 제조한 후, 하기와 같은 방법으로 인장강도, 300% 모듈러스, 신율, 내마모성 및 점탄성을 각각 측정하였다. 그 결과를 하기 표 2에 나타내었으며, 각 측정값은 비교예 1의 측정값을 100으로 두고 지수화하였다.
구체적으로, 상기 고무 조성물은 상기 각 변성 부타디엔 중합체 및 부타디엔 중합체 100 중량부에 카본블랙 70 중량부, 공정오일(process oil) 22.5 중량부, 노화방지제(TMDQ) 2 중량부, 산화아연(ZnO) 3 중량부 및 스테아린산(stearic acid) 2 중량부를 배합하여 각각의 고무 조성물을 제조하였다. 이후, 상기 각 고무 조성물에 황 2 중량부, 가류 촉진제(CZ) 2 중량부 및 가류 촉진제(DPG) 0.5 중량부를 첨가하고, 160℃에서 25분 동안 가류하여 고무시편을 제조하였다.
1) 인장강도(tensile strength, kg·f/cm2), 300% 모듈러스(300% modulus, kg·f/cm2) 및 신율(elongation, %)
상기 각 고무 조성물을 150℃에서 t90분 가류 후 ASTM D412에 준하여 가류물의 인장강도, 300% 신장시의 모듈러스(M-300%) 및 파단시 가류물의 신율을 측정하였다.
2) 점탄성(Tanδ @60℃)
저 연비 특성에 가장 중요한 Tan δ 물성은 독일 Gabo사 DMTS 500N을 사용하여 주파수 10㎐, Prestrain 3%, Dynamic Strain 3%에서 60℃에서의 점탄성 계수(Tan δ)를 측정하였다. 이때, 60℃에서의 Tan δ 값이 낮을수록 히스테리시스 손실이 적고, 우수한 저회전저항성, 즉 연비성이 우수함을 나타내는 것이다.
3) DiN 마모시험
상기 각 고무시편에 대하여 ASTM D5963에 준하여 DIN 마모시험을 진행하여, DIN wt loss index(손실 부피 지수(Loss Volume Index): ARIA(Abrasion resisTance index, Method A))로 나타내었다. 지수가 높을수록 내마모성이 우수함을 나타낸다.
구분 실시예 비교예
1 2 3 4 5 1 2 3 4 5
DIN wt loss Index 108 107 108 108 106 100 89 103 99 98
인장특성 M-300% (Index) 109 108 108 106 107 100 95 103 101 102
인장강도(Index) 106 105 105 104 104 100 96 102 100 101
신율(Index) 95 97 96 95 96 100 101 98 98 99
Tanδ @60℃(Index) 108 109 108 107 107 100 95 102 102 103
상기 표 2에 나타낸 바와 같이, 본 발명의 일 실시예에 따른 변성제를 사용하여 제조된 실시예 1 내지 5의 변성 부타디엔 중합체를 포함하는 고무 조성물 및 이로부터 제조된 고무시편이 비교예 1 내지 비교예 3의 미변성 부타디엔 중합체 및 비교예 4와 비교예 5의 변성 부타디엔 중합체를 각각 포함하는 고무 조성물 및 이로부터 제조된 고무시편 대비 향상된 내마모성 및 인장특성을 보이면서 점탄성 특성이 현저히 개선(60℃에서의 Tan δ 값의 감소로 Index 크게 증가함)되는 것을 확인하였다.
구체적으로, 변성제를 사용하여 변성반응을 시키지 않을 것을 제외하고는 실시예 1 내지 5의 변성 부타디엔 중합체와 동일한 조건으로 제조된 비교예 1의 부타디엔 중합체 및 시중에 제품화되어 판매중인 비교예 2와 비교예 3의 부타디엔 중합체의 경우에는, 실시예 1 내지 실시예 5의 변성 부타디엔 중합체 대비 유사한 수준의 인장특성을 나타내었으나 내마모성이 크게 감소되고 점탄성 특성이 현저하게 저하되었다.
또한, 상기 실시예 1 내지 5의 변성 부타디엔 중합체는 본 발명의 일 실시예에 따른 화학식 1로 표시되는 변성제와 같이 알콕시실란기, 아민기 및 에스테르기를 포함하나, 구조가 상이한 물질로 변성시켜 제조된 비교예 4 및 비교예 5의 변성 부타디엔 중합체와 비교해서도 내마모성 및 인장특성이 우수하면서 점탄성 특성이 개선되었다.
상기의 결과는, 본 발명의 일 실시예에 따른 실시예의 변성 부타디엔 중합체가 화학식 1로 표시되는 특정 변성제로 변성됨으로써 미변성 혹은 유사하나 다른 구조의 변성제로 변성된 부타디엔 중합체와 비교하여 동등하거나 그 이상의 인장특성 및 내마모성을 가지면서도 저회전저항성, 즉 연비성이 우수할 수 있음을 나타내는 것이다.

Claims (14)

  1. 하기 화학식 1로 표시되는 변성제:
    [화학식 1]
    Figure PCTKR2017013130-appb-I000022
    상기 화학식 1에서,
    R1, R2 및 R5는 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환되거나 비치환된 탄소수 1 내지 20의 1가 탄화수소기이고,
    R3 및 R4는 서로 독립적으로 탄소수 1 내지 20의 알킬기로 치환되거나 비치환된 탄소수 1 내지 20의 2가 탄화수소기이며,
    n은 1 내지 3의 정수이다.
  2. 청구항 1에 있어서,
    상기 화학식 1에서,
    R1, R2 및 R5는 서로 독립적으로 탄소수 1 내지 10의 알킬기로 치환되거나 비치환된 탄소수 1 내지 10의 알킬기이고,
    R3 및 R4는 서로 독립적으로 탄소수 1 내지 6의 알킬렌기인 것인 변성제.
  3. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 변성제는 하기 화학식 1-1 내지 화학식 1-5로 표시되는 것인 변성제:
    [화학식 1-1]
    Figure PCTKR2017013130-appb-I000023
    [화학식 1-2]
    Figure PCTKR2017013130-appb-I000024
    [화학식 1-3]
    Figure PCTKR2017013130-appb-I000025
    [화학식 1-4]
    Figure PCTKR2017013130-appb-I000026
    [화학식 1-5]
    Figure PCTKR2017013130-appb-I000027
  4. 청구항 1에 있어서,
    상기 변성제는 공액디엔계 중합체용 변성제인 것인 변성제.
  5. 하기 화학식 1로 표시되는 변성제 유래 작용기를 포함하는 변성 공액디엔계 중합체:
    [화학식 1]
    Figure PCTKR2017013130-appb-I000028
    상기 화학식 1에서,
    R1, R2 및 R5는 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환되거나 비치환된 탄소수 1 내지 20의 1가 탄화수소기이고,
    R3 및 R4는 서로 독립적으로 탄소수 1 내지 20의 알킬기로 치환되거나 비치환된 탄소수 1 내지 20의 2가 탄화수소기이며,
    n은 1 내지 3의 정수이다.
  6. 청구항 5에 있어서,
    상기 화학식 1로 표시되는 변성제는 하기 화학식 1-1 내지 화학식 1-5로 표시되는 것인 변성 공액디엔계 중합체:
    [화학식 1-1]
    Figure PCTKR2017013130-appb-I000029
    [화학식 1-2]
    Figure PCTKR2017013130-appb-I000030
    [화학식 1-3]
    Figure PCTKR2017013130-appb-I000031
    [화학식 1-4]
    Figure PCTKR2017013130-appb-I000032
    [화학식 1-5]
    Figure PCTKR2017013130-appb-I000033
  7. 청구항 5에 있어서,
    상기 중합체는 100,000 g/mol 내지 500,000 g/mol의 수평균분자량을 갖는 것인 변성 공액디엔계 중합체.
  8. 청구항 5에 있어서,
    상기 중합체는 분자량 분포(Mw/Mn)가 2.0 내지 3.0인 것인 변성 공액디엔계 중합체.
  9. 청구항 8에 있어서,
    상기 중합체는 100℃에서의 -S/R(stress/relaxation)의 값이 0.7 이상인 것인 변성 공액디엔계 중합체.
  10. 1) 탄화수소 용매 중에서, 란탄 계열 희토류 원소 함유 화합물을 포함하는 촉매 조성물 존재 하에서 공액디엔계 단량체를 중합하여 유기 금속이 결합된 활성 중합체를 제조하는 단계; 및
    2) 상기 활성 중합체를 하기 화학식 1로 표시되는 변성제와 반응시키는 단계를 포함하는 청구항 5에 기재된 변성 공액디엔계 중합체의 제조방법:
    [화학식 1]
    Figure PCTKR2017013130-appb-I000034
    상기 화학식 1에서,
    R1, R2 및 R5는 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군에서 선택되는 1종 이상의 치환기로 치환되거나 비치환된 탄소수 1 내지 20의 1가 탄화수소기이고,
    R3 및 R4는 서로 독립적으로 탄소수 1 내지 20의 선형 또는 분지형 알킬기로 치환되거나 비치환된 탄소수 1 내지 20의 2가 탄화수소기이며,
    n은 1 내지 3의 정수이다.
  11. 청구항 10에 있어서,
    상기 촉매 조성물은 공액디엔계 단량체 100 g을 기준으로 란탄 계열 희토류원소 함유 화합물이 0.1 mmol 내지 0.5 mmol이 되게 하는 양으로 사용하는 것인 변성 공액디엔계 중합체의 제조방법.
  12. 청구항 11에 있어서,
    상기 란탄 계열 희토류 원소 함유 화합물은 하기 화학식 3으로 표시되는 네오디뮴계 화합물을 포함하는 것인 변성 공액디엔계 중합체의 제조방법:
    [화학식 3]
    Figure PCTKR2017013130-appb-I000035
    상기 화학식 3에서,
    Ra 내지 Rc는 서로 독립적으로 수소, 또는 탄소수 1 내지 12의 알킬기이고,
    단, Ra 내지 Rc가 모두 동시에 수소는 아니다.
  13. 청구항 12에 있어서,
    상기 네오디뮴계 화합물은 Nd(2,2-디에틸 데카노에이트)3, Nd(2,2-디프로필 데카노에이트)3, Nd(2,2-디부틸 데카노에이트)3, Nd(2,2-디헥실 데카노에이트)3, Nd(2,2-디옥틸 데카노에이트)3, Nd(2-에틸-2-프로필 데카노에이트)3, Nd(2-에틸-2-부틸 데카노에이트)3, Nd(2-에틸-2-헥실 데카노에이트)3, Nd(2-프로필-2-부틸 데카노에이트)3, Nd(2-프로필-2-헥실 데카노에이트)3, Nd(2-프로필-2-이소프로필 데카노에이트)3, Nd(2-부틸-2-헥실 데카노에이트)3, Nd(2-헥실-2-옥틸 데카노에이트)3, Nd(2,2-디에틸 옥타노에이트)3, Nd(2,2-디프로필 옥타노에이트)3, Nd(2,2-디부틸 옥타노에이트)3, Nd(2,2-디헥실 옥타노에이트)3, Nd(2-에틸-2-프로필 옥타노에이트)3, Nd(2-에틸-2-헥실 옥타노에이트)3, Nd(2,2-디에틸 노나노에이트)3, Nd(2,2-디프로필 노나노에이트)3, Nd(2,2-디부틸 노나노에이트)3, Nd(2,2-디헥실 노나노에이트)3, Nd(2-에틸-2-프로필 노나노에이트)3 및 Nd(2-에틸-2-헥실 노나노에이트)3로 이루어진 군으로부터 선택된 1종 이상인 것인 변성 공액디엔계 중합체의 제조방법.
  14. 청구항 10에 있어서,
    상기 변성제는 란탄 계열 희토류 원소 함유 화합물 1 몰을 기준으로 0.5 몰 내지 20 몰의 비율로 사용하는 것인 변성 공액디엔계 중합체의 제조방법.
PCT/KR2017/013130 2016-12-08 2017-11-17 변성제 및 이로부터 유래된 작용기를 포함하는 변성 공액디엔계 중합체 WO2018105920A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17878318.9A EP3409718B1 (en) 2016-12-08 2017-11-17 Modifier and modified conjugated diene-based polymer containing functional group derived therefrom
US16/084,072 US10730984B2 (en) 2016-12-08 2017-11-17 Modifier and modified conjugated diene-based polymer including functional group derived therefrom
CN201780020176.5A CN108884271B (zh) 2016-12-08 2017-11-17 改性剂和包含由其衍生的官能团的改性共轭二烯类聚合物
JP2019519972A JP6857721B2 (ja) 2016-12-08 2017-11-17 変性剤及びこれから由来された作用基を含む変性共役ジエン系重合体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0166994 2016-12-08
KR20160166994 2016-12-08
KR10-2017-0153284 2017-11-16
KR1020170153284A KR102122470B1 (ko) 2016-12-08 2017-11-16 변성제 및 이로부터 유래된 작용기를 포함하는 변성 공액디엔계 중합체

Publications (1)

Publication Number Publication Date
WO2018105920A1 true WO2018105920A1 (ko) 2018-06-14

Family

ID=62491236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013130 WO2018105920A1 (ko) 2016-12-08 2017-11-17 변성제 및 이로부터 유래된 작용기를 포함하는 변성 공액디엔계 중합체

Country Status (1)

Country Link
WO (1) WO2018105920A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3715386A4 (en) * 2017-11-21 2020-10-21 LG Chem, Ltd. RUBBER COMPOSITION

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4460587A (en) * 1981-12-07 1984-07-17 Ciba-Geigy Corporation 5-Diazacycloalkyl imidazo[1,2-c][1,3]benzodiazepines
EP2045272A1 (en) * 2006-07-24 2009-04-08 Asahi Kasei Chemicals Corporation Modified conjugated diene polymer and method for producing the same
WO2011041534A1 (en) * 2009-09-30 2011-04-07 Bridgestone Corporation Functionalized polymers and methods for their manufacture
KR20160065015A (ko) * 2014-11-28 2016-06-08 주식회사 엘지화학 변성 부타디엔계 중합체 및 이의 제조에 유용한 변성제
KR20160076417A (ko) * 2014-12-22 2016-06-30 주식회사 엘지화학 관능기가 도입된 아미노실란계 말단변성제, 이를 이용하는 말단변성 공역디엔계 중합체의 제조방법, 및 이에 따라 제조한 말단변성 공역디엔계 중합체

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4460587A (en) * 1981-12-07 1984-07-17 Ciba-Geigy Corporation 5-Diazacycloalkyl imidazo[1,2-c][1,3]benzodiazepines
EP2045272A1 (en) * 2006-07-24 2009-04-08 Asahi Kasei Chemicals Corporation Modified conjugated diene polymer and method for producing the same
WO2011041534A1 (en) * 2009-09-30 2011-04-07 Bridgestone Corporation Functionalized polymers and methods for their manufacture
KR20160065015A (ko) * 2014-11-28 2016-06-08 주식회사 엘지화학 변성 부타디엔계 중합체 및 이의 제조에 유용한 변성제
KR20160076417A (ko) * 2014-12-22 2016-06-30 주식회사 엘지화학 관능기가 도입된 아미노실란계 말단변성제, 이를 이용하는 말단변성 공역디엔계 중합체의 제조방법, 및 이에 따라 제조한 말단변성 공역디엔계 중합체

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3715386A4 (en) * 2017-11-21 2020-10-21 LG Chem, Ltd. RUBBER COMPOSITION
US11680153B2 (en) 2017-11-21 2023-06-20 Lg Chem, Ltd. Rubber composition

Similar Documents

Publication Publication Date Title
WO2018128288A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2019078459A1 (ko) 변성 공액디엔계 중합체의 제조방법
WO2017217720A1 (ko) 변성 공액디엔계 중합체의 제조방법 및 이를 이용하여 제조된 변성 공액디엔계 중합체
WO2018128285A1 (ko) 변성 공액디엔계 중합체 제조방법
WO2018084546A1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2020013638A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2020130740A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2018128291A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2019078653A2 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2019088634A1 (ko) 공액디엔 중합용 촉매의 제조방법, 촉매 및 이를 이용한 공액디엔계 중합체의 제조방법
WO2019103383A1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2019083173A1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2021010718A1 (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
WO2016209046A1 (ko) 공액 디엔계 중합체 제조용 촉매 조성물 및 이를 이용하여 제조된 공액 디엔계 중합체
WO2019083092A1 (ko) 연속식 중합에 의한 공액디엔계 중합체의 제조방법
WO2018128289A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2016209042A1 (ko) 공액 디엔계 중합체 제조용 촉매 조성물 및 이를 이용하여 제조된 공액 디엔계 중합체
WO2021066543A1 (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
WO2018105920A1 (ko) 변성제 및 이로부터 유래된 작용기를 포함하는 변성 공액디엔계 중합체
WO2018084579A1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2021086039A1 (ko) 변성제, 변성 공액디엔계 중합체 및 이의 제조방법
WO2020130738A1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2020130741A1 (ko) 변성 공액디엔계 중합체의 제조방법
WO2017111463A1 (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 변성제
WO2017111499A1 (ko) 고분자 화합물, 이를 이용한 변성 공액디엔계 중합체의 제조방법 및 변성 공액디엔계 중합체

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017878318

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017878318

Country of ref document: EP

Effective date: 20180830

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878318

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019519972

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE